[go: up one dir, main page]

WO2026004349A1 - Information processing method, information processing device, and information processing system - Google Patents

Information processing method, information processing device, and information processing system

Info

Publication number
WO2026004349A1
WO2026004349A1 PCT/JP2025/016689 JP2025016689W WO2026004349A1 WO 2026004349 A1 WO2026004349 A1 WO 2026004349A1 JP 2025016689 W JP2025016689 W JP 2025016689W WO 2026004349 A1 WO2026004349 A1 WO 2026004349A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information processing
autofluorescence
optical data
clustering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2025/016689
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Publication of WO2026004349A1 publication Critical patent/WO2026004349A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Definitions

  • This disclosure relates to an information processing method, an information processing device, and an information processing system.
  • a flow cytometer irradiates light onto bioparticles flowing in a roughly single file, allowing it to rapidly measure the scattered light and fluorescence of each bioparticle.
  • the fluorescence emitted from bioparticles includes not only the fluorescence from the labeled fluorescent dye, but also autofluorescence emitted from the bioparticles themselves. Therefore, in order to accurately detect the fluorescence of the fluorescent dye labeled to the bioparticles, it is important to identify the autofluorescence of the bioparticles.
  • Patent Document 1 listed below discloses separating an autofluorescence image containing an autofluorescence component from an image of a specimen labeled with at least one or more fluorescent dyes, and further correcting the separated autofluorescence image using a reference spectrum of the autofluorescent substance.
  • Patent Document 1 separates autofluorescence images using the reference spectrum of the autofluorescent substance contained in the bioparticles, making it difficult to identify the autofluorescence of unknown bioparticles whose autofluorescent substance is unknown.
  • this disclosure proposes a new and improved information processing method, information processing device, and information processing system that are capable of identifying the autofluorescence of a wider variety of biological particles.
  • an information processing method includes acquiring light data by irradiating light onto a plurality of biological particles, identifying autofluorescence data of the plurality of biological particles by clustering the light data, and outputting the autofluorescence data.
  • the present disclosure also provides an information processing device comprising an acquisition unit that acquires light data by irradiating light onto a plurality of biological particles, an autofluorescence identification unit that identifies autofluorescence data of the plurality of biological particles by clustering the light data, and an output unit that outputs the autofluorescence data.
  • the present disclosure also provides an information processing system including an information processing device that includes: a detection device that acquires light data by irradiating light onto multiple biological particles; an autofluorescence identification unit that identifies autofluorescence data of the multiple biological particles by clustering the light data; and an output unit that outputs the autofluorescence data.
  • FIG. 1 is a diagram showing a schematic view of the overall configuration of a biological sample analyzer.
  • FIG. 1 is a schematic diagram showing the configuration of an analysis system including a biological sample analyzer.
  • FIG. 10 is a flowchart showing the flow of an analytical experiment using the biological sample analyzer.
  • FIG. 2 is a block diagram showing the functional configuration of an information processing unit.
  • FIG. 2 is a graph showing an example of optical data detected by a detection unit of the spectral flow cytometer.
  • FIG. FIG. 10 is a flowchart showing the flow of operations related to the information processing unit.
  • FIG. 10 is a flowchart showing the flow of a first method for determining the number of clusters.
  • FIG. 10 is a scatter plot of optical data of bioparticles that have been fluorescence-corrected using autofluorescence data identified based on optical data of clusters clustered with a cluster number of 1.
  • FIG. 10 is a scatter plot of optical data of bioparticles, fluorescence-corrected using autofluorescence data identified based on optical data of clusters clustered with a cluster count of 2.
  • FIG. 10 is a scatter plot of optical data of bioparticles, fluorescence-corrected using autofluorescence data identified based on optical data of clusters clustered with a cluster count of 2.
  • FIG. 10 is a scatter plot of optical data of bioparticles, fluorescence-corrected using autofluorescence data identified based on optical data of clusters clustered with a cluster count of 3.
  • FIG. 10 is a flowchart showing the flow of a second method for determining the number of clusters.
  • FIG. 10 is a graph showing the spectrum of each cluster identified based on the optical data of the clusters clustered with a cluster number of 1.
  • FIG. 10 is a graph showing the spectrum of each cluster identified based on the optical data of the clusters clustered with the number of clusters being 2.
  • FIG. 10 is a graph showing the spectrum of each cluster identified based on the optical data of the clusters clustered with the number of clusters being 3.
  • FIG. 10 is a scatter plot of optical data of bioparticles, fluorescence-corrected using autofluorescence data identified based on optical data of clusters clustered with a cluster count of 3.
  • FIG. 10 is a block diagram showing a functional configuration of an information processing unit according to a first modified example.
  • FIG. 10 is a graph showing an example of identifying the spectrum of each cluster obtained by clustering optical data of bioparticles preprocessed with a linear transformation function.
  • FIG. 10 is a graph showing an example of identifying the spectrum of each cluster obtained by clustering optical data of bioparticles preprocessed with a Bi-exponential conversion function.
  • FIG. 10 is a schematic diagram illustrating an example of a clustering target of an information processing unit according to a second modified example.
  • FIG. 11 is a flowchart showing the flow of operations related to an information processing unit according to a third modified example.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of an information processing device that realizes an information processing unit according to the present embodiment.
  • the biological sample analyzer 100 shown in Figure 1 includes a light irradiation unit 101 that irradiates light onto a biological sample S flowing through a flow path C, a detection unit 102 that detects light generated by irradiating the biological sample S with light, and an information processing unit 103 that processes information related to the light detected by the detection unit 102.
  • Examples of the biological sample analyzer 100 include a flow cytometer and an imaging cytometer.
  • the biological sample analyzer 100 may also include a fractionation unit 104 that separates specific biological particles P from within the biological sample S.
  • An example of a biological sample analyzer 100 that includes a fractionation unit 104 is a cell sorter.
  • the biological sample S may be a liquid sample containing biological particles P.
  • the biological particles P may be, for example, cells or non-cellular biological particles.
  • the cells may be living cells, and more specific examples include blood cells such as red blood cells and white blood cells, and reproductive cells such as sperm and fertilized eggs.
  • the cells may also be directly collected from a specimen such as whole blood, or may be cultured cells obtained after culturing. Examples of non-cellular biological particles include extracellular vesicles (especially exosomes and microvesicles).
  • the biological particles P may be labeled with one or more labeling substances (e.g., dyes (especially fluorescent dyes) and antibodies labeled with fluorescent dyes).
  • the biological sample analyzer 100 may also analyze particles other than biological particles P, such as beads for calibration purposes.
  • the flow channel C is configured to allow the biological sample S to flow.
  • the flow channel C can be configured to form a flow in which biological particles P contained in the biological sample S are aligned in a substantially straight line.
  • the flow channel structure including the flow channel C may be designed to form a laminar flow.
  • the flow channel structure is designed to form a laminar flow in which the flow of the biological sample S (sample flow) is surrounded by the flow of sheath liquid.
  • the design of the flow channel structure may be appropriately selected by those skilled in the art, or a known design may be adopted.
  • the flow channel C may be formed in a flow channel structure such as a microchip (a chip having flow channels on the order of micrometers) or a flow cell.
  • the width of the flow channel C may be 1 mm or less, particularly 10 ⁇ m or more and 1 mm or less.
  • the flow channel C and the flow channel structure including the flow channel C may be formed from a material such as plastic or glass.
  • the biological sample analysis device 100 is configured so that light from a light irradiation unit 101 is irradiated onto the biological sample S flowing within the flow path C, and in particular onto biological particles P within the biological sample S.
  • the biological sample analysis device 100 may be configured so that the interrogation point of light on the biological sample S is within the flow path structure, or so that the interrogation point of light is outside the flow path structure.
  • An example of the former is a cuvette flow cell system in which light is irradiated onto a flow path C within a microchip or flow cell.
  • An example of the latter is a jet-in-air system in which light is irradiated onto biological particles P after they have left the flow path structure (in particular its nozzle section).
  • the light irradiation unit 101 includes a light source unit that emits light and a light-guiding optical system that guides the light to an irradiation point.
  • the light source unit includes one or more light sources.
  • the type of light source may be, for example, a laser light source or an LED (Light Emitting Diode) light source.
  • the wavelength of the light emitted from each light source may be any of ultraviolet light, visible light, and infrared light.
  • the light-guiding optical system includes optical components such as a beam splitter group, a mirror group, or an optical fiber.
  • the light-guiding optical system may also include a lens group for focusing light, such as an objective lens. There may be one or more irradiation points where the biological sample S and the light intersect.
  • the light irradiation unit 101 may be configured to focus light emitted from one or more light sources to one irradiation point.
  • the detection unit 102 includes at least one photodetector that detects light generated by irradiating the bioparticles P with light.
  • the light detected by the detection unit 102 is, for example, fluorescence or scattered light (e.g., one or more of forward scattered light, backscattered light, and side scattered light).
  • Each photodetector includes one or more light-receiving elements, e.g., a photodetector array.
  • Each photodetector may include one or more photomultiplier tubes (PMTs) as light-receiving elements, or may include photodiodes such as APDs (Avalanche PhotoDiodes) or MPPCs (Multi-Pixel Photon Counters).
  • PMTs photomultiplier tubes
  • the photodetector may be a PMT array in which multiple PMTs are arranged in a one-dimensional direction.
  • the detection unit 102 may also include an imaging element such as a CCD image sensor or a CMOS image sensor.
  • the detection unit 102 can acquire images of the bioparticles P (e.g., bright-field images, dark-field images, and fluorescence images) using these imaging elements.
  • the detection unit 102 includes a detection optical system that allows light of a predetermined detection wavelength to reach a corresponding photodetector.
  • the detection optical system includes a spectroscopic unit such as a prism or diffraction grating, or a wavelength separation unit such as a dichroic mirror or optical filter.
  • the detection optical system is configured, for example, to disperse light generated by irradiating light onto bioparticles P and detect the dispersed light using multiple photodetectors, the number of which is greater than the number of fluorescent dyes with which the bioparticles P are labeled.
  • a flow cytometer that includes such a detection optical system is called a spectral flow cytometer.
  • the detection optical system may also be configured, for example, to separate light corresponding to the fluorescent wavelength range of a specific fluorescent dye from the light generated by irradiating light onto bioparticles P, and detect the separated light using the corresponding photodetector.
  • the detection unit 102 may also include a signal processing unit that converts the electrical signal obtained by the photodetector into a digital signal.
  • the signal processing unit may include an A/D converter as the device that performs this conversion.
  • the digital signal obtained by conversion by the signal processing unit may be transmitted to the information processing unit 103.
  • the digital signal may be handled by the information processing unit 103 as data related to light (hereinafter also referred to as "light data").
  • the light data may be, for example, light data including fluorescence data, or more specifically, light intensity data.
  • the light intensity may be light intensity data of light including fluorescence (which may include feature quantities such as area, height, and width).
  • the information processing unit 103 includes, for example, a processing unit that processes various data (e.g., optical data) and a memory unit that stores various data.
  • the processing unit may perform fluorescence leakage correction (compensation processing) on the light intensity data.
  • the processing unit may perform fluorescence separation processing on the optical data to acquire light intensity data corresponding to the fluorescent dye.
  • the fluorescence separation processing may be performed, for example, according to the unmixing method described in Japanese Patent Application Laid-Open No. 2011-232259.
  • the processing unit may acquire morphological information of the bioparticles P based on images acquired by the image sensor.
  • the memory unit may be configured to store the acquired optical data and may further be configured to store spectral reference data used in the unmixing processing.
  • the information processing unit 103 can determine whether or not to fractionate the biological particles P based on the optical data and/or morphological information of the biological particles P.
  • the information processing unit 103 controls the fractionation unit 104 based on the results of this determination, allowing the fractionation unit 104 to fractionate the biological particles P.
  • the information processing unit 103 may be configured to be able to output various types of data (e.g., optical data or images). For example, the information processing unit 103 may output various types of data (e.g., two-dimensional plots or spectral plots) generated based on optical data.
  • the information processing unit 103 may also be configured to be able to accept input of various types of data. For example, the information processing unit 103 may accept gating processing on a plot by a user.
  • the information processing unit 103 may include an output unit (e.g., a display) or an input unit (e.g., a keyboard) for executing output or input.
  • the information processing unit 103 may be configured as a general-purpose computer, for example, as an information processing device equipped with a CPU (Central Processing Unit), RAM (Random Access Memory), and ROM (Read Only Memory).
  • the information processing unit 103 may be provided inside the housing in which the light irradiation unit 101 and the detection unit 102 are provided, or may be provided outside the housing.
  • the various processes or functions performed by the information processing unit 103 may be realized by a server computer or cloud connected via a network.
  • the sorting unit 104 sorts the bioparticles P based on the determination result by the information processing unit 103. For example, sorting of the bioparticles P may be performed by a sorting method in which droplets containing the bioparticles P are generated by vibration and the direction of travel of the charged droplets to be sorted is controlled by electrodes. Sorting of the bioparticles P may also be performed by a sorting method in which the direction of travel of the bioparticles P is controlled within the flow channel structure. In such cases, the flow channel structure is provided with a control mechanism that uses, for example, pressure (spray or suction) or electric charge.
  • An example of a flow channel structure is a chip (e.g., the chip described in JP 2020-76736 A) that has a flow channel structure in which a flow channel C branches downstream into a recovery flow channel and a waste flow channel, and that can recover specific bioparticles P into the recovery flow channel.
  • a chip e.g., the chip described in JP 2020-76736 A
  • JP 2020-76736 A has a flow channel structure in which a flow channel C branches downstream into a recovery flow channel and a waste flow channel, and that can recover specific bioparticles P into the recovery flow channel.
  • FIG. 2 is a schematic diagram showing the configuration of an analysis system 10 including a biological sample analyzer 100.
  • the analysis system 10 includes multiple biological sample analyzers 100 and a server 200 connected to the multiple biological sample analyzers 100. Note that while Figure 2 shows four biological sample analyzers 100, the number of biological sample analyzers 100 connected to the server 200 is not particularly limited and may be three or less, or five or more.
  • the biological sample analyzer 100 is an analyzer that analyzes a biological sample S containing the above-mentioned biological particles P.
  • the biological sample analyzer 100 may be, for example, a flow cytometer, an imaging cytometer, or a cell sorter.
  • Server 200 is an information processing server that stores various information used in each analysis by biological sample analyzer 100.
  • Server 200 may store, for example, reference data for biological sample analyzer 100, information related to the fluorescence emitted by the fluorescent dye that labels biological particles P (such as fluorescence spectral data), or machine learning models used to analyze biological particles P.
  • the server 200 may accumulate the analysis results of each biological sample analyzer 100.
  • the analysis results of each biological sample analyzer 100 accumulated in the server 200 can be used, for example, as training data for a machine learning model used in analyzing biological particles P. Furthermore, by accumulating the analysis results of each biological sample analyzer 100 in the server 200, they can be shared with other biological sample analyzers 100.
  • the analysis results of each biological sample analyzer 100 may be accumulated on an in-organization server 300 located within organization Cm.
  • Organization Cm is, for example, a research institute such as a university, a medical institution such as a hospital, or a company.
  • the in-organization server 300 can accumulate the analysis results of each biological sample analyzer 100 within organization Cm.
  • the in-organization server 300 may also obtain various types of information used in each analysis by the biological sample analyzer 100 from server 200 and store this information.
  • FIG. 3 is a flow chart showing the flow of an analytical experiment using the biological sample analyzer 100.
  • a hypothesis to be verified is set as the purpose of the analytical experiment (S11).
  • a protocol for verifying the set hypothesis is created (S12).
  • the created protocol determines, for example, details of the biological sample S sample used to verify the hypothesis (such as details of the fluorescent dye that labels the biological particles P), details of various controls, settings for the biological sample analyzer 100, and the procedures for the analytical experiment.
  • the light irradiation unit 101 and detection unit 102 of the biological sample analyzer 100 are set based on the created protocol (S13).
  • reference data to be used for calibrating the biological sample analyzer 100 is acquired using the biological sample analyzer 100 (S14).
  • a sample of the biological sample S is measured using the biological sample analyzer 100, and optical data of the biological particles P contained in the biological sample S is acquired (S15).
  • the measurement results of the sample of the biological sample S are then analyzed by the information processing unit 103 of the biological sample analyzer 100 (S16). Specifically, in analyzing the measurement results, fluorescence spillover correction or fluorescence separation processing is performed on the optical data of the biological particles P, and light intensity data corresponding to the fluorescent dye that labels the biological particles P is acquired from the optical data of the biological particles P.
  • experimental data for verifying the set hypothesis is compiled based on the acquired light intensity data corresponding to the fluorescent dye (S17).
  • the compiled experimental data is shared with other users of the biological sample analyzer 100, for example, by being sent to the server 200 (S18).
  • an analytical experiment using the biological sample analyzer 100 is performed according to the above flow.
  • the analysis of the measurement results in step S16 is important.
  • the information processing unit 103 is able to analyze only the fluorescence emitted from the multiple fluorescent dyes labeled on the biological particles P. The information processing related to the identification of the autofluorescence of the biological particles P, performed by the information processing unit 103, will be explained in more detail below.
  • FIG. 4 is a block diagram showing the functional configuration of the information processing unit 103.
  • the information processing unit 103 includes an acquisition unit 110, an autofluorescence identification unit 120, an output unit 140, and a storage unit 130.
  • the information processing unit 103 may be part of the biological sample analyzer 100, or may be an information processing device separate from the biological sample analyzer 100.
  • the acquisition unit 110 acquires optical data of the bioparticles P from the detection unit 102. Specifically, the acquisition unit 110 may acquire optical data of light generated by irradiating light onto bioparticles P that are not labeled with a fluorescent dye from the detection unit 102. In this way, the autofluorescence identification unit 120 at the subsequent stage can identify the autofluorescence of the bioparticles P by analyzing the optical data of the bioparticles P that are not labeled with a fluorescent dye.
  • the acquisition unit 110 may acquire the optical data shown in Figure 5 from the detection unit 102.
  • Figure 5 is a graph showing an example of optical data detected by the detection unit 102 of a spectral flow cytometer.
  • the fluorescence or scattered light of bioparticles P irradiated with laser light of multiple wavelengths is dispersed and detected as a spectrum by the detection unit 102.
  • the detection unit 102 integrates the spectrum of the light intensity of the fluorescence or scattered light emitted from each bioparticle P, and expresses the number of occurrences of the light intensity of the fluorescence or scattered light as a heat map.
  • the vertical axis represents the light intensity of the detected fluorescence or scattered light
  • the horizontal axis represents the channel number of the photodetector arrayed in wavelength order
  • the number of occurrences of the light intensity of the fluorescence or scattered light from the bioparticles P is expressed as a heat map.
  • the autofluorescence identification unit 120 identifies the autofluorescence data of the bioparticle P from the optical data of the bioparticle P acquired by the acquisition unit 110, and stores the identified autofluorescence data in the storage unit 130.
  • the autofluorescence identification unit 120 includes a clustering unit 121 and an evaluation unit 122. Note that the functions of the autofluorescence identification unit 120 may be executed by the information processing unit 103, or may be executed by a cloud server or the like connected to the information processing unit 103 via a network.
  • the clustering unit 121 clusters the optical data of the bioparticles P acquired by the acquisition unit 110, thereby dividing the optical data of the bioparticles P into at least one or more independent spectral groups.
  • the clustering unit 121 may cluster the optical data of the bioparticles P using a known clustering method such as k-means, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), or hierarchical clustering.
  • the number of clusters used by the clustering unit 121 for clustering may be a predetermined number, or may be a number set appropriately by the user. Furthermore, the number of clusters used by the clustering unit 121 for clustering may be a number optimized using the method described below.
  • the clustering unit 121 can also cluster non-spectral optical data obtained by detecting light from bioparticles P separated into specific wavelength ranges. Even in such cases, the clustering unit 121 can extract various trends contained in the optical data of bioparticles P as clusters by clustering groups of light intensity data for each specific wavelength range acquired from each bioparticle P.
  • the evaluation unit 122 identifies the autofluorescence data of the bioparticles P based on the optical data of each cluster clustered by the clustering unit 121.
  • Clustering is a machine learning technique that divides data into groups based on the similarity between the data. Therefore, each cluster is considered to be a data group that extracts some tendency contained in the data before clustering.
  • each cluster of optical data of bioparticles P clustered by the clustering unit 121 is a cluster that extracts various tendencies contained in the optical data of bioparticles P.
  • the autofluorescence of bioparticles P occurs based on the internal structure and substances contained in the bioparticles P, and therefore each type of bioparticle P has a specific tendency. Therefore, any of the optical data of a cluster obtained by clustering optical data of bioparticles P that are not labeled with a fluorescent dye is considered to be optical data that corresponds to the autofluorescence of the bioparticles P.
  • the evaluation unit 122 may identify the autofluorescence data of the bioparticle P based on a statistical representative value of the optical data of a cluster selected from each of the clustered clusters.
  • the statistical representative value is, for example, the mean value, median value, or mode value of the optical data of the cluster.
  • the evaluation unit 122 may identify the autofluorescence data of the bioparticle P based on the optical data of a cluster arbitrarily selected by the user, or may identify the autofluorescence data of the bioparticle P based on the optical data of a cluster with the largest number of cluster data. Also, the evaluation unit 122 may identify the autofluorescence data of the bioparticle P based on the optical data of a cluster with the number of cluster data equal to or greater than a threshold value.
  • the evaluation unit 122 may also identify the autofluorescence data of the bioparticle P based on the optical data of multiple clusters. In such cases, the evaluation unit 122 will identify multiple spectra as the autofluorescence data of the bioparticle P. For example, if the bioparticle P includes multiple particle groups with different autofluorescence, or if the bioparticle P has autofluorescence that varies depending on the state, etc., the evaluation unit 122 can generate autofluorescence data from each of the multiple clusters, thereby taking multiple autofluorescences into account when performing fluorescence correction, etc.
  • the memory unit 130 stores the autofluorescence data identified by the evaluation unit 122.
  • the autofluorescence data stored in the memory unit 130 can be used, for example, to remove autofluorescence from the optical data of biological particles P labeled with fluorescent dyes.
  • the autofluorescence data stored in the memory unit 130 can also be used, for example, to perform fluorescence correction to extract the fluorescence of each fluorescent dye from the optical data of biological particles P labeled with fluorescent dyes.
  • the output unit 140 outputs the autofluorescence data stored in the memory unit 130.
  • the output unit 140 may present the autofluorescence data of the bioparticle P to a user by outputting the autofluorescence data stored in the memory unit 130 to a display unit external to the information processing unit 103.
  • the output unit 140 may also output the autofluorescence data stored in the memory unit 130 to a calculation unit external to the information processing unit 103, so that the autofluorescence data of the bioparticle P can be used in the analysis of other bioparticles P.
  • FIG. 8 is a flowchart showing the flow of operations related to the information processing unit 103.
