[go: up one dir, main page]

Generative AI for Windows

View 1562 business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Aphantasia

    Aphantasia

    CLIP + FFT/DWT/RGB = text to image/video

    This is a collection of text-to-image tools, evolved from the artwork of the same name. Based on CLIP model and Lucent library, with FFT/DWT/RGB parameterizes (no-GAN generation). Illustrip (text-to-video with motion and depth) is added. DWT (wavelets) parameterization is added. Check also colabs below, with VQGAN and SIREN+FFM generators. Tested on Python 3.7 with PyTorch 1.7.1 or 1.8. Generating massive detailed textures, a la deepdream, fullHD/4K resolutions and above, various CLIP models (including multi-language from SBERT), continuous mode to process phrase lists (e.g. illustrating lyrics), pan/zoom motion with smooth interpolation. Direct RGB pixels optimization (very stable) depth-based 3D look (courtesy of deKxi, based on AdaBins), complex queries: text and/or image as main prompts, separate text prompts for style and to subtract (avoid) topics. Starting/resuming process from saved parameters or from an image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AudioLM - Pytorch

    AudioLM - Pytorch

    Implementation of AudioLM audio generation model in Pytorch

    Implementation of AudioLM, a Language Modeling Approach to Audio Generation out of Google Research, in Pytorch It also extends the work for conditioning with classifier free guidance with T5. This allows for one to do text-to-audio or TTS, not offered in the paper. Yes, this means VALL-E can be trained from this repository. It is essentially the same. This repository now also contains a MIT licensed version of SoundStream. It is also compatible with EnCodec, however, be aware that it has a more restrictive non-commercial license, if you choose to use it.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Awesome AI-ML-DL

    Awesome AI-ML-DL

    Awesome Artificial Intelligence, Machine Learning and Deep Learning

    Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics. This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    BNFGen

    BNFGen

    Generates random text based on context-free grammars defined in BNF

    BNFGen generates random text based on context-free grammar. You give it a file with your grammar, defined using BNF-like syntax, it gives you a string that follows that grammar. BNFGen is a CLI tool, an OCaml library. There are also official JS bindings available via NPM. Project goals are to make it easy to write and share grammar and give the user total control of and insight into the generation process. BNFGen provides a "DSL" for grammar definitions. It's a familiar BNF-like syntax with a few additions. One problem with using straight BNF for driving language generators is that you have no control over the process. BNFGen adds two features to fix that. The canonical way to express repetition in BNF is to use a self-referential recursive rule. In classic BNF, that can easily lead to the process terminating to early, since there's a 50% chance that it will take the non-recursive alternative.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 5
    Basaran

    Basaran

    Basaran, an open-source alternative to the OpenAI text completion API

    Basaran is an open-source alternative to the OpenAI text completion API. It provides a compatible streaming API for your Hugging Face Transformers-based text generation models. The open source community will eventually witness the Stable Diffusion moment for large language models (LLMs), and Basaran allows you to replace OpenAI's service with the latest open-source model to power your application without modifying a single line of code. Stream generation using various decoding strategies. Support both decoder-only and encoder-decoder models. Detokenizer that handles surrogates and whitespace. Multi-GPU support with optional 8-bit quantization. Real-time partial progress using server-sent events. Compatible with OpenAI API and client libraries. Comes with a fancy web-based playground. Docker images are available on Docker Hub and GitHub Packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to wherever the command is invoked. If you have enough memory, you can also try using a bigger vision model released by OpenAI for improved generations. You can set the number of classes that you wish to restrict Big Sleep to use for the Big GAN with the --max-classes flag as follows (ex. 15 classes). This may lead to extra stability during training, at the cost of lost expressivity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Bottery

    Bottery

    A conversational agent prototyping platform

    Bottery is a prototyping environment and mini-language for designing conversational agents as explicit state machines rather than opaque bundles of code. It encourages authors to model intents, dialog turns, and transitions in a compact, declarative form that’s easy to visualize and simulate. A built-in simulator lets you “play” the conversation, test edge cases, and tweak flows without wiring up back-end services first. Because behavior is defined in a DSL, teams can version the conversation design alongside code and keep product, research, and engineering aligned. The repo includes examples of slots, branching, and side effects, showing how to express common patterns like confirmations, fallbacks, and small talk. Bottery’s value is in reducing the gap between whiteboard diagrams and a running prototype you can test with real users.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    CIPS-3D

    CIPS-3D

    3D-aware GANs based on NeRF (arXiv)

