[go: up one dir, main page]

WO2025057880A1 - Program, map creation device, and learning device - Google Patents

Program, map creation device, and learning device Download PDF

Info

Publication number
WO2025057880A1
WO2025057880A1 PCT/JP2024/032045 JP2024032045W WO2025057880A1 WO 2025057880 A1 WO2025057880 A1 WO 2025057880A1 JP 2024032045 W JP2024032045 W JP 2024032045W WO 2025057880 A1 WO2025057880 A1 WO 2025057880A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
user
monitoring device
information
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/032045
Other languages
French (fr)
Japanese (ja)
Inventor
英利 淺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2024123346A external-priority patent/JP2025043269A/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of WO2025057880A1 publication Critical patent/WO2025057880A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/10Detection; Monitoring

Definitions

  • the present invention relates to a program, a map generating device, and a learning device.
  • This application claims priority based on Japanese Patent Application No. 2023-150238 filed in Japan on September 15, 2023 and Japanese Patent Application No. 2024-123346 filed in Japan on July 30, 2024, the contents of which are incorporated herein by reference.
  • the present invention was made in consideration of these circumstances, and one of its objectives is to provide a program, map generation device, and learning device that can monitor and predict the occurrence of workplace accidents in order to prevent them.
  • aspects 1 of the present invention is a program for causing a processor of a map generation device, which has one or more sensors and communicates with a monitoring device that moves with a user who is being monitored, to execute the following processes: acquiring the output value of the sensor of the monitoring device and the position of the user of the monitoring device; determining that a specified event has occurred to the user of the monitoring device based on the information acquired from the monitoring device; generating map information for displaying a map image showing the number or frequency of the specified event occurring at each location; and outputting the map information to another terminal device.
  • the monitoring device is built into or removably attached to shoes worn by the user.
  • the program of aspect 3 of the present invention is a program for executing a process in which the specified event is a fall, and the number or frequency of falls at each location of the user is generated as map information.
  • the program of aspect 4 of the present invention is a program for executing a process in which the predetermined event is the user's slipping, and the number or frequency of each location where the user's slipping is generated as map information.
  • the program of aspect 5 of the present invention is a program for executing a process in which the specified event is heat stroke, and the number or frequency of occurrence of heat stroke at each location is generated as map information.
  • the program of aspect 6 of the present invention is a program for executing a process in which the predetermined event is a user carrying a heavy object, and the number or frequency of times that the user has carried a heavy object at each location is generated as map information.
  • the program of aspect 7 of the present invention is a program for causing a processor of a map generating device to execute the following processes: acquiring a trained model that has been trained to predict the occurrence of a specific event using the past performance of the specific event as input information; generating a prediction map of the occurrence of the specific event using the trained model; and outputting the prediction map.
  • the program of aspect 8 of the present invention is a program for causing a processor of a map generating device to execute the following processes: acquiring a trained model that has been trained to predict the occurrence and risk of a specified event using the past performance of the specified event as input information; generating a risk level map of the specified event using the trained model; and outputting the risk level map.
  • the program of aspect 9 of the present invention is a program for causing a processor of the map generating device to execute a process of generating the map information for displaying the movement trajectory of the user, who is the target of monitoring, superimposed on the map image, the movement trajectory being generated based on the position of the user.
  • the map generating device of aspect 10 of the present invention is a map generating device that has one or more sensors and communicates with a monitoring device that moves with a user to be monitored, and includes an acquisition unit that acquires the output value of the sensor of the monitoring device and the position of the user of the monitoring device, a determination unit that determines that a specified event has occurred to the user of the monitoring device based on the information acquired from the monitoring device, a map generating unit that generates map information for displaying a map image showing the number of times or frequency at which the specified event has occurred, and an output unit that outputs the map information to another terminal device.
  • the monitoring device is built into or removably attached to shoes worn by the user.
  • the learning device of aspect 12 of the present invention is for executing an acquisition unit that acquires past records of specific events that have occurred to a user of the monitoring device and a model generation unit that generates a trained model that has been trained to be able to predict the occurrence of the specific events.
  • FIG. 1 is an overall view of a map output system 1.
  • FIG. 11 shows an example of a map image displayed by a second terminal device 400.
  • 13 is a diagram showing an example of a work accident occurrence prediction map image displayed by the second terminal device 400.
  • FIG. 13 is a diagram showing an example of a work accident risk level map displayed by the second terminal device 400.
  • FIG. 13 is a diagram showing an example of a work accident risk level map including traffic line data displayed by the second terminal device 400.
  • FIG. FIG. 3 is a diagram showing an example of a map image including flow line data in the map image of FIG. 2 .
  • FIG. 13 is a diagram showing an example of processing performed by a model generating unit 620.
  • FIG. 1 is an overall view of a map output system 1.
  • the map output system 1 includes, for example, a monitoring device 100 and a map generating device 200.
  • the monitoring device 100 is connected to the map generating device 200 via a first terminal device 300, a second terminal device 400, and a network NW.
  • the network NW includes, for example, the Internet, a LAN (Local Area Network), a wireless base station, a provider device, and the like.
  • the monitoring device 100 and the first terminal device 300 are connected by short-range wireless communication, for example, Bluetooth (registered trademark).
  • Multiple beacon transmitters 500 are installed, for example, in a factory where the user works.
  • the beacon transmitter 500 wirelessly transmits a signal (e.g., an RFID signal) once every few seconds within a radius of several meters to several tens of meters.
  • the beacon transmitter 500 is installed, for example, at regular intervals in the user's work area.
  • the beacon transmitter 500 includes, for example, a transmitter ID. It is assumed that the monitoring device 100 knows in advance the installation location of the beacon transmitter 500 corresponding to the transmitter ID.
  • the monitoring device 100 includes, for example, a communication unit 110, pressure sensors 120L and 120R, acceleration sensors 130L and 130R, a temperature sensor 140, a heartbeat sensor 150, a position detection unit 160, a report unit 170, and a beacon receiver 180.
  • the monitoring device 100 is a device that is built into or detachably attached to a shoe, and includes components for the left foot and the right foot.
  • the communication unit 110, the temperature sensor 140, the heartbeat sensor 150, the position detection unit 160, the report unit 170, and the beacon receiver 180 are provided on either the left foot or the right foot, or on both.
  • the symbols L and R indicating whether the sensor is for the left foot or the right foot may be omitted in the description. It is also preferable that there are multiple pressure sensors 120L and 120R for the left and right feet.
  • the number of sensors included in the monitoring device 100 may be 1 or more, 2 or more, or 5 or more.
  • the number of sensors included in the monitoring device 100 may be 100 or less, 10 or less, or 5 or less.
  • the temperature sensor 140, heart rate sensor 150, position detection unit 160, reporting unit 170, and beacon receiver 180 may be used as part of the monitoring device 100 in a mobile terminal, a mobile phone, or a smart watch.
  • the monitoring device 100 may be anything that moves with the user who is the subject of monitoring.
  • the monitoring device 100 may be attached to the user's body or clothing, or attached like a wristwatch strap. In this case, the burden of attaching and carrying the device on the user who is the subject of monitoring is reduced.
  • the monitoring device 100 may be built into an accessory, or may be attached in a detachable manner. Attached also includes being stored. Accessories include, for example, safety shoes, helmets, belts, work clothes, and other items worn by workers. The user will not forget to wear such accessories, so forgetting to carry the monitoring device 100 is suppressed.
  • the monitoring device 100 may be an insole (insole) of a shoe, a wristwatch, a finger ring, a necklace, a bracelet, a name tag, etc.
  • the shoes into which the insole is inserted are the shoes worn by the user when working in a facility such as a factory. In this way, if the insole, which is the monitoring device 100, is inserted into the shoes that the user normally wears, the user is more likely to forget to carry the monitoring device 100, which is more preferable.
  • the beacon receiver 180 receives the signal emitted by the beacon transmitter 500 and obtains the transmitter ID.
  • the pressure sensor 120 is a device that uses a pressure-sensitive element to measure the pressure of the user's foot, converts it into an electrical signal, and outputs it.
  • the acceleration sensor 130 is, for example, a three-axis acceleration sensor, and is a device that converts the acceleration of each of the three axes into an electrical signal and outputs it.
  • the acceleration of each of the three axes detected by the acceleration sensor includes a weight acceleration component, which makes it possible to detect the inclination and vibration of the user's foot.
  • the acceleration sensor 130 may be, for example, a gyro sensor.
  • the temperature sensor 140 measures the temperature of the user's feet and/or the outside air temperature, converts it into an electrical signal, and outputs it.
  • the heart rate sensor 150 shines light on the user's leg, detects the light reflected by blood vessels, and measures the pulse rate from the change in the amount of light over time.
  • the heart rate sensor 150 is a device that converts the measured pulse rate into an electrical signal and outputs it. Note that the heart rate sensor 150 may also be a microwave sensor.
  • the position detection unit 160 detects the position of the monitoring device 100 (i.e., the user's position) based on, for example, the transmitter ID acquired by the beacon receiver 180.
  • the position detection unit 160 can detect the installation location of the beacon transmitter 500 from the transmitter ID, so it may detect the installation location of the detected beacon transmitter 500 as the user's position, or, if multiple transmitter IDs are acquired, it may detect the user's position based on the principle of triangulation taking into account the reception strength.
  • the position detection unit 160 may also detect the user's position using information from a GPS receiver (not shown) of the first terminal device 300.
  • the reporting unit 170 outputs the output values of the various sensors, together with, for example, the position detected by the position detection unit 160, to the map generating device 200 via the communication unit 110 and the first terminal device 300. At this time, the reporting unit 170 adds the identification information of the monitoring device 100 and outputs the output values and the position to the map generating device 200.
  • the output information is acquired and managed by the map generating device 200.
  • the map generating device 200 manages information in which the identification information of the monitoring device 100, the output values, and the position are associated with each other as management information.
  • the map generating device 200 includes, for example, a communication unit 210, an acquisition unit 220, a determination unit 230, a map generating unit 240, and an output unit 250.
  • the components other than the communication unit 210 are realized by, for example, a hardware processor such as a CPU (Central Processing Unit) executing a program (software). Some or all of these components may be realized by hardware (including circuitry) such as an LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or GPU (Graphics Processing Unit), or may be realized by collaboration between software and hardware.
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • the program may be stored in advance in a storage device (a storage device with a non-transient storage medium) such as a hard disk drive (HDD) or flash memory, or may be stored in a removable storage medium (a non-transient storage medium) such as a DVD or CD-ROM, and installed by inserting the storage medium into a drive device.
  • a storage device a storage device with a non-transient storage medium
  • HDD hard disk drive
  • flash memory or may be stored in a removable storage medium (a non-transient storage medium) such as a DVD or CD-ROM, and installed by inserting the storage medium into a drive device.
  • the communication unit 210 is a communication interface for connecting to the network NW.
  • the communication unit 210 communicates with the monitoring device 100 via the first terminal device 300.
  • the acquisition unit 220 acquires, for example, the output values of the pressure sensor 120, acceleration sensor 130, temperature sensor 140, and heart rate sensor 150, as well as the user's current location, from the monitoring device 100.
  • the determination unit 230 determines whether the user has fallen, slipped, suffered from heat stroke, or carried a heavy object based on the information acquired by the acquisition unit 220.
  • the determination unit 230 determines whether the user has fallen based on, for example, the output values of the pressure sensor 120 and the acceleration sensor 130.
  • the determination unit 230 may determine whether the user has fallen based only on the output value of the pressure sensor 120. For example, the determination unit 230 determines that the user has fallen when the output values of the pressure sensors 120 of both feet indicate a value less than a threshold value.
  • the determination unit 230 may also determine that the user has fallen when, for example, the output values of the pressure sensors 120 of both feet indicate a value less than a threshold value and the angle of the acceleration sensor 130 changes suddenly (for example, the resultant acceleration exceeds the threshold value within one second).
  • the determination unit 230 determines that the user has fallen, it outputs the number of falls and the location of the falls.
  • the determination unit 230 acquires information on the location where the fall occurred from the acquisition unit 220. The number of falls and the location of the falls are combined to form the fall information.
  • the determination unit 230 may determine whether or not the user has slipped, for example, based on the output value of the acceleration sensor 130. The determination unit 230 determines that the user has slipped if the angle of the acceleration sensor 130 changes suddenly (for example, the resultant acceleration exceeds a threshold within one second). If the determination unit 230 determines that the user has slipped, it outputs the number of times the user has slipped and the location of the slip. As for the location of the slip, the determination unit 230 acquires the location of the user's slip from the acquisition unit 220. The number of times the user has slipped and the location of the slip are combined to form semi-fall information.
  • the determination unit 230 may determine that the user has heat stroke or is likely to have heat stroke. For example, the determination unit 230 may use the value of an outside temperature gauge (not shown) installed in a factory and the output value of the temperature sensor 140 to determine whether the user has heat stroke or is likely to have heat stroke. When the determination unit 230 determines that the user has heat stroke or is likely to have heat stroke, it acquires the location where heat stroke has been determined from the acquisition unit 220. The acquired information that the user has heat stroke and the location where the heat stroke occurred are regarded as heat stroke information.
  • the determination unit 230 may determine whether or not the user has held a heavy object based on, for example, the output value of the pressure sensor 120.
  • the determination unit 230 determines that a heavy object has been held when the output values of the pressure sensors 120 of both feet exceed a threshold value for a certain period of time.
