[go: up one dir, main page]

WO2024029789A1 - 무선 통신 시스템에서 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2024029789A1
WO2024029789A1 PCT/KR2023/010280 KR2023010280W WO2024029789A1 WO 2024029789 A1 WO2024029789 A1 WO 2024029789A1 KR 2023010280 W KR2023010280 W KR 2023010280W WO 2024029789 A1 WO2024029789 A1 WO 2024029789A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
csi
network
apu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2023/010280
Other languages
English (en)
French (fr)
Inventor
박해욱
안준기
김형태
강지원
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority to KR1020247032936A priority Critical patent/KR20250043326A/ko
Priority to EP23850296.7A priority patent/EP4568131A1/en
Priority to CN202380048779.1A priority patent/CN119452581A/zh
Publication of WO2024029789A1 publication Critical patent/WO2024029789A1/ko
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0254Channel estimation channel estimation algorithms using neural network algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to a wireless communication system, and more specifically, to a method and device for transmitting or receiving uplink/downlink wireless signals in a wireless communication system.
  • Wireless communication systems are being widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) systems, etc.
  • the purpose of the present invention is to provide a method and device for efficiently performing a wireless signal transmission and reception process.
  • a method of operating a terminal in a wireless communication system involves sending APU (AI Processing Unit) information related to the number of AI/ML (artificial intelligence/machine learning) processes that the terminal can simultaneously process through a network. Report on; Receiving information indicating terminal operations related to at least one AI/ML model from the network; and simultaneously performing at least some of the terminal operations. Based on the terminal operations indicated by the network exceeding the number of AI/ML processes reported to the network through the APU information in a specific time resource, the terminal may exclude among the indicated terminal operations. One or two or more terminal operations may be determined, and information on the one or two or more terminal operations determined to be excluded may be reported to the network.
  • APU AI Processing Unit
  • the terminal may drop, inactivate, or suspend one or more terminal operations determined to be excluded.
  • the terminal may perform the remaining terminal operations excluding the one or two or more terminal operations determined to be excluded based on the APU information among the terminal operations indicated by the network.
  • the terminal operations related to the at least one AI/ML model indicated by the network include AI/ML-based beam management, AI/ML-based positioning, and AI/ML-based channel state information (CSI) calculation. It can contain at least one.
  • AI/ML-based beam management AI/ML-based positioning
  • AI/ML-based channel state information (CSI) calculation AI/ML-based channel state information (CSI) calculation. It can contain at least one.
  • CSI channel state information
  • the APU (AI Processing Unit) information may be set separately from the CPU (CSI processing unit) information related to the number of CSI (channel state information) calculations that the terminal can simultaneously process.
  • the APU (AI Processing Unit) information may be set as part of CPU (CSI processing unit) information related to the number of CSI (channel state information) calculations that the terminal can simultaneously process.
  • One AI/ML-based CSI calculation can be counted as 'X' non-AI/ML-based CSI calculations.
  • 'X' can be set based on information received from the network. 'X' may be determined based on at least one of the capabilities of the terminal and an AI/MML model related to the corresponding AI/ML-based CSI calculation.
  • the APU information may be set for each CC (component carrier) or may be set to cover multiple CCs.
  • the one or more terminal operations to be excluded may be determined based on priority.
  • a recording medium readable by a processor on which a program for performing the above-described method is recorded may be provided.
  • a terminal that performs the above-described method may be provided.
  • a device for controlling a terminal that performs the above-described method may be provided.
  • a method of operating a base station in a wireless communication system includes an APU (AI Processing Unit) related to the number of AI/ML (artificial intelligence/machine learning) processes that the terminal can simultaneously process. ) receive information; Transmitting information indicating terminal operations related to at least one AI/ML model to the terminal; And based on the indicated terminal operations exceeding the number of AI/ML processes obtained through the APU information in a specific time resource, one or two or more terminal operations to be excluded from the indicated terminal operations. It may include receiving information about the terminal from the terminal.
  • APU AI Processing Unit
  • a base station that performs the above-described method may be provided.
  • wireless signal transmission and reception can be efficiently performed in a wireless communication system.
  • Figure 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using them.
  • Figure 2 illustrates the structure of a radio frame.
  • Figure 3 illustrates a resource grid of slots.
  • Figure 4 shows an example of mapping a physical channel within a slot.
  • Figure 5 illustrates the PDSCH and ACK/NACK transmission process.
  • Figure 6 illustrates the PUSCH transmission process
  • Figure 7 shows an example of CSI-related procedures.
  • Figure 8 is a diagram to explain the concept of AI/ML/Deep learning.
  • 9 to 12 illustrate various AI/ML models of deep learning.
  • Figure 13 is a diagram illustrating split AI inference.
  • Figure 14 is a diagram to explain the framework for 3GPP RAN Intelligence.
  • Figures 15 to 17 illustrate AI Model Training and Inference environments.
  • Figure 18 is a diagram for explaining AI-based CSI feedback.
  • Figure 19 is a diagram for explaining terminal operations according to one embodiment.
  • Figure 20 is a diagram for explaining the operation of a base station according to an embodiment.
  • 21 to 24 illustrate a communication system 1 and a wireless device applicable to the present invention.
  • FIG. 25 illustrates a Discontinuous Reception (DRX) operation applicable to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA can be implemented with radio technology such as UTRA (Universal Terrestrial Radio Access) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), etc.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
  • next-generation communications As more communication devices require larger communication capacity, the need for improved mobile broadband communication compared to existing RAT (Radio Access Technology) is emerging. Additionally, massive MTC (Machine Type Communications), which connects multiple devices and objects to provide a variety of services anytime, anywhere, is also one of the major issues to be considered in next-generation communications. Additionally, communication system design considering services/terminals sensitive to reliability and latency is being discussed. In this way, the introduction of next-generation RAT considering eMBB (enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication), etc. is being discussed, and in the present invention, for convenience, the technology is referred to as NR (New Radio or New RAT). It is called.
  • NR New Radio or New RAT
  • 3GPP NR is mainly described, but the technical idea of the present invention is not limited thereto.
  • the expression “setting” may be replaced with the expression “configure/configuration,” and the two may be used interchangeably.
  • conditional expressions e.g., “if”, “in a case”, or “when”, etc.
  • the operation of the terminal/base station or SW/HW configuration according to the satisfaction of the relevant conditions can be inferred/understood.
  • wireless communication devices e.g., base stations, terminals
  • the process on the receiving (or transmitting) side can be inferred/understood from the process on the transmitting (or receiving) side
  • the description may be omitted.
  • signal decision/generation/encoding/transmission on the transmitting side can be understood as signal monitoring reception/decoding/decision, etc. on the receiving side.
  • the expression that the terminal performs (or does not perform) a specific operation can also be interpreted as operating with the base station expecting/assuming that the terminal performs a specific operation (or expecting/assuming that it does not perform).
  • the expression that the base station performs (or does not perform) a specific operation can also be interpreted to mean that the terminal expects/assumes that the base station performs a specific operation (or expects/assumes that it does not perform) and operates.
  • the division and index of each section, embodiment, example, option, method, plan, etc. are for convenience of explanation, and do not mean that each necessarily constitutes an independent invention, or that each must be practiced only individually. It should not be construed as intended.
  • a terminal receives information from a base station through downlink (DL), and the terminal transmits information to the base station through uplink (UL).
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist depending on the type/purpose of the information they transmit and receive.
  • Figure 1 is a diagram to explain physical channels used in the 3GPP NR system and a general signal transmission method using them.
  • a terminal that is turned on again from a power-off state or newly entered a cell performs an initial cell search task such as synchronizing with the base station in step S101.
  • the terminal receives SSB (Synchronization Signal Block) from the base station.
  • SSB includes Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and obtains information such as cell ID (cell identity). Additionally, the terminal can obtain intra-cell broadcast information based on the PBCH. Meanwhile, the terminal can check the downlink channel status by receiving a downlink reference signal (DL RS) in the initial cell search stage.
  • DL RS downlink reference signal
  • the terminal After completing the initial cell search, the terminal receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S102 to provide more detailed information.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete access to the base station.
  • the terminal transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through the physical downlink control channel and the corresponding physical downlink shared channel. can be received (S104).
  • PRACH physical random access channel
  • S104 a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of the physical downlink control channel and the corresponding physical downlink shared channel (S106) ) can be performed.
  • the terminal that has performed the above-described procedure then receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) can be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), and CSI (Channel State Information).
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), and Rank Indication (RI).
  • UCI is generally transmitted through PUCCH, but when control information and traffic data must be transmitted simultaneously, it can be transmitted through PUSCH. Additionally, UCI can be transmitted aperiodically through PUSCH at the request/instruction
  • FIG. 2 illustrates the structure of a radio frame.
  • uplink and downlink transmission consists of frames.
  • Each radio frame is 10ms long and is divided into two 5ms half-frames (HF).
  • Each half-frame is divided into five 1ms subframes (Subframe, SF).
  • a subframe is divided into one or more slots, and the number of slots in a subframe depends on SCS (Subcarrier Spacing).
  • Each slot contains 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols depending on the cyclic prefix (CP).
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP cyclic prefix
  • Table 1 illustrates that when a normal CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary depending on the SCS.
  • Table 2 illustrates that when an extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary depending on the SCS.
  • the structure of the frame is only an example, and the number of subframes, number of slots, and number of symbols in the frame can be changed in various ways.
  • OFDM numerology eg, SCS
  • the (absolute time) interval of time resources e.g., SF, slot, or TTI
  • TU Time Unit
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) or SC-FDMA symbol (or Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • Figure 3 illustrates a resource grid of slots.
  • a slot includes a plurality of symbols in the time domain. For example, in the case of normal CP, one slot contains 14 symbols, but in the case of extended CP, one slot contains 12 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • a Bandwidth Part (BWP) is defined as a plurality of consecutive PRBs (Physical RBs) in the frequency domain and may correspond to one numerology (e.g., SCS, CP length, etc.).
  • a carrier wave may contain up to N (e.g., 5) BWPs. Data communication is performed through an activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a Resource Element (RE), and one complex symbol can be mapped.
  • RE Resource Element
  • Figure 4 shows an example of mapping a physical channel within a slot.
  • PDCCH may be transmitted in the DL control area, and PDSCH may be transmitted in the DL data area.
  • PUCCH may be transmitted in the UL control area, and PUSCH may be transmitted in the UL data area.
  • GP provides a time gap during the process of the base station and the terminal switching from transmission mode to reception mode or from reception mode to transmission mode. Some symbols at the point of transition from DL to UL within a subframe may be set to GP.
  • PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • PCCCH includes transmission format and resource allocation for downlink shared channel (DL-SCH), resource allocation information for uplink shared channel (UL-SCH), paging information for paging channel (PCH), It carries system information on the DL-SCH, resource allocation information for upper layer control messages such as random access responses transmitted on the PDSCH, transmission power control commands, activation/deactivation of CS (Configured Scheduling), etc.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (e.g.
  • Radio Network Temporary Identifier depending on the owner or purpose of use of the PDCCH. For example, if the PDCCH is for a specific UE, the CRC is masked with the UE identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH is for paging, the CRC is masked with P-RNTI (Paging-RNTI). If the PDCCH is about system information (e.g., System Information Block, SIB), the CRC is masked with System Information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with Random Access-RNTI (RA-RNTI).
  • SIB System Information Block
  • PDCCH consists of 1, 2, 4, 8, or 16 CCE (Control Channel Elements) depending on AL (Aggregation Level).
  • CCE is a logical allocation unit used to provide PDCCH of a certain code rate according to the wireless channel status.
  • CCE consists of six REGs (Resource Element Groups).
  • REG is defined as one OFDM symbol and one (P)RB.
  • PDCCH is transmitted through CORESET (Control Resource Set).
  • CORESET is defined as a set of REGs with a given pneumonology (e.g. SCS, CP length, etc.). Multiple CORESETs for one terminal may overlap in the time/frequency domain.
  • CORESET can be set through system information (eg, Master Information Block, MIB) or UE-specific upper layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET can be set by higher layer signaling.
  • MIB Master Information Block
  • RRC Radio Resource Control
  • the UE monitors PDCCH candidates.
  • the PDCCH candidate represents the CCE(s) that the UE must monitor for PDCCH detection.
  • Each PDCCH candidate is defined as 1, 2, 4, 8, or 16 CCEs depending on the AL. Monitoring includes (blind) decoding of PDCCH candidates.
  • the set of PDCCH candidates monitored by the UE is defined as the PDCCH Search Space (SS).
  • the search space includes a common search space (CSS) or a UE-specific search space (USS).
  • the UE can obtain DCI by monitoring PDCCH candidates in one or more search spaces set by MIB or higher layer signaling.
  • Each CORESET is associated with one or more search spaces, and each search space is associated with one COREST.
  • the search space can be defined based on the following parameters.
  • controlResourceSetId Indicates CORESET related to the search space
  • - monitoringSymbolsWithinSlot Indicates the PDCCH monitoring symbols within the slot (e.g., indicates the first symbol(s) of CORESET)
  • PDCCH monitoring
  • One or more PDCCH (monitoring) opportunities may be configured within a slot.
  • Table 3 illustrates the characteristics of each search space type.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
  • Table 4 illustrates DCI formats transmitted through PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is used to schedule TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH.
  • DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule a TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH. (DL grant DCI).
  • DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0/1_1 may be referred to as DL grant DCI or DL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (e.g., dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 can be delivered to terminals within the group through group common PDCCH, which is a PDCCH delivered to terminals defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the DCI size/field configuration remains the same regardless of terminal settings.
  • the non-fallback DCI format the DCI size/field configuration varies depending on the terminal settings.
  • PDSCH carries downlink data (e.g., DL-SCH transport block, DL-SCH TB), and modulation methods such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM are applied. do.
  • a codeword is generated by encoding TB.
  • PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to resources along with DMRS (Demodulation Reference Signal), generated as an OFDM symbol signal, and transmitted through the corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • UCI Uplink Control Information
  • UCI includes:
  • Hybrid Automatic Repeat reQuest-ACK Acknowledgement: A response to a downlink data packet (e.g., codeword) on the PDSCH. Indicates whether the downlink data packet has been successfully received. 1 bit of HARQ-ACK may be transmitted in response to a single codeword, and 2 bits of HARQ-ACK may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (simply ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is used interchangeably with HARQ ACK/NACK and ACK/NACK.
  • MIMO-related feedback information includes a Rank Indicator (RI) and a Precoding Matrix Indicator (PMI).
  • Table 5 illustrates PUCCH formats. Depending on the PUCCH transmission length, it can be divided into Short PUCCH (formats 0, 2) and Long PUCCH (formats 1, 3, 4).
  • PUCCH format 0 carries UCI of up to 2 bits in size and is mapped and transmitted based on sequence. Specifically, the terminal transmits one sequence among a plurality of sequences through PUCCH, which is PUCCH format 0, and transmits a specific UCI to the base station. The UE transmits a PUCCH with PUCCH format 0 within the PUCCH resource for SR configuration only when transmitting a positive SR.
  • PUCCH format 1 carries UCI of up to 2 bits in size, and the modulation symbols are spread by an orthogonal cover code (OCC) (set differently depending on whether or not there is frequency hopping) in the time domain.
  • OCC orthogonal cover code
  • DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, it is transmitted after TDM (Time Division Multiplexing)).
  • PUCCH format 2 carries UCI with a bit size larger than 2 bits, and the modulation symbol is transmitted using DMRS and FDM (Frequency Division Multiplexing).
  • DM-RS is located at symbol indices #1, #4, #7, and #10 within a given resource block at a density of 1/3.
  • the PN (Pseudo Noise) sequence is used for the DM_RS sequence.
  • frequency hopping can be activated.
  • PUCCH format 3 does not multiplex terminals within the same physical resource blocks, and carries UCI with a bit size larger than 2 bits.
  • PUCCH resources in PUCCH format 3 do not include an orthogonal cover code. Modulation symbols are transmitted using DMRS and TDM (Time Division Multiplexing).
  • PUCCH format 4 supports multiplexing of up to 4 terminals within the same physical resource blocks and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code. Modulation symbols are transmitted using DMRS and TDM (Time Division Multiplexing).
  • At least one of one or two or more cells configured in the terminal may be configured for PUCCH transmission.
  • At least the Primary Cell can be set as a cell for PUCCH transmission.
  • At least one PUCCH cell group may be configured in the terminal based on at least one cell configured for PUCCH transmission, and each PUCCH cell group includes one or two or more cells.
  • the PUCCH cell group may be briefly referred to as PUCCH group.
  • PUCCH transmission can be set not only in the primary cell but also in the SCell.
  • the primary cell belongs to the primary PUCCH group, and the PUCCH-SCell for which PUCCH transmission is set belongs to the secondary PUCCH group.
  • PUCCH on the Primary Cell can be used, and for cells belonging to the Secondary PUCCH group, PUCCH on the PUCCH-SCell can be used.
  • PUSCH carries uplink data (e.g., UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and uses CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on the DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) waveform.
  • the terminal transmits the PUSCH by applying transform precoding.
  • PUSCH can be transmitted based on the OFDM waveform or the DFT-s-OFDM waveform.
  • PUSCH transmission is scheduled dynamically by UL grant within DCI, or semi-statically based on upper layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission can be performed based on codebook or non-codebook.
  • FIG. 5 illustrates the ACK/NACK transmission process.
  • the UE can detect the PDCCH in slot #n.
  • PDCCH includes downlink scheduling information (e.g., DCI format 1_0, 1_1), and PDCCH indicates DL assignment-to-PDSCH offset (K0) and PDSCH-HARQ-ACK reporting offset (K1).
  • DCI format 1_0, 1_1 may include the following information.
  • K0 e.g. slot offset
  • K0 indicates the start position of the PDSCH in slot #n+K0 (e.g. OFDM symbol index) and the length of the PDSCH (e.g. number of OFDM symbols)
  • HARQ process ID (Identity) for data (e.g. PDSCH, TB)
  • - PUCCH resource indicator Indicates the PUCCH resource to be used for UCI transmission among a plurality of PUCCH resources in the PUCCH resource set.
  • the terminal receives the PDSCH from slot #(n+K0) according to the scheduling information of slot #n, and when the PDSCH is received from slot #n1 (where, n+K0 ⁇ n1), the terminal receives the PDSCH from slot #(n1+K1). ), UCI can be transmitted through PUCCH.
  • UCI may include a HARQ-ACK response to PDSCH.
  • the HARQ-ACK response may consist of 1-bit.
  • the HARQ-ACK response may consist of 2-bits if spatial bundling is not configured, and may consist of 1-bit if spatial bundling is configured. If the HARQ-ACK transmission point for multiple PDSCHs is designated as slot #(n+K1), UCI transmitted in slot #(n+K1) includes HARQ-ACK responses for multiple PDSCHs.
  • Whether the UE must perform spatial bundling for the HARQ-ACK response can be configured for each cell group (e.g., RRC/higher layer signaling).
  • spatial bundling may be individually configured for each HARQ-ACK response transmitted through PUCCH and/or HARQ-ACK response transmitted through PUSCH.
  • Spatial bundling can be supported when the maximum number of TBs (or codewords) that can be received at once in the corresponding serving cell (or schedulable through 1 DCI) is 2 (or more than 2) (eg, upper layer if the parameter maxNrofCodeWordsScheduledByDCI corresponds to 2-TB). Meanwhile, more than 4 layers can be used for 2-TB transmission, and up to 4 layers can be used for 1-TB transmission. As a result, when spatial bundling is configured in the corresponding cell group, spatial bundling can be performed on serving cells in which more than four layers are schedulable among serving cells in the corresponding cell group. On the corresponding serving cell, a terminal that wishes to transmit a HARQ-ACK response through spatial bundling can generate a HARQ-ACK response by performing a (bit-wise) logical AND operation on the A/N bits for multiple TBs.
  • the UE performing spatial bundling receives the 1st A/N for the 1st TB.
  • a single A/N bit can be generated by performing a logical AND operation on the bit and the second A/N bit for the second TB.
  • the terminal reports the ACK bit value to the base station, and if any one TB is NACK, the terminal reports the NACK bit value to the base station.
  • the terminal For example, if only 1-TB is actually scheduled on a serving cell that is configured to receive 2-TB, the terminal performs a logical AND operation on the A/N bit for the 1-TB and the bit value 1 to receive a single A/TB. N bits can be generated. As a result, the terminal reports the A/N bit for the corresponding 1-TB to the base station as is.
  • a plurality of parallel DL HARQ processes exist in the base station/terminal for DL transmission. Multiple parallel HARQ processes allow DL transmission to be performed continuously while waiting for HARQ feedback on successful or unsuccessful reception of the previous DL transmission.
  • Each HARQ process is associated with a HARQ buffer in the MAC (Medium Access Control) layer.
  • Each DL HARQ process manages state variables related to the number of transmissions of MAC PDUs (Physical Data Blocks) in the buffer, HARQ feedback for MAC PDUs in the buffer, and current redundancy version.
  • Each HARQ process is distinguished by its HARQ process ID.
  • Figure 6 illustrates the PUSCH transmission process.
  • the UE can detect the PDCCH in slot #n.
  • PDCCH includes uplink scheduling information (eg, DCI format 0_0, 0_1).
  • DCI format 0_0, 0_1 may include the following information.
  • Time domain resource assignment Indicates the slot offset K2, the starting position (e.g. symbol index) and length (e.g. number of OFDM symbols) of the PUSCH within the slot.
  • the start symbol and length can be indicated through SLIV (Start and Length Indicator Value) or can be indicated separately.
  • the terminal can transmit PUSCH in slot #(n+K2) according to the scheduling information of slot #n.
  • PUSCH includes UL-SCH TB.
  • Figure 7 shows an example of CSI-related procedures.
  • the terminal receives configuration information related to CSI from the base station through RRC signaling (710).