    3D-aware GANs based on NeRF (arXiv). This repository contains the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. The problem of mirror symmetry refers to the sudden change of the direction of the bangs near the yaw angle of pi/2. We propose to use an auxiliary discriminator to solve this problem. Note that in the initial stage of training, the auxiliary discriminator must dominate the generator more than the main discriminator does. Otherwise, if the main discriminator dominates the generator, the mirror symmetry problem will still occur. In practice, progressive training is able to guarantee this. We have trained many times from scratch. Adding an auxiliary discriminator stably solves the mirror symmetry problem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    CLIP Guided Diffusion

    CLIP Guided Diffusion

    A CLI tool/python module for generating images from text

    A CLI tool/python module for generating images from text using guided diffusion and CLIP from OpenAI. Text to image generation (multiple prompts with weights). Non-square Generations (experimental) Generate portrait or landscape images by specifying a number to offset the width and/or height. Uses fewer timesteps over the same diffusion schedule. Sacrifices accuracy/alignment for quicker runtime. options: - 25, 50, 150, 250, 500, 1000, ddim25,ddim50,ddim150, ddim250,ddim500,ddim1000 (default: 1000) Prepending a number with ddim will use the ddim scheduler. e.g. ddim25 will use the 25 timstep ddim scheduler. This method may be better at shorter timestep_respacing values. Multiple prompts can be specified with the | character. You may optionally specify a weight for each prompt.
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 10
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    CRSLab is an open-source toolkit for building Conversational Recommender System (CRS). It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We support a series of widely-adopted evaluation protocols for testing and comparing different CRS. General and extensible structure: We design a general and extensible structure to unify various conversational recommendation datasets and models, in which we integrate various built-in interfaces and functions for quickly development. Easy to get started: We provide simple yet flexible configuration for new researchers to quickly start in our library. Human-machine interaction interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may need to manually preprocess your data into the correct format, for example, continuous data must be represented as floats. Discrete data must be represented as ints or strings. The data should not contain any missing values.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    ChatGPT Console Client in Golang

    ChatGPT Console Client in Golang

    ChatGPT Console client in Golang

    chatgpt: Chat GPT console client in Golang. A Golang console client for ChatGPT using GPT. Request your OpenAPI key.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ChatGPT-Reviewer

    ChatGPT-Reviewer

    Automated pull requests reviewing and issues triaging with ChatGPT

    Automated pull requests reviewing and issues triaging with ChatGPT. Create an OpenAI API key here, and then set the key as an action secret in your repository named OPENAI_API_KEY. The ChatGPT reviewer PRs are also getting reviewed by ChatGPT, refer the pull requests for the sample review comments. In order to protect public repositories for malicious users, Github runs all pull request workflows raised from repository forks with a read-only token and no access to secrets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ChatGPT.Net

    ChatGPT.Net

    Unofficial .Net Client for ChatGPT

    The ChatGPT.Net Unofficial .Net API for ChatGPT is a C# library that allows developers to access ChatGPT, a chat-based language model. With this API, developers can send queries to ChatGPT and receive responses in real-time, making it easy to integrate ChatGPT into their own applications. The new method operates without a browser by utilizing a server that has implemented bypass methods to function as a proxy. The library sends requests to the server, which then redirects the request to ChatGPT while bypassing Cloudflare and other bot detection measures. The server then returns the ChatGPT response, ensuring that the method remains effective even if ChatGPT implements changes to prevent bot usage. Our servers are continuously updated to maintain their bypass capabilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Coframe

    Coframe

    Coframe brings your UX to life with AI-powered optimization

    Bring your UX to life with AI-powered optimization and personalization. Coframe brings the content of your app or website to life through AI-powered optimization, personalization, and overall self-improvement. It takes minutes to integrate, and the ROI is clear to measure. Your website or app gains self-enhancing abilities with Coframe, learning from real-world performance. It's A/B testing, but with a serious upgrade. Coframe uses the latest in AI to generate copy that is tailored to your users. Resulting performance data is fed back in to continuously improve your platform's content. With Coframe, your website or app works for you 24/7, not the other way around. All it takes to get up and running is a few lines of code. Coframe gives you full control and visibility. Our mission is to give every digital interface its own sense of intelligence.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Conversations

    Conversations

    App in java for chatting to a generative A.I. (involving tts and stt)

