[go: up one dir, main page]

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Dalai

    Dalai

    The simplest way to run LLaMA on your local machine

    Run LLaMA and Alpaca on your computer. Dalai runs on all of the following operating systems, Linux, Mac, and Windows. Runs on most modern computers. Unless your computer is very very old, it should work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Data augmentation

    Data augmentation

    List of useful data augmentation resources

    List of useful data augmentation resources. You will find here some links to more or less popular github repos, libraries, papers, and other information. Data augmentation can be simply described as any method that makes our dataset larger. To create more images for example, we could zoom in and save a result, we could change the brightness of the image or rotate it. To get a bigger sound dataset we could try to raise or lower the pitch of the audio sample or slow down/speed up. Keypoints/landmarks Augmentation, usually done with image augmentation (rotation, reflection) or graph augmentation methods (node/edge dropping) Spectrograms/Melspectrograms, usually done with time series data augmentation (jittering, perturbing, warping) or image augmentation (random erasing)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and optionally the number of initial training steps. We can also feed in an image as an optimization goal, instead of only priming the generator network. Deepdaze will then render its own interpretation of that image. The regular mode for texts only allows 77 tokens. If you want to visualize a full story/paragraph/song/poem, set create_story to True.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Deep Feature Rotation Multimodal Image

    Deep Feature Rotation Multimodal Image

    Implementation of Deep Feature Rotation for Multimodal Image

    Official implementation of paper Deep Feature Rotation for Multimodal Image Style Transfer [NICS'21] We propose a simple method for representing style features in many ways called Deep Feature Rotation (DFR), while still achieving effective stylization compared to more complex methods in style transfer. Our approach is a representative of the many ways of augmentation for intermediate feature embedding without consuming too much computational expense. Prepare your content image and style image. I provide some in the data/content and data/style and you can try to use them easily. We provide a visual comparison between other rotation angles that do not appear in the paper. The rotation angles will produce a very diverse number of outputs. This has proven the effectiveness of our method with other methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 5
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo, Red Cross, Omdena, Yale, & Oxford. Use one API to upload, download, and stream datasets to/from AWS S3/S3-compatible storage, GCP, Activeloop cloud, or local storage. Store images, audios and videos in their native compression. Deeplake automatically decompresses them to raw data only when needed, e.g., when training a model. Treat your cloud datasets as if they are a collection of NumPy arrays in your system's memory. Slice them, index them, or iterate through them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    DeepMozart

    DeepMozart

    Audio generation using diffusion models

    Audio generation using diffusion models in PyTorch. The code is based on the audio-diffusion-pytorch repository.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Dickinson

    Dickinson

    Text generation language

    Dickinson is a text-generation language. You can try out the language on the web without installing anything. Binaries for some platforms are available on the releases page. There is an install script that will try to download the right release for your computer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Diffusers-Interpret

    Diffusers-Interpret

    Model explainability for Diffusers

    diffusers-interpret is a model explainability tool built on top of Diffusers. Model explainability for Diffusers. Get explanations for your generated images. Install directly from PyPI. It is possible to visualize pixel attributions of the input image as a saliency map. diffusers-interpret also computes these token/pixel attributions for generating a particular part of the image. To analyze how a token in the input prompt influenced the generation, you can study the token attribution scores. You can also check all the images that the diffusion process generated at the end of each step. Gradient checkpointing also reduces GPU usage, but makes computations a bit slower.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Diffusion WebUI Colab

    Diffusion WebUI Colab

    Choose your diffusion models and spin up a WebUI on Colab in one click

    The most simplistic Colab with most models included by default. Custom models can be added easily. Stable Diffusion 2.0 in testing phase. Choose your diffusion models and spin up a WebUI on Colab in one click. Share your generations in our mastodon server - (This is hosted by a third party. I am not associated with the instance in any way.) The instructions are on the Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 10
    DocsGPT