  • the configuration information related to the CSI includes CSI-IM (interference management) resource-related information, CSI measurement configuration-related information, CSI resource configuration-related information, and CSI-RS resource-related information. Alternatively, it may include at least one of CSI report configuration related information.
  • - CSI-IM resources can be set for interference measurement (IM) of the terminal.
  • the CSI-IM resource set can be configured periodically, semi-persistently, or aperiodically.
  • CSI-IM resources can be set to Zero Power (ZP)-CSI-RS for the terminal.
  • ZP-CSI-RS can be set separately from Non-Zero Power (NZP)-CSI-RS.
  • the UE uses CSI-RS resource(s) for channel measurement set for one CSI reporting and CSI-IM / NZP CSI-RS resource(s) for interference measurement (NZP CSI-RS resource(s) is interference measurement When used for), it can be assumed that this is a QCL relationship with respect to 'QCL-TypeD' for each resource.
  • - CSI resource settings may include at least one of CSI-IM resource for interference measurement, NZP CSI-RS resource for interference measurement, and NZP CSI-RS resource for channel measurement.
  • the channel measurement resource (CMR) may be NZP CSI-RS for CSI acquisition, and the interference measurement resource (IMR) may be CSI-IM and NZP CSI-RS for IM.
  • - CSI-RS can be configured for one or more terminals. Different CSI-RS settings may be provided for each terminal, or the same CSI-RS settings may be provided to multiple terminals.
  • CSI-RS can support up to 32 antenna ports.
  • CSI-RSs corresponding to N (N is 1 or more) antenna ports may be mapped to N RE locations within a time-frequency unit corresponding to one slot and one RB.
  • N is 2 or more
  • N-port CSI-RS can be multiplexed in CDM, FDM and/or TDM methods.
  • CSI-RS can be mapped to REs other than REs to which CORESET, DMRS, and SSB are mapped.
  • CSI-RS can be configured for the entire bandwidth, some bandwidth portion (BWP), or partial bandwidth.
  • TRS tracking reference signal
  • One or more CSI-RS resource sets may be configured for the UE in the time domain.
  • Each CSI-RS resource set may include one or more CSI-RS configurations.
  • Each CSI-RS resource set can be configured to be periodic, semipersistent, or aperiodic.
  • the - CSI reporting settings may include settings for feedback type, measurement resource, report type, etc.
  • the NZP-CSI-RS resource set can be used for CSI report configuration of the corresponding terminal.
  • the NZP-CSI-RS resource set may be associated with a CSI-RS or SSB. Additionally, multiple periodic NZP-CSI-RS resource sets may be configured as TRS resource sets.
  • Feedback types include Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), CSI-RS Resource Indicator (CRI), SSB Resource block Indicator (SSBRI), and Layer Indicator (LI). ), rank indicator (RI), first layer-reference signal received power (L1-Reference Signal Received Strength, RSRP), etc.
  • Measurement resources may include settings for downlink signals and/or downlink resources on which the terminal will perform measurement to determine feedback information. Measurement resources may be configured as ZP and/or NZP CSI-RS resource sets associated with CSI reporting settings.
  • the NZP CSI-RS resource set may include a CSI-RS set or an SSB set. For example, L1-RSRP may be measured for the CSI-RS set, or may be measured for the SSB set.
  • the report type may include settings for when the terminal will perform the report and the uplink channel. Reporting points can be set periodically, semi-permanently, or aperiodically. Periodic CSI reports may be transmitted on PUCCH.
  • Semi-persistent CSI reports can be transmitted on PUCCH or PUSCH, based on MAC CE indicating activation/deactivation.
  • Aperiodic CSI reporting may be indicated by DCI signaling.
  • the CSI request field of the uplink grant may indicate one of various report trigger sizes.
  • Aperiodic CSI reports may be transmitted on PUSCH.
  • the terminal measures CSI based on configuration information related to CSI.
  • CSI measurement may include a procedure of receiving CSI-RS (720) and computating the received CSI-RS to acquire CSI (730).
  • the terminal may transmit a CSI report to the base station (740).
  • CSI Channel state information
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS/PBCH block resource indicator
  • LI indicator
  • RI rank indicator
  • L1-RSRP L1-RSRP
  • L-SINR L-SINR
  • the time domain behavior of CSI reporting supports periodic, semi-persistent, and aperiodic.
  • Periodic CSI reporting is performed on short PUCCH and long PUCCH.
  • the period and slot offset of Periodic CSI reporting can be set to RRC, see CSI-ReportConfig IE.
  • SP (semi-periodic) CSI reporting is performed on short PUCCH, long PUCCH, or PUSCH.
  • the period (periodicity) and slot offset (slot offset) are set to RRC, and CSI reporting is activated/deactivated with a separate MAC CE / DCI.
  • SP CSI reporting In the case of SP CSI on PUSCH, the periodicity of SP CSI reporting is set to RRC, but the slot offset is not set to RRC, and SP CSI reporting is activated/deactivated by DCI (format 0_1).
  • DCI format 0_1
  • SP-CSI C-RNTI SP-CSI C-RNTI
  • the first CSI reporting timing follows the PUSCH time domain allocation value indicated in DCI
  • the subsequent CSI reporting timing follows the period set by RRC.
  • DCI format 0_1 includes a CSI request field and can activate/deactivate a specific configured SP-CSI trigger state.
  • SP CSI reporting has the same or similar activation/deactivation mechanism as the data transmission mechanism on SPS PUSCH.
  • Aperiodic CSI reporting is performed on PUSCH and is triggered by DCI.
  • information related to the trigger of aperiodic CSI reporting can be delivered/instructed/set through MAC-CE.
  • AP CSI with AP CSI-RS AP CSI-RS timing is set by RRC, and timing for AP CSI reporting is dynamically controlled by DCI.
  • the CSI codebook (e.g., PMI codebook) defined in the NR standard can be largely divided into Type I codebook and Type II codebook.
  • Type I codebook mainly targets SU (Single User)-MIMO, supporting both high order and low order.
  • Type II codebook can mainly support MI-MIMO, supporting up to 2 layers. Compared to Type I, Type II codebook can provide more accurate CSI, but signaling overhead may increase accordingly. Meanwhile, the Enhanced Type II codebook is intended to solve the CSI overhead shortcomings of the existing Type II codebook.
  • Enhanced Type II was introduced by reducing the payload of the codebook by considering correlation on the frequency axis.
  • CSI reporting through PUSCH can be set to Part 1 and Part 2.
  • Part 1 has a fixed payload size and is used to identify the number of information bits in Part 2.
  • Part 1 is transmitted in its entirety before Part 2.
  • Part 1 includes RI (if reported), CRI (if reported), and CQI of the first code word.
  • Part 2 includes PMI, and when RI > 4, Part 2 includes CQI.
  • Part 1 includes an indication of the number of RI (if reported), CQI, and non-zero WB amplitude coefficients for each layer of Type II CSI.
  • Part 2 includes PMI of Type II CSI.
  • Part 1 includes an indication of the total number of non-zero WB amplitude coefficients for RI (if reported), CQI, and total layers of Enhanced Type II CSI.
  • Part 2 includes PMI of Enhanced Type II CSI.
  • the terminal may omit part of Part 2 CSI.
  • Semi-persistent CSI reporting performed in PUCCH format 3 or 4 supports Type II CSI feedback, but only Part 1 of Type II CSI feedback.
  • Channel characteristics may include one or more of Delay spread, Doppler spread, Frequency/Doppler shift, Average received power, Received Timing/average delay, and Spatial RX parameter.
  • a list of multiple TCI-State configurations can be set in the terminal through the upper layer parameter PDSCH-Config.
  • Each TCI-State is associated with a QCL configuration parameter between one or two DL reference signals and the DM-RS port of the PDSCH.
  • QCL may include qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS.
  • QCL type may correspond to one of the following:
  • the BM process is a set of BS (or transmission and reception point (TRP)) and/or UE beams that can be used for downlink (DL) and uplink (UL) transmission/reception. ), which may include the following processes and terms.
  • - Beam measurement An operation in which the BS or UE measures the characteristics of the received beamforming signal.
  • Tx beam transmission beam
  • Rx beam reception beam
  • - Beam report An operation in which the UE reports information about a beamformed signal based on beam measurement.
  • the BM process can be divided into (1) a DL BM process using SSB or CSI-RS, and (2) a UL BM process using a sounding reference signal (SRS). Additionally, each BM process may include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
  • SRS sounding reference signal
  • the DL BM process may include (1) transmission of beamformed DL RSs (e.g., CSI-RS or SSB) by the BS, and (2) beam reporting by the UE.
  • beamformed DL RSs e.g., CSI-RS or SSB
  • the beam report may include preferred DL RS ID(s) and the corresponding reference signal received power (RSRP).
  • the DL RS ID may be an SSB Resource Indicator (SSBRI) or a CSI-RS Resource Indicator (CRI).
  • AI/ML Artificial intelligence / machine learning
  • the node(s) and terminal(s) that make up the wireless communication network are becoming more intelligent/advanced.
  • the intelligence of the network/base station has led to various environmental parameters (e.g. distribution/location of base stations, Various network/base station decision parameter values (e.g. transmission/reception power of each base station, transmission power of each terminal, base station/terminal) depending on distribution/location/material of buildings/furniture, etc., location/movement direction/speed of terminals, climate information, etc.
  • the precoder/beam, time/frequency resource allocation for each terminal, duplex method of each base station, etc. can be quickly optimized and derived/applied.
  • many standardization organizations e.g., 3GPP, O-RAN
  • AI/ML can easily be referred to as deep learning-based artificial intelligence in a narrow sense, but conceptually, it is the same as Figure 8.
  • Machines can learn patterns for decision-making from data on their own without explicitly programming rules.
  • Deep Learning An AI/ML model based on an artificial neural network, where a machine performs feature extraction and judgment from unstructured data at once.
  • the algorithm is used to extract and transform features inspired by the biological nervous system, i.e. neural network. It relies on a multi-layered network made up of interconnected nodes.
  • Common deep learning network architectures can include deep neural networks (DNNs), recurrent neural networks (RNNs), and convolutional neural networks (CNNs).
  • Offline Learning It follows the sequential procedure of database collection, learning, and prediction. That is, collection and learning are performed offline, and the completed program can be installed in the field and used for prediction work. In most situations, this offline learning method is used. Offline learning is where the system does not learn incrementally, the learning is performed using all available collected data and applied to the system without further learning. If learning about new data is necessary, learning can begin again using all new data.
  • Online learning is a method of gradually improving performance by incrementally learning with additional data by taking advantage of the fact that data that can be used for recent learning is continuously generated through the Internet. Learning is performed in real time for each (bundle) of specific data collected online, allowing the system to quickly adapt to changing data.
  • a collective AI/ML model is constructed based on data from distributed data owners. Instead of importing data into an AI/ML model, the AI/ML model is imported as a data source, allowing local nodes/individual devices to collect data and train their own copy of the AI/ML model, without the need to report the source data to a central node. There is no In federated learning, the parameters/weights of the AI/ML model can be sent back to the centralized node to support general AI/ML model training.
  • the advantages of federated learning include increased computation speed and excellence in information security. In other words, the process of uploading personal data to the central server is unnecessary, preventing leakage and misuse of personal information.
  • Supervised Learning is a machine learning task that aims to learn a mapping function from input to output, given a labeled data set.
  • the input data is called training data and has known labels or results.
  • Examples of supervised learning include (i) Regression: Linear Regression, Logistic Regression, (ii) Instance-based Algorithms: k-Nearest Neighbor (KNN), (iii) Decision Tree Algorithms: CART, (iv) Support Vector Machines: SVM, (v) Bayesian Algorithms: Naive Bayes, and (vi) Ensemble Algorithms: Extreme Gradient Boosting, Bagging: Random Forest, etc.
  • Supervised learning can be further grouped into regression and classification problems, where classification is predicting a label and regression is predicting a quantity.
  • Unsupervised Learning It is a machine learning task that aims to learn features that describe hidden structures in unlabeled data. The input data is not labeled and there are no known results. Some examples of unsupervised learning include K-means clustering, principal component analysis (PCA), nonlinear independent component analysis (ICA), and LSTM.
  • PCA principal component analysis
  • ICA nonlinear independent component analysis
  • LSTM LSTM
  • Reinforcement Learning In reinforcement learning (RL), the agent aims to optimize long-term goals by interacting with the environment based on a trial and error process, and is goal-oriented learning based on interaction with the environment.
  • RL algorithms include (i) Q-learning, (ii) Multi-armed bandit learning, (iii) Deep Q Network, State-Action-Reward-State-Action (SARSA), (iv) Temporal Difference Learning, (v) ) Actor-critic reinforcement learning, (vi) Deep deterministic policy gradient, and (vii) Monte-Carlo tree search.
  • Reinforcement learning can be further grouped into AI/ML model-based reinforcement learning and AI/ML model-free reinforcement learning.
  • Model-based reinforcement learning is a RL algorithm that uses predictive AI/ML models to obtain transition probabilities between states using AI/ML models that identify various dynamic states of the environment and which states lead to rewards.
  • Model-free reinforcement learning is a value- or policy-based RL algorithm that achieves maximum future reward. It is computationally less complex in multi-agent environments/states and does not require an accurate representation of the environment. Meanwhile, RL algorithms can also be classified into value-based RL vs. policy-based RL, policy-based RL vs. non-policy RL, etc.
  • Figure 9 illustrates a Feed-Forward Neural Network (FFNN) AI/ML model.
  • the FFNN AI/ML model includes an input layer, a hidden layer, and an output layer.
  • FIG 10 illustrates a Recurrent Neural Network (RNN) AI/ML model.
  • the RNN AI/ML model is a type of artificial neural network in which hidden nodes are connected to directed edges to form a circular structure (directed cycle), and is an AI suitable for processing data that appears sequentially, such as voice and text.
  • /ML model One type of RNN is LSTM (Long Short-Term Memory), and LSTM is a structure that adds a cell-state to the hidden state of an RNN. Specifically, in LSTM, an input gate, a forget gate, and an output gate are added to the RNN cell, and a cell state is added.
  • A represents a neural network
  • x t represents an input value
  • h t represents an output value.
  • h t may refer to a state value representing the current state based on time
  • h t-1 may represent a previous state value.
  • CNN Convolution Neural Network
  • a kernel or filter refers to a unit/structure that applies weight to input of a specific range/unit.
  • the kernel (or filter) can be changed through learning.
  • Stride refers to the movement range that moves the kernel within the input.
  • a feature map refers to the result of applying a kernel to the input.
  • Padding refers to a value added to adjust the size of a feature map.
  • Pooling refers to an operation (e.g., max pooling, average pooling) to reduce the size of the feature map by downsampling the feature map.
  • Figure 12 shows an auto-encoder AI/ML model.
  • the auto-encoder is a neural network that receives feature vector x and outputs the same or similar vector . Since the auto encoder reconstructs the input, the output can be referred to as reconstruction.
  • the loss function can be expressed as Equation 1.
  • the loss function of the auto encoder shown in Figure 12 is calculated based on the difference between the input and output. Based on this, the degree of loss of the input is determined and the auto encoder performs an optimization process to minimize the loss. do.
  • Figure 13 is a diagram illustrating split AI inference.
  • Figure 13 illustrates a case where, among split AI operations, the Model Inference function is performed in cooperation with an end device such as a UE and a network AI/ML endpoint.
  • Model Training function In addition to the Model Inference function, the Model Training function, Actor, and Data Collection function are each split into multiple parts depending on the current task and environment, and can be performed through cooperation between multiple entities.
  • computation-intensive and energy-intensive parts may be performed at the network endpoint, while personal information-sensitive parts and delay-sensitive parts may be performed on the end device.
  • the end device can execute a task/model from input data to a specific part/layer and then transmit intermediate data to a network endpoint.
  • the network endpoint executes the remaining parts/layers and provides inference outputs to one or more devices that perform the action/task.
  • AI or AI/ML
  • Data collection Data collected from network nodes, management entities, or UEs, etc. as a basis for AI model training, data analysis, and inference.
  • Model A data driven algorithm applying AI technology that generates a set of outputs containing prediction information and/or decision parameters based on a set of inputs.
  • the data collection function (10) collects input data and provides processed input to the model training function (20) and model inference function (30). This function provides data.
  • Examples of input data may include measurements from UEs or other network entities, feedback from an actor, and output of an AI model.
  • Data Collection function (10) performs data preparation based on input data and provides input data processed through data preparation.
  • the Data Collection function (10) does not perform specific data preparation (e.g., data pre-processing and cleaning, formatting and transformation) for each AI algorithm. , data preparation common to AI algorithms can be performed.
  • the Model Training function (10) After performing the data preparation process, the Model Training function (10) provides training data (11) to the Model Training function (20) and inference data (12) to the Model Inference function (30). ) is provided.
  • Training Data (11) is data required as input for the AI Model Training function (20).
  • Inference Data (12) is data required as input for the AI Model Inference function (30).
  • the Data Collection function 10 may be performed by a single entity (eg, UE, RAN node, network node, etc.), but may also be performed by a plurality of entities.
  • Training Data (11) and Inference Data (12) may be provided from a plurality of entities to the Model Training function (20) and the Model Inference function (30), respectively.
  • the Model Training function (20) is a function that performs AI model training, validation, and testing that can generate model performance metrics as part of the AI model testing procedure. If necessary, the Model Training function (20) is also responsible for data preparation (e.g., data pre-processing and cleaning, forming and transformation) based on the Training Data (11) provided by the Data Collection function (10).
  • Model Deployment/Update (13) is used to initially deploy the trained, verified, and tested AI model to the Model Inference function (30) or provide an updated model to the Model Inference function (30). do.
  • Model Inference function (30) is a function that provides AI model inference output (16) (e.g., prediction or decision). If applicable, the Model Inference function (30) can provide Model Performance Feedback (14) to the Model Training function (20). In addition, the Model Inference function (30) is also responsible for data preparation (e.g., data pre-processing and cleaning, forming and transformation) based on the Inference Data (12) provided by the Data Collection function (10) when necessary.
  • Output (16) refers to the inference output of the AI model generated by the Model Inference function (30), and the details of the inference output may vary depending on the use case.
  • Model Performance Feedback (14) can be used to monitor the performance of the AI model, if available; this feedback can also be omitted.
  • the Actor function (40) is a function that receives the output (16) from the Model Inference function (30) and triggers or performs the corresponding task/action. Actor function 40 may trigger tasks/actions on other entities (e.g., one or more UEs, one or more RAN nodes, one or more network nodes, etc.) or on itself.
  • entities e.g., one or more UEs, one or more RAN nodes, one or more network nodes, etc.
  • Feedback (15) can be used to derive training data (11), inference data (12), or to monitor the performance of the AI model and its impact on the network.
  • Training data refers to a data set for learning a model.
  • Test data refers to the data set for final evaluation. This data is unrelated to learning.
  • the training data and validation data within the entire training set can be divided into about 8:2 or 7:3, and if the test is also included, 6:2:2 ( training: validation: test) can be used separately.
  • the cooperation level can be defined as follows, and modifications are possible by combining the following multiple levels or separating any one level.
  • Cat 1 This involves inter-node support to improve the AI/ML algorithms of each node. This applies if the UE receives support from a gNB (for training, adaptation, etc.) and vice versa. At this level, model exchange between network nodes is not required.
  • the functions previously illustrated in FIG. 14 may be implemented in a RAN node (e.g., base station, TRP, central unit (CU) of the base station, etc.), a network node, a network operator's operation administration maintenance (OAM), or a UE. there is.
  • a RAN node e.g., base station, TRP, central unit (CU) of the base station, etc.
  • CU central unit
  • OAM network operator's operation administration maintenance
  • the function illustrated in FIG. 14 may be implemented through cooperation between two or more entities among RAN, network node, network operator's OAM, or UE.
  • one entity may perform some of the functions of FIG. 14 and another entity may perform the remaining functions.
  • transmission/provision of data/information between each function is omitted. It can be.
  • the Model Training function (20) and the Model Inference function (30) are performed by the same entity, the delivery/provision of Model Deployment/Update (13) and Model Performance Feedback (14) can be omitted.
  • any one of the functions illustrated in FIG. 14 may be performed through collaboration between two or more entities among the RAN, network node, network operator's OAM, or UE. This can be referred to as a split AI operation.
  • the AI Model Training function is performed by a network node (e.g., core network node, network operator's OAM, etc.), and the AI Model Inference function is performed by a RAN node (e.g., base station, TRP, base station's CU, etc.) ) exemplifies the case where it is performed.
  • a network node e.g., core network node, network operator's OAM, etc.
  • a RAN node e.g., base station, TRP, base station's CU, etc.
  • Step 1 RAN Node 1 and RAN Node 2 transmit input data (i.e. Training data) for AI Model Training to the network node.
  • RAN Node 1 and RAN Node 2 transmit the data collected from the UE (e.g., UE measurements related to RSRP, RSRQ, SINR of the serving cell and neighboring cells, UE location, speed, etc.) to the network node. You can.
  • Step 2 The network node trains the AI Model using the received training data.
  • Step 3 The network node distributes/updates the AI Model to RAN Node 1 and/or RAN Node 2.
  • RAN Node 1 (and/or RAN Node 2) may continue to perform model training based on the received AI Model.
  • Step 4 RAN Node 1 receives input data (i.e. Inference data) for AI Model Inference from UE and RAN Node 2.
  • input data i.e. Inference data
  • Step 5 RAN Node 1 performs AI Model Inference using the received Inference data to generate output data (e.g., prediction or decision).
  • output data e.g., prediction or decision
  • Step 6 If applicable, RAN Node 1 may send model performance feedback to the network node.
  • Step 7 RAN node 1, RAN node 2, and UE (or 'RAN node 1 and UE', or 'RAN node 1 and RAN node 2') perform an action based on the output data. For example, in the case of load balancing operation, the UE may move from RAN node 1 to RAN node 2.
  • Step 8 RAN node 1 and RAN node 2 transmit feedback information to the network node.
  • Figure 16 illustrates a case where both the AI Model Training function and the AI Model Inference function are performed by a RAN node (e.g., base station, TRP, CU of the base station, etc.).
  • a RAN node e.g., base station, TRP, CU of the base station, etc.
  • Step 1 UE and RAN Node 2 transmit input data (i.e. Training data) for AI Model Training to RAN Node 1.
  • input data i.e. Training data
  • Step 2 RAN Node 1 trains the AI Model using the received training data.
  • Step 3 RAN Node 1 receives input data (i.e. Inference data) for AI Model Inference from UE and RAN Node 2.
  • input data i.e. Inference data
  • Step 4 RAN Node 1 performs AI Model Inference using the received Inference data to generate output data (e.g., prediction or decision).
  • output data e.g., prediction or decision
  • Step 5 RAN node 1, RAN node 2, and UE (or 'RAN node 1 and UE', or 'RAN node 1 and RAN node 2') perform an action based on the output data. For example, in the case of load balancing operation, the UE may move from RAN node 1 to RAN node 2.
  • Step 6 RAN node 2 transmits feedback information to RAN node 1.
  • Figure 17 illustrates a case where the AI Model Training function is performed by a RAN node (e.g., base station, TRP, CU of the base station, etc.), and the AI Model Inference function is performed by the UE.
  • a RAN node e.g., base station, TRP, CU of the base station, etc.
  • the AI Model Inference function is performed by the UE.
  • Step 1 The UE transmits input data (i.e. Training data) for AI Model Training to the RAN node.
