[go: up one dir, main page]

Showing 268 open source projects for "tensorflow"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Time tracking software for the global workforce Icon
    Time tracking software for the global workforce

    Teams of all sizes and in various industries that want the best time tracking and employee monitoring solution.

    It's easy with Hubstaff, a time-tracking and workforce management platform that automates almost every aspect of running or growing a business. Teams can track time to projects and to-dos using Hubstaff's desktop, web, or mobile applications. You'll be able to see how much time your team spends on different tasks, plus productivity metrics like activity rates and app usage through Hubstaff's online dashboard. Most of the available features are customizable on a per-user basis, so you can create the team management tool you need.
    Learn More
  • 1
    MobileNetV2

    MobileNetV2

    SSD-based object detection model trained on Open Images V4

    ...MobileNetV2 is commonly used for image classification, object detection, and other computer vision tasks, achieving high accuracy while maintaining a small memory footprint. It also supports TensorFlow Lite for mobile device deployment, ensuring that developers can leverage its performance on a wide range of platforms.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    vidurOS

    vidurOS

    An ultra-light Linux distro built for cybersecurity, AI/ML work

    ...A lightweight, blazing-fast Linux distribution built from Ubuntu Server 22.04 — optimized for: • 🛡️ Cybersecurity Tools (Nmap, Wireshark, Metasploit & more) • 💻 Programmers & Devs (Python, Node.js, C/C++, Git, Vim) • 🧠 AI/ML Enthusiasts (Jupyter, pip, SciPy preloaded — with TensorFlow/PyTorch optional) • 💾 Old PCs & VMs (XFCE-based, ISO size ~1.7 GB) 🌟 Built using Cubic, with custom theming, a responsive UI/UX, and designed to revive low-spec hardware. 📷 Screenshots, full documentation, and ISO download now live on GitHub: 🔗 https://github.com/i-m-sonu/vidurOS 🙌 I’m making it open source and inviting contributions: • Help improve the UI • Add new tools • Optimize performance
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    MoveNet

    MoveNet

    A CNN model that predicts human joints from RGB images of a person

    The MoveNet model is an efficient, real-time human pose estimation system designed for detecting and tracking keypoints of human bodies. It utilizes deep learning to accurately locate 17 key points across the body, providing precise tracking even with fast movements. Optimized for mobile and embedded devices, MoveNet can be integrated into applications for fitness tracking, augmented reality, and interactive systems.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Universal Sentence Encoder

    Universal Sentence Encoder

    Encoder of greater-than-word length text trained on a variety of data

    The Universal Sentence Encoder (USE) is a pre-trained deep learning model designed to encode sentences into fixed-length embeddings for use in various natural language processing (NLP) tasks. It leverages Transformer and Deep Averaging Network (DAN) architectures to generate embeddings that capture the semantic meaning of sentences. The model is designed for tasks like sentiment analysis, semantic textual similarity, and clustering, and provides high-quality sentence representations in a...
    Downloads: 1 This Week
    Last Update:
    See Project
  • The All-In-One Google Workspace Management Tool for IT Admins Icon
    The All-In-One Google Workspace Management Tool for IT Admins

    Our advanced administration makes adding, deleting, suspending, and de-provisioning users simple and quick.

    gPanel by Promevo streamlines administration, security, and user management, giving organizations full control over their Google Workspace.
    Learn More
  • 5
    Gorgonia

    Gorgonia

    Gorgonia is a library that helps facilitate machine learning in Go

    ...Gorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow. The primary goal for Gorgonia is to be a highly performant machine learning/graph computation-based library that can scale across multiple machines. It should bring the appeal of Go (simple compilation and deployment process) to the ML world. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform. Commonly used loss functions including pointwise, pairwise, and listwise losses. Commonly used ranking metrics like Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG). Multi-item (also known as groupwise) scoring functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    NSFW Filter

    NSFW Filter

    Google Chrome extension that blocks NSFW images

    A Google Chrome extension that blocks NSFW images from the web pages that you load using TensorFlow JS. NSFW Filter web extension blocks NSFW content using AI. NSFW Filter allows you to block inappropriate, Not-Safe-For-Work content, protecting you online. A browser extension that blocks NSFW images from the web pages that you load using TensorFlowJS. When a web page is loaded, all the images remain hidden until they are found to be NSFW or not.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    OpenNMT is an open-source ecosystem for neural machine translation and neural sequence learning. OpenNMT-tf is a general-purpose sequence learning toolkit using TensorFlow 2. While neural machine translation is the main target task, it has been designed to more generally support sequence-to-sequence mapping, sequence tagging, sequence classification, language modeling. Models are described with code to allow training custom architectures and overriding default behavior. For example, the following instance defines a sequence-to-sequence model with 2 concatenated input features, a self-attentional encoder, and an attentional RNN decoder sharing its input and output embeddings. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create engaging surveys on your tablet or computer with ease. Icon
    Create engaging surveys on your tablet or computer with ease.

