WO2022124276A1 - Indoor air quality prediction method and indoor air quality detection system - Google Patents
Indoor air quality prediction method and indoor air quality detection system Download PDFInfo
- Publication number
- WO2022124276A1 WO2022124276A1 PCT/JP2021/044791 JP2021044791W WO2022124276A1 WO 2022124276 A1 WO2022124276 A1 WO 2022124276A1 JP 2021044791 W JP2021044791 W JP 2021044791W WO 2022124276 A1 WO2022124276 A1 WO 2022124276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- indoor air
- air quality
- series
- historical time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0062—General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
- G01N33/0063—General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0428—Safety, monitoring
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/182—Level alarms, e.g. alarms responsive to variables exceeding a threshold
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2614—HVAC, heating, ventillation, climate control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2638—Airconditioning
Definitions
- the present invention relates to the field of gas detection, and more specifically, an indoor air quality prediction method for predicting indoor air quality for a certain period from now on based on actually measured indoor air quality detection values and
- the present invention relates to an indoor air quality detection system using the prediction method.
- detection for indoor air quality detects the concentration of each component in the indoor air, and is based on the detected detection value (concentration value) and a preset threshold value.
- the operation of air purifiers (air conditioners, air purifiers, etc.) installed in the room is controlled so that the concentration of each component in the room air is controlled within an appropriate range.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2003-090819
- the time derivative value A (t) of the sensor output Y (t) in the gas sensor element 1 that is, the amount of change of the sensor output value with time
- A the time derivative value of the sensor output Y (t) in the gas sensor element 1
- B the time derivative of (t) (that is, the amount of change of the above change amount with time)
- the sensor output for a certain period from now on is predicted, and the specific gas concentration is detected.
- Quantitative methods, substance concentration detectors and recording media have been proposed.
- Patent Document 2 Japanese Patent No. 38308466 proposes a gas concentration prediction method and a gas detection method when the gas sensor is activated, and here, in a predetermined period before the output of the gas sensor stabilizes.
- the gas concentration of the detected gas is predicted based on the rate of change of the output value of the gas sensor (that is, the time derivative value of the sensor output) in a predetermined period after the gas sensor is activated.
- Patent Document 3 Choinese Patent Application Publication No. 1094426995
- An air conditioning and new wind system based on the number of people in the room, including a step of predicting the amount of change in carbon dioxide concentration and a step of adjusting the air conditioning and / or the new wind system based on the amount of change in temperature and the amount of change in carbon dioxide.
- Predictive control methods and systems have been proposed.
- Patent Document 4 Choinese Patent Application Publication No. 109812938
- Indoor air quality data into the air quality pre-analysis model, provide further learning training to the model, and change the indoor air quality data together with the change status of the indoor number data and the current indoor air quality data.
- a neural network-based air purification method and system is proposed, including a data pre-analysis step to analyze trends and a pre-purification step to pre-purify indoor air quality based on the data analysis results of the air quality pre-analysis model. ing.
- the detection value of a single detection target (for example, CO 2 concentration) in the room air when the number of people in the room is large is conversely the single detection target in the room air when the number of people in the room is small. It may be smaller than the detected value (for example, CO 2 concentration).
- the number of people in the room is used as the basis for correcting the change tendency of the detected value of the indoor air as in Patent Documents 3 and 4, conversely, the prediction and analysis of the change tendency of the detected value can be performed. It will be inaccurate.
- the present invention has been made to solve the above technical problems, and an appropriate historical time-series change model is selected without considering a specific single variable as a basis for correcting the change tendency of the detected value. It is an object of the present invention to provide an indoor air quality prediction method and an indoor air quality detection system using the prediction method, which can predict a tendency value in a certain period from now on in advance and accurately.
- the first aspect of the present invention is obtained by learning a large number of historical time-series actual measurement results including the detection location of the detection area (S) or other detection locations as historical time-series learning values. It is preset between a set of a plurality of time-series detection values to be detected continuously detected by a sensor unit provided in the detection area in one predetermined period from a large number of historical time-series change models.
- an indoor air quality prediction method characterized in that a historical time-series change model satisfying the above conditions is selected, and a predicted value for a certain period from now on is estimated based on the selected historical time-series change model. do.
- a large amount of historical data is collected in the first period, an appropriate learning algorithm is selected, and as much induction bias is set as possible, and these historical data are used as a training sample or a training sample.
- an appropriate learning algorithm is selected, and as much induction bias is set as possible, and these historical data are used as a training sample or a training sample.
- many historical time-series change models are generated, and a historical time-series change model that matches the above-mentioned multiple detection values based on multiple detection values detected in a specific detection area is generated. It is selected and the predicted value for the future fixed period of the specific detection area is estimated based on the selected historical time series change model.
- the equipment cost of the indoor air quality detection system can be reduced.
- the indoor air quality prediction method according to the second aspect of the present invention is the set when there are a plurality of historical time series change models satisfying the preset conditions in the indoor air quality prediction method according to the first aspect of the present invention. It is characterized by selecting a historical time-series change model that has the highest degree of matching with.
- the historical time series change model in which the degree of matching between the plurality of historical time series change models satisfying the preset conditions and the current time series detection value is the highest.
- the indoor air quality prediction method according to the third aspect of the present invention is the indoor air quality prediction method according to the first aspect of the present invention. Until we find a historical time series change model that meets the set conditions, we reselect a new set of multiple time series detection values for the next predetermined period whose start time and / or length is different from the one predetermined period. It is characterized in that it continues to determine whether or not there is a historical time series change model that satisfies the preset condition with the new set.
- the indoor air quality prediction method is the time until the time when the historical time series change model satisfying the preset condition is found in the indoor air quality prediction method according to the third aspect of the present invention. It is characterized in that it is generated as a new historical time-series change model by learning all the time-series detection values before the time.
- the prediction method it is possible to effectively utilize the detected value of the detection target that has already been detected and increase the number of models in the database. It also reduces the amount of calculation at the next system startup.
- the indoor air quality prediction method according to the fifth aspect of the present invention is the indoor air quality prediction method according to the fourth aspect of the present invention. It is characterized in that the new historical time-series change model is updated by continuously inputting to the new historical time-series change model.
- the adaptability (generalization ability) of the new historical time series change model to a new data sample can be constantly enhanced.
- the indoor air quality prediction method according to the sixth aspect of the present invention is predetermined in the indoor air quality prediction method according to the first aspect of the present invention when the predicted value exceeds a preset threshold value. It is characterized in that it notifies the possibility of occurrence of the above case by a method, notifies that the corresponding measures are taken, or automatically controls to take the corresponding measures.
- the actual detection value in the detection area is set to the preset threshold value (that is, the person in the detection area) by comparing the predicted value with the preset threshold value.
- the preset threshold value that is, the person in the detection area
- be notified in advance whether to notify the possibility of occurrence in the above case or to take corresponding measures
- time for first aid is secured.
- the indoor air quality prediction method is the indoor air quality prediction method according to the sixth aspect of the present invention, and the predetermined method is a buzzer, an alarm, an image display facility, and an indicator lamp. It is characterized by including issuing a notification and / or receiving a signal and issuing a notification via a remote controller, a mobile phone, or a PC side.
- the indoor air quality prediction method according to the eighth aspect of the present invention is the indoor air quality prediction method according to the sixth aspect of the present invention. Or urge to control the number of people in the detection area and / or urge them to leave the detection area and / or manually turn on the air treatment device or force the air treatment device to be automatic. It is characterized by including encouraging people to turn it on.
- the person concerned can be notified by one or more predetermined methods. It is possible to call attention to more efficiently.
- the person in the detection area is in an unsafe air environment
- the persons concerned can be avoided more effectively.
- the air treatment device it is possible to prevent the actual occurrence in the above case.
- the indoor air quality prediction method predicts that the predicted value after a certain period will fall below a preset threshold value in the indoor air quality prediction method according to the sixth aspect of the present invention. Notifies the person concerned or related equipment of the possibility of the above case, or notifies the person concerned or related equipment to reduce the operating load of the air treatment device or stop the operation of the air treatment device. It is characterized by that.
- the prediction method when the predicted value is predicted to be lower than the preset threshold value, the operating load of the air treatment device is reduced in a timely manner or the operation of the air treatment device is performed. By stopping, it is possible to avoid wasting unnecessary power.
- the predicted value is still preset after a predetermined time from the start of the initial notification. When the threshold value is exceeded, the air treatment device is forcibly started or the performance of the air treatment device is forcibly adjusted.
- the air treatment device forcibly started?
- the air treatment device in order to force the performance of the air treatment device, if the corresponding measures to be notified do not work, it can be forced to intervene automatically, thereby the actual in the above case. The occurrence can be prevented more reliably.
- the indoor air quality prediction method is the time series change model selected in the indoor air quality prediction method according to the first aspect of the present invention at a plurality of times in the one predetermined period. Using one historical time-series learning value immediately after a plurality of historical time-series learning values corresponding to the series detection values as the predicted value of the next unit time, the predicted value of the next unit time and the sensor unit detect it. The error is calculated from the detected value of the next unit time, and when the error becomes equal to or less than the allowable value, the subsequent prediction is continued using the selected historical time series change model.
- the indoor air quality prediction method reselects the historical time-series change model when the error becomes larger than the permissible value in the indoor air quality prediction method according to the tenth aspect of the present invention. , Characterized by that.
- the prediction accuracy of the model can be evaluated by comparing the predicted value with the detected value of the next unit time. Also, by calculating the error between the predicted value and the detected value for the next unit time, the current model can be continued to be used or a more accurate model can be reselected based on the magnitude of the error. You can decide whether to do it. This makes it possible to improve the prediction accuracy. Compared to the method of reselecting the matching model in real time, the amount of calculation is simplified.
- the indoor air quality prediction method is the one predetermined in the historical time series change model selected in the indoor air quality prediction method according to the first aspect or the eleventh aspect of the present invention.
- the sensor unit is continuous in the next predetermined period. It is determined whether the data set error between the set of the plurality of time-series detected values detected in the process and the set of the predicted values for the next predetermined period is within the allowable error range, and the data set error is the allowable value. When it is within the range, it is characterized in that it continues to make subsequent predictions using the selected historical time series change model.
- the indoor air quality prediction method according to the fourteenth aspect of the present invention is based on a set consisting of a plurality of time-series detection values in the following predetermined period in the indoor air quality prediction method according to the thirteenth aspect of the present invention. Or, based on a set consisting of a plurality of time-series detection values of the one predetermined period and a plurality of time-series detection values of the next predetermined period, the selected historical time-series change model is modified and modified. Is independently generated, and subsequent predictions are made using the modified model.
- the indoor air quality prediction method according to the fifteenth aspect of the present invention is a historical time series change model when the data set error is out of the permissible range in the indoor air quality prediction method according to the thirteenth aspect of the present invention. It is characterized by reselecting.
- the prediction of the selected historical time series change model is performed rather than using only the method of comparing one detected value with one predicted value. Accuracy can be evaluated in terms of overall trend of change, avoiding unnecessary model exchanges due to individual singularities.
- the indoor air quality prediction method according to the sixteenth aspect of the present invention is the indoor air quality prediction method according to any one of the first to the twelfth aspects of the present invention, and the detection target is carbon dioxide and carbon dioxide. It is characterized by having one or more of gas components other than carbon, particulate matter, temperature, and humidity.
- the prediction method according to the sixteenth aspect of the present invention can be appropriately applied to the prediction of carbon dioxide, but it can also be applied to the prediction of other detection targets.
- the present invention has at least one detection terminal having one or more sensor units provided in the detection area, and a plurality of time series of detection targets continuously detected by the sensor units in one predetermined period.
- a data receiving module that receives the detected value and a large number of historical time-series actual measurement results including the detection location of the detection area or other detection locations as the historical time-series learning value
- many historical time-series change models can be obtained.
- a historical time-series change model that satisfies a preset condition between the generated data analysis module and a set consisting of a plurality of the historical time-series detection values from many of the historical time-series change models.
- an indoor air quality detection system including a selective prediction module that estimates predicted values over a period of time.
- the indoor air quality detection system utilizes a plurality of time-series detection values (detection values of a plurality of times within one unit time) of the current time detected by the sensor unit of the detection terminal.
- the indoor air quality detection system includes a notification module for issuing a notification command to a notification unit when the predicted value exceeds a preset threshold value or falls below the preset threshold value. It is characterized by that.
- the notification unit can call the attention of the persons concerned (people in the detection area, people in the monitoring center, etc.).
- the content of the notification may be specifically instructed to take an action corresponding to the persons concerned. , Thereby, the actual occurrence in the above case can be avoided more effectively.
- the air treatment device when the predicted value exceeds a preset threshold value, the air treatment device is started, the performance of the air treatment device is adjusted, or the predicted value is preset. It is characterized by including a control unit forcibly starting the air treatment device or forcibly adjusting the performance of the air treatment device after a certain period of time has passed since the threshold value was exceeded. Further, when the predicted value after a certain period is predicted to be lower than the preset threshold value, the control unit reduces the operating load of the air treatment device or stops the operation of the air treatment device.
- the actual occurrence in the above case can be prevented by automatically turning on the air treatment device in the control unit. Further, if it is predicted that the predicted value after a certain period will be lower than the preset threshold value after the above processing, it is unnecessary by reducing the operating load of the air treatment device or stopping the operation of the air treatment device. You can avoid wasting power.
- control unit is a smart gateway.
- the indoor air quality detection system is characterized in that the control unit is attached to a monitoring center provided outside the detection area.
- the indoor air quality detection systems 100, 100A, 100B and 100C according to the present invention will be described with reference to FIGS. 1 to 4.
- the same or similar components are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
- the indoor air quality detection system according to the present invention is not limited to these cases, and can be appropriately modified according to actual system needs.
- the indoor air quality detection system 100 includes a data reception module 120, a data analysis module 130, a selection prediction module 140, a routing device 150, a smart gateway 160, and a notification module 170. And at least one detection terminal 110. Next, each component of the indoor air quality detection system 100 will be described in detail.
- the detection terminal 110 is, for example, a module provided in a detection area S such as an office area or a conference room, and is one or more sensor units for detecting indoor air quality in one or more detection areas S. Includes 111. More specifically, each of the sensor units 111 is provided with one or more sensor elements (not shown) for detecting one or more detection targets in the room air. As a result, each detection terminal 110 is a target for (one or more) detection of indoor air in one or more detection areas S by the one or more sensor units 111 (and one or more sensor elements included therein). Get the detected value.
- each sensor unit 111 is, for example, a gas such as carbon dioxide, volatile organic substances, nitrogen oxides, sulfur oxides, ozone, carbon monoxide, and formaldehyde. It may be one or more of the components, or it may be one or more of the particulate matter contents such as PM2.5, PM10, or one or more of the physical parameters such as temperature and humidity. But it may be.
- a gas such as carbon dioxide, volatile organic substances, nitrogen oxides, sulfur oxides, ozone, carbon monoxide, and formaldehyde. It may be one or more of the components, or it may be one or more of the particulate matter contents such as PM2.5, PM10, or one or more of the physical parameters such as temperature and humidity. But it may be.
- the detection terminal 110 has a plurality of processing methods. For example, the detection terminal 110 indicates one detection value of one or more detection targets (that is, when there is one detection target, the detection target indicates a detection value at a certain time, and when there are a plurality of detection targets, the detection terminal 110 indicates a detection value.
- the detection value (and equipment ID) is directly transmitted (specifically, via the Internet by the routing device 150 described later). It is transmitted to the data receiving module 120 described later), but the present invention is not limited to this.
- the detection terminal 110 may have a temporary cache function, and the detection terminal 110 accumulates a specific number of detection values (for example, the specific number is 10) of one or more detection targets. After the detection, the detection terminal 110 simultaneously transmits the above-mentioned specific number of detection values (and equipment ID).
- one or more detection values of each detection target detected by each detection terminal 110 are transmitted to the data reception module 120 described later via the routing device 150.
- the transmission method of the detected value is not limited to this.
- the smart gateway 160 detects these. The values can be received directly, and then the smart gateway 160 transmits these detected values to the data receiving module 120 described later.
- the routing device 150 it will be further described based on the fact that the routing device 150 is provided.
- the data receiving module 120 is connected to the routing device 150 via the Internet, receives one or more detection values of each of the detection targets transmitted from the routing device 150 via the Internet, and then receives the detection values.
- One or more detected values are transmitted to the data analysis module 130 and the selection prediction module 140, which will be described later, respectively, to perform subsequent model matching, selection, and prediction work.
- the data receiving module 120 is, for example, an independent cloud module. Further, in the indoor air quality detection system 100, the data receiving module 120 has a plurality of predicted values (prediction) of one or more detection targets estimated by the selection prediction module 140 described later at a specific time or a specific period in the future.
- the data receiving module 120 may further have a historical data storage function, and by storing all the input detected values, the data receiving module 120 is used for reselection of the historical time series change model, generation of a new model, and the like.
- the “history data” here includes not only the historical time-series actual measurement results including the detection location of the detection area S or other detection locations, but also each of the continuously detected by the sensor unit 111 in one predetermined period. It may include one or more time-series detection values to be detected.
- modules that realize predictive functions can be integrated into a single cloud, communication methods are simple, communication is fast, and problems such as data packet loss and loss due to data transmission can be reduced. can. Reselection of the historical time series change model, generation of a new model, etc. will be described in detail later.
- the data analysis module 130 receives one or more detected values from the data receiving module 120 by being connected to the data receiving module 120 via the Internet.
- the data analysis module 130 is also, for example, an independent cloud module.
- the data analysis module 130 is an analysis module having a machine learning function, and has a large number of historical time-series measured values of each detection target detected in the detection area S and / or other detection areas other than the detection area S in the past.
- the above learning algorithms include neural network algorithms (including convolutional neural network algorithms, circular neural network algorithms, etc.), regression learning algorithms (including linear regression analysis algorithms, logarithmic probability regression algorithms, multi-category learning algorithms, etc.), support vectors. Includes machine algorithms, decision tree algorithms, Bayesian classifiers, cluster analysis algorithms, etc. Based on the characteristics of each algorithm, the presence or absence of labels, actual needs, etc., the above learning algorithms can be used for supervised learning, semi-supervised learning, and unsupervised learning. Further, in the present invention, considering that the data is time-series, the trained model is also called a historical time-series change model, and has a fitting curve, a neural network structure (the structure itself, a weighting coefficient between each node, and a weight coefficient).
- the data analysis module 130 first becomes the equipment ID. Based on this, the historical time-series measured values are classified and learned. Specifically, for example, when there are a plurality of detection areas such as a detection area S, a detection area P, and a detection area Q, by recognizing the equipment ID, the data analysis module 130 obtains each historical time-series measured value.
- the data analysis module 130 trains a set of historical time-series measured values (labeled) of the detection area for the historical time-series measured values (labeled) for each detection area.
- the data set is trained as, for example, ⁇ DT0, DT0 + 1 , DT0 + 2 , ..., D TE , ..., y s ⁇ (where T0 indicates the start time of a certain detection period, where TE is the said.
- the above data set ⁇ DT0 , DT0 + 1 , DT0 + 2 , ..., DTE , ..., y s ⁇ may be a set of all historical time-series measured values detected in the detection area S, and may be a detection area. It may be a set of historical time-series measured values in one past detection period detected in S, or may be a set of historical time-series measured values in a plurality of past detection periods detected in the detection area S.
- the set ⁇ DT0 , DT0 + 1 , DT0 + 2 , ..., D TE , ..., y s ⁇ indicates a set of historical time-series measured values within one past detection period detected in the detection area S. Or, when showing a set of historical time-series measured values detected in the detection area S within a plurality of past detection periods, there are a plurality of the above sets, and the same learning algorithm and regression bias are applied to each set. Based on (inductive basis), one corresponding historical time series change model can be generated.