  • the RAN node may collect data (e.g., measurements of the UE related to RSRP, RSRQ, SINR of the serving cell and neighboring cells, location of the UE, speed, etc.) from various UEs and/or from other RAN nodes. there is.
  • Step 2 The RAN node trains the AI Model using the received training data.
  • Step 3 The RAN node distributes/updates the AI Model to the UE.
  • the UE may continue to perform model training based on the received AI Model.
  • Step 4 Receive input data (i.e., Inference data) for AI Model Inference from the UE and RAN node (and/or from other UEs).
  • input data i.e., Inference data
  • Step 5 The UE performs AI Model Inference using the received Inference data to generate output data (e.g., prediction or decision).
  • output data e.g., prediction or decision
  • Step 6 If applicable, the UE may send model performance feedback to the RAN node.
  • Step 7 UE and RAN nodes perform actions based on output data.
  • Step 8 The UE transmits feedback information to the RAN node.
  • the nodes and terminals that make up the wireless communication network are becoming more intelligent/advanced.
  • various network environment parameters e.g. Distribution/location of base stations, distribution/location/material of buildings/furniture, etc., location/movement direction/speed of terminals, climate information, etc.
  • network decision parameter values e.g. transmission/reception power of each base station, transmission/reception power of each terminal
  • Figure 18 is a diagram for explaining AI-based CSI feedback.
  • one common AI model may be based on compression on the terminal and/or base station side.
  • the CSI encoder on the terminal side and the CSI decoder on the base station can be assumed as shown in FIG. 18.
  • the encoder and decoder may be related to an autoencoder, and a CNN (convolutional neural network) may be used to efficiently reduce the size/dimension of the channel.
  • Implicit feedback has the advantage of lower feedback overhead than explicit feedback.
  • AI/ML-based CSI feedback compressing existing PMI, for example, Type I and Type II CSI, can be considered.
  • linear basis i.e. DFT vector
  • DFT vector is used for frequency domain compression to reduce the payload of Rel-15 Type II CSI.
  • AI/ML can be used to further reduce the payload of existing CSI and improve performance.
  • AI/ML-based CSI reporting can be considered. Assuming that both the base station and the terminal have capabilities (training and/or inference) for AI/ML, auto-encoder like CSI reporting can be performed. Or, you can consider single sided (at Network or UE) AI/ML. In the case of single sided, specific parameter optimization (performance and/or payload) can be considered based on AI/ML of the existing legacy codebook.
  • CSI processing unit For the purpose of managing the CSI processor of the terminal when generating/calculating such (AI/ML-based) CSI, a CSI processing unit (CPU) was introduced in NR Rel.17. Table 6 is an excerpt from standard document TS 38.214 for the CSI processing unit.
  • AI/ML-based CSI reporting it can be broadly classified into two types - Two-sided AI/ML and one sided AI/ML.
  • the base station or network AI/ML server
  • the base station performs training/inference and signals the trained AI/ML model to the terminal, so that the terminal operates only through AI/ML inference.
  • the base station or network AI/ML server
  • the corresponding value can be set/indicated. When the corresponding value As described in 214, the operation for CPU occupancy of the terminal is followed.
  • AI/ML inference In the case of AI/ML inference, the multiplication of variables between nodes within a pre-trained model and the activation function (e.g., sigmoid, relu, tanh) for each node are processed without the burden of training. Therefore, the inference operation is very low in terms of complexity compared to training. However, to improve the desired performance, deeper and larger models are considered. In this case, it is obvious that calculation complexity increases due to calculation of increasing variables. Therefore, in an AI/ML model, the amount of computation associated with AI/ML model parameters such as number of variables, number of nodes, number of hidden layers, etc. and/or the amount of computation such as pre-processing/post-processing of input/output data. Depending on this, there may be changes in CPU occupation. In addition, AI/ML models are easily scalable and can be composed of different AI/ML models depending on their usage. In order to evenly reflect the diversity of these AI/ML models, we propose the following.
  • the activation function e.g., sigmoi
  • the terminal can report information about the AI/ML model that can be processed in 1 CPU occupation (as a capability) to the base station.
  • a value based on a specific calculation unit (e.g., FLOP) that can be processed in 1 CPU occupation can be reported.
  • the base station may instruct/set the terminal to a threshold that can process 1 CPU occupation. Since the above value may differ depending on the performance of the terminal, it is indicated as a relatively loose value, or divided into a plurality of groups (e.g., high, middle, low) based on the capability of the terminal, and a specific threshold value for each group. There may be a way to instruct.
  • the base station may set the CPU required for CSI reporting based on a specific AI/ML model for each group, or may instruct/set the terminal by making a prior appointment. For example, in proposal 1 above, the value of X can be set as shown in Table 1 below or promised in advance. The terminal's capabilities for AI/ML can be reported by the terminal.
  • Table 7 shows an example of X value setting based on terminal capability.
  • the terminal can report the capability for each model/version.
  • the terminal can effectively manage the processing of multiple AI/ML models.
  • the APU can report the number (A) of AI/ML modules/functions that the terminal can simultaneously calculate per CC or across CC. If B APUs are occupied, the terminal can be assumed to have A-B unoccupied APUs. In this situation, if more than A-B AI/ML models are activated or triggered, the selected A-B AI/ML models are selected and operated according to the preset priority rule, and information about the AI/ML models that were not selected is provided. can be reported to the base station.
  • the APU it can be assumed to be occupied from the time of receiving signaling (e.g., MAC-CE/DCI) triggering / activating a specific AI/ML model to the time of receiving deactivation or termination or switching signaling.
  • receiving signaling e.g., MAC-CE/DCI
  • the APU may be integratedly managed/applied to the AI/ML model, and the number of APU occupancies required for each AI/ML model may be different.
  • the APU can be considered to be set separately only for AI/ML-based CSI reporting, and therefore, the terminal can report the maximum supportable APU and CPU values as capabilities at the same time.
  • the occupation rule for the APU is the same as for the CPU, but is used to separately manage only AI/ML-based CSI reporting.
  • K value may have a value such as 0.5, which means that one CSI report connected to two resources occupies one APU. It can be assumed.
  • AI/ML inference can be used as the main use case.
  • the terminal is equipped with training capability, units that manage training and inference separately can be introduced and managed, for example, as APU-training / APU-inference, respectively.
  • APU-training if some or all of the APU-training is unoccupied in a situation where the terminal's APU-inference is fully occupied, the APU-training can be borrowed and used according to a specific rule.
  • the APU-inference can be borrowed and used according to specific rules.
  • each APU occupancy may be given by the following function (e.g. linear linear equation or multi-order equation), and linear linear equation
  • APU-training / APU-inference is integrated and operated / applied as one APU without distinction, when APU is insufficient, training takes precedence over inference and occupies the APU (or returns the APU already occupied by inference and uses it for training). (or the opposite operation is also possible), and in situations where inference is not possible due to lack of APU, the default mode can be set. For example, in the case of CSI reporting, Type I CSI reporting can be reported and fallback to the default mode. Alternatively, if inference is not possible due to lack of APU, inference can be applied by dropping or delaying the AI/ML model inference.
  • delay means waiting until an unoccupied APU equal to or larger than the APU occupied by the AI/ML model is secured.
  • problems such as buffer size/memory size may occur, so you can introduce a maximum window size or timer that can be delayed, wait until the window or timer expires, and before that, you can introduce a maximum window size or timer that can be delayed.
  • the occupied APU is secured, the above AI/ML inference can be applied, and if not, it can be dropped. Information about drop or delay of such AI/ML model can be reported to the base station or AI/ML server.
  • the base station can set/instruct all APU occupations for fast training/update/inference by occupying all corresponding APU occupations.
  • the base station can set/instruct all APU occupations for fast training/update/inference by occupying all corresponding APU occupations.
  • the CPU occupation is considered Y or Y+1.
  • CSI reporting obtains raw channel data by performing measurement through channel measurement (CMR) and/or interference measurement (IMR) based on a specific RS (e.g., CSI-RS or SSB) set by the base station.
  • CMR channel measurement
  • IMR interference measurement
  • Pre-processing e.g. eigen value decomposition
  • CMR channel measurement
  • IMR interference measurement
  • Pre-processing e.g. eigen value decomposition
  • This series of processes can be processed with a single AI/ML, or divided into multiple modules and replaced with a module/function with high computational complexity, or a module/function that can be replaced with moderate performance with low complexity with an AI/ML model. It can be configured as follows.
  • the number (Y) of modules participating in this modularized AI/ML-based CSI reporting is considered as CPU occupation, or if it is mixed with other legacy modules/functions, 1 is added to count it, Y+1. It is considered as Even if the terminal implements a specific module (e.g., channel estimation), the terminal can report information (e.g., number of modules or model information) to the base station, and this is for the base station's scheduling flexibility.
  • a specific module e.g., channel estimation
  • the value of N CPU can be set separately for AI/ML based CSI reporting and legacy CSI reporting to manage the CPU.
  • N CPU_AI is used to use only AI/ML based CSI reporting, or when more than a certain number of AI/ML based CSI reports are triggered (eg, 1), N CPU_AI is used to use only AI/ML based CSI reporting.
  • N CPU_AI may be a value determined based on UE capability reporting.
  • the base station can define a plurality of N CPUs and instruct the terminal what value to use.
  • the N CPU_AI of the terminal can also be set to multiple values and applied AI/ML model (group)-specifically. For example, if two N CPU_AI-1 and N CPU_AI-2 are applied and multiple AI/ML models exist, they can be used by mapping them to each of N CPU_AI-1 and N CPU_AI-2 . That is, for AI/ML models belonging to group 1, CPU occupation is managed separately with N CPU_AI-1 as the upper limit, and for AI/ML models belonging to group 2, CPU occupation is managed separately with N CPU_AI-2 as the upper limit. Can be managed separately.
  • the information about grouping may be based on the capability report of the terminal or may be set/instructed by the base station.
  • the base station can additionally signal a CSI priority indicator to adjust the CSI priority of AI/ML-based CSI reporting, improving base station scheduling flexibility.
  • CSI priority rule when multiple CSI reports collide in time and/or frequency resources, or when multiple PUCCH and/or PUSCH carrying CSI are multiplexed, a specific CSI is reported according to the priority rule below. Reports can be dropped. In the case of CSI priority rule, CSI reports with a low value of Pri iCSI (y,k,c,s) are given priority according to the rules of the standard document excerpted in Table 8 below. Using this structure, in order for the base station to adjust the priority of AI/ML-based CSI reporting, a 1-bit field can be added to the DCI that schedules the CSI report to indicate high and low priority.
  • the range of k values in Equation 2 below can be increased to 0, 1, and 2 to indicate more flexibility. In this case, the field size according to priority will increase to 2 bits.
  • the instructions in Proposal 4 above may be given differently for each AI/ML model.
  • CSI calculation latency e.g. Z, Z', CSI reference resource timing
  • the model group may refer to a group of AI/ML models in which CSI calculation can be performed within a specific Z/Z' value, and when the terminal reports information related to the corresponding Z/Z' to the capability, the Based on the value, you can configure which Z/Z' value the base station will use.
  • Figure 19 is a diagram for explaining terminal operations according to one embodiment.
  • the terminal can report APU (AI Processing Unit) information related to the number of AI/ML (artificial intelligence/machine learning) processes that the terminal can process simultaneously (A05). .
  • APU AI Processing Unit
  • the terminal may receive information indicating terminal operations related to at least one AI/ML model from the network (A10).
  • the terminal may perform at least some of the terminal operations simultaneously (A15).
  • the terminal may exclude among the indicated terminal operations.
  • One or two or more terminal operations may be determined, and information on the one or two or more terminal operations determined to be excluded may be reported to the network.
  • the terminal may drop, inactivate, or suspend one or more terminal operations determined to be excluded.
  • the terminal may perform the remaining terminal operations excluding the one or two or more terminal operations determined to be excluded based on the APU information among the terminal operations indicated by the network.
  • the terminal operations related to the at least one AI/ML model indicated by the network include AI/ML-based beam management, AI/ML-based positioning, and AI/ML-based channel state information (CSI) calculation. It can contain at least one.
  • AI/ML-based beam management AI/ML-based positioning
  • AI/ML-based channel state information (CSI) calculation AI/ML-based channel state information (CSI) calculation. It can contain at least one.
  • CSI channel state information
  • the APU (AI Processing Unit) information may be set separately from the CPU (CSI processing unit) information related to the number of CSI (channel state information) calculations that the terminal can simultaneously process.
  • the APU (AI Processing Unit) information may be set as part of CPU (CSI processing unit) information related to the number of CSI (channel state information) calculations that the terminal can simultaneously process.
  • One AI/ML-based CSI calculation can be counted as 'X' non-AI/ML-based CSI calculations.
  • 'X' can be set based on information received from the network. 'X' may be determined based on at least one of the capabilities of the terminal and an AI/MML model related to the corresponding AI/ML-based CSI calculation.
  • the APU information may be set for each CC (component carrier) or may be set to cover multiple CCs.
  • the one or more terminal operations to be excluded may be determined based on priority.
  • Figure 20 is a diagram for explaining the operation of a base station according to an embodiment.
  • the base station may receive APU (AI Processing Unit) information related to the number of AI/ML (artificial intelligence/machine learning) processes that the terminal can process simultaneously from the terminal (B05 ).
  • APU AI Processing Unit
  • the base station may transmit information indicating terminal operations related to at least one AI/ML model to the terminal (B10).
  • the base station selects one or more terminal operations to be excluded from among the indicated terminal operations based on the number of the indicated terminal operations exceeding the number of AI/ML processes obtained through the APU information in a specific time resource.
  • Information about can be received from the terminal (B15).
  • Figure 21 illustrates a communication system 1 to which the present invention is applicable.
  • the communication system 1 includes a wireless device, a base station, and a network.
  • a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots (100a), vehicles (100b-1, 100b-2), XR (eXtended Reality) devices (100c), hand-held devices (100d), and home appliances (100e). ), IoT (Internet of Thing) device (100f), and AI device/server (400).
  • vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device), HUD (Head-Up Display) installed in vehicles, televisions, smartphones, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • Portable devices may include smartphones, smart pads, wearable devices (e.g., smartwatches, smart glasses), and computers (e.g., laptops, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, etc.
  • IoT devices may include sensors, smart meters, etc.
  • a base station and network may also be implemented as wireless devices, and a specific wireless device 200a may operate as a base station/network node for other wireless devices.
  • Wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network.
  • Wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g., sidelink communication) without going through the base station/network.
  • vehicles 100b-1 and 100b-2 may perform direct communication (e.g., V2V (Vehicle to Vehicle)/V2X (Vehicle to everything) communication).
  • an IoT device e.g, sensor
  • another IoT device e.g, sensor
  • another wireless device e.g., 100f
  • Wireless communication/connection may be established between the wireless devices (100a to 100f)/base station (200) and the base station (200)/base station (200).
  • wireless communication/connection includes various wireless communication such as uplink/downlink communication (150a), sidelink communication (150b) (or D2D communication), and inter-base station communication (150c) (e.g., relay, IAB (Integrated Access Backhaul)).
  • uplink/downlink communication 150a
  • sidelink communication 150b
  • inter-base station communication 150c
  • This can be achieved through access technology (e.g., 5G NR).
  • a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to each other.
  • wireless communication/connection can transmit/receive signals through various physical channels.
  • transmission/reception of wireless signals is performed.
  • various configuration information setting processes e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes may be performed.
  • Figure 22 illustrates a wireless device to which the present invention can be applied.
  • the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ refers to ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) in FIG. 21. ⁇ can be responded to.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may additionally include one or more transceivers 106 and/or one or more antennas 108.
  • Processor 102 controls memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed herein. can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • One or more processors 102, 202 generate signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , can be provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • PDU, SDU, message, control information, data or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
  • Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein, etc. from one or more other devices. there is.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may be connected to the description and functions disclosed in this document through one or more antennas (108, 208). , may be set to transmit and receive user data, control information, wireless signals/channels, etc.
  • one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
  • One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
  • one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
  • FIG. 23 shows another example of a wireless device applied to the present invention.
  • Wireless devices can be implemented in various forms depending on usage-examples/services (see FIG. 21).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 22 and include various elements, components, units/units, and/or modules. ) can be composed of.
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include communication circuitry 112 and transceiver(s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and/or one or more memories 104, 204 of FIG. 22.
  • transceiver(s) 114 may include one or more transceivers 106, 206 and/or one or more antennas 108, 208 of FIG. 22.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls overall operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (e.g., another communication device) through the communication unit 110 through a wireless/wired interface, or to the outside (e.g., to another communication device) through the communication unit 110. Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
  • the outside e.g., another communication device
  • Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIG. 21, 100a), vehicles (FIG. 21, 100b-1, 100b-2), XR devices (FIG. 21, 100c), portable devices (FIG. 21, 100d), and home appliances. (FIG. 21, 100e), IoT device (FIG.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It can be implemented in the form of an AI server/device (FIG. 21, 400), base station (FIG. 21, 200), network node, etc.
  • Wireless devices can be mobile or used in fixed locations depending on the usage/service.
  • various elements, components, units/parts, and/or modules within the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a portion may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (e.g., 130 and 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit e.g., 130 and 140
  • each element, component, unit/part, and/or module within the wireless devices 100 and 200 may further include one or more elements.
  • the control unit 120 may be comprised of one or more processor sets.
  • control unit 120 may be comprised of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • Figure 24 illustrates a vehicle or autonomous vehicle to which the present invention is applied.
  • a vehicle or autonomous vehicle can be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc.
  • AV manned/unmanned aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a drive unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130/140a to 140d respectively correspond to blocks 110/130/140 in FIG. 23.
  • the communication unit 110 may transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g., base stations, roadside base stations, etc.), and servers.
  • the control unit 120 may control elements of the vehicle or autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a can drive the vehicle or autonomous vehicle 100 on the ground.
  • the driving unit 140a may include an engine, motor, power train, wheels, brakes, steering device, etc.
  • the power supply unit 140b supplies power to the vehicle or autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, etc.
  • the sensor unit 140c can obtain vehicle status, surrounding environment information, user information, etc.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward sensor. / May include a reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc.
  • the autonomous driving unit 140d provides technology for maintaining the driving lane, technology for automatically adjusting speed such as adaptive cruise control, technology for automatically driving along a set route, and technology for automatically setting and driving when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, etc. from an external server.
  • the autonomous driving unit 140d can create an autonomous driving route and driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a so that the vehicle or autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (e.g., speed/direction control).
  • the communication unit 110 may acquire the latest traffic information data from an external server irregularly/periodically and obtain surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c can obtain vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information about vehicle location, autonomous driving route, driving plan, etc. to an external server.
  • An external server can predict traffic information data in advance using AI technology, etc., based on information collected from vehicles or self-driving vehicles, and provide the predicted traffic information data to the vehicles or self-driving vehicles.
  • Figure 25 is a diagram for explaining DRX (Discontinuous Reception) operation of a terminal according to an embodiment of the present invention.
  • the terminal may perform DRX operation while performing the procedures and/or methods described/suggested above.
  • a terminal with DRX enabled can reduce power consumption by discontinuously receiving DL signals.
  • DRX can be performed in RRC (Radio Resource Control)_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
  • RRC_IDLE state and RRC_INACTIVE state DRX is used to receive paging signals discontinuously.
  • RRC_CONNECTED DRX DRX performed in RRC_CONNECTED state will be described (RRC_CONNECTED DRX).
  • the DRX cycle consists of On Duration and Opportunity for DRX.
  • the DRX cycle defines the time interval in which On Duration is periodically repeated.
  • On Duration indicates the time interval that the terminal monitors to receive the PDCCH.
  • the terminal performs PDCCH monitoring during On Duration. If there is a PDCCH successfully detected during PDCCH monitoring, the terminal starts an inactivity timer and maintains the awake state. On the other hand, if no PDCCH is successfully detected during PDCCH monitoring, the terminal enters a sleep state after the On Duration ends. Accordingly, when DRX is set, PDCCH monitoring/reception may be performed discontinuously in the time domain when performing the procedures and/or methods described/suggested above.
  • a PDCCH reception opportunity (e.g., a slot with a PDCCH search space) may be set discontinuously according to the DRX setting.
  • PDCCH monitoring/reception can be performed continuously in the time domain when performing the procedures and/or methods described/suggested above.
  • PDCCH reception opportunities eg, slots with PDCCH search space
  • PDCCH monitoring may be limited in the time section set as the measurement gap.
  • DRX configuration information is received through upper layer (eg, RRC) signaling, and DRX ON/OFF is controlled by the DRX command of the MAC layer.
  • RRC Radio Resource Control
  • the present invention can be used in terminals, base stations, or other equipment in a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서에 개시된 실시예들 중 적어도 하나에 따른 단말은 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 네트워크에 보고하고, 상기 네트워크로부터 적어도 하나의 AI/ML 모델에 관련된 단말 동작들을 지시하는 정보를 수신하고, 상기 단말 동작들 중 적어도 일부를 동시에 수행하는 것을 포함할 수 있다.

