WO2025089029A1 - Determination method, determination device, determination system, determination program, and recording medium - Google Patents
Determination method, determination device, determination system, determination program, and recording medium Download PDFInfo
- Publication number
- WO2025089029A1 WO2025089029A1 PCT/JP2024/035849 JP2024035849W WO2025089029A1 WO 2025089029 A1 WO2025089029 A1 WO 2025089029A1 JP 2024035849 W JP2024035849 W JP 2024035849W WO 2025089029 A1 WO2025089029 A1 WO 2025089029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amount
- determination
- addition
- data
- small rnas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
Definitions
- This disclosure relates to a determination method, a determination device, a determination system, a determination program, and a recording medium.
- Japanese Patent No. 7021097 discloses a disease prevalence assessment device that includes a sample data acquisition unit and a prevalence assessment unit.
- the sample data acquisition unit acquires sample data including the expression levels of multiple types of miRNA in a sample derived from a living body.
- the prevalence assessment unit uses a trained model to output prevalence assessment results for the multiple diseases in the multiple body parts for the acquired sample data.
- the trained model is a trained model that can assess the prevalence of each of the multiple diseases, including multiple malignant diseases or multiple benign diseases, including cases where the patient is suffering from multiple diseases, obtained in advance by machine learning using training data including multiple sample data having items for identifying the presence or absence of multiple diseases in multiple body parts.
- WO 2021/132547 discloses a testing method for testing for a disease using a disease marker, the testing method including a specimen data acquisition step and a discrimination step.
- the specimen data acquisition step acquires marker data indicating the results of measuring a disease marker in a body fluid sample collected from a subject, and preparation data indicating the preparation conditions of the body fluid sample.
- the discrimination step determines the presence or absence of a disease in the subject by inputting the marker data and preparation data acquired in the specimen data acquisition step into a trained model that has been machine-learned to learn the correlation between a set of marker data indicating the results of measuring a disease marker in a body fluid sample and preparation data indicating the preparation conditions of the body fluid sample, and the presence or absence of a disease in the subject from which the body fluid sample was collected.
- Non-Patent Document 1 discloses that, using 20 types of fluorescently labeled synthetic miRNAs, the reaction efficiency of each miRNA in a 3' ligation enzymatic reaction in which a nucleic acid sequence is added to the 3' end of the miRNA was investigated under multiple conditions in which the type of ligation enzyme, the amount of PEG reagent added, the reaction time, etc. were varied, and the results showed that the efficiency of the miRNA ligation reaction may vary depending on the PEG concentration.
- Non-patent document 1 Song Y, Liu KJ, Wang TH. Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One. 2014 Apr 10
- PEG reagents have a relatively high viscosity, and there is a tendency for the differences in technique between people who add the PEG reagent to be large. For this reason, there is a tendency for the amount of PEG reagent added to vary.
- the present disclosure aims to provide a determination method, determination device, determination system, determination program, and recording medium that can determine with high accuracy the amount of PEG reagent added when ligating an adapter and a PEG reagent to the 5' or 3' end of multiple small RNAs.
- the determination method is a method for determining the amount of PEG reagent added used when performing ligation on multiple small RNAs in a biological sample collected from a subject, using small RNA data showing the results of measuring the expression levels of the multiple small RNAs, and includes an addition amount determination step for determining the amount added from the small RNA data using a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added used when performing ligation on the multiple small RNAs in the biological sample.
- FIG. 2 is a flow chart showing each step of a determination method according to the present embodiment.
- FIG. 2 is a schematic block diagram of an example of a computer that functions as a determination device according to the present embodiment.
- 1 is a block diagram showing a functional configuration of a determination device according to an embodiment of the present invention;
- 13 is a table showing the judgment results in additive amount learned models 1 to 4 of the present embodiment.
- FIG. 2 is a conceptual diagram illustrating a continuous value regression model according to the present embodiment.
- 11 is a graph showing the determination results in the continuous value regression model of the present embodiment.
- Fig. 1 is a schematic diagram showing each step of the determination method 10 according to the present embodiment.
- Determination method 10 is a method for determining the amount of PEG reagent added (hereinafter, sometimes referred to as the amount of PEG added) used when performing ligation on multiple small RNAs in a biological sample collected from a subject, using small RNA data that shows the results of measuring the expression levels of the multiple small RNAs.
- biological samples collected from subjects include body fluids such as blood, serum, urine, tears, saliva, sweat, semen, lymph, tissue fluid, body cavity fluid (e.g., pleural fluid, ascites, etc.), cerebrospinal fluid, amniotic fluid, vaginal fluid, and nasal mucus.
- the biological sample may be any sample that can be collected from a living body and from which the expression levels of multiple small RNAs can be measured.
- subject refers to the subject from which the biological sample is collected.
- the subject from which the biological sample is collected may be either a human or a non-human animal. Examples of non-human animals include non-human mammals (monkeys, dogs, cats, mice, rats, rabbits, cows, horses, pigs, and sheep), and birds (chickens, quails, etc.).
- microRNA An example of a small RNA is microRNA.
- the small RNA may be a small RNA other than microRNA (e.g., piRNA and tsRNA). Ligation and PEG reagents will be described later.
- the determination method 10 includes a collection step 11, a ligation step 13, a measurement step 12, an addition amount determination step 14, and a disease determination step 16.
- the collection step 11, the ligation step 13, the measurement step 12, the addition amount determination step 14, and the disease determination step 16 are performed in this order, for example.
- the determination method 10 is a method having a sampling step 11, a measurement step 12, and a disease determination step 16, it can also be called a sampling method, a measurement method, and a disease determination method. Furthermore, if analysis, testing, etc. is performed based on the determination in the disease determination step 16, it can also be called an analysis method, a testing method, etc. Each step of the determination method 10 will be explained below.
- the collecting step 11 is a step of collecting a biological sample from a subject.
- the collecting step 11 is performed before the measurement step 12.
- a collection process is performed as follows.
- blood is collected using a vacuum blood collection tube containing a serum separating agent (blood collection process).
- blood is mixed by inversion.
- the blood is then allowed to coagulate at room temperature for at least 30 minutes.
- the mixture is centrifuged and the serum is separated (centrifugation treatment).
- the serum is separated and stored at ⁇ 80° C. (storage treatment).
- the process from collection of a biological sample from a subject to completion of the centrifugation operation (specifically, the process from the blood collection process to the preservation process described above) is performed within a predetermined time (e.g., 2 hours).
- the centrifugation operation is, for example, the process from the centrifugation process to the preservation process described above.
- Ligation is an enzymatic reaction in which a base sequence called an adapter is bound to the 5' or 3' end of a nucleic acid such as DNA or RNA including a small RNA.
- the ligation step 13 is a step in which a base sequence called an adapter is bound to the 5' or 3' end of a small RNA.
- a PEG reagent is used when performing the ligation.
- the ligation step 13 is performed, for example, in the preparation of a library for NGS.
- the PEG reagent is a reagent that contains PEG (PolyEthylene Glycol). Any PEG reagent that contains at least PEG can be used, and it is possible to use one that contains other components.
- PEG is composed of a polymer of the monomer Ethylene Glycol, and there are several types of PEG due to differences in the degree of polymerization and average molecular weight (for example, PEG 200, PEG 300, PEG 400, PEG 600, PEG 1000, PEG 2000, PEG 4000, PEG 6000, PEG 8000, PEG 10000, PEG 20000, PEG 500000, PEG 2000000, PEG 4000000, etc.).
- PEG functions as a catalyst to promote the enzymatic reaction in ligation, and reduces the bias in reactivity of each small RNA.
- a reagent containing the following components can be used. Nuclease-free water T4 RNA Ligase Reaction Buffer(NEB/M0242) 100% DMSO (13445-74/Nacalai Tesque) 50% PEG (NEB/B1004) Total RNA
- the measurement step 12 is a step of measuring the expression levels of multiple small RNAs in the subject's biological sample.
- a next-generation sequencer (NGS) is used as a measurement device to measure multiple small RNAs contained in the subject's biological sample (for example, in serum) and identify the base sequence of each small RNA.
- NGS next-generation sequencer
- the number of identified small RNAs is counted for each base sequence to obtain the number of reads of the small RNA in the NGS. This number of reads of the small RNA corresponds to the expression level (specifically, the absolute expression level) of the small RNA.
- this number of reads of the small RNA means small RNA data showing the result of measuring the expression levels of multiple small RNAs in the subject's biological sample.
- the expression levels of multiple small RNAs for example, microRNAs
- a biological sample for example, serum
- the expression levels of small RNAs may be expressed as relative values by processing the data from the NGS measurement results, and such relative values also refer to small RNA data.
- the number of reads of small RNA output by NGS may be normalized to obtain a relative expression level (i.e., relative expression level).
- a relative expression level i.e., relative expression level
- RPM Read Per Million
- the small RNA data may indicate a normalized relative expression level.
- the small RNA data may be an absolute value quantified as an absolute value.
- NGS makes it possible to simultaneously measure the expression levels of multiple small RNAs in multiple biological samples (e.g., serum samples collected from multiple subjects). That is, in measurement step 12, the expression levels of multiple small RNAs are measured for multiple biological samples in the same process.
- next-generation sequencers other measuring devices such as DNA chips, quantitative PCR, and flow cytometers can also be used as long as the expression levels of multiple small RNAs can be measured.
- various methods including publicly known methods, can be used to measure the expression levels of multiple small RNAs.
- the amount of PEG reagent added is determined using small RNA data indicating the results of measuring the expression levels of the plurality of small RNAs in the amount determination step 14.
- the determination of the amount of PEG reagent added includes a concept of determining whether the amount is appropriate and a concept of determining the amount itself.
- the small RNA data obtained in the measurement step 12 is input into the addition amount trained model to determine whether the amount of PEG reagent to be added is appropriate.
- the criterion for determining whether the amount of PEG reagent to be added is appropriate is set, for example, based on whether a correct judgment can be made in the disease assessment process 16. If a correct judgment can be made in the disease assessment process 16 even if the amount of PEG reagent added is low, the criterion becomes one that allows a low amount to be added.
- the allowable amount of addition varies depending on the disease to be judged in the disease judgment process 16, and the judgment criteria in the addition amount judgment process 14 also vary correspondingly. Furthermore, the judgment process is not limited to disease judgment, and various judgments can be applied, and the allowable amount of addition varies depending on the disease to be judged, and the judgment criteria in the addition amount judgment process 14 also vary correspondingly.
- the added amount trained model used in the added amount determination step 14 is generated, for example, as follows: That is, the added amount trained model is generated by machine learning the correlation between measurement data indicating the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects, and added amount data indicating the added amount of PEG reagent used when performing ligation on the multiple small RNAs in the biological samples collected from the multiple subjects.
- the measurement data is the result of measuring multiple small RNAs in biological samples collected from multiple subjects.
- the multiple subjects may include subjects with a disease and subjects without a disease (i.e., healthy subjects), or may include only subjects with a disease and subjects without a disease (i.e., healthy subjects).
- the measurement data is obtained by the same measurement method as the small RNA data described above.
- a next-generation sequencer (NGS) is used as a measurement device to measure multiple small RNAs contained in a biological sample from a subject, and to identify the base sequence of each small RNA.
- NGS next-generation sequencer
- the number of identified small RNAs is counted for each base sequence to determine the number of small RNA reads in the NGS.
- This number of small RNA reads corresponds to the expression level (specifically, absolute expression level) of the small RNA. In other words, this number of small RNA reads becomes the measurement data.
- the amount of PEG added data is specifically data that indicates whether the amount of PEG added related to the measurement data is appropriate.
- the amount of PEG added data can be data that indicates that an amount of PEG added that allows a correct judgment to be performed in the disease assessment process 16 is appropriate (good), and that an amount of PEG added that does not allow a correct judgment to be performed in the disease assessment process 16 is inappropriate (bad).
- a trained model for the amount of PEG added can be generated using measurement data obtained from biological samples collected from multiple subjects under conditions in which the amount of PEG added is appropriate, and measurement data obtained from biological samples collected from multiple subjects under conditions in which the amount of PEG added is inappropriate.
- the disease of the subject that is machine-learned by the additive amount trained model used in the additive amount determination step 14 may include the disease determined in the disease determination step 16. That is, if the disease determined in the disease determination step 16 is a cancer disease, the measurement data of a sample from a subject with a cancer disease is included. Note that the type of cancer disease determined in the disease determination step 16 and the cancer disease of the measurement data may be the same or different. Therefore, for example, if the disease determined in the disease determination step 16 is pancreatic cancer, the measurement data of a sample from a subject with lung cancer may be used as training data.
- measurement data from the top 100 small RNAs with the highest expression levels in biological samples from multiple subjects is used as training data.
- measurement data is used that excludes small RNAs with relatively low expression levels.
- Small RNAs with relatively low expression levels have the advantage that they can easily function as explanatory variables, since even small fluctuations in expression level result in large fold changes.
- they also have the disadvantage of being easily affected by fluctuations due to factors other than the element of interest (specifically, the amount of PEG added) and fluctuations due to measurement errors, making them less robust. Therefore, by using only small RNAs with relatively high expression levels as training data, the effect of strengthening robustness can be achieved.
- the measurement data excluding small RNAs whose expression level was zero in the biological samples of any of the subjects is used as training data. Since the variation from zero is an infinite fold change, which is difficult to quantify and is particularly susceptible to variations due to factors other than the amount of PEG added and variations due to measurement errors, small RNAs whose expression level is zero in any of the samples used as training data are excluded from the training data.
- the learning model is made to qualitatively learn whether the amount of PEG to be added is appropriate, thereby generating an added amount trained model.