  • optical data of the biological particle P is acquired by the acquisition unit 110 (S101).
  • the acquisition unit 110 may acquire optical data of the biological particle P that is not labeled with a fluorescent dye from the detection unit 102.
  • the clustering unit 121 determines the number of clusters to be used when clustering the optical data of the biological particles P (S102).
  • the number of clusters may be determined based on input from the user, may be determined based on predetermined parameters of the optical data of the biological particles P, or may be determined using a determination method described below.
  • the clustering unit 121 clusters the optical data of the bioparticles P using the number of clusters determined in step S102 (S103).
  • the clustering unit 121 may cluster the optical data of the bioparticles P using a known clustering method such as k-means, DBSCAN, or hierarchical clustering.
  • the evaluation unit 122 identifies the autofluorescence data of the bioparticle P based on the optical data of each cluster clustered by the clustering unit 121 (S104). For example, the evaluation unit 122 may identify the spectrum corresponding to the autofluorescence data of the bioparticle P by extracting, for each channel number, the mean, median, or mode of the optical data of a cluster selected from each cluster. The autofluorescence data of the bioparticle P identified by the evaluation unit 122 is stored, for example, in the storage unit 130.
  • the information processing unit 103 performs fluorescence correction on the optical data of the bioparticles P labeled with fluorescent dyes (S105).
  • Fluorescence correction refers to, for example, a process of separating the optical data acquired as a spectrum into the fluorescence of each fluorescent dye using an unmixing method, or a process of acquiring the fluorescence of each fluorescent dye by correcting the leakage of the fluorescence of each fluorescent dye from the optical data acquired for each wavelength band.
  • the information processing unit 103 takes into account the autofluorescence of the bioparticles P, thereby being able to separate or correct the fluorescence of the fluorescent dyes with higher accuracy.
  • the information processing unit 103 may perform fluorescence correction on the optical data of the bioparticle P using the following first or second method.
  • the first method is to perform fluorescence correction on the optical data of a bioparticle P using one piece of autofluorescence data.
  • the information processing unit 103 can perform fluorescence correction on the optical data of a bioparticle P by performing the matrix operation expressed by (2) or (3) below using a fluorescence correction matrix A expressed by (1) below.
  • the a included in the fluorescence correction matrix A is a fluorescence correction parameter. Furthermore, n is the number of the fluorescent dye, and m is the channel number of the photodetector.
  • the optical data x before fluorescence correction has the autofluorescence data u subtracted from it, and then the inverse matrix of the fluorescence correction matrix A is applied to produce fluorescence data y after fluorescence correction.
  • a T is a matrix that adjusts for mismatches where m ⁇ n to enable matrix calculations.
  • the information processing unit 103 can perform fluorescence correction on the optical data of bioparticles P obtained by dividing the autofluorescence data.
  • the information processing unit 103 can also perform fluorescence correction on the optical data of the bioparticle P by performing the following calculation (4) instead of the calculation (3) above. This allows the information processing unit 103 to match the scale of the signal intensity of the fluorescence data y after fluorescence correction with the scale of the signal intensity of the optical data x before fluorescence correction.
  • the second method is to perform fluorescence correction on the optical data of bioparticles P using multiple pieces of autofluorescence data.
  • the information processing unit 103 can perform fluorescence correction on the optical data of bioparticles P by performing the calculations expressed in (6) or (7) below using a fluorescence correction matrix A expressed in (5) below.
  • a is a fluorescence correction parameter and u is the autofluorescence data.
  • n is the fluorescent dye number
  • m is the photodetector channel number
  • l is the autofluorescence data identification number.
  • the optical data x before fluorescence correction is subjected to the inverse matrix of the fluorescence correction matrix A to become fluorescence data y after fluorescence correction and autofluorescence data af after fluorescence correction.
  • a T is a matrix that adjusts for mismatches where m ⁇ n to enable matrix calculations.
  • the information processing unit 103 can perform fluorescence correction on the optical data of the bioparticle P by taking into account one piece of autofluorescence data.
  • the first method for determining the number of clusters is a method for determining the number of clusters based on the degree of variability in optical data after fluorescence correction of optical data of bioparticles P not labeled with a fluorescent dye.
  • Figure 9 is a flowchart showing the flow of the first method for determining the number of clusters.
  • Figures 10 to 12 are scatter plots showing the degree of variability in optical data after fluorescence correction using identified autofluorescence data after clustering with different numbers of clusters.
  • the acquisition unit 110 acquires optical data of the bioparticle P (S211).
  • the acquisition unit 110 may acquire optical data of the bioparticle P that is not labeled with a fluorescent dye from the detection unit 102.
  • the clustering unit 121 determines the search range for the number of clusters when clustering the optical data of the biological particles P (S212).
  • the determined search range for the number of clusters may be, for example, 1 to 10.
  • the clustering unit 121 clusters the optical data of the biological particles P using any number of clusters within the search range determined in step S212 (S213).
  • the evaluation unit 122 identifies the autofluorescence data of the bioparticle P based on the optical data of each cluster clustered by the clustering unit 121 (S214). For example, the evaluation unit 122 may identify the spectrum corresponding to the autofluorescence data of the bioparticle P based on a statistical representative value of the optical data of a cluster selected from each of the clusters clustered.
  • the information processing unit 103 uses the autofluorescence data of the bioparticles P identified in step S214 to perform fluorescence correction on the optical data of the bioparticles P that are not labeled with a fluorescent dye (S215).
  • the information processing unit 103 calculates the degree of variability in the fluorescence-corrected optical data of the bioparticles P (S216). Specifically, the information processing unit 103 calculates the degree of variability in the optical data of the bioparticles P by plotting the light intensity of the fluorescence-corrected optical data of the bioparticles P for each wavelength corresponding to the color of the fluorescent dye that labels the bioparticles P during the actual analytical experiment.
  • Figure 10 is a scatter plot of optical data of a bioparticle P after fluorescence correction using the autofluorescence data of the bioparticle P identified based on the optical data of a cluster clustered with a cluster number of 1.
  • Figure 11 is a scatter plot of optical data of a bioparticle P after fluorescence correction using the autofluorescence data of the bioparticle P identified based on the optical data of a cluster clustered with a cluster number of 2.
  • Figure 12 is a scatter plot of optical data of a bioparticle P after fluorescence correction using the autofluorescence data of the bioparticle P identified based on the optical data of a cluster clustered with a cluster number of 3.
  • the information processing unit 103 first plots the fluorescence-corrected optical data of the bioparticles P on a scatter plot using the light intensities of wavelengths corresponding to the colors of all the fluorescent dyes used in the analytical experiment (FITC_A and BV785_A in Figures 10 to 12).
  • the information processing unit 103 can calculate the degree of variability in the optical data of the bioparticles P for each cluster number by averaging the degrees of variability in the plots of the bioparticles P calculated at wavelengths corresponding to the colors of all the fluorescent dyes used in the analytical experiment.
  • Examples of the degree of variability in the optical data of the bioparticles P include variance and standard deviation.
  • the information processing unit 103 determines whether the degree of variation has been calculated for all cluster numbers in the search range determined in step S212 (S217). If the degree of variation has not been calculated for all cluster numbers in the search range (S217/NO), the process returns to step S213, where clustering and autofluorescence data identification are performed using a different number of clusters.
  • the information processing unit 103 adopts the cluster number with the lowest calculated degree of variation as the number of clusters to be used for actual clustering (S218).
  • the cluster number of 3 shown in Figure 12 which has the smallest variation in the optical data of bioparticles P, is adopted as the number of clusters to be used for actual clustering.
  • the information processing unit 103 can adopt, as the number of clusters for clustering, the number of clusters that minimizes the variance in the optical data after fluorescence correction at wavelengths corresponding to the colors of the fluorescent dyes used in the analytical experiment.
  • the second method for determining the number of clusters is a method for determining the number of clusters based on the similarity of spectra identified from each clustered cluster.
  • Fig. 13 is a flowchart showing the flow of the second method for determining the number of clusters.
  • Figs. 14 to 16 are graphs comparing the similarity of spectra identified from each clustered cluster after clustering with different numbers of clusters.
  • the acquisition unit 110 acquires optical data of the bioparticle P (S221).
  • the acquisition unit 110 may acquire optical data of the bioparticle P that is not labeled with a fluorescent dye from the detection unit 102.
  • the clustering unit 121 determines the search range for the number of clusters when clustering the optical data of the biological particles P (S222).
  • the determined search range for the number of clusters may be, for example, 1 to 10.
  • the clustering unit 121 clusters the optical data of the biological particles P using any number of clusters within the search range determined in step S222 (S223).
  • the evaluation unit 122 calculates the similarity of the optical data of each cluster clustered by the clustering unit 121 (S226). Specifically, the evaluation unit 122 identifies the spectrum of each cluster based on the optical data of each cluster clustered, and calculates the similarity of the spectra of each cluster.
  • Figure 14 shows the spectra of each cluster identified based on the optical data of clusters clustered with one cluster.
  • Figure 15 shows the spectra of each cluster identified based on the optical data of clusters clustered with two clusters.
  • Figure 16 shows the spectra of each cluster identified based on the optical data of clusters clustered with three clusters.
  • the information processing unit 103 can calculate the similarity for each number of clusters by calculating the similarity between the spectra of each cluster.
  • the information processing unit 103 may use the average value of the similarities between the spectra of each cluster as the similarity for the number of clusters, or the maximum value of the similarities between the spectra of each cluster as the similarity for the number of clusters.
  • cosine similarity or spectral similarity index can be used as the similarity between the spectra of each cluster.
  • the fluorescence correction may not be performed correctly. This is because when multiple spectra with similar shapes are used, some of the simultaneous equations used to perform fluorescence correction may not be independent of each other and may have multiple solutions. Furthermore, when the spectra of each cluster are similar to each other, there is a possibility that groups that should not be divided into different clusters may be divided into multiple clusters. Therefore, the information processing unit 103 can perform more appropriate fluorescence correction by selecting a number of clusters that results in a lower similarity between each cluster.
  • the information processing unit 103 determines whether similarities have been calculated for all cluster counts in the search range determined in step S222 (S227). If similarities have not been calculated for all cluster counts in the search range (S227/NO), the process returns to step S223, where clustering and similarity calculation are performed for a different number of clusters.
  • the information processing unit 103 adopts the cluster number with the lowest calculated similarity as the number of clusters to be used for actual clustering (S228).
  • the number of clusters shown in Figure 15, 2 which has the lowest spectral similarity between each cluster, is adopted as the number of clusters to be used for actual clustering.
  • the information processing unit 103 can adopt, as the number of clusters for clustering, the number of clusters that results in each cluster tending to be independent of one another.
  • (2.4. Modifications) (First Modification) 17 is a block diagram showing the functional configuration of an information processing unit 103A according to a first modified example of this embodiment.
  • the information processing unit 103A according to the first modified example differs from the information processing unit 103 shown in FIG. 4 in that the information processing unit 103A preprocesses the optical data of the bioparticles P before clustering.
  • the autofluorescence identification unit 120A includes a preprocessing unit 123, a clustering unit 121, and an evaluation unit 122. Note that the functions and operations of the clustering unit 121 and the evaluation unit 122 are as described with reference to FIG. 4, and therefore will not be described here.
  • the preprocessing unit 123 performs preprocessing by applying a conversion function to the optical data of the bioparticles P acquired by the acquisition unit 110. Specifically, the preprocessing unit 123 performs preprocessing by applying a conversion function that performs scale conversion on the optical data of the bioparticles P.
  • the conversion function that performs scale conversion is, for example, a linear, log, hyperlog, or bi-exponential conversion function, and can convert the scale of the light intensity data of the optical data of the bioparticles P.
  • the conversion function used in the preprocessing by the preprocessing unit 123 is selected appropriately depending on the characteristics of the optical data of the bioparticles P.
  • the conversion function used in the preprocessing by the preprocessing unit 123 may be a HyperLog or Bi-exponential conversion function. This allows the preprocessing unit 123 to further emphasize the differences in the optical data of the bioparticles P, for example, between bioparticles P labeled with a fluorescent dye and bioparticles P not labeled with a fluorescent dye.
  • FIGS. 18 and 19 are graphs showing an example in which identical optical data of bioparticles P is clustered with a cluster count of 3, and the spectrum of each cluster is identified.
  • FIG. 18 shows clustering of optical data of bioparticles P preprocessed with a linear conversion function
  • FIG. 19 shows clustering of optical data of bioparticles P preprocessed with a bi-exponential conversion function.
  • the clustering unit 121 can cluster the optical data of bioparticles P into clusters that are more independent of each other, compared to when preprocessing is performed with a linear conversion function.
  • the information processing unit 103A performs preprocessing of scale conversion on the optical data of the biological particles P, making it possible to cluster the optical data of the biological particles P into clusters that are more independent from each other.
  • (Second Modification) 20 is a schematic diagram showing an example of a clustering target of the information processing unit 103 according to the second modified example of this embodiment.
  • the clustering target by the information processing unit 103 according to the second modified example is not limited to the optical data of bioparticles P measured by a flow cytometer, and may be other image data groups including autofluorescence.
  • the clustering target by the information processing unit 103 may be a group of biological images G captured by an imaging flow cytometer or a fluorescence microscope.
  • the group of biological images G is, for example, an image capturing fluorescence or scattered light including autofluorescence of biological particles P, or a group of multiple images capturing fluorescence including autofluorescence from cells or tissues.
  • the information processing unit 103 can identify the autofluorescence of bioparticles P, cells, or tissues contained in the bioimage group G by similarly performing clustering using the bioimage group G as an explanatory variable. For example, when the information processing unit 103 obtains images G1, G2, ... for each cluster by clustering the bioimage group G, it can identify the autofluorescence images of bioparticles P, cells, or tissues contained in the bioimage group G from the images G1, G2, ... for each cluster.
  • the information processing unit 103 is able to identify autofluorescence images by clustering even from a group of fluorescence image data that includes autofluorescence.
  • (Third Modification) 21 is a flowchart showing the flow of operations related to the information processing unit 103 according to the third modified example of this embodiment.
  • the information processing unit 103 according to the third modified example generates a learning model that uses machine learning to learn the relationship between the identified autofluorescence data and the bioparticles P, thereby making it possible to estimate the type of the bioparticles P from the autofluorescence data.
  • optical data of the bioparticle P is acquired by the acquisition unit 110 (S301).
  • the acquisition unit 110 may acquire optical data of the bioparticle P that is not labeled with a fluorescent dye from the detection unit 102.
  • the clustering unit 121 clusters the optical data of the biological particles P using the number of clusters determined in step S102 (S302).
  • the clustering unit 121 may cluster the optical data of the biological particles P using a known clustering method such as k-means, DBSCAN, or hierarchical clustering. Note that the number of clusters used in clustering may be determined based on input from a user, may be determined based on predetermined parameters of the optical data of the biological particles P, or may be determined using the first or second determination method described above.
  • the evaluation unit 122 identifies the autofluorescence data of the bioparticle P based on the optical data of each cluster clustered by the clustering unit 121 (S303). For example, the evaluation unit 122 may identify the spectrum corresponding to the autofluorescence data of the bioparticle P by extracting, for each channel number, the mean, median, or mode of the optical data of a cluster selected from each of the clusters clustered.
  • the autofluorescence data of the bioparticle P identified by the evaluation unit 122 is stored, for example, in the storage unit 130.
  • the information processing unit 103 trains the learning model to learn the relationship between the autofluorescence data of the identified bioparticles P and the type of bioparticles P (S304).
  • the relationship between the autofluorescence data of the bioparticles P and the type of bioparticles P may be set, for example, by the user.
  • a learning model that estimates the relationship between the autofluorescence data of the bioparticles P and the type of bioparticles P is generated.
  • the information processing unit 103 can input the autofluorescence data identified separately in the processing of steps S301 to S303 into the generated learning model, thereby estimating the type of bioparticle P corresponding to the input autofluorescence data (S305).
  • the information processing unit 103 generates a learning model that uses machine learning to identify the relationship between the identified autofluorescence and the bioparticle P, thereby making it possible to estimate the type of bioparticle P from other autofluorescence data.
  • FIG. 22 is a block diagram showing an example of the hardware configuration of an information processing device 900 that realizes the information processing unit 103 according to this embodiment.
  • the functions of the information processing unit 103 may be realized by a combination of software and the hardware described below.
  • the functions of the autofluorescence identification unit 120 may be performed by, for example, the CPU 901.
  • the functions of the acquisition unit 110 may be performed by, for example, the connection port 910 or the communication device 911.
  • the functions of the memory unit 130 may be performed by, for example, the storage device 908.
  • the functions of the output unit 140 may be performed by, for example, the output device 907, the drive 909, the connection port 910, or the communication device 911.
  • the information processing device 900 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, and a RAM (Random Access Memory) 903.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the information processing device 900 may further include a host bus 904a, a bridge 904, an external bus 904b, an interface 905, an input device 906, an output device 907, a storage device 908, a drive 909, a connection port 910, or a communication device 911.
  • the information processing device 900 may have a processing circuit such as a DSP (Digital Signal Processor) or an ASIC (Application Specific Integrated Circuit) instead of or in addition to the CPU 901.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • the CPU 901 functions as an arithmetic processing device or control device, and controls operations within the information processing device 900 in accordance with various programs recorded in the ROM 902, RAM 903, storage device 908, or a removable recording medium attached to the drive 909.
  • the ROM 902 stores programs used by the CPU 901, as well as calculation parameters, etc.
  • the RAM 903 temporarily stores programs used in the execution of the CPU 901, as well as parameters used during that execution, etc.
  • the CPU 901, ROM 902, and RAM 903 are interconnected by a host bus 904a, which is capable of high-speed data transmission.
  • the host bus 904a is connected to an external bus 904b, such as a PCI (Peripheral Component Interconnect/Interface) bus, via a bridge 904, and the external bus 904b is connected to various components via an interface 905.
  • PCI Peripheral Component Interconnect/Interface
  • the input device 906 is a device that accepts input from the user, such as a mouse, keyboard, touch panel, button, switch, or lever.
  • the input device 906 may also be a microphone that detects the user's voice.
  • the input device 906 may also be, for example, a remote control device that uses infrared or other radio waves, or an externally connected device that supports operation of the information processing device 900.
  • the input device 906 further includes an input control circuit that outputs an input signal generated based on information input by the user to the CPU 901. By operating the input device 906, the user can input various data or instruct the information processing device 900 to perform processing operations.
  • the output device 907 is a device capable of visually or audibly presenting information acquired or generated by the information processing device 900 to the user.
  • the output device 907 may be, for example, a display device such as an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an OLED (Organic Light Emitting Diode) display, a hologram, or a projector, or may be an audio output device such as a speaker or headphones, or a printing device such as a printer.
  • the output device 907 can output information acquired by processing by the information processing device 900 as video such as text or images, or sound such as voice or audio.
  • the storage device 908 is a data storage device configured as an example of a storage unit of the information processing device 900.
  • the storage device 908 may be configured, for example, by a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the storage device 908 can store programs executed by the CPU 901, various data, or various data obtained from the outside.
  • the drive 909 is a device for reading or writing removable recording media such as magnetic disks, optical disks, magneto-optical disks, or semiconductor memories, and is either built into the information processing device 900 or attached externally.
  • the drive 909 can read information recorded on an attached removable recording media and output it to RAM 903.
  • the drive 909 can also write information to an attached removable recording media.
  • the connection port 910 is a port for directly connecting an external device to the information processing device 900.
  • the connection port 910 may be, for example, a USB (Universal Serial Bus) port, an IEEE 1394 port, or a SCSI (Small Computer System Interface) port.
  • the connection port 910 may also be an RS-232C port, an optical audio terminal, or an HDMI (registered trademark) (High-Definition Multimedia Interface) port.
  • the communication device 911 is, for example, a communication interface configured with a communication device for connecting to the communication network 920.
  • the communication device 911 may be, for example, a communication card for a wired or wireless LAN (Local Area Network), Wi-Fi (registered trademark), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 911 may also be a router for optical communications, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various types of communications.
  • the communication device 911 can send and receive signals, for example, via the Internet or with other communication devices, using a predetermined protocol such as TCP/IP.
  • the communication network 920 connected to the communication device 911 is a wired or wireless network, and may be, for example, an Internet communication network, a home LAN, an infrared communication network, a radio wave communication network, or a satellite communication network.
  • An information processing method including: (2) The information processing method according to (1), wherein the optical data is unlabeled data acquired from the plurality of biological particles that are not labeled with a fluorescent dye. (3) The information processing method described in (2) further includes performing fluorescence correction to obtain fluorescence data corresponding to the colors of at least one or more of the fluorescent dyes using the autofluorescence data from labeled data obtained from the plurality of biological particles labeled with at least one or more of the fluorescent dyes.
  • the information processing method according to (3) wherein a representative value of the autofluorescence data is used for the fluorescence correction.
  • the method further includes determining the number of clusters in the clustering; The information processing method according to (3) or (4), wherein the number of clusters is determined based on the degree of variability of fluorescence data corresponding to the color of the fluorescent dye when the fluorescence correction is performed on the label-free data.
  • (6) The information processing method according to (5), wherein the degree of variation is calculated for each of the numbers of clusters within a predetermined range, and the number of clusters with the calculated degree of variation being the lowest is adopted.
  • the method further includes determining the number of clusters in the clustering; The information processing method according to any one of (2) to (4), wherein the number of clusters is determined based on the similarity between optical data of each cluster obtained by clustering the label-free data.
  • an acquisition unit that acquires light data by irradiating light onto a plurality of bioparticles; an autofluorescence identification unit that identifies autofluorescence data of the plurality of bioparticles by clustering the optical data; an output unit that outputs the autofluorescence data;
  • An information processing device comprising: (13) a detection device that acquires optical data by irradiating light onto a plurality of biological particles; an information processing device including: an autofluorescence identification unit that identifies autofluorescence data of the plurality of bioparticles by clustering the optical data; and an output unit that outputs the autofluorescence data;
  • An information processing system comprising:
  • REFERENCE SIGNS LIST 100 Biological sample analyzer 101 Light irradiation unit 102 Detection unit 103, 103A Information processing unit 104 Sorting unit 110 Acquisition unit 120, 120A Autofluorescence identification unit 121 Clustering unit 122 Evaluation unit 123 Preprocessing unit 130 Storage unit 140 Output unit 10 Analysis system 200, 300 Server C Flow path P Biological particle S Biological sample

