[go: up one dir, main page]

Showing 268 open source projects for "tensorflow"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Cloud-based observability solution that helps businesses track and manage workload and performance on a unified dashboard. Icon
    Cloud-based observability solution that helps businesses track and manage workload and performance on a unified dashboard.

    For developers, engineers, and operational teams in organizations of all sizes

    Monitor everything you run in your cloud without compromising on cost, granularity, or scale. groundcover is a full stack cloud-native APM platform designed to make observability effortless so that you can focus on building world-class products. By leveraging our proprietary sensor, groundcover unlocks unprecedented granularity on all your applications, eliminating the need for costly code changes and development cycles to ensure monitoring continuity.
    Learn More
  • 1
    ASRT Speech Recognition

    ASRT Speech Recognition

    A Deep-Learning-Based Chinese Speech Recognition System

    ASRT is an end-to-end deep-learning Chinese ASR system built with TensorFlow/Keras, using convolution + CTC and a Max-Entropy HMM language model. It provides a REST/gRPC server backend and client SDKs in multiple languages (Python, Java, Go, Windows). Notably lightweight, it performs well without needing GPU acceleration and runs across platforms, targeting developers and researchers building Chinese voice interfaces.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    ...This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TensorFlow Backend for ONNX

    TensorFlow Backend for ONNX

    Tensorflow Backend for ONNX

    Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models. ONNX is supported by a community of partners who have implemented it in many frameworks and tools. TensorFlow Backend for ONNX makes it possible to use ONNX models as input for TensorFlow. The ONNX model is first converted to a TensorFlow model and then delegated for execution on TensorFlow to produce the output. This is one of the two TensorFlow converter projects which serve different purposes in the ONNX community. ONNX-TF requires ONNX (Open Neural Network Exchange) as an external dependency, for any issues related to ONNX installation, we refer our users to ONNX project repository for documentation and help. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Real-ESRGAN ncnn Vulkan

    Real-ESRGAN ncnn Vulkan

    NCNN implementation of Real-ESRGAN

    Real-ESRGAN ncnn Vulkan is an optimized, cross-platform implementation of Real-ESRGAN using the ncnn neural network inference engine and Vulkan for hardware acceleration. Unlike the standard PyTorch-based Real-ESRGAN code, this variant is written in C/C++ and designed to run efficiently on many platforms (including Windows, Linux, and possibly Android) without requiring heavy frameworks like CUDA or Python. It provides command-line tools for upscaling images with selected models, allowing...
    Downloads: 67 This Week
    Last Update:
    See Project
  • Securing the Cloud Made Easy Icon
    Securing the Cloud Made Easy

    Multi-cloud security delivered — now and in the future.

    Designed for organizations operating in the cloud who need complete, centralized visibility of their entire cloud estate and want more time and resources dedicated to remediating the actual risks that matter, Orca Security is an agentless cloud Security Platform that provides security teams with 100% coverage their entire cloud environment.
    Learn More
  • 5
    pyprobml

    pyprobml

    Python code for "Probabilistic Machine learning" book by Kevin Murphy

    ...The code uses the standard Python libraries, such as numpy, scipy, matplotlib, sklearn, etc. Some of the code (especially in book 2) also uses JAX, and in some parts of book 1, we also use Tensorflow 2 and a little bit of Torch. See also probml-utils for some utility code that is shared across multiple notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Flashlight library

    Flashlight library

    A C++ standalone library for machine learning

    Flashlight is a fast, flexible machine learning library written entirely in C++ by Facebook AI Research and the creators of Torch, TensorFlow, Eigen, and Deep Speech. Native support in C++ and simple extensibility make Flashlight a powerful research framework that's hackable to its core and enables fast iteration on new experimental setups and algorithms with little unopinionated and without sacrificing performance. In a single repository, Flashlight provides apps for research across multiple domains. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Texar-PyTorch

    Texar-PyTorch

    Integrating the Best of TF into PyTorch, for Machine Learning

    ...Texar-PyTorch was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this repository is maintained by Petuum Open Source. Texar-PyTorch integrates many of the best features of TensorFlow into PyTorch, delivering highly usable and customizable modules superior to PyTorch native ones. Texar-PyTorch (this repo) and Texar-TF have mostly the same interfaces. Both further combine the best design of TF and PyTorch. Data processing, model architectures, loss functions, training and inference algorithms, evaluation, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Acme

