[go: up one dir, main page]

Showing 253 open source projects for "bayesian"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Windocks - Docker Oracle and SQL Server Containers Icon
    Windocks - Docker Oracle and SQL Server Containers

    Deliver faster. Provision data for AI/ML. Enhance data privacy. Improve quality.

    Windocks is a leader in cloud native database DevOps, recognized by Gartner as a Cool Vendor, and as an innovator by Bloor research in Test Data Management. Novartis, DriveTime, American Family Insurance, and other enterprises rely on Windocks for on-demand database environments for development, testing, and DevOps. Windocks software is easily downloaded for evaluation on standard Linux and Windows servers, for use on-premises or cloud, and for data delivery of SQL Server, Oracle, PostgreSQL, and MySQL to Docker containers or conventional database instances.
    Learn More
  • 1
    Bayesian Statistics

    Bayesian Statistics

    This repository holds slides and code for a full Bayesian statistics

    This repository holds slides and code for a full Bayesian statistics graduate course. Bayesian statistics is an approach to inferential statistics based on Bayes' theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 2
    Bayesian Optimization

    Bayesian Optimization

    Python implementation of global optimization with gaussian processes

    This is a constrained global optimization package built upon bayesian inference and gaussian process, that attempts to find the maximum value of an unknown function in as few iterations as possible. This technique is particularly suited for optimization of high cost functions, situations where the balance between exploration and exploitation is important. More detailed information, other advanced features, and tips on usage/implementation can be found in the examples folder.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    ReactiveMP.jl

    ReactiveMP.jl

    High-performance reactive message-passing based Bayesian engine

    ReactiveMP.jl is a Julia package that provides an efficient reactive message passing based Bayesian inference engine on a factor graph. The package is a part of the bigger and user-friendly ecosystem for automatic Bayesian inference called RxInfer. While ReactiveMP.jl exports only the inference engine, RxInfer provides convenient tools for model and inference constraints specification as well as routines for running efficient inference both for static and real-time datasets.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 4
    ArviZ.jl

    ArviZ.jl

    Exploratory analysis of Bayesian models with Julia

    ArviZ.jl (pronounced "AR-vees") is a Julia package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, model checking, comparison and diagnostics.
    Downloads: 5 This Week
    Last Update:
    See Project
  • ServiceDesk Plus, a world-class IT and enterprise service management platform Icon
    ServiceDesk Plus, a world-class IT and enterprise service management platform

    Design, automate, deliver, and manage critical IT and business services

    Best in class online service desk software. Offer your customers world-class services with ServiceDesk Plus Cloud, the easy-to-use SaaS service desk software from ManageEngine, the IT management division of Zoho. Track and manage IT tickets efficiently, resolve issues faster, and ensure end-user satisfaction with the cloud-based IT ticketing system used by over 100,000 IT service desks worldwide. Manage the complete life cycle of IT incidents, problems, changes, and projects with out of the box ITIL workflows. Create support SLAs, define escalation levels, and ensure compliance. Automate ticket dispatch, categorization, classification, and assignment based on predefined business rules, and set up notifications and alerts for timely ticket resolution. Reduce walk ins and unnecessary tickets by giving your users more control. Enable end users to access IT services through your service catalog in the self-service portal. Help users create and track tickets and search for solutions.
    Learn More
  • 5
    Bayesian Julia

    Bayesian Julia

    Bayesian Statistics using Julia and Turing

    Bayesian statistics incorporate uncertainty (and prior knowledge) by allowing probability statements about parameters.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    DiffEqBayes.jl

    DiffEqBayes.jl

    Extension functionality which uses Stan.jl, DynamicHMC.jl

    This repository is a set of extension functionality for estimating the parameters of differential equations using Bayesian methods. It allows the choice of using CmdStan.jl, Turing.jl, DynamicHMC.jl and ApproxBayes.jl to perform a Bayesian estimation of a differential equation problem specified via the DifferentialEquations.jl interface.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    BAT.jl