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

[Problem] To identify autofluorescence of various biological particles. [Solution] Provided is an information processing method involving: acquiring optical data by irradiating a plurality of biological particles with light; identifying autofluorescence data of the plurality of biological particles by clustering the optical data; and outputting the autofluorescence data.

Description

情報処理方法、情報処理装置、及び情報処理システムInformation processing method, information processing device, and information processing system

 本開示は、情報処理方法、情報処理装置、及び情報処理システムに関する。 This disclosure relates to an information processing method, an information processing device, and an information processing system.

 近年、医学又は生化学の分野では、少なくとも1つ以上の蛍光色素で標識された大量の生体粒子の特性をフローサイトメータによって高速に分析することが一般的になってきている。フローサイトメータは、略一列に並んで流れる生体粒子に光を照射することで、生体粒子の各々の散乱光及び蛍光を迅速に測定することができる。 In recent years, in the fields of medicine and biochemistry, it has become common to use a flow cytometer to rapidly analyze the characteristics of large numbers of bioparticles labeled with at least one fluorescent dye. A flow cytometer irradiates light onto bioparticles flowing in a roughly single file, allowing it to rapidly measure the scattered light and fluorescence of each bioparticle.

 ただし、生体粒子から発せられる蛍光には、標識された蛍光色素からの蛍光に加えて、生体粒子自体から発せられる自家蛍光が含まれる。したがって、生体粒子に標識された蛍光色素の蛍光を正確に検出するためには、生体粒子の自家蛍光を特定することが重要となる。 However, the fluorescence emitted from bioparticles includes not only the fluorescence from the labeled fluorescent dye, but also autofluorescence emitted from the bioparticles themselves. Therefore, in order to accurately detect the fluorescence of the fluorescent dye labeled to the bioparticles, it is important to identify the autofluorescence of the bioparticles.

 例えば、下記の特許文献1には、少なくとも1つ以上の蛍光色素で標識された標本の画像から自家蛍光成分を含む自家蛍光画像を分離し、分離した自家蛍光画像を自家蛍光物質の参照スペクトルを用いてさらに補正することが開示されている。 For example, Patent Document 1 listed below discloses separating an autofluorescence image containing an autofluorescence component from an image of a specimen labeled with at least one or more fluorescent dyes, and further correcting the separated autofluorescence image using a reference spectrum of the autofluorescent substance.

国際公開第2022/004500号International Publication No. 2022/004500

 しかし、特許文献1に開示された技術は、生体粒子に含まれる自家蛍光物質の参照スペクトルを用いて自家蛍光画像を分離するため、自家蛍光物質が不明である未知の生体粒子の自家蛍光を特定することは困難であった。 However, the technology disclosed in Patent Document 1 separates autofluorescence images using the reference spectrum of the autofluorescent substance contained in the bioparticles, making it difficult to identify the autofluorescence of unknown bioparticles whose autofluorescent substance is unknown.

 そこで、本開示では、より多様な生体粒子の自家蛍光を特定することが可能な、新規かつ改良された情報処理方法、情報処理装置、及び情報処理システムを提案する。 Therefore, this disclosure proposes a new and improved information processing method, information processing device, and information processing system that are capable of identifying the autofluorescence of a wider variety of biological particles.

 本開示によれば、複数の生体粒子に対して光を照射することによって光データを取得することと、前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定することと、前記自家蛍光データを出力することと、を含む、情報処理方法が提供される。 According to the present disclosure, an information processing method is provided that includes acquiring light data by irradiating light onto a plurality of biological particles, identifying autofluorescence data of the plurality of biological particles by clustering the light data, and outputting the autofluorescence data.

 また、本開示によれば、複数の生体粒子に対して光を照射することによって光データを取得する取得部と、前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定する自家蛍光特定部と、前記自家蛍光データを出力する出力部と、を備える、情報処理装置が提供される。 The present disclosure also provides an information processing device comprising an acquisition unit that acquires light data by irradiating light onto a plurality of biological particles, an autofluorescence identification unit that identifies autofluorescence data of the plurality of biological particles by clustering the light data, and an output unit that outputs the autofluorescence data.

 また、本開示によれば、複数の生体粒子に対して光を照射することによって光データを取得する検出装置と、前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定する自家蛍光特定部と、前記自家蛍光データを出力する出力部と、を備える情報処理装置と、を含む、情報処理システムが提供される。 The present disclosure also provides an information processing system including an information processing device that includes: a detection device that acquires light data by irradiating light onto multiple biological particles; an autofluorescence identification unit that identifies autofluorescence data of the multiple biological particles by clustering the light data; and an output unit that outputs the autofluorescence data.

生体試料分析装置の全体構成を概略的に示す図である。FIG. 1 is a diagram showing a schematic view of the overall configuration of a biological sample analyzer. 生体試料分析装置を含む分析システムの構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of an analysis system including a biological sample analyzer. 生体試料分析装置による分析実験の流れを示すフローチャート図である。FIG. 10 is a flowchart showing the flow of an analytical experiment using the biological sample analyzer. 情報処理部の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of an information processing unit. スペクトル型フローサイトメータの検出部で検出された光データの一例を示すグラフ図である。FIG. 2 is a graph showing an example of optical data detected by a detection unit of the spectral flow cytometer. 図5に示す光データをクラスタ数k=2でクラスタリングした各クラスタの光データの一例を示すグラフ図である。6 is a graph showing an example of optical data of each cluster obtained by clustering the optical data shown in FIG. 5 with the number of clusters k=2. FIG. 図5に示す光データをクラスタ数k=2でクラスタリングした各クラスタの光データの一例を示すグラフ図である。6 is a graph showing an example of optical data of each cluster obtained by clustering the optical data shown in FIG. 5 with the number of clusters k=2. FIG. 情報処理部に関する動作の流れを示すフローチャート図である。FIG. 10 is a flowchart showing the flow of operations related to the information processing unit. クラスタ数の第1の決定方法の流れを示すフローチャート図である。FIG. 10 is a flowchart showing the flow of a first method for determining the number of clusters. クラスタ数1でクラスタリングしたクラスタの光データに基づいて特定された自家蛍光データにて蛍光補正された生体粒子の光データの散布図である。FIG. 10 is a scatter plot of optical data of bioparticles that have been fluorescence-corrected using autofluorescence data identified based on optical data of clusters clustered with a cluster number of 1. クラスタ数2でクラスタリングしたクラスタの光データに基づいて特定された自家蛍光データにて蛍光補正された生体粒子の光データの散布図である。FIG. 10 is a scatter plot of optical data of bioparticles, fluorescence-corrected using autofluorescence data identified based on optical data of clusters clustered with a cluster count of 2. クラスタ数3でクラスタリングしたクラスタの光データに基づいて特定された自家蛍光データにて蛍光補正された生体粒子の光データの散布図である。FIG. 10 is a scatter plot of optical data of bioparticles, fluorescence-corrected using autofluorescence data identified based on optical data of clusters clustered with a cluster count of 3. クラスタ数の第2の決定方法の流れを示すフローチャート図である。FIG. 10 is a flowchart showing the flow of a second method for determining the number of clusters. クラスタ数1でクラスタリングしたクラスタの光データに基づいて特定された各クラスタのスペクトルを示すグラフ図である。FIG. 10 is a graph showing the spectrum of each cluster identified based on the optical data of the clusters clustered with a cluster number of 1. クラスタ数2でクラスタリングしたクラスタの光データに基づいて特定された各クラスタのスペクトルを示すグラフ図である。FIG. 10 is a graph showing the spectrum of each cluster identified based on the optical data of the clusters clustered with the number of clusters being 2. クラスタ数3でクラスタリングしたクラスタの光データに基づいて特定された各クラスタのスペクトルを示すグラフ図である。FIG. 10 is a graph showing the spectrum of each cluster identified based on the optical data of the clusters clustered with the number of clusters being 3. 第1の変形例に係る情報処理部の機能構成を示すブロック図である。FIG. 10 is a block diagram showing a functional configuration of an information processing unit according to a first modified example. Linearの変換関数で前処理した生体粒子の光データをクラスタリングした各クラスタのスペクトルを特定した一例を示すグラフ図である。FIG. 10 is a graph showing an example of identifying the spectrum of each cluster obtained by clustering optical data of bioparticles preprocessed with a linear transformation function. Bi-exponentialの変換関数で前処理した生体粒子の光データをクラスタリングした各クラスタのスペクトルを特定した一例を示すグラフ図である。FIG. 10 is a graph showing an example of identifying the spectrum of each cluster obtained by clustering optical data of bioparticles preprocessed with a Bi-exponential conversion function. 第2の変形例に係る情報処理部のクラスタリング対象の一例を示す模式図である。FIG. 10 is a schematic diagram illustrating an example of a clustering target of an information processing unit according to a second modified example. 第3の変形例に係る情報処理部に関する動作の流れを示すフローチャート図である。FIG. 11 is a flowchart showing the flow of operations related to an information processing unit according to a third modified example. 本実施形態に係る情報処理部を実現する情報処理装置のハードウェア構成例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a hardware configuration of an information processing device that realizes an information processing unit according to the present embodiment.

 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Note that in this specification and drawings, components having substantially the same functional configuration will be assigned the same reference numerals, and redundant explanations will be omitted.

 なお、説明は以下の順序で行うものとする。
 1.生体試料分析装置
  1.1.生体試料分析装置の構成
  1.2.分析システムの構成
  1.3.分析の流れ
 2.情報処理部
  2.1.情報処理部の構成
  2.2.情報処理部の動作
  2.3.クラスタ数の決定方法
  2.4.変形例
 3.ハードウェア構成
The explanation will be given in the following order.
1. Biological Sample Analyzer 1.1. Configuration of Biological Sample Analyzer 1.2. Configuration of Analysis System 1.3. Analysis Flow 2. Information Processing Unit 2.1. Configuration of Information Processing Unit 2.2. Operation of Information Processing Unit 2.3. Method of Determining the Number of Clusters 2.4. Modified Examples 3. Hardware Configuration

 <1.生体試料分析装置>
 (1.1.生体試料分析装置の構成)
 本開示の生体試料分析装置の構成例を図1に示す。図1に示される生体試料分析装置100は、流路Cを流れる生体試料Sに光を照射する光照射部101、生体試料Sに光を照射することにより生じた光を検出する検出部102、及び検出部102により検出された光に関する情報を処理する情報処理部103を含む。生体試料分析装置100の例としては、フローサイトメータ及びイメージングサイトメータを挙げることができる。生体試料分析装置100は、生体試料S内の特定の生体粒子Pの分取を行う分取部104を含んでもよい。分取部104を含む生体試料分析装置100の例としては、セルソータを挙げることができる。
<1. Biological sample analyzer>
(1.1. Configuration of Biological Sample Analyzer)
An example configuration of a biological sample analyzer according to the present disclosure is shown in Figure 1. The biological sample analyzer 100 shown in Figure 1 includes a light irradiation unit 101 that irradiates light onto a biological sample S flowing through a flow path C, a detection unit 102 that detects light generated by irradiating the biological sample S with light, and an information processing unit 103 that processes information related to the light detected by the detection unit 102. Examples of the biological sample analyzer 100 include a flow cytometer and an imaging cytometer. The biological sample analyzer 100 may also include a fractionation unit 104 that separates specific biological particles P from within the biological sample S. An example of a biological sample analyzer 100 that includes a fractionation unit 104 is a cell sorter.

 (生体試料S)
 生体試料Sは、生体粒子Pを含む液状試料であってもよい。生体粒子Pは、例えば、細胞又は非細胞性生体粒子である。細胞は、生細胞であってもよく、より具体的な例として、赤血球及び白血球等の血液細胞、並びに精子及び受精卵等の生殖細胞を挙げることができる。また、細胞は全血等の検体から直接採取されたものでもよく、培養後に取得された培養細胞であってもよい。非細胞性生体粒子としては、細胞外小胞(特にはエクソソーム及びマイクロベシクルなど)を挙げることができる。生体粒子Pは、1つ又は複数の標識物質(例えば色素(特には蛍光色素)及び蛍光色素で標識された抗体など)によって標識されてもよい。なお、生体試料分析装置100は、生体粒子P以外の粒子を分析してもよく、キャリブレーションなどのためにビーズなどを分析してもよい。
(Biological sample S)
The biological sample S may be a liquid sample containing biological particles P. The biological particles P may be, for example, cells or non-cellular biological particles. The cells may be living cells, and more specific examples include blood cells such as red blood cells and white blood cells, and reproductive cells such as sperm and fertilized eggs. The cells may also be directly collected from a specimen such as whole blood, or may be cultured cells obtained after culturing. Examples of non-cellular biological particles include extracellular vesicles (especially exosomes and microvesicles). The biological particles P may be labeled with one or more labeling substances (e.g., dyes (especially fluorescent dyes) and antibodies labeled with fluorescent dyes). The biological sample analyzer 100 may also analyze particles other than biological particles P, such as beads for calibration purposes.