- the added amount trained model judges whether the amount of PEG to be added is appropriate, and outputs this suitability, thereby judging whether the amount of PEG to be added is appropriate in the added amount judgment process 14. Therefore, the added amount judgment process 14 displays a judgment result that the amount of PEG to be added is appropriate, or a judgment result that the amount of PEG to be added is inappropriate.
- the learning model is trained to learn whether the amount of PEG added is appropriate, and an additive amount trained model that performs a binary judgment is generated, but this is not limited to this.
- an additive amount trained model may be generated so that the amount of PEG added is judged as one of three values: appropriate (good), warning, and inappropriate (bad).
- the learning model is trained on the appropriateness of the amount of PEG added qualitatively to generate the learned model of the amount of PEG added, but this is not limited to the above.
- the learning model may be trained on the amount of PEG added quantitatively to generate the learned model of the amount of PEG added.
- the amount of PEG added is judged by the learned model of the amount of PEG added, and the judgment result of the amount of PEG added is output, for example, as a judgment value.
- the judgment value here is not a binary value of 0 or 1, but a value having a predetermined numerical range.
- the appropriateness of the amount of PEG added is judged based on the judgment result of the judgment unit that judges the appropriateness of the amount of PEG added based on a comparison between the output judgment value and a threshold value. That is, in the addition amount judgment process 14, if the judgment unit judges that the output judgment value is equal to or greater than the threshold value, the judgment result that the amount of PEG added is inappropriate is displayed, and if the judgment unit judges that the output judgment value is less than the threshold value, the judgment result that the amount of PEG added is appropriate is displayed.
- the amount of PEG added is determined using an addition amount trained model that has been machine-learned to determine the correlation between the measurement data and the addition amount data, but this is not limited to this.
- the amount of PEG added may be determined using a regression model that determines the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples collected from the multiple subjects.
- the amount of PEG to be added is determined by inputting small RNA data into a regression model in the amount-to-add determination step 14. Specifically, in the amount-to-add determination step 14, for example, the small RNA data is input into a regression model to output a value for the amount of PEG to be added.
- the determination unit determines that the output determination value is equal to or greater than the threshold value, the determination result that the amount of PEG to be added is inappropriate is displayed, and if the determination unit determines that the output determination value is less than the threshold value, the determination result that the amount of PEG to be added is appropriate is displayed.
- the addition amount determination step 14 is not limited to the use of the above-mentioned addition amount learned model and the above-mentioned regression model, and it is possible to use a determination criterion based on various algorithms.
- the determination criterion used in the addition amount determination step 14 is a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when ligating multiple small RNAs in the biological samples, and it is sufficient that the addition amount can be determined from the small RNA data.
- the disease determination step 16 is a step of determining the presence or absence of a disease. Specifically, in the disease determination step 16, the small RNA data obtained in the measurement step 12 is input to a disease-trained model that has been machine-learned to determine the correlation between measurement data showing the results of measuring a plurality of small RNAs in a biological sample and disease data showing the presence or absence of a disease in a subject from whom the biological sample was collected, thereby determining the presence or absence of a disease.
- the disease assessment step 16 if the result of the assessment in the addition amount assessment step 14 is that the amount of PEG added is appropriate, the presence or absence of a disease is assessed. In other words, if the result of the assessment in the addition amount assessment step 14 is that the amount of PEG added is inappropriate, the disease assessment step 16 is not executed. In this case, for example, the result of the assessment that the amount of PEG added is inappropriate may be presented to the user (i.e., the person who executes the assessment method).
- the disease determined by the disease discrimination trained model is the same as the disease used for training in the additive amount trained model.
- the disease used for training in the additive amount trained model is cancer
- the disease determined by the disease discrimination trained model is also cancer.
- the disease type of the measurement data used as training data in the disease discrimination trained model is the same as the disease type of the measurement data used as training data in the additive amount trained model.
- the disease determination step 16 was not executed, but this is not limited to the above. For example, even if the addition amount determination step 14 determined that the amount of PEG added was inappropriate, the disease determination step 16 may be executed if the determination result is to be obtained as reference data, for example. In this case, for example, after the determination result that the amount of PEG added was inappropriate is obtained, the fact that the determination was made may be presented to the user. Also, in this embodiment, the disease determination step 16 was executed after the addition amount determination step 14, but it may be executed before the addition amount determination step 14. In this case, if the addition amount determination step 14 determined that the amount of PEG added was inappropriate, the determination result of the disease determination step 16 is treated as reference data, for example.
- the determination system 20 includes a measurement device 21 and a determination device 30, as shown in FIG.
- the measurement device 21 is an example of a measurement unit, and is a device that executes the above-mentioned measurement step 12. That is, the measurement device 21 measures the expression levels of multiple small RNAs contained in each of multiple samples.
- the measurement device 21 for example, an NGS is used.
- the determination device 30 is an example of a determination unit.
- the determination device 30 is a device that executes the above-mentioned addition amount determination step 14. That is, the determination device 30 acquires small RNA data indicating the results of measuring a plurality of small RNAs in a biological sample of a subject, and inputs the acquired small RNA data into an addition amount trained model to determine the amount of PEG added to the biological sample collected from the subject.
- the determination device 30 executes the disease determination step 16 described above. That is, the determination device 30 determines the presence or absence of a disease by inputting the small RNA data obtained in the measurement step 12 into a disease-trained model that has been machine-learned to determine the correlation between measurement data showing the results of measuring multiple small RNAs in a biological sample and disease presence data showing the presence or absence of a disease in the subject from whom the biological sample was collected.
- the determination device 30 functions as a computer, and as shown in FIG. 2, has a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a storage 34, an input unit 35, a display unit 36, and a communication interface (I/F) 37. Each component is connected to each other via a bus 39 so that they can communicate with each other.
- CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- CPU 31 (an example of a processor) is a central processing unit that executes various programs and controls each part. That is, CPU 31 reads a program from ROM 32 or storage 34, and executes the program using RAM 33 as a working area. CPU 31 controls each of the above components and performs various calculation processes according to the program stored in ROM 32 or storage 34.
- CPU 31 is an example of a processor.
- ROM 32 records various programs and various data.
- RAM 33 temporarily stores programs or data as a working area.
- Storage 34 is composed of a HDD (Hard Disk Drive) or SSD (Solid State Drive), and records various programs including the operating system, and various data.
- a judgment program for executing a judgment process that performs the above-mentioned judgment method is recorded in storage 34.
- the judgment program may be a single program, or may be a group of programs consisting of multiple programs or modules.
- the judgment program may be recorded in ROM 32.
- ROM 32 and storage 34 function as an example of a non-transitory recording medium.
- processors are not limited to the aforementioned CPU, which is a general-purpose processor, but may be, for example, a dedicated processor made up of a circuit designed specifically to execute a specific process. Also, an example of a processor is not limited to a single processor, but may be a processor made up of multiple processors working together at physically separate locations.
- the input unit 35 includes a pointing device such as a mouse and a keyboard, and is used to perform various inputs.
- the input unit 35 also receives as input information on the expression levels of multiple small RNAs measured by the measurement device 21.
- the display unit 36 is, for example, a liquid crystal display, and displays various information.
- the determination device 30 can present the determination result of the amount of PEG added and the determination result of the presence or absence of a disease to the user through the display unit 36.
- the display unit 36 may also function as the input unit 35 by adopting a touch panel system.
- the communication interface 37 is an interface for communicating with other devices, and uses standards such as Ethernet (registered trademark), FDDI (Fiber Distributed Data Interface), and Wi-Fi (registered trademark).
- the CPU 31 executes the judgment program to function as a judgment function unit 160 and a disease judgment unit 170.
- the judgment function unit 160 executes the aforementioned addition amount judgment step 14. That is, in the addition amount judgment step 14, the judgment function unit 160 inputs the small RNA data obtained by the measurement device 21 into the addition amount learned model to judge whether the amount of PEG added to the biological sample collected from the subject is appropriate (see the aforementioned addition amount judgment step 14).
- the disease determination unit 170 executes the disease determination step 16. That is, the disease determination unit 170 determines the presence or absence of a disease by inputting the small RNA data obtained by the measurement device 21 into a disease-trained model that has been machine-learned to determine the correlation between measurement data showing the results of measuring multiple small RNAs in a biological sample and disease data showing the presence or absence of a disease in the subject from whom the biological sample was collected (see the disease determination step 16 described above).
- the CPU 31 may perform processing to output the determination result of the amount of PEG reagent added and the determination result of the presence or absence of a disease. This processing is performed, for example, by displaying on the display unit 36 and transmitting to an external device (e.g., the cloud).
- an external device e.g., the cloud
- the determination system 20 includes the measurement device 21 and the determination device 30, but the determination system 20 may be configured with a single device.
- the single device functions as an example of the measurement unit and the determination unit.
- the determination device 30 may also be composed of multiple devices.
- the determination device 30 may be composed of multiple (e.g., two) devices that share the functions of the addition amount determination step 14 and the disease determination step 16 described above.
- the amount of PEG reagent to be added is determined by inputting the small RNA data obtained in the measurement step 12 into an addition amount trained model that has machine-learned the correlation between measurement data indicating the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data indicating the amount of PEG reagent added when performing ligation on the multiple small RNAs in the biological samples.
- the amount of addition is determined by inputting small RNA data into an addition amount trained model that has been machine-learned to learn the correlation between measurement data and addition amount data, so the amount of PEG reagent added can be determined with a high degree of accuracy compared to, for example, determination by visual inspection or measurement using a measurement kit.
- the amount of PEG reagent added can be determined with high accuracy, so highly accurate information on the amount of PEG reagent added can be obtained, and for example, in the disease determination process 16, there is no need to obtain information on the amount of PEG reagent added by inputting it by the user.
- serum was obtained as a biological sample from 24 healthy subjects by performing the collection step 11 within 2 hours.
- the serum was subjected to the ligation step 13 using five PEG reagent formulations in which the amount of PEG was increased or decreased based on the basic formulation below, and a total of 120 samples (24 subjects x 5 formulations) were obtained.
- the expression levels of multiple small RNAs were measured using NGS, and small RNA data showing the measurement results were obtained.
- small RNAs with zero expression levels were excluded, and small RNA data for the top 100 small RNAs with the highest expression levels was used.
- the small RNA data for the 120 samples the small RNA data for 100 samples (20 people x 5 prescriptions) was used as training data, and the small RNA data for 20 samples (4 people x 5 prescriptions) was used as evaluation data.
- Formulation 1 The amount of PEG was reduced by 50% in the basic formulation.
- Formulation 2 The amount of PEG was reduced by 25% in the basic formulation.
- Formulation 3 The amount of PEG was unchanged in the basic formulation.
- Formulation 4 The amount of PEG was increased by 25% in the basic formulation.
- Formulation 5 The amount of PEG was increased by 50% in the basic formulation.
- the additive amount trained model 1 is a model that performs a binary judgment in which the formula 1 is bad and the formulas 2 to 5 are good.
- the additive amount trained model 2 is a model that performs a binary judgment in which the recipes 1 and 2 are treated as bad, and the recipes 3 to 5 are treated as good.
- the additive amount trained model 3 is a model that performs a binary judgment in which the recipes 1 to 3 are bad and the recipes 4 and 5 are good.
- the additive amount trained model 4 is a model that performs a binary judgment in which the formulas 1 to 4 are treated as bad and the formula 5 is treated as good.
- ⁇ Example of learning model> Various linear and nonlinear algorithms known as machine learning algorithms can be used, or multiple algorithms can be combined. For example, the following algorithms can be used:
- additive amount trained models 1 to 4 it is possible to estimate the amount of PEG added within a range that can be specified for prescriptions 1 to 5. For example, if additive amount trained model 2 judges the product as good and additive amount trained model 3 judges the product as bad, the amount of PEG added is estimated to be in the range of -25% to +25% of the basic prescription (1.0 ⁇ L).
- a continuous value regression model was generated to estimate the percentage of the amount of PEG added relative to the basic formula (1.0 ⁇ L) using all of the training data obtained from formulations 1 to 5.
- the continuous value regression model estimates whether the amount is -50%, -25%, 0%, +25%, or +50% relative to the basic formula (1.0 ⁇ L) (see FIG. 6).
- the small RNA data obtained in the measurement step 12 is input to a disease-trained model that has been machine-learned to learn the correlation between the measurement data showing the results of measuring the expression levels of multiple small RNAs in a biological sample and the disease data showing the presence or absence of a disease in the subject from whom the biological sample was collected, thereby indicating the presence or absence of a disease. Therefore, it can be said that the measured expression level of the small RNA indicates the presence or absence of a disease based on the judgment criteria in the disease-trained model.
- the determination method 10 is a determination method that determines the amount of PEG reagent used when ligating multiple small RNAs in a biological sample collected from a subject using small RNA data showing the results of measuring the expression levels of the multiple small RNAs, and the expression level of the small RNA indicates the presence or absence of the disease based on the judgment criteria in the disease-trained model that has been machine-learned to learn the correlation between the measurement data showing the results of measuring the expression levels of multiple small RNAs in a biological sample and the disease data showing the presence or absence of a disease in the subject from whom the biological sample was collected.
- a method for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs comprising: The method includes an addition amount determination step of determining the amount of addition from the small RNA data based on a determination criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on the multiple small RNAs in the biological samples.
- the addition amount determining step includes: The method according to aspect 1, further comprising inputting the small RNA data into an added amount trained model that has been machine-learned to determine a correlation between the measurement data and the added amount data, thereby determining the added amount.
- the method according to aspect 2 further comprising inputting the small RNA data into the additive amount trained model to determine whether the additive amount is appropriate.
- the method according to aspect 2 further comprising inputting the small RNA data into the additive amount trained model to output the additive amount.