  • the determination unit 230 determines that the user has held a heavy object, it acquires from the acquisition unit 220 the location where the heavy object was held.
  • the acquired information that a heavy object has been held and the location where the heavy object was held are regarded as weight information.
  • the above-mentioned specified events are workplace accidents or events that could become workplace accidents.
  • the determination unit 230 obtains the location where the specified event occurred from the acquisition unit 220, and links each occurrence of the specified event to the location.
  • the map generating unit 240 receives various types of information from the determining unit 230 and generates map information.
  • the map generating unit 240 may generate map information for each type of information, or may generate one piece of map information for all the information.
  • the output unit 250 outputs the map information generated by the map generation unit 240 to the second terminal device 400 and displays it as a map image.
  • the map information may be, for example, an image in JPEG (Joint Photographic Experts Group) format, or may be information such as parameters for displaying the map image on the second terminal device 400 (such as the number of occurrences of an event associated with a coordinate).
  • the memory unit 260 is configured with a storage medium, such as a HDD, flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Read/Write Memory), ROM (Read Only Memory), or any combination of these storage media.
  • the memory unit 260 stores the trained model 632, which will be described later.
  • the first terminal device 300 and the second terminal device 400 are devices that can be connected to the network NW, such as, for example, a smartphone or a tablet terminal.
  • the first terminal device 300 is owned by the user, and the second terminal device 400 is owned by the user's administrator.
  • a monitoring app application software runs on the second terminal device 400, and displays the output values of various sensors and the map output from the map generating device 200 as images.
  • FIG. 2 is a diagram showing an example of a map image displayed by the second terminal device 400. Based on various information determined by the determination unit 230, FIG. 2 shows the locations where a specific event occurred with a black circle, and further shows the frequency that indicates how many times what specific event occurred during an observation period (e.g., one month). Although FIG. 2 shows the number of times per month, for example, all past times may be displayed, or the number of times per year may be displayed. These numbers, frequencies, or details of the specific event may be displayed when an operation is performed on the map image at the location where the specific event occurred or in its vicinity. In other words, the "map image showing the number or frequency of each location where the specific event occurred" may be displayed after the above operation is performed. This information may be displayed on a separate screen, or may be displayed superimposed on the map image.
  • the map generating unit 240 may generate not only the map information that is the basis for the map image shown in FIG. 2, but also a work-related accident prediction map.
  • FIG. 3 shows an example of a work-related accident prediction map image displayed by the second terminal device 400.
  • the work-related accident prediction map is information in map format that predicts what type of work-related accidents will occur.
  • the work-related accident prediction map image shows, for example, locations where work-related accidents are predicted to occur with black circles, and indicates what type of work-related accident will occur with a level such as high, medium, or low based on the output values of various sensors and the past number of occurrences of specified events.
  • the level may be expressed as a numerical value, for example.
  • the map generation unit 240 may, for example, determine a threshold value for each predetermined event, and if the output values of various sensors or the past occurrences of a predetermined event exceed a first threshold, indicate the level as "high”, if the output values are between the first and second thresholds (first threshold > second threshold), indicate the level as "medium”, and if the output values are below the threshold, indicate the level as "low”.
  • Information indicating these levels may be displayed when an operation is performed on the map image at or near the location where the predetermined event occurred. This information may be displayed on a separate screen, or may be superimposed on the map image.
  • the map generating unit 240 may generate a work accident risk level map in addition to generating the work accident occurrence prediction map shown in FIG. 3.
  • FIG. 4 is a diagram showing an example of a work accident risk level map displayed by the second terminal device 400.
  • the work accident risk level map shows the predicted risk of work accidents in map form.
  • the risk of a work accident is, for example, a numerical value obtained by multiplying the type of work accident predicted to occur by the degree of impact. The higher the numerical value of the "work accident risk", the higher the risk.
  • the degree of impact is a numerical value that is set in advance, taking into consideration the impact of the work accident, such as the aftereffects on the user, and the impact on the business. In FIG.
  • a factory for example, a factory is divided into sections of 3 m x 3 m, and mesh processing is performed so that the risk of work accidents can be displayed for each section.
  • the risk of work accidents is indicated by the shade of color, with the darker the color, the higher the risk, and the lighter the color, the lower the risk.
  • the map generating unit 240 may identify a place where a physically demanding task is performed as a place where a work-related accident is likely to occur, or may determine that the risk of a work-related accident occurring is high.
  • the map generating unit 240 may also obtain places where the physical load is high by inputting information on the physical load into the trained model 632. The process of generating the trained model 632 will be described later.
  • a place where the output value of the pressure sensor 120 is higher than the threshold value for a certain period of time only for one foot, or a place where the output value of the pressure sensor 120 is a similar value periodically, may also be identified as a place where a work-related accident is likely to occur, or may determine that the risk of a work-related accident occurring is high.
  • the information indicating the above-mentioned risk level may be displayed in response to a user's operation. For example, when a user performs an operation on a specified area, information indicating the risk level of the area or the vicinity of the area in response to the operation may be displayed. This information may be displayed on a separate screen, or may be displayed superimposed on the map image.
  • the determination unit 230 determines that the user is performing work that places a high physical strain on the user if, for example, the output value of the heart rate sensor 150 exceeds a threshold value for a certain period of time.
  • the map generation unit 240 may consider work that places a high physical strain on the user as work that is likely to cause work-related accidents, and add this to the materials used to generate a work-related accident prediction map or a work-related accident risk level map.
  • the determination unit 230 determines that a work-related accident is likely to occur.
  • Work-related accidents that are likely to occur include, for example, falls and injuries such as back pain.
  • the map generation unit 240 may add information about work-related accidents that are likely to occur to the materials used to generate the work-related accident prediction map and the work-related accident risk level map.
  • the determination unit 230 determines that repetitive work is occurring.
  • the map generation unit 240 may determine that repetitive work is likely to cause injuries such as back pain, and add information about the locations where repetitive work occurs to the materials used to generate the work accident prediction map and the work accident risk level map.
  • the map generating unit 240 may, for example, generate a map by overlaying movement line data on the generated map.
  • the movement line data is obtained by acquiring the user's movement route from the position detecting unit 160 and connecting points with lines.
  • the movement line data is an example of "the movement trajectory of the user generated based on the position of the user who is the target of monitoring.”
  • the map generating unit 240 may generate a map that displays the movement line data alone.
  • FIG. 5 shows an example of an occupational accident risk level map including movement line data displayed by the second terminal device 400.
  • the dotted lines indicate the movement lines of users.
  • the map generating unit 240 may generate a map including movement line data of multiple users.
  • the map generating unit 240 may also generate a map including multiple movement line data of a target user (e.g., movement line data such as work on different dates and times), or may generate a map including movement line data of different users.
  • the map generation unit 240 may generate map information that superimposes the traffic line data on the map of FIG. 2 or FIG. 3 described above. Depending on the user's operation, a map may be displayed that displays any or all of the following information: traffic line data, the number of occurrences of a specific event, the frequency of a specific event, and details of the specific event. This allows the administrator to easily check the information he or she wants to obtain.
  • the cause of a specific event For example, by displaying a map with movement line data overlaid on the map generated as described above, it may be possible to identify the cause of a specific event. For example, by checking the movement line data of a person who has fallen just before the fall, it may be possible to identify the cause of the fall. It is also useful for determining whether the cause of the specific event is the person who caused the specific event or the environment. For example, by analyzing the behavior of each specific event, it may be possible to determine that one person causes the specific events in a similar pattern, even if they appear to be many at first glance. The results of this clarification can be used to plan preventive measures for work-related accidents.
  • the movement line data may be included in the occupational accident risk level map as shown in FIG. 5, or may be included in the map image of FIG. 2 or the occupational accident prediction map of FIG. 3.
  • FIG. 6 is a diagram showing an example of a map image including the movement line data of FIG. 2.
  • the map generating device 200 may display information indicating the movement line data of the specified monitoring device 100 (user) on the map.
  • the map generating device 200 may refer to the management information to identify the movement line data associated with the identification information of the monitoring device 100 used by the specified user, and display a map including the identified movement line data.
  • the identification information of the management information is associated with information indicating whether a specific event has occurred, details of the specific event, and other information. More specifically, the identification information of the management information is associated with the location history when the specific event occurred. For example, when the location where the specific event occurred is operated on the map of FIG. 2 or FIG. 6, the map generating device 200 displays the movement line data where the specific event occurred on the map. In this way, the movement line data is displayed, or the movement line data is displayed in association with the specific event, making it easier to investigate the cause of a work accident or to analyze whether a specific event occurred due to human factors.
  • the trained model 632 is generated, for example, by a learning device 600 that is separate from the map generating device 200.
  • the learning device 600 includes, for example, an acquisition unit 610, a model generating unit 620, and a storage unit 630.
  • the components other than the storage unit 630 are realized, for example, by a processor such as a CPU or GPU executing a program (software). Some or all of these functional units may be realized by hardware such as an LSI, ASIC, or FPGA, or may be realized by a combination of software and hardware.
  • the program may be stored in advance in a storage device such as an HDD or flash memory, or may be stored in a removable storage medium such as a DVD or CD-ROM, and installed in the storage device by inserting the storage medium into a drive device.
  • the storage unit 630 is configured with a storage medium, such as a HDD, a flash memory, an EEPROM, a RAM, a ROM, or any combination of these storage media.
  • the storage unit 630 stores information such as a trained model 632, a training dataset 634, and model setting information 636.
  • the acquisition unit 610 acquires input information from the monitoring device 100, which is the original data of the learning data set 634.
  • the original data is, for example, fall information, half-fall information, heat stroke information, and weight information that are the source of the learning data 634A, and past records of a specific event in the factory that are the source of the teacher data 634B.
  • the learning data set 634 is obtained by associating the learning data 634A with the teacher data 634B.
  • the teacher data 634B may be past records manually input, or may be past records in other factories acquired from outside.
  • the acquisition unit 610 includes a preprocessing unit 612.
  • the preprocessing unit 612 performs preprocessing on the original data to generate a learning dataset 634.
  • the preprocessing unit 612 performs, for example, normalization processing.
  • the model generation unit 620 generates the trained model 632 based on the training data 634A and the teacher data 634B.
  • the training data 634A is obtained by performing preprocessing on various information acquired from the monitoring device 100.
  • the teacher data 634B is obtained by performing preprocessing on the past performance of a specific event in the factory.
  • the number of elements in the training data 634A matches the number of input nodes specified by the model setting information 636.
  • the model setting information 636 is information that specifies the number of input nodes, the number of output nodes, the connection mode of intermediate nodes, etc. of the machine learning model that is the basis of the trained model 632.
  • FIG. 7 is a diagram showing an example of processing performed by the model generation unit 620.
  • the model generation unit 620 learns the parameters of the machine learning model using a technique such as backpropagation so that the output of the machine learning model when learning data 634A is used as input data approaches teacher data 634B. For example, the machine learning model at the point when the above processing has been executed a specified number of times is finalized as the trained model 632.
  • the learning device 600 transmits, for example, the trained model 632 to the map generation device 200.
  • the transmitted trained model 632 is stored in the storage unit 260 of the map generation device 200.
  • the map generation unit 240 generates a work accident occurrence prediction map and a work accident risk level map using the trained model 632.
  • the trained model 632 may be installed in the map generation device 200 by an external medium such as a storage medium.
  • the acquisition unit 610 acquires the fall information, partial fall information, heat stroke information, and weight information from the determination unit 230.
  • the acquisition unit 610 periodically acquires new various information.
  • the learning device 600 acquires the new various information, incorporates it as teacher data 634B so as to obtain more accurate data, and repeats the processing of phase 1 to perform re-learning.
  • the functions of the learning device 600 may be included in the map generating device 200, for example.
  • the map output system 1 described above outputs a map including information about a specific event, which visualizes the frequency of occurrence of the specific event and the location where the specific event occurred, allowing for efficient monitoring and preventive measures against work-related accidents.
  • the map output system 1 outputs the location where the specific event occurred in map format, allowing the manager to understand where the specific event is occurring.
  • the map output system 1 generates a work-related accident prediction map and a work-related accident risk level map using the trained model 632 generated by the learning device 600, allowing for measures and prevention against future work-related accidents.
  • the map output system 1 outputs a map including movement line data, allowing the movement line of a skilled user to be visualized, and work efficiency can be improved by referring to the movement line of a skilled user.
  • the map output system 1 outputs a map including movement line data, allowing the manager to understand entry and exit of prohibited areas.
  • the present invention makes it possible to provide a program, a learning device, and a map generation method that can monitor and predict the occurrence of work-related accidents to prevent them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Computing Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Alarm Systems (AREA)