    BAT.jl

    A Bayesian Analysis Toolkit in Julia

    Welcome to BAT, a Bayesian analysis toolkit in Julia. BAT.jl offers a variety of posterior sampling, mode estimation and integration algorithms, supplemented by plotting recipes and I/O functionality. BAT.jl originated as a rewrite/redesign of BAT, the Bayesian Analysis Toolkit in C++. BAT.jl now offer a different set of functionality and a wider variety of algorithms than its C++ predecessor.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ProbNumDiffEq.jl

    ProbNumDiffEq.jl

    Probabilistic Numerical Differential Equation solvers via Bayesian fil

    ProbNumDiffEq.jl provides probabilistic numerical ODE solvers to the DifferentialEquations.jl ecosystem. The implemented ODE filters solve differential equations via Bayesian filtering and smoothing. The filters compute not just a single point estimate of the true solution, but a posterior distribution that contains an estimate of its numerical approximation error.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    PyMC

    PyMC

    Bayesian Modeling and Probabilistic Programming in Python

    PyMC is a Python library for probabilistic programming focused on Bayesian statistical modeling and machine learning. Built on top of computational tools like Aesara and NumPy, PyMC allows users to define models using intuitive syntax and perform inference using MCMC, variational inference, and other advanced algorithms. It’s widely used in scientific research, data science, and decision modeling.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Create and manage the email signature you need Icon
    Create and manage the email signature you need

    For companies and organizations that need an email signature solution

    With WiseStamp it’s easy to unify your brand and turn your emails into a powerful marketing tool. Get the most out of your emails with a professionally designed custom email signature.
    Learn More
  • 10
    Turing.jl

    Turing.jl

    Bayesian inference with probabilistic programming

    Bayesian inference with probabilistic programming.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ggstatsplot

    ggstatsplot

    Enhancing {ggplot2} plots with statistical analysis

    ...In a typical exploratory data analysis workflow, data visualization and statistical modeling are two different phases: visualization informs modeling, and modeling in its turn can suggest a different visualization method, and so on and so forth. Bayesian hypothesis-testing. The central idea of {ggstatsplot} is simple: combine these two phases into one in the form of graphics with statistical details, which makes data exploration simpler and faster. Summary of statistical tests and effect sizes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    blavaan

    blavaan

    An R package for Bayesian structural equation modeling

    blavaan is a free, open-source R package for Bayesian latent variable analysis. It relies on JAGS and Stan to estimate models via MCMC. The blavaan functions and syntax are similar to lavaan. The development version of blavaan (containing updates not yet on CRAN) can be installed via the command provided in the documentation. Compilation is required; this may be a problem for users who currently rely on a binary version of blavaan from CRAN.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    DSGE.jl

    DSGE.jl

    Solve and estimate Dynamic Stochastic General Equilibrium models

    DSGE.jl is a Julia package developed by the Federal Reserve Bank of New York for estimating and analyzing dynamic stochastic general equilibrium (DSGE) models. It provides tools for Bayesian estimation, filtering, forecasting, and model comparison, supporting both academic research and policy applications. DSGE.jl includes pre-configured models used by central banks and offers extensibility for custom macroeconomic modeling.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    CausalImpact

    CausalImpact

    An R package for causal inference in time series

    ...It uses Bayesian modeling to fit a structural time series to the pre-period and extrapolate a counterfactual prediction for the post period, then compares observed vs predicted to infer the causal effect. The package supports plotting, summary tables, and verbal narratives for interpretive reports.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Statistical Rethinking 2024

    Statistical Rethinking 2024

    This course teaches data analysis

    ...It provides updated notebooks, R scripts, and model examples, some streamlined and restructured compared to previous years. The 2024 repo also highlights the transition toward more robust Stan models and integration with newer Bayesian workflow practices, continuing to emphasize accessibility for learners while modernizing the tools. This version is designed for students following the 2024 lecture series, offering the most current set of examples, exercises, and teaching material aligned with the Statistical Rethinking framework. Online, flipped instruction. I will pre-record the lectures each week. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DynamicHMC