- the addition amount determination step includes: The method according to aspect 1, further comprising inputting the small RNA data into a regression model that determines a correlation between the measurement data and the data on the amount of addition, thereby determining the amount of addition.
- the addition amount determination step includes: The method according to aspect 1, further comprising inputting the small RNA data into a regression model that determines a correlation between the measurement data and the data on the amount of addition, thereby determining the amount of addition.
- the method according to aspect 6 further comprising inputting the small RNA data into the regression model to determine whether the amount of addition is appropriate.
- (Aspect 10) a disease determination step of determining the presence or absence of a disease by inputting the small RNA data into a disease trained model that has been machine-learned to determine a correlation between measurement data showing the results of measuring a plurality of small RNAs in a biological sample and disease presence data showing the presence or absence of a disease in a subject from whom the biological sample was collected;
- the expression level of the small RNA indicates the presence or absence of the disease based on a judgment criterion in a disease-trained model that machine-learns the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in a biological sample and disease occurrence data showing the presence or absence of the disease in the subject from whom the biological sample was collected.
- a determination device that determines an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data indicating a result of measuring the expression levels of the plurality of small RNAs, comprising: A processor is provided.
- the processor A determination device that determines the amount of addition from the small RNA data based on a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
- a system for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs comprising: A measurement unit that acquires small RNA data indicating the results of measuring a plurality of small RNAs in a biological sample of a subject; a determination unit that determines the amount of addition from the small RNA data based on a determination criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when ligating the multiple small RNAs in the biological samples; A determination system having the above configuration.
- a process for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs comprising: A determination program for executing a determination process that determines the amount of addition from the small RNA data based on a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
- a process for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs comprising: A non-temporary recording medium having recorded thereon a judgment program for executing a judgment process for determining the amount of addition from the small RNA data based on a judgment criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本開示は、判定方法、判定装置、判定システム、判定プログラム、及び記録媒体に関する。 This disclosure relates to a determination method, a determination device, a determination system, a determination program, and a recording medium.
特許第7021097号公報には、サンプルデータ取得部と、罹患判定部と、を具備する疾患の罹患判定装置が開示されている。サンプルデータ取得部は、生体由来の試料における複数種類のmiRNAの発現量を含むサンプルデータを取得する。罹患判定部は、学習済モデルを用いて、前記取得したサンプルデータについて、前記複数の体の部位における前記複数の疾患の罹患判定結果を出力する。学習済モデルは、複数の体の部位における複数の疾患についての罹患の有無を識別するための項目を有する複数のサンプルデータを含む訓練データを用いて機械学習を行って予め得た複数の悪性疾患または複数の良性疾患を含む前記複数の疾患についてのそれぞれの罹患を、複数の疾患に罹患している場合を含めて判定可能な学習済モデルである。 Japanese Patent No. 7021097 discloses a disease prevalence assessment device that includes a sample data acquisition unit and a prevalence assessment unit. The sample data acquisition unit acquires sample data including the expression levels of multiple types of miRNA in a sample derived from a living body. The prevalence assessment unit uses a trained model to output prevalence assessment results for the multiple diseases in the multiple body parts for the acquired sample data. The trained model is a trained model that can assess the prevalence of each of the multiple diseases, including multiple malignant diseases or multiple benign diseases, including cases where the patient is suffering from multiple diseases, obtained in advance by machine learning using training data including multiple sample data having items for identifying the presence or absence of multiple diseases in multiple body parts.
国際公開第2021/132547号公報には、疾患マーカーを用いて疾患の検査を行う検査方法であって、検体データ取得工程と、判別工程と、を含む検査方法が開示されている。検体データ取得工程は、被検体から採取した体液検体中の疾患マーカーを測定した結果を示すマーカーデータ、及び該体液検体の調製条件を示す調製データを取得する。判別工程は、体液検体中の疾患マーカーを測定した結果を示すマーカーデータ及び該体液検体の調製条件を示す調製データの組と、該体液検体が採取された被検体における疾患の罹患の有無との相関関係を機械学習させた学習済モデルに、上記検体データ取得工程で取得した上記マーカーデータ及び上記調製データを入力することによって、上記被検体における疾患の罹患の有無を判別する。 WO 2021/132547 discloses a testing method for testing for a disease using a disease marker, the testing method including a specimen data acquisition step and a discrimination step. The specimen data acquisition step acquires marker data indicating the results of measuring a disease marker in a body fluid sample collected from a subject, and preparation data indicating the preparation conditions of the body fluid sample. The discrimination step determines the presence or absence of a disease in the subject by inputting the marker data and preparation data acquired in the specimen data acquisition step into a trained model that has been machine-learned to learn the correlation between a set of marker data indicating the results of measuring a disease marker in a body fluid sample and preparation data indicating the preparation conditions of the body fluid sample, and the presence or absence of a disease in the subject from which the body fluid sample was collected.
非特許文献1には、20種類の蛍光標識合成miRNAを用いて、miRNAの3’末端に核酸配列を付加する3’ライゲーション酵素反応における各miRNAの反応効率について、ライゲーション酵素の種類、PEG試薬の添加量、反応時間などを変動させた複数の条件下で調査した結果、PEG濃度に依存してmiRNAのライゲーション反応効率が変動する可能性がある点について開示されている。
非特許文献1:Song Y, Liu KJ, Wang TH. Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One. 2014 Apr 10
Non-Patent Document 1 discloses that, using 20 types of fluorescently labeled synthetic miRNAs, the reaction efficiency of each miRNA in a 3' ligation enzymatic reaction in which a nucleic acid sequence is added to the 3' end of the miRNA was investigated under multiple conditions in which the type of ligation enzyme, the amount of PEG reagent added, the reaction time, etc. were varied, and the results showed that the efficiency of the miRNA ligation reaction may vary depending on the PEG concentration.
Non-patent document 1: Song Y, Liu KJ, Wang TH. Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One. 2014 Apr 10
ここで、被検者の生体由来試料中における複数のスモールRNAの発現量によって疾患の判定を行う際に、複数のスモールRNAの5’又は3’末端にアダプター及びPEG試薬を用いてライゲーションを行う場合では、PEG試薬の添加量によって最終的に測定されるスモールRNAの発現量が変化しうる。このため、PEG試薬の添加量は、疾患の判定に影響を与える。 When diagnosing a disease based on the expression levels of multiple small RNAs in a biological sample from a subject, if ligation is performed at the 5' or 3' ends of multiple small RNAs using an adapter and a PEG reagent, the expression levels of the small RNAs that are ultimately measured may change depending on the amount of PEG reagent added. Therefore, the amount of PEG reagent added affects the diagnosis of the disease.
特に、PEG試薬は、比較的粘度が高く、PEG試薬の添加を行う添加者の手技差が大きくなる傾向にある。このため、PEG試薬は、添加量にバラつきが生じやすい傾向にある。 In particular, PEG reagents have a relatively high viscosity, and there is a tendency for the differences in technique between people who add the PEG reagent to be large. For this reason, there is a tendency for the amount of PEG reagent added to vary.
本開示は、複数のスモールRNAの5’又は3’末端にアダプター及びPEG試薬を用いてライゲーションを行う際におけるPEG試薬の添加量を高精度に判定可能な判定方法、判定装置、判定システム、判定プログラム、及び記録媒体を提供することを課題とする。 The present disclosure aims to provide a determination method, determination device, determination system, determination program, and recording medium that can determine with high accuracy the amount of PEG reagent added when ligating an adapter and a PEG reagent to the 5' or 3' end of multiple small RNAs.
本開示の一態様に係る判定方法は、被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定方法であって、複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する添加量判定工程を有する。 The determination method according to one embodiment of the present disclosure is a method for determining the amount of PEG reagent added used when performing ligation on multiple small RNAs in a biological sample collected from a subject, using small RNA data showing the results of measuring the expression levels of the multiple small RNAs, and includes an addition amount determination step for determining the amount added from the small RNA data using a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added used when performing ligation on the multiple small RNAs in the biological sample.
本開示によれば、複数のスモールRNAの5’又は3’末端にアダプター及びPEG試薬を用いてライゲーションを行う際におけるPEG試薬の添加量を高精度に判定することができる。 According to the present disclosure, it is possible to determine with high accuracy the amount of PEG reagent to be added when ligating an adapter and a PEG reagent to the 5' or 3' end of multiple small RNAs.
以下に、本開示の技術に係る実施形態の一例を図面に基づき説明する。なお、動作、作用、機能が同じ働きを担う構成要素及び処理には、全図面を通して同じ符号を付与し、重複する説明を適宜省略する場合がある。各図面は、本開示の技術を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本開示の技術は、図示例のみに限定されるものではない。また、本実施形態では、本開示と直接的に関連しない構成や周知な構成については、説明を省略する場合がある。 Below, an example of an embodiment of the technology of the present disclosure will be described with reference to the drawings. Note that components and processes that perform the same operation, action, and function will be given the same reference numerals throughout the drawings, and duplicated explanations may be omitted as appropriate. Each drawing is merely a schematic illustration to allow a sufficient understanding of the technology of the present disclosure. Therefore, the technology of the present disclosure is not limited to the illustrated examples. Furthermore, in this embodiment, explanations of configurations that are not directly related to the present disclosure or well-known configurations may be omitted.
<判定方法10>
まず、本実施形態に係る判定方法10を説明する。図1は、本実施形態に係る判定方法10の各工程を示す概略図である。
<Determination Method 10>
First, a description will be given of a determination method 10 according to the present embodiment. Fig. 1 is a schematic diagram showing each step of the determination method 10 according to the present embodiment.
判定方法10は、被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量(以下、PEG添加量という場合がある)を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定方法である。 Determination method 10 is a method for determining the amount of PEG reagent added (hereinafter, sometimes referred to as the amount of PEG added) used when performing ligation on multiple small RNAs in a biological sample collected from a subject, using small RNA data that shows the results of measuring the expression levels of the multiple small RNAs.
被検者から採取される生体由来試料としては、例えば、血液、血清、尿、涙、唾液、汗、精液、リンパ液、組織液、体腔液(例えば、胸水、腹水など)、脳髄液、羊水、膣液、鼻水などの体液が挙げられる。なお、生体由来試料としては、生体から採取可能な試料であって、複数のスモールRNAの発現量が測定可能である試料であればよい。被検者とは、生体由来試料を採取する対象を示す概念である。生体由来試料を採取する対象である被検者としては、ヒトでも非ヒト動物でもよい。非ヒト動物としては、非ヒト哺乳動物(サル、イヌ、ネコ、マウス、ラット、ウサギ、ウシ、ウマ、ブタ、及びヒツジ等)、鳥類(ニワトリ、ウズラ等)等が挙げられる。 Examples of biological samples collected from subjects include body fluids such as blood, serum, urine, tears, saliva, sweat, semen, lymph, tissue fluid, body cavity fluid (e.g., pleural fluid, ascites, etc.), cerebrospinal fluid, amniotic fluid, vaginal fluid, and nasal mucus. The biological sample may be any sample that can be collected from a living body and from which the expression levels of multiple small RNAs can be measured. The term "subject" refers to the subject from which the biological sample is collected. The subject from which the biological sample is collected may be either a human or a non-human animal. Examples of non-human animals include non-human mammals (monkeys, dogs, cats, mice, rats, rabbits, cows, horses, pigs, and sheep), and birds (chickens, quails, etc.).
スモールRNAとしては、例えば、マイクロRNAが挙げられる。なお、スモールRNAとしては、マイクロRNA以外のスモールRNA(例えば、piRNA、及びtsRNA)などであってもよい。なお、ライゲーション、及びPEG試薬については、後述する。 An example of a small RNA is microRNA. The small RNA may be a small RNA other than microRNA (e.g., piRNA and tsRNA). Ligation and PEG reagents will be described later.
判定方法10は、具体的には、図1に示されるように、採取工程11と、ライゲーション工程13と、測定工程12と、添加量判定工程14と、罹患判定工程16と、を有している。本実施形態では、採取工程11、ライゲーション工程13、測定工程12、添加量判定工程14、及び罹患判定工程16は、一例として、この順で実行される。 Specifically, as shown in FIG. 1, the determination method 10 includes a collection step 11, a ligation step 13, a measurement step 12, an addition amount determination step 14, and a disease determination step 16. In this embodiment, the collection step 11, the ligation step 13, the measurement step 12, the addition amount determination step 14, and the disease determination step 16 are performed in this order, for example.
なお、判定方法10は、採取工程11、測定工程12、及び罹患判定工程16を有する方法であるから、採取方法、測定方法、及び罹患判定方法ともいえる。また、罹患判定工程16において、判定により、分析、検査などを行う場合には、分析方法、検査方法等ともいえる。以下、判定方法10の各工程について説明する。 Since the determination method 10 is a method having a sampling step 11, a measurement step 12, and a disease determination step 16, it can also be called a sampling method, a measurement method, and a disease determination method. Furthermore, if analysis, testing, etc. is performed based on the determination in the disease determination step 16, it can also be called an analysis method, a testing method, etc. Each step of the determination method 10 will be explained below.
<採取工程11>
採取工程11は、被検者から生体由来試料を採取する工程である。採取工程11は、測定工程12の実行前に実行される。採取工程11において、生体由来試料として血清を採取する場合では、例えば、以下のように、採取処理が行われる。
<Collecting step 11>
The collecting step 11 is a step of collecting a biological sample from a subject. The collecting step 11 is performed before the measurement step 12. In the case where serum is collected as the biological sample in the collecting step 11, for example, a collection process is performed as follows.
まず、血清分離剤入りの真空採血管を用いて採血する(採血処理)。
次に、採血処理の後、直ちに、血液を転倒混和する。
次に、30分以上、室温に置いて、血液を凝固させる。
次に、遠心分離し、血清を分取する(遠心分離処理)。
そして、血清を分取し、-80℃にて保存する(保存処理)。
First, blood is collected using a vacuum blood collection tube containing a serum separating agent (blood collection process).