    DocsGPT

    GPT-powered chat for documentation search & assistance

    DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in project documentation. With its integration of powerful GPT models, developers can easily ask questions about a project and receive accurate answers. Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain model, which is, in turn, continuously evolved from interactions with the user or autonomously by the system itself. Thus, an alternative to the traditional software production processes is proposed, which involves several stages and different actors, sometimes demanding a lot of time and money without obtaining the expected result. With software engineering techniques, self-adaptive systems, and artificial intelligence, it is possible, the integration between design time and execution time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Dynacover

    Dynacover

    Dynamic Twitter images and banners

    Dynacover is a PHP GD + TwitterOAuth CLI app to dynamically generate Twitter header images and upload them via the API. This enables you to build cool little tricks, like showing your latest followers or GitHub sponsors, your latest content created, a qrcode to something, a progress bar for a goal, and whatever you can think of. You can run Dynacover in three different ways. As a GitHub action: the easiest way to run Dynacover is by setting it up in a public repository with GitHub Actions, using repository secrets for credentials. Follow this step-by-step guide to set this up - no coding is required. With Docker: you can use the public erikaheidi/dynacover Docker image to run Dynacover with a single command, no PHP is required. To further customize your cover, you can clone the dynacover repo to customize banner resources (JSON template and header images, both located at app/Resources), then build a local copy of the Dynacover Docker image to use your custom changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Edge GPT

    Edge GPT

    Reverse engineered API of Microsoft's Bing Chat

    Reverse engineered API of Microsoft's Bing Chat The reverse engineering the chat feature of the new version of Bing. Requirements: - Python 3.8+ - A Microsoft account with Bing Chat access
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on TensorFlow. It enables features such as computational graphs, distributed training, CPU/GPU integration, automatic differentiation, and visualization with TensorBoard. Expectation-Maximization, pseudo-marginal and ABC methods, and message passing algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs. Across a variety of natural-language-processing datasets, Emb-GAM achieves strong prediction performance without sacrificing interpretability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Exposure

    Exposure

    Learning infinite-resolution image processing with GAN and RL

    Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model. ACM Transactions on Graphics (presented at SIGGRAPH 2018) Exposure is originally designed for RAW photos, which assumes 12+ bit color depth and linear "RGB" color space (or whatever we get after demosaicing). jpg and png images typically have only 8-bit color depth (except 16-bit pngs) and the lack of information (dynamic range/activation resolution) may lead to suboptimal results such as posterization. Moreover, jpg and most pngs assume an sRGB color space, which contains a roughly 1/2.2 Gamma correction, making the data distribution different from training images (which are linear). Exposure is just a prototype (proof-of-concept) of our latest research, and there are definitely a lot of engineering efforts required to make it suitable for a real product.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    G-Diffuser Bot

    G-Diffuser Bot

    Discord bot and Interface for Stable Diffusion

    The first release of the all-in-one installer version of G-Diffuser is here. This release no longer requires the installation of WSL or Docker and has a systray icon to keep track of and launch G-Diffuser components. The infinite zoom scripts have been updated with some improvements, notably a new compositer script that is hundreds of times faster than before. The first release of the all-in-one installer is here. It notably features much easier "one-click" installation and updating, as well as a systray icon to keep track of g-diffuser programs and the server while it is running. Run run.cmd to start the G-Diffuser system. You should see a G-Diffuser icon in your systray/notification area. Click on the icon to open and interact with the G-Diffuser system. If the icon is missing be sure it isn't hidden by clicking the "up" arrow near the notification area.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    GANformer

    GANformer

    Generative Adversarial Transformers

    This is an implementation of the GANformer model, a novel and efficient type of transformer, explored for the task of image generation. The network employs a bipartite structure that enables long-range interactions across the image, while maintaining computation of linearly efficiency, that can readily scale to high-resolution synthesis. The model iteratively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of each in light of the other and encourage the emergence of compositional representations of objects and scenes. In contrast to the classic transformer architecture, it utilizes multiplicative integration that allows flexible region-based modulation and can thus be seen as a generalization of the successful StyleGAN network. Using the pre-trained models (generated after training for 5-7x less steps than StyleGAN2 models! Training our models for longer will improve the image quality further).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    GPT-2 FR