Description

무선 통신 시스템에서 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 상/하향링크 무선 신호를 송신 또는 수신하는 방법과 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
일 측면에 따라 무선 통신 시스템에서 단말이 동작하는 방법은, 상기 단말이 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 네트워크에 보고; 상기 네트워크로부터 적어도 하나의 AI/ML 모델에 관련된 단말 동작들을 지시하는 정보를 수신; 및 상기 단말 동작들 중 적어도 일부를 동시에 수행하는 것을 포함할 수 있다. 상기 네트워크에 의해 지시된 상기 단말 동작들이 특정 시간 자원에서 상기 APU 정보를 통해 상기 네트워크에 보고된 상기 AI/ML 프로세스들의 개수를 초과하는 것에 기반하여, 상기 단말은 상기 지시된 단말 동작들 중에서 제외할 하나 또는 둘 이상의 단말 동작들을 결정하고, 상기 제외하기로 결정된 하나 또는 둘 이상의 단말 동작들에 대한 정보를 상기 네트워크에 보고할 수 있다.
상기 단말은 상기 제외하기로 결정된 하나 또는 둘 이상의 단말 동작들을 드롭(drop), 비활성(inactive) 또는 유예(suspend)할 수 있다.
상기 단말은 상기 네트워크에 의해 지시된 상기 단말 동작들 중에서 상기 APU 정보에 기반하여 제외하기로 결정된 상기 하나 또는 둘 이상의 단말 동작들을 제외한 나머지 단말 동작들을 수행할 수 있다.
상기 네트워크에 의해 지시된 상기 적어도 하나의 AI/ML 모델에 관련된 상기 단말 동작들은, AI/ML 기반 빔 관리 (beam management), AI/ML 기반 포지셔닝 및 AI/ML 기반 CSI (channel state information) 계산 중 적어도 하나를 포함할 수 있다.
상기 APU (AI Processing Unit) 정보는 상기 단말이 동시에 처리 가능한 CSI (channel state information) 계산들의 개수에 관련된 CPU (CSI processing unit) 정보와 별도로 설정될 수 있다.
또는, 상기 APU (AI Processing Unit) 정보는, 상기 단말이 동시에 처리 가능한 CSI (channel state information) 계산들의 개수에 관련된 CPU (CSI processing unit) 정보의 일부로 설정될 수 있다. 하나의 AI/ML 기반 CSI 계산은, 'X'개의 non-AI/ML 기반 CSI 계산들로 카운트될 수 있다. 'X'는 상기 네트워크로부터 수신된 정보에 기초하여 설정될 수 있다. 'X'는 상기 단말의 능력(capability) 및 해당 AI/ML 기반 CSI 계산에 관련된 AI/MML 모델 중 적어도 하나에 기반하여 결정될 수 있다.
상기 APU 정보는 각 CC (component carrier) 별로 설정되거나 또는 복수 CC들을 커버하도록 설정될 수 있다.
상기 제외될 하나 또는 둘 이상의 단말 동작들은 우선 순위에 기초하여 결정될 수 있다.
다른 일 측면에 따라서 상술된 방법을 수행하기 위한 프로그램을 기록한 프로세서로 읽을 수 있는 기록매체가 제공될 수 있다.
또 다른 일 측면에 따라서 상술된 방법을 수행하는 단말이 제공될 수 있다.
또 다른 일 측면에 따라서 상술된 방법을 수행하는 단말을 제어하기 위한 디바이스가 제공될 수 있다.
또 다른 일 측면에 따라서 무선 통신 시스템에서 기지국이 동작하는 방법은, 단말로부터 상기 단말이 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 수신; 상기 단말에 적어도 하나의 AI/ML 모델에 관련된 단말 동작들을 지시하는 정보를 송신; 및 상기 지시된 상기 단말 동작들이 특정 시간 자원에서 상기 APU 정보를 통해 획득된 상기 AI/ML 프로세스들의 개수를 초과하는 것에 기반하여, 상기 지시된 단말 동작들 중에서 제외할 하나 또는 둘 이상의 단말 동작들에 대한 정보를 상기 단말로부터 수신하는 것을 포함할 수 있다.
또 다른 일 측면에 따라서 상술된 방법을 수행하는 기지국이 제공될 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 5는 PDSCH 및 ACK/NACK 전송 과정을 예시한다.
도 6은 PUSCH 전송 과정을 예시한다.
도 7은 CSI 관련 절차의 일례를 나타낸다.
도 8은 AI/ML/Deep learning의 개념을 설명하기 위한 도면이다.
도 9 내지 도 12는 Deep learning의 다양한 AI/ML 모델들을 예시한다.
도 13은 분할 AI 추론을 예시하는 도면이다.
도 14는 3GPP RAN Intelligence를 위한 프레임 워크를 설명하기 위한 도면이다.
도 15 내지 도 17은 AI Model Training과 Inference 환경들을 예시한다.
도 18은 AI 기반 CSI 피드백을 설명하기 위한 도면이다.
도 19는 일 실시예에 따른 단말 동작을 설명하기 위한 도면이다.
도 20은 일 실시예에 따른 기지국 동작을 설명하기 위한 도면이다.
도 21 내지 도 24는 본 발명에 적용 가능한 통신 시스템(1)과 무선 기기를 예시한다.
도 25는 본 발명에 적용 가능한 DRX(Discontinuous Reception) 동작을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 명세서에서 "설정"의 표현은 "구성(configure/configuration)"의 표현으로 대체될 수 있으며, 양자는 혼용될 수 있다. 또한 조건적 표현(예를 들어, "~~이면(if)", "~~ 일 경우(in a case)" 또는 "~~일 때(when)" 등)은 "~~인 것에 기초하여(based on that ~~)" 또는 "~~인 상태에서(in a state/status)"의 표현으로 대체될 수 있다. 또한, 해당 조건의 충족에 따른 단말/기지국의 동작 또는 SW/HW 구성이 유추/이해될 수 있다. 또한, 무선 통신 장치들 (e.g., 기지국, 단말) 간의 신호 송수신에서 송신 (또는 수신) 측의 프로세스로부터 수신 (또는 송신) 측의 프로세스가 유추/이해될 수 있다면 그 설명이 생략될 수 있다. 예를 들어, 송신 측의 신호 결정/생성/인코딩/송신 등은 수신측의 신호 모니터링 수신/디코딩/결정 등으로 이해될 수 있다. 또한, 단말이 특정 동작을 수행한다(또는 수행하지 않는다)는 표현은, 기지국이 단말의 특정 동작 수행을 기대/가정(또는 수행하지 않는다고 기대/가정)하고 동작한다는 것으로도 해석될 수 있다. 기지국이 특정 동작을 수행한다(또는 수행하지 않는다)는 표현은, 단말이 기지국의 특정 동작 수행을 기대/가정(또는 수행하지 않는다고 기대/가정)하고 동작한다는 것으로도 해석될 수 있다.또한, 후술하는 설명에서 각 섹션, 실시예, 예시, 옵션, 방법, 방안 등의 구분과 인덱스는 설명의 편의를 위한 것이지 각각이 반드시 독립된 발명을 구성한다는 것을 의미하거나, 각각이 반드시 개별적으로만 실시되어야 한다는 것을 의미하는 의도로 해석되지 않아야 한다. 또한, 각 섹션, 실시예, 예시, 옵션, 방법, 방안 등을 설명함에 있어서 명시적으로 충돌/반대되는 기술이 없다면 이들의 적어도 일부 조합하여 함께 실시될 수도 있고, 적어도 일부가 생략된 채로 실시될 수도 있는 것으로 유추/해석될 수 있다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) Nslot symb Nframe,u slot Nsubframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* Nslot symb: 슬롯 내 심볼의 개수
* Nframe,u slot: 프레임 내 슬롯의 개수
* Nsubframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) Nslot symb Nframe,u slot Nsubframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16개의 CCE(Control Channel Element)로 구성된다. CCE는 무선 채널 상태에 따라 소정 부호율의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 6개의 REG(Resource Element Group)로 구성된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB 개수 및 OFDM 심볼 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PDCCH 수신/검출을 위해, 단말은 PDCCH 후보들을 모니터링 한다. PDCCH 후보는 PDCCH 검출을 위해 단말이 모니터링 해야 하는 CCE(들)을 나타낸다. 각 PDCCH 후보는 AL에 따라 1, 2, 4, 8, 16개의 CCE로 정의된다. 모니터링은 PDCCH 후보들을 (블라인드) 디코딩 하는 것을 포함한다. 단말이 모니터링 하는 PDCCH 후보들의 세트를 PDCCH 검색 공간(Search Space, SS)이라고 정의한다. 검색 공간은 공통 검색 공간(Common Search Space, CSS) 또는 단말-특정 검색 공간(UE-specific search space, USS)을 포함한다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간에서 PDCCH 후보를 모니터링 하여 DCI를 획득할 수 있다. 각각의 CORESET는 하나 이상의 검색 공간과 연관되고, 각 검색 공간은 하나의 COREST과 연관된다. 검색 공간은 다음의 파라미터들에 기초하여 정의될 수 있다.
- controlResourceSetId: 검색 공간과 관련된 CORESET를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: 슬롯 내 PDCCH 모니터링 심볼을 나타냄(예, CORESET의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타냄
* PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 DL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols NPUCCH symb Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM
(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM
(Pre DFT OCC)
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
단말에는 설정된 하나 또는 둘 이상의 셀들 중 적어도 하나는 PUCCH 송신을 위해 설정될 수 있다. 적어도 Primary Cell은 PUCCH 송신을 위한 셀로 설정될 수 있다. PUCCH 송신이 설정된 적어도 하나의 Cell에 기초하여 단말에 적어도 하나의 PUCCH cell group이 설정될 수 있으며, 각 PUCCH cell group은 하나 또는 둘 이상의 셀들을 포함한다. PUCCH cell group은 간략히 PUCCH group으로 지칭될 수 있다. Primary Cell 뿐 아니라 SCell에도 PUCCH 송신이 설정될 수 있으며, Primary Cell은 Primary PUCCH group에 속하고, PUCCH 송신이 설정된 PUCCH-SCell은 secondary PUCCH group에 속한다. Primary PUCCH group에 속하는 Cell들에 대해서는 Primary Cell 상의 PUCCH가 사용되고, Secondary PUCCH group에 속하는 Cell들에 대해서는 PUCCH-SCell 상의 PUCCH가 사용될 수 있다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 5는 ACK/NACK 전송 과정을 예시한다. 도 5를 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0 (예, 슬롯 오프셋), 슬롯 #n+K0 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 PDSCH의 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
- PUCCH resource indicator (PRI): PUCCH 자원 세트 내의 복수의 PUCCH 자원들 중에서 UCI 전송에 사용될 PUCCH 자원을 지시함
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서부터 PDSCH를 수신한 뒤, 슬롯 #n1(where, n+K0≤ n1)에서 PDSCH의 수신이 끝나면 슬롯 #(n1+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함할 수 있다. 도 5에서는 편의상 PDSCH에 대한 SCS와 PUCCH에 대한 SCS가 동일하고, 슬롯# n1= 슬롯#n+K0 라고 가정하였으나, 본 발명은 이에 한정되지 않는다. SCS들이 상이한 경우 PUCCH의 SCS를 기반으로 K1 지시/해석될 수 있다.
PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
HARQ-ACK 응답을 위해 단말이 공간(spatial) 번들링을 수행하여야 하는지 여부는 셀 그룹 별로 구성(configure)(e.g., RRC/상위계층 시그널링)될 수 있다. 일 예로 공간 번들링은 PUCCH를 통해서 송신되는 HARQ-ACK 응답 및/또는 PUSCH를 통해서 송신되는 HARQ-ACK 응답 각각에 개별적으로 구성될 수 있다.
공간 번들링은 해당 서빙 셀에서 한번에 수신 가능한(또는 1 DCI를 통해 스케줄 가능한) TB (또는 코드워드)의 최대 개수가 2개 인경우 (또는 2개 이상인 경우)에 지원될 수 있다(e.g., 상위계층파라미터 maxNrofCodeWordsScheduledByDCI 가 2-TB에 해당하는 경우). 한편, 2-TB 전송을 위해서는 4개 보다 더 많은 개수의 레이어들이 사용될 수 있으며, 1-TB 전송에는 최대 4개 레이어가 사용될 수 있다. 결과적으로, 공간 번들링이 해당 셀 그룹에 구성된 경우, 해당 셀 그룹 내의 서빙 셀들 중 4 개 보다 많은 개수의 레이어가 스케줄 가능한 서빙 셀에 대하여 공간 번들링이 수행될 수 있다. 해당 서빙 셀 상에서, 공간 번들링을 통해서 HARQ-ACK 응답을 송신하고자 하는 단말은 복수 TB들에 대한 A/N 비트들을 (bit-wise) logical AND 연산하여 HARQ-ACK 응답을 생성할 수 있다.
예컨대, 단말이 2-TB를 스케줄링하는 DCI를 수신하고, 해당 DCI에 기초하여 PDSCH를 통해서 2-TB를 수신하였다고 가정할 때, 공간 번들링을 수행하는 단말은 제1 TB에 대한 제1 A/N 비트와 제2 TB에 대한 제2 A/N 비트를 논리적 AND 연산하여 단일 A/N 비트를 생성할 수 있다. 결과적으로, 제1 TB와 제2 TB가 모두 ACK 인 경우 단말은 ACK 비트 값을 기지국에 보고하고, 어느 하나의 TB라도 NACK 인경우 단말은 NACK 비트 값을 기지국에 보고한다.
예컨대, 2-TB가 수신 가능하도록 구성(configure)된 서빙 셀 상에서 실제로 1-TB 만 스케줄된 경우, 단말은 해당 1-TB에 대한 A/N 비트와 비트 값 1을 논리적 AND 연산하여 단일 A/N 비트를 생성할 수 있다. 결과적으로, 단말은 해당 1-TB에 대한 A/N 비트를 그대로 기지국에 보고하게 된다.
기지국/단말에는 DL 전송을 위해 복수의 병렬 DL HARQ 프로세스가 존재한다. 복수의 병렬 HARQ 프로세스는 이전 DL 전송에 대한 성공 또는 비성공 수신에 대한 HARQ 피드백을 기다리는 동안 DL 전송이 연속적으로 수행되게 한다. 각각의 HARQ 프로세스는 MAC(Medium Access Control) 계층의 HARQ 버퍼와 연관된다. 각각의 DL HARQ 프로세스는 버퍼 내의 MAC PDU(Physical Data Block)의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전(redundancy version) 등에 관한 상태 변수를 관리한다. 각각의 HARQ 프로세스는 HARQ 프로세스 ID에 의해 구별된다.
도 6은 PUSCH 전송 과정을 예시한다. 도 6을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
CSI 관련 동작
도 7은 CSI 관련 절차의 일례를 나타낸다.
단말은 CSI와 관련된 설정 정보를 RRC signaling을 통해 기지국으로부터 수신한다(710). 상기 CSI와 관련된 configuration 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, CSI-RS 자원(resource) 관련 정보 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다.
- 단말의 간섭 측정(Interference Measurement, IM)을 위해 CSI-IM 자원이 설정될 수 있다. 시간 도메인에서 CSI-IM 자원 세트는 주기적, 반-영속적, 또는 비주기적으로 설정될 수 있다. CSI-IM 자원은 단말에 대해서 제로전력(Zero Power, ZP)-CSI-RS으로 설정될 수 있다. ZP-CSI-RS는 비제로전력(Non-Zero Power, NZP)-CSI-RS와 구별되어 설정될 수 있다.
- UE는 하나의 CSI reporting을 위해 설정된 채널 측정을 위한 CSI-RS resource(들)과 interference measurement를 위한 CSI-IM / NZP CSI-RS resource(들)(NZP CSI-RS 자원(들)이 interference measurement를 위해 사용될 때)이 자원 별로 'QCL-TypeD'에 관하여 QCL 관계라고 가정할 수 있다.
- CSI 자원 설정은 interference measurement에 대한 CSI-IM resource, interference measurement에 대한 NZP CSI-RS 자원 및 channel measurement에 대한 NZP CSI-RS 자원 중 적어도 하나를 포함할 수 있다. CMR(channel measurement resource)는 CSI acquisition을 위한 NZP CSI-RS일 수 있으며, IMR(Interference measurement resource)는 CSI-IM과 IM을 위한 NZP CSI-RS일 수 있다.
- CSI-RS는 하나 이상의 단말에게 설정될 수 있다. 단말 별로 상이한 CSI-RS 설정이 제공될 수도 있고, 복수의 단말에게 동일한 CSI-RS 설정이 제공될 수 있다. CSI-RS는 최대 32 개의 안테나 포트를 지원할 수 있다. N(N은 1 이상) 개의 안테나 포트에 대응하는 CSI-RS는 하나의 슬롯 및 하나의 RB에 해당하는 시간-주파수 단위 내에서 N 개의 RE 위치에 매핑될 수 있다. N이 2 이상인 경우, N-포트 CSI-RS는 CDM, FDM 및/또는 TDM 방식으로 다중화될 수 있다. CSI-RS는 CORESET, DMRS 및 SSB가 매핑되는 RE를 제외한 나머지 RE에 매핑될 수 있다. 주파수 도메인에서 CSI-RS는 전체 대역폭, 일부 대역폭부분(BWP) 또는 일부 대역폭에 대해서 설정될 수 있다. CSI-RS가 설정된 대역폭 내의 각각의 RB에서 CSI-RS가 송신되거나(즉, 밀도=1), 또는 매 2 번째 RB(예를 들어, 짝수 번째 또는 홀수 번째 RB)에서 CSI-RS가 송신될 수 있다(즉, 밀도=1/2). CSI-RS가 트래킹 참조 신호(Tracking Reference Signal, TRS)로 사용되는 경우, 각각의 자원 블록에서 3 개의 서브캐리어 상에 단일-포트 CSI-RS가 매핑될 수도 있다(즉, 밀도=3). 시간 도메인에서 단말에게 하나 이상의 CSI-RS 자원 세트가 설정될 수 있다. 각각의 CSI-RS 자원 세트는 하나 이상의 CSI-RS 설정을 포함할 수 있다. 각각의 CSI-RS 자원 세트는 주기적, 반-영속적(semipersistent) 또는 비주기적으로 설정될 수 있다.
- CSI 보고 설정은, 피드백 타입, 측정 자원, 보고 타입 등에 대한 설정을 포함할 수 있다. NZP-CSI-RS 자원 세트는 해당 단말의 CSI 보고 설정(report configuration)에 이용될 수 있다. NZP-CSI-RS 자원 세트는 CSI-RS 또는 SSB와 연관될 수도 있다. 또한, 다수의 주기적 NZP-CSI-RS 자원 세트는 TRS 자원 세트로 설정될 수 있다. (i) 피드백 타입은 채널 품질 지시자(Channel Quality Indicator, CQI), 프리코딩 행렬 지시자(Precoding Matrix Indicator, PMI), CRI(CSI-RS Resource Indicator), SSBRI(SSB Resource block Indicator), LI(Layer Indicator), 랭크 지시자(Rank Indicator, RI), 제 1 계층-참조신호수신전력(L1-Reference Signal Received Strength, RSRP) 등을 포함할 수 있다. (ii) 측정 자원은 단말이 피드백 정보를 결정하기 위해서 측정을 수행할 하향링크 신호 및/또는 하향링크 자원에 대한 설정을 포함할 수 있다. 측정 자원은, CSI 보고 설정에 연관되는 ZP 및/또는 NZP CSI-RS 자원 세트로서 설정될 수 있다. NZP CSI-RS 자원 세트는 CSI-RS 세트 또는 SSB 세트를 포함할 수 있다. 예를 들어, L1-RSRP는 CSI-RS 세트에 대해서 측정되거나, SSB 세트에 대해서 측정될 수도 있다. (iii) 보고 타입은 단말이 보고를 수행할 시점 및 상향링크 채널 등에 대한 설정을 포함할 수 있다. 보고 시점은 주기적, 반-영속적 또는 비주기적으로 설정될 수 있다. 주기적 CSI 보고는 PUCCH 상에서 송신될 수 있다. 반-영속적 CSI 보고는 활성화/비활성화를 지시하는 MAC CE에 기초하여, PUCCH 또는 PUSCH 상에서 송신될 수 있다. 비주기적 CSI 보고는 DCI 시그널링에 의해서 지시될 수 있다. 예를 들어, 상향링크 그랜트의 CSI 요청(request) 필드는 다양한 보고 트리거 크기(report trigger size) 중의 하나를 지시할 수 있다. 비주기적 CSI 보고는 PUSCH 상에서 송신될 수 있다.
단말은 CSI와 관련된 configuration 정보에 기초하여 CSI를 측정(measurement)한다. CSI measurement는 CSI-RS를 수신하고(720), 수신된 CSI-RS를 computation하여 CSI를 acquisition(730)하는 절차를 포함할 수 있다.
단말은 CSI 보고를 기지국에게 송신 할 수 있다 (740). CSI 보고를 위해, UE가 사용할 수 있는 time 및 frequency 자원은 기지국에 의해 제어된다. CSI(channel state information)은 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS resource indicator (CRI), SS/PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI), L1-RSRP 및/또는 L-SINR 중 적어도 하나를 포함할 수 있다.