Next, immediately after the blood collection process, the blood is mixed by inversion.
The blood is then allowed to coagulate at room temperature for at least 30 minutes.
Next, the mixture is centrifuged and the serum is separated (centrifugation treatment).
Then, the serum is separated and stored at −80° C. (storage treatment).
採取工程11では、被検者から生体由来試料を採取してから遠心分離操作を完了するまでの工程(具体的には、前述の採血処理から保存処理までの工程)を、予め定められた時間(例えば2時間)以内に実行する。なお、遠心分離操作は、例えば、前述の遠心分離処理から保存処理までの操作である。 In the collection process 11, the process from collection of a biological sample from a subject to completion of the centrifugation operation (specifically, the process from the blood collection process to the preservation process described above) is performed within a predetermined time (e.g., 2 hours). The centrifugation operation is, for example, the process from the centrifugation process to the preservation process described above.
<ライゲーション工程13>
ライゲーションとは、スモールRNAを含むDNAやRNA等の核酸の5’又は3’末端に、アダプターと呼ばれる塩基配列を結合させる酵素反応である。ライゲーション工程13は、スモールRNAの5’又は3’末端に、アダプターと呼ばれる塩基配列を結合させる操作を行う工程である。ライゲーション工程13では、ライゲーションを行う際にPEG試薬を使用する。なお、ライゲーション工程13は、具体的には、例えば、NGS用のライブラリ調製において実行される。
<Ligation step 13>
Ligation is an enzymatic reaction in which a base sequence called an adapter is bound to the 5' or 3' end of a nucleic acid such as DNA or RNA including a small RNA. The ligation step 13 is a step in which a base sequence called an adapter is bound to the 5' or 3' end of a small RNA. In the ligation step 13, a PEG reagent is used when performing the ligation. Specifically, the ligation step 13 is performed, for example, in the preparation of a library for NGS.
PEG試薬は、PEG(PolyEthylene Glycol、ポリエチレングリコール)を含む試薬である。PEG試薬は、少なくとも、PEGを含むものであればよく、他の成分を含むものを用いることが可能である。また、PEGとは単量体であるEthylene Glycol(エチレングリコール)の重合体として構成されており、その重合度や平均分子量の違いから、PEGの中にも複数の種類が存在する(例えば、PEG 200、PEG 300、PEG 400、PEG 600、PEG 1000、PEG 2000、PEG 4000、PEG 6000、PEG 8000、PEG 10000、PEG 20000、PEG 500000、PEG 2000000、PEG 4000000、等)。しかし、いずれも共通の化学構造(すなわち、単量体であるエチレングリコール)を有することから化学的性質は類似しているため、PEGであればいずれの種類を用いても良い。PEGは、ライゲーションにおける酵素反応を促進する触媒として機能し、スモールRNAごとの反応性の偏りを緩和する。 The PEG reagent is a reagent that contains PEG (PolyEthylene Glycol). Any PEG reagent that contains at least PEG can be used, and it is possible to use one that contains other components. PEG is composed of a polymer of the monomer Ethylene Glycol, and there are several types of PEG due to differences in the degree of polymerization and average molecular weight (for example, PEG 200, PEG 300, PEG 400, PEG 600, PEG 1000, PEG 2000, PEG 4000, PEG 6000, PEG 8000, PEG 10000, PEG 20000, PEG 500000, PEG 2000000, PEG 4000000, etc.). However, since all of them have a common chemical structure (i.e., ethylene glycol, a monomer), their chemical properties are similar, so any type of PEG can be used. PEG functions as a catalyst to promote the enzymatic reaction in ligation, and reduces the bias in reactivity of each small RNA.
なお、PEG試薬として、以下の成分を含む試薬を、一例として、用いることが可能である。
Nuclease free water
T4 RNA Ligase Reaction Buffer(NEB/M0242)
100% DMSO(13445-74/ナカライテスク)
50% PEG(NEB/B1004)
トータルRNA
As an example of the PEG reagent, a reagent containing the following components can be used.
Nuclease-free water
T4 RNA Ligase Reaction Buffer(NEB/M0242)
100% DMSO (13445-74/Nacalai Tesque)
50% PEG (NEB/B1004)
Total RNA
<測定工程12>
測定工程12は、被検者の生体由来試料中の複数のスモールRNAの発現量を測定する工程である。具体的には、測定工程12では、測定装置である次世代シーケンサー(NGS)を用いて、被検者の生体由来試料中(例えば、血清中)に含まれる複数のスモールRNAを測定し、それぞれのスモールRNAの塩基配列を特定する。次に、特定したそれぞれのスモールRNAの数を、塩基配列ごとに数えることで、NGSにおけるスモールRNAのリード数を求める。このスモールRNAのリード数が、スモールRNAの発現量(具体的には絶対発現量)に対応する。すなわち、このスモールRNAのリード数が、被検者の生体由来試料中の複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを意味する。ただし、生体由来試料(例えば血清)中の複数のスモールRNA(例えばマイクロRNA)の発現量は生体に由来する絶対的な値であるが、測定装置や試薬処理を経る過程により発現量を数値化する必要があるため、生体由来試料中のスモールRNAの発現量を絶対的な値で数値化することが難しい。そこで、NGSでの測定結果をデータ処理することにより、スモールRNAの発現量を相対的な値として示してもよく、このような相対的な値であってもスモールRNAデータを意味する。
<Measurement step 12>
The measurement step 12 is a step of measuring the expression levels of multiple small RNAs in the subject's biological sample. Specifically, in the measurement step 12, a next-generation sequencer (NGS) is used as a measurement device to measure multiple small RNAs contained in the subject's biological sample (for example, in serum) and identify the base sequence of each small RNA. Next, the number of identified small RNAs is counted for each base sequence to obtain the number of reads of the small RNA in the NGS. This number of reads of the small RNA corresponds to the expression level (specifically, the absolute expression level) of the small RNA. In other words, this number of reads of the small RNA means small RNA data showing the result of measuring the expression levels of multiple small RNAs in the subject's biological sample. However, although the expression levels of multiple small RNAs (for example, microRNAs) in a biological sample (for example, serum) are absolute values derived from the living body, it is difficult to quantify the expression levels of small RNAs in a biological sample with an absolute value because it is necessary to quantify the expression levels through a process of going through a measurement device or reagent treatment. Therefore, the expression levels of small RNAs may be expressed as relative values by processing the data from the NGS measurement results, and such relative values also refer to small RNA data.
また、絶対発現量を測定するために、NGSで出力したスモールRNAのリード数を正規化し、相対的な発現量(つまり、相対発現量)としてもよい。正規化の手段としては、例えば、RPM(Read Per Million)正規化や、内部標準のスモールRNAを用いた正規化などの手段を利用できる。このように、スモールRNAデータは、正規化した相対発現量を示すものであってもよい。なお、スモールRNAデータとしては、絶対的な値として数値化された絶対値であってもよい。 Furthermore, in order to measure the absolute expression level, the number of reads of small RNA output by NGS may be normalized to obtain a relative expression level (i.e., relative expression level). As a means of normalization, for example, RPM (Read Per Million) normalization or normalization using a small RNA as an internal standard may be used. In this way, the small RNA data may indicate a normalized relative expression level. Note that the small RNA data may be an absolute value quantified as an absolute value.
また、NGSでは、複数の生体由来試料(例えば、複数の被検者から採取された血清)を一括して、複数のスモールRNAの発現量を測定することが可能である。すなわち、測定工程12においては、複数の生体由来試料について、同じプロセスにて、複数のスモールRNAの発現量を測定する。 In addition, NGS makes it possible to simultaneously measure the expression levels of multiple small RNAs in multiple biological samples (e.g., serum samples collected from multiple subjects). That is, in measurement step 12, the expression levels of multiple small RNAs are measured for multiple biological samples in the same process.
なお、測定装置として次世代シーケンサー以外にもDNAチップや定量PCR、フローサイトメータなども利用でき、複数のスモールRNAの発現量を測定できればよい。以上のように、複数のスモールRNAの発現量を測定し、その測定した結果を示すスモールRNAを得ることができれば、複数のスモールRNAの発現量の測定手法として、公知の手法を含む種々の手法を採用することが可能である。 In addition to next-generation sequencers, other measuring devices such as DNA chips, quantitative PCR, and flow cytometers can also be used as long as the expression levels of multiple small RNAs can be measured. As described above, if the expression levels of multiple small RNAs can be measured and a small RNA showing the measurement results can be obtained, various methods, including publicly known methods, can be used to measure the expression levels of multiple small RNAs.
<添加量判定工程14>
添加量判定工程14は、PEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する工程である。なお、PEG試薬の添加量の判定は、当該添加量が適切か否かの適否の判定と、当該添加量自体の判定と、を含む概念である。
<Additional amount determination step 14>
The amount of PEG reagent added is determined using small RNA data indicating the results of measuring the expression levels of the plurality of small RNAs in the amount determination step 14. The determination of the amount of PEG reagent added includes a concept of determining whether the amount is appropriate and a concept of determining the amount itself.
本実施形態では、添加量判定工程14において、測定工程12にて得られたスモールRNAデータを添加量学習済モデルに入力することによって、PEG試薬の添加量の適否の判定を行う。 In this embodiment, in the addition amount determination step 14, the small RNA data obtained in the measurement step 12 is input into the addition amount trained model to determine whether the amount of PEG reagent to be added is appropriate.
PEG試薬の添加量の適否の判定基準は、例えば、罹患判定工程16において、正しい判定が実行可能であるか否かを基準に設定される。罹患判定工程16において、PEG試薬の添加量が低量であっても、正しい判定が実行可能である場合には、低量の添加量を許容する判定基準となる。 The criterion for determining whether the amount of PEG reagent to be added is appropriate is set, for example, based on whether a correct judgment can be made in the disease assessment process 16. If a correct judgment can be made in the disease assessment process 16 even if the amount of PEG reagent added is low, the criterion becomes one that allows a low amount to be added.
なお、罹患判定工程16における判定対象となる疾患によって、許容される添加量が変動し、これに対応して、添加量判定工程14における判定基準も変動する。また、判定工程としては、罹患判定に限られず、種々の判定が適用可能であり、判定対象によっても許容される添加量が変動し、これに対応して、添加量判定工程14における判定基準も変動する。 The allowable amount of addition varies depending on the disease to be judged in the disease judgment process 16, and the judgment criteria in the addition amount judgment process 14 also vary correspondingly. Furthermore, the judgment process is not limited to disease judgment, and various judgments can be applied, and the allowable amount of addition varies depending on the disease to be judged, and the judgment criteria in the addition amount judgment process 14 also vary correspondingly.
<添加量学習済モデルの生成方法>
ここで、添加量判定工程14で用いられる添加量学習済モデルは、一例として、以下のように生成される。すなわち、添加量学習済モデルは、複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該複数の被検者から採取した生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係を機械学習させることで生成される。
<How to generate additive amount trained model>
Here, the added amount trained model used in the added amount determination step 14 is generated, for example, as follows: That is, the added amount trained model is generated by machine learning the correlation between measurement data indicating the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects, and added amount data indicating the added amount of PEG reagent used when performing ligation on the multiple small RNAs in the biological samples collected from the multiple subjects.
当該測定データは、具体的には、複数の被検者から採取した生体由来試料中の複数のスモールRNAを測定した結果である。当該複数の被検者は、疾患を罹患した被検者と、疾患を罹患していない被検者(すなわち、健常者)と、を含んでいてもよいし、疾患を罹患した被検者及び、疾患を罹患していない被検者(すなわち、健常者)の一方のみを含む被検者であってもよい。 Specifically, the measurement data is the result of measuring multiple small RNAs in biological samples collected from multiple subjects. The multiple subjects may include subjects with a disease and subjects without a disease (i.e., healthy subjects), or may include only subjects with a disease and subjects without a disease (i.e., healthy subjects).
なお、測定データは、前述のスモールRNAデータと同様の測定方法により得られる。すなわち、具体的には、測定装置である次世代シーケンサー(NGS)を用いて、被検者の生体由来試料中に含まれる複数のスモールRNAを測定し、それぞれのスモールRNAの塩基配列を特定する。次に、特定したそれぞれのスモールRNAの数を、塩基配列ごとに数えることで、NGSにおけるスモールRNAのリード数を求める。このスモールRNAのリード数が、スモールRNAの発現量(具体的には絶対発現量)に対応する。すなわち、このスモールRNAのリード数が、測定データとなる。 The measurement data is obtained by the same measurement method as the small RNA data described above. Specifically, a next-generation sequencer (NGS) is used as a measurement device to measure multiple small RNAs contained in a biological sample from a subject, and to identify the base sequence of each small RNA. Next, the number of identified small RNAs is counted for each base sequence to determine the number of small RNA reads in the NGS. This number of small RNA reads corresponds to the expression level (specifically, absolute expression level) of the small RNA. In other words, this number of small RNA reads becomes the measurement data.
添加量データは、具体的には、測定データに係るPEG添加量の適否を示すデータである。添加量データでは、一例として、罹患判定工程16において、正しい判定が実行可能であるPEG添加量を適切(良)とし、罹患判定工程16において、正しい判定が実行できないPEG添加量を不適切(不良)とするデータとすることができる。 The amount of PEG added data is specifically data that indicates whether the amount of PEG added related to the measurement data is appropriate. As an example, the amount of PEG added data can be data that indicates that an amount of PEG added that allows a correct judgment to be performed in the disease assessment process 16 is appropriate (good), and that an amount of PEG added that does not allow a correct judgment to be performed in the disease assessment process 16 is inappropriate (bad).
