[go: up one dir, main page]

Open Source Python Facial Recognition Software for ChromeOS

Python Facial Recognition Software for ChromeOS

Browse free open source Python Facial Recognition Software for ChromeOS and projects below. Use the toggles on the left to filter open source Python Facial Recognition Software for ChromeOS by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • AI Powered Global HCM for the Evolving World of Work Icon
    AI Powered Global HCM for the Evolving World of Work

    For Start-ups, SME's, Large Enterprise

    Darwinbox is a new-age & disruptive mobile-first, cloud-based HRMS platform built for the large enterprises to attract, engage and nurture their most critical resource - talent. It is an end-to-end integrated HR system that aids in streamlining activities across the employee lifecycle (Hire to Retire). Our powerful enterprise product features are built with a clear focus on intuitiveness and scalability, with standards of best in class consumer apps. Darwinbox’s motto is to engage, empower, and inspire employees on one side in addition to automating and simplifying all HR processes for the enterprise on the other. Over 350+ leading enterprises with 850k users manage their entire employee lifecycle on this unified platform.
    Learn More
  • 1
    VGGFace2

    VGGFace2

    VGGFace2 Dataset for Face Recognition

    VGGFace2 is a large-scale face recognition dataset developed to support research on facial recognition across variations in pose, age, illumination, and identity. It consists of 3.31 million images covering 9,131 subjects, with an average of over 360 images per subject. The dataset was collected from Google Image Search, ensuring a wide diversity in ethnicity, profession, and real-world conditions. It is split into a training set with 8,631 identities and a test set with 500 identities, making it suitable for benchmarking and large-scale model training. Alongside the dataset, the repository provides pre-trained models based on ResNet-50 and SE-ResNet-50 architectures, trained with both MS-Celeb-1M pretraining and fine-tuning on VGGFace2. These models achieve strong verification performance on benchmarks such as IJB-B and include variants with lower-dimensional embeddings for compact feature representation. The project also includes preprocessing tools, face detection scripts, and etc.
    Downloads: 24 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next