- the set ⁇ DT0 , DT0 + 1 , DT0 + 2 , ..., D TE , ..., y s ⁇ indicates a set of all historical time-series measured values detected in the detection area S, and is shown in the learning process.
- a plurality of different historical time series change models (trained models) will be generated based on different induction biases. For example, if the learning algorithm is a regression learning algorithm, the "Occam's razor" principle will generate the smoothest historical time series change model, while other principles will generate other historical time series.
- the smoothness of these historical time series change models is not as good as the historical time series change models generated based on the "Occam's razor" principle, but the generalization ability is better. It may be. More specifically, when the detection area S is a conference room, different induction biases can be set, for example, "the overall change tendency of the detection target is stable (for example, the number of people in the conference room is stable). The bias that "the overall tendency of CO 2 to change is stable and there is no sudden change because it does not change constantly or hardly", “the detection target suddenly changes suddenly (for example, the meeting was originally held in the conference room) The number of people is 5, and 10 people suddenly came in during the meeting.) ”Can be set.
- FIG. 16 shows a time-series change graph of CO 2 concentration fitting in the case of different numbers of people in the same detection area.
- each measured curve can be regarded as one historical time-series change model. More specifically, three meetings were held in the same detection area, for example, a meeting room, but the number of people varies from meeting to meeting. Further, for each conference, the sensor unit 111 of the detection terminal 110 detects a time-series change value of carbon dioxide ppm in the conference room, and thereby obtains a plurality of actually measured values of carbon dioxide ppm that change with time. Obtained. Based on the above-mentioned plurality of time-series measured values of carbon dioxide ppm, one fitting curve is generated as one historical time-series change model by using regression analysis.
- the selection prediction module 140 receives one or more detection values of each detection target from the data reception module 120, and the selection prediction module 140 is based on a set of one or more detection values of each detection target. , From many historical time series change models generated by the data analysis module 130, select a historical time series change model that satisfies the conditions preset with the above set, and based on the selected historical time series change model. Estimate the predicted value of each detection target for a certain period in the future or at a specific time in the future. Further, after the predicted value of each detection target for a certain period from now on or at a specific time from now on is estimated, the selection prediction module 140 transmits the predicted value to the data receiving module 120.
- the notification module 170 is a module that notifies when the predicted value exceeds or falls below a preset threshold value, and in the indoor air quality detection system 100, the notification module 170 is also one. It is an independent cloud module. Specifically, after receiving one or more predicted values from the selection prediction module 140, the data receiving module 120 compares these predicted values with a preset threshold value, and any of these predicted values. When the predicted value (which is the predicted value when there is one predicted value) exceeds a preset threshold value or falls below a preset threshold value, the data receiving module 120 "is" The information that the predicted value exceeds the preset threshold value or falls below the preset threshold value is transmitted to the notification module 170.
- the notification module 170 Upon receiving the above information, the notification module 170 informs the corresponding equipment (for example, the smart gateway 160 described later and the monitoring center 180 or the mobile phone APP 190 described later as a preferred example) "at a certain time or a specific time in the future". Send a notification that the predicted value exceeds or falls below a preset threshold, and take the corresponding steps (or instruct the corresponding device to perform automatic control). Encourage or urge stakeholders to do so.
- the corresponding equipment for example, the smart gateway 160 described later and the monitoring center 180 or the mobile phone APP 190 described later as a preferred example
- the smart gateway 160 receives the notification from the notification module 170 by being connected to the notification module 170 via the Internet. Upon receiving the notification from the notification module 170 that the predicted value exceeds the preset threshold value or falls below the preset threshold value, the smart gateway 160 automatically controls the air treatment device 200 described later. conduct. Specifically, upon receiving the above notification, the smart gateway 160 automatically starts the air treatment device 200 or automatically adjusts the performance of the air treatment device 200 (for example, the detection target is CO 2 ). In the case of ppm, when the predicted value of ppm becomes larger than the preset threshold value, the smart gateway 160 automatically starts the air treatment device 200, increases the air volume of the air treatment device 200, or increases the air volume of the air treatment device 200. When the predicted value of ppm drops from the dangerous concentration value to a preset threshold value (safe concentration value), the operation of the air treatment device 200 is stopped or the operating load of the air treatment device 200 is lowered).
- a preset threshold value safety concentration value
- the smart gateway 160 further has a notification unit (not shown). Specifically, when the smart gateway 160 has a notification unit, the smart gateway 160 performs automatic control and at the same time emits a notification signal to a person in the detection area S via the notification unit.
- the notification unit may be a notification member provided in the detection area S such as a buzzer, an alarm, an image display facility (eg, an LED panel, a television monitor, etc.), a remote controller, an indicator lamp, or the like.
- the indoor air quality detection system 100 may further include a mobile phone APP 190 installed in a monitoring center 180 and / or a smart mobile phone provided outside the detection area S.
- the notification module 170 selects the information for the smart gateway 160, the monitoring center 180, and the mobile phone APP 190. It can be sent uniformly. After any one of the smart gateway 160, the monitoring center 180 and the mobile phone APP 190 receives the above information, the air treatment device 200 is automatically started / stopped or the performance of the air treatment device 200 is adjusted automatically. Take control.
- the system 100 includes the monitoring center 180 and / or the mobile phone APP 190
- the information that "the predicted value exceeds the preset threshold value or falls below the preset threshold value" is transmitted to the monitoring center 180.
- the monitoring center 180 automatically controls and at the same time issues a notification to the related stap via the notification unit provided.
- the notification unit of the monitoring center 180 may be a notification member such as a buzzer, an alarm, an image display device (for example, an LED panel, a television monitor, etc.), a remote controller, an indicator lamp, or a PC.
- the mobile phone APP 190 gives an automatic control notification and issues a notification to the mobile phone owner via the notification module provided in the mobile phone.
- a buzzer sound, an alarm of an alarm, blinking of the liquid crystal screen of the remote control, blinking of a light, vibration, etc. may be used, or an APP notification of a mobile phone, a message of a mobile phone, or a mobile phone. It may be a way chat notification of a telephone, a vibration of a mobile phone, or an email on the PC side, a notification of monitoring software installed on the PC side, or the like.
- the smart gateway 160, the monitoring center 180, or the mobile phone APP 190 automatically receives the information that "the predicted value exceeds the preset threshold value or falls below the preset threshold value". Control and send notifications to related parties.
- the relevant parties are notified and manual measures are taken without automatic control. For example, it is recommended that the parties concerned open the doors and windows by themselves, or that the number of people in the detection area S is controlled, or that the air treatment device 200 is manually operated. It is recommended to turn it on or to recommend the parties concerned to move away from the detection area S.
- the data reception module 120, the data analysis module 130, the selection prediction module 140, and the notification module 170 are commonly arranged in one cloud.
- the arrangement form of the above module is not limited to this, and may belong to a plurality of different clouds, which will be described in detail later.
- the "air treatment device 200" referred to in the present invention includes an air conditioner, a ventilation device, a dehumidifier, a humidifier, an air purifier, and the like.
- the difference of the indoor air quality detection system 100A is that the notification module 170 has a function of determining whether the predicted value exceeds the preset threshold value or falls below the preset threshold value. To be executed by.
- the notification module 170 is directly connected to the selection prediction module 140 via the Internet.
- the selection prediction module 140 directly transmits the prediction value to the notification module 170 after estimating the prediction value of the detection target for a certain period from now on or at a specific time from now on.
- the notification module 170 compares these predicted values with a preset threshold value, and any one of these predicted values (when the predicted value is one, it is the predicted value) is predetermined.
- the notification module 170 provides information that "the predicted value exceeds the preset threshold or falls below the preset threshold" to the smart gateway 160.
- the data transmission step can be simplified, that is, the predicted value is first transmitted to the data receiving module 120 and then the data receiving module 120. It is not necessary to send the above information to the notification module 170 via.
- the difference between the indoor air quality detection system 100B is that the data receiving module 120, the data analysis module 130, the selection prediction module 140 and the notification module 170 are two independent.
- the points arranged in the cloud and the plurality of detected values detected by the detection terminal 110 are first transmitted to the smart gateway 160, and then the plurality of detected values including the system ID and the equipment ID via the smart gateway 160.
- the monitoring center 180 receives the information that "the predicted value exceeds the preset threshold or falls below the preset threshold", the staff of the monitoring center 180 is smart.
- the owner of the mobile phone manually operates the mobile phone APP to manually control the air treatment device.
- the indoor air quality detection system 100B has a prediction cloud A and a monitoring cloud B, and a data reception module 120, a data analysis module 130, and a selection prediction module 140 are arranged in the prediction cloud A.
- the notification module 170 was placed in the monitoring cloud B.
- the detection terminal 110 does not have to have a temporary cache function, and immediately after detecting one detection value of one or more detection targets, the detection value (and) , Equipment ID) is transmitted to the smart gateway 160.
- the smart gateway 160 assigns a system ID to these detected values, and together the equipment ID and the detected value to which the system ID is assigned are sent to the prediction cloud A. It is transmitted to the arranged data receiving module 120.
- the monitoring center 180 when the monitoring center 180 receives the information that "the predicted value exceeds the preset threshold value or falls below the preset threshold value", the monitoring center 180 receives the information.
- the stub only issues a notification to the stub without automatic control, and after noticing the notification, the stub manually sets the air treatment device 200 located in the detection area S by an intelligent system such as a smart building system. Can be controlled remotely with.
- the mobile phone APP190 receives the above information
- the smart mobile phone in which the mobile phone APP190 is installed only issues a notification to the owner of the mobile phone via the notification module, and the owner of the mobile phone.
- the owner of the mobile phone manually controls the air treatment device 200 by utilizing communication functions such as Bluetooth (registered trademark), NFC, and Wi-Fi of the mobile phone.
- communication functions such as Bluetooth (registered trademark), NFC, and Wi-Fi of the mobile phone.
- the monitoring center 180 or the mobile phone APP 190 receives the above information, it can be notified and automatically controlled directly, or the air treatment device can be controlled only after a predetermined time has passed since the notification was issued. If the 200 is not manually controlled, it can also be forced and automatically controlled again (eg, issuing a corresponding operation control command to the air treatment device 200 via the smart gateway 160).
- the difference of the indoor air quality detection system 100C is that the monitoring cloud B further has a data storage module 300.
- the smart gateway 160 predicts a specific number of detected values via the Internet by the routing device 150 in the data receiving module 120 arranged in the cloud A and the data storage module 300 arranged in the monitoring cloud B. Send at the same time.
- the data storage module 300 stores all the input detected values for reselection of the historical time-series change model, generation of a new model, and the like.
- the data receiving module 120 needs to call the historical data stored in the data storage module 300, the data receiving module 120 sends a request to the smart gateway 160 and acquires the corresponding historical data via the smart gateway 160. ..
- the smart gateway 160 plays a role of connecting all the clouds, and when there are a plurality of clouds, the communication framework is simple and the structure of the clouds can be simplified. Reselection of the historical time series change model, generation of a new model, etc. will be described in detail later.
- the routing device 150 is provided, but depending on the actual architectural situation of the system, the routing device 150 is not provided and 2G or NB-. It must be emphasized again that data reception and transmission may be performed via the smart gateway 160 having a communication module such as IoT.
- the indoor air quality detection system 100 is activated.
- the detection terminal 110 continuously detects one or more detection targets in the detection area S. Specifically, the detection terminal 110 acquires the detection value d of each detection target per unit time (for example, per minute) by one or more sensor units 111, and the detection target has a plurality of detection targets (for example, per minute).
- the detection value d is a vector having three components when there are three detection targets and includes the concentration, temperature, and humidity of CO 2 , and the detection is performed when there is only one detection target.
- the value d is a scalar.
- the data receiving module 120 receives the detected value transmitted from the detection terminal 110 and sets a predetermined period.
- the start time of the predetermined period is T0 (for example, the first minute after activation)
- a is a unit time (for example, a). Minutes).
- the real-time time-series sample data set ⁇ d T0 , d T0 + 1 , d consisting of a time-series detection values d T0 , d T0 + 1 , d T0 + 2 , ..., d TE for each detection target in the data receiving module 120.
- T0 + 2 , ..., d TE ⁇ is formed.
- the detection terminal 110 transmits the time-series detection value, and at the same time, further transmits the equipment ID, so that the real-time time-series sample data set ⁇ d T0 , d T0 + 1 , d T0 + 2 , ... ..., d TE ⁇ can be converted into a real-time time series sample case dataset ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , y s ⁇ , where y s is the detection area.
- the equipment ID in S is shown.
- step S130 the data receiving module 120 sets the data analysis module 130 and the selection prediction module 140 to the real-time time-series sample data set ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE ⁇ or the real-time time-series sample case, respectively.
- the data set ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , y s ⁇ is transmitted.
- step S140 the selection prediction module 140 sends a model selection command to the data analysis module 130, and conditions preset between many historical time series change models and the real-time time series sample case data set. Request to select a historical time series change model that satisfies.
- the data analysis module 130 uses the real-time time series. The detection values in the sample case data set are classified, that is, it is determined in which detection area the detection values in the real-time time series sample case data set belong to.
- the real-time time-series sample case data set is used as an all-historical time-series change model in the detection area S (these histories). It may be a set of historical time-series measured values that generate a time-series change model), and a historical time-series change model that satisfies preset conditions with the data set is selected. For preset conditions, for example, the set ⁇ DT0 , DT0 + 1 , DT0 + 2 , ..., D TE , ..., y s ⁇ is within one past detection period detected in the detection area S.
- D TE ⁇ with two mutually exclusive first subsets ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d T0' ⁇ and a second subset ⁇ d T0'+ 1 , d T0' + 2 , d T0 '+3 , ..., d TE ⁇ , and input the first subset into each historical time series change model, and one predicted value subset corresponding to the above second subset ⁇ CT0'+ 1 , CT0 .
- step S150 the selection prediction module 140 sends a command to the data receiving module 120 requesting the reselection of a real-time time series sample or sample case data set of new time series detection values, and based on the command,
- the data receiving module 120 reselects a data set of time series detection values.
- the previous N time-series detection values are deleted while the length of the set of time-series detection values does not change, and the subsequent N new times are detected.
- a new set of time series detection values ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE ⁇ is formed.
- steps S130 to S150 are repeated until a historical time-series change model that satisfies the preset conditions is found. If there is a historical time series change model that satisfies the preset conditions, the process proceeds to step S160.
- step S160 it is determined whether or not there are a plurality of historical time-series change models that satisfy the preset conditions. If there is only one historical time-series change model that satisfies the preset conditions, the historical time-series change model is used (step S161), and if there are a plurality of historical time-series change models that satisfy the preset conditions, matching is performed. A historical time-series change model with the highest degree is used (step S162). For example, the highest degree of matching is Is the smallest Indicates that is the minimum. When the historical time-series change model that satisfies the preset conditions and / or has the highest degree of matching is selected, the process proceeds to step S170.
- step S170 the selection prediction module 140 determines the predicted values D TE + 1 , D TE + 2 , D TE + 3 , ..., D for a certain period from now on based on the latest set of time series detection values and the corresponding historical time series change model. Estimate TE + t , where t is a natural number greater than 1. Next, the process proceeds to step S180.
- the process After updating the start time of the predetermined period in step S180, the process returns to step S120 to make the next prediction.
- the original start time is updated to the unit time next to the original start time to obtain a new start time. For example, when the predicted value of the 11th to 20th minutes is estimated using the 10 time-series detection values of the 1st to 10th minutes, the start time of the predetermined period is updated to the 2nd minute. The predicted value for the 12th to 21st minutes is estimated using the time-series detection value for the 2nd to 11th minutes.
- step S180 of the first embodiment as a method of updating the start time, the original start time is updated to the unit time next to the original start time to obtain a new start time.
- the method of updating the start time is not limited to this, and for example, as shown in step S180', the original start time is updated to the next unit time of the original end time TE to obtain a new start time.
- the start time of the predetermined period is updated to the 11th minute.
- the predicted value of the 21st to 30th minutes is estimated by using the time series detection value of the 11th to 20th minutes.
- step S150 of the first embodiment as a method of reselecting a data set of time-series detection values, the previous N time-series detection values are deleted while the length of the set of time-series detection values does not change.
- a set of new time-series detection values ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., D TE ⁇ is formed. ..
- the method of reselecting the above data set is not limited to this, and for example, as shown in step S150', a set of original time series detection values ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE ⁇ .
- a new set ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , d T0 + 1 , d T0 + 2 , ..., d T0 + N ⁇ is formed. Specifically, as shown in FIG.
- this modification further includes step S190. Specifically, in step S180, after updating the start time, the process proceeds to step S190, and in step S190, a is set so that the number of actually measured values in the time-series measured value set for each prediction start is the same. Reset.
- the modification 3 includes step S180'and step S150'. That is, as a method of updating the start time, there is a historical time-series change model that updates the original start time to the next unit time of the original start time to make it a new start time and satisfies a preset condition. If not, the number of detected values in the set of time-series detected values is increased so as to be the basis for continuously selecting the historical time-series change model.
- the prediction method not only includes the prediction step in the first embodiment and its variants, but also further includes a notification step.
- step S210 the data receiving module 120 acquires the predicted value from the selection prediction module 140.
- the data receiving module 120 transmits information that "the predicted value has exceeded the preset threshold value" to the notification module 170, and proceeds to step S230. ..
- the notification module 170 sends a notification command to the notification unit by a predetermined method, so that the notification unit issues a notification to a related party or a related device in which the above case may occur in the future. , Or notify the parties concerned to take the corresponding measures, or instruct the related equipment to control automatically, and then proceed to step S240.
- step S240 when the person concerned receives the above notification, the air treatment device 200 is immediately activated, the performance of the air treatment device 200 is adjusted, or the smart gateway 160 or the monitoring center 180 (or the mobile phone APP 190).
- the notification unit of the above immediately activates the air treatment device 200 or automatically adjusts the performance of the air treatment device 200.
- step S250 the subsequent new detection value is acquired, and the process returns to step S220.
- the air treatment device 200 when the predicted value becomes larger than the preset threshold value, the air treatment device 200 is immediately started or the performance of the air treatment device 200 is adjusted.
- the processing method is not limited to this when the predicted value becomes larger than the preset threshold value.
- the air treatment device 200 when the predicted value becomes larger than the preset threshold value, the air treatment device 200 is not directly started or the performance of the air treatment device 200 is not adjusted, but the notification is given first. It may be determined whether the time lasts for a predetermined time (whether a predetermined time has elapsed) (step S231). When the duration of the notification exceeds a predetermined time, the control module of the smart gateway 160 or the monitoring center 180 or the mobile phone APP forcibly activates the air treatment device 200 or forces the performance of the air treatment device 200. Adjust (step S240').
- the modification if the predicted value still exceeds the preset threshold value after a predetermined time has elapsed from the initial notification, the air treatment device 200 is forcibly started or the air is started. Since the performance of the processing device 200 is forcibly adjusted, it is possible to avoid continuous deterioration of the air quality in the room in the detection area S due to not paying attention to the notification. Further, as compared with the second embodiment, the modification gives priority to the manual control operation of the user, whereby it is possible to avoid frequent adjustment of the air treatment device and avoid unnecessary adjustment. be able to.
- step S221 may be included as shown in FIG. Specifically, when the predicted value becomes larger than the preset threshold value, the air treatment device 200 is started or the performance of the air treatment device 200 is adjusted, and in this case, the value to be detected always changes. do. Taking the ppm of CO 2 as an example, after starting the above activation or adjustment, the subsequent new predicted value is acquired, the predicted value is compared with the preset threshold value, and if the new predicted value is still preset.
- the air treatment device 200 When it becomes larger than the threshold value, the air treatment device 200 is continuously turned on or the performance of the air treatment device 200 is continuously adjusted, and when the new predicted value becomes less than or equal to the preset threshold value, the air treatment device 200 is continuously turned on. It has been found that the operation of the device 200 plays a more useful role, and at this time, information that the new predicted value is equal to or less than a preset threshold value is transmitted to the smart gateway 160, the monitoring center 180, or the mobile phone APP. At this time, the smart gateway 160, the monitoring center 180, or the mobile phone APP 190 can stop the operation of the air treatment device 200 or reduce the operation load of the air treatment device 200 depending on the actual situation.