具体的には、機械学習させる測定データ(以下、訓練データという場合がある)として、複数の被検者から採取した生体由来試料においてPEG添加量が適切な状況下で得られた測定データと、複数の被検者から採取した生体由来試料においてPEG添加量が不適切な状況下で得られた測定データと、を用いて、添加量学習済モデルを生成することができる。 Specifically, as the measurement data to be subjected to machine learning (hereinafter sometimes referred to as training data), a trained model for the amount of PEG added can be generated using measurement data obtained from biological samples collected from multiple subjects under conditions in which the amount of PEG added is appropriate, and measurement data obtained from biological samples collected from multiple subjects under conditions in which the amount of PEG added is inappropriate.
添加量判定工程14で使用する添加量学習済モデルで機械学習される被検者の疾患は、罹患判定工程16で判定される疾患を含んでいてもよい。すなわち、罹患判定工程16にて判定される疾患が、癌疾患であれば、癌疾患を罹患した被検者の検体の測定データが含まれる。なお、罹患判定工程16にて判定される癌疾患と、測定データの癌疾患とにおいて、癌疾患の種類は同じであってもよいし、異なっていてもよい。したがって、例えば、罹患判定工程16にて判定される疾患が、すい臓癌である場合において、肺癌を罹患した被検者の検体の測定データが訓練データとして用いられてもよい。 The disease of the subject that is machine-learned by the additive amount trained model used in the additive amount determination step 14 may include the disease determined in the disease determination step 16. That is, if the disease determined in the disease determination step 16 is a cancer disease, the measurement data of a sample from a subject with a cancer disease is included. Note that the type of cancer disease determined in the disease determination step 16 and the cancer disease of the measurement data may be the same or different. Therefore, for example, if the disease determined in the disease determination step 16 is pancreatic cancer, the measurement data of a sample from a subject with lung cancer may be used as training data.
また、添加量判定工程14では、訓練データとして、複数の被検者の生体由来試料中において発現量が上位100個のスモールRNAによる測定データを用いる。 In the addition amount determination step 14, measurement data from the top 100 small RNAs with the highest expression levels in biological samples from multiple subjects is used as training data.
このように、本実施形態では、発現量が相対的に少ないスモールRNAを除外した測定データを用いる。発現量が相対的に少ないスモールRNAは、小さな発現量変動であってもその倍率変化(fold-change)が大きくなるため説明変数として機能しやすい一面がある。しかしながら、注目している要素(具体的には、PEG添加量)以外の要因による変動や測定誤差による変動の影響を受けやすく、いわゆるロバスト性が弱いという欠点を併せ持つ。したがって、相対的に発現量の多いスモールRNAのみを訓練データとすることでロバスト性を強化する効果が得られる。 In this way, in this embodiment, measurement data is used that excludes small RNAs with relatively low expression levels. Small RNAs with relatively low expression levels have the advantage that they can easily function as explanatory variables, since even small fluctuations in expression level result in large fold changes. However, they also have the disadvantage of being easily affected by fluctuations due to factors other than the element of interest (specifically, the amount of PEG added) and fluctuations due to measurement errors, making them less robust. Therefore, by using only small RNAs with relatively high expression levels as training data, the effect of strengthening robustness can be achieved.
また、添加量判定工程14では、訓練データとして、いずれかの被検者の生体由来試料中において発現量がゼロであったスモールRNAを除いた測定データを用いる。ゼロからの変動は、倍率変化が無限大となり、数値化が困難であったりPEG添加量以外の要因による変動や測定誤差による変動の影響を特に大きく受けやすかったりするため、訓練データとして用いるいずれかの検体で、発現量がゼロであるスモールRNAは訓練データから除外する。 In the addition amount determination step 14, the measurement data excluding small RNAs whose expression level was zero in the biological samples of any of the subjects is used as training data. Since the variation from zero is an infinite fold change, which is difficult to quantify and is particularly susceptible to variations due to factors other than the amount of PEG added and variations due to measurement errors, small RNAs whose expression level is zero in any of the samples used as training data are excluded from the training data.
以上のように、本実施形態では、PEG添加量の適否を定性的に学習モデルに学習させることで、添加量学習済モデルを生成する。そして、添加量学習済モデルによって、PEG添加量の適否が判定され、当該適否が出力されることで、添加量判定工程14では、PEG添加量の適否を判定する。したがって、添加量判定工程14では、PEG添加量が適切であるとの判定結果、又はPEG添加量が不適切であるとの判定結果が示される。 As described above, in this embodiment, the learning model is made to qualitatively learn whether the amount of PEG to be added is appropriate, thereby generating an added amount trained model. The added amount trained model then judges whether the amount of PEG to be added is appropriate, and outputs this suitability, thereby judging whether the amount of PEG to be added is appropriate in the added amount judgment process 14. Therefore, the added amount judgment process 14 displays a judgment result that the amount of PEG to be added is appropriate, or a judgment result that the amount of PEG to be added is inappropriate.
なお、本実施形態では、PEG添加量の適否を学習モデルに学習させることで、2値判定を行う添加量学習済モデルを生成していたが、これに限られない。例えば、PEG添加量を適切(良)、警告、不適切(不良)の3値で判定されるように、添加量学習済モデルを生成してもよい。 In this embodiment, the learning model is trained to learn whether the amount of PEG added is appropriate, and an additive amount trained model that performs a binary judgment is generated, but this is not limited to this. For example, an additive amount trained model may be generated so that the amount of PEG added is judged as one of three values: appropriate (good), warning, and inappropriate (bad).
以上のように、本実施形態では、PEG添加量の適否を定性的に学習モデルに学習させることで、添加量学習済モデルを生成していたが、これに限られない。例えば、PEG添加量を定量的に学習モデルに学習させることで、添加量学習済モデルを生成してもよい。この場合では、添加量学習済モデルによって、PEG添加量が判定され、当該PEG添加量の判定結果が、例えば、判定値として出力される。ここでいう判定値は、0又は1の2値ではなく、予め定められた数値範囲を有する値である。そして、添加量判定工程14では、出力された判定値と閾値との比較に基づいてPEG添加量の適否が判定する判定部の判定結果に基づき、PEG添加量の適否を判定する。すなわち、添加量判定工程14では、出力された判定値が閾値以上であると判定部が判定した場合に、PEG添加量が不適切であるとの判定結果を示し、出力された判定値が閾値未満であると判定部が判定した場合に、PEG添加量が適切であるとの判定結果を示す。 As described above, in this embodiment, the learning model is trained on the appropriateness of the amount of PEG added qualitatively to generate the learned model of the amount of PEG added, but this is not limited to the above. For example, the learning model may be trained on the amount of PEG added quantitatively to generate the learned model of the amount of PEG added. In this case, the amount of PEG added is judged by the learned model of the amount of PEG added, and the judgment result of the amount of PEG added is output, for example, as a judgment value. The judgment value here is not a binary value of 0 or 1, but a value having a predetermined numerical range. Then, in the addition amount judgment process 14, the appropriateness of the amount of PEG added is judged based on the judgment result of the judgment unit that judges the appropriateness of the amount of PEG added based on a comparison between the output judgment value and a threshold value. That is, in the addition amount judgment process 14, if the judgment unit judges that the output judgment value is equal to or greater than the threshold value, the judgment result that the amount of PEG added is inappropriate is displayed, and if the judgment unit judges that the output judgment value is less than the threshold value, the judgment result that the amount of PEG added is appropriate is displayed.
<添加量判定工程14の変形例>
添加量判定工程14では、前述のように、測定データと添加量データとの相関関係を機械学習させた添加量学習済モデルを用いて、PEG添加量を判定していたが、これに限られない。
<Modification of the addition amount determination step 14>
As described above, in the addition amount determination step 14, the amount of PEG added is determined using an addition amount trained model that has been machine-learned to determine the correlation between the measurement data and the addition amount data, but this is not limited to this.
例えば、複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該複数の被検者から採取した生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係を求めた回帰モデルを用いて、PEG添加量を判定してもよい。 For example, the amount of PEG added may be determined using a regression model that determines the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples collected from the multiple subjects.
本変形例では、添加量判定工程14において、回帰モデルにスモールRNAデータを入力することによって、PEG添加量を判定する。具体的には、添加量判定工程14では、例えば、回帰モデルにスモールRNAデータを入力することによって、PEG添加量の値を出力する。 In this modified example, the amount of PEG to be added is determined by inputting small RNA data into a regression model in the amount-to-add determination step 14. Specifically, in the amount-to-add determination step 14, for example, the small RNA data is input into a regression model to output a value for the amount of PEG to be added.
この場合では、回帰モデルによって、PEG添加量が判定され、当該PEG添加量の判定結果が、例えば、判定値として出力される。ここでいう判定値は、0又は1の2値ではなく、予め定められた数値範囲を有する値である。そして、添加量判定工程14では、出力された判定値と閾値との比較に基づいてPEG添加量の適否が判定する判定部の判定結果に基づき、PEG添加量の適否を判定してもよい。すなわち、添加量判定工程14では、出力された判定値が閾値以上であると判定部が判定した場合に、PEG添加量が不適切であるとの判定結果を示し、出力された判定値が閾値未満であると判定部が判定した場合に、PEG添加量が適切であるとの判定結果を示す。 In this case, the amount of PEG to be added is determined by a regression model, and the determination result of the amount of PEG to be added is output, for example, as a determination value. The determination value here is not a binary value of 0 or 1, but a value having a predetermined numerical range. Then, in the amount-of-addition determination step 14, the appropriateness of the amount of PEG to be added may be determined based on the determination result of a determination unit that determines whether the amount of PEG to be added is appropriate based on a comparison between the output determination value and a threshold value. That is, in the amount-of-addition determination step 14, if the determination unit determines that the output determination value is equal to or greater than the threshold value, the determination result that the amount of PEG to be added is inappropriate is displayed, and if the determination unit determines that the output determination value is less than the threshold value, the determination result that the amount of PEG to be added is appropriate is displayed.
なお、添加量判定工程14としては、前述の添加量学習済モデル、及び前述の回帰モデルを用いる場合に限られず、種々のアルゴリズムによる判定基準を用いることが可能である。添加量判定工程14で用いられる判定基準としては、複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準であって、スモールRNAデータから添加量を判定可能なものであればよい。 The addition amount determination step 14 is not limited to the use of the above-mentioned addition amount learned model and the above-mentioned regression model, and it is possible to use a determination criterion based on various algorithms. The determination criterion used in the addition amount determination step 14 is a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when ligating multiple small RNAs in the biological samples, and it is sufficient that the addition amount can be determined from the small RNA data.
<罹患判定工程16>
罹患判定工程16は、疾患の罹患の有無を判定する工程である。具体的には、罹患判定工程16では、生体由来試料中の複数のスモールRNAを測定した結果を示す測定データと、該生体由来試料が採取された被検者における疾患の罹患の有無を示す罹患データとの相関関係を機械学習させた疾患学習済モデルに、測定工程12にて得られたスモールRNAデータを入力することによって、疾患の罹患の有無を判定する。
<Medition determination step 16>
The disease determination step 16 is a step of determining the presence or absence of a disease. Specifically, in the disease determination step 16, the small RNA data obtained in the measurement step 12 is input to a disease-trained model that has been machine-learned to determine the correlation between measurement data showing the results of measuring a plurality of small RNAs in a biological sample and disease data showing the presence or absence of a disease in a subject from whom the biological sample was collected, thereby determining the presence or absence of a disease.
罹患判定工程16では、添加量判定工程14においてPEG添加量が適切であるとの判定結果であった場合に、疾患の罹患の有無を判定する。換言すれば、添加量判定工程14においてPEG添加量が不適切であるとの判定結果であった場合には、罹患判定工程16は実行されない。なお、この場合では、例えば、PEG添加量が不適切であるとの判定結果がユーザ(すなわち判定方法を実行する実行者)に提示してもよい。 In the disease assessment step 16, if the result of the assessment in the addition amount assessment step 14 is that the amount of PEG added is appropriate, the presence or absence of a disease is assessed. In other words, if the result of the assessment in the addition amount assessment step 14 is that the amount of PEG added is inappropriate, the disease assessment step 16 is not executed. In this case, for example, the result of the assessment that the amount of PEG added is inappropriate may be presented to the user (i.e., the person who executes the assessment method).
疾患判別学習済モデルで判定する疾患は、添加量学習済モデルで学習に使用した疾患と同じ疾患であることが望ましい。例えば、添加量学習済モデルで学習に使用した疾患が、癌疾患であれば、疾患判別学習済モデルで判定する疾患も、癌疾患である。具体的には、疾患判別学習済モデルで訓練データとして使用する測定データの疾患種は、添加量学習済モデルで訓練データとして使用した測定データの疾患種と同じであることが望ましい。 It is desirable that the disease determined by the disease discrimination trained model is the same as the disease used for training in the additive amount trained model. For example, if the disease used for training in the additive amount trained model is cancer, the disease determined by the disease discrimination trained model is also cancer. Specifically, it is desirable that the disease type of the measurement data used as training data in the disease discrimination trained model is the same as the disease type of the measurement data used as training data in the additive amount trained model.
