[go: up one dir, main page]

Generative AI for Windows

View 1562 business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Dickinson

    Dickinson

    Text generation language

    Dickinson is a text-generation language. You can try out the language on the web without installing anything. Binaries for some platforms are available on the releases page. There is an install script that will try to download the right release for your computer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Diffusers-Interpret

    Diffusers-Interpret

    Model explainability for Diffusers

    diffusers-interpret is a model explainability tool built on top of Diffusers. Model explainability for Diffusers. Get explanations for your generated images. Install directly from PyPI. It is possible to visualize pixel attributions of the input image as a saliency map. diffusers-interpret also computes these token/pixel attributions for generating a particular part of the image. To analyze how a token in the input prompt influenced the generation, you can study the token attribution scores. You can also check all the images that the diffusion process generated at the end of each step. Gradient checkpointing also reduces GPU usage, but makes computations a bit slower.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Diffusion WebUI Colab

    Diffusion WebUI Colab

    Choose your diffusion models and spin up a WebUI on Colab in one click

    The most simplistic Colab with most models included by default. Custom models can be added easily. Stable Diffusion 2.0 in testing phase. Choose your diffusion models and spin up a WebUI on Colab in one click. Share your generations in our mastodon server - (This is hosted by a third party. I am not associated with the instance in any way.) The instructions are on the Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DocsGPT

    DocsGPT

    GPT-powered chat for documentation search & assistance

    DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in project documentation. With its integration of powerful GPT models, developers can easily ask questions about a project and receive accurate answers. Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain model, which is, in turn, continuously evolved from interactions with the user or autonomously by the system itself. Thus, an alternative to the traditional software production processes is proposed, which involves several stages and different actors, sometimes demanding a lot of time and money without obtaining the expected result. With software engineering techniques, self-adaptive systems, and artificial intelligence, it is possible, the integration between design time and execution time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Dynacover

    Dynacover

    Dynamic Twitter images and banners

    Dynacover is a PHP GD + TwitterOAuth CLI app to dynamically generate Twitter header images and upload them via the API. This enables you to build cool little tricks, like showing your latest followers or GitHub sponsors, your latest content created, a qrcode to something, a progress bar for a goal, and whatever you can think of. You can run Dynacover in three different ways. As a GitHub action: the easiest way to run Dynacover is by setting it up in a public repository with GitHub Actions, using repository secrets for credentials. Follow this step-by-step guide to set this up - no coding is required. With Docker: you can use the public erikaheidi/dynacover Docker image to run Dynacover with a single command, no PHP is required. To further customize your cover, you can clone the dynacover repo to customize banner resources (JSON template and header images, both located at app/Resources), then build a local copy of the Dynacover Docker image to use your custom changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Edge GPT

    Edge GPT

    Reverse engineered API of Microsoft's Bing Chat

    Reverse engineered API of Microsoft's Bing Chat The reverse engineering the chat feature of the new version of Bing. Requirements: - Python 3.8+ - A Microsoft account with Bing Chat access
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on TensorFlow. It enables features such as computational graphs, distributed training, CPU/GPU integration, automatic differentiation, and visualization with TensorBoard. Expectation-Maximization, pseudo-marginal and ABC methods, and message passing algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs. Across a variety of natural-language-processing datasets, Emb-GAM achieves strong prediction performance without sacrificing interpretability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 10
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    G-Diffuser Bot

    G-Diffuser Bot

    Discord bot and Interface for Stable Diffusion

    The first release of the all-in-one installer version of G-Diffuser is here. This release no longer requires the installation of WSL or Docker and has a systray icon to keep track of and launch G-Diffuser components. The infinite zoom scripts have been updated with some improvements, notably a new compositer script that is hundreds of times faster than before. The first release of the all-in-one installer is here. It notably features much easier "one-click" installation and updating, as well as a systray icon to keep track of g-diffuser programs and the server while it is running. Run run.cmd to start the G-Diffuser system. You should see a G-Diffuser icon in your systray/notification area. Click on the icon to open and interact with the G-Diffuser system. If the icon is missing be sure it isn't hidden by clicking the "up" arrow near the notification area.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    GANformer