    Acme

    A library of reinforcement learning components and agents

    Acme is a framework from DeepMind for building scalable and reproducible reinforcement learning agents. It emphasizes modular components, distributed training, and ease of experimentation.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Microsoft OpenPAI FrameworkController

    Microsoft OpenPAI FrameworkController

    General-Purpose Kubernetes Pod Controller

    ...In the open source community, there are so many specialized Kubernetes Pod controllers which are built for a specific kind of application, such as Kubernetes StatefulSet Controller, Kubernetes Job Controller, KubeFlow TensorFlow Operator, KubeFlow PyTorch Operator. However, no one is built for all kinds of applications and combination of the existing ones still cannot support some kinds of applications. So, we have to learn, use, develop, deploy and maintain so many Pod controllers. Partitioned to different heterogeneous TaskRoles which share the same lifecycle. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Data Center Infrastructure Management Icon
    Data Center Infrastructure Management

    Fully utilize your assets. Lower data center costs. Prevent downtime.

    netTerrain DCIM is a Data Center Infrastructure Management (DCIM) software that helps organizations automate and simplify the management of its entire Data Center and IT infrastructure. This solution is used by organizations that need to manage environmental capacity with less effort (space, rack, data, and power), track their IT assets and inventory, and efficiently manage cabling.
    Try it Now
  • 10
    TensorFlow Examples

    TensorFlow Examples

    TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

    TensorFlow Examples is a comprehensive repository of example implementations, tutorials, and reference code intended to help newcomers and intermediate learners dive into TensorFlow quickly. It contains both Jupyter notebooks and raw source code, covering a broad range of tasks: from basic machine-learning and neural-network models to more advanced use cases, using both TensorFlow v1 and v2 APIs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    ...However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    MACE

    MACE

    Deep learning inference framework optimized for mobile platforms

    Mobile AI Compute Engine (or MACE for short) is a deep learning inference framework optimized for mobile heterogeneous computing on Android, iOS, Linux and Windows devices. Runtime is optimized with NEON, OpenCL and Hexagon, and Winograd algorithm is introduced to speed up convolution operations. The initialization is also optimized to be faster. Chip-dependent power options like big.LITTLE scheduling, Adreno GPU hints are included as advanced APIs. UI responsiveness guarantee is sometimes...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras. Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect face masks in static images as well as in real-time video streams. Amid the ongoing COVID-19 pandemic, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts, large-scale manufacturers and other enterprises to ensure safety. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MoCo v3

    MoCo v3

    PyTorch implementation of MoCo v3

    MoCo v3 is a PyTorch reimplementation of Momentum Contrast v3 (MoCo v3), Facebook Research’s state-of-the-art self-supervised learning framework for visual representation learning using ResNet and Vision Transformer (ViT) backbones. Originally developed in TensorFlow for TPUs, this version faithfully reproduces the paper’s results on GPUs while offering an accessible and scalable PyTorch interface. MoCo v3 introduces improvements for training self-supervised ViTs by combining contrastive learning with transformer-based architectures, achieving strong linear and end-to-end fine-tuning performance on ImageNet benchmarks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    ...The library provides automatic path finding and cost estimation, exposing when contractions will explode in memory and suggesting better orders. Because it supports backends such as NumPy, TensorFlow, PyTorch, and JAX, the same model can run on CPUs, GPUs, or TPUs with minimal code changes. Tutorials and visualization helpers make it easier to understand how network topology affects expressive power and computational cost.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Trax