Abstract

Provided is a program for instructing a processor of a map creation device, which communicates with a monitoring device that includes one or more sensors and moves together with a user being monitored, to execute: a process for acquiring an output value of the sensor of the monitoring device and the location of the user of the monitoring device; a process for determining that a prescribed event has occurred to the user of the monitoring device on the basis of information acquired from the monitoring device; a process for creating map information for displaying a map image representing the number or frequency of the events for each place where the prescribed event has occurred; and a process for outputting the map information to another terminal device.

Description

プログラム、マップ生成装置、および学習装置Program, map generation device, and learning device

 本発明は、プログラム、マップ生成装置、および学習装置に関する。
 本願は、2023年9月15日に日本に出願された特願2023-150238号及び2024年7月30日に日本に出願された特願2024-123346号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a program, a map generating device, and a learning device.
This application claims priority based on Japanese Patent Application No. 2023-150238 filed in Japan on September 15, 2023 and Japanese Patent Application No. 2024-123346 filed in Japan on July 30, 2024, the contents of which are incorporated herein by reference.

 工場などの作業現場には、転倒による怪我や高温による熱中症などの様々な労働災害が発生することがある。管理者は、それらの労働災害を発生させないために監視や対策をする必要がある。 In factories and other workplaces, various workplace accidents can occur, such as injuries from falls and heatstroke due to high temperatures. Managers need to monitor and take measures to prevent these workplace accidents from occurring.

日本国特表2022-531490号公報(A)Japan Special Publication No. 2022-531490 (A)

 しかしながら、管理者が工場を常に監視をすることや、工場の対策するべき箇所の発見をすることは、困難な場合があった。 However, it was sometimes difficult for managers to constantly monitor the factory and to identify areas in the factory where measures needed to be taken.

 本発明は、このような事情を考慮してなされたものであり、労働災害を予防するための監視と発生予想をすることができるプログラム、マップ生成装置、および学習装置を提供することを目的の一つとする。 The present invention was made in consideration of these circumstances, and one of its objectives is to provide a program, map generation device, and learning device that can monitor and predict the occurrence of workplace accidents in order to prevent them.

 上記課題を解決するための、プログラム、マップ生成装置、および学習装置は、以下の構成を採用した。本発明の態様1は、一以上のセンサを備え、見守り対象である使用者と共に移動する見守り装置と通信するマップ生成装置のプロセッサに、前記見守り装置のセンサの出力値と前記見守り装置の使用者の位置を取得する処理と、前記見守り装置から取得された情報に基づいて前記見守り装置の使用者に所定の事象が生じたと判定する処理と、前記所定の事象が生じた場所ごとの回数または頻度を示すマップ画像を表示するためのマップ情報を生成する処理と、前記マップ情報を他の端末装置に出力する処理と、を実行させるためのプログラムである。  In order to solve the above problems, the program, map generation device, and learning device have the following configurations. Aspect 1 of the present invention is a program for causing a processor of a map generation device, which has one or more sensors and communicates with a monitoring device that moves with a user who is being monitored, to execute the following processes: acquiring the output value of the sensor of the monitoring device and the position of the user of the monitoring device; determining that a specified event has occurred to the user of the monitoring device based on the information acquired from the monitoring device; generating map information for displaying a map image showing the number or frequency of the specified event occurring at each location; and outputting the map information to another terminal device.

 本発明の態様2のプログラムにおいて、前記見守り装置は、前記使用者が履いている靴に内蔵されまたは着脱可能に取り付けられる。 In the program of aspect 2 of the present invention, the monitoring device is built into or removably attached to shoes worn by the user.

 本発明の態様3のプログラムは、所定の事象は、転倒であって、使用者が転倒した場所ごとの回数または頻度をマップ情報として生成する処理とを実行するためのプログラムである。 The program of aspect 3 of the present invention is a program for executing a process in which the specified event is a fall, and the number or frequency of falls at each location of the user is generated as map information.

 本発明の態様4のプログラムは、所定の事象は、使用者が足を滑らせたことであって、使用者が足を滑らせた場所ごとの回数または頻度をマップ情報として生成する処理とを実行するためのプログラムである。 The program of aspect 4 of the present invention is a program for executing a process in which the predetermined event is the user's slipping, and the number or frequency of each location where the user's slipping is generated as map information.

 本発明の態様5のプログラムは、所定の事象は、熱中症であって、熱中症が発生した場所ごとの回数または頻度をマップ情報として生成する処理とを実行するためのプログラムである。 The program of aspect 5 of the present invention is a program for executing a process in which the specified event is heat stroke, and the number or frequency of occurrence of heat stroke at each location is generated as map information.

 本発明の態様6のプログラムは、所定の事象は、使用者が重量の重い物体を持つことであって、使用者が重量の重い物体を持った場所ごとの回数または頻度をマップ情報として生成する処理とを実行するためのプログラムである。 The program of aspect 6 of the present invention is a program for executing a process in which the predetermined event is a user carrying a heavy object, and the number or frequency of times that the user has carried a heavy object at each location is generated as map information.

 本発明の態様7のプログラムは、マップ生成装置のプロセッサに、所定の事象の過去実績を入力情報として所定の事象の発生予想ができるように学習された学習済モデルを取得する処理と、学習済モデルを用いて所定の事象の発生予想マップを生成する処理と、発生予想マップを出力する処理とを実行するためのプログラムである。 The program of aspect 7 of the present invention is a program for causing a processor of a map generating device to execute the following processes: acquiring a trained model that has been trained to predict the occurrence of a specific event using the past performance of the specific event as input information; generating a prediction map of the occurrence of the specific event using the trained model; and outputting the prediction map.

 本発明の態様8のプログラムは、マップ生成装置のプロセッサに、所定の事象の過去実績を入力情報として所定の事象の発生予想と危険度予想ができるように学習された学習済モデルを取得する処理と、学習済モデルを用いて所定の事象の危険度レベルマップを生成する処理と、危険度レベルマップを出力する処理と、を実行するためのプログラムである。 The program of aspect 8 of the present invention is a program for causing a processor of a map generating device to execute the following processes: acquiring a trained model that has been trained to predict the occurrence and risk of a specified event using the past performance of the specified event as input information; generating a risk level map of the specified event using the trained model; and outputting the risk level map.

 本発明の態様9のプログラムは、前記マップ生成装置のプロセッサに、前記見守り対象である前記使用者の位置に基づいて生成した前記使用者の移動軌跡を前記マップ画像に重畳して表示するための前記マップ情報を生成する処理、を実行するためのプログラムである。 The program of aspect 9 of the present invention is a program for causing a processor of the map generating device to execute a process of generating the map information for displaying the movement trajectory of the user, who is the target of monitoring, superimposed on the map image, the movement trajectory being generated based on the position of the user.

 本発明の態様10のマップ生成装置は、一以上のセンサを備え、見守り対象の使用者と共に移動する見守り装置と通信するマップ生成装置であって、前記見守り装置のセンサの出力値と前記見守り装置の使用者の位置を取得する取得部と、前記見守り装置から取得された情報に基づいて前記見守り装置の使用者に所定の事象が生じたと判定する判定部と、前記所定の事象が生じた回数または頻度を示すマップ画像を表示するためのマップ情報を生成するマップ生成部と、前記マップ情報を他の端末装置に出力する出力部とを備えるものである。 The map generating device of aspect 10 of the present invention is a map generating device that has one or more sensors and communicates with a monitoring device that moves with a user to be monitored, and includes an acquisition unit that acquires the output value of the sensor of the monitoring device and the position of the user of the monitoring device, a determination unit that determines that a specified event has occurred to the user of the monitoring device based on the information acquired from the monitoring device, a map generating unit that generates map information for displaying a map image showing the number of times or frequency at which the specified event has occurred, and an output unit that outputs the map information to another terminal device.

 本発明の態様11のマップ生成装置において、前記見守り装置は、前記使用者が履いている靴に内蔵されまたは着脱可能に取り付けられる。 In the map generating device of aspect 11 of the present invention, the monitoring device is built into or removably attached to shoes worn by the user.

 本発明の態様12の学習装置は、見守り装置の使用者に起きた所定の事象の過去実績を取得する取得部と所定の事象の発生予想ができるように学習された学習済モデルを生成するモデル生成部とを実行するためのものである。 The learning device of aspect 12 of the present invention is for executing an acquisition unit that acquires past records of specific events that have occurred to a user of the monitoring device and a model generation unit that generates a trained model that has been trained to be able to predict the occurrence of the specific events.

 本発明によれば、労働災害に関する情報が含まれるマップを出力することで、効率的な監視や労働災害の予防対策を講じることができる。 According to the present invention, by outputting a map containing information about work-related accidents, it is possible to implement efficient monitoring and preventive measures against work-related accidents.

