...Despite having only about 10 billion parameters, it delivers performance that rivals or even surpasses much larger models (10×–20× larger) on a wide range of multimodal benchmarks covering reasoning, perception, and complex tasks, positioning it as one of the most powerful models in its class. It achieves this efficiency and strong performance through unified pre-training on a massive 1.2 trillion-token multimodal corpus that jointly optimizes a language-aligned perception encoder with a powerful decoder, creating deep synergy between image processing and text understanding.