- the prediction method of the third embodiment includes not only the prediction step in the first embodiment but also the model evaluation step.
- the selection prediction module 140 receives the data receiving module 120 after the predetermined period.
- the detection value d TE + 1 of the next unit time of is acquired (step S310).
- the selection prediction module 140 determines whether the error between the detected values d TE + 1 and D TE + 1 is larger than the permissible value. When the error becomes less than or equal to the allowable value, the prediction is continued using the selected historical time series change model (step S330).
- d TE + 1 is added to the original set of time series detection values ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE ⁇ , and a new set ⁇ d T0 , d T0 + 1 is added.
- D T0 + 2 , ..., d TE , d TE + 1 ⁇ and using the new set, preset conditions with the new model according to steps S120 to S162 of the first embodiment. Reselect the historical time series change model to be satisfied (step S340). After selecting a new historical time series change model, the predicted values ⁇ D TE + 2 , D TE + 3 , ..., D TE + t ⁇ are updated based on the model (step S350).
- the prediction accuracy of the model can be evaluated by comparing the predicted value with the detected value of the next unit time. Also, by evaluating the error between the predicted value and the detected value of the next unit time, whether to continue using the current model based on the magnitude of the error or to reselect a model with higher accuracy. Can be determined. This makes it possible to improve the prediction accuracy.
- the detected value d TE + 1 of the next unit time after a predetermined period is acquired, the error between the detected value d TE + 1 and the predicted value D TE + 1 is calculated, and the history is calculated based on the error. Determine if the time series change model needs to be replaced.
- the method of model evaluation is not limited to that.
- d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m are added to the original set of time series detection values ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE ⁇ . Then, a new set ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m ⁇ is formed, and the new set is used.
- the historical time series change model satisfying the preset conditions with the new model is reselected (step S340').
- the predicted values ⁇ D TE + m + 1 , D TE + m + 2 , ..., D TE + t ⁇ are updated based on the model (step S350').
- the variant 1 compares a plurality of predicted values with a plurality of detected values within one period. In this way, compared to using only a method of comparing one detected value with one predicted value, the prediction accuracy of the selected historical time series change model can be evaluated from the viewpoint of the overall change tendency, and is individual. Avoid unnecessary model exchanges due to singularities in.
- the set of detected values ⁇ d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m ⁇ and the set of predicted values ⁇ D TE + 1 , D TE + 2 , D TE + 3 , ..., D TE + t ⁇ are subsets.
- the selected historical time series change model is continuously diverted (step S330).
- the processing in this case is not limited to that.
- step S321 when the above error is equal to or less than the allowable value, it can be determined whether to modify the existing model (step S321). For example, if a correction threshold value smaller than the correction threshold value is set in advance and the error becomes smaller than the correction threshold value, the selected original historical time-series change model is continuously used, and the error is equal to or larger than the correction threshold value and the allowable value. Then, further learn the original historical time series change model selected by ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m ⁇ .
- a modified historical time-series change model can be generated separately, and a subsequent prediction can be made using the modified historical time-series change model.
- deep learning allows the original historical time-series change model (teacher model) to generate a separately modified historical time-series change model (student model), as well as the actual needs and system.
- the modified historical time series change model may be a derived model (same structure but different weighting coefficients) or a distillation model (same structure and different weighting coefficients).
- the original historical time-series change model is used, while when it is determined that deep learning is necessary, a set of detected values ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d Using TE , d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m ⁇ , the original historical time series change model is further learned to generate a modified historical time series change model with higher accuracy. In this way, the prediction accuracy can be further improved by using the corrected historical time series change model with higher accuracy.
- the processing method when the above error is equal to or less than the allowable value is not limited to that.
- the plan shown in FIG. 15 can be obtained. That is, when the error between the detected value d TE + 1 and the predicted value D TE + 1 is equal to or less than the allowable value, the detected values d TE + 2 , d TE + 3 , ... , D TE + m is obtained, and further processing is performed according to the step described in Modification 2.
- the modified example 3 can simultaneously evaluate the prediction accuracy of the selected historical time-series change model from the two viewpoints of local and overall. ..
- the first embodiment it is constant when there is no historical time series change model satisfying a predetermined condition between the set of time series detection values ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE ⁇ .
- a predetermined condition between the set of time series detection values ⁇ d T0 , d T0 + 1 , d T0 + 2 , ..., d TE ⁇ .
- the data analysis module 130 trains the time series and all the time series detection values before the time. By learning as a sample case, one new historical time series change model is generated. Further, more preferably, in the detection process after the above time, the detected new time series detection value is continuously input to the new historical time series change model to update the historical time series change model. In this way, the amount of calculation of the data analysis module 130 can be simplified.
- the new set is based on a new set of the remaining time-series detection values. You may reselect a historical time series change model that meets the preset conditions with the set. In this way, even if data loss occurs, it is possible to acquire an excellent historical time series change model and make subsequent predictions.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Business, Economics & Management (AREA)
- Software Systems (AREA)
- Emergency Management (AREA)
- Food Science & Technology (AREA)
- Automation & Control Theory (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Theoretical Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、ガス検出の分野に関し、より具体的には、実際に測定された室内の空気品質の検出値に基づいてこれからの一定の期間の室内の空気品質を予測する室内空気品質予測方法及び該予測方法を用いる室内空気品質検出システムに関する。 The present invention relates to the field of gas detection, and more specifically, an indoor air quality prediction method for predicting indoor air quality for a certain period from now on based on actually measured indoor air quality detection values and The present invention relates to an indoor air quality detection system using the prediction method.
現在、室内の空気品質に対する検出(または品質評価)は、何れも室内空気中の各成分の濃度を検出するとともに、検出された検出値(濃度値)と予め設定された閾値とに基づいて、室内空気中の各成分の濃度を適宜な範囲に制御するように、室内に設けられた空気清浄機器(空調機、空気清浄機など)の動作を制御する。 Currently, detection (or quality evaluation) for indoor air quality detects the concentration of each component in the indoor air, and is based on the detected detection value (concentration value) and a preset threshold value. The operation of air purifiers (air conditioners, air purifiers, etc.) installed in the room is controlled so that the concentration of each component in the room air is controlled within an appropriate range.
しかし、センサの特性やガスの拡散特性などにより、正確な濃度を検出するには一定の時間がかかり、明らかにヒステリシスがあることが知られている。二酸化炭素を例にすると、もし室内空気中の二酸化炭素の濃度が既に予め設定された閾値を超えてから排気ファンをオンにするか、または、空調機の排気モードを起動すると、二酸化炭素の濃度が予め設定された閾値を超えたことが検出されたときに、室内の人々は既に二酸化炭素が基準を超えた環境にいるだけでなく、排気ファンのオンや排気モードの起動から二酸化炭素が適宜な範囲に低下するまでに一定の時間がかかり、その期間中、人々は、このような環境で不快に感じ続けている。 However, it is known that it takes a certain amount of time to detect an accurate concentration due to the characteristics of the sensor and the diffusion characteristics of the gas, and there is a clear hysteresis. Taking carbon dioxide as an example, if the concentration of carbon dioxide in the room air exceeds a preset threshold and then the exhaust fan is turned on or the exhaust mode of the air conditioner is activated, the concentration of carbon dioxide When it is detected that a preset threshold has been exceeded, people in the room are not only already in an environment where carbon dioxide has exceeded the standard, but also carbon dioxide is appropriate from turning on the exhaust fan or activating the exhaust mode. It takes a certain amount of time to drop to a certain range, and during that period, people continue to feel uncomfortable in such an environment.
従って、従来、室内空気の濃度を事前に予測する方法が多く提案されている。 Therefore, many methods for predicting the concentration of indoor air in advance have been proposed.
例えば、特許文献1(特開2003-090819号公報)において、ガスセンサ素子1におけるセンサ出力Y(t)の時間微分値A(t)(すなわち、センサの出力値の時間に伴う変化量)とA(t)の時間微分値B(t)(即ち、上記変化量の時間に伴う変化量)を用いて、これからの一定の期間のセンサ出力を予測し、特定ガス濃度を検出する、物質濃度の定量方法、物質濃度検出装置及び記録媒体が提案されている。 For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2003-090819), the time derivative value A (t) of the sensor output Y (t) in the gas sensor element 1 (that is, the amount of change of the sensor output value with time) and A. Using the time derivative B (t) of (t) (that is, the amount of change of the above change amount with time), the sensor output for a certain period from now on is predicted, and the specific gas concentration is detected. Quantitative methods, substance concentration detectors and recording media have been proposed.
また、例えば、特許文献2(特許第3830846号公報)において、ガスセンサが起動するときのガス濃度予測方法及びガス検知方法が提案され、ここに、前記ガスセンサの出力が安定する前の所定期間に、ガスセンサを起動してからの所定期間における該ガスセンサの出力値の変化速度(即ち、センサ出力の時間微分値)に基づいて、被検出ガスのガス濃度を予測する。 Further, for example, Patent Document 2 (Japanese Patent No. 3830846) proposes a gas concentration prediction method and a gas detection method when the gas sensor is activated, and here, in a predetermined period before the output of the gas sensor stabilizes. The gas concentration of the detected gas is predicted based on the rate of change of the output value of the gas sensor (that is, the time derivative value of the sensor output) in a predetermined period after the gas sensor is activated.
特許文献1と特許文献2のいずれも一つずつの実データの変化に基づいて、センサ出力の時間微分値を用いて、データ変化の傾向線をフィッティングし、これからの一定の期間のセンサ出力を予測(または計算)する。
In both
しかしながら、これは必然的に大量の計算につながり、検出ごとにこのような大量の計算が必要となり、検出機器内に設けられた演算器に大きな負担をかけることになる。 However, this inevitably leads to a large amount of calculation, and such a large amount of calculation is required for each detection, which puts a heavy burden on the arithmetic unit installed in the detection device.
現在、ニューラルネットワークを利用したAI技術と画像認識技術の継続的な発展に伴い、室内空気の濃度を予測する方法も絶えず改善され、最適化されている。 Currently, with the continuous development of AI technology and image recognition technology using neural networks, the method of predicting the concentration of indoor air is constantly being improved and optimized.
例えば、特許文献3(中国特許出願公開第109442695号明細書)において、現在の室内画像と現在の室内の二酸化炭素の濃度データとを収集するステップと、前記現在の室内画像および/または前記現在の室内二酸化炭素の濃度データに基づいて現在の室内人数を認識するステップと、前記現在の室内の二酸化炭素の濃度データと前記現在の室内人数とに基づいて、第一所定期間後の温度変化量と二酸化炭素の濃度変化量とを予測するステップと、前記温度変化量と前記二酸化炭素の変化量に基づいて空調および/または新風システムを調節するステップと、を含む、室内人数に基づく空調及び新風システムの予測制御方法及びシステムが提案されている。 For example, in Patent Document 3 (Chinese Patent Application Publication No. 1094426995), a step of collecting a current indoor image and current indoor carbon dioxide concentration data, and the current indoor image and / or the current present. The step of recognizing the current number of people in the room based on the concentration data of carbon dioxide in the room, and the amount of temperature change after the first predetermined period based on the concentration data of carbon dioxide in the current room and the current number of people in the room. An air conditioning and new wind system based on the number of people in the room, including a step of predicting the amount of change in carbon dioxide concentration and a step of adjusting the air conditioning and / or the new wind system based on the amount of change in temperature and the amount of change in carbon dioxide. Predictive control methods and systems have been proposed.
なお、また、例えば、特許文献4(中国特許出願公開第109812938号明細書)において、データ収集ノードを介して室内の空気品質と人数のデータをリアルタイムに収集するデータリアルタイムリー収集ステップと、収集した室内の空気品質データを空気品質事前分析モデルに導入し、モデルに対してさらに学習トレーニングを行うとともに、室内人数データの変化状況および現在の室内の空気品質データと合わせて室内の空気品質データの変化傾向を分析するデータ事前分析ステップと、空気品質事前分析モデルのデータ分析結果に基づいて室内の空気品質を事前浄化する事前浄化ステップと、を含む、ニューラルネットワークに基づく空気浄化方法及びシステムが提案されている。 Further, for example, in Patent Document 4 (Chinese Patent Application Publication No. 109812938), a data real-time data collection step of collecting data on indoor air quality and number of people in real time via a data collection node was collected. Introduce indoor air quality data into the air quality pre-analysis model, provide further learning training to the model, and change the indoor air quality data together with the change status of the indoor number data and the current indoor air quality data. A neural network-based air purification method and system is proposed, including a data pre-analysis step to analyze trends and a pre-purification step to pre-purify indoor air quality based on the data analysis results of the air quality pre-analysis model. ing.
特許文献3と特許文献4のいずれも室内画像から人数データを収集したり、室内人数を正確に認識したりするとともに、その室内人数を考慮した上で、室内空気中の単一の検出対象の検出値の変化傾向を予測または分析する必要がある。
しかし、室内人数を正確に認識する画像センサや認識方式は、必然的に検出機器のコストの大幅な増加を招く一方、室内空気の濃度変化と室内人数は、唯一の傾向対応関係ではなく、他の環境要因、例えば、一人当たりのCO2排出量の違い、室内空間の面積の大きさ、室内に緑植があるか否か、窓を開けたか否か/ドアを開けたか否かなどから影響を受け、このとき、室内人数が多いときの室内空気中の単一の検出対象(例えば、CO2濃度)の検出値は、逆に室内人数が少ないときの室内空気中の単一の検出対象(例えば、CO2濃度)の検出値よりも小さくなる場合がある。この場合、特許文献3、特許文献4のように室内人数(単一の要因)を室内空気の検出値の変化傾向を修正する根拠として用いると、逆に検出値の変化傾向の予測や分析が不正確になってしまう。
In both
However, while image sensors and recognition methods that accurately recognize the number of people in a room inevitably lead to a significant increase in the cost of detection equipment, changes in the concentration of indoor air and the number of people in the room are not the only trend-corresponding relationships. Environmental factors such as the difference in CO 2 emissions per person, the size of the area of the indoor space, whether or not there is green plant in the room, whether or not the window is opened / whether or not the door is opened, etc. At this time, the detection value of a single detection target (for example, CO 2 concentration) in the room air when the number of people in the room is large is conversely the single detection target in the room air when the number of people in the room is small. It may be smaller than the detected value (for example, CO 2 concentration). In this case, if the number of people in the room (single factor) is used as the basis for correcting the change tendency of the detected value of the indoor air as in
従って、検出値の変化傾向を修正する根拠として、具体的な単一の要因(例えば、室内人数)を考慮することなく、これからの一定の期間の傾向値を事前にかつ正確に予測することは、早急に解決すべき技術的課題となっている。 Therefore, as a basis for correcting the change tendency of the detected value, it is not possible to predict the tendency value for a certain period in advance and accurately without considering a specific single factor (for example, the number of people in the room). , Is a technical issue that needs to be resolved immediately.
本発明は、上記技術課題を解決するためになされたものであり、検出値の変化傾向を修正する根拠として具体的な単一の変数を考慮ことなく、適切な履歴時系列変化モデルを選択することで、これからの一定の期間の傾向値を事前にかつ正確に予測することができる、室内空気品質予測方法及び該予測方法を用いる室内空気品質検出システムを提供することを目的とする。 The present invention has been made to solve the above technical problems, and an appropriate historical time-series change model is selected without considering a specific single variable as a basis for correcting the change tendency of the detected value. It is an object of the present invention to provide an indoor air quality prediction method and an indoor air quality detection system using the prediction method, which can predict a tendency value in a certain period from now on in advance and accurately.
上記技術課題を解決するために、本発明の第一態様は、検出エリア(S)の検出場所または他の検出場所を含む多数の履歴時系列実測結果を履歴時系列学習値として学習して得られた多数の履歴時系列変化モデルから、一つの所定期間に前記検出エリアに設けられたセンサユニットによって連続して検出された検出対象の複数の時系列検出値の集合との間で予め設定された条件を満たす履歴時系列変化モデルを選択するとともに、選択した前記履歴時系列変化モデルに基づいて、これからの一定の期間の予測値を推定する、ことを特徴とする室内空気品質予測方法を提供する。 In order to solve the above technical problem, the first aspect of the present invention is obtained by learning a large number of historical time-series actual measurement results including the detection location of the detection area (S) or other detection locations as historical time-series learning values. It is preset between a set of a plurality of time-series detection values to be detected continuously detected by a sensor unit provided in the detection area in one predetermined period from a large number of historical time-series change models. Provided is an indoor air quality prediction method characterized in that a historical time-series change model satisfying the above conditions is selected, and a predicted value for a certain period from now on is estimated based on the selected historical time-series change model. do.
本発明の第一態様に係る予測方法によれば、前期に大量の履歴データを収集し、適切な学習アルゴリズムを選択し、及びできるだけ多くの帰納バイアスを設定し、これらの履歴データをトレーニングサンプルまたはトレーニングサンプルケースとして学習することによって、多くの履歴時系列変化モデルを生成するとともに、特定の検出エリアで検出された複数の検出値に基づいて上記複数の検出値にマッチングする履歴時系列変化モデルを選択し、選択した履歴時系列変化モデルに基づいて該特定の検出エリアのこれからの一定の期間の予測値を推定する。これにより、検出エリア内の人数が検出されない、または分からない場合に、室内空気中の検出対象のごく一部の検出値を取得するだけで、該特定の検出エリア内の検出対象のこれからの一定の期間の変化傾向(変化値)を予測することができる。 According to the prediction method according to the first aspect of the present invention, a large amount of historical data is collected in the first period, an appropriate learning algorithm is selected, and as much induction bias is set as possible, and these historical data are used as a training sample or a training sample. By learning as a training sample case, many historical time-series change models are generated, and a historical time-series change model that matches the above-mentioned multiple detection values based on multiple detection values detected in a specific detection area is generated. It is selected and the predicted value for the future fixed period of the specific detection area is estimated based on the selected historical time series change model. As a result, when the number of people in the detection area is not detected or is unknown, it is only necessary to acquire the detection value of a small part of the detection target in the indoor air, and the detection target in the specific detection area will be constant in the future. It is possible to predict the change tendency (change value) during the period of.
さらに、高価な画像センサや複雑な認識方式を用いる必要がないため、室内空気品質検出システムの設備コストを低減することができる。 Furthermore, since it is not necessary to use an expensive image sensor or a complicated recognition method, the equipment cost of the indoor air quality detection system can be reduced.
本発明の第二態様に係る室内空気品質予測方法は、本発明の第一態様に係る室内空気品質予測方法において、前記予め設定された条件を満たす履歴時系列変化モデルが複数存在すると、前記集合との間のマッチング程度が最高となる履歴時系列変化モデルを選択する、ことを特徴とする。 The indoor air quality prediction method according to the second aspect of the present invention is the set when there are a plurality of historical time series change models satisfying the preset conditions in the indoor air quality prediction method according to the first aspect of the present invention. It is characterized by selecting a historical time-series change model that has the highest degree of matching with.
本発明の第二態様に係る予測方法によれば、予め設定された条件を満たす複数の履歴時系列変化モデルから現在の時系列検出値との間のマッチング度が最高となる履歴時系列変化モデルを選択することで、できるだけ予測精度を高めることができる。 According to the prediction method according to the second aspect of the present invention, the historical time series change model in which the degree of matching between the plurality of historical time series change models satisfying the preset conditions and the current time series detection value is the highest. By selecting, the prediction accuracy can be improved as much as possible.