CSI reporting의 time domain behavior는 periodic, semi-persistent, aperiodic을 지원한다. i) periodic CSI reporting은 short PUCCH, long PUCCH 상에서 수행된다. Periodic CSI reporting의 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정될 수 있으며, CSI-ReportConfig IE를 참고한다. ii) SP(semi-periodic) CSI reporting은 short PUCCH, long PUCCH, 또는 PUSCH 상에서 수행된다. Short/long PUCCH 상에서 SP CSI인 경우, 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정되며, 별도의 MAC CE / DCI로 CSI 보고가 activation/deactivation 된다. PUSCH 상에서 SP CSI인 경우, SP CSI reporting의 periodicity는 RRC로 설정되지만, slot offset은 RRC로 설정되지 않으며, DCI(format 0_1)에 의해 SP CSI reporting은 활성화/비활성화(activation/deactivation)된다. PUSCH 상에서 SP CSI reporting에 대해, 분리된 RNTI(SP-CSI C-RNTI)가 사용된다. 최초 CSI 보고 타이밍은 DCI에서 지시되는 PUSCH time domain allocation 값을 따르며, 후속되는 CSI 보고 타이밍은 RRC로 설정된 주기에 따른다. DCI format 0_1은 CSI request field를 포함하고, 특정 configured SP-CSI trigger state를 activation/deactivation할 수 있다. SP CSI reporting은, SPS PUSCH 상에서 data 전송을 가진 mechanism과 동일 또는 유사한 활성화/비활성화를 가진다. iii) aperiodic CSI reporting은 PUSCH 상에서 수행되며, DCI에 의해 trigger된다. 이 경우, aperiodic CSI reporting의 trigger와 관련된 정보는 MAC-CE를 통해 전달/지시/설정될 수 있다. AP CSI-RS를 가지는 AP CSI의 경우, AP CSI-RS timing은 RRC에 의해 설정되고, AP CSI reporting에 대한 timing은 DCI에 의해 동적으로 제어된다.
NR 표준에 정의된 CSI 코드북(e.g., PMI 코드북)은 크게 Type I 코드북와 Type II 코드북로 구분될 수 있다. Type I 코드북은 높은 오더 및 낮은 오더 모두를 지원하는 SU(Single User)-MIMO에 주로 타겟팅한다. Type II 코드북은 최대 2 레이어를 지원하는 MI-MIMO를 주로 지원할 수 있다. Type I에 비하여 Type II 코드북이 더 정확한 CSI를 제공할 수 있으나 그만큼 시그널링 오버헤드가 증가할 수 있다. 한편, Enhanced Type II 코드북은 기존 Type II 코드북에 따른 CSI 오버헤드 단점을 해결하기 위한 것으로, 주파수 축의 correlation를 고려하여 코드북의 페이로드를 줄이는 방식으로 Enhanced Type II가 도입되었다.
PUSCH를 통한 CSI 보고는 Part 1 및 Part 2로 설정될 수 있다. Part 1은 고정된 페이로드 사이즈를 가지며, Part 2의 정보 비트 수를 식별하는 데 사용된다. Part1은 Part 2 이전에 전체 다 송신된다.
- Type I CSI 피드백의 경우, Part 1은 RI(보고되는 경우), CRI(보고되는 경우), 첫 번째 코드 워드의 CQI를 포함한다. Part 2는 PMI를 포함하고, RI> 4 일 때, Part 2는 CQI를 포함한다.
- Type II CSI 피드백의 경우, Part 1은 RI(보고되는 경우), CQI 및 Type II CSI의 각 레이어 당 non-zero WB amplitude coefficients의 개수 지시를 포함한다. Part 2는 Type II CSI의 PMI를 포함한다.
- Enhanced Type II CSI 피드백의 경우, Part 1은 RI(보고되는 경우), CQI 및 Enhanced Type II CSI의 총 레이어들에 대한 non-zero WB amplitude coefficients의 전체 개수 지시를 포함한다. Part 2는 Enhanced Type II CSI의 PMI를 포함한다.
PUSCH에서 CSI reporting이 2개의 part들을 포함하고, 보고할 CSI payload가 CSI 보고를 위해 할당된 PUSCH자원에서 제공하는 payload 크기 보다 부족한 경우, 단말은 Part 2 CSI의 일부를 생략할 수 있다.
한편, PUCCH format 3 또는 4로 수행되는 Semi-persistent CSI 보고는 Type II CSI 피드백을 지원하지만 Type II CSI 피드백의 Part 1 만 지원한다.
QCL (quasi-co location)
안테나 포트의 채널 특성(property)이 다른 안테나 포트의 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 quasi co-located이다. 채널 특성은 Delay spread, Doppler spread, Frequency/Doppler shift, Average received power, Received Timing/average delay, Spatial RX parameter 중 하나 이상을 포함할 수 있다.
단말에는 상위 계층 파라미터 PDSCH-Config를 통해 복수개 TCI-State configuration의 리스트가 설정될 수 있다. 각각의 TCI-State는 하나 또는 두 개의 DL 참조 신호와 PDSCH의 DM-RS 포트 사이의 QCL 설정 파라미터에 연계된다. QCL은 첫 번째 DL RS에 대한 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2를 포함할 수 있다. QCL type은 다음 중 하나에 해당할 수 있다.
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
빔 관리(Beam Management, BM)
BM 과정은 하향링크(downlink, DL) 및 상향링크(uplink, UL) 전송/수신에 사용될 수 있는 BS(혹은 전송 및 수신 포인트(transmission and reception point, TRP)) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 과정들로서, 아래와 같은 과정 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): BS 또는 UE가 수신된 빔포밍 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): BS 또는 UE가 자신의 전송 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 빔 스위핑(beam sweeping): 미리 결정된 방식으로 일정 시간 인터벌 동안 전송 및/또는 수신 빔을 이용하여 공간 도메인을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔포밍된 신호의 정보를 보고하는 동작.
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
이 때, DL BM 과정은 (1) BS에 의한 빔포밍된 DL RS들(예, CSI-RS 또는 SSB) 전송과, (2) UE에 의한 빔 보고(beam reporting)를 포함할 수 있다.
여기서, 빔 보고는 선호하는(preferred) DL RS ID(들) 및 이에 대응하는 참조 신호 수신 전력(reference signal received power, RSRP)를 포함할 수 있다. DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.
AI/ML (Artificial intelligence / machine learning)
AI/ML의 기술 발전으로 무선 통신 네트워크를 구성하는 노드(들) 및 단말(들)의 지능화/고도화가 이루어지고 있으며, 특히 네트워크/기지국의 지능화로 인해 다양한 환경 파라미터(e.g. 기지국들의 분포/위치, 건물/가구 등의 분포/위치/재질, 단말들의 위치/이동방향/속도, 기후 정보 등)에 따라 다양한 네트워크/기지국 결정 파라미터 값들(e.g. 각 기지국의 송수신 전력, 각 단말의 송신 전력, 기지국/단말의 프리코더/빔, 각 단말에 대한 시간/주파수 자원 할당, 각 기지국의 다중화(duplex) 방식 등)을 빠르게 최적화하여 도출/적용할 수 있게 될 전망이다. 이러한 추세에 맞추어, 많은 표준화 단체 (e.g., 3GPP, O-RAN)에서 도입을 고려하고 있으며, 이에 대한 연구도 활발히 진행 중이다.
AI/ML을 좁은 의미로 딥 러닝 기반의 인공지능로 쉽게 일컬을 수 있으나, 개념적으로는 도 8과 같다.
- 인공지능 (Artificial Intelligence): 사람이 해야 할 일을 기계가 대신할 수 있는 모든 자동화에 해당할 수 있다.
- 머신러닝 (Machine Learning): 명시적으로 규칙을 프로그래밍하지 않고, 데이터로부터 의사결정을 위한 패턴을 기계가 스스로 학습할 수 있다.
- 딥러닝 (Deep Learning): 인공 신경망 기반의 AI/ML 모델로, 비정형 데이터로부터 특징 추출 및 판단까지 기계가 한 번에 수행, 알고리즘은 생물학적 신경계, 즉 신경망에서 영감을 받은 특징 추출 및 변환을 위해 상호 연결된 노드로 구성된 다층 네트워크에 의존한다. 일반적인 딥 러닝 네트워크 아키텍처에는 심층 신경망(DNN), 순환 신경망(RNN) 및 컨볼루션 신경망(CNN)이 포함될 수 있다.
다양한 기준에 따른 AI/ML의 유형 분류
1. 오프라인 vs 온라인
(1) Offline Learning: 데이터 베이스 수집, 학습, 예측이라는 순차적인 절차를 따르며, 즉, 수집과 학습을 오프라인으로 수행하고, 완성된 프로그램을 현장에 설치하여 예측 작업에 활용할 수 있다. 대부분 상황에서 이와 같은 오프라인 학습 방식을 사용한다. 오프라인 학습은 시스템이 점진적으로 학습하지 않으며, 가용한 모든 수집된 데이터를 사용하여 학습이 수행되고, 더 이상의 학습 없이 시스템에 적용된다. 만약, 새로운 데이터에 대한 학습이 필요하게 되면, 새로운 전체의 데이터를 이용하여 다시 학습이 시작될 수 있다.
(2) Online Learning: 최근 학습에 활용할 수 있는 데이터가 인터넷을 통해 지속적으로 발생하는 점을 활용하여, 추가적으로 발생한 데이터를 가지고 점증적으로 추가 학습하여 성능을 조금씩 개선하는 방식을 온라인 학습이라 한다. 온라인 상에서 수집되는 특정 데이터의 (묶음) 단위로 실시간으로 학습이 수행되며, 이에 따라 변화하는 데이터에 시스템이 빠르게 적응할 수 있다.
AI 시스템 구축을 위해 온라인 학습만이 이용되어 실시간으로 발생한 데이터만으로 학습이 수행될 수도 있으며, 또는 소정의 데이터 세트를 이용하여 오프라인 학습이 수행된 후, 추가적으로 발생하는 실시간 데이터를 이용하여 추가적인 학습이 수행될 수도 있다 (온라인+오프라인 학습).
2. AI/ML Framework 개념에 따른 분류
(1) Centralized Learning: 서로 다른 복수의 노드들에서 모아진(collected) 훈련 데이터(training data)를 중앙 노드(centralized node)에 보고하면, 모든 데이터 자원/storage/learning(e.g., supervised, unsupervised, reinforcement learning)등이 하나의 중앙 노드 서 수행된다.
(2) Federated Learning: collective AI/ML 모델이 각기 분산되어있는 data owner들에 걸쳐서 있는 데이터를 기반으로 구성된다. 데이터를 AI/ML 모델로 가져오는 대신 AI/ML 모델을 데이터 소스로 가져와 로컬 노드/개별 장치가 데이터를 수집하고 자체 AI/ML 모델 사본을 훈련할 수 있도록 하므로 소스 데이터를 중앙 노드에 보고할 필요가 없다. Federated learning에서 AI/ML 모델의 매개변수/가중치는 일반 AI/ML 모델 교육을 지원하기 위해 centralized node 로 다시 보내면 된다. Federated learning의 장점은 연산 속도의 증가와, 정보 보안 측면에서의 우수성을 들 수 있다. 즉, 개인 데이트를 중앙 서버에 업로드하는 과정이 불필요하여, 개인정보 유출 및 악용을 방지할 수 있다.
(3) Distributed Learning: 기계 학습 프로세스가 노드 클러스터 전체에 확장 및 배포된 개념을 나타낸다. 훈련 AI/ML 모델은 AI/ML 모델 훈련의 속도를 높이기 위해 분할되어 동시에 작동하는 여러 노드에서 공유된다.
3. 학습 방법에 따른 분류
(1) Supervised Learning: 지도 학습은 레이블이 지정된 데이터 세트가 주어지면 입력에서 출력으로의 매핑 기능을 학습하는 것을 목표로 하는 기계 학습 작업이다. 입력 데이터는 훈련 데이터라고 하며 알려진 레이블 또는 결과가 있다. 지도 학습의 예는 (i) Regression: Linear Regression, Logistic Regression, (ii) Instance-based Algorithms: k-Nearest Neighbor (KNN), (iii) Decision Tree Algorithms: CART, (iv) Support Vector Machines: SVM, (v) Bayesian Algorithms: Naive Bayes, 및 (vi) Ensemble Algorithms: Extreme Gradient Boosting, Bagging: Random Forest 등이 있다. 지도 학습은 회귀 및 분류 문제로 더 그룹화할 수 있으며, 분류는 레이블을 예측하는 것이고 회귀는 수량을 예측하는 것이다.
(2) Unsupervised Learning: 레이블이 지정되지 않은 데이터에서 숨겨진 구조를 설명하는 기능을 학습하는 것을 목표로 하는 기계 학습 작업이다. 입력 데이터에 레이블이 지정되지 않았으며 알려진 결과가 없다. 비지도 학습의 몇 가지 예는 K-평균 클러스터링, 주성분 분석(PCA), 비선형 독립 성분 분석(ICA) 및 LSTM등이 있다.
(3) Reinforcement Learning: 강화 학습(RL)에서 에이전트는 시행착오 과정을 기반으로 환경과 상호 작용하여 장기 목표를 최적화하는 것을 목표로 하며, 환경과의 상호작용을 기반으로 한 목표 지향적 학습이다. RL 알고리즘의 예로, (i) Q-learning, (ii) Multi-armed bandit learning, (iii) Deep Q Network, State-Action-Reward-State-Action (SARSA), (iv) Temporal Difference Learning, (v) Actor-critic reinforcement learning, (vi) Deep deterministic policy gradient 및 (vii) Monte-Carlo tree search 등이 있다. 강화 학습은 추가로 AI/ML 모델 기반 강화 학습과 AI/ML 모델 자유 강화 학습으로 그룹화할 수 있다. Model-based 강화 학습은 예측 AI/ML 모델을 사용하는 RL 알고리즘으로써, 환경의 다양한 동적 상태 및 이러한 상태가 보상으로 이어지는 AI/ML 모델을 사용하여 상태 간 전환 확률을 얻는다. Model-free 강화학습은 최대의 미래 보상을 달성하는 가치 또는 정책에 기반한 RL 알고리즘으로써 다중 에이전트 환경/상태에서는 계산적으로 덜 복잡하고 환경을 정확하게 표현할 필요가 없다. 한편, RL 알고리즘은 또한 가치 기반 RL 대 정책 기반 RL, 정책 기반 RL 대 정책 외 RL 등으로 분류될 수도 있다.
AI/ML 모델들
도 9는 FFNN (Feed-Forward Neural Network) AI/ML 모델을 예시한다. 도 9를 참조하면, FFNN AI/ML 모델은 입력층(input layer), 은닉층(hidden layer), 출력층(output layer)을 포함한다.
도 10은 RNN(Recurrent Neural Network) AI/ML 모델을 예시한다. 도 10을 참조하면, RNN AI/ML 모델은 히든 노드가 방향을 가진 엣지로 연결돼 순환구조를 이루는(directed cycle) 인공신경망의 한 종류로써, 음성, 문자 등 순차적으로 등장하는 데이터 처리에 적합한 AI/ML 모델이다. RNN의 하나의 종류로 LSTM (Long Short-Term Memory)이 있으며, LSTM는 RNN의 히든 state에 cell-state를 추가한 구조이다. 구체적으로, LSTM에서는 RNN cell에 입력 게이트, 망각 게이트, 출력 게이트가 추가되고, 셀 상태(cell state)가 추가된다. 도 10에서 A는 뉴럴 네트워크, xt는 입력 값, ht는 출력 값을 나타낸다. 여기서, ht는 시간을 기준으로 현재를 나타내는 상태 값을 의미할 수 있으며, ht-1는 이전 상태 값을 나타낼 수 있다.
도 11은 CNN(Convolution Neural Network) AI/ML 모델을 예시한다. CNN은 영상 처리나 이미지 처리 분야에서 일반적으로 사용하는 컨볼루션(convolution) 연산을 적용하여, AI/ML 모델 복잡도를 낮추고, 좋은 특징을 추출하는 두 가지 목적을 위해 사용된다. 도 11을 참조하면, 커널(kernel) 또는 필터(filter)는 특정 범위/단위의 입력에 가중치를 적용하는 단위/구조를 의미한다. kernel(또는 filter)는 학습에 의해 변경될 수 있다. 스트라이드(stride)는 입력 안에서 커널을 움직이는 이동 범위를 의미한다. 특성 맵(feature map)은 입력에 커널을 적용한 결과를 의미한다. 패딩(padding)은 특성 맵의 크기를 조절하기 위해 덧붙이는 값을 의미한다. 왜곡, 변경 등에 강인하도록 유도하기 위해 여러 feature map들이 추출될 수 있다. 풀링(pooling)은 특성 맵을 다운 샘플링하여 특성 맵의 크기를 줄이기 위한 연산 (e.g., max pooling, average pooling)을 의미한다.
도 12는 오토-인코더 AI/ML 모델을 도시한다. 도 12를 참조하면, 오토-인코더는 Feature vector x를 입력 받아서, 동일한 또는 유사한 vector x'를 출력하는 신경 망(neural network)으로써, 입력 노드와 출력 노드가 같은 특징을 가지고, Unsupervised learning의 일종이다. Auto encoder는 입력을 재구성하기 때문에 출력을 재구성(reconstruction)이라고 지칭할 수 있다. Loss function은 수학식 1과 같이 표현될 수 있다.
Figure PCTKR2023010280-appb-img-000001
도 12에서 예시하는 Auto encoder의 손실 함수(loss function)은 입력과 출력의 차이를 기반으로 계산되며, 이를 기반으로 input의 손실 정도를 파악하여 Auto encoder에서는 손실을 최소화할 수 있도록 최적화하는 과정이 수행된다.
도 13은 분할 AI 추론을 예시하는 도면이다.
도 13에서는 split AI operation 중에서 특히 Model Inference function이 UE와 같은 종단 기기(end device)와 네트워크 AI/ML 종단 기기(network AI/ML endpoint)에서 협력하여 수행되는 경우를 예시한다.
Model Inference function 이외에도 Model Training function, Actor, Data Collection function 각각도 현재의 작업 및 환경에 따라 다수의 부분들로 분할(split)되고, 다수의 개체들이 협력함으로써 수행될 수 있다.
예를 들어, 계산 집약적(computation-intensive)이고 에너지 집약적(energy-intensive)인 부분을 network endpoint에서 수행되는 반면 개인 정보에 민감한 부분과 지연에 민감한 부분은 end device에서 수행될 수 있다. 이 경우, end device는 입력 데이터로부터 특정 부분/계층까지 작업/모델을 실행한 다음, 중간 데이터(intermediated data)를 네트워크 끝점으로 전송할 수 있다. network endpoint는 나머지 부분/계층을 실행하고 추론 출력(Inference outputs)결과를, 동작/작업을 수행하는 하나 이상의 장치들에게 제공한다.
다음은 AI 동작을 위한 기능적 프레임워크(functional framework)를 설명한다.
이하, 보다 구체적인 AI(또는 AI/ML)의 설명을 위해 용어들을 다음과 같이 정의할 수 있다.
- 데이터 수집(Data collection): AI 모델 훈련(model training), 데이터 분석 및 추론(inference)을 위한 기반으로서, 네트워크 노드, 관리 개체(management entity) 또는 UE 등에서 수집된 데이터
- AI 모델(Model): 입력들의 집합을 기반으로, 예측 정보 및/또는 결정 파라미터들을 포함하는 출력들의 집합을 생성하는 AI 기술을 적용한 데이터 기반 알고리즘(data driven algorithm)
- AI/ML 훈련(Training): 데이터를 가장 잘 표시하고 추론을 위해 훈련된 AI/ML 모델을 획득하는 기능들과 패턴들을 학습(learning)함으로써 AI 모델을 훈련하는 온라인(online) 또는 오프라인(offline) 프로세스
- AI/ML 추론(Inference): 훈련된 AI 모델을 이용하여 수집된 데이터와 AI 모델에 기반하여 예측하거나 결정을 유도하는 프로세스
도 14를 참조하면, 데이터 수집(Data Collection) 기능(function)(10)은 입력 데이터를 수집하고 모델 훈련(Model Training) function(20) 및 모델 추론(Model Inference) function(30)에게 가공된 입력 데이터를 제공하는 기능이다.
입력 데이터의 예로서, UE들 또는 다른 네트워크 개체(network entity)로부터의 측정들, 액터(Actor)의 피드백, AI 모델의 출력이 포함될 수 있다.
Data Collection function(10)은 입력 데이터를 기반으로 데이터 준비(data preparation)를 수행하고, data preparation를 통해 가공된 입력 데이터를 제공한다. 여기서, Data Collection function(10)는 AI 알고리즘 별로 특정한 data preparation(예를 들어, 데이터 사전-처리(pre-processing) 및 정리(cleaning), 형식 지정(forming) 및 변환(transformation))을 수행하지 않으며, AI 알고리즘에 공통된 data preparation를 수행할 수 있다.
데이터 준비 과정을 수행된 후, Model Training function(10)은 Model Training function(20)에게 훈련 데이터(Training Data)(11)를 제공하며, Model Inference function(30)에게 추론 데이터(Inference Data)(12)를 제공한다. 여기서, Training Data)(11)는 AI Model Training function(20)을 위한 입력으로 필요한 데이터이다. Inference Data(12)는 AI Model Inference function(30)을 위한 입력으로 필요한 데이터이다.
Data Collection function(10)은 단일의 개체(예를 들어, UE, RAN 노드, 네트워크 노드 등)에 의해 수행될 수도 있지만 복수의 개체들에 의해 수행될 수도 있다. 이 경우, 복수의 개체들로부터 Training Data)(11)와 Inference Data(12)가 각각 Model Training function(20)과 Model Inference function(30)에게 제공될 수 있다.
Model Training function(20)은 AI 모델 테스트 절차의 일부로 모델 성능 메트릭(metric)을 생성할 수 있는 AI 모델 훈련, 검증(validation) 및 테스트(test)를 수행하는 기능이다. Model Training function(20)은 필요한 경우 Data Collection function(10)에서 제공하는 Training Data(11)를 기반으로 데이터 준비(예를 들어, data pre-processing 및 cleaning, forming 및 transformation)도 담당한다.
여기서, 모델 배포/업데이트(Model Deployment/Update)(13)는 훈련되고 검증되고 테스트된 AI 모델을 Model Inference function(30)에 초기 배포하거나 업데이트된 모델을 Model Inference function(30)에 제공하기 위해 사용된다.
Model Inference function(30)은 AI 모델 추론 출력(Output)(16)(예를 들어, 예측 또는 결정)을 제공하는 기능이다. Model Inference function(30)은 적용 가능한 경우, Model Training function(20)에 모델 성능 피드백(Model Performance Feedback)(14)을 제공할 수 있다. 또한, Model Inference function(30)은 필요한 경우 Data Collection function(10)이 제공하는 Inference Data(12)를 기반으로 데이터 준비(예를 들어, data pre-processing 및 cleaning, forming 및 transformation)도 담당한다.