マップ出力システム1の全体図である。FIG. 1 is an overall view of a map output system 1. 第2端末装置400が表示するマップ画像の一例を示した図である。FIG. 11 shows an example of a map image displayed by a second terminal device 400. 第2端末装置400が表示する労働災害発生予想マップ画像の一例を示した図である。13 is a diagram showing an example of a work accident occurrence prediction map image displayed by the second terminal device 400. FIG. 第2端末装置400が表示する労働災害危険度レベルマップの一例を示した図である。13 is a diagram showing an example of a work accident risk level map displayed by the second terminal device 400. FIG. 第2端末装置400が表示する動線データを含む労働災害危険度レベルマップの一例を示した図である。13 is a diagram showing an example of a work accident risk level map including traffic line data displayed by the second terminal device 400. FIG. 動線データを図2のマップ画像を含めたマップ画像の一例を示す図である。FIG. 3 is a diagram showing an example of a map image including flow line data in the map image of FIG. 2 . モデル生成部620が行う処理の一例を示した図である。FIG. 13 is a diagram showing an example of processing performed by a model generating unit 620.

 以下、図面を参照し、本発明のプログラム、学習装置、およびマップ生成方法の実施形態について説明する。 Below, we will explain embodiments of the program, learning device, and map generation method of the present invention with reference to the drawings.

 図1は、マップ出力システム1の全体図である。マップ出力システム1は、例えば、見守り装置100と、マップ生成装置200とを備える。見守り装置100は、第1端末装置300と第2端末装置400およびネットワークNWを介してマップ生成装置200と接続される。ネットワークNWは、例えば、インターネット、LAN(Local Area Network)、無線基地局、プロバイダ装置などを含む。見守り装置100と第1端末装置300は、例えば、Bluetooth(登録商標)などの近距離無線通信で接続される。ビーコン発信機500は、例えば、使用者が働く工場内に複数設置される。 FIG. 1 is an overall view of a map output system 1. The map output system 1 includes, for example, a monitoring device 100 and a map generating device 200. The monitoring device 100 is connected to the map generating device 200 via a first terminal device 300, a second terminal device 400, and a network NW. The network NW includes, for example, the Internet, a LAN (Local Area Network), a wireless base station, a provider device, and the like. The monitoring device 100 and the first terminal device 300 are connected by short-range wireless communication, for example, Bluetooth (registered trademark). Multiple beacon transmitters 500 are installed, for example, in a factory where the user works.

 ビーコン発信機500は、数秒に一回無線で半径数メートルから半径数十メートルの範囲に信号(例えばRFID信号)を発信する。ビーコン発信機500は、例えば、使用者の作業場所に一定間隔で設置される。ビーコン発信機500には、例えば、発信機IDが含まれる。見守り装置100は、発信機IDに対応するビーコン発信機500の設置場所を予め知っているものとする。 The beacon transmitter 500 wirelessly transmits a signal (e.g., an RFID signal) once every few seconds within a radius of several meters to several tens of meters. The beacon transmitter 500 is installed, for example, at regular intervals in the user's work area. The beacon transmitter 500 includes, for example, a transmitter ID. It is assumed that the monitoring device 100 knows in advance the installation location of the beacon transmitter 500 corresponding to the transmitter ID.

 以下、各装置の構成要素について説明をする。見守り装置100は、例えば、通信部110と、圧力センサ120Lおよび120Rと、加速度センサ130Lおよび130Rと、温度センサ140と、心拍センサ150と、位置検出部160と、報告部170と、ビーコン受信機180を備える。見守り装置100は、靴に内蔵または着脱可能に取り付けられる装置であって、左足用と右足用の構成要素を含む。通信部110と、温度センサ140と、心拍センサ150と、位置検出部160と、報告部170と、ビーコン受信機180は、左足、右足のいずれか片方、もしくは両方に備えられる。以下、左足用と右足用のどちらのセンサであるかを区別しないときは、左足用と右足用のどちらのセンサであるかを示すL、Rの符号を省略して説明する場合がある。また、圧力センサ120Lおよび120Rは、左足用と右足用とのそれぞれに複数ずつあることが望ましい。
 特に限定されないが、見守り装置100が備えるセンサの個数は、1個以上であってもよく、2個以上であってもよく、5個以上であってもよい。また、特に限定されないが、見守り装置100が備えるセンサの個数は、100個以下であってもよく、10個以下であってもよく、5個以下であってもよい。
 なお、温度センサ140と、心拍センサ150と、位置検出部160、報告部170、ビーコン受信機180については、移動端末、携帯電話またはスマートウォッチを見守り装置100の一部として用いてもよい。
The components of each device will be described below. The monitoring device 100 includes, for example, a communication unit 110, pressure sensors 120L and 120R, acceleration sensors 130L and 130R, a temperature sensor 140, a heartbeat sensor 150, a position detection unit 160, a report unit 170, and a beacon receiver 180. The monitoring device 100 is a device that is built into or detachably attached to a shoe, and includes components for the left foot and the right foot. The communication unit 110, the temperature sensor 140, the heartbeat sensor 150, the position detection unit 160, the report unit 170, and the beacon receiver 180 are provided on either the left foot or the right foot, or on both. Hereinafter, when there is no need to distinguish between the sensor for the left foot and the sensor for the right foot, the symbols L and R indicating whether the sensor is for the left foot or the right foot may be omitted in the description. It is also preferable that there are multiple pressure sensors 120L and 120R for the left and right feet.
Although not particularly limited, the number of sensors included in the monitoring device 100 may be 1 or more, 2 or more, or 5 or more. Furthermore, although not particularly limited, the number of sensors included in the monitoring device 100 may be 100 or less, 10 or less, or 5 or less.
In addition, the temperature sensor 140, heart rate sensor 150, position detection unit 160, reporting unit 170, and beacon receiver 180 may be used as part of the monitoring device 100 in a mobile terminal, a mobile phone, or a smart watch.

 見守り装置100は、見守り対象である使用者と共に移動するものであればよい。見守り装置100は、例えば、使用者の体や衣服に貼られたり、腕時計のベルトのように取り付けられたりする態様であってもよい。この場合、見守り対象の使用者の取り付けや持ち運びの負担が軽減する。見守り装置100は、装身具に内蔵される態様、または着脱可能に取り付けられる態様であってもよい。取り付けられるとは、収容されることも含む。装身具は、例えば、安全靴、ヘルメットや、ベルト、作業着などの労働者が装着するものである。使用者は、このような装身具を忘れずに装着するため、見守り装置100の持ち運びを忘れることが抑制される。この他、見守り装置100は、靴の中敷き(インソール)や、腕時計、指輪、ネックレス、ブレスレット、名札などであってもよい。中敷きが挿入される靴は、使用者が工場などの施設で作業を行う際に履く靴である。このように使用者が通常履く靴に見守り装置100である中敷きが挿入されていれば、利用者の見守り装置100の運び忘れがより抑制され、より好適である。 The monitoring device 100 may be anything that moves with the user who is the subject of monitoring. For example, the monitoring device 100 may be attached to the user's body or clothing, or attached like a wristwatch strap. In this case, the burden of attaching and carrying the device on the user who is the subject of monitoring is reduced. The monitoring device 100 may be built into an accessory, or may be attached in a detachable manner. Attached also includes being stored. Accessories include, for example, safety shoes, helmets, belts, work clothes, and other items worn by workers. The user will not forget to wear such accessories, so forgetting to carry the monitoring device 100 is suppressed. In addition, the monitoring device 100 may be an insole (insole) of a shoe, a wristwatch, a finger ring, a necklace, a bracelet, a name tag, etc. The shoes into which the insole is inserted are the shoes worn by the user when working in a facility such as a factory. In this way, if the insole, which is the monitoring device 100, is inserted into the shoes that the user normally wears, the user is more likely to forget to carry the monitoring device 100, which is more preferable.

 通信部110は、例えば、第1端末装置300およびネットワークNWを介してマップ生成装置200と通信する。これに代えて、通信部110は、第1端末装置300を介さずにネットワークNWに接続してマップ生成装置200と通信してもよい。 The communication unit 110 communicates with the map generating device 200, for example, via the first terminal device 300 and the network NW. Alternatively, the communication unit 110 may communicate with the map generating device 200 by connecting to the network NW without going through the first terminal device 300.

 ビーコン受信機180は、ビーコン発信機500の発する信号を受信し、発信機IDを取得する。 The beacon receiver 180 receives the signal emitted by the beacon transmitter 500 and obtains the transmitter ID.

 圧力センサ120は、使用者の足による圧力を、感圧素子を用いて計測し、電気信号に変換して出力する機器である。 The pressure sensor 120 is a device that uses a pressure-sensitive element to measure the pressure of the user's foot, converts it into an electrical signal, and outputs it.

 加速度センサ130は、例えば、三軸式の加速度センサであり、三軸それぞれの加速度を電気信号に変換して出力する機器である。加速度センサにより検出される三軸それぞれの加速度には重量加速度の成分が含まれるため、これによって使用者の足の傾き、振動を検知することができる。加速度センサ130は、例えば、ジャイロセンサであってもよい。 The acceleration sensor 130 is, for example, a three-axis acceleration sensor, and is a device that converts the acceleration of each of the three axes into an electrical signal and outputs it. The acceleration of each of the three axes detected by the acceleration sensor includes a weight acceleration component, which makes it possible to detect the inclination and vibration of the user's foot. The acceleration sensor 130 may be, for example, a gyro sensor.

 温度センサ140は、使用者の足の温度及び/又は外気温を計測し、電気信号に変換して出力する。 The temperature sensor 140 measures the temperature of the user's feet and/or the outside air temperature, converts it into an electrical signal, and outputs it.

 心拍センサ150は、例えば、使用者の足に対して光を当て、血管によって反射する光を検出し、その光の量の経時変化から脈拍を計測する。心拍センサ150は、計測した脈拍を電気信号に変換して出力する機器である。なお、心拍センサ150は、マイクロ波センサを用いたものであってもよい。 The heart rate sensor 150, for example, shines light on the user's leg, detects the light reflected by blood vessels, and measures the pulse rate from the change in the amount of light over time. The heart rate sensor 150 is a device that converts the measured pulse rate into an electrical signal and outputs it. Note that the heart rate sensor 150 may also be a microwave sensor.

 位置検出部160は、例えば、ビーコン受信機180が取得した発信機IDに基づいて見守り装置100の位置(すなわち使用者の位置)を検出する。位置検出部160は、発信機IDからビーコン発信機500の設置場所を検知することができるので、検知したビーコン発信機500の設置場所を使用者の位置として検出してもよいし、複数の発信機IDを取得した場合、受信強度を考慮して三角測量の原理に基づいて使用者の位置を検出してもよい。また、位置検出部160は、第1端末装置300のGPS受信機(不図示)の情報を用いて使用者の位置を検出してもよい。 The position detection unit 160 detects the position of the monitoring device 100 (i.e., the user's position) based on, for example, the transmitter ID acquired by the beacon receiver 180. The position detection unit 160 can detect the installation location of the beacon transmitter 500 from the transmitter ID, so it may detect the installation location of the detected beacon transmitter 500 as the user's position, or, if multiple transmitter IDs are acquired, it may detect the user's position based on the principle of triangulation taking into account the reception strength. The position detection unit 160 may also detect the user's position using information from a GPS receiver (not shown) of the first terminal device 300.

 報告部170は、各種センサの出力値を、例えば位置検出部160が検出した位置と共に、通信部110と第1端末装置300を介してマップ生成装置200に出力する。この際、報告部170は、見守り装置100の識別情報を加えて、出力値および位置をマップ生成装置200に出力する。出力された情報は、マップ生成装置200により取得され、管理される。例えば、マップ生成装置200では、見守り装置100の識別情報と、出力値と、位置とが対応付けられた情報が管理情報として管理される。 The reporting unit 170 outputs the output values of the various sensors, together with, for example, the position detected by the position detection unit 160, to the map generating device 200 via the communication unit 110 and the first terminal device 300. At this time, the reporting unit 170 adds the identification information of the monitoring device 100 and outputs the output values and the position to the map generating device 200. The output information is acquired and managed by the map generating device 200. For example, the map generating device 200 manages information in which the identification information of the monitoring device 100, the output values, and the position are associated with each other as management information.