本発明の第三態様に係る室内空気品質予測方法は、本発明の第一態様に係る室内空気品質予測方法において、前記予め設定された条件を満たす履歴時系列変化モデルが存在しないと、前記予め設定された条件を満たす履歴時系列変化モデルを見つけるまで、開始時刻および/または長さが前記一つの所定期間と異なる次の所定期間の複数の時系列検出値の新たな集合を再選択し、前記新たな集合との間で前記予め設定された条件を満たす履歴時系列変化モデルが存在するか否かを判断し続ける、ことを特徴とする。 The indoor air quality prediction method according to the third aspect of the present invention is the indoor air quality prediction method according to the first aspect of the present invention. Until we find a historical time series change model that meets the set conditions, we reselect a new set of multiple time series detection values for the next predetermined period whose start time and / or length is different from the one predetermined period. It is characterized in that it continues to determine whether or not there is a historical time series change model that satisfies the preset condition with the new set.
本発明の第三態様に係る予測方法によれば、新たな時系列検出値の集合を再選択することで、適切な履歴時系列変化モデルを見つけ、局所的なデータの希少性による予測不可能の場合を避けることができる。 According to the prediction method according to the third aspect of the present invention, by reselecting a new set of time series detection values, an appropriate historical time series change model is found, and it is unpredictable due to the scarcity of local data. Can be avoided.
本発明の第四態様に係る室内空気品質予測方法は、本発明の第三態様に係る室内空気品質予測方法において、前記予め設定された条件を満たす履歴時系列変化モデルを見つける時刻まで、該時刻及び該時刻の前の全ての前記時系列検出値を学習することによって、新たな履歴時系列変化モデルとして生成される、ことを特徴とする。 The indoor air quality prediction method according to the fourth aspect of the present invention is the time until the time when the historical time series change model satisfying the preset condition is found in the indoor air quality prediction method according to the third aspect of the present invention. It is characterized in that it is generated as a new historical time-series change model by learning all the time-series detection values before the time.
本発明の第四態様に係る予測方法によれば、既に検出された検出対象の検出値を効果的に利用し、データベースのモデル数を増加させることができる。また、システムの次回起動時の計算量を軽減する。 According to the prediction method according to the fourth aspect of the present invention, it is possible to effectively utilize the detected value of the detection target that has already been detected and increase the number of models in the database. It also reduces the amount of calculation at the next system startup.
本発明の第五態様に係る室内空気品質予測方法は、本発明の第四態様に係る室内空気品質予測方法において、前記時刻の後の検出過程では、検出された新たな時系列検出値を前記新たな履歴時系列変化モデルに入力し続けることで、前記新たな履歴時系列変化モデルを更新する、ことを特徴とする。 The indoor air quality prediction method according to the fifth aspect of the present invention is the indoor air quality prediction method according to the fourth aspect of the present invention. It is characterized in that the new historical time-series change model is updated by continuously inputting to the new historical time-series change model.
本発明の第五態様に係る予測方法によれば、前記新たな履歴時系列変化モデルの新たなデータサンプルへの適応能力(汎化能力)を絶えずに高めることができる。 According to the prediction method according to the fifth aspect of the present invention, the adaptability (generalization ability) of the new historical time series change model to a new data sample can be constantly enhanced.
本発明の第六態様に係る室内空気品質予測方法は、本発明の第一態様に係る室内空気品質予測方法において、前記予測値が予め設定された閾値を超えた場合には、予め決定された方法で上記場合の発生可能性を通知するかまたは対応する手段を講じることを通知し、あるいは、対応する手段を講じるように自動的に制御する、ことを特徴とする。 The indoor air quality prediction method according to the sixth aspect of the present invention is predetermined in the indoor air quality prediction method according to the first aspect of the present invention when the predicted value exceeds a preset threshold value. It is characterized in that it notifies the possibility of occurrence of the above case by a method, notifies that the corresponding measures are taken, or automatically controls to take the corresponding measures.
本発明の第六態様に係る予測方法によれば、予測値と予め設定された閾値とを比較することによって、検出エリア内の実際の検出値が予め設定された閾値(即ち、検出エリアの人が不安全な空気環境にいる)を超える前に、予め通知するか(上記場合の発生可能性を通知するかまたは対応する手段を講じることを通知するか)、あるいは対応する手段を講じるように予め自動的に制御することができるため、安全な環境を確保することができる。なお、予め設定された閾値を超える可能性があるか否かを事前に通知することができるため、応急処置のための時間を確保する。 According to the prediction method according to the sixth aspect of the present invention, the actual detection value in the detection area is set to the preset threshold value (that is, the person in the detection area) by comparing the predicted value with the preset threshold value. Before exceeding (being in an unsafe air environment), be notified in advance (whether to notify the possibility of occurrence in the above case or to take corresponding measures), or to take corresponding measures. Since it can be controlled automatically in advance, a safe environment can be ensured. In addition, since it is possible to notify in advance whether or not there is a possibility of exceeding a preset threshold value, time for first aid is secured.
本発明の第七態様に係る室内空気品質予測方法は、本発明の第六態様に係る室内空気品質予測方法において、前記予め決定された方法は、ブザー、警報器、画像表示設備、指示ランプで通知を発すること、および/またはリモコン、携帯電話、PC側を介して信号を受信するとともに通知を発することを含む、ことを特徴とする。 The indoor air quality prediction method according to the seventh aspect of the present invention is the indoor air quality prediction method according to the sixth aspect of the present invention, and the predetermined method is a buzzer, an alarm, an image display facility, and an indicator lamp. It is characterized by including issuing a notification and / or receiving a signal and issuing a notification via a remote controller, a mobile phone, or a PC side.
本発明の第八態様に係る室内空気品質予測方法は、本発明の第六態様に係る室内空気品質予測方法において、前記対応する手段は、自らでドア、窓を開けるように促すこと、および/または前記検出エリア内の人数を制御するように促すこと、および/または前記検出エリアから離れるように促すこと、および/または空気処理装置を手動でオンにするかまたは空気処理装置を強制的に自動的にオンにするように促すことを含む、ことを特徴とする。 The indoor air quality prediction method according to the eighth aspect of the present invention is the indoor air quality prediction method according to the sixth aspect of the present invention. Or urge to control the number of people in the detection area and / or urge them to leave the detection area and / or manually turn on the air treatment device or force the air treatment device to be automatic. It is characterized by including encouraging people to turn it on.
本発明の第七態様と第八態様に係る予測方法によれば、1つ以上の予め決定された方法で通知することができることによって、関係者(検出エリア内の人や監視センターの人など)の注意をより効率的に喚起させることができる。なお、単に上記場合(検出エリアの人が不安全な空気環境にいる)の発生可能性を通知することに加え、関係者に対応する動作を講じるように具体的に指示することで、上記場合の実際の発生をより効果的に避けることができる。そのほか、空気処理装置を強制的に自動的にオンにすることで、上記場合の実際の発生を予防することもできる。 According to the seventh aspect and the eighth aspect of the present invention, the person concerned (person in the detection area, person in the monitoring center, etc.) can be notified by one or more predetermined methods. It is possible to call attention to more efficiently. In addition to simply notifying the possibility of occurrence of the above case (the person in the detection area is in an unsafe air environment), by specifically instructing the persons concerned to take the corresponding action, the above case Can be avoided more effectively. In addition, by forcibly and automatically turning on the air treatment device, it is possible to prevent the actual occurrence in the above case.
本発明の第九態様に係る室内空気品質予測方法は、本発明の第六態様に係る室内空気品質予測方法において、一定の期間後の予測値が予め設定された閾値を下回ることを予測した場合に、上記場合の発生可能性を関係者または関連機器に通知し、あるいは、空気処理装置の運転負荷を下げるかまたは前記空気処理装置の運転を停止するように関係者または関連機器に通知する、ことを特徴とする。 The indoor air quality prediction method according to the ninth aspect of the present invention predicts that the predicted value after a certain period will fall below a preset threshold value in the indoor air quality prediction method according to the sixth aspect of the present invention. Notifies the person concerned or related equipment of the possibility of the above case, or notifies the person concerned or related equipment to reduce the operating load of the air treatment device or stop the operation of the air treatment device. It is characterized by that.
本発明の第九態様に係る予測方法によれば、予測値が予め設定された閾値を下回ることを予測した場合に、タイムリーに空気処理装置の運転負荷を下げるかまたは該空気処理装置の運転を停止することによって、不要な電力の無駄遣いを避けることができる。
本発明の第十態様に係る室内空気品質予測方法は、本発明の第六態様に係る室内空気品質予測方法において、初回通知の開始からの所定の時間後、予測値が依然として前記予め設定された閾値を超えると、空気処理装置を強制的に起動するかまたは前記空気処理装置の性能を強制的に調整する、ことを特徴とする。
According to the prediction method according to the ninth aspect of the present invention, when the predicted value is predicted to be lower than the preset threshold value, the operating load of the air treatment device is reduced in a timely manner or the operation of the air treatment device is performed. By stopping, it is possible to avoid wasting unnecessary power.
In the indoor air quality prediction method according to the tenth aspect of the present invention, in the indoor air quality prediction method according to the sixth aspect of the present invention, the predicted value is still preset after a predetermined time from the start of the initial notification. When the threshold value is exceeded, the air treatment device is forcibly started or the performance of the air treatment device is forcibly adjusted.
本発明の第十態様に係る予測方法によれば、初回通知の開始からの所定の時間後、予測値が依然として前記予め設定された閾値を超えると、前記空気処理装置を強制的に起動するかまたは前記空気処理装置の性能を強制的に調整するため、通知される講じるべき対応する手段が機能しない場合には、強制的に自動的に介入することができ、これにより、上記場合の実際の発生をより確実に防止することができる。 According to the prediction method according to the tenth aspect of the present invention, if the predicted value still exceeds the preset threshold value after a predetermined time from the start of the initial notification, is the air treatment device forcibly started? Alternatively, in order to force the performance of the air treatment device, if the corresponding measures to be notified do not work, it can be forced to intervene automatically, thereby the actual in the above case. The occurrence can be prevented more reliably.
本発明の第十一態様に係る室内空気品質予測方法は、本発明の第一態様に係る室内空気品質予測方法において、選択した前記履歴時系列変化モデルでは、前記一つの所定期間の複数の時系列検出値に対応する複数の履歴時系列学習値の直後の一つの履歴時系列学習値を次の単位時間の予測値として用いて、前記次の単位時間の予測値と前記センサユニットで検出された次の単位時間の検出値との間の誤差を計算し、前記誤差が許容値以下となると、選択した前記履歴時系列変化モデルを用いて後続の予測を行い続ける、ことを特徴とする。 The indoor air quality prediction method according to the eleventh aspect of the present invention is the time series change model selected in the indoor air quality prediction method according to the first aspect of the present invention at a plurality of times in the one predetermined period. Using one historical time-series learning value immediately after a plurality of historical time-series learning values corresponding to the series detection values as the predicted value of the next unit time, the predicted value of the next unit time and the sensor unit detect it. The error is calculated from the detected value of the next unit time, and when the error becomes equal to or less than the allowable value, the subsequent prediction is continued using the selected historical time series change model.
本発明の第十二態様に係る室内空気品質予測方法は、本発明の第十態様に係る室内空気品質予測方法において、前記誤差が許容値よりも大きくなると、履歴時系列変化モデルを再選択する、ことを特徴とする。 The indoor air quality prediction method according to the twelfth aspect of the present invention reselects the historical time-series change model when the error becomes larger than the permissible value in the indoor air quality prediction method according to the tenth aspect of the present invention. , Characterized by that.
本発明の第十一態様と第十二態様に係る予測方法によれば、予測値と次の単位時間の検出値とを比較することで、モデルの予測精度を評価することができる。また、予測値と次の単位時間の検出値との間の誤差を計算することで、該誤差の大きさに基づいて、現在のモデルを続けて使用するか、精度がより高いモデルを再選択するかを決定することができる。これにより、予測精度を高めることができる。マッチングするモデルをリアルタイムに再選択する方式に比べると、計算量が簡素化される。 According to the prediction method according to the eleventh aspect and the twelfth aspect of the present invention, the prediction accuracy of the model can be evaluated by comparing the predicted value with the detected value of the next unit time. Also, by calculating the error between the predicted value and the detected value for the next unit time, the current model can be continued to be used or a more accurate model can be reselected based on the magnitude of the error. You can decide whether to do it. This makes it possible to improve the prediction accuracy. Compared to the method of reselecting the matching model in real time, the amount of calculation is simplified.
本発明の第十三態様に係る室内空気品質予測方法は、本発明の第一態様または第十一態様に係る室内空気品質予測方法において、選択した前記履歴時系列変化モデルでは、前記一つの所定期間の複数の時系列検出値に対応する複数の履歴時系列学習値の直後の複数の履歴時系列学習値を次の所定期間の予測値として用いて、次の所定期間に前記センサユニットで連続して検出された複数の時系列検出値の集合と前記次の所定期間の予測値の集合との間のデータセット誤差が許容誤差範囲内にあるかを判断し、前記データセット誤差が前記許容範囲内にあると、選択した前記履歴時系列変化モデルを用いて後続の予測を行い続ける、ことを特徴とする。 The indoor air quality prediction method according to the thirteenth aspect of the present invention is the one predetermined in the historical time series change model selected in the indoor air quality prediction method according to the first aspect or the eleventh aspect of the present invention. Using the multiple historical time-series learning values immediately after the multiple historical time-series learning values corresponding to the multiple time-series detection values of the period as the predicted values for the next predetermined period, the sensor unit is continuous in the next predetermined period. It is determined whether the data set error between the set of the plurality of time-series detected values detected in the process and the set of the predicted values for the next predetermined period is within the allowable error range, and the data set error is the allowable value. When it is within the range, it is characterized in that it continues to make subsequent predictions using the selected historical time series change model.
本発明の第十四態様に係る室内空気品質予測方法は、本発明の第十三態様に係る室内空気品質予測方法において、前記次の所定期間の複数の時系列検出値からなる集合に基づいて、または、前記一つの所定期間の複数の時系列検出値及び前記次の所定期間の複数の時系列検出値からなる集合に基づいて、選択した前記履歴時系列変化モデルを修正して修正後モデルを単独に生成するとともに、前記修正後モデルを用いて後続の予測を行う、ことを特徴とする。 The indoor air quality prediction method according to the fourteenth aspect of the present invention is based on a set consisting of a plurality of time-series detection values in the following predetermined period in the indoor air quality prediction method according to the thirteenth aspect of the present invention. Or, based on a set consisting of a plurality of time-series detection values of the one predetermined period and a plurality of time-series detection values of the next predetermined period, the selected historical time-series change model is modified and modified. Is independently generated, and subsequent predictions are made using the modified model.
本発明の第十五態様に係る室内空気品質予測方法は、本発明の第十三態様に係る室内空気品質予測方法において、前記データセット誤差が前記許容範囲外にあると、履歴時系列変化モデルを再選択する、ことを特徴とする。 The indoor air quality prediction method according to the fifteenth aspect of the present invention is a historical time series change model when the data set error is out of the permissible range in the indoor air quality prediction method according to the thirteenth aspect of the present invention. It is characterized by reselecting.
本発明の第十三態様から第十五態様に係る予測方法によれば、一つの検出値と一つの予測値とを比較する方式のみを用いることよりも、選択した履歴時系列変化モデルの予測精度は全体的な変化傾向の観点から評価でき、個別の特異点による不要なモデル交換の場合を避けることができる。 According to the prediction method according to the thirteenth to fifteenth aspects of the present invention, the prediction of the selected historical time series change model is performed rather than using only the method of comparing one detected value with one predicted value. Accuracy can be evaluated in terms of overall trend of change, avoiding unnecessary model exchanges due to individual singularities.
本発明の第十六態様に係る室内空気品質予測方法は、本発明の第一態様から第十二態様のいずれか一態様に係る室内空気品質予測方法において、前記検出対象は、二酸化炭素、二酸化炭素以外の他のガス成分、粒子状物質、温度、湿度のいずれか一つ以上である、ことを特徴とする。 The indoor air quality prediction method according to the sixteenth aspect of the present invention is the indoor air quality prediction method according to any one of the first to the twelfth aspects of the present invention, and the detection target is carbon dioxide and carbon dioxide. It is characterized by having one or more of gas components other than carbon, particulate matter, temperature, and humidity.
本発明の第十六態様に係る予測方法によれば、二酸化炭素の予測には適切に適用できるが、他の検出対象の予測にも適用できる。 According to the prediction method according to the sixteenth aspect of the present invention, it can be appropriately applied to the prediction of carbon dioxide, but it can also be applied to the prediction of other detection targets.
一方、本発明は、検出エリアに設けられた一つ以上のセンサユニットをそれぞれ有する少なくとも一つの検出端末と、一つの所定期間に前記センサユニットで連続して検出された検出対象の複数の時系列検出値を受信するデータ受信モジュールと、前記検出エリアの検出場所または他の検出場所を含む多数の履歴時系列実測結果を履歴時系列学習値として学習することによって、多くの履歴時系列変化モデルを生成するデータ分析モジュールと、多くの前記履歴時系列変化モデルから複数の前記時系列検出値からなる集合との間で予め設定された条件を満たす履歴時系列変化モデルを選択することによって、これからの一定の期間の予測値を推定する選択予測モジュールと、を含む、ことを特徴とする室内空気品質検出システムを提供する。 On the other hand, the present invention has at least one detection terminal having one or more sensor units provided in the detection area, and a plurality of time series of detection targets continuously detected by the sensor units in one predetermined period. By learning a data receiving module that receives the detected value and a large number of historical time-series actual measurement results including the detection location of the detection area or other detection locations as the historical time-series learning value, many historical time-series change models can be obtained. By selecting a historical time-series change model that satisfies a preset condition between the generated data analysis module and a set consisting of a plurality of the historical time-series detection values from many of the historical time-series change models. Provided is an indoor air quality detection system, including a selective prediction module that estimates predicted values over a period of time.
本発明に係る室内空気品質検出システムにより、検出端末の有するセンサユニットで検出された現在時刻の複数の時系列検出値(一つの単位時間内の複数の時刻の検出値)を利用して、前記検出エリアの室内空気中の検出対象のこれからの一定の期間の予測値を予測することができることによって、これからの一定の期間の室内の空気品質を事前に予断することができる。 The indoor air quality detection system according to the present invention utilizes a plurality of time-series detection values (detection values of a plurality of times within one unit time) of the current time detected by the sensor unit of the detection terminal. By being able to predict the predicted value of the detection target in the indoor air of the detection area for a certain period from now on, it is possible to predict in advance the air quality in the room for a certain period from now on.
本発明に係る上記室内空気品質検出システムにおいて、前記予測値が予め設定された閾値を超えるかまたは前記予め設定された閾値を下回る場合に、通知ユニットに通知指令を発するための通知モジュールを含む、ことを特徴とする。 The indoor air quality detection system according to the present invention includes a notification module for issuing a notification command to a notification unit when the predicted value exceeds a preset threshold value or falls below the preset threshold value. It is characterized by that.
本発明に係る上記室内空気品質検出システムによれば、通知ユニットで関係者(検出エリア内の人または監視センターの人等)の注意を喚起させることができる。なお、通知の内容は、上記場合(即ち、検出エリアの人が不安全な空気環境にいる)の発生可能性に加え、関係者に対応する動作を講じるように具体的に指示することでもよく、これにより、上記場合の実際の発生をより効果的に避けることができる。 According to the indoor air quality detection system according to the present invention, the notification unit can call the attention of the persons concerned (people in the detection area, people in the monitoring center, etc.). In addition to the possibility of occurrence in the above case (that is, the person in the detection area is in an unsafe air environment), the content of the notification may be specifically instructed to take an action corresponding to the persons concerned. , Thereby, the actual occurrence in the above case can be avoided more effectively.