    DynamicHMC

    Implementation of robust dynamic Hamiltonian Monte Carlo methods

    Implementation of robust dynamic Hamiltonian Monte Carlo methods in Julia. In contrast to frameworks that utilize a directed acyclic graph to build a posterior for a Bayesian model from small components, this package requires that you code a log-density function of the posterior in Julia. Derivatives can be provided manually, or using automatic differentiation. Consequently, this package requires that the user is comfortable with the basics of the theory of Bayesian inference, to the extent of coding a (log) posterior density in Julia. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    brms

    brms

    brms R package for Bayesian generalized multivariate models using Stan

    brms is an R package by Paul Bürkner which provides a high-level interface for fitting Bayesian multilevel (i.e. mixed effects) models, generalized linear / non-linear / multivariate models using Stan as the backend. It allows R users to specify complex Bayesian models using formula syntax similar to lme4 but with far more flexibility (distributions, link functions, hierarchical structure, nonlinear terms, etc.). It supports model diagnostics, posterior predictive checking, model comparison, custom priors, and advanced features such as distributional regression.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Meridian

    Meridian

    Meridian is an MMM framework

    Meridian is a comprehensive, open source marketing mix modeling (MMM) framework developed by Google to help advertisers analyze and optimize the impact of their marketing investments. Built on Bayesian causal inference principles, Meridian enables organizations to evaluate how different marketing channels influence key performance indicators (KPIs) such as revenue or conversions while accounting for external factors like seasonality or economic trends. The framework provides a robust foundation for constructing in-house MMM pipelines capable of handling both national and geo-level data, with built-in support for calibration using experimental data or prior knowledge. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    GrowthBook

    GrowthBook

    Open source feature flagging and AB testing platform

    ...The platform is designed for performance and scale: its SDKs are lightweight, supporting local evaluation to minimize latency, and it integrates deeply with existing data stacks so you can use your warehouse or analytics system as the source of truth. Experimentation in GrowthBook isn’t just toggles; its statistics engine supports advanced techniques like CUPED, Bayesian, and sequential testing, and control group checks so you can confidently measure impact.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Nevergrad

    Nevergrad

    A Python toolbox for performing gradient-free optimization

    ...The library provides an easy interface to define an optimization problem (parameter space, loss function, budget) and then experiment with multiple strategies—evolutionary algorithms, Bayesian optimization, bandit methods, genetic algorithms, etc. Nevergrad supports parallelization, budget scheduling, and multiple cost/resource constraints, allowing it to scale to nontrivial optimization problems. It includes visualization tools and diagnostic metrics to compare strategy performance, track parameter evolution, and detect stagnation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    BayesianOptimization

    BayesianOptimization

    A Python implementation of global optimization with gaussian processes

    BayesianOptimization is a Python library that helps find the maximum (or minimum) of expensive or unknown objective functions using Bayesian optimization. This technique is especially useful for hyperparameter tuning in machine learning, where evaluating the objective function is costly. The library provides an easy-to-use API for defining bounds and optimizing over parameter spaces using probabilistic models like Gaussian Processes.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 22
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable abstractions that make it both agile and maintainable. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 23
    performance

    performance

    Models' quality and performance metrics (R2, ICC, LOO, AIC, BF, ...)

    performance is part of the easystats ecosystem and offers model quality assessment tools for R. It computes metrics like R², RMSE, ICC, and conducts diagnostics such as overdispersion, zero‑inflation, convergence, and singularity checks, complementing model workflows with comprehensive evaluation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    CausalInference.jl

    CausalInference.jl

    Causal inference, graphical models and structure learning in Julia

    Julia package for causal inference and analysis, graphical models and structure learning. This package contains code for the PC algorithm and the extended FCI algorithm, the score based greedy equivalence search (GES) algorithm, the Bayesian Causal Zig-Zag sampler and a function suite for adjustment set search.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    ...Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next