    GANformer

    Generative Adversarial Transformers

    This is an implementation of the GANformer model, a novel and efficient type of transformer, explored for the task of image generation. The network employs a bipartite structure that enables long-range interactions across the image, while maintaining computation of linearly efficiency, that can readily scale to high-resolution synthesis. The model iteratively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of each in light of the other and encourage the emergence of compositional representations of objects and scenes. In contrast to the classic transformer architecture, it utilizes multiplicative integration that allows flexible region-based modulation and can thus be seen as a generalization of the successful StyleGAN network. Using the pre-trained models (generated after training for 5-7x less steps than StyleGAN2 models! Training our models for longer will improve the image quality further).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GPT-2 FR

    GPT-2 FR

    GPT-2 French demo | Démo française de GPT-2

    OpenAI GPT-2 model trained on four different datasets in French. Books in French, French film scripts, reports of parliamentary debates, Tweet by Emmanuel Macron, allowing to generate text. Tensorflow and gpt-2-simple are required in order to fine-tune GPT-2. Create an environment then install the two packages pip install tensorflow==1.14 gpt-2-simple. A script and a notebook are available in the src folder to fine-tune GPT-2 on your own datasets. The output of each workout, i.e. the folder checkpoint/run1, is to be put ingpt2-model/model1 model2 model3 etc. You can run the script deploy_cloudrun.shto deploy all your different models (into gpt2-model) at once. However, you must have already initialized the gcloud CLI tool (Cloud SDK).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    GPT-Code UI

    GPT-Code UI

    An open source implementation of OpenAI's ChatGPT Code interpreter

    An open source implementation of OpenAI's ChatGPT Code interpreter. Simply ask the OpenAI model to do something and it will generate & execute the code for you. You can put a .env in the working directory to load the OPENAI_API_KEY environment variable. For Azure OpenAI Services, there are also other configurable variables like deployment name. See .env.azure-example for more information. Note that model selection on the UI is currently not supported for Azure OpenAI Services.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    GPT2 for Multiple Languages

    GPT2 for Multiple Languages

    GPT2 for Multiple Languages, including pretrained models

    With just 2 clicks (not including Colab auth process), the 1.5B pretrained Chinese model demo is ready to go. The contents in this repository are for academic research purpose, and we do not provide any conclusive remarks. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC) Simplifed GPT2 train scripts(based on Grover, supporting TPUs). Ported bert tokenizer, multilingual corpus compatible. 1.5B GPT2 pretrained Chinese model (~15G corpus, 10w steps). Batteries-included Colab demo. 1.5B GPT2 pretrained Chinese model (~30G corpus, 22w steps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Generative AI JS

    Generative AI JS

    This SDK is now deprecated, use the new unified Google GenAI SDK

    deprecated-generative-ai-js is a JavaScript/TypeScript client and example suite for interacting with Gemini generative APIs in web and Node.js environments. Though marked deprecated (likely superseded by newer SDKs), the repo shows how to wrap HTTP/WS endpoints, manage streaming responses, and interoperate with browser UI or server logic. The examples include chat widgets, prompt pipelines, and generalized inference utilities. It also deals with streaming cancellation, retries, backoff logic, and message chunk assembly to help developers handle real-world use. Because it’s JavaScript, the repo supports both ESM and CommonJS contexts, making it versatile in backend and frontend setups. The deprecation label reflects that newer or official SDKs may have replaced it, but many of its patterns still serve as a useful reference to understand how streaming, chunking, and prompt logic can be implemented by hand in JS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Generative AI Swift

    Generative AI Swift

    This SDK is now deprecated, use the unified Firebase SDK

    deprecated-generative-ai-swift is a Swift client and example scaffold for building generative AI apps using the Gemini models. Although marked “deprecated”, the repo demonstrates how to integrate Gemini inference into iOS and macOS apps via Swift APIs, providing boilerplate for prompt dispatching, streaming responses, UI integration, and error handling. It includes a sample app that showcases a chat interface, where users send messages and receive responses streamed in real time, with UI updates as tokens arrive. The code also handles request queuing, cancellation, and retry logic, giving developers a realistic foundation rather than a minimalist “hello world.” Despite its deprecated label, the repo remains valuable for developers who want to see how a native Swift integration might be structured before migrating to newer SDKs. Maintainability is emphasized: modular layers separate networking, prompt handling, and UI logic, making adaptation easier when switching to updated APIs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Grenade