 (流路C)
 流路Cは、生体試料Sが流れるように構成される。特には、流路Cは、生体試料Sに含まれる生体粒子Pが略一列に並んだ流れが形成されるように構成され得る。流路Cを含む流路構造は、層流が形成されるように設計されてもよい。特には、流路構造は、生体試料Sの流れ(サンプル流)がシース液の流れによって包まれた層流が形成されるように設計される。流路構造の設計は、当業者により適宜選択されてもよく、既知のものが採用されてもよい。流路Cは、マイクロチップ(マイクロメートルオーダーの流路を有するチップ)又はフローセルなどの流路構造体(flow channel structure)中に形成されてもよい。流路Cの幅は、1mm以下であってもよく、特には10μm以上1mm以下であってもよい。流路C及びそれを含む流路構造体は、プラスチック又はガラスなどの材料から形成されてもよい。
(Flow path C)
The flow channel C is configured to allow the biological sample S to flow. In particular, the flow channel C can be configured to form a flow in which biological particles P contained in the biological sample S are aligned in a substantially straight line. The flow channel structure including the flow channel C may be designed to form a laminar flow. In particular, the flow channel structure is designed to form a laminar flow in which the flow of the biological sample S (sample flow) is surrounded by the flow of sheath liquid. The design of the flow channel structure may be appropriately selected by those skilled in the art, or a known design may be adopted. The flow channel C may be formed in a flow channel structure such as a microchip (a chip having flow channels on the order of micrometers) or a flow cell. The width of the flow channel C may be 1 mm or less, particularly 10 μm or more and 1 mm or less. The flow channel C and the flow channel structure including the flow channel C may be formed from a material such as plastic or glass.

 生体試料分析装置100は、流路C内を流れる生体試料S、特には生体試料S中の生体粒子Pに光照射部101からの光が照射されるように構成される。生体試料分析装置100は、生体試料Sに対する光の照射点(interrogation point)が流路構造体中にあるように構成されてもよく、又は光の照射点が流路構造体の外にあるように構成されてもよい。前者の例として、マイクロチップ又はフローセル内の流路Cに光が照射されるキュベットフローセル方式を挙げることができる。後者の例としては、流路構造体(特にはそのノズル部)から出た後の生体粒子Pに光が照射されるジェットインエアー(Jet in Air)方式を挙げることができる。 The biological sample analysis device 100 is configured so that light from a light irradiation unit 101 is irradiated onto the biological sample S flowing within the flow path C, and in particular onto biological particles P within the biological sample S. The biological sample analysis device 100 may be configured so that the interrogation point of light on the biological sample S is within the flow path structure, or so that the interrogation point of light is outside the flow path structure. An example of the former is a cuvette flow cell system in which light is irradiated onto a flow path C within a microchip or flow cell. An example of the latter is a jet-in-air system in which light is irradiated onto biological particles P after they have left the flow path structure (in particular its nozzle section).

 (光照射部101)
 光照射部101は、光を出射する光源部と、光を照射点へと導く導光光学系とを含む。光源部は、1つ又は複数の光源を含む。光源の種類は、例えばレーザ光源又はLED(Light Emitting Diode)光源である。各光源から出射される光の波長は、紫外光、可視光、又は赤外光のいずれかの波長であってもよい。導光光学系は、例えばビームスプリッター群、ミラー群、又は光ファイバなどの光学部品を含む。また、導光光学系は、光を集光するためのレンズ群を含んでもよく、例えば対物レンズを含んでもよい。生体試料Sと光が交差する照射点は、1つ又は複数であってもよい。光照射部101は、1つの照射点に対して、1つ又は複数の光源から照射された光を集光するように構成されてもよい。
(Light irradiation unit 101)
The light irradiation unit 101 includes a light source unit that emits light and a light-guiding optical system that guides the light to an irradiation point. The light source unit includes one or more light sources. The type of light source may be, for example, a laser light source or an LED (Light Emitting Diode) light source. The wavelength of the light emitted from each light source may be any of ultraviolet light, visible light, and infrared light. The light-guiding optical system includes optical components such as a beam splitter group, a mirror group, or an optical fiber. The light-guiding optical system may also include a lens group for focusing light, such as an objective lens. There may be one or more irradiation points where the biological sample S and the light intersect. The light irradiation unit 101 may be configured to focus light emitted from one or more light sources to one irradiation point.

 (検出部102)
 検出部102は、生体粒子Pへの光照射により生じた光を検出する少なくとも1つ以上の光検出器を備える。検出部102にて検出する光は、例えば蛍光又は散乱光(例えば前方散乱光、後方散乱光、及び側方散乱光のいずれか1つ以上)である。各光検出器は、1つ以上の受光素子を含み、例えば受光素子アレイを有する。各光検出器は、受光素子として、1つ又は複数の光電子増倍管(PhotoMultiplier Tube: PMT)を含んでもよく、APD(Avalanche PhotoDiode)又はMPPC(Multi-Pixel Photon Counter)等のフォトダイオードを含んでもよい。例えば、光検出器は、複数のPMTを一次元方向に配列したPMTアレイであってもよい。また、検出部102は、CCDイメージセンサ又はCMOSイメージセンサなどの撮像素子を含んでもよい。検出部102は、これらの撮像素子により、生体粒子Pの画像(例えば明視野画像、暗視野画像、及び蛍光画像など)を取得し得る。
(Detection unit 102)
The detection unit 102 includes at least one photodetector that detects light generated by irradiating the bioparticles P with light. The light detected by the detection unit 102 is, for example, fluorescence or scattered light (e.g., one or more of forward scattered light, backscattered light, and side scattered light). Each photodetector includes one or more light-receiving elements, e.g., a photodetector array. Each photodetector may include one or more photomultiplier tubes (PMTs) as light-receiving elements, or may include photodiodes such as APDs (Avalanche PhotoDiodes) or MPPCs (Multi-Pixel Photon Counters). For example, the photodetector may be a PMT array in which multiple PMTs are arranged in a one-dimensional direction. The detection unit 102 may also include an imaging element such as a CCD image sensor or a CMOS image sensor. The detection unit 102 can acquire images of the bioparticles P (e.g., bright-field images, dark-field images, and fluorescence images) using these imaging elements.

 検出部102は、所定の検出波長の光を対応する光検出器に到達させる検出光学系を含む。検出光学系は、プリズム若しくは回折格子等の分光部、又はダイクロイックミラー若しくは光学フィルタ等の波長分離部を含む。検出光学系は、例えば生体粒子Pへの光照射により生じた光を分光し、分光された光を生体粒子Pが標識された蛍光色素の数より多い複数の光検出器にて検出させるように構成される。このような検出光学系を含むフローサイトメータをスペクトル型フローサイトメータと呼ぶ。また、検出光学系は、例えば生体粒子Pへの光照射により生じた光から特定の蛍光色素の蛍光波長域に対応する光を分離し、分離された光を対応する光検出器に検出させるように構成されてもよい。 The detection unit 102 includes a detection optical system that allows light of a predetermined detection wavelength to reach a corresponding photodetector. The detection optical system includes a spectroscopic unit such as a prism or diffraction grating, or a wavelength separation unit such as a dichroic mirror or optical filter. The detection optical system is configured, for example, to disperse light generated by irradiating light onto bioparticles P and detect the dispersed light using multiple photodetectors, the number of which is greater than the number of fluorescent dyes with which the bioparticles P are labeled. A flow cytometer that includes such a detection optical system is called a spectral flow cytometer. The detection optical system may also be configured, for example, to separate light corresponding to the fluorescent wavelength range of a specific fluorescent dye from the light generated by irradiating light onto bioparticles P, and detect the separated light using the corresponding photodetector.

 また、検出部102は、光検出器により得られた電気信号をデジタル信号に変換する信号処理部を含み得る。信号処理部は、当該変換を行う装置としてA/D変換器を含んでもよい。信号処理部による変換にて得られたデジタル信号が情報処理部103に送信され得る。デジタル信号は、情報処理部103によって、光に関するデータ(以下「光データ」ともいう)として取り扱われ得る。光データは、例えば蛍光データを含む光データであってもよく、より具体的には、光強度データであってもよい。光強度は、蛍光を含む光の光強度データ(Area,Height,Width等の特徴量を含んでもよい)であってもよい。 The detection unit 102 may also include a signal processing unit that converts the electrical signal obtained by the photodetector into a digital signal. The signal processing unit may include an A/D converter as the device that performs this conversion. The digital signal obtained by conversion by the signal processing unit may be transmitted to the information processing unit 103. The digital signal may be handled by the information processing unit 103 as data related to light (hereinafter also referred to as "light data"). The light data may be, for example, light data including fluorescence data, or more specifically, light intensity data. The light intensity may be light intensity data of light including fluorescence (which may include feature quantities such as area, height, and width).

 (情報処理部103)
 情報処理部103は、例えば各種データ(例えば光データ)の処理を実行する処理部及び各種データを記憶する記憶部を含む。処理部は、蛍光色素に対応する光データを検出部102より取得した場合、光強度データに対し蛍光漏れ込み補正(コンペンセーション処理)を行い得る。また、スペクトル型フローサイトメータの場合、処理部は、光データに対して蛍光分離処理を実行し、蛍光色素に対応する光強度データを取得し得る。蛍光分離処理は、例えば特開2011-232259号公報に記載されたアンミキシング方法に従い行われてもよい。検出部102が撮像素子を含む場合、処理部は、撮像素子により取得された画像に基づいて、生体粒子Pの形態情報を取得してもよい。記憶部は、取得された光データを格納できるように構成されてもよく、さらに、アンミキシング処理において用いられるスペクトラルリファレンスデータを格納できるように構成されてもよい。
(Information processing unit 103)
The information processing unit 103 includes, for example, a processing unit that processes various data (e.g., optical data) and a memory unit that stores various data. When the processing unit acquires optical data corresponding to a fluorescent dye from the detection unit 102, the processing unit may perform fluorescence leakage correction (compensation processing) on the light intensity data. Furthermore, in the case of a spectral flow cytometer, the processing unit may perform fluorescence separation processing on the optical data to acquire light intensity data corresponding to the fluorescent dye. The fluorescence separation processing may be performed, for example, according to the unmixing method described in Japanese Patent Application Laid-Open No. 2011-232259. When the detection unit 102 includes an image sensor, the processing unit may acquire morphological information of the bioparticles P based on images acquired by the image sensor. The memory unit may be configured to store the acquired optical data and may further be configured to store spectral reference data used in the unmixing processing.

 生体試料分析装置100が後述の分取部104を含む場合、情報処理部103は、生体粒子Pの光データ及び/又は形態情報に基づいて、生体粒子Pを分取するか否かの判定を実行し得る。情報処理部103が当該判定の結果に基づいて分取部104を制御することで、分取部104による生体粒子Pの分取が行われ得る。 If the biological sample analyzer 100 includes a fractionation unit 104 (described below), the information processing unit 103 can determine whether or not to fractionate the biological particles P based on the optical data and/or morphological information of the biological particles P. The information processing unit 103 controls the fractionation unit 104 based on the results of this determination, allowing the fractionation unit 104 to fractionate the biological particles P.

 情報処理部103は、各種データ(例えば光データ又は画像)を出力することができるように構成されてもよい。例えば、情報処理部103は、光データに基づいて生成された各種データ(例えば二次元プロット、又はスペクトルプロットなど)を出力し得る。また、情報処理部103は、各種データの入力を受け付けることができるように構成されてもよい。例えば、情報処理部103は、ユーザによるプロット上へのゲーティング処理を受け付けてもよい。情報処理部103は、出力又は入力を実行させるための出力部(例えばディスプレイなど)又は入力部(例えばキーボードなど)を含み得る。 The information processing unit 103 may be configured to be able to output various types of data (e.g., optical data or images). For example, the information processing unit 103 may output various types of data (e.g., two-dimensional plots or spectral plots) generated based on optical data. The information processing unit 103 may also be configured to be able to accept input of various types of data. For example, the information processing unit 103 may accept gating processing on a plot by a user. The information processing unit 103 may include an output unit (e.g., a display) or an input unit (e.g., a keyboard) for executing output or input.

 情報処理部103は、汎用のコンピュータとして構成されてもよく、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、及びROM(Read Only Memory)を備える情報処理装置として構成されてもよい。情報処理部103は、光照射部101及び検出部102が備えられる筐体内に設けられてもよく、当該筐体の外に設けられてもよい。また、情報処理部103による各種処理又は機能は、ネットワークを介して接続されたサーバコンピュータ又はクラウドにより実現されてもよい。 The information processing unit 103 may be configured as a general-purpose computer, for example, as an information processing device equipped with a CPU (Central Processing Unit), RAM (Random Access Memory), and ROM (Read Only Memory). The information processing unit 103 may be provided inside the housing in which the light irradiation unit 101 and the detection unit 102 are provided, or may be provided outside the housing. Furthermore, the various processes or functions performed by the information processing unit 103 may be realized by a server computer or cloud connected via a network.

 (分取部104)
 分取部104は、情報処理部103による判定結果に基づいて、生体粒子Pの分取を実行する。例えば、生体粒子Pの分取は、振動によって生体粒子Pを含む液滴を生成し、荷電された分取対象の液滴の進行方向を電極により制御する分取方式にて実行されてもよい。生体粒子Pの分取は、流路構造体内にて生体粒子Pの進行方向を制御する分取方式にて実行されてもよい。このような場合、流路構造体には、例えば、圧力(噴射又は吸引)又は電荷による制御機構が設けられる。流路構造体の例として、回収流路及び廃液流路へと下流で流路Cが分岐する流路構造を有し、特定の生体粒子Pを回収流路へ回収可能なチップ(例えば特開2020-76736に記載されたチップ)を挙げることができる。
(Preparative separation section 104)
The sorting unit 104 sorts the bioparticles P based on the determination result by the information processing unit 103. For example, sorting of the bioparticles P may be performed by a sorting method in which droplets containing the bioparticles P are generated by vibration and the direction of travel of the charged droplets to be sorted is controlled by electrodes. Sorting of the bioparticles P may also be performed by a sorting method in which the direction of travel of the bioparticles P is controlled within the flow channel structure. In such cases, the flow channel structure is provided with a control mechanism that uses, for example, pressure (spray or suction) or electric charge. An example of a flow channel structure is a chip (e.g., the chip described in JP 2020-76736 A) that has a flow channel structure in which a flow channel C branches downstream into a recovery flow channel and a waste flow channel, and that can recover specific bioparticles P into the recovery flow channel.

 (1.2.分析システムの構成)
 図2は、生体試料分析装置100を含む分析システム10の構成を示す模式図である。図2に示すように、分析システム10は、複数の生体試料分析装置100と、複数の生体試料分析装置100と接続されたサーバ200とを含む。なお、図2では、4台の生体試料分析装置100が示されるが、サーバ200と接続された生体試料分析装置100の数は、特に限定されず、3台以下又は5台以上であってもよい。
(1.2. Configuration of the analysis system)
Figure 2 is a schematic diagram showing the configuration of an analysis system 10 including a biological sample analyzer 100. As shown in Figure 2, the analysis system 10 includes multiple biological sample analyzers 100 and a server 200 connected to the multiple biological sample analyzers 100. Note that while Figure 2 shows four biological sample analyzers 100, the number of biological sample analyzers 100 connected to the server 200 is not particularly limited and may be three or less, or five or more.

 生体試料分析装置100は、上述した生体粒子Pを含む生体試料Sを分析する分析装置である。生体試料分析装置100は、例えば、フローサイトメータ、イメージングサイトメータ、又はセルソータであってもよい。 The biological sample analyzer 100 is an analyzer that analyzes a biological sample S containing the above-mentioned biological particles P. The biological sample analyzer 100 may be, for example, a flow cytometer, an imaging cytometer, or a cell sorter.

 サーバ200は、生体試料分析装置100の各々の分析で用いられる各種情報を記憶する情報処理サーバである。サーバ200は、例えば、生体試料分析装置100のリファレンスデータ、生体粒子Pを標識する蛍光色素が発する蛍光に関する情報(蛍光のスペクトルデータなど)、又は生体粒子Pの解析に使用される機械学習モデルなどを記憶してもよい。 Server 200 is an information processing server that stores various information used in each analysis by biological sample analyzer 100. Server 200 may store, for example, reference data for biological sample analyzer 100, information related to the fluorescence emitted by the fluorescent dye that labels biological particles P (such as fluorescence spectral data), or machine learning models used to analyze biological particles P.

 また、サーバ200は、生体試料分析装置100の各々の分析結果を集積してもよい。サーバ200に集積された生体試料分析装置100の各々の分析結果は、例えば、生体粒子Pの解析に使用される機械学習モデルの学習データとして利用され得る。また、生体試料分析装置100の各々の分析結果は、サーバ200に集積されることで、他の生体試料分析装置100と共有され得る。 Furthermore, the server 200 may accumulate the analysis results of each biological sample analyzer 100. The analysis results of each biological sample analyzer 100 accumulated in the server 200 can be used, for example, as training data for a machine learning model used in analyzing biological particles P. Furthermore, by accumulating the analysis results of each biological sample analyzer 100 in the server 200, they can be shared with other biological sample analyzers 100.

 ただし、プライバシー保護、又は情報漏洩防止の観点から、組織Cm外に情報を送信することが禁じられている場合、生体試料分析装置100の各々の分析結果は、組織Cm内に設けられた組織内サーバ300に集積されてもよい。組織Cmとは、例えば、大学等の研究機関、病院等の医療機関、又は企業などである。組織内サーバ300は、組織Cm内の生体試料分析装置100の各々の分析結果を集積することができる。また、組織内サーバ300は、生体試料分析装置100の各々の分析で用いられる各種情報をサーバ200から取得し、これらの各種情報を記憶してもよい。 However, if sending information outside organization Cm is prohibited from the standpoint of protecting privacy or preventing information leaks, the analysis results of each biological sample analyzer 100 may be accumulated on an in-organization server 300 located within organization Cm. Organization Cm is, for example, a research institute such as a university, a medical institution such as a hospital, or a company. The in-organization server 300 can accumulate the analysis results of each biological sample analyzer 100 within organization Cm. The in-organization server 300 may also obtain various types of information used in each analysis by the biological sample analyzer 100 from server 200 and store this information.

 (1.3.分析の流れ)
 図3は、生体試料分析装置100による分析実験の流れを示すフローチャート図である。
(1.3. Analysis flow)
FIG. 3 is a flow chart showing the flow of an analytical experiment using the biological sample analyzer 100.

 図3に示すように、まず、分析実験の目的として、検証すべき仮説が設定される(S11)。続いて、設定された仮説を検証するためのプロトコルが作成される(S12)。作成されたプロトコルでは、例えば、仮説を検証するための生体試料Sのサンプルの詳細(生体粒子Pを標識する蛍光色素の詳細など)、各種コントロールの詳細、生体試料分析装置100の設定、及び分析実験の手順などが決定される。次に、作成されたプロトコルに基づいて、生体試料分析装置100の光照射部101及び検出部102の設定が行われる(S13)。 As shown in FIG. 3, first, a hypothesis to be verified is set as the purpose of the analytical experiment (S11). Next, a protocol for verifying the set hypothesis is created (S12). The created protocol determines, for example, details of the biological sample S sample used to verify the hypothesis (such as details of the fluorescent dye that labels the biological particles P), details of various controls, settings for the biological sample analyzer 100, and the procedures for the analytical experiment. Next, the light irradiation unit 101 and detection unit 102 of the biological sample analyzer 100 are set based on the created protocol (S13).