    Choose any of our carefully designed themes, or easily customize colors, fonts, and more to reflect your brand's true look and feel.

    Create great-looking surveys, forms, polls, voting, questionnaires, NPS, customer satisfaction, customer experience, employee satisfaction surveys... on your computer or tablet, customize the look of your survey however you like, & display collected data with eye-catching and insightful graphics.
    Learn More
  • 10
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    ...Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve. Start scaling your model training with just a few lines of Python code. Scale up to hundreds of GPUs with upwards of 90% scaling efficiency.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    TF2DeepFloorplan

    TF2DeepFloorplan

    TF2 Deep FloorPlan Recognition using a Multi-task Network

    ...This repo contains a basic procedure to train and deploy the DNN model suggested by the paper 'Deep Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention'. It rewrites the original codes from zlzeng/DeepFloorplan into newer versions of Tensorflow and Python.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    KotlinDL

    KotlinDL

    High-level Deep Learning Framework written in Kotlin

    KotlinDL is a high-level Deep Learning API written in Kotlin and inspired by Keras. Under the hood, it uses TensorFlow Java API and ONNX Runtime API for Java. KotlinDL offers simple APIs for training deep learning models from scratch, importing existing Keras and ONNX models for inference, and leveraging transfer learning for tailoring existing pre-trained models to your tasks. This project aims to make Deep Learning easier for JVM and Android developers and simplify deploying deep learning models in production environments.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    LM Human Preferences

    LM Human Preferences

    Code for the paper Fine-Tuning Language Models from Human Preferences

    ...The code is provided “as is” and explicitly says it may no longer run out-of-the-box due to dependencies or dataset migrations. It was tested on the smallest GPT-2 (124M parameters) under a specific environment (TensorFlow 1.x, specific CUDA / cuDNN combinations). It includes utilities for launching experiments, sampling from policies, and simple experiment orchestration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    handson-ml2

    handson-ml2

    Jupyter notebooks that walk you through the fundamentals of ML

    ...The notebooks emphasize end-to-end workflows: data preparation, model selection, tuning, and reliable evaluation. Deep learning sections use the contemporary Keras/TensorFlow 2 ecosystem, highlighting clean APIs and eager execution to make experiments easier to reason about. Traditional ML topics remain central, with scikit-learn pipelines, feature engineering, and cross-validation patterns that transfer to real projects. The material favors clear explanations and runnable code over theory alone, so learners can iterate, visualize, and debug as they go. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based techniques have been widely used in CTR prediction task. The data in CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    ...The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. These environments have a shared interface, allowing you to write general algorithms.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 20
    handson-ml

    handson-ml

    Teaching you the fundamentals of Machine Learning in python

    handson-ml hosts the notebooks for the first edition of the same hands-on ML book, reflecting the tooling and idioms of its time while teaching durable concepts. It walks through supervised and unsupervised learning with scikit-learn, then introduces deep learning using the earlier TensorFlow 1 graph-execution style. The examples underscore fundamentals like bias-variance trade-offs, regularization, and proper validation, grounding learners before they move to deep nets. Even though the deep learning stack evolved, the classical ML sections remain highly relevant for production data problems. The code is crafted to be clear rather than clever, prioritizing readability for newcomers. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Reinforcement Learning Methods

    Reinforcement Learning Methods

    Simple Reinforcement learning tutorials

    Reinforcement-Learning-with-TensorFlow is an educational repository that walks through key reinforcement learning algorithms implemented in TensorFlow. It provides clear code examples for foundational techniques like Q-learning, policy gradients, deep Q-networks, actor-critic methods, and value function approximation within familiar simulation environments. Each algorithm is structured with readable code, explanatory comments, and corresponding environment interaction loops so learners can easily trace how actions, rewards, and model updates connect. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Tensorflow Transformers

    Tensorflow Transformers

    State of the art faster Transformer with Tensorflow 2.0

    Imagine auto-regressive generation to be 90x faster. tf-transformers (Tensorflow Transformers) is designed to harness the full power of Tensorflow 2, designed specifically for Transformer based architecture. These models can be applied on text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image classification, object detection, and segmentation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    tf2_course

    tf2_course

    Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

    tf2_course provides the notebooks for the “Deep Learning with TensorFlow 2 and Keras” course authored by the same author, Aurélien Géron. It is structured as a teaching toolkit: you’ll find notebooks covering neural networks with Keras, lower-level TensorFlow APIs, data loading & preprocessing, convolutional and recurrent networks, and deployment/distribution of models. The material is intended for learners who already have foundational knowledge of ML and wish to deepen their understanding of deep learning frameworks and practices. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    nlpaug

    nlpaug

    Data augmentation for NLP

    This Python library helps you with augmenting nlp for your machine learning projects. Visit this introduction to understand Data Augmentation in NLP. Augmenter is the basic element of augmentation while Flow is a pipeline to orchestra multi augmenters together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project