[go: up one dir, main page]

Open Source Python Financial Software for Mac

Python Financial Software for Mac

View 857 business solutions

Browse free open source Python Financial Software for Mac and projects below. Use the toggles on the left to filter open source Python Financial Software for Mac by OS, license, language, programming language, and project status.

  • Kinetic Software - Epicor ERP Icon
    Kinetic Software - Epicor ERP

    Discrete, make-to-order and mixed-mode manufacturers who need a global cloud ERP solution

    Grow, thrive, and compete in a global marketplace with Kinetic—an industry-tailored, cognitive ERP that helps you work smarter and stay connected.
    Learn More
  • Hightouch is a data and AI platform for marketing and personalization. Icon
    Hightouch is a data and AI platform for marketing and personalization.

    Marketing needs data and AI. Give them Hightouch.

    Find insights, run real-time campaigns, and build AI agents with all your data.
    Learn More
  • 1
    OpenBB Terminal

    OpenBB Terminal

    Investment research for everyone, anywhere

    Fully written in python which is one of the most used programming languages due to its simplified syntax and shallow learning curve. It is the first time in history that users, regardless of their background, can so easily add features to an investment research platform. The MIT Open Source license allows any user to fork the project to either add features to the broader community or create their own customized terminal version. The terminal allows for users to import their own proprietary datasets to use on our econometric menu. In addition, users are allowed to export any type of data to any type of format whether that is raw data in Excel or an image in PNG. This is ideal for finance content creation. Create notebook templates (through papermill) which can be run on different tickers. This level of automation allows to speed up the development of your investment thesis and reduce human error.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 2
    Qbot

    Qbot

    AI-powered Quantitative Investment Research Platform

    Qbot is an open source quantitative research and trading platform that provides a full pipeline from data ingestion and strategy development to backtesting, simulation, and (optionally) live trading. It bundles a lightweight GUI client (built with wxPython) and a modular backend so researchers can iterate on strategies, run batch backtests, and validate ideas in a near-real simulated environment that models latency and slippage. The project places special emphasis on AI-driven strategies — including supervised learning, reinforcement learning and multi-factor models — and offers a “model zoo” and example strategies to help users get started. For evaluation and analysis, Qbot integrates reporting and visualization (tearsheets, metrics) so you can compare performance across runs and inspect trade-level behavior. It supports multiple strategy runtimes and backtesting engines, is organized for extensibility (strategies live in a dedicated folder).
    Downloads: 12 This Week
    Last Update:
    See Project
  • 3
    Finance Database

    Finance Database

    This is a database of 300.000+ symbols containing Equities, ETFs, etc.

    As a private investor, the sheer amount of information that can be found on the internet is rather daunting. Trying to understand what type of companies or ETFs are available is incredibly challenging with there being millions of companies and derivatives available on the market. Sure, the most traded companies and ETFs can quickly be found simply because they are known to the public (for example, Microsoft, Tesla, S&P500 ETF or an All-World ETF). However, what else is out there is often unknown. This database tries to solve that. It features 300.000+ symbols containing Equities, ETFs, Funds, Indices, Currencies, Cryptocurrencies and Money Markets. It, therefore, allows you to obtain a broad overview of sectors, industries, types of investments and much more. The aim of this database is explicitly not to provide up-to-date fundamentals or stock data as those can be obtained with ease (with the help of this database) by using yfinance, FundamentalAnalysis or ThePassiveInvestor.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 4
    NautilusTrader

    NautilusTrader

    A high-performance algorithmic trading platform

    NautilusTrader is an open-source, high-performance, production-grade algorithmic trading platform, provides quantitative traders with the ability to backtest portfolios of automated trading strategies on historical data with an event-driven engine, and also deploy those same strategies live, with no code changes. The platform is 'AI-first', designed to develop and deploy algorithmic trading strategies within a highly performant and robust Python native environment. This helps to address the parity challenge of keeping the Python research/backtest environment, consistent with the production live trading environment. NautilusTraders design, architecture and implementation philosophy holds software correctness and safety at the highest level, with the aim of supporting Python native, mission-critical, trading system backtesting and live deployment workloads.
    Downloads: 8 This Week
    Last Update:
    See Project
  • Papirfly: Best user-friendly DAM and Content Creation Software Icon
    Papirfly: Best user-friendly DAM and Content Creation Software

    The #1 solution to create and manage content. On‑brand. At scale.