 その後、生体試料分析装置100を用いて、生体試料分析装置100の校正などに用いられるリファレンスデータが取得される(S14)。校正が行われた後、生体試料分析装置100を用いて、生体試料Sのサンプルの測定が行われることで、生体試料Sに含まれる生体粒子Pの光データが取得される(S15)。続いて、生体試料分析装置100の情報処理部103にて生体試料Sのサンプルの測定結果の解析が行われる(S16)。具体的には、測定結果の解析では、生体粒子Pの光データに対して蛍光漏れ込み補正又は蛍光分離処理が行われることで、生体粒子Pの光データから生体粒子Pを標識する蛍光色素に対応する光強度データが取得される。 Thereafter, reference data to be used for calibrating the biological sample analyzer 100 is acquired using the biological sample analyzer 100 (S14). After calibration, a sample of the biological sample S is measured using the biological sample analyzer 100, and optical data of the biological particles P contained in the biological sample S is acquired (S15). The measurement results of the sample of the biological sample S are then analyzed by the information processing unit 103 of the biological sample analyzer 100 (S16). Specifically, in analyzing the measurement results, fluorescence spillover correction or fluorescence separation processing is performed on the optical data of the biological particles P, and light intensity data corresponding to the fluorescent dye that labels the biological particles P is acquired from the optical data of the biological particles P.

 さらに、取得された蛍光色素に対応する光強度データに基づいて、設定された仮説を検証する実験データがまとめられる(S17)。まとめられた実験データは、例えば、サーバ200に送信されることで、他の生体試料分析装置100のユーザと共有される(S18)。 Furthermore, experimental data for verifying the set hypothesis is compiled based on the acquired light intensity data corresponding to the fluorescent dye (S17). The compiled experimental data is shared with other users of the biological sample analyzer 100, for example, by being sent to the server 200 (S18).

 以上の流れにより、生体試料分析装置100を用いた分析実験が行われる。生体試料分析装置100を用いた分析実験では、ステップS16における測定結果の解析が重要となる。特に、多数の蛍光色素で生体粒子Pを標識した多色分析実験では、測定結果である光データから生体粒子Pの自家蛍光を特定し、特定した生体粒子Pの自家蛍光を光データから除外することが重要となる。情報処理部103は、光データから自家蛍光を除外することで、生体粒子Pに標識された多数の蛍光色素から発せられた蛍光のみを解析することが可能となる。以下では、情報処理部103にて行われる生体粒子Pの自家蛍光の特定に関する情報処理について、より詳細に説明を行う。 An analytical experiment using the biological sample analyzer 100 is performed according to the above flow. In analytical experiments using the biological sample analyzer 100, the analysis of the measurement results in step S16 is important. In particular, in multicolor analysis experiments in which biological particles P are labeled with multiple fluorescent dyes, it is important to identify the autofluorescence of the biological particles P from the optical data that is the measurement result, and to exclude the identified autofluorescence of the biological particles P from the optical data. By excluding the autofluorescence from the optical data, the information processing unit 103 is able to analyze only the fluorescence emitted from the multiple fluorescent dyes labeled on the biological particles P. The information processing related to the identification of the autofluorescence of the biological particles P, performed by the information processing unit 103, will be explained in more detail below.

 <2.情報処理部>
 (2.1.情報処理部の構成)
 図4は、情報処理部103の機能構成を示すブロック図である。図4に示すように、情報処理部103は、取得部110と、自家蛍光特定部120と、出力部140と、記憶部130とを備える。なお、情報処理部103は、生体試料分析装置100の一部であってもよく、生体試料分析装置100とは別個の情報処理装置であってもよい。
<2. Information Processing Section>
(2.1. Configuration of Information Processing Unit)
Fig. 4 is a block diagram showing the functional configuration of the information processing unit 103. As shown in Fig. 4, the information processing unit 103 includes an acquisition unit 110, an autofluorescence identification unit 120, an output unit 140, and a storage unit 130. The information processing unit 103 may be part of the biological sample analyzer 100, or may be an information processing device separate from the biological sample analyzer 100.

 取得部110は、生体粒子Pの光データを検出部102から取得する。具体的には、取得部110は、蛍光色素で標識されていない生体粒子Pへ光を照射することで生じた光の光データを検出部102から取得してもよい。これによれば、後段の自家蛍光特定部120は、蛍光色素で標識されていない生体粒子Pの光データを解析することで、生体粒子Pの自家蛍光を特定することができる。 The acquisition unit 110 acquires optical data of the bioparticles P from the detection unit 102. Specifically, the acquisition unit 110 may acquire optical data of light generated by irradiating light onto bioparticles P that are not labeled with a fluorescent dye from the detection unit 102. In this way, the autofluorescence identification unit 120 at the subsequent stage can identify the autofluorescence of the bioparticles P by analyzing the optical data of the bioparticles P that are not labeled with a fluorescent dye.

 例えば、取得部110は、図5に示す光データを検出部102から取得してもよい。図5は、スペクトル型フローサイトメータの検出部102で検出された光データの一例を示すグラフ図である。 For example, the acquisition unit 110 may acquire the optical data shown in Figure 5 from the detection unit 102. Figure 5 is a graph showing an example of optical data detected by the detection unit 102 of a spectral flow cytometer.

 スペクトル型フローサイトメータの検出部102では、複数の波長のレーザ光が照射された生体粒子Pの蛍光又は散乱光がそれぞれ分光されて検出部102にてスペクトルとして検出される。検出部102は、生体粒子Pの1つ1つから発せられた蛍光又は散乱光の光強度のスペクトルを積算することで、蛍光又は散乱光の光強度の出現数をヒートマップとして表現する。例えば、図5に示す光データでは、検出された蛍光又は散乱光の光強度を縦軸とし、波長順にアレイ化された光検出器のチャネル番号を横軸として、生体粒子Pからの蛍光又は散乱光の光強度の出現数がヒートマップとして表現されている。 In the detection unit 102 of the spectral flow cytometer, the fluorescence or scattered light of bioparticles P irradiated with laser light of multiple wavelengths is dispersed and detected as a spectrum by the detection unit 102. The detection unit 102 integrates the spectrum of the light intensity of the fluorescence or scattered light emitted from each bioparticle P, and expresses the number of occurrences of the light intensity of the fluorescence or scattered light as a heat map. For example, in the optical data shown in Figure 5, the vertical axis represents the light intensity of the detected fluorescence or scattered light, and the horizontal axis represents the channel number of the photodetector arrayed in wavelength order, and the number of occurrences of the light intensity of the fluorescence or scattered light from the bioparticles P is expressed as a heat map.

 自家蛍光特定部120は、取得部110にて取得された生体粒子Pの光データから生体粒子Pの自家蛍光データを特定し、特定した自家蛍光データを記憶部130に記憶させる。具体的には、自家蛍光特定部120は、クラスタリング部121と、評価部122とを含む。なお、自家蛍光特定部120の機能は、情報処理部103にて実行されてもよく、情報処理部103とネットワークを介して接続されたクラウド上のサーバ等にて実行されてもよい。 The autofluorescence identification unit 120 identifies the autofluorescence data of the bioparticle P from the optical data of the bioparticle P acquired by the acquisition unit 110, and stores the identified autofluorescence data in the storage unit 130. Specifically, the autofluorescence identification unit 120 includes a clustering unit 121 and an evaluation unit 122. Note that the functions of the autofluorescence identification unit 120 may be executed by the information processing unit 103, or may be executed by a cloud server or the like connected to the information processing unit 103 via a network.

 クラスタリング部121は、取得部110にて取得された生体粒子Pの光データをクラスタリングすることで、生体粒子Pの光データを少なくとも1つ以上の独立したスペクトル群に分ける。具体的には、クラスタリング部121は、k-means、DBSCAN(Density-Based Spatial Clustering of Applications with Noise)、又は階層的クラスタリングなどの公知のクラスタリング手法を用いて、生体粒子Pの光データをクラスタリングしてもよい。 The clustering unit 121 clusters the optical data of the bioparticles P acquired by the acquisition unit 110, thereby dividing the optical data of the bioparticles P into at least one or more independent spectral groups. Specifically, the clustering unit 121 may cluster the optical data of the bioparticles P using a known clustering method such as k-means, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), or hierarchical clustering.

 例えば、生体粒子Pの光データが図5に示す光データである場合、クラスタリング部121は、生体粒子Pの光データをクラスタ数k=2として図6及び図7に示すようなスペクトル群にクラスタリングすることができる。図6及び図7は、図5に示す光データをクラスタ数k=2でクラスタリングした各クラスタの光データの一例を示すグラフ図である。 For example, if the optical data of bioparticle P is the optical data shown in Figure 5, the clustering unit 121 can cluster the optical data of bioparticle P into spectrum groups as shown in Figures 6 and 7 with the number of clusters k = 2. Figures 6 and 7 are graphs showing examples of optical data for each cluster obtained by clustering the optical data shown in Figure 5 with the number of clusters k = 2.

 クラスタリング部121がクラスタリングする際のクラスタ数は、あらかじめ決められた数であってもよく、ユーザによって適宜設定された数であってもよい。また、クラスタリング部121がクラスタリングする際のクラスタ数は、後述する方法によって最適化された数であってもよい。 The number of clusters used by the clustering unit 121 for clustering may be a predetermined number, or may be a number set appropriately by the user. Furthermore, the number of clusters used by the clustering unit 121 for clustering may be a number optimized using the method described below.

 なお、上記では、スペクトル型フローサイトメータで取得されたスペクトル型の光データをクラスタリングする例を示したが、本開示に係る技術は、上記例示に限定されない。クラスタリング部121は、生体粒子Pからの光を特定の波長域ごとに分離した光をそれぞれ検出した非スペクトル型の光データをクラスタリングすることも可能である。このような場合でも、クラスタリング部121は、生体粒子Pの1つ1つから取得した特定の波長域ごとの光強度データ群をクラスタリングすることで、生体粒子Pの光データに含まれる各種傾向をクラスタとして抽出することができる。 Note that while the above example shows clustering of spectral optical data acquired by a spectral flow cytometer, the technology disclosed herein is not limited to the above example. The clustering unit 121 can also cluster non-spectral optical data obtained by detecting light from bioparticles P separated into specific wavelength ranges. Even in such cases, the clustering unit 121 can extract various trends contained in the optical data of bioparticles P as clusters by clustering groups of light intensity data for each specific wavelength range acquired from each bioparticle P.

 評価部122は、クラスタリング部121にてクラスタリングされた各クラスタの光データに基づいて生体粒子Pの自家蛍光データを特定する。 The evaluation unit 122 identifies the autofluorescence data of the bioparticles P based on the optical data of each cluster clustered by the clustering unit 121.

 クラスタリングは、データ間の類似度に基づいてデータをグループ分けする機械学習手法である。したがって、クラスタリングされた各クラスタは、クラスタリング前のデータに含まれていた何らかの傾向を抽出したデータ群となると考えられる。すなわち、クラスタリング部121によってクラスタリングされた生体粒子Pの光データの各クラスタは、生体粒子Pの光データに含まれる各種傾向がそれぞれ抽出されたクラスタとなる。生体粒子Pの自家蛍光は、生体粒子Pの内部構造及び含有物質に基づいて発生するため、生体粒子Pの種類ごとに特定の傾向を有する。よって、蛍光色素で標識されていない生体粒子Pの光データをクラスタリングしたクラスタの光データのいずれかは、生体粒子Pの自家蛍光に対応する光データとなると考えられる。 Clustering is a machine learning technique that divides data into groups based on the similarity between the data. Therefore, each cluster is considered to be a data group that extracts some tendency contained in the data before clustering. In other words, each cluster of optical data of bioparticles P clustered by the clustering unit 121 is a cluster that extracts various tendencies contained in the optical data of bioparticles P. The autofluorescence of bioparticles P occurs based on the internal structure and substances contained in the bioparticles P, and therefore each type of bioparticle P has a specific tendency. Therefore, any of the optical data of a cluster obtained by clustering optical data of bioparticles P that are not labeled with a fluorescent dye is considered to be optical data that corresponds to the autofluorescence of the bioparticles P.

 具体的には、評価部122は、クラスタリングされた各クラスタの中から選択されたクラスタの光データの統計的な代表値に基づいて生体粒子Pの自家蛍光データを特定してもよい。統計的な代表値とは、例えば、クラスタの光データのうちの平均値、中央値、又は最頻値である。 Specifically, the evaluation unit 122 may identify the autofluorescence data of the bioparticle P based on a statistical representative value of the optical data of a cluster selected from each of the clustered clusters. The statistical representative value is, for example, the mean value, median value, or mode value of the optical data of the cluster.

 例えば、評価部122は、ユーザによって任意に選択されたクラスタの光データに基づいて生体粒子Pの自家蛍光データを特定してもよく、クラスタのデータ数が最も大きいクラスタの光データに基づいて生体粒子Pの自家蛍光データを特定してもよい。また、評価部122は、クラスタのデータ数が閾値以上のクラスタの光データに基づいて生体粒子Pの自家蛍光データを特定してもよい。 For example, the evaluation unit 122 may identify the autofluorescence data of the bioparticle P based on the optical data of a cluster arbitrarily selected by the user, or may identify the autofluorescence data of the bioparticle P based on the optical data of a cluster with the largest number of cluster data. Also, the evaluation unit 122 may identify the autofluorescence data of the bioparticle P based on the optical data of a cluster with the number of cluster data equal to or greater than a threshold value.

 なお、評価部122は、複数のクラスタの光データに基づいて生体粒子Pの自家蛍光データをそれぞれ特定してもよい。このような場合、評価部122は、生体粒子Pの自家蛍光データとして複数のスペクトルを特定することになる。例えば、生体粒子Pが異なる自家蛍光を有する複数の粒子集団を含む場合、又は生体粒子Pが状態等によって異なる自家蛍光を有する場合、評価部122は、複数のクラスタからそれぞれ自家蛍光データを生成することで、蛍光補正等の際に複数の自家蛍光を考慮することが可能である。 The evaluation unit 122 may also identify the autofluorescence data of the bioparticle P based on the optical data of multiple clusters. In such cases, the evaluation unit 122 will identify multiple spectra as the autofluorescence data of the bioparticle P. For example, if the bioparticle P includes multiple particle groups with different autofluorescence, or if the bioparticle P has autofluorescence that varies depending on the state, etc., the evaluation unit 122 can generate autofluorescence data from each of the multiple clusters, thereby taking multiple autofluorescences into account when performing fluorescence correction, etc.

 記憶部130は、評価部122で特定された自家蛍光データを記憶する。記憶部130に記憶された自家蛍光データは、例えば、蛍光色素で標識された生体粒子Pの光データから自家蛍光を除外するために用いられ得る。また、記憶部130に記憶された自家蛍光データは、例えば、蛍光色素で標識された生体粒子Pの光データから蛍光色素の各々の蛍光を取り出す蛍光補正を行うために用いられ得る。 The memory unit 130 stores the autofluorescence data identified by the evaluation unit 122. The autofluorescence data stored in the memory unit 130 can be used, for example, to remove autofluorescence from the optical data of biological particles P labeled with fluorescent dyes. The autofluorescence data stored in the memory unit 130 can also be used, for example, to perform fluorescence correction to extract the fluorescence of each fluorescent dye from the optical data of biological particles P labeled with fluorescent dyes.

 出力部140は、記憶部130に記憶された自家蛍光データを出力する。例えば、出力部140は、記憶部130に記憶された自家蛍光データを情報処理部103の外部の表示部に出力することで、生体粒子Pの自家蛍光データをユーザに提示してもよい。また、出力部140は、記憶部130に記憶された自家蛍光データを情報処理部103の外部の演算部に出力することで、生体粒子Pの自家蛍光データを他の生体粒子Pの解析に用いてもよい。 The output unit 140 outputs the autofluorescence data stored in the memory unit 130. For example, the output unit 140 may present the autofluorescence data of the bioparticle P to a user by outputting the autofluorescence data stored in the memory unit 130 to a display unit external to the information processing unit 103. The output unit 140 may also output the autofluorescence data stored in the memory unit 130 to a calculation unit external to the information processing unit 103, so that the autofluorescence data of the bioparticle P can be used in the analysis of other bioparticles P.

 (2.2.情報処理部の動作)
 図8は、情報処理部103に関する動作の流れを示すフローチャート図である。
(2.2. Operation of Information Processing Unit)
FIG. 8 is a flowchart showing the flow of operations related to the information processing unit 103.

 図8に示すように、まず、取得部110にて生体粒子Pの光データが取得される(S101)。例えば、取得部110は、蛍光色素で標識されていない生体粒子Pの光データを検出部102から取得してもよい。 As shown in FIG. 8, first, optical data of the biological particle P is acquired by the acquisition unit 110 (S101). For example, the acquisition unit 110 may acquire optical data of the biological particle P that is not labeled with a fluorescent dye from the detection unit 102.

 続いて、クラスタリング部121は、生体粒子Pの光データをクラスタリングする際のクラスタ数を決定する(S102)。クラスタ数は、ユーザからの入力に基づいて決定されてもよく、生体粒子Pの光データの所定のパラメータに基づいて決定されてもよく、後述する決定方法で決定されてもよい。 Next, the clustering unit 121 determines the number of clusters to be used when clustering the optical data of the biological particles P (S102). The number of clusters may be determined based on input from the user, may be determined based on predetermined parameters of the optical data of the biological particles P, or may be determined using a determination method described below.

 次に、クラスタリング部121は、生体粒子Pの光データをステップS102にて決定されたクラスタ数にてクラスタリングする(S103)。例えば、クラスタリング部121は、k-means、DBSCAN、又は階層的クラスタリングなどの公知のクラスタリング手法を用いて、生体粒子Pの光データをクラスタリングしてもよい。 Next, the clustering unit 121 clusters the optical data of the bioparticles P using the number of clusters determined in step S102 (S103). For example, the clustering unit 121 may cluster the optical data of the bioparticles P using a known clustering method such as k-means, DBSCAN, or hierarchical clustering.

 さらに、評価部122は、クラスタリング部121にてクラスタリングされた各クラスタの光データに基づいて生体粒子Pの自家蛍光データを特定する(S104)。例えば、評価部122は、クラスタリングされた各クラスタの中から選択されたクラスタの光データの平均値、中央値、又は最頻値をチャネル番号ごとに抽出することで、生体粒子Pの自家蛍光データに対応するスペクトルを特定してもよい。評価部122によって特定された生体粒子Pの自家蛍光データは、例えば、記憶部130に記憶される。 Furthermore, the evaluation unit 122 identifies the autofluorescence data of the bioparticle P based on the optical data of each cluster clustered by the clustering unit 121 (S104). For example, the evaluation unit 122 may identify the spectrum corresponding to the autofluorescence data of the bioparticle P by extracting, for each channel number, the mean, median, or mode of the optical data of a cluster selected from each cluster. The autofluorescence data of the bioparticle P identified by the evaluation unit 122 is stored, for example, in the storage unit 130.