 マップ生成装置200は、例えば、通信部210と、取得部220と、判定部230と、マップ生成部240と、出力部250とを備える。通信部210以外の構成要素は、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予めHDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体(非一過性の記憶媒体)に格納されており、記憶媒体がドライブ装置に装着されることでインストールされてもよい。 The map generating device 200 includes, for example, a communication unit 210, an acquisition unit 220, a determination unit 230, a map generating unit 240, and an output unit 250. The components other than the communication unit 210 are realized by, for example, a hardware processor such as a CPU (Central Processing Unit) executing a program (software). Some or all of these components may be realized by hardware (including circuitry) such as an LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or GPU (Graphics Processing Unit), or may be realized by collaboration between software and hardware. The program may be stored in advance in a storage device (a storage device with a non-transient storage medium) such as a hard disk drive (HDD) or flash memory, or may be stored in a removable storage medium (a non-transient storage medium) such as a DVD or CD-ROM, and installed by inserting the storage medium into a drive device.

 通信部210は、ネットワークNWと接続するための通信インターフェースである。通信部210は、第1端末装置300を介して見守り装置100と通信する。 The communication unit 210 is a communication interface for connecting to the network NW. The communication unit 210 communicates with the monitoring device 100 via the first terminal device 300.

 取得部220は、例えば、圧力センサ120と、加速度センサ130と、温度センサ140と、心拍センサ150の出力値、かつ使用者の現在位置を見守り装置100から取得する。 The acquisition unit 220 acquires, for example, the output values of the pressure sensor 120, acceleration sensor 130, temperature sensor 140, and heart rate sensor 150, as well as the user's current location, from the monitoring device 100.

 判定部230は、取得部220で取得した情報に基づいて、使用者が転倒したか否か、足を滑らせたか否か、熱中症が発生したか否か、重量が重たいものを持ったか否かを判定する。 The determination unit 230 determines whether the user has fallen, slipped, suffered from heat stroke, or carried a heavy object based on the information acquired by the acquisition unit 220.

 (1)判定部230は、例えば、圧力センサ120と、加速度センサ130の出力値に基づいて、使用者が転倒したか否かを判定する。判定部230は、例えば、圧力センサ120の出力値のみで転倒したか否かを判定してもよい。判定部230は、例えば、両足の圧力センサ120の出力値が閾値未満を示した場合に、使用者が転倒したと判定する。また、判定部230は、例えば、両足の圧力センサ120の出力値が閾値未満を示し、かつ加速度センサ130の角度の変化が急激に起きた(例えば、合成加速度が1秒以内に閾値を超えた)場合、使用者が転倒したと判定してもよい。判定部230は、使用者が転倒したと判定した場合、転倒回数、転倒場所を出力する。転倒場所は、判定部230が、転倒が起きた場所の情報を取得部220から取得する。転倒回数と、転倒場所とを合わせて転倒情報とする。 (1) The determination unit 230 determines whether the user has fallen based on, for example, the output values of the pressure sensor 120 and the acceleration sensor 130. The determination unit 230 may determine whether the user has fallen based only on the output value of the pressure sensor 120. For example, the determination unit 230 determines that the user has fallen when the output values of the pressure sensors 120 of both feet indicate a value less than a threshold value. The determination unit 230 may also determine that the user has fallen when, for example, the output values of the pressure sensors 120 of both feet indicate a value less than a threshold value and the angle of the acceleration sensor 130 changes suddenly (for example, the resultant acceleration exceeds the threshold value within one second). When the determination unit 230 determines that the user has fallen, it outputs the number of falls and the location of the falls. The determination unit 230 acquires information on the location where the fall occurred from the acquisition unit 220. The number of falls and the location of the falls are combined to form the fall information.

 (2)判定部230は、例えば、加速度センサ130の出力値に基づいて、使用者が足を滑らせたか否かを判定してもよい。判定部230は、加速度センサ130の角度の変化が急激に起きた(例えば、合成加速度が1秒以内に閾値を超えた)場合、使用者が足を滑らせたと判定する。判定部230は、使用者が足を滑らせたと判定した場合、足を滑らせた回数、足を滑らせた場所を出力する。足を滑らせた場所は、判定部230が、使用者が足を滑らせた場所を取得部220から取得する。足を滑らせた回数と、足を滑らせた場所とを合わせて半転倒情報とする。 (2) The determination unit 230 may determine whether or not the user has slipped, for example, based on the output value of the acceleration sensor 130. The determination unit 230 determines that the user has slipped if the angle of the acceleration sensor 130 changes suddenly (for example, the resultant acceleration exceeds a threshold within one second). If the determination unit 230 determines that the user has slipped, it outputs the number of times the user has slipped and the location of the slip. As for the location of the slip, the determination unit 230 acquires the location of the user's slip from the acquisition unit 220. The number of times the user has slipped and the location of the slip are combined to form semi-fall information.

 (3)判定部230は、例えば、温度センサ140の出力値が閾値以上である場合、使用者が熱中症である、または熱中症の可能性があると判定してもよい。判定部230は、例えば、工場に設置されている外気温計(不図示)の値と温度センサ140の出力値を用いて、使用者が熱中症であるか否か、熱中症の可能性があるか否かを判定してもよい。判定部230は、使用者が熱中症である、または熱中症の可能性があると判定した場合、熱中症と判定された場所を取得部220から取得する。取得した熱中症であるという情報と熱中症が発生した場所を、熱中症情報とする。 (3) For example, when the output value of the temperature sensor 140 is equal to or greater than a threshold value, the determination unit 230 may determine that the user has heat stroke or is likely to have heat stroke. For example, the determination unit 230 may use the value of an outside temperature gauge (not shown) installed in a factory and the output value of the temperature sensor 140 to determine whether the user has heat stroke or is likely to have heat stroke. When the determination unit 230 determines that the user has heat stroke or is likely to have heat stroke, it acquires the location where heat stroke has been determined from the acquisition unit 220. The acquired information that the user has heat stroke and the location where the heat stroke occurred are regarded as heat stroke information.

 (4)判定部230は、例えば、圧力センサ120の出力値に基づいて、使用者が重量の重い物体を持ったか否かを判定してもよい。判定部230は、両足の圧力センサ120の出力値が一定時間閾値を超えた場合に重量の重い物体を持ったと判定する。判定部230は、使用者が重量の重い物体を持ったと判定した場合、重量の重い物体持った場所を取得部220から取得する。取得した重量の重い物体を持ったという情報と重量の重い物体を持った場所を、重量情報とする。 (4) The determination unit 230 may determine whether or not the user has held a heavy object based on, for example, the output value of the pressure sensor 120. The determination unit 230 determines that a heavy object has been held when the output values of the pressure sensors 120 of both feet exceed a threshold value for a certain period of time. When the determination unit 230 determines that the user has held a heavy object, it acquires from the acquisition unit 220 the location where the heavy object was held. The acquired information that a heavy object has been held and the location where the heavy object was held are regarded as weight information.

 上述した所定の事象は、労働災害、または労働災害になり得る事象である。判定部230は、所定の事象が発生するたびに取得部220から所定の事象が発生した場所を取得し、所定の事象が発生した1件ごとに場所を紐づける。 The above-mentioned specified events are workplace accidents or events that could become workplace accidents. Each time a specified event occurs, the determination unit 230 obtains the location where the specified event occurred from the acquisition unit 220, and links each occurrence of the specified event to the location.

 マップ生成部240は、判定部230から各種情報を受け取り、マップ情報を生成する。マップ生成部240は、各種情報ごとにマップ情報を生成してもよいし、すべての情報を一つのマップ情報に生成してもよい。 The map generating unit 240 receives various types of information from the determining unit 230 and generates map information. The map generating unit 240 may generate map information for each type of information, or may generate one piece of map information for all the information.

 出力部250は、マップ生成部240にて生成したマップ情報を第2端末装置400に出力し、マップ画像として表示させる。マップ情報は、例えば、JPEG(Joint Photographic Experts Group)形式の画像であってもよいし、マップ画像を第2端末装置400に表示させるためのパラメータ(座標に対応付けられた事象の発生回数など)などの情報でもよい。 The output unit 250 outputs the map information generated by the map generation unit 240 to the second terminal device 400 and displays it as a map image. The map information may be, for example, an image in JPEG (Joint Photographic Experts Group) format, or may be information such as parameters for displaying the map image on the second terminal device 400 (such as the number of occurrences of an event associated with a coordinate).

 記憶部260は、記憶媒体、例えば、HDD、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成される。記憶部260は、後述する学習済モデル632を記憶する。 The memory unit 260 is configured with a storage medium, such as a HDD, flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Read/Write Memory), ROM (Read Only Memory), or any combination of these storage media. The memory unit 260 stores the trained model 632, which will be described later.

 第1端末装置300と第2端末装置400は、例えば、スマートフォンやタブレット端末等のネットワークNWに接続可能な装置である。第1端末装置300は、使用者が所持し、第2端末装置400は、使用者の管理者が所持するものとする。第2端末装置400では、例えば、見守りアプリ(アプリケーションソフトウェア)が動作し、各種センサの出力値や、マップ生成装置200から出力されるマップを画像として表示する。 The first terminal device 300 and the second terminal device 400 are devices that can be connected to the network NW, such as, for example, a smartphone or a tablet terminal. The first terminal device 300 is owned by the user, and the second terminal device 400 is owned by the user's administrator. For example, a monitoring app (application software) runs on the second terminal device 400, and displays the output values of various sensors and the map output from the map generating device 200 as images.

 図2は、第2端末装置400が表示するマップ画像の一例を示した図である。図2は、判定部230にて判定された各種情報に基づいて、所定の事象が発生した場所を黒丸で示しており、更に、どのような所定の事象が観測期間(例えば1カ月)の間に何回発生したかがわかる頻度を示している。図2は、月ごとの回数を示しているが、例えば、過去のすべての回数を表示してもよいし、年ごとの回数を表示してもよい。これらの回数、頻度、または所定の事象の詳細は、マップ画像において所定の事象が発生した場所またはその付近に対する操作がされた場合に、表示されてもよい。すなわち「前記所定の事象が生じた場所ごとの回数または頻度を示すマップ画像」は、上記の操作がされた後に表示されてもよい。これらの情報は、別画面で表示されてもよいし、マップ画像に重畳して表示されてもよい。 2 is a diagram showing an example of a map image displayed by the second terminal device 400. Based on various information determined by the determination unit 230, FIG. 2 shows the locations where a specific event occurred with a black circle, and further shows the frequency that indicates how many times what specific event occurred during an observation period (e.g., one month). Although FIG. 2 shows the number of times per month, for example, all past times may be displayed, or the number of times per year may be displayed. These numbers, frequencies, or details of the specific event may be displayed when an operation is performed on the map image at the location where the specific event occurred or in its vicinity. In other words, the "map image showing the number or frequency of each location where the specific event occurred" may be displayed after the above operation is performed. This information may be displayed on a separate screen, or may be displayed superimposed on the map image.

 マップ生成部240は、図2に示したマップ画像の元となるマップ情報だけでなく、労働災害発生予想マップを生成してもよい。図3は、第2端末装置400が表示する労働災害発生予想マップ画像の一例を示した図である。労働災害発生予想マップは、どのような労働災害が発生するかを予想した情報をマップ形式で表したものである。労働災害発生予想マップ画像は、例えば、労働災害が発生すると予想された箇所を黒丸で示すものであり、各種センサの出力値や所定の事象の過去実績回数に基づいてどのような労働災害が発生するかを高、中、低などのレベルで示している。レベルは、例えば、数値表記であってもよい。 The map generating unit 240 may generate not only the map information that is the basis for the map image shown in FIG. 2, but also a work-related accident prediction map. FIG. 3 shows an example of a work-related accident prediction map image displayed by the second terminal device 400. The work-related accident prediction map is information in map format that predicts what type of work-related accidents will occur. The work-related accident prediction map image shows, for example, locations where work-related accidents are predicted to occur with black circles, and indicates what type of work-related accident will occur with a level such as high, medium, or low based on the output values of various sensors and the past number of occurrences of specified events. The level may be expressed as a numerical value, for example.