    Java application for chatting to generative AI Llama3. * The user can speak into the microphone (speechToText), edit the recognized text and send it to the AI. * The AI ​​responds and the server returns that response in real time, and the sentences converted to audio (textToSpeech), and the application broadcasts them through the speaker. The application is prepared so that only one user occupies the server's resources, so if the server is busy, in theory it will not let you connect. There is a demo video that shows how it works: https://frojasg1.com:8443/resource_counter/resourceCounter?operation=countAndForward&url=https%3A%2F%2Ffrojasg1.com%2Fdemos%2Faplicaciones%2Fchat%2F20240815.Demo.Chat.mp4%3Forigin%3Dsourceforge&origin=web
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DALL-E in Pytorch

    DALL-E in Pytorch

    Implementation / replication of DALL-E, OpenAI's Text to Image

    Implementation / replication of DALL-E (paper), OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the generations. Kobiso, a research engineer from Naver, has trained on the CUB200 dataset here, using full and deepspeed sparse attention. You can also skip the training of the VAE altogether, using the pretrained model released by OpenAI! The wrapper class should take care of downloading and caching the model for you auto-magically. You can also use the pretrained VAE offered by the authors of Taming Transformers! Currently only the VAE with a codebook size of 1024 is offered, with the hope that it may train a little faster than OpenAI's, which has a size of 8192. In contrast to OpenAI's VAE, it also has an extra layer of downsampling, so the image sequence length is 256 instead of 1024 (this will lead to a 16 reduction in training costs, when you do the math).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    DCGAN in TensorLayerX

    DCGAN in TensorLayerX

    The Simplest DCGAN Implementation

    This is an implementation of Deep Convolutional Generative Adversarial Networks. First, download the aligned face images from google or baidu to a data folder. Please place dataset 'img_align_celeba.zip' under 'data/celebA/' by default.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DCVGAN

    DCVGAN

    DCVGAN: Depth Conditional Video Generation, ICIP 2019.

    This paper proposes a new GAN architecture for video generation with depth videos and color videos. The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical information. To add appropriate color to the geometrical information of the scene, the domain translation from depth to color is performed for each image. This model has three networks in the generator. In addition, the model has two discriminators.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Dalai

    Dalai

    The simplest way to run LLaMA on your local machine

    Run LLaMA and Alpaca on your computer. Dalai runs on all of the following operating systems, Linux, Mac, and Windows. Runs on most modern computers. Unless your computer is very very old, it should work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Data augmentation

    Data augmentation

    List of useful data augmentation resources

    List of useful data augmentation resources. You will find here some links to more or less popular github repos, libraries, papers, and other information. Data augmentation can be simply described as any method that makes our dataset larger. To create more images for example, we could zoom in and save a result, we could change the brightness of the image or rotate it. To get a bigger sound dataset we could try to raise or lower the pitch of the audio sample or slow down/speed up. Keypoints/landmarks Augmentation, usually done with image augmentation (rotation, reflection) or graph augmentation methods (node/edge dropping) Spectrograms/Melspectrograms, usually done with time series data augmentation (jittering, perturbing, warping) or image augmentation (random erasing)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and optionally the number of initial training steps. We can also feed in an image as an optimization goal, instead of only priming the generator network. Deepdaze will then render its own interpretation of that image. The regular mode for texts only allows 77 tokens. If you want to visualize a full story/paragraph/song/poem, set create_story to True.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Deep Feature Rotation Multimodal Image

    Deep Feature Rotation Multimodal Image

    Implementation of Deep Feature Rotation for Multimodal Image

    Official implementation of paper Deep Feature Rotation for Multimodal Image Style Transfer [NICS'21] We propose a simple method for representing style features in many ways called Deep Feature Rotation (DFR), while still achieving effective stylization compared to more complex methods in style transfer. Our approach is a representative of the many ways of augmentation for intermediate feature embedding without consuming too much computational expense. Prepare your content image and style image. I provide some in the data/content and data/style and you can try to use them easily. We provide a visual comparison between other rotation angles that do not appear in the paper. The rotation angles will produce a very diverse number of outputs. This has proven the effectiveness of our method with other methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo, Red Cross, Omdena, Yale, & Oxford. Use one API to upload, download, and stream datasets to/from AWS S3/S3-compatible storage, GCP, Activeloop cloud, or local storage. Store images, audios and videos in their native compression. Deeplake automatically decompresses them to raw data only when needed, e.g., when training a model. Treat your cloud datasets as if they are a collection of NumPy arrays in your system's memory. Slice them, index them, or iterate through them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DeepMozart

    DeepMozart

    Audio generation using diffusion models

    Audio generation using diffusion models in PyTorch. The code is based on the audio-diffusion-pytorch repository.
    Downloads: 0 This Week
    Last Update:
    See Project