前述のように、添加量判定工程14においてPEG添加量が不適切であるとの判定結果であった場合には、罹患判定工程16は実行されなかったが、これに限らない。例えば、添加量判定工程14においてPEG添加量が不適切であるとの判定結果であっても、例えば、参考データとして判定結果を得る場合には、罹患判定工程16を実行してもよい。この場合では、例えば、PEG添加量が不適切であるとの判定結果が得られた上で、判定を行ったことをユーザに提示してもよい。また、本実施形態では、罹患判定工程16は、添加量判定工程14の後に実行されていたが、添加量判定工程14の前に実行されてもよい。この場合では、添加量判定工程14においてPEG添加量が不適切であるとの判定結果であった場合に、罹患判定工程16の判定結果は、例えば、参考データとして取り扱われる。 As described above, if the addition amount determination step 14 determined that the amount of PEG added was inappropriate, the disease determination step 16 was not executed, but this is not limited to the above. For example, even if the addition amount determination step 14 determined that the amount of PEG added was inappropriate, the disease determination step 16 may be executed if the determination result is to be obtained as reference data, for example. In this case, for example, after the determination result that the amount of PEG added was inappropriate is obtained, the fact that the determination was made may be presented to the user. Also, in this embodiment, the disease determination step 16 was executed after the addition amount determination step 14, but it may be executed before the addition amount determination step 14. In this case, if the addition amount determination step 14 determined that the amount of PEG added was inappropriate, the determination result of the disease determination step 16 is treated as reference data, for example.
<判定システム20>
次に、前述の判定方法を実行するシステムとしての判定システム20について説明する。判定システム20は、図2に示されるように、測定装置21と、判定装置30と、を有している。
<Determination system 20>
Next, a description will be given of a determination system 20 that executes the above-mentioned determination method. The determination system 20 includes a measurement device 21 and a determination device 30, as shown in FIG.
<測定装置21>
測定装置21は、測定部の一例であり、前述の測定工程12を実行する装置である。すなわち、測定装置21は、複数の検体の各々に含まれる複数のスモールRNAの発現量を測定する。測定装置21としては、例えば、NGSが用いられる。
<Measuring device 21>
The measurement device 21 is an example of a measurement unit, and is a device that executes the above-mentioned measurement step 12. That is, the measurement device 21 measures the expression levels of multiple small RNAs contained in each of multiple samples. As the measurement device 21, for example, an NGS is used.
<判定装置30>
判定装置30は、判定部の一例である。判定装置30は、前述の添加量判定工程14を実行する装置である。すなわち、判定装置30は、被検者の生体由来試料中の複数のスモールRNAを測定した結果を示すスモールRNAデータを取得し、取得したスモールRNAデータを添加量学習済モデルに入力することによって、被検者から採取された生体由来試料に係るPEG添加量の判定を行う。
<Determination device 30>
The determination device 30 is an example of a determination unit. The determination device 30 is a device that executes the above-mentioned addition amount determination step 14. That is, the determination device 30 acquires small RNA data indicating the results of measuring a plurality of small RNAs in a biological sample of a subject, and inputs the acquired small RNA data into an addition amount trained model to determine the amount of PEG added to the biological sample collected from the subject.
さらに、判定装置30は、前述の罹患判定工程16を実行する。すなわち、判定装置30は、生体由来試料中の複数のスモールRNAを測定した結果を示す測定データと、該生体由来試料が採取された被検者における疾患の罹患の有無を示す罹患データとの相関関係を機械学習させた疾患学習済モデルに、測定工程12にて得られたスモールRNAデータを入力することによって、疾患の罹患の有無を判定する。 Furthermore, the determination device 30 executes the disease determination step 16 described above. That is, the determination device 30 determines the presence or absence of a disease by inputting the small RNA data obtained in the measurement step 12 into a disease-trained model that has been machine-learned to determine the correlation between measurement data showing the results of measuring multiple small RNAs in a biological sample and disease presence data showing the presence or absence of a disease in the subject from whom the biological sample was collected.
判定装置30は、コンピュータとしての機能を有し、図2に示されるように、CPU(Central Processing Unit)31、ROM(Read Only Memory)32、RAM(Random Access Memory)33、ストレージ34、入力部35、表示部36及び通信インタフェース(I/F)37を有している。各構成部は、バス39を介して相互に通信可能に接続されている。 The determination device 30 functions as a computer, and as shown in FIG. 2, has a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a storage 34, an input unit 35, a display unit 36, and a communication interface (I/F) 37. Each component is connected to each other via a bus 39 so that they can communicate with each other.
CPU31(プロセッサの一例)は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU31は、ROM32又はストレージ34からプログラムを読み出し、RAM33を作業領域としてプログラムを実行する。CPU31は、ROM32又はストレージ34に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。なお、CPU31は、プロセッサの一例である。 CPU 31 (an example of a processor) is a central processing unit that executes various programs and controls each part. That is, CPU 31 reads a program from ROM 32 or storage 34, and executes the program using RAM 33 as a working area. CPU 31 controls each of the above components and performs various calculation processes according to the program stored in ROM 32 or storage 34. CPU 31 is an example of a processor.
ROM32は、各種プログラム及び各種データを記録する。RAM33は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ34は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを記録する。 ROM 32 records various programs and various data. RAM 33 temporarily stores programs or data as a working area. Storage 34 is composed of a HDD (Hard Disk Drive) or SSD (Solid State Drive), and records various programs including the operating system, and various data.
本実施形態では、例えば、前述の判定方法を行う判定処理を実行させるための判定プログラムがストレージ34に記録されている。判定プログラムは、1つのプログラムであってもよいし、複数のプログラム又はモジュールで構成されるプログラム群であってもよい。なお、判定プログラムは、ROM32に記録されていてもよい。ROM32及びストレージ34は、非一時的な記録媒体の一例として機能する。 In this embodiment, for example, a judgment program for executing a judgment process that performs the above-mentioned judgment method is recorded in storage 34. The judgment program may be a single program, or may be a group of programs consisting of multiple programs or modules. The judgment program may be recorded in ROM 32. ROM 32 and storage 34 function as an example of a non-transitory recording medium.
プロセッサの一例としては、例えば、汎用的なプロセッサである前述のCPUに限られず、例えば、特定の処理を実行させるために専用に設計された回路で構成された専用のプロセッサであってもよい。また、プロセッサの一例としては、1つで構成される場合に限られず、物理的に離れた位置に設けられた複数が協働して成すものであってもよい。 An example of a processor is not limited to the aforementioned CPU, which is a general-purpose processor, but may be, for example, a dedicated processor made up of a circuit designed specifically to execute a specific process. Also, an example of a processor is not limited to a single processor, but may be a processor made up of multiple processors working together at physically separate locations.
入力部35は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。また、入力部35は、測定装置21により測定された複数のスモールRNAの発現量の情報を、入力として受け付ける。 The input unit 35 includes a pointing device such as a mouse and a keyboard, and is used to perform various inputs. The input unit 35 also receives as input information on the expression levels of multiple small RNAs measured by the measurement device 21.
表示部36は、例えば、液晶ディスプレイであり、各種の情報を表示する。判定装置30では、PEG添加量の判定結果、及び疾患の罹患の有無を判定した判定結果を、表示部36を通じてユーザに提示することができる。なお、表示部36は、タッチパネル方式を採用して、入力部35として機能してもよい。 The display unit 36 is, for example, a liquid crystal display, and displays various information. The determination device 30 can present the determination result of the amount of PEG added and the determination result of the presence or absence of a disease to the user through the display unit 36. The display unit 36 may also function as the input unit 35 by adopting a touch panel system.
通信インタフェース37は、他の機器と通信するためのインタフェースであり、例えば、イーサネット(登録商標)、FDDI(Fiber Distributed Data Interface)、Wi-Fi(登録商標)等の規格が用いられる。 The communication interface 37 is an interface for communicating with other devices, and uses standards such as Ethernet (registered trademark), FDDI (Fiber Distributed Data Interface), and Wi-Fi (registered trademark).
図3に示されるように、判定装置30では、CPU31が、判定プログラムを実行することで、判定機能部160、及び罹患判定部170として機能する。 As shown in FIG. 3, in the judgment device 30, the CPU 31 executes the judgment program to function as a judgment function unit 160 and a disease judgment unit 170.
判定機能部160は、前述の添加量判定工程14を実行する。すなわち、判定機能部160は、添加量判定工程14では、測定装置21にて得られたスモールRNAデータを添加量学習済モデルに入力することによって、被検者から採取された生体由来試料のPEG添加量の適否の判定を行う(前述の添加量判定工程14参照)。 The judgment function unit 160 executes the aforementioned addition amount judgment step 14. That is, in the addition amount judgment step 14, the judgment function unit 160 inputs the small RNA data obtained by the measurement device 21 into the addition amount learned model to judge whether the amount of PEG added to the biological sample collected from the subject is appropriate (see the aforementioned addition amount judgment step 14).
罹患判定部170は、罹患判定工程16を実行する。すなわち、罹患判定部170は、生体由来試料中の複数のスモールRNAを測定した結果を示す測定データと、該生体由来試料が採取された被検者における疾患の罹患の有無を示す罹患データとの相関関係を機械学習させた疾患学習済モデルに、測定装置21にて得られたスモールRNAデータを入力することによって、疾患の罹患の有無を判定する(前述の罹患判定工程16参照)。 The disease determination unit 170 executes the disease determination step 16. That is, the disease determination unit 170 determines the presence or absence of a disease by inputting the small RNA data obtained by the measurement device 21 into a disease-trained model that has been machine-learned to determine the correlation between measurement data showing the results of measuring multiple small RNAs in a biological sample and disease data showing the presence or absence of a disease in the subject from whom the biological sample was collected (see the disease determination step 16 described above).
判定装置30では、CPU31は、PEG試薬の添加量の判定結果、及び疾患の罹患の有無の判定結果を出力する処理を行ってもよい。当該処理は、例えば、表示部36への表示、及び外部装置(例えばクラウド)への送信などにより行われる。 In the determination device 30, the CPU 31 may perform processing to output the determination result of the amount of PEG reagent added and the determination result of the presence or absence of a disease. This processing is performed, for example, by displaying on the display unit 36 and transmitting to an external device (e.g., the cloud).
なお、本実施形態では、判定システム20は、測定装置21と、判定装置30と、を有していたが、判定システム20としては、1つの装置で構成されていてもよい。この場合では、当該1つの装置が、測定部、及び判定部の一例として機能する。 In this embodiment, the determination system 20 includes the measurement device 21 and the determination device 30, but the determination system 20 may be configured with a single device. In this case, the single device functions as an example of the measurement unit and the determination unit.
また、判定装置30は、複数の装置で構成されていてもよい。例えば、判定装置30は、前述の添加量判定工程14、及び罹患判定工程16を分担して実行する複数(例えば2つ)の装置で構成されていてもよい。 The determination device 30 may also be composed of multiple devices. For example, the determination device 30 may be composed of multiple (e.g., two) devices that share the functions of the addition amount determination step 14 and the disease determination step 16 described above.
<本実施形態の作用効果>
本実施形態では、前述のように、添加量判定工程14において、複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係を機械学習させた添加量学習済モデルに、測定工程12にて得られたスモールRNAデータを入力することによって、PEG試薬の添加量を判定する。
<Effects of this embodiment>
In this embodiment, as described above, in the addition amount determination step 14, the amount of PEG reagent to be added is determined by inputting the small RNA data obtained in the measurement step 12 into an addition amount trained model that has machine-learned the correlation between measurement data indicating the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data indicating the amount of PEG reagent added when performing ligation on the multiple small RNAs in the biological samples.
このように、測定データと添加量データとの相関関係を機械学習させた添加量学習済モデルに、スモールRNAデータを入力することによって、添加量の判定を行うので、例えば、目視や、測定キット等による測定にて判定を行う場合に比べ、PEG試薬の添加量を高精度に判定可能である。 In this way, the amount of addition is determined by inputting small RNA data into an addition amount trained model that has been machine-learned to learn the correlation between measurement data and addition amount data, so the amount of PEG reagent added can be determined with a high degree of accuracy compared to, for example, determination by visual inspection or measurement using a measurement kit.
このように、本実施形態では、PEG試薬の添加量を高精度に判定可能であるため、精度の高いPEG試薬の添加量の情報を得られ、例えば、罹患判定工程16において、PEG試薬の添加量の情報をユーザによる入力によって得る必要がない。 In this way, in this embodiment, the amount of PEG reagent added can be determined with high accuracy, so highly accurate information on the amount of PEG reagent added can be obtained, and for example, in the disease determination process 16, there is no need to obtain information on the amount of PEG reagent added by inputting it by the user.
<実施例>
次に、実施例について説明する。なお、実施例は、本開示の技術の一例を示すものであり、本開示の技術は、実施例の内容に限定されるものではない。
<Example>
Next, examples will be described. Note that the examples are merely examples of the technology of the present disclosure, and the technology of the present disclosure is not limited to the contents of the examples.
<訓練データ及び評価用データの取得>
本実施例では、健常者24人について、採取工程11を2時間以内に行うことで、生体由来試料としての血清を得た。当該血清に対して、以下の基本処方を基準に以下のようにPEG量を増減させた5処方のPEG試薬の各々を用いてライゲーション工程13を実行し、計120(24人×5処方)の検体を得た。
<Acquisition of training data and evaluation data>
In this example, serum was obtained as a biological sample from 24 healthy subjects by performing the collection step 11 within 2 hours. The serum was subjected to the ligation step 13 using five PEG reagent formulations in which the amount of PEG was increased or decreased based on the basic formulation below, and a total of 120 samples (24 subjects x 5 formulations) were obtained.
ライゲーション工程13を実行した血清(すなわち120の検体)について、NGSを用いて複数のスモールRNAの発現量を測定し、当該測定結果を示すスモールRNAデータを取得した。取得したスモールRNAデータのうち、発現量がゼロのスモールRNAを除外すると共に、発現量が上位100個のスモールRNAについてのスモールRNAデータを用いた。120の検体におけるスモールRNAデータのうち、100(20人×5処方)の検体におけるスモールRNAデータを訓練データとし、20(4人×5処方)の検体におけるスモールRNAデータを評価用データとした。 For the serum that underwent ligation step 13 (i.e., 120 samples), the expression levels of multiple small RNAs were measured using NGS, and small RNA data showing the measurement results were obtained. Of the obtained small RNA data, small RNAs with zero expression levels were excluded, and small RNA data for the top 100 small RNAs with the highest expression levels was used. Of the small RNA data for the 120 samples, the small RNA data for 100 samples (20 people x 5 prescriptions) was used as training data, and the small RNA data for 20 samples (4 people x 5 prescriptions) was used as evaluation data.
