[go: up one dir, main page]

Open Source Algorithmic Trading Platforms

Browse free open source Algorithmic Trading platforms and projects below. Use the toggles on the left to filter open source Algorithmic Trading platforms by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Propel Software: Product Value Management Platform for Manufacturers Icon
    Propel Software: Product Value Management Platform for Manufacturers

    For modern product companies that need to connect product and commercial teams successfully

    Propel is a cloud-native Product Value Management platform that unifies PLM, QMS, and PIM in one connected system, giving manufacturers complete visibility and control across the entire product lifecycle. It provides a single source of truth for all product data, streamlines change management, strengthens quality and compliance processes, and accelerates time-to-market by eliminating the silos and manual steps that slow teams down.
    Learn More
  • 1
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    On over 800 pages, this revised and expanded 2nd edition demonstrates how ML can add value to algorithmic trading through a broad range of applications. Organized in four parts and 24 chapters, it covers the end-to-end workflow from data sourcing and model development to strategy backtesting and evaluation. Covers key aspects of data sourcing, financial feature engineering, and portfolio management. The design and evaluation of long-short strategies based on a broad range of ML algorithms, how to extract tradeable signals from financial text data like SEC filings, earnings call transcripts or financial news. Using deep learning models like CNN and RNN with financial and alternative data, and how to generate synthetic data with Generative Adversarial Networks, as well as training a trading agent using deep reinforcement learning.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next