 その後、情報処理部103にて、蛍光色素で標識された生体粒子Pの光データの蛍光補正が行われる(S105)。蛍光補正とは、例えば、スペクトルとして取得された光データをアンミキング方法によって蛍光色素ごとの蛍光に分離する処理、又は波長帯域ごとに取得された光データから蛍光色素の各々の蛍光の漏れ込みを補正することで蛍光色素ごとの蛍光を取得する処理を表す。情報処理部103は、生体粒子Pの光データを蛍光補正する際に、生体粒子Pの自家蛍光を考慮することで、蛍光色素の蛍光をより高精度に分離又は補正することができる。 Then, the information processing unit 103 performs fluorescence correction on the optical data of the bioparticles P labeled with fluorescent dyes (S105). Fluorescence correction refers to, for example, a process of separating the optical data acquired as a spectrum into the fluorescence of each fluorescent dye using an unmixing method, or a process of acquiring the fluorescence of each fluorescent dye by correcting the leakage of the fluorescence of each fluorescent dye from the optical data acquired for each wavelength band. When performing fluorescence correction on the optical data of the bioparticles P, the information processing unit 103 takes into account the autofluorescence of the bioparticles P, thereby being able to separate or correct the fluorescence of the fluorescent dyes with higher accuracy.

 例えば、情報処理部103は、以下の第1の方法、又は第2の方法を用いて生体粒子Pの光データを蛍光補正してもよい。 For example, the information processing unit 103 may perform fluorescence correction on the optical data of the bioparticle P using the following first or second method.

 第1の方法は、1つの自家蛍光データを用いて生体粒子Pの光データを蛍光補正する方法である。具体的には、情報処理部103は、以下の(1)で表される蛍光補正行列Aを用いて以下の(2)又は(3)で表される行列演算を行うことで、生体粒子Pの光データを蛍光補正することができる。 The first method is to perform fluorescence correction on the optical data of a bioparticle P using one piece of autofluorescence data. Specifically, the information processing unit 103 can perform fluorescence correction on the optical data of a bioparticle P by performing the matrix operation expressed by (2) or (3) below using a fluorescence correction matrix A expressed by (1) below.

 蛍光補正行列Aに含まれるaは蛍光補正のパラメータである。また、nは蛍光色素の番号であり、mは光検出器のチャネル番号である。蛍光補正前の光データxは、自家蛍光データuを減算された後、蛍光補正行列Aの逆行列を作用させられることで、蛍光補正後の蛍光データyとなる。なお、Aは、行列演算を可能とするために、m≠nの不整合を調整する行列である。 The a included in the fluorescence correction matrix A is a fluorescence correction parameter. Furthermore, n is the number of the fluorescent dye, and m is the channel number of the photodetector. The optical data x before fluorescence correction has the autofluorescence data u subtracted from it, and then the inverse matrix of the fluorescence correction matrix A is applied to produce fluorescence data y after fluorescence correction. Note that A T is a matrix that adjusts for mismatches where m ≠ n to enable matrix calculations.

 第1の方法によれば、情報処理部103は、自家蛍光データを除算した生体粒子Pの光データを蛍光補正することが可能である。 According to the first method, the information processing unit 103 can perform fluorescence correction on the optical data of bioparticles P obtained by dividing the autofluorescence data.

 なお、上記(3)の演算に替えて下記(4)の演算を行うことでも、情報処理部103は、生体粒子Pの光データに対して蛍光補正を行うことが可能である。これによれば、情報処理部103は、蛍光補正後の蛍光データyの信号強度のスケールと、蛍光補正前の光データxの信号強度のスケールとを合わせることが可能である。 In addition, the information processing unit 103 can also perform fluorescence correction on the optical data of the bioparticle P by performing the following calculation (4) instead of the calculation (3) above. This allows the information processing unit 103 to match the scale of the signal intensity of the fluorescence data y after fluorescence correction with the scale of the signal intensity of the optical data x before fluorescence correction.

 第2の方法は、複数の自家蛍光データを用いて生体粒子Pの光データを蛍光補正する方法である。具体的には、情報処理部103は、以下の(5)で表される蛍光補正行列Aを用いて、以下の(6)又は(7)で表される演算を行うことで、生体粒子Pの光データを蛍光補正することができる。 The second method is to perform fluorescence correction on the optical data of bioparticles P using multiple pieces of autofluorescence data. Specifically, the information processing unit 103 can perform fluorescence correction on the optical data of bioparticles P by performing the calculations expressed in (6) or (7) below using a fluorescence correction matrix A expressed in (5) below.

 蛍光補正行列Aに含まれるaは蛍光補正のパラメータであり、uは自家蛍光データである。また、nは蛍光色素の番号であり、mは光検出器のチャネル番号であり、lは自家蛍光データの識別番号である。蛍光補正前の光データxは、蛍光補正行列Aの逆行列を作用させられることで、蛍光補正後の蛍光データy、及び蛍光補正後の自家蛍光データafとなる。なお、Aは、行列演算を可能とするために、m≠nの不整合を調整する行列である。 In the fluorescence correction matrix A, a is a fluorescence correction parameter and u is the autofluorescence data. Furthermore, n is the fluorescent dye number, m is the photodetector channel number, and l is the autofluorescence data identification number. The optical data x before fluorescence correction is subjected to the inverse matrix of the fluorescence correction matrix A to become fluorescence data y after fluorescence correction and autofluorescence data af after fluorescence correction. Note that A T is a matrix that adjusts for mismatches where m ≠ n to enable matrix calculations.

 第2の方法によれば、情報処理部103は、l個の自家蛍光データを考慮して生体粒子Pの光データを蛍光補正することが可能である。 According to the second method, the information processing unit 103 can perform fluorescence correction on the optical data of the bioparticle P by taking into account one piece of autofluorescence data.

 (2.3.クラスタ数の決定方法)
 (第1の決定方法)
 図9~図12を参照して、クラスタリング部121によるクラスタ数の第1の決定方法について説明する。クラスタ数の第1の決定方法は、蛍光色素で標識されていない生体粒子Pの光データを蛍光補正した後の光データのばらつき度に基づいてクラスタ数を決定する方法である。図9は、クラスタ数の第1の決定方法の流れを示すフローチャート図である。図10~図12は、互いに異なるクラスタ数にてクラスタリングした後、特定した自家蛍光データによって蛍光補正した光データのばらつき度を示す散布図である。
(2.3. Method for determining the number of clusters)
(First determination method)
A first method for determining the number of clusters by the clustering unit 121 will be described with reference to Figures 9 to 12. The first method for determining the number of clusters is a method for determining the number of clusters based on the degree of variability in optical data after fluorescence correction of optical data of bioparticles P not labeled with a fluorescent dye. Figure 9 is a flowchart showing the flow of the first method for determining the number of clusters. Figures 10 to 12 are scatter plots showing the degree of variability in optical data after fluorescence correction using identified autofluorescence data after clustering with different numbers of clusters.

 図9に示すように、まず、取得部110にて生体粒子Pの光データが取得される(S211)。例えば、取得部110は、蛍光色素で標識されていない生体粒子Pの光データを検出部102から取得してもよい。 As shown in FIG. 9, first, the acquisition unit 110 acquires optical data of the bioparticle P (S211). For example, the acquisition unit 110 may acquire optical data of the bioparticle P that is not labeled with a fluorescent dye from the detection unit 102.

 続いて、クラスタリング部121は、生体粒子Pの光データをクラスタリングする際のクラスタ数の探索範囲を決定する(S212)。決定されるクラスタ数の探索範囲は、例えば、1~10などであってもよい。次に、クラスタリング部121は、生体粒子Pの光データをステップS212にて決定された探索範囲のいずれかのクラスタ数にてクラスタリングする(S213)。 Next, the clustering unit 121 determines the search range for the number of clusters when clustering the optical data of the biological particles P (S212). The determined search range for the number of clusters may be, for example, 1 to 10. Next, the clustering unit 121 clusters the optical data of the biological particles P using any number of clusters within the search range determined in step S212 (S213).

 さらに、評価部122は、クラスタリング部121にてクラスタリングされた各クラスタの光データに基づいて生体粒子Pの自家蛍光データを特定する(S214)。例えば、評価部122は、クラスタリングされた各クラスタの中から選択されたクラスタの光データの統計的な代表値に基づいて生体粒子Pの自家蛍光データに対応するスペクトルを特定してもよい。 Furthermore, the evaluation unit 122 identifies the autofluorescence data of the bioparticle P based on the optical data of each cluster clustered by the clustering unit 121 (S214). For example, the evaluation unit 122 may identify the spectrum corresponding to the autofluorescence data of the bioparticle P based on a statistical representative value of the optical data of a cluster selected from each of the clusters clustered.

 続いて、情報処理部103は、ステップS214にて特定された生体粒子Pの自家蛍光データを用いて、蛍光色素で標識されていない生体粒子Pの光データを蛍光補正する(S215)。次に、情報処理部103は、蛍光補正された生体粒子Pの光データのばらつき度を算出する(S216)。具体的には、情報処理部103は、実際の分析実験の際に生体粒子Pを標識する蛍光色素の色に対応する波長ごとに、蛍光補正された生体粒子Pの光データの光強度をプロットすることで、生体粒子Pの光データのばらつき度を算出する。 Next, the information processing unit 103 uses the autofluorescence data of the bioparticles P identified in step S214 to perform fluorescence correction on the optical data of the bioparticles P that are not labeled with a fluorescent dye (S215). Next, the information processing unit 103 calculates the degree of variability in the fluorescence-corrected optical data of the bioparticles P (S216). Specifically, the information processing unit 103 calculates the degree of variability in the optical data of the bioparticles P by plotting the light intensity of the fluorescence-corrected optical data of the bioparticles P for each wavelength corresponding to the color of the fluorescent dye that labels the bioparticles P during the actual analytical experiment.

 例えば、図10は、クラスタ数1でクラスタリングしたクラスタの光データに基づいて特定された生体粒子Pの自家蛍光データにて蛍光補正された生体粒子Pの光データの散布図である。図11は、クラスタ数2でクラスタリングしたクラスタの光データに基づいて特定された生体粒子Pの自家蛍光データにて蛍光補正された生体粒子Pの光データの散布図である。図12は、クラスタ数3でクラスタリングしたクラスタの光データに基づいて特定された生体粒子Pの自家蛍光データにて蛍光補正された生体粒子Pの光データの散布図である。 For example, Figure 10 is a scatter plot of optical data of a bioparticle P after fluorescence correction using the autofluorescence data of the bioparticle P identified based on the optical data of a cluster clustered with a cluster number of 1. Figure 11 is a scatter plot of optical data of a bioparticle P after fluorescence correction using the autofluorescence data of the bioparticle P identified based on the optical data of a cluster clustered with a cluster number of 2. Figure 12 is a scatter plot of optical data of a bioparticle P after fluorescence correction using the autofluorescence data of the bioparticle P identified based on the optical data of a cluster clustered with a cluster number of 3.

 例えば、情報処理部103は、まず、蛍光補正された生体粒子Pの光データを、分析実験で使用する全ての蛍光色素(図10~図12では、FITC_A、及びBV785_A)の色に対応する波長の光強度を用いて散布図にプロットする。次に、情報処理部103は、分析実験で使用する全ての蛍光色素の各色に対応する波長にて算出した生体粒子Pのプロットのばらつき度の平均を取ることで、クラスタ数ごとに生体粒子Pの光データのばらつき度を算出することができる。生体粒子Pの光データのばらつき度としては、例えば、分散又は標準偏差を例示することができる。 For example, the information processing unit 103 first plots the fluorescence-corrected optical data of the bioparticles P on a scatter plot using the light intensities of wavelengths corresponding to the colors of all the fluorescent dyes used in the analytical experiment (FITC_A and BV785_A in Figures 10 to 12). Next, the information processing unit 103 can calculate the degree of variability in the optical data of the bioparticles P for each cluster number by averaging the degrees of variability in the plots of the bioparticles P calculated at wavelengths corresponding to the colors of all the fluorescent dyes used in the analytical experiment. Examples of the degree of variability in the optical data of the bioparticles P include variance and standard deviation.

 その後、情報処理部103は、ステップS212にて決定された探索範囲の全てのクラスタ数でばらつき度を算出したか否かを判断する(S217)。探索範囲の全てのクラスタ数でばらつき度を算出していない場合(S217/NO)、ステップS213に戻って、異なるクラスタ数でクラスタリング及び自家蛍光データの特定を行う。 Then, the information processing unit 103 determines whether the degree of variation has been calculated for all cluster numbers in the search range determined in step S212 (S217). If the degree of variation has not been calculated for all cluster numbers in the search range (S217/NO), the process returns to step S213, where clustering and autofluorescence data identification are performed using a different number of clusters.

 一方、探索範囲の全てのクラスタ数でばらつき度を算出した場合(S217/YES)、情報処理部103は、算出したばらつき度が最も低いクラスタ数を実際のクラスタリングに用いるクラスタ数として採用する(S218)。例えば、図10~図12に示すデータでは、生体粒子Pの光データのばらつきが最も小さい図12に示すクラスタ数3が実際のクラスタリングに用いるクラスタ数として採用される。 On the other hand, if the degree of variation has been calculated for all cluster numbers in the search range (S217/YES), the information processing unit 103 adopts the cluster number with the lowest calculated degree of variation as the number of clusters to be used for actual clustering (S218). For example, in the data shown in Figures 10 to 12, the cluster number of 3 shown in Figure 12, which has the smallest variation in the optical data of bioparticles P, is adopted as the number of clusters to be used for actual clustering.

 上記のクラスタ数の第1の決定方法によれば、情報処理部103は、分析実験で使用する蛍光色素の各色に対応する波長における蛍光補正後の光データのばらつきが最も小さくなるクラスタ数をクラスタリングのクラスタ数として採用することができる。 According to the first method for determining the number of clusters described above, the information processing unit 103 can adopt, as the number of clusters for clustering, the number of clusters that minimizes the variance in the optical data after fluorescence correction at wavelengths corresponding to the colors of the fluorescent dyes used in the analytical experiment.

 (第2の決定方法)
 図13~図16を参照して、クラスタリング部121によるクラスタ数の第2の決定方法について説明する。クラスタ数の第2の決定方法は、クラスタリングされた各クラスタから特定したスペクトルの類似度に基づいてクラスタ数を決定する方法である。図13は、クラスタ数の第2の決定方法の流れを示すフローチャート図である。図14~図16は、互いに異なるクラスタ数にてクラスタリングした後、クラスタリングされた各クラスタから特定されたスペクトルの類似度を比較するグラフ図である。
(Second determination method)
A second method for determining the number of clusters by the clustering unit 121 will be described with reference to Figs. 13 to 16. The second method for determining the number of clusters is a method for determining the number of clusters based on the similarity of spectra identified from each clustered cluster. Fig. 13 is a flowchart showing the flow of the second method for determining the number of clusters. Figs. 14 to 16 are graphs comparing the similarity of spectra identified from each clustered cluster after clustering with different numbers of clusters.

 図13に示すように、まず、取得部110にて生体粒子Pの光データが取得される(S221)。例えば、取得部110は、蛍光色素で標識されていない生体粒子Pの光データを検出部102から取得してもよい。 As shown in FIG. 13, first, the acquisition unit 110 acquires optical data of the bioparticle P (S221). For example, the acquisition unit 110 may acquire optical data of the bioparticle P that is not labeled with a fluorescent dye from the detection unit 102.

 続いて、クラスタリング部121は、生体粒子Pの光データをクラスタリングする際のクラスタ数の探索範囲を決定する(S222)。決定されるクラスタ数の探索範囲は、例えば、1~10などであってもよい。次に、クラスタリング部121は、生体粒子Pの光データをステップS222にて決定された探索範囲のいずれかのクラスタ数にてクラスタリングする(S223)。 Next, the clustering unit 121 determines the search range for the number of clusters when clustering the optical data of the biological particles P (S222). The determined search range for the number of clusters may be, for example, 1 to 10. Next, the clustering unit 121 clusters the optical data of the biological particles P using any number of clusters within the search range determined in step S222 (S223).

 さらに、評価部122は、クラスタリング部121にてクラスタリングされた各クラスタの光データの類似度を算出する(S226)。具体的には、評価部122は、クラスタリングされた各クラスタの光データに基づいて各クラスタのスペクトルを特定し、各クラスタのスペクトルの類似度を互いに算出する。 Furthermore, the evaluation unit 122 calculates the similarity of the optical data of each cluster clustered by the clustering unit 121 (S226). Specifically, the evaluation unit 122 identifies the spectrum of each cluster based on the optical data of each cluster clustered, and calculates the similarity of the spectra of each cluster.

 例えば、図14は、クラスタ数1でクラスタリングしたクラスタの光データに基づいて特定された各クラスタのスペクトルを示す。図15は、クラスタ数2でクラスタリングしたクラスタの光データに基づいて特定された各クラスタのスペクトルを示す。図16は、クラスタ数3でクラスタリングしたクラスタの光データに基づいて特定された各クラスタのスペクトルを示す。 For example, Figure 14 shows the spectra of each cluster identified based on the optical data of clusters clustered with one cluster. Figure 15 shows the spectra of each cluster identified based on the optical data of clusters clustered with two clusters. Figure 16 shows the spectra of each cluster identified based on the optical data of clusters clustered with three clusters.

 例えば、情報処理部103は、クラスタリングされた各クラスタのスペクトルの互いの類似度を算出することで、クラスタ数ごとに類似度を算出することができる。情報処理部103は、各クラスタのスペクトルの互いの類似度の平均値をクラスタ数における類似度としてもよく、各クラスタのスペクトルの互いの類似度の最大値をクラスタ数における類似度としてもよい。各クラスタのスペクトルの類似度としては、例えば、コサイン類似度、又はSpectal Similarity Indexなどを用いることができる。 For example, the information processing unit 103 can calculate the similarity for each number of clusters by calculating the similarity between the spectra of each cluster. The information processing unit 103 may use the average value of the similarities between the spectra of each cluster as the similarity for the number of clusters, or the maximum value of the similarities between the spectra of each cluster as the similarity for the number of clusters. For example, cosine similarity or spectral similarity index can be used as the similarity between the spectra of each cluster.

 蛍光補正では、形状が類似したスペクトルが複数採用された場合、蛍光補正が正しく行われないことがあり得る。これは、形状が類似したスペクトルが複数採用された場合、蛍光補正を行うための連立方程式の一部が互いに独立にならずに複数の解を持ち得てしまうためである。また、各クラスタのスペクトルが互いに類似である場合、異なるクラスタに分けるべきではない集団を複数のクラスタに分けてしまっている可能性がある。そのため、情報処理部103は、各クラスタ同士の類似度がより低くなるクラスタ数を選択することで、より適切な蛍光補正を行うことが可能である。 When multiple spectra with similar shapes are used in fluorescence correction, the fluorescence correction may not be performed correctly. This is because when multiple spectra with similar shapes are used, some of the simultaneous equations used to perform fluorescence correction may not be independent of each other and may have multiple solutions. Furthermore, when the spectra of each cluster are similar to each other, there is a possibility that groups that should not be divided into different clusters may be divided into multiple clusters. Therefore, the information processing unit 103 can perform more appropriate fluorescence correction by selecting a number of clusters that results in a lower similarity between each cluster.

 その後、情報処理部103は、ステップS222にて決定された探索範囲の全てのクラスタ数で類似度を算出したか否かを判断する(S227)。探索範囲の全てのクラスタ数で類似度を算出していない場合(S227/NO)、ステップS223に戻って、異なるクラスタ数でクラスタリング及び類似度の算出を行う。 Then, the information processing unit 103 determines whether similarities have been calculated for all cluster counts in the search range determined in step S222 (S227). If similarities have not been calculated for all cluster counts in the search range (S227/NO), the process returns to step S223, where clustering and similarity calculation are performed for a different number of clusters.