本発明に係る上記室内空気品質検出システムにおいて、前記予測値が予め設定された閾値を超えると、空気処理装置を起動するかまたは空気処理装置の性能を調整し、あるいは、前記予測値が予め設定された閾値を超えてから一定の期間だけ経過すると、空気処理装置を強制的に起動するかまたは空気処理装置の性能を強制的に調整する制御ユニットを含む、ことを特徴とする。さらに、一定の期間後の予測値が予め設定された閾値を下回ることを予測した場合に、前記制御ユニットは、空気処理装置の運転負荷を下げるかまたは前記空気処理装置の運転を停止する。 In the indoor air quality detection system according to the present invention, when the predicted value exceeds a preset threshold value, the air treatment device is started, the performance of the air treatment device is adjusted, or the predicted value is preset. It is characterized by including a control unit forcibly starting the air treatment device or forcibly adjusting the performance of the air treatment device after a certain period of time has passed since the threshold value was exceeded. Further, when the predicted value after a certain period is predicted to be lower than the preset threshold value, the control unit reduces the operating load of the air treatment device or stops the operation of the air treatment device.
本発明の上記室内空気品質検出システムによれば、制御ユニットで空気処理装置を自動的にオンにすることによって、上記場合の実際の発生を予防することができる。また、上記処理した後で、一定の期間後の予測値が予め設定された閾値を下回ることを予測すると、空気処理装置の運転負荷を下げるかまたは空気処理装置の運転を停止することによって、不要な電力の無駄遣いを避けることができる。 According to the indoor air quality detection system of the present invention, the actual occurrence in the above case can be prevented by automatically turning on the air treatment device in the control unit. Further, if it is predicted that the predicted value after a certain period will be lower than the preset threshold value after the above processing, it is unnecessary by reducing the operating load of the air treatment device or stopping the operation of the air treatment device. You can avoid wasting power.
本発明に係る上記室内空気品質検出システムにおいて、前記制御ユニットは、スマートゲートウェイである、ことを特徴とする。 In the indoor air quality detection system according to the present invention, the control unit is a smart gateway.
本発明に係る上記室内空気品質検出システムにおいて、前記制御ユニットは、前記検出エリア以外に設けられた監視センターに取り付けられた、ことを特徴とする。 The indoor air quality detection system according to the present invention is characterized in that the control unit is attached to a monitoring center provided outside the detection area.
以下、図1から図4を参照し、本発明に係る室内空気品質検出システム100、100A、100B及び100Cを説明する。なお、これらの室内空気品質検出システムについての以下の記載において、同一または類似の構成要素について、同一または類似の符号を付けるとともに、説明を適宜省略する。さらに、本発明に係る室内空気品質検出システムは、これらの場合に限定されるものではなく、実際のシステムニーズに応じて適宜変更することができる。 Hereinafter, the indoor air quality detection systems 100, 100A, 100B and 100C according to the present invention will be described with reference to FIGS. 1 to 4. In the following description of these indoor air quality detection systems, the same or similar components are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate. Further, the indoor air quality detection system according to the present invention is not limited to these cases, and can be appropriately modified according to actual system needs.
(室内空気品質検出システム100)
まず、図1を参照し、本発明に係る室内空気品質検出システム100のシステム全体を説明する。
(Indoor air quality detection system 100)
First, with reference to FIG. 1, the entire system of the indoor air quality detection system 100 according to the present invention will be described.
図1に示すように、本発明に係る室内空気品質検出システム100は、データ受信モジュール120と、データ分析モジュール130と、選択予測モジュール140と、ルーティングデバイス150と、スマートゲートウェイ160と、通知モジュール170と、少なくとも一つの検出端末110とを有する。次に、上記室内空気品質検出システム100の各構成要素を詳しく説明する。
As shown in FIG. 1, the indoor air quality detection system 100 according to the present invention includes a
上記検出端末110は、例えば、オフィスエリアや会議室などの検出エリアSに設けられたモジュールであり、一つ以上の検出エリアS内の室内の空気品質を検出するための一つ以上のセンサユニット111を含む。より具体的には、それぞれの前記センサユニット111には、室内空気中の一つ以上の検出対象を検出する一つ以上のセンサ素子(不図示)が備えられた。これにより、各検出端末110は、該一つ以上のセンサユニット111(及びそれが含む一つ以上のセンサ素子)によって一つ以上の検出エリアSの室内空気の(一つ以上の)検出対象の検出値を取得する。
The
より具体的には、各センサユニット111(各センサ素子)により検出可能な検出対象は、例えば、二酸化炭素、揮発性有機物、窒素酸化物、硫黄酸化物、オゾン、一酸化炭素、ホルムアルデヒドなどのガス成分のうちの一つ以上でもよく、または、例えば、PM2.5、PM10などの粒子状物質含有量のうちの一つ以上でもよく、または、温度、湿度などの物理パラメータのうちの一つ以上でもよい。 More specifically, the detection target that can be detected by each sensor unit 111 (each sensor element) is, for example, a gas such as carbon dioxide, volatile organic substances, nitrogen oxides, sulfur oxides, ozone, carbon monoxide, and formaldehyde. It may be one or more of the components, or it may be one or more of the particulate matter contents such as PM2.5, PM10, or one or more of the physical parameters such as temperature and humidity. But it may be.
検出値の送信について、検出端末110は、複数の処理方式がある。例えば、検出端末110は、一つ以上の検出対象の一つの検出値(即ち、検出対象が一つの場合に、該検出対象がある時刻での検出値を示し、検出対象が複数の場合に、同一時刻での複数の検出対象のそれぞれの検出値を示す)を検出した場合に、該検出値(及び設備ID)を直接送信する(具体的には、後述するルーティングデバイス150によってインターネットを介して後述するデータ受信モジュール120に送信する)が、それに限らない。例えば、検出端末110は、一時キャッシュ機能を有してもよく、該検出端末110は、一つ以上の検出対象の特定個数の検出値(例えば、特定個数が10個である)を累積して検出した後で、該検出端末110は、上記特定個数の検出値(及び設備ID)を同時に送信する。
Regarding the transmission of the detected value, the
本例において、それぞれの検出端末110(センサユニット111)により検出された各検出対象の一つ以上の検出値は、ルーティングデバイス150を介して後述するデータ受信モジュール120に伝達される。ただし、検出値の伝送方式は、それに限らない。システムの実際のアーキテクチャ状況と性能により、ルーティングデバイス150を設けなくてもよく、つまり、例えば、後述するスマートゲートウェイ160が2G、NB-IoT等の通信モジュールを有する場合に、スマートゲートウェイ160はこれら検出値を直接に受信でき、次に、該スマートゲートウェイ160は、これら検出値を後述するデータ受信モジュール120に送信する。ただし、本例において、ルーティングデバイス150が設けられたことに基づいて、さらに説明する。
In this example, one or more detection values of each detection target detected by each detection terminal 110 (sensor unit 111) are transmitted to the
データ受信モジュール120は、インターネットを介して上記ルーティングデバイス150に接続され、上記ルーティングデバイス150からインターネットを経由して伝送してきた上記各検出対象の一つ以上の検出値を受信し、その後、受信した一つ以上の検出値を後述するデータ分析モジュール130と選択予測モジュール140にそれぞれ送信して、後続的なモデルマッチング、選択及び予測作業を行う。この室内空気品質検出システム100において、データ受信モジュール120は、例えば、一つの独立したクラウドモジュールである。また、この室内空気品質検出システム100において、データ受信モジュール120は、後述する選択予測モジュール140により推定される一つ以上の検出対象のこれからのある特定時刻またはある特定期間の複数の予測値(予測データ)を受信した後で、該特定時刻の予測値または該特定期間の複数の予測値のいずれかの予測値が予め設定された閾値を超えるかまたは予め設定された閾値よりも下回るかを判断するとともに、予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る場合に、該場合を後述する通知モジュール170に送信する。予測値、予め設定された閾値及び通知モジュール170について、後述で詳しく説明する。データ受信モジュール120は、履歴データ記憶機能をさらに有してもよく、入力された全ての検出値を記憶することによって、履歴時系列変化モデルの再選択、新たなモデルの生成などに用いる。なお、ここの「履歴データ」は、検出エリアSの検出場所または他の検出場所を含む履歴時系列実測結果を含むだけではなく、一つの所定期間にセンサユニット111で連続して検出された各検出対象的一つ以上の時系列検出値を含んでもよい。これにより、予測機能を実現するモジュールを一つのクラウドに統合することができ、通信方式が簡単で、通信が速く、かつ、データの伝送によるデータのパケットロスや欠損などの問題を低減することができる。履歴時系列変化モデルの再選択、新たなモデルの生成などについて、後述で詳しく説明する。
The
データ分析モジュール130は、インターネットを介して上記データ受信モジュール120に接続されることで、上記データ受信モジュール120からの一つ以上の検出値を受信する。この室内空気品質検出システム100において、該データ分析モジュール130も、例えば、一つの独立したクラウドモジュールである。さらに、データ分析モジュール130は、機械学習機能を備える分析モジュールであり、過去に検出エリアSおよび/または検出エリアS以外の他の検出エリアで検出された各検出対象の多数の履歴時系列実測値の集合を学習サンプルデータセットまたは学習サンプルケース(即ち、ラベル付き学習サンプル)データセットとするとともに、実際の場合に応じて、適切な学習アルゴリズムを用いて上記データセットをトレーニングすることにより、多くの学習済みモデルを生成(構築)する。上記学習アルゴリズムには、ニューラルネットワークアルゴリズム(畳み込みニューラルネットワークアルゴリズム、循環型ニューラルネットワークアルゴリズムなどを含む)、回帰学習アルゴリズム(線形回帰分析アルゴリズム、対数確率回帰アルゴリズム、多分類学習アルゴリズムなどを含む)、サポートベクターマシンアルゴリズム、決定木アルゴリズム、ベイズ分類器、クラスター分析アルゴリズム等が含まれる。各アルゴリズムの特徴、ラベルの有無及び実際のニーズなどに基づいて、上記学習アルゴリズムは、監視学習、半監視学習、および監視なし学習に使用できる。また、本発明において、データが時系列的であることを考慮して、学習済みモデルは、履歴時系列変化モデルとも呼ばれ、フィッティング曲線、ニューラルネットワーク構造(構造自体、各ノード間の重み係数および活性化関数を含む)などを含むことについて、特に説明しなければならない。履歴時系列変化モデルの作成について、トレーニングサンプルケースを例にすると、設備IDラベル付きの履歴時系列実測値がデータ分析モジュール130に入力されると、該データ分析モジュール130は、まず、設備IDに基づいて履歴時系列実測値を分類学習する。具体的には、例えば、検出エリアS、検出エリアP、検出エリアQなどの複数の検出エリアがある場合に、設備IDを認識することで、データ分析モジュール130は、各履歴時系列実測値を検出エリアSの履歴時系列実測値、検出エリアPの履歴時系列実測値、検出エリアQの履歴時系列実測値、および他の検出エリアの履歴時系列検出値に分類する。その後、分類学習が完了した後で、検出エリアごとの履歴時系列実測値(ラベル付き)について、データ分析モジュール130は、該検出エリアの履歴時系列実測値(ラベル付き)の集合をトレーニングサンプルケースデータセット、例えば、{DT0、DT0+1、DT0+2、……、DTE、……、ys}として学習する(ここに、T0は、ある検出期間の開始時刻を示し、TEは、該検出期間の終了時刻を示し、ysは、検出エリアS内の設備IDを示す)。なお、上記データセット{DT0、DT0+1、DT0+2、……、DTE、……、ys}は、検出エリアSで検出された全ての履歴時系列実測値の集合でもよく、検出エリアSで検出された過去ある一つの検出期間内の履歴時系列実測値の集合でもよく、さらに検出エリアSで検出された過去複数の検出期間内の履歴時系列実測値の集合でもよい。集合{DT0、DT0+1、DT0+2、……、DTE、……、ys}は、検出エリアSで検出された過去ある一つの検出期間内の履歴時系列実測値の集合を示すと、または、検出エリアSで検出された過去複数の検出期間内の履歴時系列実測値の集合を示すと、複数の上記集合が存在し、それぞれの集合に対して、同一の学習アルゴリズムと帰納バイアス(inductive bias)に基づいて、一つの対応する履歴時系列変化モデルを生成することができる。一方、集合{DT0、DT0+1、DT0+2、……、DTE、……、ys}は、検出エリアSで検出された全ての履歴時系列実測値の集合を示すと、学習過程で、たとえ同一の学習アルゴリズムを用いても、異なる帰納バイアスに基づいて、複数の異なる履歴時系列変化モデル(学習済みモデル)を発生することになる。例えば、学習アルゴリズムが回帰学習アルゴリズムである場合に、「オッカムの剃刀」という原則を用いれば、最も滑らかな履歴時系列変化モデルが生成されるが、他の原則を用いれば、他の履歴時系列変化モデルが生成されるとともに、これらの履歴時系列変化モデルの滑らかさは、「オッカムの剃刀」の原則に基づいて生成された履歴時系列変化モデルには及ばないが、汎化能力がより優れている可能性がある。より具体的には、検出エリアSが会議室の場合に、異なる帰納バイアスを設定することができ、例えば、「検出対象の全体的な変化傾向が安定している(例えば、会議室内の人数は常に一定またはほとんど変化しないため、CO2の全体的な変化傾向は安定しており、急変はない)」というバイアス、「検出対象が突然急激に変化する(例えば、もともと会議室内で会議をしていた人数が5人で、会議中に、突然10人が入ってきた)」というバイアスなどを設定することができる。
The
履歴時系列変化モデルの一例として、図16は、同一検出エリアでの異なる人数の場合におけるCO2濃度フィッティングの時系列変化グラフを示す。ここに、それぞれの実測曲線を一つの履歴時系列変化モデルと見なすことができる。より具体的には、同一の検出エリア、例えば、会議室で三回会議を行ったが、会議ごとに人数が異なる。また、会議ごとに、検出端末110のセンサユニット111は、該会議室内の二酸化炭素のppmの時系列変化値を検出することによって、時間に伴って変化する二酸化炭素のppmの複数の実測値を取得した。二酸化炭素のppmの上記複数の時系列実測値に基づいて、回帰分析を用いて一つの履歴時系列変化モデルとして一本のフィッティング曲線を生成する。
As an example of the historical time-series change model, FIG. 16 shows a time-series change graph of CO 2 concentration fitting in the case of different numbers of people in the same detection area. Here, each measured curve can be regarded as one historical time-series change model. More specifically, three meetings were held in the same detection area, for example, a meeting room, but the number of people varies from meeting to meeting. Further, for each conference, the sensor unit 111 of the
選択予測モジュール140は、データ受信モジュール120からの各検出対象の一つ以上の検出値を受信するとともに、該選択予測モジュール140は、上記各検出対象の一つ以上の検出値の集合に基づいて、データ分析モジュール130により生成された多くの履歴時系列変化モデルから、上記集合との間で予め設定された条件を満たす履歴時系列変化モデルを選択し、選択した履歴時系列変化モデルに基づいて各検出対象のこれからの一定の期間またはこれからのある特定時刻の予測値を推定する。また、各検出対象のこれからの一定の期間またはこれからのある特定時刻の予測値が推定された後で、該選択予測モジュール140は、該予測値をデータ受信モジュール120に送信する。
The
通知モジュール170は、上記予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る場合を通知するモジュールであり、この室内空気品質検出システム100において、該通知モジュール170も、一つの独立したクラウドモジュールである。具体的には、データ受信モジュール120は、選択予測モジュール140からの一つ以上の予測値を受信した後で、これらの予測値と予め設定された閾値とを比較し、これらの予測値の何れかの予測値(予測値が一つの場合に、該予測値である)が予め設定された閾値を超えるかまたは予め設定された閾値を下回ると、該データ受信モジュール120は、インターネットを介して「予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る」という情報を通知モジュール170に送信する。該通知モジュール170は、上記情報を受信すると、対応する設備(例えば、後述するスマートゲートウェイ160及び好適例としての後述する監視センター180または携帯電話APP190)に「これからの一定の時間またはある特定時刻の予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る」という通知を送信するとともに、対応する手段を講じる(または、自動的な制御を行うように対応する機器に指示する)ように関係者を促す、または催促する。
The
スマートゲートウェイ160は、インターネットを介して通知モジュール170に接続されることによって、通知モジュール170からの通知を受信する。通知モジュール170からの「予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る」という通知を受信すると、該スマートゲートウェイ160は、後述する空気処理装置200の制御を自動的に行う。具体的には、上記通知を受信すると、スマートゲートウェイ160は、空気処理装置200を自動的に起動するかまたは該空気処理装置200の性能を自動的に調整する(例えば、検出対象がCO2のppmの場合に、ppmの予測値が予め設定された閾値よりも大きくなると、スマートゲートウェイ160は、空気処理装置200を自動的に起動するかまたは該空気処理装置200の風量を大きくし、あるいは、ppmの予測値が危険濃度値から予め設定された閾値(安全濃度値)まで下がると、空気処理装置200の運転を停止するかまたは空気処理装置200の運転負荷を下げる)。
The
さらに、好適例として、スマートゲートウェイ160は、通知ユニット(不図示)をさらに有する。具体的には、通知ユニットを有する場合に、スマートゲートウェイ160は、自動的な制御を行うと同時に、その通知ユニットを介して該検出エリアS内にいる人に通知信号を発する。通知ユニットとして、ブザー、警報器、画像表示設備(例如、LEDパネル、テレビモニターなど)、リモコン、指示ランプ等の該検出エリアS内に設けられた通知部材でもよい。
Further, as a preferred example, the
さらに、好適例として、該室内空気品質検出システム100は、検出エリアS以外に設けられた監視センター180および/またはスマート携帯電話にインストールされた携帯電話APP190をさらに含んでもよい。この場合に、予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回ると判定されると、通知モジュール170は、該情報をスマートゲートウェイ160、監視センター180及び携帯電話APP190に択一的に送信することができる。スマートゲートウェイ160、監視センター180及び携帯電話APP190のいずれか一方が上記情報を受信した後で、空気処理装置200を起動/停止するかまたは該空気処理装置200の性能を調整するように自動的な制御を行う。
Further, as a preferred example, the indoor air quality detection system 100 may further include a
一方、該システム100が監視センター180および/または携帯電話APP190を含む場合に、「予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る」という情報が監視センター180に送信されると、該監視センター180は、自動的に制御を行うと同時に、備えられる通知ユニットを介して関係スタップに通知を発する。該監視センター180の通知ユニットとして、ブザー、警報器、画像表示設備(例えば、LEDパネル、テレビモニターなど)、リモコン、指示ランプ、PCなどの通知部材でもよい。上記情報が携帯電話APP190に送信されると、該携帯電話APP190は、自動的な制御の通知を行い、該携帯電話に備えられる通知モジュールを介して携帯電話の所持者に通知を発する。
On the other hand, when the system 100 includes the
上記通知ユニットの通知方式として、例えば、ブザーのブザー音、警報器の警報、リモコンの液晶画面の点滅、ライトの点滅、振動などでもよく、または、携帯電話のAPP通知、携帯電話のメッセージ、携帯電話のウェイーチャット通知、携帯電話の振動などでもよく、またはPC側のメール、PC側にインストールされた監視ソフトウェア通知などでもよい。 As the notification method of the above notification unit, for example, a buzzer sound, an alarm of an alarm, blinking of the liquid crystal screen of the remote control, blinking of a light, vibration, etc. may be used, or an APP notification of a mobile phone, a message of a mobile phone, or a mobile phone. It may be a way chat notification of a telephone, a vibration of a mobile phone, or an email on the PC side, a notification of monitoring software installed on the PC side, or the like.