    Trax

    Deep learning with clear code and speed

    ...It is also actively used for research and includes new models like the Reformer and new RL algorithms like AWR. Trax has bindings to a large number of deep learning datasets, including Tensor2Tensor and TensorFlow datasets. You can use Trax either as a library from your own python scripts and notebooks or as a binary from the shell, which can be more convenient for training large models. It runs without any changes on CPUs, GPUs and TPUs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    gpt-2-simple

    gpt-2-simple

    Python package to easily retrain OpenAI's GPT-2 text-generating model

    ...For finetuning, it is strongly recommended to use a GPU, although you can generate using a CPU (albeit much more slowly). If you are training in the cloud, using a Colaboratory notebook or a Google Compute Engine VM w/ the TensorFlow Deep Learning image is strongly recommended. (as the GPT-2 model is hosted on GCP) You can use gpt-2-simple to retrain a model using a GPU for free in this Colaboratory notebook, which also demos additional features of the package. Note: Development on gpt-2-simple has mostly been superceded by aitextgen, which has similar AI text generation capabilities with more efficient training time.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    TRFL

    TRFL

    TensorFlow Reinforcement Learning

    ...TRFL supports both CPU and GPU TensorFlow environments, though TensorFlow itself must be installed separately. It exposes clean, modular APIs for various RL methods including Q-learning, policy gradient, and actor-critic algorithms, among others. Each function returns not only the computed loss tensor but also a detailed structure containing auxiliary information like TD errors and targets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 20
    Robust Video Matting (RVM)

    Robust Video Matting (RVM)

    Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX

    We introduce a robust, real-time, high-resolution human video matting method that achieves new state-of-the-art performance. Our method is much lighter than previous approaches and can process 4K at 76 FPS and HD at 104 FPS on an Nvidia GTX 1080Ti GPU. Unlike most existing methods that perform video matting frame-by-frame as independent images, our method uses a recurrent architecture to exploit temporal information in videos and achieves significant improvements in temporal coherence and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    TensorFlowTTS

    TensorFlowTTS

    Real-Time State-of-the-art Speech Synthesis for Tensorflow 2

    TensorFlowTTS is a state-of-the-art, open-source speech synthesis library built on TensorFlow 2. It offers a variety of architectures for text-to-speech, including classic and modern models such as Tacotron‑2, FastSpeech / FastSpeech2, and neural vocoders like MelGAN and Multiband‑MelGAN. Because it’s based on TensorFlow 2, it can leverage optimizations such as fake-quantization aware training and pruning — which allow models to run faster than real time and to be deployable on mobile or embedded platforms. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Spleeter

    Spleeter

    Deezer source separation library including pretrained models

    Spleeter is the Deezer source separation library with pretrained models written in Python and using Tensorflow. It makes it easy to train music source separation models (assuming you have a dataset of isolated sources), and provides already trained state of the art models for performing various flavours of separation. 2 stems and 4 stems models have state of the art performances on the musdb dataset. Spleeter is also very fast as it can perform separation of audio files to 4 stems 100x faster than real-time when run on a GPU. ...
    Downloads: 59 This Week
    Last Update:
    See Project
  • 23
    SageMaker TensorFlow Serving Container

    SageMaker TensorFlow Serving Container

    A TensorFlow Serving solution for use in SageMaker

    SageMaker TensorFlow Serving Container is an a open source project that builds docker images for running TensorFlow Serving on Amazon SageMaker. Some of the build and tests scripts interact with resources in your AWS account. Be sure to set your default AWS credentials and region using aws configure before using these scripts. Amazon SageMaker uses Docker containers to run all training jobs and inference endpoints.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Differentiable Neural Computer

    Differentiable Neural Computer

    A TensorFlow implementation of the Differentiable Neural Computer

    The Differentiable Neural Computer (DNC), developed by Google DeepMind, is a neural network architecture augmented with dynamic external memory, enabling it to learn algorithms and solve complex reasoning tasks. Published in Nature in 2016 under the paper “Hybrid computing using a neural network with dynamic external memory,” the DNC combines the pattern recognition power of neural networks with a memory module that can be written to and read from in a differentiable way. This allows the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    CleverHans

    CleverHans

    An adversarial example library for constructing attacks

    This repository contains the source code for CleverHans, a Python library to benchmark machine learning systems' vulnerability to adversarial examples. You can learn more about such vulnerabilities on the accompanying blog. The CleverHans library is under continual development, always welcoming contributions of the latest attacks and defenses. In particular, we always welcome help with resolving the issues currently open. Since v4.0.0, CleverHans supports 3 frameworks: JAX, PyTorch, and TF2....
    Downloads: 0 This Week
    Last Update:
    See Project