 一方、探索範囲の全てのクラスタ数で類似度を算出した場合(S227/YES)、情報処理部103は、算出した類似度が最も低いクラスタ数を実際のクラスタリングに用いるクラスタ数として採用する(S228)。例えば、図14~図16に示すデータでは、各クラスタのスペクトルの類似度が最も低くなる図15に示すクラスタ数2が実際のクラスタリングに用いるクラスタ数として採用される。 On the other hand, if similarities have been calculated for all cluster numbers in the search range (S227/YES), the information processing unit 103 adopts the cluster number with the lowest calculated similarity as the number of clusters to be used for actual clustering (S228). For example, for the data shown in Figures 14 to 16, the number of clusters shown in Figure 15, 2, which has the lowest spectral similarity between each cluster, is adopted as the number of clusters to be used for actual clustering.

 上記のクラスタ数の第2の決定方法によれば、情報処理部103は、クラスタリングされた各クラスタが互いに独立した傾向を有するようになるクラスタ数をクラスタリングのクラスタ数として採用することができる。 According to the second method for determining the number of clusters described above, the information processing unit 103 can adopt, as the number of clusters for clustering, the number of clusters that results in each cluster tending to be independent of one another.

 (2.4.変形例)
 (第1の変形例)
 図17は、本実施形態の第1の変形例に係る情報処理部103Aの機能構成を示すブロック図である。第1の変形例に係る情報処理部103Aは、クラスタリングの前に生体粒子Pの光データを前処理する点が図4に示す情報処理部103と異なる。
(2.4. Modifications)
(First Modification)
17 is a block diagram showing the functional configuration of an information processing unit 103A according to a first modified example of this embodiment. The information processing unit 103A according to the first modified example differs from the information processing unit 103 shown in FIG. 4 in that the information processing unit 103A preprocesses the optical data of the bioparticles P before clustering.

 具体的には、図17に示すように、自家蛍光特定部120Aは、前処理部123と、クラスタリング部121と、評価部122とを含む。なお、クラスタリング部121及び評価部122の機能及び動作は、図4を参照して説明したとおりであるため、ここでの説明は省略する。 Specifically, as shown in FIG. 17, the autofluorescence identification unit 120A includes a preprocessing unit 123, a clustering unit 121, and an evaluation unit 122. Note that the functions and operations of the clustering unit 121 and the evaluation unit 122 are as described with reference to FIG. 4, and therefore will not be described here.

 前処理部123は、取得部110にて取得された生体粒子Pの光データに変換関数を作用させる前処理を行う。具体的には、前処理部123は、生体粒子Pの光データに対してスケール変換を行う変換関数を作用させる前処理を行う。スケール変換を行う変換関数は、例えば、Linear、Log、HyperLog、又はBi-exponentialなどの変換関数であり、生体粒子Pの光データの光強度データのスケールを変換することができる。 The preprocessing unit 123 performs preprocessing by applying a conversion function to the optical data of the bioparticles P acquired by the acquisition unit 110. Specifically, the preprocessing unit 123 performs preprocessing by applying a conversion function that performs scale conversion on the optical data of the bioparticles P. The conversion function that performs scale conversion is, for example, a linear, log, hyperlog, or bi-exponential conversion function, and can convert the scale of the light intensity data of the optical data of the bioparticles P.

 前処理部123による前処理で用いられる変換関数は、生体粒子Pの光データの特性に応じて適宜選択される。例えば、前処理部123による前処理で用いられる変換関数は、HyperLog、又はBi-exponentialの変換関数であってもよい。これによれば、前処理部123は、生体粒子Pの光データに対して、例えば、蛍光色素で標識された生体粒子Pと、蛍光色素で標識されていない生体粒子Pとの差異をより強調することが可能である。 The conversion function used in the preprocessing by the preprocessing unit 123 is selected appropriately depending on the characteristics of the optical data of the bioparticles P. For example, the conversion function used in the preprocessing by the preprocessing unit 123 may be a HyperLog or Bi-exponential conversion function. This allows the preprocessing unit 123 to further emphasize the differences in the optical data of the bioparticles P, for example, between bioparticles P labeled with a fluorescent dye and bioparticles P not labeled with a fluorescent dye.

 図18及び図19は、生体粒子Pの同一の光データをクラスタ数3でクラスタリングし、クラスタリングされた各クラスタのスペクトルを特定した一例を示すグラフ図である。図18は、Linearの変換関数で前処理した生体粒子Pの光データをクラスタリングしており、図19は、Bi-exponentialの変換関数で前処理した生体粒子Pの光データをクラスタリングしている。図18及び図19に示すように、Bi-exponentialの変換関数で前処理することにより、Linearの変換関数で前処理した場合と比較して、クラスタリング部121は、生体粒子Pの光データをより互いに独立したクラスタにクラスタリングすることができる。 FIGS. 18 and 19 are graphs showing an example in which identical optical data of bioparticles P is clustered with a cluster count of 3, and the spectrum of each cluster is identified. FIG. 18 shows clustering of optical data of bioparticles P preprocessed with a linear conversion function, and FIG. 19 shows clustering of optical data of bioparticles P preprocessed with a bi-exponential conversion function. As shown in FIGS. 18 and 19, by preprocessing with a bi-exponential conversion function, the clustering unit 121 can cluster the optical data of bioparticles P into clusters that are more independent of each other, compared to when preprocessing is performed with a linear conversion function.

 したがって、第1の変形例に係る情報処理部103Aは、生体粒子Pの光データに対してスケール変換の前処理を行うことで、生体粒子Pの光データをより互いに独立したクラスタにクラスタリングすることが可能である。 Therefore, the information processing unit 103A according to the first modified example performs preprocessing of scale conversion on the optical data of the biological particles P, making it possible to cluster the optical data of the biological particles P into clusters that are more independent from each other.

 (第2の変形例)
 図20は、本実施形態の第2の変形例に係る情報処理部103のクラスタリング対象の一例を示す模式図である。第2の変形例に係る情報処理部103によるクラスタリング対象は、フローサイトメータにて測定された生体粒子Pの光データに限定されず、自家蛍光を含む他の画像データ群であってもよい。
(Second Modification)
20 is a schematic diagram showing an example of a clustering target of the information processing unit 103 according to the second modified example of this embodiment. The clustering target by the information processing unit 103 according to the second modified example is not limited to the optical data of bioparticles P measured by a flow cytometer, and may be other image data groups including autofluorescence.

 具体的には、図20に示すように、情報処理部103によるクラスタリング対象は、イメージングフローサイトメータ又は蛍光顕微鏡で撮像された生体画像群Gであってもよい。生体画像群Gは、例えば、生体粒子Pの自家蛍光を含む蛍光又は散乱光を撮像した画像、又は細胞又は組織からの自家蛍光を含む蛍光を撮像した複数の画像群である。 Specifically, as shown in FIG. 20, the clustering target by the information processing unit 103 may be a group of biological images G captured by an imaging flow cytometer or a fluorescence microscope. The group of biological images G is, for example, an image capturing fluorescence or scattered light including autofluorescence of biological particles P, or a group of multiple images capturing fluorescence including autofluorescence from cells or tissues.

 情報処理部103は、生体画像群Gを説明変数として同様にクラスタリングを行うことで、生体画像群Gに含まれる生体粒子P、細胞、又は組織の自家蛍光を特定することが可能である。例えば、情報処理部103は、生体画像群Gをクラスタリングすることで各クラスタの画像G1、G2、…が得られた場合、各クラスタの画像G1、G2、…の中から生体画像群Gに含まれる生体粒子P、細胞、又は組織の自家蛍光画像を特定することが可能である。 The information processing unit 103 can identify the autofluorescence of bioparticles P, cells, or tissues contained in the bioimage group G by similarly performing clustering using the bioimage group G as an explanatory variable. For example, when the information processing unit 103 obtains images G1, G2, ... for each cluster by clustering the bioimage group G, it can identify the autofluorescence images of bioparticles P, cells, or tissues contained in the bioimage group G from the images G1, G2, ... for each cluster.

 したがって、第2の変形例に係る情報処理部103は、自家蛍光を含む蛍光画像データ群に対しても、クラスタリングによって自家蛍光画像を特定することが可能である。 Therefore, the information processing unit 103 according to the second modified example is able to identify autofluorescence images by clustering even from a group of fluorescence image data that includes autofluorescence.

 (第3の変形例)
 図21は、本実施形態の第3の変形例に係る情報処理部103に関する動作の流れを示すフローチャート図である。第3の変形例に係る情報処理部103は、特定された自家蛍光データと生体粒子Pとの関係を機械学習させた学習モデルを生成することで、自家蛍光データから生体粒子Pの種類を推定することができる。
(Third Modification)
21 is a flowchart showing the flow of operations related to the information processing unit 103 according to the third modified example of this embodiment. The information processing unit 103 according to the third modified example generates a learning model that uses machine learning to learn the relationship between the identified autofluorescence data and the bioparticles P, thereby making it possible to estimate the type of the bioparticles P from the autofluorescence data.

 図21に示すように、まず、取得部110にて生体粒子Pの光データが取得される(S301)。例えば、取得部110は、蛍光色素で標識されていない生体粒子Pの光データを検出部102から取得してもよい。 As shown in FIG. 21, first, optical data of the bioparticle P is acquired by the acquisition unit 110 (S301). For example, the acquisition unit 110 may acquire optical data of the bioparticle P that is not labeled with a fluorescent dye from the detection unit 102.

 次に、クラスタリング部121は、生体粒子Pの光データをステップS102にて決定されたクラスタ数にてクラスタリングする(S302)。例えば、クラスタリング部121は、k-means、DBSCAN、又は階層的クラスタリングなどの公知のクラスタリング手法を用いて、生体粒子Pの光データをクラスタリングしてもよい。なお、クラスタリングの際のクラスタ数は、ユーザからの入力に基づいて決定されてもよく、生体粒子Pの光データの所定のパラメータに基づいて決定されてもよく、上述した第1又は第2の決定方法で決定されてもよい。 Next, the clustering unit 121 clusters the optical data of the biological particles P using the number of clusters determined in step S102 (S302). For example, the clustering unit 121 may cluster the optical data of the biological particles P using a known clustering method such as k-means, DBSCAN, or hierarchical clustering. Note that the number of clusters used in clustering may be determined based on input from a user, may be determined based on predetermined parameters of the optical data of the biological particles P, or may be determined using the first or second determination method described above.

 続いて、評価部122は、クラスタリング部121にてクラスタリングされた各クラスタの光データに基づいて生体粒子Pの自家蛍光データを特定する(S303)。例えば、評価部122は、クラスタリングされた各クラスタの中から選択されたクラスタの光データの平均値、中央値、又は最頻値をチャネル番号ごとに抽出することで、生体粒子Pの自家蛍光データに対応するスペクトルを特定してもよい。評価部122によって特定された生体粒子Pの自家蛍光データは、例えば、記憶部130に記憶される。 Next, the evaluation unit 122 identifies the autofluorescence data of the bioparticle P based on the optical data of each cluster clustered by the clustering unit 121 (S303). For example, the evaluation unit 122 may identify the spectrum corresponding to the autofluorescence data of the bioparticle P by extracting, for each channel number, the mean, median, or mode of the optical data of a cluster selected from each of the clusters clustered. The autofluorescence data of the bioparticle P identified by the evaluation unit 122 is stored, for example, in the storage unit 130.

 その後、情報処理部103は、特定された生体粒子Pの自家蛍光データと、生体粒子Pの種類との関係を学習モデルに機械学習させる(S304)。生体粒子Pの自家蛍光データと、生体粒子Pの種類との関係は、例えば、ユーザによって設定されてもよい。多数の生体粒子Pの自家蛍光データと、生体粒子Pの種類との関係が機械学習されることで、生体粒子Pの自家蛍光データと、生体粒子Pの種類との関係を推定する学習モデルが生成される。 Then, the information processing unit 103 trains the learning model to learn the relationship between the autofluorescence data of the identified bioparticles P and the type of bioparticles P (S304). The relationship between the autofluorescence data of the bioparticles P and the type of bioparticles P may be set, for example, by the user. By machine learning the relationship between the autofluorescence data of a large number of bioparticles P and the type of bioparticles P, a learning model that estimates the relationship between the autofluorescence data of the bioparticles P and the type of bioparticles P is generated.

 これによれば、情報処理部103は、生成した学習モデルに、別途ステップS301~ステップS303の処理にて特定された自家蛍光データを入力することで、入力した自家蛍光データに対応する生体粒子Pの種類を推定することができる(S305)。 As a result, the information processing unit 103 can input the autofluorescence data identified separately in the processing of steps S301 to S303 into the generated learning model, thereby estimating the type of bioparticle P corresponding to the input autofluorescence data (S305).

 したがって、第3の変形例に係る情報処理部103は、特定された自家蛍光と、生体粒子Pとの関係を機械学習させた学習モデルを生成することで、他の自家蛍光データから生体粒子Pの種類を推定することができる。 Therefore, the information processing unit 103 according to the third modified example generates a learning model that uses machine learning to identify the relationship between the identified autofluorescence and the bioparticle P, thereby making it possible to estimate the type of bioparticle P from other autofluorescence data.

 <3.ハードウェア構成>
 さらに、図22を参照して、本実施形態に係る情報処理部103を実現するハードウェア構成について説明する。図22は、本実施形態に係る情報処理部103を実現する情報処理装置900のハードウェア構成例を示すブロック図である。
<3. Hardware Configuration>
Furthermore, a hardware configuration for realizing the information processing unit 103 according to this embodiment will be described with reference to Fig. 22. Fig. 22 is a block diagram showing an example of the hardware configuration of an information processing device 900 that realizes the information processing unit 103 according to this embodiment.

 本実施形態に係る情報処理部103の機能は、ソフトウェアと、以下で説明するハードウェアとの協働によって実現され得る。自家蛍光特定部120の機能は、例えば、CPU901により実行されてもよい。取得部110の機能は、例えば、接続ポート910、又は通信装置911により実行されてもよい。記憶部130の機能は、例えば、ストレージ装置908により実行されてもよい。出力部140の機能は、例えば、出力装置907、ドライブ909、接続ポート910、又は通信装置911により実行されてもよい。 The functions of the information processing unit 103 according to this embodiment may be realized by a combination of software and the hardware described below. The functions of the autofluorescence identification unit 120 may be performed by, for example, the CPU 901. The functions of the acquisition unit 110 may be performed by, for example, the connection port 910 or the communication device 911. The functions of the memory unit 130 may be performed by, for example, the storage device 908. The functions of the output unit 140 may be performed by, for example, the output device 907, the drive 909, the connection port 910, or the communication device 911.

 図22に示すように、情報処理装置900は、CPU(Central Processing Unit)901、ROM(Read Only Memory)902、及びRAM(Random Access Memory)903を含む。 As shown in FIG. 22, the information processing device 900 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, and a RAM (Random Access Memory) 903.

 また、情報処理装置900は、ホストバス904a、ブリッジ904、外部バス904b、インタフェース905、入力装置906、出力装置907、ストレージ装置908、ドライブ909、接続ポート910、又は通信装置911をさらに含んでもよい。情報処理装置900は、CPU901に替えて、又はCPU901と共に、DSP(Digital Signal Processor)、又はASIC(Application Specific Integrated Circuit)などの処理回路を有してもよい。 The information processing device 900 may further include a host bus 904a, a bridge 904, an external bus 904b, an interface 905, an input device 906, an output device 907, a storage device 908, a drive 909, a connection port 910, or a communication device 911. The information processing device 900 may have a processing circuit such as a DSP (Digital Signal Processor) or an ASIC (Application Specific Integrated Circuit) instead of or in addition to the CPU 901.

 CPU901は、演算処理装置、又は制御装置として機能し、ROM902、RAM903、ストレージ装置908、又はドライブ909に装着されたリムーバブル記録媒体に記録された各種プログラムに従って、情報処理装置900内の動作を制御する。ROM902は、CPU901が使用するプログラム、及び演算パラメータなどを記憶する。RAM903は、CPU901の実行において使用するプログラム、及びその実行の際に使用するパラメータなどを一時的に記憶する。 The CPU 901 functions as an arithmetic processing device or control device, and controls operations within the information processing device 900 in accordance with various programs recorded in the ROM 902, RAM 903, storage device 908, or a removable recording medium attached to the drive 909. The ROM 902 stores programs used by the CPU 901, as well as calculation parameters, etc. The RAM 903 temporarily stores programs used in the execution of the CPU 901, as well as parameters used during that execution, etc.

 CPU901、ROM902、及びRAM903は、高速なデータ伝送が可能なホストバス904aにより相互に接続される。ホストバス904aは、ブリッジ904を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス904bに接続され、外部バス904bは、インタフェース905を介して種々の構成要素と接続される。 The CPU 901, ROM 902, and RAM 903 are interconnected by a host bus 904a, which is capable of high-speed data transmission. The host bus 904a is connected to an external bus 904b, such as a PCI (Peripheral Component Interconnect/Interface) bus, via a bridge 904, and the external bus 904b is connected to various components via an interface 905.

 入力装置906は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、又はレバーなどのユーザからの入力を受け付ける装置である。なお、入力装置906は、ユーザの音声を検出するマイクロフォンなどであってもよい。入力装置906は、例えば、赤外線、又はその他の電波を利用したリモートコントロール装置であってもよく、情報処理装置900の操作に対応した外部接続機器であってもよい。 The input device 906 is a device that accepts input from the user, such as a mouse, keyboard, touch panel, button, switch, or lever. The input device 906 may also be a microphone that detects the user's voice. The input device 906 may also be, for example, a remote control device that uses infrared or other radio waves, or an externally connected device that supports operation of the information processing device 900.

 入力装置906は、ユーザが入力した情報に基づいて生成した入力信号をCPU901に出力する入力制御回路をさらに含む。ユーザは、入力装置906を操作することによって、情報処理装置900に対して各種データの入力、又は処理動作の指示を行うことができる。 The input device 906 further includes an input control circuit that outputs an input signal generated based on information input by the user to the CPU 901. By operating the input device 906, the user can input various data or instruct the information processing device 900 to perform processing operations.

 出力装置907は、情報処理装置900にて取得又は生成された情報をユーザに対して視覚的、又は聴覚的に提示することが可能な装置である。出力装置907は、例えば、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、OLED(Organic Light Emitting Diode)ディスプレイ、ホログラム、又はプロジェクタなどの表示装置であってもよく、スピーカ又はヘッドホンなどの音出力装置であってもよく、プリンタ装置などの印刷装置であってもよい。出力装置907は、情報処理装置900の処理により得られた情報をテキスト若しくは画像などの映像、又は音声若しくは音響などの音として出力することができる。 The output device 907 is a device capable of visually or audibly presenting information acquired or generated by the information processing device 900 to the user. The output device 907 may be, for example, a display device such as an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an OLED (Organic Light Emitting Diode) display, a hologram, or a projector, or may be an audio output device such as a speaker or headphones, or a printing device such as a printer. The output device 907 can output information acquired by processing by the information processing device 900 as video such as text or images, or sound such as voice or audio.