なお、上記説明において、スマートゲートウェイ160、監視センター180または携帯電話APP190は、「予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る」という情報を受信した後で、自動的な制御を行うとともに、関係者に通知を発する。ただし、その代わりに、スマートゲートウェイ160、監視センター180または携帯電話APP190が上記情報を受信した後で、自動的な制御を行わずに、関係者に通知を発するとともに、手動で対応する手段を講じるように関係者に勧めてもよく、例えば、関係者に自らでドア、窓を開けることを勧めるか、または検出エリアS内の人数を制御することを勧めるか、または手動で空気処理装置200をオンにすることを勧めるか、または関係者に該検出エリアSから離れることを勧める。
In the above description, the
さらに、該室内空気品質検出システム100において、データ受信モジュール120、データ分析モジュール130、選択予測モジュール140及び通知モジュール170は、共通で一つのクラウドに配置されたことを説明しなければならない。ただし、上記モジュールの配置形態は、それに限らず、複数の異なるクラウドにそれぞれ属してもよく、これについて、後述で詳しく説明する。
Furthermore, it must be explained that in the indoor air quality detection system 100, the
なお、本発明に言われる「空気処理装置200」は、空調装置、換気設備、除湿機、加湿器、空気清浄機などを含む。
The "
(室内空気品質検出システム100A)
次に、図2を参照し、本発明に係る室内空気品質検出システム100Aを説明する。
(Indoor air quality detection system 100A)
Next, the indoor air quality detection system 100A according to the present invention will be described with reference to FIG.
上記室内空気品質検出システム100に比べられ、該室内空気品質検出システム100Aの相違点は、予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回るかという判断機能は通知モジュール170により実行されることにある。
Compared to the indoor air quality detection system 100, the difference of the indoor air quality detection system 100A is that the
具体的には、該室内空気品質検出システム100Aにおいて、通知モジュール170は、インターネットを介して選択予測モジュール140に直接接続される。この場合に、選択予測モジュール140は、検出対象のこれからの一定の期間またはこれからのある特定時刻の予測値を推定した後で、予測値を通知モジュール170に直接送信する。通知モジュール170は、上記予測値を受信した後で、これら予測値を予め設定された閾値と比較し、これら予測値の何れか(予測値が一つの場合に、該予測値である)が予め設定された閾値を超えるかまたは予め設定された閾値を下回ると、該通知モジュール170は、「予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る」という情報をスマートゲートウェイ160または監視センター180または携帯電話APP190に送信する。このようにして、上記室内空気品質検出システム100に比べられ、データ伝送のステップを簡素化することができ、即ち、予測値を先にデータ受信モジュール120に伝送してから、データ受信モジュール120を介して上記情報を通知モジュール170に送信する必要がない。
Specifically, in the indoor air quality detection system 100A, the
(室内空気品質検出システム100B)
次に、図3を参照し、本発明に係る室内空気品質検出システム100Bを説明する。
(Indoor air quality detection system 100B)
Next, the indoor air quality detection system 100B according to the present invention will be described with reference to FIG.
上記室内空気品質検出システム100と100Aに比べられ、該室内空気品質検出システム100Bの相違点は、データ受信モジュール120、データ分析モジュール130、選択予測モジュール140と通知モジュール170とは、二つの独立したクラウドにそれぞれ配置される点と、検出端末110により検出された複数の検出値は、まずスマートゲートウェイ160に送信されてから、スマートゲートウェイ160を介してシステムID及び設備IDを含む上記複数の検出値をデータ受信モジュール120に送信する点と、監視センター180が「予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る」という情報を受信すると、監視センター180のスタッフは、スマートビルシステムなどを介して空気処理装置200をリモート制御するか、または、携帯電話APPが上記情報を受信すると、該携帯電話の所持者は、携帯電話APPを操作することで、手動で空気処理装置200を制御することができる点と、の3点にある。
Compared with the indoor air quality detection system 100 and 100A, the difference between the indoor air quality detection system 100B is that the
具体的には、該室内空気品質検出システム100Bは、予測クラウドAと監視クラウドBとを有し、該予測クラウドAにデータ受信モジュール120、データ分析モジュール130及び選択予測モジュール140が配置され、該監視クラウドBに通知モジュール170が配置された。上記のような配置により、各クラウドに単一の機能を持たせ、クラウドの構造を簡素化し、システム全体のアーキテクチャを明瞭かつ明確にすることができる。
Specifically, the indoor air quality detection system 100B has a prediction cloud A and a monitoring cloud B, and a
さらに、該室内空気品質検出システム100Bにおいて、検出端末110は、一時キャッシュ機能を有しなくてもよく、一つ以上の検出対象の一つの検出値を検出した後で、直ぐに該検出値(及び、設備ID)をスマートゲートウェイ160に送信する。特定個数の検出値がスマートゲートウェイ160に送信されると、該スマートゲートウェイ160は、これら検出値にシステムIDを付与するとともに、設備IDとシステムIDが付与された検出値を一緒に予測クラウドAに配置されたデータ受信モジュール120に送信する。
Further, in the indoor air quality detection system 100B, the
上記の3番目の相違点について、具体的には、監視センター180が 「予測値が予め設定された閾値を超えるかまたは予め設定された閾値を下回る」という情報を受信すると、該監視センター180は、自動的に制御せずにスタップに通知を発するだけであり、スタップは、該通知に気付いた後で、スマートビルシステムなどのインテリジェントシステムで該検出エリアS内に位置する空気処理装置200を手動でリモート制御することができる。一方、携帯電話APP190が上記情報を受信すると、該携帯電話APP190がインストールされたスマート携帯電話は、通知モジュールを介して該携帯電話の所持者に通知を発するだけであり、該携帯電話の所持者が該通知に気付いた後で、該携帯電話の所持者は、携帯電話のブルートゥース(登録商標)、NFC、Wi-Fiなどの通信機能を利用して空気処理装置200を手動で制御する。勿論、監視センター180または携帯電話APP190が上記情報を受信すると、通知を発するとともに、直接自動的に制御することもできるか、または、通知が発されてから所定時間だけ経過した後で空気処理装置200が手動で制御されない場合に、再び強制的に自動的に制御することもできる(例えば、スマートゲートウェイ160を介して対応する運転の制御指令を空気処理装置200に発する)。
Regarding the third difference above, specifically, when the
(室内空気品質検出システム100C)
最後に、図4を参照し、室内空気品質検出システム100Cを説明する。
(Indoor air quality detection system 100C)
Finally, the indoor air quality detection system 100C will be described with reference to FIG.
上記室内空気品質検出システム100Bに比べられ、該室内空気品質検出システム100Cの相違点は、監視クラウドBがデータ記憶モジュール300をさらに有することにある。
Compared to the indoor air quality detection system 100B, the difference of the indoor air quality detection system 100C is that the monitoring cloud B further has a
図4に示すように、スマートゲートウェイ160は、ルーティングデバイス150によってインターネットを介して特定個数の検出値を予測クラウドAに配置されたデータ受信モジュール120及び監視クラウドBに配置されたデータ記憶モジュール300に同時に送信する。ここに、該データ記憶モジュール300は、履歴時系列変化モデルの再選択、新たなモデルの生成などのために、入力された全ての検出値を記憶する。例えば、データ受信モジュール120は、データ記憶モジュール300内に記憶された履歴データを呼び出す必要があるときに、要求をスマートゲートウェイ160に送信し、スマートゲートウェイ160を経由して対応する履歴データを取得する。このときに、スマートゲートウェイ160は、全てのクラウドを接続する役割を果たし、複数のクラウドがある場合に、通信フレームワークが簡単で、クラウドの構造を簡素化することができる。履歴時系列変化モデルの再選択、新たなモデルの生成などについて、後述で詳しく説明する。
As shown in FIG. 4, the
さらに、本発明の上記システム100、100A、100B及び100Cにおいて、何れもルーティングデバイス150が設けられているが、システムの実際のアーキテクチャ状況に応じて、ルーティングデバイス150を設けずに、2GまたはNB-IoTなどの通信モジュールを有するスマートゲートウェイ160を介してデータの受信と伝送を実行してもよいことを再び強調しなければならない。
Further, in the above systems 100, 100A, 100B and 100C of the present invention, the
(室内空気品質予測方法)
以下、本発明に係る室内空気品質検出システム100を例に、図1に基づいて、図5から図16を参照し、本発明に係る室内空気品質予測方法を説明する。
(Indoor air quality prediction method)
Hereinafter, the indoor air quality prediction method according to the present invention will be described with reference to FIGS. 5 to 16 based on FIG. 1 by taking the indoor air quality detection system 100 according to the present invention as an example.
<第一実施形態>
次に、図5を参照し、第一実施形態に係る室内空気品質予測方法の具体的なステップを説明する。
<First Embodiment>
Next, with reference to FIG. 5, a specific step of the indoor air quality prediction method according to the first embodiment will be described.
図5に示すように、まず、室内空気品質検出システム100を起動する。 As shown in FIG. 5, first, the indoor air quality detection system 100 is activated.
次に、ステップS110において、検出端末110は、検出エリアS内の一つ以上の検出対象を連続して検出する。具体的には、検出端末110は、一つ以上のセンサユニット111で単位時間当たり(例えば、1分間当たり)に各検出対象の検出値dを取得し、ここに、検出対象が複数の(例えば、検出対象が三つであり、CO2の濃度、温度、湿度を含む)場合に、該検出値dは、三つの成分を持つベクトルであり、検出対象が一つだけの場合に、該検出値dは、スカラーである。
Next, in step S110, the
ステップS120において、データ受信モジュール120は、検出端末110から送信してきた検出値を受信するとともに、所定期間を設定する。具体的には、該所定期間の開始時刻をT0(例えば、起動後の1分目)とし、終了時刻をTE=T0+a-1とし、ここに、aは、a個の単位時間(例えば、a分間)を示す。これにより、該データ受信モジュール120で各検出対象のa個の時系列検出値dT0、dT0+1、dT0+2、……、dTEからなるリアルタイム時系列サンプルデータセット{dT0、dT0+1、dT0+2、……、dTE}が形成される。さらに、上記で説明したように、検出端末110は、上記時系列検出値を送信すると同時に、さらに設備IDを送信するため、上記リアルタイム時系列サンプルデータセット{dT0、dT0+1、dT0+2、……、dTE}は、リアルタイム時系列サンプルケースデータセット{dT0、dT0+1、dT0+2、……、dTE、ys}に変換されることができ、ここに、ysは、検出エリアSにおける設備IDを示す。
In step S120, the
ステップS130において、データ受信モジュール120は、それぞれデータ分析モジュール130及び選択予測モジュール140に上記リアルタイム時系列サンプルデータセット{dT0、dT0+1、dT0+2、……、dTE}またはリアルタイム時系列サンプルケースデータセット{dT0、dT0+1、dT0+2、……、dTE、ys}を送信する。
In step S130, the
次に、ステップS140において、選択予測モジュール140は、モデル選択指令をデータ分析モジュール130に送信し、多くの履歴時系列変化モデルから上記リアルタイム時系列サンプルケースデータセットとの間で予め設定された条件を満たす履歴時系列変化モデルを選択するように要求する。具体的には、サンプルケースの場合を例に、リアルタイム時系列サンプルケースデータセットがデータ分析モジュール130に入力された後で、まず、ラベルに基づいて、該データ分析モジュール130は、上記リアルタイム時系列サンプルケースデータセットにおける検出値を分類し、即ち、該リアルタイム時系列サンプルケースデータセットにおける検出値がどの検出エリアで検出された値に属するかを判断する。次に、上記リアルタイム時系列サンプルケースデータセットにおける検出値が検出エリアSに属すると判定されると、該リアルタイム時系列サンプルケースデータセットを該検出エリアSにおける全ての履歴時系列変化モデル(これら履歴時系列変化モデルを生成する履歴時系列実測値の集合でもよい)と比較し、該データセットとの間で予め設定された条件を満たす履歴時系列変化モデルを選択する。予め設定された条件について、例えば、集合{DT0、DT0+1、DT0+2、……、DTE、……、ys}は、検出エリアSで検出された過去ある一回の検出期間内の履歴時系列実測値の集合を示す、または、検出エリアSで検出された過去複数回の検出期間内の履歴時系列実測値の集合を示す場合に、即ち、履歴時系列実測値からなる集合が複数存在する場合に、データセット{dT0、dT0+1、dT0+2、……、dTE}をそれぞれの集合{DT0、DT0+1、DT0+2、……、DTE、……}における何れかa個の連続した履歴時系列実測値からなるサブ集合{DT0’、DT0+1’、DT0+2’、……、DTE’}と比較し、もし、
が所定値よりも小さい履歴時系列変化モデルを選択する。予め設定された条件を満たす履歴時系列変化モデルが存在しないと、データ分析モジュール130に予め記憶された初期履歴時系列変化モデルを選択するとともに、ステップS150に進む。
Next, in step S140, the
Selects a historical time series change model in which is less than a predetermined value. If there is no historical time-series change model that satisfies the preset conditions, the initial historical time-series change model stored in advance in the
ステップS150において、選択予測モジュール140は、新たな時系列検出値のリアルタイム時系列サンプルまたはサンプルケースデータセットを再選択するように要求する指令をデータ受信モジュール120に送信し、該指令に基づいて、データ受信モジュール120は、時系列検出値のデータセットを再選択する。具体的には、本実施形態において、時系列検出値の集合の長さが変わらないまま、前のN個の時系列検出値を削除するとともに、後続的に検出されたN個の新たな時系列検出値を増加することによって、新たな時系列検出値の集合{dT0、dT0+1、dT0+2、……、dTE}を形成する。その後、予め設定された条件を満たす履歴時系列変化モデルを見つけるまで、ステップS130からステップS150の処理を繰り返す。予め設定された条件を満たす履歴時系列変化モデルが存在する場合に、ステップS160に進む。
In step S150, the
ステップS160において、予め設定された条件を満たす履歴時系列変化モデルが複数あるかを判断する。予め設定された条件を満たす履歴時系列変化モデルが一つだけ存在すると、該履歴時系列変化モデルを用い(ステップS161)、予め設定された条件を満たす履歴時系列変化モデルが複数存在すると、マッチング程度が最高となる履歴時系列変化モデルを用いる(ステップS162)。マッチング程度が最高となるとは、例えば、
が最小であり、
が最小であることを指す。予め設定された条件を満たす、および/またはマッチング程度が最高となる履歴時系列変化モデルを選択したと、ステップS170に進む。
In step S160, it is determined whether or not there are a plurality of historical time-series change models that satisfy the preset conditions. If there is only one historical time-series change model that satisfies the preset conditions, the historical time-series change model is used (step S161), and if there are a plurality of historical time-series change models that satisfy the preset conditions, matching is performed. A historical time-series change model with the highest degree is used (step S162). For example, the highest degree of matching is
Is the smallest
Indicates that is the minimum. When the historical time-series change model that satisfies the preset conditions and / or has the highest degree of matching is selected, the process proceeds to step S170.
ステップS170において、選択予測モジュール140は、最新な時系列検出値の集合及び対応する履歴時系列変化モデルに基づいてこれからの一定の期間の予測値DTE+1、DTE+2、DTE+3、……、DTE+tを推定し、ここに、tは、1よりも大きい自然数である。次に、ステップS180に進む。
In step S170, the
ステップS180において所定期間の開始時刻を更新してから、ステップS120に戻って次回の予測を行う。具体的には、本実施形態において、元の開始時刻を元の開始時刻の次の単位時間に更新して新たな開始時刻とする。例えば、1分目~10分目の10個の時系列検出値を利用して11分目~20分目の予測値を推定した場合に、所定期間の開始時刻を2分目に更新することによって、2分目~11分目の時系列検出値を利用して12分目~21分目の予測値を推定する。 After updating the start time of the predetermined period in step S180, the process returns to step S120 to make the next prediction. Specifically, in the present embodiment, the original start time is updated to the unit time next to the original start time to obtain a new start time. For example, when the predicted value of the 11th to 20th minutes is estimated using the 10 time-series detection values of the 1st to 10th minutes, the start time of the predetermined period is updated to the 2nd minute. The predicted value for the 12th to 21st minutes is estimated using the time-series detection value for the 2nd to 11th minutes.
(第一実施形態の効果)
本発明の第一実施形態に係る予測方法によれば、前期に大量の履歴データを収集し、適切な学習アルゴリズムを選択し、及びできるだけ多くの帰納バイアスを設定し、これらの履歴データをトレーニングサンプルまたはトレーニングサンプルケースとして学習することによって、多くの履歴時系列変化モデルを生成するとともに、特定の検出エリアで検出された複数の検出値に基づいて上記複数の検出値にマッチングする履歴時系列変化モデルを選択し、選択した履歴時系列変化モデルに基づいて該特定の検出エリアのこれからの一定の期間の予測値を推定する。これにより、検出エリア内の人数が検出されない、または分からない場合に、室内空気中の検出対象のごく一部の検出値を取得するだけで、該特定の検出エリア内の検出対象のこれからの一定の期間の変化傾向(変化値)を予測することができる。さらに、高価な画像センサや複雑な認識方式を用いる必要がないため、室内空気品質検出システム100の設備コストを下げることができる。
(Effect of the first embodiment)
According to the prediction method according to the first embodiment of the present invention, a large amount of historical data is collected in the previous period, an appropriate learning algorithm is selected, and as much induction bias is set as possible, and these historical data are used as a training sample. Alternatively, by training as a training sample case, many historical time-series change models are generated, and a historical time-series change model that matches the above-mentioned multiple detection values based on the multiple detection values detected in a specific detection area. Is selected, and the predicted value for the future fixed period of the specific detection area is estimated based on the selected historical time series change model. As a result, when the number of people in the detection area is not detected or is unknown, it is only necessary to acquire the detection value of a small part of the detection target in the indoor air, and the detection target in the specific detection area will be constant in the future. It is possible to predict the change tendency (change value) during the period of. Further, since it is not necessary to use an expensive image sensor or a complicated recognition method, the equipment cost of the indoor air quality detection system 100 can be reduced.
(第一実施形態の変形例1)
次に、図6を参照し、室内空気品質予測方法の第一実施形態の変形例1を説明する。
(
Next, a
上記第一実施形態のステップS180において、開始時刻を更新する方法として、元の開始時刻を元の開始時刻の次の単位時間に更新して新たな開始時刻とする。ただし、開始時刻を更新する方法は、それに限らず、例えば、ステップS180’に示すように、元の開始時刻を元の終了時刻TEの次の単位時間に更新して新たな開始時刻とする。例えば、1分目~10分目の10個の時系列検出値を利用して11分目~20分目の予測値を推定した場合に、所定期間の開始時刻を11分目に更新することによって、11分目~20分目の時系列検出値を利用して21分目~30分目の予測値を推定する。 In step S180 of the first embodiment, as a method of updating the start time, the original start time is updated to the unit time next to the original start time to obtain a new start time. However, the method of updating the start time is not limited to this, and for example, as shown in step S180', the original start time is updated to the next unit time of the original end time TE to obtain a new start time. For example, when the predicted value of the 11th to 20th minutes is estimated using the 10 time-series detection values of the 1st to 10th minutes, the start time of the predetermined period is updated to the 11th minute. The predicted value of the 21st to 30th minutes is estimated by using the time series detection value of the 11th to 20th minutes.
(第一実施形態の変形例の効果)
該変形例により、第一実施形態に比べられ、これからの一定の期間ごとの検出対象の予測値を推定すると同時に、システムの計算量を軽減することができる。
(Effect of the modified example of the first embodiment)
According to the modification, as compared with the first embodiment, it is possible to estimate the predicted value of the detection target for each fixed period from now on, and at the same time, reduce the amount of calculation of the system.