〔基本処方〕
Nuclease free water 1.0μL
T4 RNA Ligase Reaction Buffer(NEB/M0242) 1.0μL
100% DMSO(13445-74/ナカライテスク) 1.0μL
50% PEG(NEB/B1004) 1.0μL
トータルRNA 4.0μL
[Basic recipe]
Nuclease-free water 1.0μL
T4 RNA Ligase Reaction Buffer (NEB/M0242) 1.0μL
100% DMSO (13445-74/Nacalai Tesque) 1.0 μL
50% PEG (NEB/B1004) 1.0 μL
Total RNA 4.0μL
〔PEG量の増減〕
処方1:基本処方においてPEG量を50%減少
処方2:基本処方においてPEG量を25%減少
処方3:基本処方においてPEG量を増減なし
処方4:基本処方においてPEG量を25%増加
処方5:基本処方においてPEG量を50%増加
[Increase or decrease in PEG content]
Formulation 1: The amount of PEG was reduced by 50% in the basic formulation. Formulation 2: The amount of PEG was reduced by 25% in the basic formulation. Formulation 3: The amount of PEG was unchanged in the basic formulation. Formulation 4: The amount of PEG was increased by 25% in the basic formulation. Formulation 5: The amount of PEG was increased by 50% in the basic formulation.
<添加量学習済モデルの生成>
以下の添加量学習済モデル1~4の4タイプの2値判定モデルを生成した(図4参照)。
<Creating additive amount trained model>
We generated four types of binary decision models: additive amount trained models 1 to 4 (see Figure 4).
[添加量学習済モデル1]
処方1により得られた訓練データを不良データ群とし、処方2~5により得られた訓練データを良データ群とし、100の検体分の訓練データを用いて添加量学習済モデル1を生成した。すなわち、添加量学習済モデル1は、処方1を不良とし、処方2~5を良とする2値判定を行うモデルである。
[Addition amount trained model 1]
The training data obtained from the formula 1 was treated as a bad data group, and the training data obtained from the formulas 2 to 5 were treated as a good data group, and the training data for 100 samples was used to generate the additive amount trained model 1. In other words, the additive amount trained model 1 is a model that performs a binary judgment in which the formula 1 is bad and the formulas 2 to 5 are good.
[添加量学習済モデル2]
処方1、2により得られた訓練データを不良データ群とし、処方3~5により得られた訓練データを良データ群とし、100の検体分の訓練データを用いて添加量学習済モデル2を生成した。すなわち、添加量学習済モデル2は、処方1、2を不良とし、処方3~5を良とする2値判定を行うモデルである。
[Addition amount trained model 2]
The training data obtained from the recipes 1 and 2 were treated as a bad data group, and the training data obtained from the recipes 3 to 5 were treated as a good data group, and the training data for 100 samples was used to generate the additive amount trained model 2. In other words, the additive amount trained model 2 is a model that performs a binary judgment in which the recipes 1 and 2 are treated as bad, and the recipes 3 to 5 are treated as good.
[添加量学習済モデル3]
処方1~3により得られた訓練データを不良データ群とし、処方4、5により得られた訓練データを良データ群とし、100の検体分の訓練データを用いて添加量学習済モデル3を生成した。すなわち、添加量学習済モデル3は、処方1~3を不良とし、処方4、5を良とする2値判定を行うモデルである。
[Addition amount trained model 3]
The training data obtained from the recipes 1 to 3 were treated as a bad data group, and the training data obtained from the recipes 4 and 5 were treated as a good data group, and the training data for 100 samples was used to generate the additive amount trained model 3. In other words, the additive amount trained model 3 is a model that performs a binary judgment in which the recipes 1 to 3 are bad and the recipes 4 and 5 are good.
[添加量学習済モデル4]
処方1~4により得られた訓練データを不良データ群とし、処方5により得られた訓練データを良データ群とし、100の検体分の訓練データを用いて添加量学習済モデル4を生成した。すなわち、添加量学習済モデル4は、処方1~4を不良とし、処方5を良とする2値判定を行うモデルである。
[Addition amount trained model 4]
The training data obtained from the formulas 1 to 4 were treated as a bad data group, and the training data obtained from the formula 5 were treated as a good data group, and the training data for 100 samples was used to generate the additive amount trained model 4. In other words, the additive amount trained model 4 is a model that performs a binary judgment in which the formulas 1 to 4 are treated as bad and the formula 5 is treated as good.
<学習モデルの例>
機械学習アルゴリズムとして知られている線形、非線形の各種アルゴリズム、又は、複数のアルゴリズムを組合せて使用できる。例えば、以下のアルゴリズムを利用できる。
<Example of learning model>
Various linear and nonlinear algorithms known as machine learning algorithms can be used, or multiple algorithms can be combined. For example, the following algorithms can be used:
Random forest
Gradient boosted trees
Extreme gradient boosted trees
Light-gradient boosted machine
Neural networks
Regularized regression
Elastic-net
K-Nearest neighbors
Support vector machine
Generalized additive model
Random forest
Gradient boosted trees
Extreme gradient boosted trees
Light-gradient boosted machine
Neural networks
Regularized regression
Elastic-net
K-Nearest neighbors
Support vector machine
Generalized additive model
<添加量学習済モデルの性能確認>
20の検体における評価用データを、添加量学習済モデル1~4の各々に入力して、良及び不良の2値判定を行った。添加量学習済モデル1~4において、AUC0.96を超える良好な判定が可能であった(図5参照)。
<Performance verification of additive amount trained model>
The evaluation data for 20 samples was input to each of the additive amount trained models 1 to 4, and a binary judgment of good or bad was performed. In the additive amount trained models 1 to 4, a good judgment with an AUC exceeding 0.96 was possible (see FIG. 5).
なお、添加量学習済モデル1~4を組み合わせて用いることで、PEG添加量を処方1~5にて特定可能な範囲で推定することが可能である。例えば、添加量学習済モデル2にて良判定、添加量学習済モデル3にて不良判定となった場合には、PEG添加量が、基本処方(1.0μL)に対して-25%~+25%の範囲であることが推定される。 In addition, by using a combination of additive amount trained models 1 to 4, it is possible to estimate the amount of PEG added within a range that can be specified for prescriptions 1 to 5. For example, if additive amount trained model 2 judges the product as good and additive amount trained model 3 judges the product as bad, the amount of PEG added is estimated to be in the range of -25% to +25% of the basic prescription (1.0 μL).
<連続値回帰モデルの生成>
処方1~5により得られた訓練データの全てを用いて、PEG添加量を基本処方(1.0μL)に対して何%であるかを推定する連続値回帰モデルを生成した。連続値回帰モデルでは、基本処方(1.0μL)に対して-50%、-25%、0%、+25%、+50%のいずれかであるかを推定するモデルである(図6参照)。
<Generating a continuous regression model>
A continuous value regression model was generated to estimate the percentage of the amount of PEG added relative to the basic formula (1.0 μL) using all of the training data obtained from formulations 1 to 5. The continuous value regression model estimates whether the amount is -50%, -25%, 0%, +25%, or +50% relative to the basic formula (1.0 μL) (see FIG. 6).
<連続値回帰モデルの性能確認>
20の検体における評価用データを、連続値回帰モデルに入力して、PEG添加量を推定した(図7参照)。図7では、実際のPEG添加量を横軸に示し、推定されたPEG添加量を縦軸に示している。図7に示されるように、連続値回帰モデルにより、PEG添加量を推定可能であることが示された。
<Performance check of continuous value regression model>
The evaluation data for the 20 samples were input into a continuous regression model to estimate the amount of PEG added (see FIG. 7). In FIG. 7, the actual amount of PEG added is shown on the horizontal axis, and the estimated amount of PEG added is shown on the vertical axis. As shown in FIG. 7, it was demonstrated that the amount of PEG added can be estimated by the continuous regression model.
本発明は、上記の実施形態に限るものではなく、その主旨を逸脱しない範囲内において種々の変形、変更、改良が可能である。前述の変形例は、適宜、複数組み合わせて構成ししてもよい。 The present invention is not limited to the above-described embodiment, and various modifications, changes, and improvements are possible without departing from the spirit of the invention. The above-described modifications may be combined as appropriate.
判定方法10では、前述のように、生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、該生体由来試料が採取された被検者における疾患の罹患の有無を示す罹患データとの相関関係に機械学習させた疾患学習済モデルに、測定工程12にて得られたスモールRNAデータを入力することによって、疾患の罹患の有無が示される。よって、測定されたスモールRNAの発現量は、当該疾患学習済モデルにおける判定基準に基づき、疾患の罹患の有無を示すものといえる。したがって、判定方法10は、被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定方法であって、前記スモールRNAの発現量は、生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、該生体由来試料が採取された被検者における疾患の罹患の有無を示す罹患データと、の相関関係を機械学習させた疾患学習済モデルにおける判定基準に基づき、前記疾患の罹患の有無を示す、判定方法ともいえる。 In the determination method 10, as described above, the small RNA data obtained in the measurement step 12 is input to a disease-trained model that has been machine-learned to learn the correlation between the measurement data showing the results of measuring the expression levels of multiple small RNAs in a biological sample and the disease data showing the presence or absence of a disease in the subject from whom the biological sample was collected, thereby indicating the presence or absence of a disease. Therefore, it can be said that the measured expression level of the small RNA indicates the presence or absence of a disease based on the judgment criteria in the disease-trained model. Therefore, the determination method 10 is a determination method that determines the amount of PEG reagent used when ligating multiple small RNAs in a biological sample collected from a subject using small RNA data showing the results of measuring the expression levels of the multiple small RNAs, and the expression level of the small RNA indicates the presence or absence of the disease based on the judgment criteria in the disease-trained model that has been machine-learned to learn the correlation between the measurement data showing the results of measuring the expression levels of multiple small RNAs in a biological sample and the disease data showing the presence or absence of a disease in the subject from whom the biological sample was collected.
<付記>
(態様1)
被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定方法であって、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する添加量判定工程
を有する判定方法。
(態様2)
前記添加量判定工程は、
前記測定データと前記添加量データとの相関関係を機械学習させた添加量学習済モデルに、前記スモールRNAデータを入力することによって、前記添加量を判定する
態様1に記載の判定方法。
(態様3)
前記添加量判定工程では、
前記添加量学習済モデルに前記スモールRNAデータを入力することによって、前記添加量の適否を判定する
態様2に記載の判定方法。
(態様4)
前記添加量判定工程では、
前記添加量学習済モデルに前記スモールRNAデータを入力することによって、前記添加量を出力する
態様2に記載の判定方法。
(態様5)
前記添加量判定工程では、
出力した前記添加量と閾値との比較に基づいて、前記添加量の適否を判定する判定部の判定結果に基づき、前記添加量の適否を判定する
態様4に記載の判定方法。
(態様6)
前記添加量判定工程は、
前記測定データと前記添加量データとの相関関係を求めた回帰モデルに、前記スモールRNAデータを入力することによって、前記添加量を判定する
態様1に記載の判定方法。
(態様7)
前記添加量判定工程では、
前記回帰モデルに前記スモールRNAデータを入力することによって、前記添加量の適否を判定する
態様6に記載の判定方法。
(態様8)
前記添加量判定工程では、
前記回帰モデルに前記スモールRNAデータを入力することによって、前記添加量を出力する
態様6に記載の判定方法。
(態様9)
前記添加量判定工程では、
出力した前記添加量と閾値との比較に基づいて、前記添加量の適否を判定する判定部の判定結果に基づき、前記添加量の適否を判定する
態様8に記載の判定方法。
(態様10)
生体由来試料中の複数のスモールRNAを測定した結果を示す測定データと、該生体由来試料が採取された被検者における疾患の罹患の有無を示す罹患データとの相関関係を機械学習させた疾患学習済モデルに、前記スモールRNAデータを入力することによって、前記疾患の罹患の有無を判定する罹患判定工程、
をさらに有する
態様1~9のいずれか1つに記載の判定方法。
(態様10-2)
前記スモールRNAの発現量は、生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、該生体由来試料が採取された被検者における疾患の罹患の有無を示す罹患データと、の相関関係を機械学習させた疾患学習済モデルにおける判定基準に基づき、前記疾患の罹患の有無を示す、
態様1~9のいずれか1つに記載の判定方法。
(態様11)
前記添加量判定工程では、前記添加量の適否を判定し、
前記罹患判定工程では、前記添加量判定工程において前記添加量が適切であるとの判定結果であった場合に、前記疾患の罹患の有無を判定する
態様10に記載の判定方法。
(態様12)
被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定装置であって、
プロセッサを備え、
前記プロセッサは、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する
判定装置。
(態様13)
被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定システムであって、
被検者の生体由来試料中の複数のスモールRNAを測定した結果を示すスモールRNAデータを取得する測定部と、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する判定部と、
を有する判定システム。
(態様14)
コンピュータに、
被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定処理であって、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する前記判定処理
を実行させるための判定プログラム。
(態様15)
コンピュータに、
被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定処理であって、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する前記判定処理
を実行させるための判定プログラムが記録された非一時的な記録媒体。
<Additional Notes>
(Aspect 1)
A method for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs, comprising:
The method includes an addition amount determination step of determining the amount of addition from the small RNA data based on a determination criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on the multiple small RNAs in the biological samples.