    Papirfly provides a single online destination for all your employees and other stakeholders who are engaging with your brand, ensuring consistency in all aspects of their communications. Teams can produce infinite studio-standard marketing materials from bespoke templates, store, share and adapt them for their own markets and stay firmly educated on the brand’s purpose, guidelines and evolution – with no specialist skills or agency help necessary.
    Learn More
  • 5
    AutoTrader

    AutoTrader

    A Python-based development platform for automated trading systems

    AutoTrader is a Python-based platform—now archived—designed to facilitate the full lifecycle of automated trading systems. It provides tools for backtesting, strategy optimization, visualization, and live trading integration. A feature-rich trading simulator, supporting backtesting and paper trading. The 'virtual broker' allows you to test your strategies in a risk-free, simulated environment before going live. Capable of simulating multiple order types, stop-losse,s and take-profits, cross-exchange arbitrage and portfolio strategies, AutoTrader has more than enough to build a profitable trading system.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    VisiData

    VisiData

    A terminal spreadsheet multitool for discovering and arranging data

    VisiData is an interactive multitool for tabular data. It combines the clarity of a spreadsheet, the efficiency of the terminal, and the power of Python, into a lightweight utility that can handle millions of rows with ease. A terminal interface for exploring and arranging tabular data. VisiData supports tsv, CSV, SQLite, JSON, xlsx (Excel), hdf5, and many other formats. Requires Linux, OS/X, or Windows (with WSL). Hundreds of other commands and options are also available; see the documentation. Code in the stable branch of this repository, including the main vd application, loaders, and plugins, is available for use and redistribution under GPLv3. VisiData is a free, open-source tool that lets you quickly open, explore, summarize, and analyze datasets in your computer’s terminal. VisiData works with CSV files, Excel spreadsheets, SQL databases, and many other data sources.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    alpha_vantage

    alpha_vantage

    A python wrapper for Alpha Vantage API for financial data.

    Alpha Vantage delivers a free API for real time financial data and most used finance indicators in a simple json or pandas format. This module implements a python interface to the free API provided by Alpha Vantage. You can have a look at all the API calls available in their API documentation. For code-less access to the APIs, you may also consider the official Google Sheet Add-on or the Microsoft Excel Add-on by Alpha Vantage. To get data from the API, simply import the library and call the object with your API key. Next, get ready for some awesome, free, realtime finance data. Your API key may also be stored in the environment variable ALPHAVANTAGE_API_KEY. The library supports giving its results as json dictionaries (default), pandas dataframe (if installed) or csv, simply pass the parameter output_format='pandas' to change the format of the output for all the API calls in the given class.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    AI Hedge Fund

    AI Hedge Fund

    An AI Hedge Fund Team

    This repository demonstrates how to build a simplified, automated hedge fund strategy powered by AI/ML. It integrates financial data collection, preprocessing, feature engineering, and predictive modeling to simulate decision-making in trading. The code shows workflows for pulling stock or market data, applying machine learning algorithms to forecast trends, and generating buy/sell/hold signals based on the predictions. Its structure is educational: intended more as a proof-of-concept than a ready-to-use financial product, giving learners insight into the mechanics of quantitative finance automation. The project underlines AI’s potential in investment strategies but also carries disclaimers that it is for research and not financial advice. The implementation is designed so developers can study the pipeline end-to-end: from data ingestion through modeling to simulated portfolio management.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of above components. The components are designed as loose-coupled modules and each component could be used stand-alone.
    Downloads: 4 This Week
    Last Update:
    See Project
  • The all-in-one Omnichannel Experience Management Platform Icon
    The all-in-one Omnichannel Experience Management Platform

    Do more than just Surveys.

    Build conversational surveys of any type, for any purpose, in any language. Get 40% more responses.
    Learn More
  • 10
    QuickFIX
    QuickFIX is the worlds first Open Source C++ FIX (Financial Information eXchange) engine, helping financial institutions easily integrate with each other. The SVN repository is now locked. Latest code is hosted at github. https://github.com/quickfix/quickfix
    Downloads: 24 This Week
    Last Update:
    See Project
  • 11
    Google Spreadsheets Python

    Google Spreadsheets Python

    Google Sheets Python API

    gspread is a Python API for Google Sheets. A service account is a special type of Google account intended to represent a non-human user that needs to authenticate and be authorized to access data in Google APIs [sic]. Since it’s a separate account, by default it does not have access to any spreadsheet until you share it with this account. Just like any other Google account. To access spreadsheets via Google Sheets API you need to authenticate and authorize your application. Older versions of gspread have used oauth2client. Google has deprecated it in favor of google-auth. If you’re still using oauth2client credentials, the library will convert these to google-auth for you, but you can change your code to use the new credentials to make sure nothing breaks in the future. If you familiar with the Jupyter Notebook, Google Colaboratory is probably the easiest way to get started using gspread.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    ValueCell

    ValueCell

    Community-driven, multi-agent platform for financial applications

    ValueCell is a community-driven multi-agent AI platform focused on financial research, analysis, and decision-making that lets users leverage multiple specialized AI agents for tasks like data retrieval, investment research, strategy execution, and market tracking. The system brings together a suite of collaborative agents—such as research agents that gather and interpret fundamentals, strategy agents that implement trading logic, and news agents that deliver personalized updates—to help users make more informed financial decisions across stocks, crypto, and other markets. ValueCell supports integrations with multiple language model providers and market data sources, giving developers flexibility in customizing agents and incorporating external APIs to enhance insights. Sensitive user data is stored locally, a design choice that prioritizes privacy and security while still enabling rich analytic workflows.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    TradingGym