(第一実施形態の変形例2)
次に、図7を参照し、室内空気品質予測方法の第一実施形態の変形例2を説明する。
(
Next, a
上記第一実施形態のステップS150において、時系列検出値のデータセットを再選択する方法として、時系列検出値の集合の長さが変わらないまま、前のN個の時系列検出値を削除するとともに、後続的に検出されたN個の新たな時系列検出値を増加することによって、新たな時系列検出値の集合{dT0、dT0+1、dT0+2、……、dTE}を形成する。ただし、上記データセットを再選択する方法は、それに限らず、例えば、ステップS150’に示すように、元の時系列検出値の集合{dT0、dT0+1、dT0+2、……、dTE}において、N個の新たな時系列検出値dT0+1、dT0+2、……、dT0+Nを増加することによって、新たな集合{dT0、dT0+1、dT0+2、……、dTE、dT0+1、dT0+2、……、dT0+N}を形成する。具体的には、図7に示すように、元の所定期間の開始時刻T0が変わらないまま、終了時刻を対応してN個の単位時間を遅らせるだけで、このようにして、上記新たな集合を形成することができる。ただし、図7に示すように、本変形例は、ステップS190をさらに含む。具体的には、ステップS180において、開始時刻を更新した後で、ステップS190に進み、該ステップS190において、予測開始ごとの時系列実測値集合における実測値の個数が同じとなるように、aをリセットする。 In step S150 of the first embodiment, as a method of reselecting a data set of time-series detection values, the previous N time-series detection values are deleted while the length of the set of time-series detection values does not change. At the same time, by increasing the N new time-series detection values detected subsequently, a set of new time-series detection values {d T0 , d T0 + 1 , d T0 + 2 , ..., D TE } is formed. .. However, the method of reselecting the above data set is not limited to this, and for example, as shown in step S150', a set of original time series detection values {d T0 , d T0 + 1 , d T0 + 2 , ..., d TE }. In, by increasing N new time-series detection values d T0 + 1 , d T0 + 2 , ..., d T0 + N , a new set {d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , d T0 + 1 , d T0 + 2 , ..., d T0 + N } is formed. Specifically, as shown in FIG. 7, the above-mentioned new set is obtained by simply delaying N unit times corresponding to the end times while the start time T0 of the original predetermined period does not change. Can be formed. However, as shown in FIG. 7, this modification further includes step S190. Specifically, in step S180, after updating the start time, the process proceeds to step S190, and in step S190, a is set so that the number of actually measured values in the time-series measured value set for each prediction start is the same. Reset.
(第一実施形態の変形例3)
図8に示すように、上記第一実施形態との相違点は、該変形例3がステップS180’とステップS150’とを含むことにある。つまり、開始時刻を更新する方法として、元の開始時刻を該原開始時刻の次の単位時間に更新して新たな開始時刻とするとともに、予め設定された条件を満たす履歴時系列変化モデルが存在しない場合に、続けて履歴時系列変化モデルを選択する根拠とするように、時系列検出値の集合における検出値の個数を増加する。
(
As shown in FIG. 8, the difference from the first embodiment is that the
(第一実施形態の変形例2と3の効果)
上記変形例2と3により、時系列検出値の元の集合に基づいて、予め設定された条件を満たす履歴時系列変化モデルを選択することができない場合に、該集合に後続的に検出された時系列検出値を増加して集合要素がより多くの新たな集合を形成することで、適切で汎化能力がより優れた履歴時系列変化モデルをより容易に見つけることができる。
(Effects of
According to the
<第二実施形態>
次に、図5から図8に基づいて、図9を参照し、室内空気品質予測方法の第二実施形態を説明する。
<Second embodiment>
Next, a second embodiment of the indoor air quality prediction method will be described with reference to FIG. 9 based on FIGS. 5 to 8.
第二実施形態において、予測方法は、第一実施形態及びその変形例における予測ステップを含むだけではなく、通知ステップをさらに含む。 In the second embodiment, the prediction method not only includes the prediction step in the first embodiment and its variants, but also further includes a notification step.
これからの一定の期間の予測値DTE+1、DTE+2、DTE+3、……、DTE+tを推定した後で、通知ステップに進む。ステップS210において、データ受信モジュール120は、選択予測モジュール140から上記予測値を取得する。次に、ステップS220において、上記予測値DTE+1、DTE+2、DTE+3、……、DTE+tの何れかの予測値(t=1のときに、一つの予測値しかないことを示す)が予め設定された閾値を超えたかを判断する。全ての予測値が何れも予め設定された閾値を超えないと、上記データ受信モジュール120は、選択予測モジュール140から後続した新たな予測値を取得するとともに、ステップS220に戻る。何れかの予測値が予め設定された閾値を超えると、該データ受信モジュール120は、「予測値が予め設定された閾値を超えた」という情報を通知モジュール170に送信するとともに、ステップS230に進む。ステップS230において、通知モジュール170は、予め決定された方法で通知ユニットに通知指令を送信することによって、該通知ユニットがこれから上記場合が発生する可能性がある通知を関係者または関連機器に発するか、または対応する手段を講じるように関係者に通知するか、または、自動的に制御するように関連機器を指示し、その後、ステップS240に進む。ステップS240において、関係者が上記通知を受信すると、直ぐに空気処理装置200を起動するかまたは該空気処理装置200の性能を調整し、あるいは、スマートゲートウェイ160または監視センター180(または、携帯電話APP190)の通知ユニットが上記通知を受信すると、直ぐに空気処理装置200を起動するかまたは該空気処理装置200の性能を自動的に調整する。その後、ステップS240からステップS250に進み、後続した新たな検出値を取得してステップS220に戻る。
After estimating the predicted values D TE + 1 , D TE + 2 , D TE + 3 , ..., D TE + t for a certain period from now on, the process proceeds to the notification step. In step S210, the
(第二実施形態の効果)
該第二実施形態により、予測値を予め設定された閾値と比較することによって、タイムリーに適切な措置を講じて室内の空気品質を改善することができる。
(Effect of the second embodiment)
According to the second embodiment, by comparing the predicted value with the preset threshold value, it is possible to take appropriate measures in a timely manner to improve the indoor air quality.
(第二実施形態の変形例1)
次に、図5から図8に基づいて、図10を参照し、室内空気品質予測方法の第二実施形態の変形例1を説明する。
(
Next, a modified example 1 of the second embodiment of the indoor air quality prediction method will be described with reference to FIGS. 10 based on FIGS. 5 to 8.
上記第二実施形態において、予測値が予め設定された閾値よりも大きくなると、直ぐに空気処理装置200を起動するかまたは該空気処理装置200の性能を調整する。ただし、予測値が予め設定された閾値よりも大きくなるときの処理方式として、それに限らない。例えば、図7に示すように、予測値が予め設定された閾値よりも大きくなると、空気処理装置200を直接起動するかまたは該空気処理装置200の性能を調整するものではなく、先に通知の時間が所定の時間だけ持続したか(所定の時間だけ経過したか)を判断してもよい(ステップS231)。通知の持続時間が所定の時間を超えると、スマートゲートウェイ160または監視センター180または携帯電話APPの制御モジュールは、空気処理装置200を強制的に起動するかまたは空気処理装置200の性能を強制的に調整する(ステップS240’)。
In the second embodiment, when the predicted value becomes larger than the preset threshold value, the
(第二実施形態の変形例1の効果)
該変形例により、初回の通知が発されてから所定の時間だけ経過した後で、予測値が依然として予め設定された閾値を超えた場合に、空気処理装置200を強制的に起動するかまたは空気処理装置200の性能を強制的に調整するため、通知に留意しないことなどによる検出エリアS内の室内の空気品質の継続的な悪化を避けることができる。さらに、上記第二実施形態に比べられ、該変形例は、使用者の手動制御操作を優先し、これにより、空気処理装置を頻繁に調整することを避けることができるとともに、不要な調整を避けることができる。
(Effect of
According to the modification, if the predicted value still exceeds the preset threshold value after a predetermined time has elapsed from the initial notification, the
(第二実施形態の変形例2の効果)
上記第二実施形態及びその変形例1において、予測値が予め設定された閾値よりも大きくなることを通知するが、それに限らない。例えば、該変形例2において、図11に示すように、ステップS221を含んでもよい。具体的には、予測値が予め設定された閾値よりも大きくなると、空気処理装置200を起動するかまたは該空気処理装置200の性能を調整し、この場合に、検出対象の値は、必ず変化する。CO2のppmを例に、上記起動または調整を開始した後、後続した新たな予測値を取得し、該予測値と予め設定された閾値とを比較し、もし新たな予測値が依然として予め設定された閾値よりも大きくなると、続けて空気処理装置200をオンにするかまたは続けて該空気処理装置200の性能を調整し、もし新たな予測値が予め設定された閾値以下となると、空気処理装置200の運転により有益な役割を果たすことがわかり、このときに、新たな予測値が予め設定された閾値以下となるという情報をスマートゲートウェイ160または監視センター180または携帯電話APPに送信する。このときに、スマートゲートウェイ160または監視センター180または携帯電話APP190は、実際の場合に応じて空気処理装置200の運転を停止するかまたは空気処理装置200の運転負荷を下げることができる。
(Effect of
In the second embodiment and the first modification thereof, it is notified that the predicted value becomes larger than the preset threshold value, but the present invention is not limited to this. For example, in the second modification, step S221 may be included as shown in FIG. Specifically, when the predicted value becomes larger than the preset threshold value, the
(第二実施形態の変形例2の効果)
該変形例2により、「検出対象の値がこれからのある時刻に安全濃度まで下げる」という情報をタイムリーに通知することができる。これにより、実際の場合に応じて空気処理装置200の運転を停止するかまたは空気処理装置200の運転負荷を下げるし、不要な電力の無駄遣いを避けることができる。
(Effect of
According to the
<第三実施形態>
次に、図5から図8に基づいて、図12を参照し、室内空気品質予測方法の第三実施形態を説明する。
<Third embodiment>
Next, a third embodiment of the indoor air quality prediction method will be described with reference to FIGS. 12 based on FIGS. 5 to 8.
第三実施形態の予測方法は、第一実施形態における予測ステップを含むだけではなく、モデル評価ステップをも含む。 The prediction method of the third embodiment includes not only the prediction step in the first embodiment but also the model evaluation step.
具体的には、これからの一定の期間の予測値DTE+1、DTE+2、DTE+3、……、DTE+tを推定した後で、選択予測モジュール140は、該データ受信モジュール120から上記所定期間の後の次の単位時間の検出値dTE+1を取得する(ステップS310)。次に、ステップS320において、選択予測モジュール140は、検出値dTE+1とDTE+1との間の誤差が許容値よりも大きいかを判断する。誤差が許容値以下となると、選択した履歴時系列変化モデルを用いて予測し続ける(ステップS330)。誤差が許容値よりも大きくなると、dTE+1を元の時系列検出値の集合{dT0、dT0+1、dT0+2、……、dTE}に追加して、新たな集合{dT0、dT0+1、dT0+2、……、dTE、dTE+1}を形成するとともに、該新たな集合を用いて第一実施形態のステップS120~ステップS162に従って該新たなモデルとの間で予め設定された条件を満たす履歴時系列変化モデルを再選択する(ステップS340)。新たな履歴時系列変化モデルを選択した後で、該モデルに基づいて、予測値{DTE+2、DTE+3、……、DTE+t}を更新する(ステップS350)。
Specifically, after estimating the predicted values D TE + 1 , D TE + 2 , D TE + 3 , ..., D TE + t for a certain period from now on, the
(第三実施形態の効果)
第三実施形態により、予測値と次の単位時間の検出値とを比較することで、モデルの予測精度を評価することができる。また、予測値と次の単位時間の検出値との間の誤差を評価することで、該誤差の大きさに基づいて現在のモデルを続けて用いるか、精度がより高いモデルを再選択するかを決定することができる。これにより、予測精度を高めることができる。
(Effect of the third embodiment)
According to the third embodiment, the prediction accuracy of the model can be evaluated by comparing the predicted value with the detected value of the next unit time. Also, by evaluating the error between the predicted value and the detected value of the next unit time, whether to continue using the current model based on the magnitude of the error or to reselect a model with higher accuracy. Can be determined. This makes it possible to improve the prediction accuracy.
(第三実施形態の変形例1)
次に、図5から図8に基づいて、図13を参照し、室内空気品質予測方法の第三実施形態の変形例1を説明する。
(
Next, a modified example 1 of the third embodiment of the indoor air quality prediction method will be described with reference to FIGS. 13 based on FIGS. 5 to 8.
上記第三実施形態において、所定期間の後の次の単位時間の検出値dTE+1を取得し、該検出値dTE+1と予測値DTE+1との間の誤差を計算し、該誤差に基づいて履歴時系列変化モデルを交換する必要があるかを判断する。ただし、モデル評価の方法について、それに限らない。 In the third embodiment, the detected value d TE + 1 of the next unit time after a predetermined period is acquired, the error between the detected value d TE + 1 and the predicted value D TE + 1 is calculated, and the history is calculated based on the error. Determine if the time series change model needs to be replaced. However, the method of model evaluation is not limited to that.
例えば、図13に示すように、一つの検出値da+1だけを選択するものではなく、所定期間の後の次の期間の検出値の集合{dTE+1、dTE+2、dTE+3、……、dTE+m}を選択するものであり、ここに、mは、tよりも小さい自然数である(ステップS310’)。次に、検出値の集合{dTE+1、dTE+2、dTE+3、……、dTE+m}と予測値の集合{DTE+1、DTE+2、DTE+3、……、DTE+t}におけるサブ集合{DTE+1、DTE+2、DTE+3、……、DTE+m}とを比較する(例えば、
を両者のマッチング程度の尺度として用いることができる)(ステップS320’)。誤差が許容値よりも小さくなると、選択された元の履歴時系列変化モデルを続けて用いる。誤差が許容値よりも大きくなると、dTE+1、dTE+2、dTE+3、……、dTE+mを元の時系列検出値の集合{dT0、dT0+1、dT0+2、……、dTE}に追加して、新たな集合{dT0、dT0+1、dT0+2、……、dTE、dTE+1、dTE+2、dTE+3、……、dTE+m}を形成するとともに、該新たな集合を利用して第一実施形態のステップS120~ステップS162に従って、該新たなモデルとの間で予め設定された条件を満たす履歴時系列変化モデルを再選択する(ステップS340’)。新たな履歴時系列変化モデルを選択した後で、該モデルに基づいて、予測値{DTE+m+1、DTE+m+2、……、DTE+t}を更新する(ステップS350’)。
For example, as shown in FIG. 13, not only one detection value d a + 1 is selected, but a set of detection values in the next period after a predetermined period {d TE + 1 , d TE + 2 , d TE + 3 , ..., D. TE + m } is selected, where m is a natural number smaller than t (step S310'). Next, a subset {D TE + 1] in the set of detected values {d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m } and the set of predicted values {D TE + 1 , D TE + 2 , D TE + 3 , ..., D TE + t }. , D TE + 2 , D TE + 3 , ..., D TE + m } (for example,
Can be used as a measure of the degree of matching between the two) (step S320'). If the error is less than the tolerance, the original historical time series change model selected will continue to be used. When the error becomes larger than the allowable value, d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m are added to the original set of time series detection values {d T0 , d T0 + 1 , d T0 + 2 , ..., d TE }. Then, a new set {d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m } is formed, and the new set is used. According to steps S120 to S162 of the first embodiment, the historical time series change model satisfying the preset conditions with the new model is reselected (step S340'). After selecting a new historical time series change model, the predicted values {D TE + m + 1 , D TE + m + 2 , ..., D TE + t } are updated based on the model (step S350').
(第三実施形態の変形例1の効果)
上記第三実施形態に比べられ、該変形例1は、一つの期間内の複数の検出値を用いて複数の予測値と比較する。このようにして、一つの検出値と一つの予測値とを比較する方式のみを用いることに比べられ、選択した履歴時系列変化モデルの予測精度は全体的な変化傾向の観点から評価でき、個別の特異点による不要なモデル交換の場合を避ける。
(Effect of
Compared to the third embodiment, the
(第三実施形態の変形例2)
次に、図5から図8に基づいて、図14を参照し、室内空気品質予測方法の第三実施形態の変形例2を説明する。
(
Next, a modified example 2 of the third embodiment of the indoor air quality prediction method will be described with reference to FIGS. 14 based on FIGS. 5 to 8.
上記変形例1において、検出値の集合{dTE+1、dTE+2、dTE+3、……、dTE+m}と予測値の集合{DTE+1、DTE+2、DTE+3、……、DTE+t}におけるサブ集合{DTE+1、DTE+2、DTE+3、……、DTE+m}との間の誤差が許容値以下となると、選択した履歴時系列変化モデルを続けて流用する(ステップS330)。ただし、該場合での処理について、それに限らない。 In the first modification, the set of detected values {d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m } and the set of predicted values {D TE + 1 , D TE + 2 , D TE + 3 , ..., D TE + t } are subsets. When the error between {D TE + 1 , D TE + 2 , D TE + 3 , ..., D TE + m } is less than the allowable value, the selected historical time series change model is continuously diverted (step S330). However, the processing in this case is not limited to that.
例えば、上記誤差が許容値以下となる場合に、既存モデルを修正するかを判断することができる(ステップS321)。例えば、上記許容値よりも小さい修正閾値を予め設定し、上記誤差が修正閾値よりも小さくなると、選択した元の履歴時系列変化モデルを続けて用い、上記誤差が修正閾値以上、かつ、許容値以下となると、{dT0、dT0+1、dT0+2、……、dTE、dTE+1、dTE+2、dTE+3、……、dTE+m}で選択した元の履歴時系列変化モデルをさらに学習して別途修正後の履歴時系列変化モデルを生成するとともに、該修正後の履歴時系列変化モデルを用いて後続的な予測を行うことができる。ニューラルネットワーク構造を例に、ディープラーニングにより、元の履歴時系列変化モデル(教師モデル)は、別途修正後の履歴時系列変化モデル(学生モデル)を生成することができるとともに、実際の必要とシステムの自体の性能に基づいて、修正後の履歴時系列変化モデルは、派生モデル(構造が同じで重み係数が異なる)でもよく、蒸留モデル(構造も重み係数も異なる)でもよい。 For example, when the above error is equal to or less than the allowable value, it can be determined whether to modify the existing model (step S321). For example, if a correction threshold value smaller than the correction threshold value is set in advance and the error becomes smaller than the correction threshold value, the selected original historical time-series change model is continuously used, and the error is equal to or larger than the correction threshold value and the allowable value. Then, further learn the original historical time series change model selected by {d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m }. A modified historical time-series change model can be generated separately, and a subsequent prediction can be made using the modified historical time-series change model. Taking the neural network structure as an example, deep learning allows the original historical time-series change model (teacher model) to generate a separately modified historical time-series change model (student model), as well as the actual needs and system. Based on the performance of itself, the modified historical time series change model may be a derived model (same structure but different weighting coefficients) or a distillation model (same structure and different weighting coefficients).
(第三実施形態の変形例2の効果)
上記第三実施形態と変形例1に比べられ、該変形例2において、検出値の集合{dTE+1、dTE+2、dTE+3、……、dTE+m}と予測値の集合{DTE+1、DTE+2、DTE+3、……、DTE+t}におけるサブ集合{DTE+1、DTE+2、DTE+3、……、DTE+m}との間の誤差が許容値以下となると、選択した履歴時系列変化モデルを必ず流用するものではなく、上記の誤差の大きさに基づいてディープラーニングを行うかをさらに判断する。ディープラーニングが不要と判定されると、元の履歴時系列変化モデルを流用する一方、ディープラーニングが必要と判定されると、検出値の集合{dT0、dT0+1、dT0+2、……、dTE、dTE+1、dTE+2、dTE+3、……、dTE+m}を用いて元の履歴時系列変化モデルをさらに学習して別途精度がより高い修正後の履歴時系列変化モデルを生成する。このようにして、精度がより高い修正後の履歴時系列変化モデルを用いることで、予測精度をさらに高めることができる。
(Effect of
Compared to the third embodiment and the first modification, in the second modification, a set of detected values {d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m } and a set of predicted values {D TE + 1 , D TE + 2 , D TE + 3 , ..., D TE + t }, when the error between the subset {D TE + 1 , D TE + 2 , D TE + 3 , ..., D TE + m } is less than the allowable value, the selected historical time series change model is always selected. It is not a diversion, and it is further determined whether to perform deep learning based on the magnitude of the above error. When it is determined that deep learning is unnecessary, the original historical time-series change model is used, while when it is determined that deep learning is necessary, a set of detected values {d T0 , d T0 + 1 , d T0 + 2 , ..., d Using TE , d TE + 1 , d TE + 2 , d TE + 3 , ..., d TE + m }, the original historical time series change model is further learned to generate a modified historical time series change model with higher accuracy. In this way, the prediction accuracy can be further improved by using the corrected historical time series change model with higher accuracy.