(Aspect 2)
The addition amount determining step includes:
The method according to aspect 1, further comprising inputting the small RNA data into an added amount trained model that has been machine-learned to determine a correlation between the measurement data and the added amount data, thereby determining the added amount.
(Aspect 3)
In the addition amount determination step,
The method according to aspect 2, further comprising inputting the small RNA data into the additive amount trained model to determine whether the additive amount is appropriate.
(Aspect 4)
In the addition amount determination step,
The method according to aspect 2, further comprising inputting the small RNA data into the additive amount trained model to output the additive amount.
(Aspect 5)
In the addition amount determination step,
The method according to aspect 4, further comprising: determining whether the amount of addition is appropriate based on a determination result of a determination unit that determines whether the amount of addition is appropriate based on a comparison between the output amount of addition and a threshold value.
(Aspect 6)
The addition amount determining step includes:
The method according to aspect 1, further comprising inputting the small RNA data into a regression model that determines a correlation between the measurement data and the data on the amount of addition, thereby determining the amount of addition.
(Aspect 7)
In the addition amount determination step,
The method according to aspect 6, further comprising inputting the small RNA data into the regression model to determine whether the amount of addition is appropriate.
(Aspect 8)
In the addition amount determination step,
The method according to aspect 6, further comprising inputting the small RNA data into the regression model to output the amount to be added.
(Aspect 9)
In the addition amount determination step,
The method according to aspect 8, further comprising: determining whether the amount of addition is appropriate based on a determination result of a determination unit that determines whether the amount of addition is appropriate based on a comparison between the output amount of addition and a threshold value.
(Aspect 10)
a disease determination step of determining the presence or absence of a disease by inputting the small RNA data into a disease trained model that has been machine-learned to determine a correlation between measurement data showing the results of measuring a plurality of small RNAs in a biological sample and disease presence data showing the presence or absence of a disease in a subject from whom the biological sample was collected;
The method according to any one of aspects 1 to 9, further comprising:
(Aspect 10-2)
The expression level of the small RNA indicates the presence or absence of the disease based on a judgment criterion in a disease-trained model that machine-learns the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in a biological sample and disease occurrence data showing the presence or absence of the disease in the subject from whom the biological sample was collected.
The method according to any one of aspects 1 to 9.
(Aspect 11)
In the addition amount determination step, the appropriateness of the addition amount is determined,
The method according to aspect 10, wherein the morbidity determination step determines whether or not the subject is afflicted with the disease when the addition amount determination step determines that the addition amount is appropriate.
(Aspect 12)
A determination device that determines an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data indicating a result of measuring the expression levels of the plurality of small RNAs, comprising:
A processor is provided.
The processor,
A determination device that determines the amount of addition from the small RNA data based on a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
(Aspect 13)
A system for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs, comprising:
A measurement unit that acquires small RNA data indicating the results of measuring a plurality of small RNAs in a biological sample of a subject;
a determination unit that determines the amount of addition from the small RNA data based on a determination criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when ligating the multiple small RNAs in the biological samples;
A determination system having the above configuration.
(Aspect 14)
On the computer,
A process for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs, comprising:
A determination program for executing a determination process that determines the amount of addition from the small RNA data based on a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
(Aspect 15)
On the computer,
A process for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs, comprising:
A non-temporary recording medium having recorded thereon a judgment program for executing a judgment process for determining the amount of addition from the small RNA data based on a judgment criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
2023年10月24日に出願された日本国特許出願2023-182778号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2023-182778, filed on October 24, 2023, is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are incorporated herein by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference.
Claims (15)
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する添加量判定工程
を有する判定方法。 A method for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs, comprising:
The method includes an addition amount determination step of determining the amount of addition from the small RNA data based on a determination criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on the multiple small RNAs in the biological samples.
前記測定データと前記添加量データとの相関関係を機械学習させた添加量学習済モデルに、前記スモールRNAデータを入力することによって、前記添加量を判定する
請求項1に記載の判定方法。 The addition amount determining step includes:
The method according to claim 1 , further comprising: inputting the small RNA data into an additive amount trained model that has been machine-learned to determine a correlation between the measurement data and the additive amount data, thereby determining the additive amount.
前記添加量学習済モデルに前記スモールRNAデータを入力することによって、前記添加量の適否を判定する
請求項2に記載の判定方法。 In the addition amount determination step,
The method according to claim 2 , further comprising inputting the small RNA data into the additive amount trained model to determine whether the additive amount is appropriate.
前記添加量学習済モデルに前記スモールRNAデータを入力することによって、前記添加量を出力する
請求項2に記載の判定方法。 In the addition amount determination step,
The method according to claim 2 , further comprising: inputting the small RNA data into the additive amount trained model to output the additive amount.
出力した前記添加量と閾値との比較に基づいて、前記添加量の適否を判定する判定部の判定結果に基づき、前記添加量の適否を判定する
請求項4に記載の判定方法。 In the addition amount determination step,
The method according to claim 4 , further comprising the step of: determining whether the amount of addition is appropriate based on a result of a determination made by a determination unit that determines whether the amount of addition is appropriate based on a comparison between the output amount of addition and a threshold value.
前記測定データと前記添加量データとの相関関係を求めた回帰モデルに、前記スモールRNAデータを入力することによって、前記添加量を判定する
請求項1に記載の判定方法。 The addition amount determining step includes:
The method according to claim 1 , further comprising inputting the small RNA data into a regression model that determines a correlation between the measurement data and the data on the amount of addition, thereby determining the amount of addition.
前記回帰モデルに前記スモールRNAデータを入力することによって、前記添加量の適否を判定する
請求項6に記載の判定方法。 In the addition amount determination step,
The method according to claim 6 , further comprising inputting the small RNA data into the regression model to determine whether the amount of addition is appropriate.
前記回帰モデルに前記スモールRNAデータを入力することによって、前記添加量を出力する
請求項6に記載の判定方法。 In the addition amount determination step,
The method according to claim 6 , further comprising inputting the small RNA data into the regression model to output the amount to be added.
出力した前記添加量と閾値との比較に基づいて、前記添加量の適否を判定する判定部の判定結果に基づき、前記添加量の適否を判定する
請求項8に記載の判定方法。 In the addition amount determination step,
The method according to claim 8 , further comprising the step of: determining whether the amount of addition is appropriate based on a determination result of a determination unit that determines whether the amount of addition is appropriate based on a comparison between the output amount of addition and a threshold value.
をさらに有する
請求項1に記載の判定方法。 a disease determination step of determining the presence or absence of a disease by inputting the small RNA data into a disease trained model that has been machine-learned to determine a correlation between measurement data showing the results of measuring a plurality of small RNAs in a biological sample and disease presence data showing the presence or absence of a disease in a subject from whom the biological sample was collected;
The method of claim 1 further comprising:
前記罹患判定工程では、前記添加量判定工程において前記添加量が適切であるとの判定結果であった場合に、前記疾患の罹患の有無を判定する
請求項10に記載の判定方法。 In the addition amount determination step, the appropriateness of the addition amount is determined,
The method according to claim 10 , wherein in the disease determination step, the presence or absence of the disease is determined when the addition amount determination step determines that the addition amount is appropriate.
プロセッサを備え、
前記プロセッサは、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する
判定装置。 A determination device that determines an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data indicating a result of measuring the expression levels of the plurality of small RNAs, comprising:
A processor is provided.
The processor,
A determination device that determines the amount of addition from the small RNA data based on a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
被検者の生体由来試料中の複数のスモールRNAを測定した結果を示すスモールRNAデータを取得する測定部と、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する判定部と、
を有する判定システム。 A system for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs, comprising:
A measurement unit that acquires small RNA data indicating the results of measuring a plurality of small RNAs in a biological sample of a subject;
a determination unit that determines the amount of addition from the small RNA data based on a determination criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when ligating the multiple small RNAs in the biological samples;
A determination system having the above configuration.
被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定処理であって、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する前記判定処理
を実行させるための判定プログラム。 On the computer,
A process for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs, comprising:
A determination program for executing a determination process that determines the amount of addition from the small RNA data based on a determination criterion based on the correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
被検者から採取された生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用されたPEG試薬の添加量を、当該複数のスモールRNAの発現量を測定した結果を示すスモールRNAデータを用いて判定する判定処理であって、
複数の被検者から採取した生体由来試料中の複数のスモールRNAの発現量を測定した結果を示す測定データと、当該生体由来試料中の複数のスモールRNAに対してライゲーションを行う際に使用したPEG試薬の添加量を示す添加量データと、の相関関係に基づく判定基準により、前記スモールRNAデータから前記添加量を判定する前記判定処理
を実行させるための判定プログラムが記録された非一時的な記録媒体。 On the computer,
A process for determining an amount of a PEG reagent used in ligating a plurality of small RNAs in a biological sample collected from a subject, using small RNA data showing a result of measuring the expression levels of the plurality of small RNAs, comprising:
A non-temporary recording medium having recorded thereon a judgment program for executing a judgment process for determining the amount of addition from the small RNA data based on a judgment criterion based on a correlation between measurement data showing the results of measuring the expression levels of multiple small RNAs in biological samples collected from multiple subjects and addition amount data showing the amount of PEG reagent added when performing ligation on multiple small RNAs in the biological samples.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023-182778 | 2023-10-24 | ||
| JP2023182778 | 2023-10-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025089029A1 true WO2025089029A1 (en) | 2025-05-01 |
Family
ID=95515173
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/035849 Pending WO2025089029A1 (en) | 2023-10-24 | 2024-10-07 | Determination method, determination device, determination system, determination program, and recording medium |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025089029A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008500837A (en) * | 2004-05-28 | 2008-01-17 | アンビオン インコーポレーティッド | Methods and compositions involving microRNA |
| JP2018099031A (en) * | 2015-03-20 | 2018-06-28 | アンジェス株式会社 | Methods for determining c-met positive cancers |
| WO2021132547A1 (en) * | 2019-12-25 | 2021-07-01 | 東レ株式会社 | Test method, test device, learning method, learning device, test program and learning program |
-
2024
- 2024-10-07 WO PCT/JP2024/035849 patent/WO2025089029A1/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008500837A (en) * | 2004-05-28 | 2008-01-17 | アンビオン インコーポレーティッド | Methods and compositions involving microRNA |
| JP2018099031A (en) * | 2015-03-20 | 2018-06-28 | アンジェス株式会社 | Methods for determining c-met positive cancers |
| WO2021132547A1 (en) * | 2019-12-25 | 2021-07-01 | 東レ株式会社 | Test method, test device, learning method, learning device, test program and learning program |
Non-Patent Citations (1)
| Title |
|---|
| YUNKE SONG, KELVIN J. LIU, TZA-HUEI WANG: "Elimination of Ligation Dependent Artifacts in T4 RNA Ligase to Achieve High Efficiency and Low Bias MicroRNA Capture", PLOS ONE, vol. 9, no. 4, pages e94619, XP055271347, DOI: 10.1371/journal.pone.0094619 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yeri et al. | Evaluation of commercially available small RNASeq library preparation kits using low input RNA | |
| CN113053535B (en) | Medical information prediction system and medical information prediction method | |
| JP7661878B2 (en) | Inspection method, inspection device, learning method, learning device, inspection program, and learning program | |
| AU2016267392A1 (en) | Validating biomarker measurement | |
| JP2022502027A (en) | Compositions, systems, instruments, and methods for validating microbial flora sequence processing and differential abundance analysis via multiple BESPOKE spike-in mixtures. | |
| JP6208227B2 (en) | System and method for generating a biomarker signature | |
| CN113355438B (en) | A plasma microbial species diversity assessment method, device and storage medium | |
| CN113862351B (en) | Kit and method for identifying extracellular RNA biomarkers in body fluid sample | |
| WO2022053811A1 (en) | Biomarkers for diagnosing a disease such as heart or cardiovascular disease. | |
| US20160370354A1 (en) | Cellular response assay for biofluid biomarker discovery and detection | |
| WO2025089029A1 (en) | Determination method, determination device, determination system, determination program, and recording medium | |
| CN110970089B (en) | Pretreatment method and pretreatment device for fetal concentration calculation and application of pretreatment device | |
| CN110931082A (en) | Method and system for gene detection and evaluation | |
| CN119626506A (en) | A method for constructing a systemic lupus erythematosus activity assessment model and its application | |
| WO2025089033A1 (en) | Testing method, testing device, testing system, testing program, recording medium, and method for generating processing time-trained model | |
| WO2025089035A1 (en) | Testing method, testing device, testing system, testing program, recording medium, and method for generating storage condition-trained model | |
| WO2025089028A1 (en) | Assessment method, assessment device, assessment system, assessment program, recording medium, and method for generating trained model for degree of hemolysis | |
| Sorbie et al. | Increasing transparency and reproducibility in stroke-microbiota research: A toolbox for microbiota analysis | |
| CN105316223A (en) | System and method for analyzing biological sample | |
| WO2025089036A1 (en) | Method for producing property determination model, property determination model, property determination method, and property determination device | |
| WO2025027987A1 (en) | Detection method, presentation device, detection device, detection system, detection program, and recording medium | |
| WO2025094604A1 (en) | Detection method, detection device, detection system, detection program, and recording medium | |
| WO2025089057A1 (en) | Method of preparing and method of storing blood sample for small rna measurement, method of measuring small rna expression level, disease assessment method, evaluation method, model generation method, evaluation device, evaluation system, evaluation program, and recording medium | |
| CN114359890A (en) | Pathogenic microorganism detection and identification method based on convolutional neural network | |
| CN118038961B (en) | Sample analysis processing device based on polymerase chain reaction and electronic equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24882146 Country of ref document: EP Kind code of ref document: A1 |