여기서, 출력(Output)(16)은 Model Inference function(30)에 의해 생성된 AI 모델의 추론 출력을 의미하며, 추론 출력의 세부 정보는 사용 사례에 따라 다를 수 있다.
Model Performance Feedback(14)은 사용 가능한 경우 AI 모델의 성능을 모니터링하는 데 사용할 수 있으며, 이 피드백은 생략될 수도 있다.
액터(Actor) function(40)은 Model Inference function(30)으로부터 출력(16)을 수신하고, 해당하는 작업/동작을 트리거 또는 수행하는 기능이다. Actor function(40)은 다른 개체(entity)(예를 들어, 하나 이상의 UE, 하나 이상의 RAN 노드, 하나 이상의 네트워크 노드 등) 또는 자신에 대한 작업/동작을 트리거할 수 있다.
피드백(15)은 Training data(11), Inference data(12)를 도출하기 위해 또는 AI Model의 성능, 네트워크에 미치는 영향 등을 모니터링하기 위해 이용될 수 있다.
한편, AI/ML에서 사용되는 데이터 세트(Data set)에서 훈련(Training)/ 검증(validation) / 테스트(test)에 대한 정의는 다음과 같이 구분될 수 있다.
- 훈련 데이터(Training data): 모델을 학습하기 위한 Data set을 의미한다.
- 검증 데이터(Validation data): 학습이 이미 완료된 모델을 검증하기 위한 Data set을 의미한다. 즉, 보통 training data set의 과대적합(over-fitting)을 방지하기 위해서 사용되는 data set을 의미한다.
또한, 학습하는 과정에서 학습된 여러 가지 모델 중 최고(best)를 선택하기 위한 Data set을 의미한다. 따라서, 따라서, 학습의 일종으로 볼 수도 있다.
- 테스트 데이터(Test data): 최종 평가를 위한 Data set을 의미한다. 이 데이터는 학습과는 무관한 데이터이다.
상기 data set의 경우, 일반적으로 training set을 나눈다면, 전체 training set 내에서 training data과 validation data를 8:2 또는 7:3 정도로 나누어 사용될 수 있으며, test까지 포함을 한다면, 6:2:2 (training: validation: test)를 나누어 사용될 수 있다.
기지국과 단말사이의 AI/ML function의 능력의(capable) 여부에 따라 협력레벨을 다음과 같이 정의할 수 있으며, 하기 복수의 레벨의 결합 혹은 어느 하나의 레벨의 분리로 인한 변형도 가능하다.
Cat 0a) 협력이 없는 프레임워크(No collaboration framework): AI/ML 알고리즘은 순수 구현 기반이며 무선 인터페이스 변경이 필요하지 않는다.
Cat 0b) 이 레벨은 효율적인 구현 기반 AI/ML 알고리즘에 맞추어 수정된 무선 인터페이스를 수반하지만 협력은 없는 프레임워크에 해당한다.
Cat 1) 각 노드의 AI/ML 알고리즘을 개선하기 위한 노드 간 지원이 수반된다. 이는 UE가 gNB(훈련, 적응 등을 위해)로부터 지원을 받는 경우에 적용되며, 그 반대의 경우도 마찬가지이다. 이 레벨에서는 네트워크 노드 간의 모델 교환이 필요하지 않는다.
Cat 2) UE와 gNB 간의 공동 ML 작업이 수행될 수 있다. 이 레벨은 AI/ML 모델 명령 또는 네트워크 노드 간의 교환이 필요하다.
앞서 도 14에서 예시된 기능들은 RAN 노드(예를 들어, 기지국, TRP, 기지국의 중앙 장치(CU: central unit) 등), 네트워크 노드, 네트워크 사업자의 OAM(operation administration maintenance) 또는 UE에서 구현될 수도 있다.
또는, RAN, 네트워크 노드, 네트워크 사업자의 OAM 또는 UE 중 2개 이상의 개체가 협력하여 도 14에서 예시된 기능이 구현될 수도 있다. 예를 들어, 어느 하나의 개체가 도 14의 기능 중 일부를 수행하고, 다른 개체가 나머지의 기능을 수행할 수 있다. 이처럼, 도 14에서 예시하는 기능들 중 일부의 기능들이 단일의 개체(예를 들어, UE, RAN 노드, 네트워크 노드 등)에 의해 수행됨에 따라, 각 기능들 간의 데이터/정보의 전달/제공이 생략될 수 있다. 예를 들어, Model Training function(20)과 Model Inference function(30)이 동일한 개체에 의해 수행된다면, Model Deployment/Update(13)와 Model Performance Feedback(14)의 전달/제공은 생략될 수 있다.
또는, 도 14에 예시된 기능 중 어느 하나의 기능을 RAN, 네트워크 노드, 네트워크 사업자의 OAM 또는 UE 중 2개 이상의 개체가 협력(collaboration)하여 수행할 수도 있다. 이를 분할 AI 동작(split AI operation)으로 지칭할 수 있다.
도 15에서는 AI Model Training function이 네트워크 노드(예를 들어, 코어 네트워크 노드, 네트워크 사업자의 OAM 등)에 의해 수행되고, AI Model Inference function이 RAN 노드(예를 들어, 기지국, TRP, 기지국의 CU 등)에 의해 수행되는 경우를 예시한다.
단계 1: RAN 노드 1과 RAN 노드 2는 AI Model Training을 위한 입력 데이터(즉, Training data)를 네트워크 노드에게 전송한다. 여기서, RAN 노드 1과 RAN 노드 2는 UE로부터 수집한 데이터(예를 들어, 서빙 셀과 이웃 셀의 RSRP, RSRQ, SINR과 관련된 UE의 측정, UE의 위치, 속도 등)를 함께 네트워크 노드에게 전송할 수 있다.
단계 2: 네트워크 노드는 수신한 Training data를 이용하여 AI Model을 훈련한다.
단계 3: 네트워크 노드는 AI Model을 RAN 노드 1 및/또는 RAN 노드 2에게 배포/업데이트한다. RAN 노드 1(및/또는 RAN 노드 2)은 수신한 AI Model에 기반하여 모델 훈련을 계속 수행할 수도 있다.
설명의 편의를 위해 RAN 노드 1에게만 AI Model이 배포/업데이트되었다고 가정한다.
단계 4: RAN 노드 1은 UE와 RAN 노드 2로부터 AI Model Inference를 위한 입력 데이터(즉, Inference data)를 수신한다.
단계 5: RAN 노드 1은 수신한 Inference data를 이용하여 AI Model Inference를 수행하여 출력 데이터(예를 들어, 예측 또는 결정)을 생성한다.
단계 6: 적용가능한 경우, RAN 노드 1은 네트워크 노드에게 모델 성능 피드백을 전송할 수 있다.
단계 7: RAN 노드 1, RAN 노드 2 및 UE(또는 'RAN 노드 1과 UE', 또는 'RAN 노드 1과 RAN 노드 2')는 출력 데이터에 기반한 동작(action)을 수행한다. 예를 들어, 로드 밸런싱(load balancing) 동작인 경우, UE가 RAN 노드 1에서 RAN 노드 2로 이동할 수도 있다.
단계 8: RAN 노드 1과 RAN 노드 2는 네트워크 노드에게 피드백 정보를 전송한다.
도 16에서는 AI Model Training function과 AI Model Inference function이 모두 RAN 노드(예를 들어, 기지국, TRP, 기지국의 CU 등)에 의해 수행되는 경우를 예시한다.
단계 1: UE와 RAN 노드 2는 AI Model Training을 위한 입력 데이터(즉, Training data)를 RAN 노드 1에게 전송한다.
단계 2: RAN 노드 1은 수신한 Training data를 이용하여 AI Model을 훈련한다.
단계 3: RAN 노드 1은 UE와 RAN 노드 2로부터 AI Model Inference를 위한 입력 데이터(즉, Inference data)를 수신한다.
단계 4: RAN 노드 1은 수신한 Inference data를 이용하여 AI Model Inference를 수행하여 출력 데이터(예를 들어, 예측 또는 결정)을 생성한다.
단계 5: RAN 노드 1, RAN 노드 2 및 UE(또는 'RAN 노드 1과 UE', 또는 'RAN 노드 1과 RAN 노드 2')는 출력 데이터에 기반한 동작(action)을 수행한다. 예를 들어, 로드 밸런싱(load balancing) 동작인 경우, UE가 RAN 노드 1에서 RAN 노드 2로 이동할 수도 있다.
단계 6: RAN 노드 2는 RAN 노드 1에게 피드백 정보를 전송한다.
도 17에서는 AI Model Training function이 RAN 노드(예를 들어, 기지국, TRP, 기지국의 CU 등)에 의해 수행되고, AI Model Inference function이 UE에 의해 수행되는 경우를 예시한다.
단계 1: UE는 AI Model Training을 위한 입력 데이터(즉, Training data)를 RAN 노드에게 전송한다. 여기서, RAN 노드는 다양한 UE들로부터 및/또는 다른 RAN 노드로부터 데이터(예를 들어, 서빙 셀과 이웃 셀의 RSRP, RSRQ, SINR과 관련된 UE의 측정, UE의 위치, 속도 등)를 수집할 수 있다.
단계 2: RAN 노드는 수신한 Training data를 이용하여 AI Model을 훈련한다.
단계 3: RAN 노드는 AI Model을 UE에게 배포/업데이트한다. UE는 수신한 AI Model에 기반하여 모델 훈련을 계속 수행할 수도 있다.
단계 4: UE와 RAN 노드로부터(및/또는 다른 UE로부터) AI Model Inference를 위한 입력 데이터(즉, Inference data)를 수신한다.
단계 5: UE는 수신한 Inference data를 이용하여 AI Model Inference를 수행하여 출력 데이터(예를 들어, 예측 또는 결정)를 생성한다.
단계 6: 적용가능한 경우, UE는 RAN 노드에게 모델 성능 피드백을 전송할 수 있다.
단계 7: UE와 RAN 노드는 출력 데이터에 기반한 동작(action)을 수행한다.
단계 8: UE는 RAN 노드에게 피드백 정보를 전송한다.
CPU occupation rule for AI/ML based CSI report
연산 처리 기술 및 AI(artificial intelligence)/ML(machine learning) 기술의 발전으로 인해 무선 통신 네트워크를 구성하는 노드들 및 단말의 지능화/고도화가 이루어지고 있으며, 특히 네트워크의 지능화로 인해 다양한 네트워크 환경 파라미터(e.g. 기지국들의 분포/위치, 건물/가구 등의 분포/위치/재질, 단말들의 위치/이동방향/속도, 기후 정보 등)에 따라 다양한 네트워크 결정 파라미터 값들(e.g. 각 기지국의 송수신 전력, 각 단말의 송신 전력, 기지국/단말의 precoder/beam, 각 단말에 대한 time/frequency resource allocation, 각 기지국의 duplex 방식 등)을 빠르게 최적화하여 도출/적용할 수 있게 될 전망이다.
이하, 진화된 네트워크/기지국/단말에서 AI/ML 기반으로 CSI 보고가 수행될 때, 이를 위한 CPU (CSI processing unit)에 관한 제안들을 설명한다.
도 18은 AI 기반 CSI 피드백을 설명하기 위한 도면이다.
CSI 피드백 페이로드 오버헤드 감소를 위한 방안에서는 하나의 공통 AI 모델이 단말 및/또는 기지국 측의 압축에 기반할 수 있다. 예를 들어 단말 측의 CSI 인코더와 기지국의 CSI 디코더를 도 18과 같이 가정할 수 있다. 인코더와 디코더는 오토인코더와 관련될 수 있으며 채널의 사이즈/dimension의 효율적인 저감을 위하여 CNN (convolutional neural network)이 사용될 수 있다.
AI/ML 기반 페이로드 감소와 관련하여 무엇을 압축할지는 중요한 요소이다. 채널 피드백에는 크게 명시적 피드백과 암시적 피드백의 두 가지 타입이 있는데, LTE 및 NR에서는 raw 채널 매트릭스 또는 채널 공분산(covariance) 매트릭스를 보고하는 것이 아니라 RI/CQI/PMI를 기지국에 보고하는 암시적 피드백이 사용된다. 암시적 피드백은 명시적 피드백에 비해 피드백 오버헤드가 낮은 장점이 있다. AI/ML이 CSI 페이로드 감소를 위해 사용될 경우 압축된 raw 채널 정보가 gNB로 피드백될 수 있고 이는 명시적 피드백으로 이어질 수도 있다.
또 다른 AI/ML 기반 CSI 피드백의 예로 기존 PMI를 압축하는 것, 예를 들어 Type I, Type II CSI를 압축하는 것을 고려할 수 있다. Rel-16/17 Type II CSI에서 선형 기반, 즉 DFT 벡터는 Rel-15 Type II CSI의 페이로드를 줄이기 위해 주파수 도메인 압축에 사용된다. 이와 같이 AI/ML을 사용하여 기존 CSI의 페이로드를 추가로 줄이고 성능을 향상시킬 수도 있다.
상술한 바와 같이, AI/ML 기반의 CSI 보고를 고려할 수 있다. 기지국과 단말 모두 AI/ML에 대한 capability (training and/or inference)가 있는 것을 가정하여, auto-encoder like CSI 보고를 수행할 수 있다. 혹은 single sided (at Network or UE) AI/ML을 고려할 수 있다. Single sided인 경우, 기존 legacy 코드북을 AI/ML 기반으로 특정 parameter optimization (performance and/or payload)를 고려할 수 있다.
이러한 (AI/ML 기반의) CSI 생성/계산시, 단말의 CSI processor등을 관리하기 위한 목적으로, NR Rel.17에는 CSI processing unit (CPU)이 도입되었다. 표 6은 CSI processing unit에 대한 표준 문서 TS 38.214를 발췌한 것이다.
Figure PCTKR2023010280-appb-img-000002
Figure PCTKR2023010280-appb-img-000003
Figure PCTKR2023010280-appb-img-000004
제안 1
AI/ML 기반의 CSI 보고의 경우, 단말이 AI/ML model의 inference 동작을 통하여 CSI generation을 하는 경우, CPU occupation은 X으로 가정하며 상기 X값은 기지국이 단말로 configure 해주는 값이거나 사전에 약속한 값이다.
AI/ML 기반의 CSI 보고의 경우, 크게 두 가지 -Two-sided AI/ML과 one sided AI/ML- 로 분류할 수 있다. 두 가지 경우 모두, 기지국 (or network AI/ML server)에서 training/inference를 수행하고, 상기 trained된 AI/ML model를 단말에 signaling하여, 단말은 AI/ML inference로만 동작을 하는 경우를 가정할 수 있으며, training의 주체인 기지국 (or network AI/ML server)에서 AI/ML inference에 필요한 FLOP (floating operation)등에 기반한 inference에 따른 계산 복잡도 그리고/또는 단말의 CSI processing / memory 등의 capability 보고에 기반하여 해당 값을 설정/지시할 수 있다. 해당 값 X가 지시되면, 단말은 상기 AI/ML기반의 CSI계산시, CPU 점유는 기지국이 설정/지시한 CPU occupation은 X로 간주하여 (e.g., OCPU=X), 위 표 6의 TS38.214에 기재된 바와 같이 단말의 CPU 점유에 대한 동작을 따른다.
AI/ML inference의 경우, training에 대한 부담 없이 pre-trained된 model내의 노드와 노드 간의 variable들의 곱연산과 각 노드별 activation function (e.g., sigmoid, relu, tanh)을 처리하게 된다. 따라서, inference동작은 training과 비교하여 complexity 측면에서는 매우 낮다. 하지만, 원하는 성능 향상을 위하여, 보다 deep하고, size가 큰 model들을 고려하게 된다. 이러한 경우, 늘어나는 variable에 대한 계산으로 계산 복잡도가 늘어남은 자명하다. 따라서, AI/ML model에서, number of variable, number of node, number of hidden layer 등의 AI/ML model parameter와 연관된 계산 량 and/or input/output data의 pre-processing/post-processing등의 계산양에 따라서 CPU occupation에 변화가 있을 수 있다. 또한, AI/ML model은 확장성이 용이하고, 그 사용 용례에 따라서, 상이한 AI/ML model로 구성이 될 수가 있다. 이러한 AI/ML model의 다양성을 고르게 반영하기 위하여, 다음을 제안한다.
제안 1-1
단말은 1 CPU occupation에 처리할 수 있는 AI/ML의 모델에 관한 정보를 기지국에 (capability로) 보고할 수 있다.
상기 제안 1-1에서의 1 CPU occupation에 처리할 수 있는 AI/ML model에 대한 정보 number of variable, number of node, number of hidden layer의 일부 혹은 전부를 포함할 수 있다. 혹은 1 CPU occupation에서 처리할 수 있는 특정 계산 단위 (e.g., FLOP)에 기반한 값을 보고할 수 있다.
또 다른 실시 예로, 기지국에 1 CPU occupation에 처리할 수 있는 threshold를 단말에 지시/설정할 수 있다. 상기 값은 단말의 성능에 따라서 상이할 수 있으므로, 상대적으로 loose한 값으로 지시를 하거나, 단말의 capability에 기반하여 복수의 group (e.g., high, middle, low)으로 나누고, 상기 그룹별로 특정 threshold값을 지시하는 방법이 있을 수 있다. 아니면, 기지국이 상기 그룹별로, 특정 AI/ML model에 기반한 CSI 보고에 필요한 CPU를 설정해주거나 사전에 약속하여 단말에 지시/설정할 수 있다. 예를 들어 상기 제안 1에서 X값을 다음 표 1과 같이 설정하거나 사전에 약속할 수 있다. 상기 단말의 AI/ML에 대한 capability는 단말이 보고할 수 있다.
표 7은 단말 capability에 기반한 X값 설정의 예를 나타낸다.
Group id X
1 - High capable UE 1
2 - Middle capable UE 2
3 - low capable UE 3
혹은 특정 AI/ML 모델이나 모델에 관한 version 등이 specify되었다면, 단말은 상기 model/version별로 상기 capability를 보고할 수 있다.
제안 1-2
CPU와는 별도로 APU (AI/ML processing unit)을 도입하여, 단말이 복수의 AI/ML model의 processing을 효과적으로 관리할 수 있다.
상기 제안 1-2에서는 APU는 단말이 동시에 계산이 가능한 AI/ML module / function의 수 (A)를 per CC 혹은 across CC별로 보고할 수 있다. 만약 B개의 APU가 점유되고 있는 상황이라면, 단말은 A-B개의 비점유된 APU를 가지고 있는 것으로 가정할 수 있다. 이러한 상황에, A-B개를 초과하는 AI/ML model이 activation or triggering이 된다면, 기설정된 priority rule에 의하여, 선택된 A-B개의 AI/ML model이 선택되어 동작하며, 선택되지 못한 AI/ML model에 대한 정보를 기지국에 보고할 수 있다. 상기 APU의 경우, 특정 AI/ML model 을 triggering / activation하는 signaling (e.g., MAC-CE/DCI)를 수신하는 시점으로부터 deactivation or termination or switching signaling을 수신하는 시점 동안 점유하는 것으로 가정할 수 있다.
혹은 상기 APU는 AI/ML model에 통합적으로 관리/적용될 수 있으며, AI/ML 모델별로 요구되는 APU의 점유 수는 상이할 수 있다.
또 다른 예제로, 상기 APU는 AI/ML 기반의 CSI보고에만 별도로 설정 지시되는 것으로 간주될 수 있으며, 따라서, 단말은 최대 지원 가능한 APU와 CPU 값을 동시에 capability로 보고할 수 있다. 이 경우, APU에 occupation rule은 CPU와 동일하되, AI/ML 기반의 CSI보고만을 별도로 관리하는 용도로 사용된다. 상기 설명 중 APU occupation rule이 CPU다 동일하다는 것은 하나의 CSI-RS resource와 연결된 하나의 CSI 보고는 legacy와 유사하게 K개 (e.g. K=1)의 APU를 점유하는 것으로 가정할 수 있다. 아니면, 단말의 CSI prediction과 같이 복수개의 CSI resource에 걸쳐서 이용될 수도 있기 때문에, K값은 0.5와 같은 값을 가질 수 있고, 이는 2개의 resource와 연결된 하나의 CSI 보고를 한 개의 APU를 점유하는 것으로 가정할 수 있다.
상기 APU의 경우, AI/ML inference에 대한 용도를 주된 use case로 사용될 수 있다. 다만, 단말이 training capability를 구비하는 경우, training과 inference를 별도로 관리하는 unit 들을 도입하여, 예를 들어, APU-training / APU-inference로 각각 관리할 수 있다. 이 경우, 단말의 APU-inference가 모두 점유되고 있는 상황에서 APU-training의 일부 혹은 전부가 비점유되고 있다면, 특정 규칙에 의해서 APU-training을 빌려와 사용할 수 있다. 반대로, 단말의 APU-training가 모두 점유되고 있는 상황에서 APU-inference의 일부 혹은 전부가 비점유되고 있다면, 특정 규칙에 의해서 APU-inference을 빌려와 사용할 수 있다. 상기 특정 규칙이라 함은 APU-training과 APU-inference의 교환 사용을 위한 규칙일 수 있으며, 예를 들어서 각 APU점유는 다음과 같은 function (e.g. 선형 일차 방정식 or 다차 방정식)으로 주어질 수 있으며, 선형 일차 방정식의 예제는 다음과 같다. w *APU-inference + b = APU-training 여기서 w는 APU-training과 APU-inference의 능력을 맞추기 위한 계수이며, b는 offset이다. 예를 들어서, w=2, b=0이라함은 APU-training의 processing 필요한 APU가 APU-inference의 두배라는 의미로 해석할 수 있다.
한편, APU-training / APU-inference 구분없이 하나의 APU로 통합되어서 운영/적용되는 경우, APU가 부족할 때 training이 inference 보다 우선하여 APU를 점유 (또는 inference가 이미 점유하고 있는 APU 반환하고 training에쓰는 것도 가능)하며 (또는 그 반대동작도 가능함), APU 부족으로 inference를 못하는 상항에서는 default mode를 설정하여, 예를 들어 CSI 보고인 경우는 Type I CSI보고, default mode로 fallback 할 수 있다. 아니면, APU 부족으로 inference를 못하는 경우, 상기 AI/ML model inference를 drop하거나 delay 시켜서 inference를 적용할 수 있다. 여기서 delay이라 함은 상기 AI/ML model이 차지하는 APU와 같거나 큰 미점유 APU가 확보될 때까지 기다리는 것을 의미한다. 하지만, 너무 delay가 길어지게 되면, buffer size/memory size등의 문제가 발생할 수 있으므로, delay할 수 있는 최대 window size나 timer 등을 도입할 수 있으며, 해당 window or timer가 expire하기 전까지 기다리고, 그전에 미점유 APU가 확보되면, 상기 AI/ML inference를 적용하고, 아닌 경우는 drop할 수 있다. 이와 같은 AI/ML model의 drop or delay에 대한 정보를 기지국 or AI/ML server에 보고할 수 있다.
제안 1-3