    GPT-2 FR

    GPT-2 French demo | Démo française de GPT-2

    OpenAI GPT-2 model trained on four different datasets in French. Books in French, French film scripts, reports of parliamentary debates, Tweet by Emmanuel Macron, allowing to generate text. Tensorflow and gpt-2-simple are required in order to fine-tune GPT-2. Create an environment then install the two packages pip install tensorflow==1.14 gpt-2-simple. A script and a notebook are available in the src folder to fine-tune GPT-2 on your own datasets. The output of each workout, i.e. the folder checkpoint/run1, is to be put ingpt2-model/model1 model2 model3 etc. You can run the script deploy_cloudrun.shto deploy all your different models (into gpt2-model) at once. However, you must have already initialized the gcloud CLI tool (Cloud SDK).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    GPT-Code UI

    GPT-Code UI

    An open source implementation of OpenAI's ChatGPT Code interpreter

    An open source implementation of OpenAI's ChatGPT Code interpreter. Simply ask the OpenAI model to do something and it will generate & execute the code for you. You can put a .env in the working directory to load the OPENAI_API_KEY environment variable. For Azure OpenAI Services, there are also other configurable variables like deployment name. See .env.azure-example for more information. Note that model selection on the UI is currently not supported for Azure OpenAI Services.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    GPT2 for Multiple Languages

    GPT2 for Multiple Languages

    GPT2 for Multiple Languages, including pretrained models

    With just 2 clicks (not including Colab auth process), the 1.5B pretrained Chinese model demo is ready to go. The contents in this repository are for academic research purpose, and we do not provide any conclusive remarks. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC) Simplifed GPT2 train scripts(based on Grover, supporting TPUs). Ported bert tokenizer, multilingual corpus compatible. 1.5B GPT2 pretrained Chinese model (~15G corpus, 10w steps). Batteries-included Colab demo. 1.5B GPT2 pretrained Chinese model (~30G corpus, 22w steps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Generative AI JS

    Generative AI JS

    This SDK is now deprecated, use the new unified Google GenAI SDK

    deprecated-generative-ai-js is a JavaScript/TypeScript client and example suite for interacting with Gemini generative APIs in web and Node.js environments. Though marked deprecated (likely superseded by newer SDKs), the repo shows how to wrap HTTP/WS endpoints, manage streaming responses, and interoperate with browser UI or server logic. The examples include chat widgets, prompt pipelines, and generalized inference utilities. It also deals with streaming cancellation, retries, backoff logic, and message chunk assembly to help developers handle real-world use. Because it’s JavaScript, the repo supports both ESM and CommonJS contexts, making it versatile in backend and frontend setups. The deprecation label reflects that newer or official SDKs may have replaced it, but many of its patterns still serve as a useful reference to understand how streaming, chunking, and prompt logic can be implemented by hand in JS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Generative AI Swift

    Generative AI Swift

    This SDK is now deprecated, use the unified Firebase SDK

    deprecated-generative-ai-swift is a Swift client and example scaffold for building generative AI apps using the Gemini models. Although marked “deprecated”, the repo demonstrates how to integrate Gemini inference into iOS and macOS apps via Swift APIs, providing boilerplate for prompt dispatching, streaming responses, UI integration, and error handling. It includes a sample app that showcases a chat interface, where users send messages and receive responses streamed in real time, with UI updates as tokens arrive. The code also handles request queuing, cancellation, and retry logic, giving developers a realistic foundation rather than a minimalist “hello world.” Despite its deprecated label, the repo remains valuable for developers who want to see how a native Swift integration might be structured before migrating to newer SDKs. Maintainability is emphasized: modular layers separate networking, prompt handling, and UI logic, making adaptation easier when switching to updated APIs.
    Downloads: 0 This Week
    Last Update:
    See Project