 マップ生成部240は、例えば、所定の事象ごとに閾値を定め、各種センサの出力値や所定の事象の過去実績回数が第1閾値を超えた場合、レベルを「高」、第1閾値と第2閾値の間である場合(第1閾値>第2閾値)、レベルを「中」、閾値を下回る場合、レベルを「低」と示してもよい。これらのレベルを示す情報は、マップ画像において所定の事象が発生した場所またはその付近に対する操作がされた場合に、表示されてもよい。これらの情報は、別画面で表示されてもよいし、マップ画像に重畳して表示されてもよい。 The map generation unit 240 may, for example, determine a threshold value for each predetermined event, and if the output values of various sensors or the past occurrences of a predetermined event exceed a first threshold, indicate the level as "high", if the output values are between the first and second thresholds (first threshold > second threshold), indicate the level as "medium", and if the output values are below the threshold, indicate the level as "low". Information indicating these levels may be displayed when an operation is performed on the map image at or near the location where the predetermined event occurred. This information may be displayed on a separate screen, or may be superimposed on the map image.

 マップ生成部240は、図3に示した労働災害発生予想マップを生成するだけではなく、労働災害危険度レベルマップを生成してもよい。図4は、第2端末装置400が表示する労働災害危険度レベルマップの一例を示した図である。労働災害危険度レベルマップは、発生すると予想された労働災害の危険度予想をマップ形式で表したものである。労働災害の危険度とは、例えば、発生すると予想された労働災害の種別に影響度合いを掛け合わせた数値である。「労働災害の危険度」は、その数値が高ければ高いほど危険度が高いものとする。影響度合いとは、その労働災害が発生することで使用者に後遺症が残るなどの影響がどう出るか、事業に対して何が起こるかの影響を考慮し予め設定する数値である。図4は、例えば、工場を3[m]×3[m]ごとの区画に分け、1区画ごとに労働災害の危険度を表示できるようにメッシュ処理を施している。色の濃淡で労働災害の危険度を示しており、色が濃ければ濃いほど危険度が高く、色が薄ければ薄いほど危険度は低いことを示している。 The map generating unit 240 may generate a work accident risk level map in addition to generating the work accident occurrence prediction map shown in FIG. 3. FIG. 4 is a diagram showing an example of a work accident risk level map displayed by the second terminal device 400. The work accident risk level map shows the predicted risk of work accidents in map form. The risk of a work accident is, for example, a numerical value obtained by multiplying the type of work accident predicted to occur by the degree of impact. The higher the numerical value of the "work accident risk", the higher the risk. The degree of impact is a numerical value that is set in advance, taking into consideration the impact of the work accident, such as the aftereffects on the user, and the impact on the business. In FIG. 4, for example, a factory is divided into sections of 3 m x 3 m, and mesh processing is performed so that the risk of work accidents can be displayed for each section. The risk of work accidents is indicated by the shade of color, with the darker the color, the higher the risk, and the lighter the color, the lower the risk.

 マップ生成部240は、身体的負荷が高い作業が行われる場所を労働災害が発生しやすい場所として特定してもよいし、発生する労働災害の危険度が高いとしてもよい。また、マップ生成部240は、学習済モデル632に身体的負荷の情報を入力することで身体的負荷が高くなる場所を取得してもよい。学習済モデル632の生成過程については後述する。圧力センサ120の出力値が片足のみ一定時間閾値より高くなる場合や、圧力センサ120の出力値が定期的に類似する値である場合も同様に労働災害が発生しやすい場所として特定してもよいし、発生する労働災害の危険度が高いとしてもよい。上記の危険度を示す情報は、使用者の操作に応じて表示されてもよい。例えば、使用者が所定の領域に対して操作を行うと、操作に応じた領域または領域付近の危険度を示す情報が表示されてもよい。これらの情報は、別画面で表示されてもよいし、マップ画像に重畳して表示されてもよい。 The map generating unit 240 may identify a place where a physically demanding task is performed as a place where a work-related accident is likely to occur, or may determine that the risk of a work-related accident occurring is high. The map generating unit 240 may also obtain places where the physical load is high by inputting information on the physical load into the trained model 632. The process of generating the trained model 632 will be described later. A place where the output value of the pressure sensor 120 is higher than the threshold value for a certain period of time only for one foot, or a place where the output value of the pressure sensor 120 is a similar value periodically, may also be identified as a place where a work-related accident is likely to occur, or may determine that the risk of a work-related accident occurring is high. The information indicating the above-mentioned risk level may be displayed in response to a user's operation. For example, when a user performs an operation on a specified area, information indicating the risk level of the area or the vicinity of the area in response to the operation may be displayed. This information may be displayed on a separate screen, or may be displayed superimposed on the map image.

 マップ生成部240の処理のため、判定部230は、例えば、心拍センサ150の出力値が一定時間閾値を超えた場合、使用者が、身体的負荷が高い作業を行っていると判定する。マップ生成部240は、身体的負荷が高い作業を、労働災害が発生しやすい作業とみなし労働災害発生予想マップや労働災害危険度レベルマップの生成する材料に加えてもよい。 For the purposes of processing by the map generation unit 240, the determination unit 230 determines that the user is performing work that places a high physical strain on the user if, for example, the output value of the heart rate sensor 150 exceeds a threshold value for a certain period of time. The map generation unit 240 may consider work that places a high physical strain on the user as work that is likely to cause work-related accidents, and add this to the materials used to generate a work-related accident prediction map or a work-related accident risk level map.

 判定部230は、例えば、圧力センサ120の出力値が片足のみ一定時間閾値より高くなる場合、労働災害が発生しやすいと判定する。発生しやすい労働災害は、例えば、転倒や腰痛などの怪我である。マップ生成部240は、発生しやすい労働災害の情報を労働災害発生予想マップや労働災害危険度レベルマップの生成する材料に加えてもよい。 For example, if the output value of the pressure sensor 120 is higher than the threshold value for only one foot for a certain period of time, the determination unit 230 determines that a work-related accident is likely to occur. Work-related accidents that are likely to occur include, for example, falls and injuries such as back pain. The map generation unit 240 may add information about work-related accidents that are likely to occur to the materials used to generate the work-related accident prediction map and the work-related accident risk level map.

 判定部230は、例えば、圧力センサ120の出力値が定期的に類似する値を示す場合、繰り返し作業が発生していると判定する。マップ生成部240は、繰り返し作業は、腰痛などの怪我が発生しやすいとみなし、繰り返し作業が発生する場所の情報を労働災害発生予想マップや労働災害危険度レベルマップの生成する材料に加えてもよい。 For example, if the output value of the pressure sensor 120 periodically indicates a similar value, the determination unit 230 determines that repetitive work is occurring. The map generation unit 240 may determine that repetitive work is likely to cause injuries such as back pain, and add information about the locations where repetitive work occurs to the materials used to generate the work accident prediction map and the work accident risk level map.

 マップ生成部240は、例えば、生成したマップに動線データを重ねたマップを生成してもよい。動線データとは、使用者の移動経路を位置検出部160から取得し、地点を線で繋いだものである。動線データは「見守り対象である前記使用者の位置に基づいて生成した前記使用者の移動軌跡」の一例である。マップ生成部240は、動線データ単体を表示するマップを生成してもよい。 The map generating unit 240 may, for example, generate a map by overlaying movement line data on the generated map. The movement line data is obtained by acquiring the user's movement route from the position detecting unit 160 and connecting points with lines. The movement line data is an example of "the movement trajectory of the user generated based on the position of the user who is the target of monitoring." The map generating unit 240 may generate a map that displays the movement line data alone.

 図5は、第2端末装置400が表示する動線データを含む労働災害危険度レベルマップの一例を示した図である。点線は、使用者の動線を示している。マップ生成部240は、複数人の使用者の動線データを含むマップを生成してもよい。また、マップ生成部240は、対象の使用者の複数の動線データ(例えば、異なる日時での作業などの動線データ)を含むマップを生成してもよいし、異なる使用者の動線データを含むマップを生成してもよい。 FIG. 5 shows an example of an occupational accident risk level map including movement line data displayed by the second terminal device 400. The dotted lines indicate the movement lines of users. The map generating unit 240 may generate a map including movement line data of multiple users. The map generating unit 240 may also generate a map including multiple movement line data of a target user (e.g., movement line data such as work on different dates and times), or may generate a map including movement line data of different users.

 マップ生成部240は、動線データを前述した図2または図3のマップに重畳させるマップ情報を生成してもよい。使用者の操作に応じて、動線データと、所定の事象の回数と、所定の事象の頻度と、所定の事象の詳細とのうちいずれかまたは全部の情報が表示されるマップが表示されてもよい。これにより、管理者は、得たい情報を容易に確認することができる。 The map generation unit 240 may generate map information that superimposes the traffic line data on the map of FIG. 2 or FIG. 3 described above. Depending on the user's operation, a map may be displayed that displays any or all of the following information: traffic line data, the number of occurrences of a specific event, the frequency of a specific event, and details of the specific event. This allows the administrator to easily check the information he or she wants to obtain.

 例えば、上記のように生成されたマップに動線データが重ねられたマップが表示されることにより、所定の事象について原因の特定が可能となることがある。例えば、転倒した人の転倒直前の動線データを確認することで、転倒した原因が特定可能となることがある。また、その所定の事象について、所定の事象が生じたその人に原因があるのか、環境に原因があるのかを判別するのにも役立つ。例えば、所定の事象を一つずつ行動解析することで、一見多いように見えても一人の人が所定の事象を同じようなパターンで起こしているということも解明できる。この解明の結果を労働災害の予防対策の立案に活用することができる。更に、所定の事象を表示する機能を有した上で、動線データ単体を表示するマップを生成することで、例えば、所定の事象と重ね合わせて表示すると表示が見にくくなるような複雑な動線データであっても、動線データを用いた解析が容易になる。また、複数の動線データを1つのマップに表示することもできる。この場合、所定の事象について、複数の動線データを解析することで、その人に原因があるのか、環境に原因があるのかを判別するのを容易にすることができる。 For example, by displaying a map with movement line data overlaid on the map generated as described above, it may be possible to identify the cause of a specific event. For example, by checking the movement line data of a person who has fallen just before the fall, it may be possible to identify the cause of the fall. It is also useful for determining whether the cause of the specific event is the person who caused the specific event or the environment. For example, by analyzing the behavior of each specific event, it may be possible to determine that one person causes the specific events in a similar pattern, even if they appear to be many at first glance. The results of this clarification can be used to plan preventive measures for work-related accidents. Furthermore, by generating a map that displays movement line data alone after having the function of displaying the specific event, it becomes easy to analyze using the movement line data, even if the movement line data is complex and difficult to see when it is displayed overlaid with the specific event. In addition, multiple movement line data can be displayed on one map. In this case, it is possible to easily determine whether the cause of a specific event is the person or the environment by analyzing multiple movement line data.

 なお、図5のように労働災害危険レベルマップに動線データを含めてもよいし、前述した図2のマップ画像や、図3の労働災害発生予想マップに動線データを含めてもよい。図6は、動線データを図2のマップ画像を含めたマップ画像の一例を示す図である。動線データをマップ画像に含めることで、所定の事象の発生と、動線データとを容易に比較して、所定の事象の発生の原因を特定したり、所定の事象の発生を抑制するための立案を検討したりすることができる。 Incidentally, the movement line data may be included in the occupational accident risk level map as shown in FIG. 5, or may be included in the map image of FIG. 2 or the occupational accident prediction map of FIG. 3. FIG. 6 is a diagram showing an example of a map image including the movement line data of FIG. 2. By including the movement line data in the map image, it is possible to easily compare the occurrence of a specified event with the movement line data to identify the cause of the occurrence of the specified event or to consider plans to prevent the occurrence of the specified event.