단말의 현재 APU occupation 값이 0이고 (i.e., L=0), 기지국이 AI/ML model의 training/update/inference를 trigger한 경우라면, 빠른 AI/ML model의 training/update/inference를 위하여, CC당 혹은 across CC에서 단말이 동시에 처리할 수 있는 APU 개수 (NAPU: The UE indicates the number of supported simultaneous AI/ML model training/update/inference NAPU)만큼 APU 점유를 점유하는 것으로 간주한다. 즉, 특정 AI/ML model의 fast training/update/inference의 경우 APU occupation은 OAPU=NAPU.
상기 제안 1-3의 경우, 해당 APU occupation을 모두 차지하여 fast training/update/inference를 위한 모든 APU 점유를 기지국이 설정/지시할 수 있다. 아니면, 특정 AI/ML model에 대해서 priority가 존재하는 경우, highest priority에 상응하는 AI/ML model의 training/update/inference가 trigger되는 경우에 한해서 상기 제안 1-3이 적용되는 것으로 약속할 수 있다.
제안 2
AI/ML function이 모듈화가 되어, CSI 보고에 복수개 (e.g., Y)의 AI/ML model이 참여하여, 하나의 CSI 보고를 수행하는 경우, CPU occupation은 Y 혹은 Y+1로 간주한다.
일반적으로 CSI보고는 기지국이 설정한 특정 RS (e.g., CSI-RS or SSB)등에 기반한 채널 measurement (CMR) and/or interference measurement (IMR)을 통하여 measurement를 수행하여, raw channel data를 획득하고, 이 data를 pre-processing (e.g. eigen value decomposition)등을 필요에 따라 수행하고, 이를 기반으로 preferred CRI/RI/CQI/PMI or SSBRI/CRI/L1-RSRP/L1-SINR 등을 계산하게 된다. 이러한 일련의 과정을 하나의 AI/ML로 처리를 할 수도 있고, 아니면 복수의 module로 나누어 계산 복잡도가 높은 module/function이거나, 적은 복잡도로 moderate 성능으로 대체 가능한 module/function을 AI/ML model로 대체하여 구성할 수 있다. 따라서, 이러한 module화된 AI/ML 기반의 CSI보고에 참여하는 module의 개수 (Y)개를 CPU occupation으로 간주하거나, 다른 legacy module/function과 섞여 있는 경우에는 이를 count할 1을 추가하여, Y+1로 간주한다. 만약, 단말의 구현으로 특정 모듈 (e.g., channel estimation)을 구현한 경우라도, 단말은 정보 (e.g., 모듈 개수 or model information)을 기지국에 보고할 수 있으며, 이는 기지국의 scheduling flexibility를 위함이다.
제안 3
단말의 현재 CPU occupation 값이 0이고 (i.e., L=0), 기지국이 AI/ML 기반의 CSI보고를 trigger한 경우라면, 빠른 AI/ML기반의 CSI 보고를 위하여, CC당 혹은 across CC에서 단말이 동시에 처리할 수 있는 CPU 개수 (NCPU: The UE indicates the number of supported simultaneous CSI calculations NCPU with parameter simultaneousCSI-ReportsPerCC in a component carrier, and simultaneousCSI-ReportsAllCC across all component carriers.)만큼 CPU 점유를 점유하는 것으로 간주한다. 즉, AI/ML 기반의 CSI 보고시 CPU occupation은 OCPU=NCPU.
AI/ML 기반의 CSI 계산의 경우, inference를 수행하는 AI/ML model의 size가 매우 크지 않는 경우, 계산양이 적을 수 있어, 빠른 CSI 보고 가능할 수 있다. 이러한 경우, 특히, 기지국과 단말 사이에 모두 AI/ML model에서 inference를 수행하는 two-sided model의 경우, 빠른 CSI보고를 위하여, 제안 3과 같이 단말의 AI/ML 기반의 CSI보고를 위하여 모든 가용 가능한 CPU를 모두 점유하여, 빠른 CSI보고를 수행할 수 있다.
또 다른 실시 예로, 상기 제안 3에서 NCPU의 값을 AI/ML based CSI보고와 legacy CSI 보고를 따로 설정해서 CPU를 관리할 수도 있다. 예를 들어서, NCPU_AI를 별도로 도입하여, 상기 NCPU_AI는 AI/ML based CSI 보고만을 이용하는데 사용하거나, 혹은 AI/ML based CSI 보고가 특정 개수 이상 trigger (e.g., 1개)되었을 경우에 NCPU 대신에 NCPU_AI을 대체 사용하는 것으로 이해할 수 있다. 여기서 NCPU_AI은 UE capability 보고에 기반하여 결정되는 값일 수 있다. 혹은 기지국이 복수의 NCPU를 정의하고 어떠한 값을 사용할지를 단말에 지시할 수 있다. 이는 기지국이 어떠한 CSI보고를 scheduling 할지에 따라서 특정 NCPU값을 쓸 수 있도록 설정/지시하는 목적으로 사용되며, 결과적으로 기지국 및 단말의 flexibility 증가시킬 수 있다. 혹은 단말의 NCPU_AI도 복수의 값으로 설정하여 AI/ML model (group)-specific하게 적용할 수 있다. 예를 들어, NCPU_AI-1, NCPU_AI-2 두개를 적용하고, 복수의 AI/ML model이 존재하는 경우, 이를 각 NCPU_AI-1, NCPU_AI-2에 매핑하여, 사용할 수 있다. 즉, group 1에 속하는 AI/ML model들인 경우, CPU occupation은 NCPU_AI-1을 상한 값으로 별도로 관리되며, group 2에 속하는 AI/ML model들인 경우, CPU occupation은 NCPU_AI-2을 상한 값으로 별도로 관리될 수 있다. 상기 grouping 대한 정보는 단말의 capability 보고에 기반하거나 기지국이 설정/지시할 수 있다.
제안 4
기지국이 CSI priority indicator를 추가로 signaling하여, AI/ML 기반의 CSI보고의 CSI priority를 조정하여, 기지국 scheduling flexibility를 향상시킬 수 있다.
아래 표 8에 기술된 바와 같이, 복수의 CSI 보고가 time and/or frequency resource에서 충돌하게 되면, 혹은 CSI를 carrying하는 복수의 PUCCH and/or PUSCH이 multiplexing이 될 때, 하기 priority rule에 의하여 특정 CSI보고를 drop할 수 있다. CSI priority rule의 경우, 아래 표 8에 발췌된 표준 문서의 규칙에 따라 낮은 값의 PriiCSI (y,k,c,s)를 갖는 CSI 보고가 priority를 갖게 된다. 이러한 구조를 활용하여, 기지국이 AI/ML 기반의 CSI보고에 priority를 조정하기 위하여, 1bit의 field를 상기 CSI보고를 scheduling하는 DCI에 추가하여, priority의 높고, 낮음을 지시할 수 있다. 예를 들어, priority의 조정은 아래 수학식 2에서, k=0 or 1로 지시하여, 기존 normal CSI 보고 (e.g, Type 1 CSI, Type 2 CSI)에 비하여, 높거나 동일 priority를 지시할 수 있다. 또다른 실시 예로, 아래 수학식 2에서 k의 값의 range를 0, 1, 2로 늘려서, 좀더 flexible하게 지시할 수 있다. 이 경우, priority에 따른 field size는 2bit으로 늘어나겠다. 상기 제안 4의 지시는 AI/ML model 별로 상이하게 지시할 수 있다.
Figure PCTKR2023010280-appb-img-000005
혹은, AI/ML 기반의 CSI 보고를 beam reporting과 동일 priority를 갖도록 AI/ML 기반의 CSI 보고는 k=0으로 설정 지시할 수 있다.
Figure PCTKR2023010280-appb-img-000006
제안 5
단말의 AI/ML model inference 기반의 CSI 보고에서 fast CSI reporting을 지원하기 위하여, 기존에 정의된 CSI calculation latency (e.g. Z, Z', CSI reference resource timing)값 보다 작은 값을 정의/설정한다.
상기 제안 5의 경우, model training이 완료되고, 단말은 AI/ML model inference를 수행하여 빠른 CSI 보고를 필요로 하는 경우를 지원하기 위함이다. 상기 제안처럼, 아래 표 9에 발췌된 TS 38.214의 table 5.4-1 or table 5.4-2보다 작은 값의 table이 정의되어 AI/ML기반의 CSI 보고에 사용될 수 있다. 아니면, AI/ML 기반의 CSI 보고에는 table 5.4-1의 Z/Z' 값이 사용될 수 있다. 상기 제안 5를 보다 확장하여, 특정 AI/ML model or model group에 따라서, Z/Z'를 정의하여 사용하는 방법도 있다. 상기 model group이라함은 특정 Z/Z' 값 내에서 CSI 계산이 수행될 수 있는 AI/ML model들의 그룹을 의미할 수 있으며, 단말이 해당 Z/Z'과 연관된 정보를 capability에 보고하면, 상기 값에 기반하여 기지국이 어떠한 Z/Z' 값을 사용할지는 configure해줄 수도 있다.
Figure PCTKR2023010280-appb-img-000007
Figure PCTKR2023010280-appb-img-000008
Figure PCTKR2023010280-appb-img-000009
상기 서술한 바와 같이 AI기술이 적용된 네트워크/기지국 혹은 (다른 수단을 통해) 진보된 성능을 갖춘 네트워크/기지국이 구현되었을 때, 이는 기지국간 실시간 협력 및/또는 통합적인 제어를 통해 간섭/traffic 등에 대한 동적인 최적화가 가능해질 전망이며, 이에 적합한 자원 제어 및 CSI 관련 시그널링 방법을 제안하였다. 현재 시스템 구조에서 본 발명에서는 3GPP NR시스템을 기준으로 기술하나 이는 제한이 아니며 다른 통신 시스템에 발명 기술이 적용될 수 있다.
도 19는 일 실시예에 따른 단말 동작을 설명하기 위한 도면이다.
도 19를 참조하면 단말은 상기 단말이 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 네트워크에 보고할 수 있다(A05).
단말은 상기 네트워크로부터 적어도 하나의 AI/ML 모델에 관련된 단말 동작들을 지시하는 정보를 수신할 수 있다(A10).
단말은 상기 단말 동작들 중 적어도 일부를 동시에 수행할 수 있다(A15).
상기 네트워크에 의해 지시된 상기 단말 동작들이 특정 시간 자원에서 상기 APU 정보를 통해 상기 네트워크에 보고된 상기 AI/ML 프로세스들의 개수를 초과하는 것에 기반하여, 상기 단말은 상기 지시된 단말 동작들 중에서 제외할 하나 또는 둘 이상의 단말 동작들을 결정하고, 상기 제외하기로 결정된 하나 또는 둘 이상의 단말 동작들에 대한 정보를 상기 네트워크에 보고할 수 있다.
상기 단말은 상기 제외하기로 결정된 하나 또는 둘 이상의 단말 동작들을 드롭(drop), 비활성(inactive) 또는 유예(suspend)할 수 있다.
상기 단말은 상기 네트워크에 의해 지시된 상기 단말 동작들 중에서 상기 APU 정보에 기반하여 제외하기로 결정된 상기 하나 또는 둘 이상의 단말 동작들을 제외한 나머지 단말 동작들을 수행할 수 있다.
상기 네트워크에 의해 지시된 상기 적어도 하나의 AI/ML 모델에 관련된 상기 단말 동작들은, AI/ML 기반 빔 관리 (beam management), AI/ML 기반 포지셔닝 및 AI/ML 기반 CSI (channel state information) 계산 중 적어도 하나를 포함할 수 있다.
상기 APU (AI Processing Unit) 정보는 상기 단말이 동시에 처리 가능한 CSI (channel state information) 계산들의 개수에 관련된 CPU (CSI processing unit) 정보와 별도로 설정될 수 있다.
또는, 상기 APU (AI Processing Unit) 정보는, 상기 단말이 동시에 처리 가능한 CSI (channel state information) 계산들의 개수에 관련된 CPU (CSI processing unit) 정보의 일부로 설정될 수 있다. 하나의 AI/ML 기반 CSI 계산은, 'X'개의 non-AI/ML 기반 CSI 계산들로 카운트될 수 있다. 'X'는 상기 네트워크로부터 수신된 정보에 기초하여 설정될 수 있다. 'X'는 상기 단말의 능력(capability) 및 해당 AI/ML 기반 CSI 계산에 관련된 AI/MML 모델 중 적어도 하나에 기반하여 결정될 수 있다.
상기 APU 정보는 각 CC (component carrier) 별로 설정되거나 또는 복수 CC들을 커버하도록 설정될 수 있다.
상기 제외할 하나 또는 둘 이상의 단말 동작들은 우선 순위에 기초하여 결정될 수 있다.
도 20은 일 실시예에 따른 기지국 동작을 설명하기 위한 도면이다.
도 20을 참조하면, 기지국은 단말로부터 상기 단말이 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 수신할 수 있다(B05).
기지국은 상기 단말에 적어도 하나의 AI/ML 모델에 관련된 단말 동작들을 지시하는 정보를 송신할 수 있다(B10).
기지국은 상기 지시된 상기 단말 동작들이 특정 시간 자원에서 상기 APU 정보를 통해 획득된 상기 AI/ML 프로세스들의 개수를 초과하는 것에 기반하여, 상기 지시된 단말 동작들 중에서 제외할 하나 또는 둘 이상의 단말 동작들에 대한 정보를 상기 단말로부터 수신할 수 있다(B15).
도 21은 본 발명이 적용 가능한 통신 시스템(1)을 예시한다.
도 21을 참조하면, 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g., 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g., V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g., relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 22은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 22을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 21의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 23은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 21 참조).
도 23을 참조하면, 무선 기기(100, 200)는 도 22의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 22의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 22의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 21, 100a), 차량(도 21, 100b-1, 100b-2), XR 기기(도 21, 100c), 휴대 기기(도 21, 100d), 가전(도 21, 100e), IoT 기기(도 21, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 21, 400), 기지국(도 21, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 23에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 24는 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 24를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 23의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g., 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
도 25은 본 발명의 일 실시예에 따른 단말의 DRX(Discontinuous Reception) 동작을 설명하기 위한 도면이다.
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 이하, RRC_CONNECTED 상태에서 수행되는 DRX에 관해 설명한다(RRC_CONNECTED DRX).
도 25을 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 발명에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 발명에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 본 발명에 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 동작하는 방법에 있어서,
    상기 단말이 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 네트워크에 보고;
    상기 네트워크로부터 적어도 하나의 AI/ML 모델에 관련된 단말 동작들을 지시하는 정보를 수신; 및
    상기 단말 동작들 중 적어도 일부를 동시에 수행하는 것을 포함하고,
    상기 네트워크에 의해 지시된 상기 단말 동작들이 특정 시간 자원에서 상기 APU 정보를 통해 상기 네트워크에 보고된 상기 AI/ML 프로세스들의 개수를 초과하는 것에 기반하여, 상기 단말은:
    상기 지시된 단말 동작들 중에서 제외할 하나 또는 둘 이상의 단말 동작들을 결정하고,
    상기 제외하기로 결정된 하나 또는 둘 이상의 단말 동작들에 대한 정보를 상기 네트워크에 보고하는, 방법.
  2. 제 1 항에 있어서,
    상기 단말은 상기 제외하기로 결정된 하나 또는 둘 이상의 단말 동작들을 드롭(drop), 비활성(inactive) 또는 유예(suspend)하는, 방법.
  3. 제 1 항에 있어서,
    상기 단말은 상기 네트워크에 의해 지시된 상기 단말 동작들 중에서 상기 APU 정보에 기반하여 제외하기로 결정된 상기 하나 또는 둘 이상의 단말 동작들을 제외한 나머지 단말 동작들을 수행하는, 방법.
  4. 제 1 항에 있어서,
    상기 네트워크에 의해 지시된 상기 적어도 하나의 AI/ML 모델에 관련된 상기 단말 동작들은, AI/ML 기반 빔 관리 (beam management), AI/ML 기반 포지셔닝 및 AI/ML 기반 CSI (channel state information) 계산 중 적어도 하나를 포함하는, 방법.
  5. 제 1 항에 있어서,
    상기 APU (AI Processing Unit) 정보는 상기 단말이 동시에 처리 가능한 CSI (channel state information) 계산들의 개수에 관련된 CPU (CSI processing unit) 정보와 별도로 설정되는, 방법.
  6. 제 1 항에 있어서,
    상기 APU (AI Processing Unit) 정보는, 상기 단말이 동시에 처리 가능한 CSI (channel state information) 계산들의 개수에 관련된 CPU (CSI processing unit) 정보의 일부로 설정되고,
    하나의 AI/ML 기반 CSI 계산은, 'X'개의 non-AI/ML 기반 CSI 계산들로 카운트되는, 방법.
  7. 제 6 항에 있어서,
    'X'는 상기 네트워크로부터 수신된 정보에 기초하여 설정되는, 방법.
  8. 제 6 항에 있어서,
    'X'는 상기 단말의 능력(capability) 및 해당 AI/ML 기반 CSI 계산에 관련된 AI/MML 모델 중 적어도 하나에 기반하여 결정되는, 방법.
  9. 제 1 항에 있어서,
    상기 APU 정보는 각 CC (component carrier) 별로 설정되거나 또는 복수 CC들을 커버하도록 설정되는, 방법.
  10. 제 1 항에 있어서,
    상기 제외될 하나 또는 둘 이상의 단말 동작들은 우선 순위에 기초하여 결정되는, 방법.
  11. 제 1 항에 기재된 방법을 수행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
  12. 무선 통신을 위한 디바이스에 있어서,
    명령어들을 저장하는 메모리; 및
    상기 명령어들을 실행함으로써 동작하는 프로세서를 포함하되,
    상기 프로세서의 동작은,
    상기 디바이스가 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 네트워크에 보고;
    상기 네트워크로부터 적어도 하나의 AI/ML 모델에 관련된 디바이스 동작들을 지시하는 정보를 수신; 및
    상기 디바이스 동작들 중 적어도 일부를 동시에 수행하는 것을 포함하고,
    상기 네트워크에 의해 지시된 상기 디바이스 동작들이 특정 시간 자원에서 상기 APU 정보를 통해 상기 네트워크에 보고된 상기 AI/ML 프로세스들의 개수를 초과하는 것에 기반하여, 상기 프로세서는:
    상기 지시된 디바이스 동작들 중에서 제외할 하나 또는 둘 이상의 디바이스 동작들을 결정하고,
    상기 제외하기로 결정된 하나 또는 둘 이상의 디바이스 동작들에 대한 정보를 상기 네트워크에 보고하는, 디바이스.
  13. 제 12 항에 있어서,
    송수신기를 더 포함하고,
    상기 디바이스는 사용자 기기(user equipment)인, 방법.
  14. 무선 통신 시스템에서 기지국이 동작하는 방법에 있어서,
    단말로부터 상기 단말이 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 수신;
    상기 단말에 적어도 하나의 AI/ML 모델에 관련된 단말 동작들을 지시하는 정보를 송신; 및
    상기 지시된 상기 단말 동작들이 특정 시간 자원에서 상기 APU 정보를 통해 획득된 상기 AI/ML 프로세스들의 개수를 초과하는 것에 기반하여, 상기 지시된 단말 동작들 중에서 제외할 하나 또는 둘 이상의 단말 동작들에 대한 정보를 상기 단말로부터 수신하는 것을 포함하는, 방법.
  15. 무선 통신을 위한 기지국에 있어서,
    송수신기; 및
    상기 송수신기를 제어함으로써, 단말로부터 상기 단말이 동시(simultaneously) 처리할 수 있는 AI/ML (artificial intelligence/machine learning) 프로세스들의 개수에 관련된 APU (AI Processing Unit) 정보를 수신하고, 상기 단말에 적어도 하나의 AI/ML 모델에 관련된 단말 동작들을 지시하는 정보를 송신하고, 상기 지시된 상기 단말 동작들이 특정 시간 자원에서 상기 APU 정보를 통해 획득된 상기 AI/ML 프로세스들의 개수를 초과하는 것에 기반하여, 상기 지시된 단말 동작들 중에서 제외할 하나 또는 둘 이상의 단말 동작들에 대한 정보를 상기 단말로부터 수신하는 프로세서를 포함하는, 기지국.
PCT/KR2023/010280 2022-08-03 2023-07-18 무선 통신 시스템에서 신호 송수신 방법 및 장치 Ceased WO2024029789A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247032936A KR20250043326A (ko) 2022-08-03 2023-07-18 무선 통신 시스템에서 신호 송수신 방법 및 장치
EP23850296.7A EP4568131A1 (en) 2022-08-03 2023-07-18 Method and device for transmitting and receiving signal in wireless communication system
CN202380048779.1A CN119452581A (zh) 2022-08-03 2023-07-18 在无线通信系统中发送和接收信号的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220096810 2022-08-03
KR10-2022-0096810 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024029789A1 true WO2024029789A1 (ko) 2024-02-08