    TradingGym

    Trading backtesting environment for training reinforcement learning

    TradingGym is a toolkit (in Python) for creating trading and backtesting environments, especially for reinforcement learning agents, but also for simpler rule-based algorithms. It follows a design inspired by OpenAI Gym, offering various environments, data formats (tick data and OHLC), and tools to simulate trading with costs, position limits, observation windows etc. Licensed under MIT. This training environment was originally designed for tickdata, but also supports OHLC data format. WIP. The list contains the feature columns to use in the trading status.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Optopsy

    Optopsy

    A nimble options backtesting library for Python

    Optopsy is a Python-based, nimble backtesting and statistics library focused on evaluating options trading strategies like calls, puts, straddles, spreads, and more, using pandas-driven analysis. The csv_data() function is a convenience function. Under the hood it uses Panda's read_csv() function to do the import. There are other parameters that can help with loading the csv data, consult the code/future documentation to see how to use them. Optopsy is a small simple library that offloads the heavy work of backtesting option strategies, the API is designed to be simple and easy to implement into your regular Panda's data analysis workflow. As such, we just need to call the long_calls() function to have Optopsy generate all combinations of a simple long call strategy for the specified time period and return a DataFrame. Here we also use Panda's round() function afterwards to return statistics within two decimal places.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots. Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities. The package is built on PyTorch Lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    ThetaGang

    ThetaGang

    ThetaGang is an IBKR bot for collecting money

    ThetaGang is an IBKR trading bot for collecting premiums by selling options using "The Wheel" strategy. The Wheel is a strategy that surfaced on Reddit but has been used by many in the past. This bot implements a slightly modified version of The Wheel, with my own personal tweaks. The strategy, as implemented here, does a few things differently from the one described in the post above. For one, it's intended to be used to augment a typical index-fund-based portfolio with specific asset allocations. For example, you might want to use a 60/40 portfolio with SPY (S&P500 fund) and TLT (20-year treasury fund). This strategy reduces risk, but may also limit gains from big market swings. By reducing risk, one can increase leverage. ThetaGang will try to acquire your desired allocation of each stock or ETF according to the weights you specify in the config. To acquire the positions, the script will write puts when conditions are met.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    TradeMaster

    TradeMaster

    TradeMaster is an open-source platform for quantitative trading

    TradeMaster is a first-of-its-kind, best-in-class open-source platform for quantitative trading (QT) empowered by reinforcement learning (RL), which covers the full pipeline for the design, implementation, evaluation and deployment of RL-based algorithms. TradeMaster is composed of 6 key modules: 1) multi-modality market data of different financial assets at multiple granularities; 2) whole data preprocessing pipeline; 3) a series of high-fidelity data-driven market simulators for mainstream QT tasks; 4) efficient implementations of over 13 novel RL-based trading algorithms; 5) systematic evaluation toolkits with 6 axes and 17 measures; 6) different interfaces for interdisciplinary users.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    OpenMoneyBox

    OpenMoneyBox

    Budget management

    OpenMoneyBox is an application designed to manage small personal budgets in the easiest way. Check the homepage to download apps/packages for additional Operating Systems.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 21
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models!

    FinGPT is an open-source large language model tailored specifically for financial tasks. Developed by AI4Finance Foundation, it is designed to assist with various financial applications, such as forecasting, financial sentiment analysis, and portfolio management. FinGPT has been trained on a diverse range of financial datasets, making it a powerful tool for finance professionals looking to leverage AI for data-driven decision-making. The model is freely available on platforms like Hugging Face, allowing for easy access and customization. FinGPT's capabilities are extended by its ability to integrate with existing financial systems and enhance predictive analytics in finance.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 22
    rotki

    rotki

    A portfolio tracking, analytics, accounting and tax reporting app

    A portfolio tracking, analytics, accounting and tax reporting application that respects your privacy
    Downloads: 9 This Week
    Last Update:
    See Project
  • 23
    Trading system written in Python including Quotes Management, Historical and live data, Import/Export data, Charting, Candlestick, Technical analysis, automated alerts, portfolio management, risk management, currency exchange, and much much more ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    A quantitative finance C++ library for modeling, pricing, trading, and risk management in real-life. A cross-platform free/open-source tool for derivatives and financial engineering.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25

    OpenOffice.org Utility Library

    Library modules for creating ODF documents.

    OpenOffice.org Utility Library modules for creating Open Document Format (ODF) documents which can be read by Office Suites including OpenOffice.org, LibreOffice.org, and Microsoft Office. Currently, ooolib-python can create Calc spreadsheet ODS documents. These documents include many features including: - Create multiple table spreadsheets - Cells with text, numbers, dates, formulas - Ability to use built-in styles - Ability to create automatic styles (ie. bold, italics, underline, font size, font color, background color, etc.) - Set column and row attributes including width and height I am currently hosting the new development code at the following URL: https://github.com/josephcolton/ooolib-python I will be posting releases here on SourceForge as well as GitHub, so you can come to either place for the releases. The newest code will only be available using Git on GitHub.
    Downloads: 2 This Week
    Last Update:
    See Project