 マップ生成装置200は、指定された見守り装置100(使用者)の動線データを示す情報をマップに表示させてもよい。例えば、マップ生成装置200は、管理情報を参照して、指定された使用者が利用した見守り装置100の識別情報に対応付けられた動線データを特定し、特定した動線データを含むマップを表示させてもよい。また、管理情報の識別情報には、所定の事象が生じた否かを示す情報や、所定の事象の詳細などの情報が対応付けられている。より具体的には、管理情報の識別情報には、所定の事象が生じた際の位置の履歴が対応付けられている。マップ生成装置200は、例えば、図2や図6のマップで所定の事象が発生した場所を操作すると、所定の事象が生じた動線データをマップに表示させる。このように、動線データが表示されたり、所定の事象に関連付けて動線データが表示されたりするため、労働災害の原因究明や人の要因によって所定の事象が生じたか否かなどの分析がより容易となる。 The map generating device 200 may display information indicating the movement line data of the specified monitoring device 100 (user) on the map. For example, the map generating device 200 may refer to the management information to identify the movement line data associated with the identification information of the monitoring device 100 used by the specified user, and display a map including the identified movement line data. The identification information of the management information is associated with information indicating whether a specific event has occurred, details of the specific event, and other information. More specifically, the identification information of the management information is associated with the location history when the specific event occurred. For example, when the location where the specific event occurred is operated on the map of FIG. 2 or FIG. 6, the map generating device 200 displays the movement line data where the specific event occurred on the map. In this way, the movement line data is displayed, or the movement line data is displayed in association with the specific event, making it easier to investigate the cause of a work accident or to analyze whether a specific event occurred due to human factors.

 学習済モデル632は、例えば、マップ生成装置200とは別体である学習装置600によって生成される。学習装置600は、例えば、取得部610と、モデル生成部620と、記憶部630とを備える。記憶部630以外の構成要素は、例えば、CPU、GPU等のプロセッサがプログラム(ソフトウェア)を実行することで実現される。これらの各機能部のうち一部または全部は、LSIやASIC、FPGA等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予めHDDやフラッシュメモリなどの記憶装置に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることで記憶装置にインストールされてもよい。 The trained model 632 is generated, for example, by a learning device 600 that is separate from the map generating device 200. The learning device 600 includes, for example, an acquisition unit 610, a model generating unit 620, and a storage unit 630. The components other than the storage unit 630 are realized, for example, by a processor such as a CPU or GPU executing a program (software). Some or all of these functional units may be realized by hardware such as an LSI, ASIC, or FPGA, or may be realized by a combination of software and hardware. The program may be stored in advance in a storage device such as an HDD or flash memory, or may be stored in a removable storage medium such as a DVD or CD-ROM, and installed in the storage device by inserting the storage medium into a drive device.

 記憶部630は、記憶媒体、例えば、HDD、フラッシュメモリ、EEPROM、RAM、ROM、またはこれらの記憶媒体の任意の組み合わせによって構成される。記憶部630は、学習済モデル632、学習用データセット634、モデル設定情報636などの情報を記憶する。 The storage unit 630 is configured with a storage medium, such as a HDD, a flash memory, an EEPROM, a RAM, a ROM, or any combination of these storage media. The storage unit 630 stores information such as a trained model 632, a training dataset 634, and model setting information 636.

 [学習段階/フェーズ1]
 以下、学習装置600の各部の機能について、学習段階と推論段階と再学習段階に分けて説明する。学習段階において、取得部610は、学習用データセット634の元データとなる入力情報を見守り装置100から取得する。元データは、例えば、学習用データ634Aの元になる、転倒情報、半転倒情報、熱中症情報、重量情報や、教師データ634Bの元になる、工場における所定の事象の過去実績である。学習用データセット634は、学習用データ634Aと、教師データ634Bとが対応付けられたものである。教師データ634Bは、過去実績を手動で入力したものでもよいし、外部から取得した他の工場における過去実績でもよい。
[Learning stage/Phase 1]
The functions of each part of the learning device 600 will be described below, divided into a learning stage, an inference stage, and a re-learning stage. In the learning stage, the acquisition unit 610 acquires input information from the monitoring device 100, which is the original data of the learning data set 634. The original data is, for example, fall information, half-fall information, heat stroke information, and weight information that are the source of the learning data 634A, and past records of a specific event in the factory that are the source of the teacher data 634B. The learning data set 634 is obtained by associating the learning data 634A with the teacher data 634B. The teacher data 634B may be past records manually input, or may be past records in other factories acquired from outside.

 取得部610は、前処理部612を含む。前処理部612は、元データに対して前処理を行い、学習用データセット634を生成する。前処理部612は、例えば、正規化処理などを行う。 The acquisition unit 610 includes a preprocessing unit 612. The preprocessing unit 612 performs preprocessing on the original data to generate a learning dataset 634. The preprocessing unit 612 performs, for example, normalization processing.

 モデル生成部620は、学習用データ634Aと、教師データ634Bとに基づいて、学習済モデル632を生成する。前述したように、学習用データ634Aは、見守り装置100から取得した各種情報に対して前処理を行ったものである。教師データ634Bは、工場における所定の事象の過去実績に対して前処理を行ったものである。学習用データ634Aの要素数は、モデル設定情報636により規定されている入力ノードの数に一致する。モデル設定情報636は、学習済モデル632の元になる機械学習モデルの入力ノード数、出力ノード数、中間ノードの接続態様などを規定する情報である。 The model generation unit 620 generates the trained model 632 based on the training data 634A and the teacher data 634B. As described above, the training data 634A is obtained by performing preprocessing on various information acquired from the monitoring device 100. The teacher data 634B is obtained by performing preprocessing on the past performance of a specific event in the factory. The number of elements in the training data 634A matches the number of input nodes specified by the model setting information 636. The model setting information 636 is information that specifies the number of input nodes, the number of output nodes, the connection mode of intermediate nodes, etc. of the machine learning model that is the basis of the trained model 632.

 図7は、モデル生成部620が行う処理の一例を示した図である。モデル生成部620は、学習用データ634Aを入力データとした場合の機械学習モデルの出力が教師データ634Bに近づくように、バックプロパゲーションなどの手法により機械学習モデルのパラメータを学習する。例えば、規定回数、上記の処理を実行した時点での機械学習モデルが、学習済モデル632として確定する。 FIG. 7 is a diagram showing an example of processing performed by the model generation unit 620. The model generation unit 620 learns the parameters of the machine learning model using a technique such as backpropagation so that the output of the machine learning model when learning data 634A is used as input data approaches teacher data 634B. For example, the machine learning model at the point when the above processing has been executed a specified number of times is finalized as the trained model 632.

 [推論段階/フェーズ2]
 学習装置600は、例えば、マップ生成装置200に学習済モデル632を送信する。送信された学習済モデル632は、マップ生成装置200の記憶部260に記憶される。マップ生成部240は、学習済モデル632を用いて労働災害発生予想マップや労働災害危険度レベルマップを生成する。学習済モデル632は、記憶媒体などの外部メディアによってマップ生成装置200にインストールされてもよい。
[Inference stage/phase 2]
The learning device 600 transmits, for example, the trained model 632 to the map generation device 200. The transmitted trained model 632 is stored in the storage unit 260 of the map generation device 200. The map generation unit 240 generates a work accident occurrence prediction map and a work accident risk level map using the trained model 632. The trained model 632 may be installed in the map generation device 200 by an external medium such as a storage medium.

 [再学習段階/フェーズ3]
 取得部610は、判定部230から転倒情報、半転倒情報、熱中症情報、重量情報を取得する。取得部610は、新たな各種情報を定期的に取得する。学習装置600は、新たな各種情報を取得し、更に正確なデータになるように教師データ634Bとして取り込み、フェーズ1の処理を繰り返し、再学習を行う。
[Relearning Phase/Phase 3]
The acquisition unit 610 acquires the fall information, partial fall information, heat stroke information, and weight information from the determination unit 230. The acquisition unit 610 periodically acquires new various information. The learning device 600 acquires the new various information, incorporates it as teacher data 634B so as to obtain more accurate data, and repeats the processing of phase 1 to perform re-learning.

 学習装置600は、フェーズ2とフェーズ3をフィードバックとして繰り返し、フェーズ1で構築する学習済モデル632の精度を向上させる。 The learning device 600 repeats phases 2 and 3 as feedback to improve the accuracy of the trained model 632 constructed in phase 1.

 学習装置600の機能は、例えば、マップ生成装置200に含まれていてもよい。 The functions of the learning device 600 may be included in the map generating device 200, for example.

 上述したマップ出力システム1によれば、所定の事象に関する情報が含まれるマップを出力することで、所定の事象の発生頻度と所定の事象の発生場所が可視化されるため効率的な監視や労働災害の予防対策を講じることができる。また、マップ出力システム1が、所定の事象の発生した箇所をマップ形式で出力することによって、管理者がどこで所定の事象が発生しているかを把握することができる。マップ出力システム1が、学習装置600が生成した学習済モデル632を用いて労働災害発生予想マップや労働災害危険度レベルマップを生成することで、将来の労働災害について対策や予防ができる。マップ出力システム1が、動線データを含むマップを出力することで、熟練した使用者の動線を可視化でき、熟練した使用者の動線を参考に作業効率化を図ることができる。また、マップ出力システム1が、動線データを含むマップを出力することで入出禁止箇所の出入りを管理者が把握することができる。 The map output system 1 described above outputs a map including information about a specific event, which visualizes the frequency of occurrence of the specific event and the location where the specific event occurred, allowing for efficient monitoring and preventive measures against work-related accidents. In addition, the map output system 1 outputs the location where the specific event occurred in map format, allowing the manager to understand where the specific event is occurring. The map output system 1 generates a work-related accident prediction map and a work-related accident risk level map using the trained model 632 generated by the learning device 600, allowing for measures and prevention against future work-related accidents. The map output system 1 outputs a map including movement line data, allowing the movement line of a skilled user to be visualized, and work efficiency can be improved by referring to the movement line of a skilled user. In addition, the map output system 1 outputs a map including movement line data, allowing the manager to understand entry and exit of prohibited areas.

 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。  Although the above describes the form for carrying out the present invention using an embodiment, the present invention is in no way limited to such an embodiment, and various modifications and substitutions can be made without departing from the spirit of the present invention.

 本発明によれば、労働災害を予防するための監視と発生予想をすることができるプログラム、学習装置、およびマップ生成方法を提供することが可能となる。 The present invention makes it possible to provide a program, a learning device, and a map generation method that can monitor and predict the occurrence of work-related accidents to prevent them.