Family

ID=89849369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010280 Ceased WO2024029789A1 (ko) 2022-08-03 2023-07-18 무선 통신 시스템에서 신호 송수신 방법 및 장치

Country Status (4)

Country Link
EP (1) EP4568131A1 (ko)
KR (1) KR20250043326A (ko)
CN (1) CN119452581A (ko)
WO (1) WO2024029789A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025254814A1 (en) * 2024-06-05 2025-12-11 Qualcomm Incorporated Resource units associated with artificial intelligence machine learning models for wireless nodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11138522B1 (en) * 2016-12-29 2021-10-05 Google Llc Allocating resources for a machine learning model
WO2022013104A1 (en) * 2020-07-13 2022-01-20 Telefonaktiebolaget Lm Ericsson (Publ) Managing a wireless device that is operable to connect to a communication network
US20220188704A1 (en) * 2020-12-15 2022-06-16 Aptiv Technologies Limited Managing a Machine Learning Environment
WO2022133866A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Apparatuses and methods for communicating on ai enabled and non-ai enabled air interfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11138522B1 (en) * 2016-12-29 2021-10-05 Google Llc Allocating resources for a machine learning model
WO2022013104A1 (en) * 2020-07-13 2022-01-20 Telefonaktiebolaget Lm Ericsson (Publ) Managing a wireless device that is operable to connect to a communication network
US20220188704A1 (en) * 2020-12-15 2022-06-16 Aptiv Technologies Limited Managing a Machine Learning Environment
WO2022133866A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Apparatuses and methods for communicating on ai enabled and non-ai enabled air interfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "Discussion on general aspect of AI/ML framework", 3GPP DRAFT; R1-2204237, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153418 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025254814A1 (en) * 2024-06-05 2025-12-11 Qualcomm Incorporated Resource units associated with artificial intelligence machine learning models for wireless nodes

Also Published As

Publication number Publication date
EP4568131A1 (en) 2025-06-11
KR20250043326A (ko) 2025-03-28
CN119452581A (zh) 2025-02-14

Similar Documents

Publication Publication Date Title
WO2020032629A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 상향링크 데이터를 전송하는 방법 및 그 장치
WO2023211041A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020032687A1 (ko) Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
WO2020032732A1 (ko) 협대역 사물 인터넷 시스템을 지원하는 무선 통신 시스템에서 미리 설정된 상향링크 자원을 이용하여 상향링크 데이터를 전송하는 방법 및 그 장치
WO2022265141A1 (ko) 무선 통신 시스템에서 빔 관리를 수행하는 방법 및 이를 위한 장치
WO2020162735A1 (ko) 무선 통신 시스템에서 물리 샹항링크 공유 채널을 전송하는 방법 및 이를 위한 장치
WO2020013623A1 (en) Method and apparatus for reducing user equipment power consumption in wireless communication system
WO2024019352A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020067806A1 (ko) 반송파 집성 시스템에서 단말의 동작 방법 및 상기 방법을 이용하는 장치
WO2020022660A1 (ko) 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2024029789A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024010381A1 (ko) 무선 통신 시스템에서 지속적 빔 예측 보고를 송신하는 방법 및 이를 위한 장치
WO2024025249A1 (ko) 무선 통신 시스템에서 단말이 기지국으로 시간 도메인 채널 특성 정보를 송신하는 방법 및 이를 위한 장치
WO2024010389A1 (ko) 무선 통신 시스템에서 빔 예측 보고를 송신하는 방법 및 이를 위한 장치
WO2024072065A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024072015A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2025023813A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024034965A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024172403A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024172432A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024010282A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024172431A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2025033846A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2024025267A1 (ko) 무선 통신 시스템에서 다중 시간 인스턴스에 대한 채널 상태 정보를 송신하는 방법 및 이를 위한 장치
WO2025033820A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380048779.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 202380048779.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023850296

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023850296

Country of ref document: EP

Effective date: 20250303

WWP Wipo information: published in national office

Ref document number: 1020247032936

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2023850296

Country of ref document: EP