    Grenade

    Deep Learning in Haskell

    Grenade is a composable, dependently typed, practical, and fast recurrent neural network library for concise and precise specifications of complex networks in Haskell. Because the types are so rich, there's no specific term level code required to construct this network; although it is of course possible and easy to construct and deconstruct the networks and layers explicitly oneself. Networks in Grenade can be thought of as a heterogeneous list of layers, where their type includes not only the layers of the network but also the shapes of data that are passed between the layers. To perform back propagation, one can call the eponymous function which takes a network, appropriate input, and target data, and returns the back propagated gradients for the network. The shapes of the gradients are appropriate for each layer and may be trivial for layers like Relu which have no learnable parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Haystack

    Haystack

    Haystack is an open source NLP framework to interact with your data

    Apply the latest NLP technology to your own data with the use of Haystack's pipeline architecture. Implement production-ready semantic search, question answering, summarization and document ranking for a wide range of NLP applications. Evaluate components and fine-tune models. Ask questions in natural language and find granular answers in your documents using the latest QA models with the help of Haystack pipelines. Perform semantic search and retrieve ranked documents according to meaning, not just keywords! Make use of and compare the latest pre-trained transformer-based languages models like OpenAI’s GPT-3, BERT, RoBERTa, DPR, and more. Pick any Transformer model from Hugging Face's Model Hub, experiment, find the one that works. Use Haystack NLP components on top of Elasticsearch, OpenSearch, or plain SQL. Boost search performance with Pinecone, Milvus, FAISS, or Weaviate vector databases, and dense passage retrieval.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    HyperGAN

    HyperGAN

    Composable GAN framework with api and user interface

    A composable GAN built for developers, researchers, and artists. HyperGAN builds generative adversarial networks in PyTorch and makes them easy to train and share. HyperGAN is currently in pre-release and open beta. Everyone will have different goals when using hypergan. HyperGAN is currently beta. We are still searching for a default cross-data-set configuration. Each of the examples supports search. Automated search can help find good configurations. If you are unsure, you can start with the 2d-distribution.py. Check out random_search.py for possibilities, you'll likely want to modify it. The examples are capable of (sometimes) finding a good trainer, like 2d-distribution. Mixing and matching components seems to work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    ImPromptu

    ImPromptu

    Domain Agnostic Prompts for Savvy Professionals

    A community-driven wiki of sorts full of your favorite prompts for various Large Language Models such as ChatGPT, GPT-3, MidJourney, and soon (Google's Bard) and more! Choose a subject area you are interested in, and click the link below to go to the page with prompts for that subject. If that page is empty, then you can help by adding prompts to that page. If you are not sure how to do that, you can read the contributing guidelines. If you are feeling like having your mind melt into magic today then head over to the prompt generator and let the magic happen. This script will literally write your prompts for you, as if chatGPT wasn't enough magic for you already.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    Infinite Sides

    Infinite Craft but in Pyside6 and Python with local LLM

    Infinite Craft but in Pyside6 and Python with local LLM (llama2 & others) using Ollama that also lets you create your own crafting game based on any topic Customize the game any way you like in the settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Insert Text

    Insert Text

    Extends the media pool with an effect for outputting text in the image

    This addon expands the media manager with the effect Bild. The effect can be used, for example, to display a copyright notice, creation date, image title, etc. on images. The values ​​set for the effect are considered "default" and can be changed individually for each image if necessary via the effect parameters in meta data. The text source of the effect can be selected here. inputfor the field Textausgabe or any meta field from the media pool. A text area can also be selected from the media pool, which opens up even more possibilities for this effect. The values ​​set in the effect are considered "default" for all images to which this media type is applied. If a "text area" from the meta data has been selected as the text source, an individual setting for the effect can be applied to each image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Kaleidoscope-SDK

    Kaleidoscope-SDK

    User toolkit for analyzing and interfacing with Large Language Models

    kaleidoscope-sdk is a Python module used to interact with large language models hosted via the Kaleidoscope service available at: https://github.com/VectorInstitute/kaleidoscope. It provides a simple interface to launch LLMs on an HPC cluster, asking them to perform basic features like text generation, but also retrieve intermediate information from inside the model, such as log probabilities and activations. Users must authenticate using their Vector Institute cluster credentials. This can be done interactively instantiating a client object. This will generate an authentication token that will be used for all subsequent requests. The token will expire after 30 days, at which point the user will be prompted to re-authenticate.
    Downloads: 0 This Week
    Last Update:
    See Project