 ストレージ装置908は、情報処理装置900の記憶部の一例として構成されたデータ格納装置である。ストレージ装置908は、例えば、HDD(Hard Disk Drive)などの磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイスなどにより構成されてもよい。ストレージ装置908は、CPU901が実行するプログラム、各種データ、又は外部から取得した各種データなどを格納することができる。 The storage device 908 is a data storage device configured as an example of a storage unit of the information processing device 900. The storage device 908 may be configured, for example, by a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device. The storage device 908 can store programs executed by the CPU 901, various data, or various data obtained from the outside.

 ドライブ909は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体の読み取り又は書き込み装置であり、情報処理装置900に内蔵、又は外付けされる。例えば、ドライブ909は、装着されているリムーバブル記録媒体に記録されている情報を読み出してRAM903に出力することができる。また、ドライブ909は、装着されているリムーバブル記録媒体に記録を書き込むことができる。 The drive 909 is a device for reading or writing removable recording media such as magnetic disks, optical disks, magneto-optical disks, or semiconductor memories, and is either built into the information processing device 900 or attached externally. For example, the drive 909 can read information recorded on an attached removable recording media and output it to RAM 903. The drive 909 can also write information to an attached removable recording media.

 接続ポート910は、外部接続機器を情報処理装置900に直接接続するためのポートである。接続ポート910は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、又はSCSI(Small Computer System Interface)ポートなどであってもよい。また、接続ポート910は、RS-232Cポート、光オーディオ端子、又はHDMI(登録商標)(High-Definition Multimedia Interface)ポートなどであってもよい。接続ポート910は、外部接続機器と接続されることで、情報処理装置900と外部接続機器との間で各種データの送受信を行うことができる。 The connection port 910 is a port for directly connecting an external device to the information processing device 900. The connection port 910 may be, for example, a USB (Universal Serial Bus) port, an IEEE 1394 port, or a SCSI (Small Computer System Interface) port. The connection port 910 may also be an RS-232C port, an optical audio terminal, or an HDMI (registered trademark) (High-Definition Multimedia Interface) port. By connecting the connection port 910 to an external device, various types of data can be sent and received between the information processing device 900 and the external device.

 通信装置911は、例えば、通信ネットワーク920に接続するための通信デバイスなどで構成された通信インタフェースである。通信装置911は、例えば、有線若しくは無線LAN(Local Area Network)、Wi-Fi(登録商標)、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カードなどであってもよい。また、通信装置911は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は各種通信用のモデムなどであってもよい。 The communication device 911 is, for example, a communication interface configured with a communication device for connecting to the communication network 920. The communication device 911 may be, for example, a communication card for a wired or wireless LAN (Local Area Network), Wi-Fi (registered trademark), Bluetooth (registered trademark), or WUSB (Wireless USB). The communication device 911 may also be a router for optical communications, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various types of communications.

 通信装置911は、例えば、インターネット、又は他の通信機器との間で、TCP/IPなどの所定のプロトコルを用いて信号などを送受信することができる。また、通信装置911に接続される通信ネットワーク920は、有線又は無線によって接続されたネットワークであり、例えば、インターネット通信網、家庭内LAN、赤外線通信網、ラジオ波通信網、又は衛星通信網などであってもよい。 The communication device 911 can send and receive signals, for example, via the Internet or with other communication devices, using a predetermined protocol such as TCP/IP. The communication network 920 connected to the communication device 911 is a wired or wireless network, and may be, for example, an Internet communication network, a home LAN, an infrared communication network, a radio wave communication network, or a satellite communication network.

 なお、コンピュータに内蔵されるCPU901、ROM902、及びRAM903などのハードウェアに上記の情報処理装置900と同等の機能を発揮させるためのプログラムも作成可能である。また、該プログラムを記録したコンピュータに読み取り可能な記録媒体も提供可能である。 It is also possible to create a program that causes hardware such as the CPU 901, ROM 902, and RAM 903 built into a computer to perform functions equivalent to those of the information processing device 900 described above. It is also possible to provide a computer-readable recording medium on which the program is recorded.

 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The above describes in detail preferred embodiments of the present disclosure with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is clear that a person with ordinary skill in the technical field of the present disclosure would be able to conceive of various modified or revised examples within the scope of the technical ideas set forth in the claims, and it is understood that these also naturally fall within the technical scope of the present disclosure.

 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Furthermore, the effects described in this specification are merely descriptive or exemplary and are not limiting. In other words, the technology disclosed herein may achieve other effects in addition to or in place of the above-mentioned effects that would be apparent to those skilled in the art from the description herein.

 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 複数の生体粒子に対して光を照射することによって光データを取得することと、
 前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定することと、
 前記自家蛍光データを出力することと、
を含む、情報処理方法。
(2)
 前記光データは、蛍光色素で標識されていない前記複数の生体粒子から取得された無標識データである、前記(1)に記載の情報処理方法。
(3)
 少なくとも1つ以上の前記蛍光色素で標識された前記複数の生体粒子から取得された標識済データから、前記自家蛍光データを用いて少なくとも1つ以上の前記蛍光色素の色に対応する蛍光データを取得する蛍光補正を行うことをさらに含む、前記(2)に記載の情報処理方法。
(4)
 前記蛍光補正には、前記自家蛍光データの代表値が用いられる、前記(3)に記載の情報処理方法。
(5)
 前記クラスタリングの際のクラスタ数を決定することをさらに含み、
 前記クラスタ数は、前記無標識データに前記蛍光補正を行った場合の前記蛍光色素の色に対応する蛍光データのばらつき度に基づいて決定される、前記(3)又は(4)に記載の情報処理方法。
(6)
 所定範囲内の前記クラスタ数の各々について前記ばらつき度が算出され、算出された前記ばらつき度が最も低いクラスタ数が採用される、前記(5)に記載の情報処理方法。
(7)
 前記クラスタリングの際のクラスタ数を決定することをさらに含み、
 前記クラスタ数は、前記無標識データをクラスタリングした各クラスタの光データ同士の類似度に基づいて決定される、前記(2)~(4)のいずれか一項に記載の情報処理方法。
(8)
 所定範囲内の前記クラスタ数の各々について前記類似度が算出され、算出された前記類似度が最も低いクラスタ数が採用される、前記(7)に記載の情報処理方法。
(9)
 前記無標識データをクラスタリングした各クラスタの光データのうち1つ又は複数が前記自家蛍光データとして特定される、前記(2)~(8)のいずれか一項に記載の情報処理方法。
(10)
 前記クラスタリングの前に、取得された前記無標識データにスケール変換を行う変換関数を作用させることをさらに含む、前記(2)~(9)のいずれか一項に記載の情報処理方法。
(11)
 前記自家蛍光データと、前記自家蛍光データに対応する前記生体粒子の種類との組み合わせを用いて、機械学習モデルを生成することをさらに含む、前記(1)~(10)のいずれか一項に記載の情報処理方法。
(12)
 複数の生体粒子に対して光を照射することによって光データを取得する取得部と、
 前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定する自家蛍光特定部と、
 前記自家蛍光データを出力する出力部と、
を備える、情報処理装置。
(13)
 複数の生体粒子に対して光を照射することによって光データを取得する検出装置と、
 前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定する自家蛍光特定部と、前記自家蛍光データを出力する出力部と、を備える情報処理装置と、
を含む、情報処理システム。
The following configurations also fall within the technical scope of the present disclosure.
(1)
acquiring optical data by irradiating a plurality of biological particles with light;
identifying autofluorescence data of the plurality of biological particles by clustering the optical data;
outputting the autofluorescence data;
An information processing method, including:
(2)
The information processing method according to (1), wherein the optical data is unlabeled data acquired from the plurality of biological particles that are not labeled with a fluorescent dye.
(3)
The information processing method described in (2) further includes performing fluorescence correction to obtain fluorescence data corresponding to the colors of at least one or more of the fluorescent dyes using the autofluorescence data from labeled data obtained from the plurality of biological particles labeled with at least one or more of the fluorescent dyes.
(4)
The information processing method according to (3), wherein a representative value of the autofluorescence data is used for the fluorescence correction.
(5)
The method further includes determining the number of clusters in the clustering;
The information processing method according to (3) or (4), wherein the number of clusters is determined based on the degree of variability of fluorescence data corresponding to the color of the fluorescent dye when the fluorescence correction is performed on the label-free data.
(6)
The information processing method according to (5), wherein the degree of variation is calculated for each of the numbers of clusters within a predetermined range, and the number of clusters with the calculated degree of variation being the lowest is adopted.
(7)
The method further includes determining the number of clusters in the clustering;
The information processing method according to any one of (2) to (4), wherein the number of clusters is determined based on the similarity between optical data of each cluster obtained by clustering the label-free data.
(8)
The information processing method according to (7), wherein the similarity is calculated for each of the cluster numbers within a predetermined range, and the cluster number with the lowest calculated similarity is adopted.
(9)
The information processing method according to any one of (2) to (8), wherein one or more of the optical data of each cluster obtained by clustering the label-free data are identified as the autofluorescence data.
(10)
The information processing method according to any one of (2) to (9), further comprising applying a transformation function that performs a scale transformation to the acquired unlabeled data before the clustering.
(11)
The information processing method according to any one of (1) to (10), further comprising generating a machine learning model using a combination of the autofluorescence data and the type of the bioparticle corresponding to the autofluorescence data.
(12)
an acquisition unit that acquires light data by irradiating light onto a plurality of bioparticles;
an autofluorescence identification unit that identifies autofluorescence data of the plurality of bioparticles by clustering the optical data;
an output unit that outputs the autofluorescence data;
An information processing device comprising:
(13)
a detection device that acquires optical data by irradiating light onto a plurality of biological particles;
an information processing device including: an autofluorescence identification unit that identifies autofluorescence data of the plurality of bioparticles by clustering the optical data; and an output unit that outputs the autofluorescence data;
An information processing system comprising:

 100  生体試料分析装置
 101  光照射部
 102  検出部
 103,103A  情報処理部
 104  分取部
 110  取得部
 120,120A  自家蛍光特定部
 121  クラスタリング部
 122  評価部
 123  前処理部
 130  記憶部
 140  出力部
 10   分析システム
 200,300  サーバ
 C  流路
 P  生体粒子
 S  生体試料
REFERENCE SIGNS LIST 100 Biological sample analyzer 101 Light irradiation unit 102 Detection unit 103, 103A Information processing unit 104 Sorting unit 110 Acquisition unit 120, 120A Autofluorescence identification unit 121 Clustering unit 122 Evaluation unit 123 Preprocessing unit 130 Storage unit 140 Output unit 10 Analysis system 200, 300 Server C Flow path P Biological particle S Biological sample

Claims (13)

 複数の生体粒子に対して光を照射することによって光データを取得することと、
 前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定することと、
 前記自家蛍光データを出力することと、
を含む、情報処理方法。
acquiring optical data by irradiating a plurality of biological particles with light;
identifying autofluorescence data of the plurality of biological particles by clustering the optical data;
outputting the autofluorescence data;
An information processing method, including:
 前記光データは、蛍光色素で標識されていない前記複数の生体粒子から取得された無標識データである、請求項1に記載の情報処理方法。 The information processing method described in claim 1, wherein the optical data is unlabeled data acquired from the plurality of biological particles that are not labeled with a fluorescent dye.  少なくとも1つ以上の前記蛍光色素で標識された前記複数の生体粒子から取得された標識済データから、前記自家蛍光データを用いて少なくとも1つ以上の前記蛍光色素の色に対応する蛍光データを取得する蛍光補正を行うことをさらに含む、請求項2に記載の情報処理方法。 The information processing method of claim 2, further comprising performing fluorescence correction to obtain fluorescence data corresponding to the colors of at least one of the fluorescent dyes using the autofluorescence data from labeled data obtained from the plurality of biological particles labeled with at least one of the fluorescent dyes.  前記蛍光補正には、前記自家蛍光データの代表値が用いられる、請求項3に記載の情報処理方法。 The information processing method described in claim 3, wherein a representative value of the autofluorescence data is used for the fluorescence correction.  前記クラスタリングの際のクラスタ数を決定することをさらに含み、
 前記クラスタ数は、前記無標識データに前記蛍光補正を行った場合の前記蛍光色素の色に対応する蛍光データのばらつき度に基づいて決定される、請求項3に記載の情報処理方法。
The method further includes determining the number of clusters in the clustering;
The information processing method according to claim 3 , wherein the number of clusters is determined based on a degree of variability in fluorescence data corresponding to the color of the fluorescent dye when the label-free data is subjected to the fluorescence correction.
 所定範囲内の前記クラスタ数の各々について前記ばらつき度が算出され、算出された前記ばらつき度が最も低いクラスタ数が採用される、請求項5に記載の情報処理方法。 The information processing method of claim 5, wherein the degree of variation is calculated for each of the cluster numbers within a predetermined range, and the cluster number with the lowest calculated degree of variation is adopted.  前記クラスタリングの際のクラスタ数を決定することをさらに含み、
 前記クラスタ数は、前記無標識データをクラスタリングした各クラスタの光データ同士の類似度に基づいて決定される、請求項2に記載の情報処理方法。
The method further includes determining the number of clusters in the clustering;
The information processing method according to claim 2 , wherein the number of clusters is determined based on a similarity between optical data of each cluster obtained by clustering the label-free data.
 所定範囲内の前記クラスタ数の各々について前記類似度が算出され、算出された前記類似度が最も低いクラスタ数が採用される、請求項7に記載の情報処理方法。 The information processing method of claim 7, wherein the similarity is calculated for each of the cluster numbers within a predetermined range, and the cluster number with the lowest calculated similarity is adopted.  前記無標識データをクラスタリングした各クラスタの光データのうち1つ又は複数が前記自家蛍光データとして特定される、請求項2に記載の情報処理方法。 The information processing method described in claim 2, wherein one or more of the optical data in each cluster obtained by clustering the label-free data are identified as the autofluorescence data.  前記クラスタリングの前に、取得された前記無標識データにスケール変換を行う変換関数を作用させることをさらに含む、請求項2に記載の情報処理方法。 The information processing method of claim 2, further comprising applying a transformation function that performs a scale transformation to the acquired unlabeled data prior to the clustering.  前記自家蛍光データと、前記自家蛍光データに対応する前記生体粒子の種類との組み合わせを用いて、機械学習モデルを生成することをさらに含む、請求項1に記載の情報処理方法。 The information processing method of claim 1, further comprising generating a machine learning model using a combination of the autofluorescence data and the type of bioparticle corresponding to the autofluorescence data.  複数の生体粒子に対して光を照射することによって光データを取得する取得部と、
 前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定する自家蛍光特定部と、
 前記自家蛍光データを出力する出力部と、
を備える、情報処理装置。
an acquisition unit that acquires light data by irradiating light onto a plurality of bioparticles;
an autofluorescence identification unit that identifies autofluorescence data of the plurality of bioparticles by clustering the optical data;
an output unit that outputs the autofluorescence data;
An information processing device comprising:
 複数の生体粒子に対して光を照射することによって光データを取得する検出装置と、
 前記光データをクラスタリングすることによって前記複数の生体粒子の自家蛍光データを特定する自家蛍光特定部と、前記自家蛍光データを出力する出力部と、を備える情報処理装置と、
を含む、情報処理システム。
a detection device that acquires optical data by irradiating light onto a plurality of biological particles;
an information processing device including: an autofluorescence identification unit that identifies autofluorescence data of the plurality of bioparticles by clustering the optical data; and an output unit that outputs the autofluorescence data;
An information processing system comprising:
PCT/JP2025/016689 2024-06-24 2025-05-07 Information processing method, information processing device, and information processing system Pending WO2026004349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2024101313 2024-06-24
JP2024-101313 2024-06-24

Publications (1)

Publication Number Publication Date
WO2026004349A1 true WO2026004349A1 (en) 2026-01-02

Family

ID=98221370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2025/016689 Pending WO2026004349A1 (en) 2024-06-24 2025-05-07 Information processing method, information processing device, and information processing system

Country Status (1)

Country Link
WO (1) WO2026004349A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246140A (en) * 2012-05-29 2013-12-09 Sony Corp Information processing apparatus, information processing method and program
WO2017191699A1 (en) * 2016-05-06 2017-11-09 ソニー株式会社 Information processing device, information processing method, program, and information processing system
JP2021036224A (en) * 2019-08-23 2021-03-04 ソニー株式会社 Information processing equipment, information processing methods, programs and information processing systems
WO2022004500A1 (en) * 2020-06-30 2022-01-06 ソニーグループ株式会社 Information processing device, information processing method, program, microscope system, and analysis system
JP2022510791A (en) * 2018-12-20 2022-01-28 ソニーグループ株式会社 Information processing equipment, information processing methods and programs
JP2023021090A (en) * 2021-07-30 2023-02-09 キヤノン株式会社 Method and analyzer for classifying cells by using image of cell self-fluorescence

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246140A (en) * 2012-05-29 2013-12-09 Sony Corp Information processing apparatus, information processing method and program
WO2017191699A1 (en) * 2016-05-06 2017-11-09 ソニー株式会社 Information processing device, information processing method, program, and information processing system
JP2022510791A (en) * 2018-12-20 2022-01-28 ソニーグループ株式会社 Information processing equipment, information processing methods and programs
JP2021036224A (en) * 2019-08-23 2021-03-04 ソニー株式会社 Information processing equipment, information processing methods, programs and information processing systems
WO2022004500A1 (en) * 2020-06-30 2022-01-06 ソニーグループ株式会社 Information processing device, information processing method, program, microscope system, and analysis system
JP2023021090A (en) * 2021-07-30 2023-02-09 キヤノン株式会社 Method and analyzer for classifying cells by using image of cell self-fluorescence

Similar Documents

Publication Publication Date Title
US11262286B2 (en) Label-free bio-aerosol sensing using mobile microscopy and deep learning
US12008825B2 (en) Classification workflow for flexible image based particle sorting
JP7540567B2 (en) Fractionation system and fractionation method
US11841314B2 (en) Method and system for characterizing particles using an angular detection in a flow cytometer
US20240288354A1 (en) Particle analysis system, information processing apparatus, and sorting apparatus
JP2018509610A (en) Photodetection system and method of using the same
JP7700220B2 (en) A Framework for Image-Based Unsupervised Cell Clustering and Sorting
WO2018049064A1 (en) Automated body fluid analysis
JP5841315B2 (en) Fine particle analyzer
WO2026004349A1 (en) Information processing method, information processing device, and information processing system
JP5975074B2 (en) Data display method, program, data analysis apparatus, and fine particle analysis system
CN114152557B (en) Blood cell counting method and system based on image analysis
JP6172356B2 (en) Display method and fine particle analyzer
WO2026009599A1 (en) Information processing method, information processing device, information processing system, and program
US12423810B2 (en) Image-based unsupervised multi-model cell clustering
JP7564408B1 (en) Pigment data acquisition method, pigment data acquisition device, and pigment data acquisition program
JP7596534B2 (en) Efficient, robust and fast neural networks for cell image classification
JP7028287B2 (en) Fine particle analysis system and fine particle analysis method
JP2025537381A (en) Image-based unsupervised multi-model cell clustering
WO2023171463A1 (en) Information processing device and information processing system
JP6489167B2 (en) Data display method and fine particle analyzer
WO2024111263A1 (en) Biological sample analysis device, biological sample analysis system, and method for verifying status of biological sample analysis device
WO2025258373A1 (en) Information processing method, information processing device, and information processing system
US20220146403A1 (en) Microparticle measurement device, microparticle sorting device, microparticle measurement system, and microparticle sorting system
HK40076939A (en) Classification workflow for flexible image based particle sorting