 100  見守り装置
 110  通信部
 120  圧力センサ
 130  加速度センサ
 140  温度センサ
 150  心拍センサ
 160  位置検出部
 170  報告部
 180  ビーコン受信機
 200  マップ生成装置
 210  通信部
 220  取得部
 230  判定部
 240  マップ生成部
 250  出力部
 260  記憶部
 300  第1端末装置
 400  第2端末装置
 500  ビーコン発信機
 600  学習装置
 610  取得部
 612  前処理部
 620  モデル生成部
 630  記憶部
 632  学習済モデル
 634  学習用データセット
 636  モデル設定情報
REFERENCE SIGNS LIST 100 Monitoring device 110 Communication unit 120 Pressure sensor 130 Acceleration sensor 140 Temperature sensor 150 Heart rate sensor 160 Position detection unit 170 Report unit 180 Beacon receiver 200 Map generation device 210 Communication unit 220 Acquisition unit 230 Determination unit 240 Map generation unit 250 Output unit 260 Storage unit 300 First terminal device 400 Second terminal device 500 Beacon transmitter 600 Learning device 610 Acquisition unit 612 Preprocessing unit 620 Model generation unit 630 Storage unit 632 Learned model 634 Learning dataset 636 Model setting information

Claims (12)

 一以上のセンサを備え、見守り対象である使用者と共に移動する見守り装置と通信するマップ生成装置のプロセッサに、
 前記見守り装置のセンサの出力値と前記見守り装置の使用者の位置を取得する処理と、
 前記見守り装置から取得された情報に基づいて前記見守り装置の使用者に所定の事象が生じたと判定する処理と、
 前記所定の事象が生じた場所ごとの回数または頻度を示すマップ画像を表示するためのマップ情報を生成する処理と、
 前記マップ情報を他の端末装置に出力する処理と、
 を実行させるためのプログラム。
A processor of a map generating device that has one or more sensors and communicates with a monitoring device that moves with a user who is a target of monitoring,
A process of acquiring an output value of a sensor of the monitoring device and a position of a user of the monitoring device;
A process of determining that a predetermined event has occurred to a user of the monitoring device based on information acquired from the monitoring device;
A process of generating map information for displaying a map image showing the number or frequency of occurrence of the predetermined event for each location;
outputting the map information to another terminal device;
A program for executing.
 前記見守り装置は、前記使用者が履いている靴に内蔵されまたは着脱可能に取り付けられる、
 請求項1に記載のプログラム。
The monitoring device is built into or detachably attached to shoes worn by the user.
The program according to claim 1.
 前記所定の事象は、転倒であって、
 前記使用者が転倒した場所ごとの回数または頻度を前記マップ情報として生成する処理と、
 を実行させるための請求項1または2記載のプログラム。
The predetermined event is a fall,
A process of generating the number or frequency of falls at each location of the user as the map information;
3. The program according to claim 1 or 2 for executing the above.
 前記所定の事象は、前記使用者が足を滑らせたことであって、
 前記使用者が足を滑らせた場所ごとの回数または頻度を前記マップ情報として生成する処理と、
 を実行させるための請求項1または2記載のプログラム。
The predetermined event is that the user has slipped,
A process of generating the number or frequency of the user's slipping at each location as the map information;
3. The program according to claim 1 or 2 for executing the above.
 前記所定の事象は、熱中症であって、
 前記熱中症が発生した場所ごとの回数または頻度を前記マップ情報として生成する処理と、
 を実行させるための請求項1または2記載のプログラム。
The predetermined event is heat stroke,
A process of generating the number or frequency of occurrence of heat stroke for each location as the map information;
3. The program according to claim 1 or 2 for executing the above.
 前記所定の事象は、前記使用者が重量の重い物体を持つことであって、
 前記使用者が重量の重い物体を持った場所ごとの回数または頻度を前記マップ情報として生成する処理と、
 を実行させるための請求項1または2記載のプログラム。
The predetermined event is the user carrying a heavy object,
generating the map information based on the number or frequency of times that the user has carried a heavy object for each location;
3. The program according to claim 1 or 2 for executing the above.
 前記マップ生成装置のプロセッサに、
 前記所定の事象の過去実績を入力情報として前記所定の事象の発生予想ができるように学習された学習済モデルを取得する処理と、
 前記学習済モデルを用いて前記所定の事象の発生予想マップを生成する処理と、
 前記発生予想マップを出力する処理と、
 を実行するための請求項1または2記載のプログラム。
A processor of the map generating device,
A process of acquiring a trained model that has been trained to predict the occurrence of the specified event using past records of the specified event as input information;
A process of generating an occurrence prediction map of the predetermined event using the trained model;
A process of outputting the occurrence prediction map;
3. The program according to claim 1 or 2 for executing the above-mentioned.
 前記マップ生成装置のプロセッサに、
 前記所定の事象の過去実績を入力情報として前記所定の事象の発生予想と危険度予想ができるように学習された学習済モデルを取得する処理と、
 前記学習済モデルを用いて前記所定の事象の危険度レベルマップを生成する処理と、
 前記危険度レベルマップを出力する処理と、
 を実行するための請求項1または2記載のプログラム。
A processor of the map generating device,
A process of acquiring a trained model that has been trained to predict the occurrence and risk of the specified event using past records of the specified event as input information;
A process of generating a risk level map of the predetermined event using the trained model;
A process of outputting the risk level map;
3. The program according to claim 1 or 2 for executing the above-mentioned.
 前記マップ生成装置のプロセッサに、
 前記見守り対象である前記使用者の位置に基づいて生成した前記使用者の移動軌跡を前記マップ画像に重畳して表示するための前記マップ情報を生成する処理、
 を実行するための請求項1または2に記載のプログラム。
A processor of the map generating device,
A process of generating map information for superimposing and displaying a movement trajectory of the user, which is generated based on the position of the user who is the target of monitoring, on the map image;
3. The program according to claim 1 or 2 for executing the above.
 一以上のセンサを備え、見守り対象の使用者と共に移動する見守り装置と通信するマップ生成装置であって、
 前記見守り装置のセンサの出力値と前記見守り装置の使用者の位置を取得する取得部と、
 前記見守り装置から取得された情報に基づいて前記見守り装置の使用者に所定の事象が生じたと判定する判定部と、
 前記所定の事象が生じた回数または頻度を示すマップ画像を表示するためのマップ情報を生成するマップ生成部と、
 前記マップ情報を他の端末装置に出力する出力部と、
 を備えるマップ生成装置。
A map generating device that has one or more sensors and communicates with a monitoring device that moves with a user to be monitored,
an acquisition unit that acquires an output value of a sensor of the monitoring device and a position of a user of the monitoring device;
a determination unit that determines that a predetermined event has occurred to a user of the monitoring device based on information acquired from the monitoring device;
a map generating unit that generates map information for displaying a map image showing the number or frequency of occurrence of the predetermined event;
an output unit that outputs the map information to another terminal device;
A map generating device comprising:
 前記見守り装置は、前記使用者が履いている靴に内蔵されまたは着脱可能に取り付けられる、
 請求項10に記載のマップ生成装置。
The monitoring device is built into or detachably attached to shoes worn by the user.
The map generating device of claim 10.
 学習装置は、
 見守り装置の使用者に起きた所定の事象の過去実績を取得する取得部と、
 前記所定の事象の発生予想ができるように学習された学習済モデルを生成するモデル生成部と、
 備える学習装置。
The learning device is
An acquisition unit that acquires past records of predetermined events that have occurred to a user of the monitoring device;
A model generation unit that generates a trained model that is trained to predict the occurrence of the predetermined event;
Equipped with learning equipment.
PCT/JP2024/032045 2023-09-15 2024-09-06 Program, map creation device, and learning device Pending WO2025057880A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023150238 2023-09-15
JP2023-150238 2023-09-15
JP2024123346A JP2025043269A (en) 2023-09-15 2024-07-30 Program, map generation device, and learning device
JP2024-123346 2024-07-30

Publications (1)

Publication Number Publication Date
WO2025057880A1 true WO2025057880A1 (en) 2025-03-20

Family

ID=95021376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/032045 Pending WO2025057880A1 (en) 2023-09-15 2024-09-06 Program, map creation device, and learning device

Country Status (1)

Country Link
WO (1) WO2025057880A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195840A (en) * 2014-03-31 2015-11-09 株式会社翔栄 information processing system
JP2016192040A (en) * 2015-03-31 2016-11-10 株式会社日本総合研究所 Self-propelled traveling device, management device, and walking obstacle place determination system
WO2017130379A1 (en) * 2016-01-29 2017-08-03 日揮株式会社 Crisis management system
JP2018180573A (en) * 2017-04-03 2018-11-15 アイフォーコムホールディングス株式会社 Safety management system
JP2022074508A (en) * 2020-11-04 2022-05-18 株式会社東芝 Load estimation device, method, and program
JP2023052260A (en) * 2018-04-10 2023-04-11 国立大学法人大阪大学 Physical condition evaluation method, heatstroke risk evaluation method, and program
US20230148960A1 (en) * 2021-11-16 2023-05-18 Matrixcare, Inc. Wearable sensors for fall detection and prevention
WO2023157239A1 (en) * 2022-02-18 2023-08-24 日本電気株式会社 Information provision system, user terminal, danger level map provision system, information provision method, and recording medium
JP2023122503A (en) * 2022-02-22 2023-09-01 洸我 中井 Pedestrian fall preventive system using disease type prediction model according to walking analysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195840A (en) * 2014-03-31 2015-11-09 株式会社翔栄 information processing system
JP2016192040A (en) * 2015-03-31 2016-11-10 株式会社日本総合研究所 Self-propelled traveling device, management device, and walking obstacle place determination system
WO2017130379A1 (en) * 2016-01-29 2017-08-03 日揮株式会社 Crisis management system
JP2018180573A (en) * 2017-04-03 2018-11-15 アイフォーコムホールディングス株式会社 Safety management system
JP2023052260A (en) * 2018-04-10 2023-04-11 国立大学法人大阪大学 Physical condition evaluation method, heatstroke risk evaluation method, and program
JP2022074508A (en) * 2020-11-04 2022-05-18 株式会社東芝 Load estimation device, method, and program
US20230148960A1 (en) * 2021-11-16 2023-05-18 Matrixcare, Inc. Wearable sensors for fall detection and prevention
WO2023157239A1 (en) * 2022-02-18 2023-08-24 日本電気株式会社 Information provision system, user terminal, danger level map provision system, information provision method, and recording medium
JP2023122503A (en) * 2022-02-22 2023-09-01 洸我 中井 Pedestrian fall preventive system using disease type prediction model according to walking analysis

Similar Documents

Publication Publication Date Title
US10772538B1 (en) System and method for monitoring safety and productivity of physical tasks
KR102212221B1 (en) Ergonomic data collection and analysis
JP6730512B2 (en) System for motion tracking, evaluation, and monitoring
US20170245806A1 (en) System and method for monitoring safety and productivity of physical tasks
KR102359204B1 (en) Worker's work and health monitoring system
US20170169533A1 (en) Worn personal protective equipment compliance system
EP3455838B1 (en) System and method for monitoring safety and productivity of physical tasks
US20220313118A1 (en) System and method for monitoring safety and productivity of physical tasks
KR20140100076A (en) Device and method for fall detection and integrated management system and method for fall accident therefor
KR101989866B1 (en) Method and system for monitoring medical suit
US20220058537A1 (en) Method and System for Monitoring Core Body Movements
KR102088458B1 (en) Worker management system
US20240423551A1 (en) Method and system for monitoring body movements
US20190244226A1 (en) A communication system and a method of communication
WO2025057880A1 (en) Program, map creation device, and learning device
JP2025043269A (en) Program, map generation device, and learning device
KR102380129B1 (en) Healthcare system using heart rate and its method
JP7074566B2 (en) Physical condition evaluation system
CN114073518B (en) Exercise state monitoring system, training support system, exercise state monitoring method, and computer-readable medium
KR101699316B1 (en) Safety and productivity management system of construction worker using smart watch
EP3991649B1 (en) Non-obtrusive gait monitoring methods and systems for reducing risk of falling
Devi et al. Safety Wearable Devices for Monitoring and Predicting the Emergency of Civil Workers Using Mobile Application
JP2024123641A (en) Employment suitability assessment device, employment suitability assessment system, employment suitability assessment method, and employment suitability assessment program
WO2021209856A1 (en) Systems and methods for providing worker fitness data
CN106999074A (en) Action management device, action management method and action management program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24865380

Country of ref document: EP

Kind code of ref document: A1