(第三実施形態の変形例3)
次に、図5から図8に基づいて、図15を参照し、室内空気品質予測方法の第三実施形態の変形例3を説明する。
(
Next, a modified example 3 of the third embodiment of the indoor air quality prediction method will be described with reference to FIGS. 15 based on FIGS. 5 to 8.
上記第三実施形態の変形例1において、所定期間の後の次の単位時間の検出値dTE+1と予測値DTE+1との間の誤差が許容値以下となると、選択した元の履歴時系列変化モデルを続けて用いる。ただし、上記誤差が許容値以下となる場合の処理方法は、それに限らない。例えば、変形例1と変形例2とを組み合わせると、図15に示す方案を得ることができる。即ち、検出値dTE+1と予測値DTE+1との間の誤差が許容値以下となる場合に、続けて該検出値dTE+1の後の一定の期間内の検出値dTE+2、dTE+3、……、dTE+mを取得するとともに、変形例2に記載のステップに従ってさらに処理する。
In the first modification of the third embodiment, when the error between the detected value d TE + 1 and the predicted value D TE + 1 in the next unit time after a predetermined period is equal to or less than the allowable value, the selected original historical time series change Continue to use the model. However, the processing method when the above error is equal to or less than the allowable value is not limited to that. For example, by combining the modified example 1 and the modified example 2, the plan shown in FIG. 15 can be obtained. That is, when the error between the detected value d TE + 1 and the predicted value D TE + 1 is equal to or less than the allowable value, the detected values d TE + 2 , d TE + 3 , ... , D TE + m is obtained, and further processing is performed according to the step described in
(第三実施形態の変形例3の効果)
上記第三実施形態の変形例1と変形例2に比べられ、該変形例3は、局部と全体との2つの観点から、選択した履歴時系列変化モデルの予測精度を同時に評価することができる。
(Effect of
Compared with the modified example 1 and the modified example 2 of the third embodiment, the modified example 3 can simultaneously evaluate the prediction accuracy of the selected historical time-series change model from the two viewpoints of local and overall. ..
<他の実施形態>
以上、本発明に係る室内の空気品質予測システム100及び予測方法の第一実施形態、第二実施形態、第三実施形態及びその変形例を説明した。ただし、なお、本発明に係る室内の空気品質予測システム100及び予測方法は、それらに限らない。
<Other embodiments>
The first embodiment, the second embodiment, the third embodiment and the modified examples thereof of the indoor air quality prediction system 100 and the prediction method according to the present invention have been described above. However, the indoor air quality prediction system 100 and the prediction method according to the present invention are not limited thereto.
例えば、第一実施形態において、時系列検出値の集合{dT0、dT0+1、dT0+2、……、dTE}との間で所定条件を満たす履歴時系列変化モデルが存在しない場合に、一定の長さであるが、開始時刻と終了時刻が異なる時系列検出値の新たな集合を選択することで、または、開始時刻が同じであるが、長さが異なる時系列検出値の新たな集合を選択することで、このような履歴時系列変化モデルを選択するまで、続けて該新集合との間で予め設定された条件を満たす履歴時系列変化モデルを選択する。この場合に、好ましくは、予め設定された条件を満たす履歴時系列変化モデルを選択する時刻まで、データ分析モジュール130は、該時刻及び該時刻の前の全ての時系列検出値をトレーニングサンプルまたはトレーニングサンプルケースとして学習することによって、一つの新たな履歴時系列変化モデルを生成する。また、より好ましくは、上記時刻の後の検出過程で、検出された新たな時系列検出値を持続的に上記新たな履歴時系列変化モデルに入力して該履歴時系列変化モデルを更新する。このようにして、データ分析モジュール130の計算量を簡素化することができる。
For example, in the first embodiment, it is constant when there is no historical time series change model satisfying a predetermined condition between the set of time series detection values {d T0 , d T0 + 1 , d T0 + 2 , ..., d TE }. By selecting a new set of time series detection values that have a different start time and end time, or by selecting a new set of time series detection values that have the same start time but different lengths. By selecting, the historical time-series change model satisfying the preset conditions with the new set is continuously selected until such a historical time-series change model is selected. In this case, preferably until the time of selecting a historical time series change model that satisfies a preset condition, the
さらに、複数の時系列検出値dT0、dT0+1、dT0+2、……、dTEが伝送中にデータ損失が発生すると、残りの時系列検出値からなる新たな集合に基づいて、該新たな集合との間で予め設定された条件を満たす履歴時系列変化モデルを再選択してもよい。このようにして、データ損失が発生した場合でも、優れた履歴時系列変化モデルを取得して後続の予測を行うことができる。 Furthermore, if data loss occurs during transmission of multiple time-series detection values d T0 , d T0 + 1 , d T0 + 2 , ..., d TE , the new set is based on a new set of the remaining time-series detection values. You may reselect a historical time series change model that meets the preset conditions with the set. In this way, even if data loss occurs, it is possible to acquire an excellent historical time series change model and make subsequent predictions.
当業者は、他の利点や修正を容易に想到し得る。したがって、本発明は、より広い意味で、本明細書に示され説明される具体的な詳細および代表的な実施例に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって限定される全体的な発明概念の精神または範囲から逸脱することなく修正することができる。 Those skilled in the art can easily conceive of other advantages and modifications. Accordingly, the invention is, in a broader sense, not limited to the specific details and representative examples set forth and described herein. Accordingly, it can be modified without departing from the spirit or scope of the overall invention concept limited by the appended claims and their equivalents.
Claims (32)
一つの所定期間に前記検出エリア(S)に設けられたセンサユニット(111)によって連続して検出された検出対象の複数の時系列検出値の集合との間で予め設定された条件を満たす履歴時系列変化モデルを選択するとともに、
選択した前記履歴時系列変化モデルに基づいて、これからの一定の期間の予測値を推定する、
ことを特徴とする、室内空気品質予測方法。 From a large number of historical time-series change models obtained by learning a large number of historical time-series actual measurement results including the detection location of the detection area (S) or other detection locations as historical time-series learning values.
A history that satisfies a preset condition with a set of a plurality of time-series detection values to be detected continuously detected by a sensor unit (111) provided in the detection area (S) in one predetermined period. Select a time series change model and
Based on the selected historical time-series change model, the predicted value for a certain period from now on is estimated.
A method for predicting indoor air quality, which is characterized by the fact that.
ことを特徴とする、請求項1に記載の室内空気品質予測方法。 When there are a plurality of historical time-series change models satisfying the preset conditions, the historical time-series change model having the highest degree of matching with the set is selected.
The indoor air quality prediction method according to claim 1, wherein the indoor air quality is predicted.
ことを特徴とする、請求項1に記載の室内空気品質予測方法。 If the historical time-series change model satisfying the preset condition does not exist, the start time and / or the length differs from the one predetermined period until the historical time-series change model satisfying the preset condition is found. A new set of a plurality of time-series detection values for the next predetermined period is reselected, and it is determined whether or not there is a historical time-series change model that satisfies the preset conditions with the new set. continue,
The indoor air quality prediction method according to claim 1, wherein the indoor air quality is predicted.
ことを特徴とする、請求項3に記載の室内空気品質予測方法。 It is generated as a new historical time-series change model by learning the time and all the time-series detection values before the time until the time when the historical time-series change model satisfying the preset condition is found.
The indoor air quality prediction method according to claim 3, wherein the indoor air quality is predicted.
ことを特徴とする、請求項4に記載の室内空気品質予測方法。 In the detection process after the time, the new historical time-series change model is updated by continuously inputting the detected new time-series detection value into the new historical time-series change model.
The indoor air quality prediction method according to claim 4, wherein the indoor air quality is predicted.
ことを特徴とする請求項1に記載の室内空気品質予測方法。 When the predicted value exceeds a preset threshold value, a predetermined method is used to notify the possibility of occurrence in the above case, notify that a corresponding measure is taken, or take a corresponding measure. Automatically control,
The indoor air quality prediction method according to claim 1, wherein the indoor air quality is predicted.
ブザー、警報器、画像表示設備、指示ランプで通知を発すること、および/または
リモコン、携帯電話、PC側を介して信号を受信するとともに通知を発すること、
を含む、
ことを特徴とする、請求項6に記載の室内空気品質予測方法。 The predetermined method is
Sending notifications with buzzers, alarms, image display equipment, indicator lamps, and / or receiving signals and issuing notifications via remote controls, mobile phones, and PCs.
including,
The indoor air quality prediction method according to claim 6, wherein the indoor air quality is predicted.
自らでドア、窓を開けるように促すこと、および/または
前記検出エリア(S)内の人数を制御するように促すこと、および/または
前記検出エリア(S)から離れるように促すこと、および/または
空気処理装置(200)を手動でオンにするように促すか、空気処理装置(200)を強制的に自動的にオンにすること、
を含む、
ことを特徴とする、請求項6に記載の室内空気品質予測方法。 The corresponding means
Encourage them to open doors and windows themselves, and / or control the number of people in the detection area (S), and / or move away from the detection area (S), and / Or prompting the air treatment device (200) to be turned on manually, or forcing the air treatment device (200) to be turned on automatically.
including,
The indoor air quality prediction method according to claim 6, wherein the indoor air quality is predicted.
ことを特徴とする、請求項6に記載の室内空気品質予測方法。 When it is predicted that the predicted value after a certain period will fall below the preset threshold value, the possibility of occurrence in the above case is notified to the persons concerned or related equipment, or the operating load of the air treatment device (200) is increased. Notify the persons concerned or related equipment to lower or stop the operation of the air treatment apparatus (200).
The indoor air quality prediction method according to claim 6, wherein the indoor air quality is predicted.
ことを特徴とする、請求項6に記載の室内空気品質予測方法。 If the predicted value still exceeds the preset threshold after a predetermined time from the start of the initial notification, the air treatment device (200) is forcibly started or the performance of the air treatment device (200) is forcibly started. To adjust
The indoor air quality prediction method according to claim 6, wherein the indoor air quality is predicted.
前記次の単位時間の予測値と前記センサユニット(111)で検出された次の単位時間の検出値との間の誤差を計算し、
前記誤差が許容値以下となると、選択した前記履歴時系列変化モデルを用いて後続の予測を行い続ける、
ことを特徴とする、請求項1に記載の室内空気品質予測方法。 In the selected historical time-series change model, one historical time-series learning value immediately after the plurality of historical time-series learning values corresponding to the plurality of time-series detection values in the one predetermined period is the predicted value of the next unit time. Used as
The error between the predicted value of the next unit time and the detected value of the next unit time detected by the sensor unit (111) is calculated.
When the error becomes less than or equal to the allowable value, the subsequent prediction is continued using the selected historical time series change model.
The indoor air quality prediction method according to claim 1, wherein the indoor air quality is predicted.
ことを特徴とする、請求項11に記載の室内空気品質予測方法。 When the error becomes larger than the allowable value, the historical time series change model is reselected.
The indoor air quality prediction method according to claim 11, wherein the indoor air quality is predicted.
次の所定期間に前記センサユニット(111)で連続して検出された複数の時系列検出値の集合と前記次の所定期間の予測値の集合との間のデータセット誤差が許容誤差範囲内にあるかを判断し、
前記データセット誤差が前記許容範囲内にあると、選択した前記履歴時系列変化モデルを用いて後続の予測を行い続ける、
ことを特徴とする、請求項1または11に記載の室内空気品質予測方法。 In the selected historical time-series change model, a plurality of historical time-series learning values immediately after a plurality of historical time-series learning values corresponding to a plurality of time-series detection values in the one predetermined period are predicted values in the next predetermined period. Used as
The data set error between the set of multiple time-series detection values continuously detected by the sensor unit (111) in the next predetermined period and the set of predicted values in the next predetermined period is within the margin of error. Judge if there is,
If the data set error is within the permissible range, subsequent predictions will continue to be made using the selected historical time series change model.
The indoor air quality prediction method according to claim 1 or 11, wherein the indoor air quality is predicted.
ことを特徴とする、請求項13に記載の室内空気品質予測方法。 Based on the set consisting of a plurality of time-series detection values of the next predetermined period, or to a set consisting of a plurality of time-series detection values of the one predetermined period and a plurality of time-series detection values of the next predetermined period. Based on this, the selected historical time-series change model is modified to generate a modified model independently, and subsequent predictions are made using the modified model.
The indoor air quality prediction method according to claim 13, wherein the indoor air quality is predicted.
ことを特徴とする、請求項13に記載の室内空気品質予測方法。 If the data set error is outside the permissible range, the historical time series change model is reselected.
The indoor air quality prediction method according to claim 13, wherein the indoor air quality is predicted.
ことを特徴とする、請求項1から12のいずれか1項に記載の室内空気品質予測方法。 The detection target is one or more of carbon dioxide, gas components other than carbon dioxide, particulate matter, temperature, and humidity.
The indoor air quality prediction method according to any one of claims 1 to 12, wherein the indoor air quality is predicted.
一つの所定期間に前記センサユニット(111)で連続して検出された検出対象の複数の時系列検出値を受信するデータ受信モジュール(120)と、
前記検出エリア(S)の検出場所または他の検出場所を含む多数の履歴時系列実測結果を履歴時系列学習値として学習することによって、多くの履歴時系列変化モデルを生成するデータ分析モジュール(130)と、
多くの前記履歴時系列変化モデルから複数の前記時系列検出値からなる集合との間で予め設定された条件を満たす履歴時系列変化モデルを選択することによって、これからの一定の期間の予測値を推定する選択予測モジュール(140)と、
を含む、
ことを特徴とする、室内空気品質検出システム。 At least one detection terminal (110) having one or more sensor units (111) provided in the detection area (S), and
A data receiving module (120) that receives a plurality of time-series detection values of detection targets continuously detected by the sensor unit (111) in one predetermined period.
A data analysis module (130) that generates many historical time-series change models by learning a large number of historical time-series actual measurement results including the detection location of the detection area (S) or other detection locations as historical time-series learning values. )When,
By selecting a historical time-series change model that satisfies a preset condition between many of the historical time-series change models and a set consisting of a plurality of the time-series detection values, the predicted value for a certain period from now on can be obtained. The selection prediction module (140) to estimate and
including,
It features an indoor air quality detection system.
ことを特徴とする、請求項17に記載の室内空気品質検出システム。 When there are a plurality of historical time-series change models satisfying the preset conditions, the selection prediction module (140) selects the historical time-series change model having the highest degree of matching with the set.
17. The indoor air quality detection system according to claim 17.
前記選択予測モジュール(140)は、前記予め設定された条件を満たす履歴時系列変化モデルを見つけるまで、前記新たな集合との間で前記予め設定された条件を満たす履歴時系列変化モデルが存在するか否かを判断し続ける、
ことを特徴とする、請求項17に記載の室内空気品質検出システム。 In the absence of a historical time series change model that satisfies the preset conditions, the data receiving module (120) may perform a plurality of times in the next predetermined period in which the start time and / or the length is different from the one predetermined period. Reselect a new set of series detection values and
The selection prediction module (140) has a historical time-series change model that satisfies the preset condition with the new set until it finds a historical time-series change model that satisfies the preset condition. Continue to judge whether or not,
17. The indoor air quality detection system according to claim 17.
ことを特徴とする、請求項19に記載の室内空気品質検出システム。 Until the time when the historical time-series change model that satisfies the preset condition is found, the data analysis module (130) is newly developed by learning the time and all the time-series detection values before the time. Generate a historical time series change model,
19. The indoor air quality detection system according to claim 19.
ことを特徴とする、請求項20に記載の室内空気品質検出システム。 In the detection process after the time, the data analysis module (130) updates the new historical time series change model based on the new detected time series detection values.
20. The indoor air quality detection system according to claim 20.
選択した前記履歴時系列変化モデルでは、前記一つの所定期間の複数の時系列検出値に対応する複数の履歴時系列学習値の直後の一つの履歴時系列学習値を次の単位時間の予測値として用いて、
前記次の単位時間の予測値と前記センサユニット(111)で検出された次の単位時間の検出値との間の誤差を計算するとともに、
前記誤差が許容値以下となると、選択した前記履歴時系列変化モデルを用いて後続の予測を行い続けるように構成される、
ことを特徴とする、請求項17に記載の室内空気品質検出システム。 The selection prediction module (140) further
In the selected historical time-series change model, one historical time-series learning value immediately after the plurality of historical time-series learning values corresponding to the plurality of time-series detection values in the one predetermined period is the predicted value of the next unit time. Used as
The error between the predicted value of the next unit time and the detected value of the next unit time detected by the sensor unit (111) is calculated, and the error is calculated.
When the error is less than or equal to the permissible value, it is configured to continue making subsequent predictions using the selected historical time series change model.
17. The indoor air quality detection system according to claim 17.
ことを特徴とする、請求項22に記載の室内空気品質検出システム。 The selection prediction module (140) is further configured to reselect the historical time series change model when the error is greater than the permissible value.
22. The indoor air quality detection system according to claim 22.
選択した前記履歴時系列変化モデルでは、前記一つの所定期間の複数の時系列検出値に対応する複数の履歴時系列学習値の直後の複数の履歴時系列学習値を次の所定期間の予測値として用いて、
次の所定期間に前記センサユニット(111)で連続して検出された複数の時系列検出値の集合と前記次の所定期間の予測値の集合との間のデータセット誤差が許容誤差範囲内にあるか否かを判断するとともに、
前記データセット誤差が許容誤差範囲内にあると、選択した前記履歴時系列変化モデルを用いて後続の予測を行い続ける、
ことを特徴とする、請求項17または22に記載の室内空気品質検出システム。 The selection prediction module (140) further
In the selected historical time-series change model, a plurality of historical time-series learning values immediately after a plurality of historical time-series learning values corresponding to a plurality of time-series detection values in the one predetermined period are predicted values in the next predetermined period. Used as
The data set error between the set of multiple time-series detection values continuously detected by the sensor unit (111) in the next predetermined period and the set of predicted values in the next predetermined period is within the margin of error. Judging whether or not there is,
If the dataset error is within the margin of error, subsequent predictions will continue to be made using the selected historical time series change model.
The indoor air quality detection system according to claim 17 or 22, wherein the indoor air quality is detected.
ことを特徴とする、請求項24に記載の室内空気品質検出システム。 Based on the set consisting of a plurality of time-series detection values of the next predetermined period, or to a set consisting of a plurality of time-series detection values of the one predetermined period and a plurality of time-series detection values of the next predetermined period. Based on this, the selection prediction module (140) modifies the selected historical time series change model to independently generate a modified model, and makes subsequent predictions using the modified model.
24. The indoor air quality detection system according to claim 24.
ことを特徴とする、請求項24に記載の室内空気品質検出システム。 The selection prediction module (140) is further configured to reselect the historical time series change model if the dataset error is outside the margin of error.
24. The indoor air quality detection system according to claim 24.
ことを特徴とする、請求項17に記載の室内空気品質検出システム。 A notification module (170) for issuing a notification command to a notification unit when the predicted value exceeds a preset threshold value or falls below the preset threshold value.
17. The indoor air quality detection system according to claim 17.
ことを特徴とする、請求項27に記載の室内空気品質検出システム。 The notification unit includes a buzzer, an alarm, an image display facility, an indicator lamp, a remote controller, a mobile phone, and a personal computer.
27. The indoor air quality detection system according to claim 27.
ことを特徴とする、請求項17、27および28のいずれか一項に記載の室内空気品質検出システム。 When the predicted value exceeds a preset threshold value, the air treatment device (200) is started, the performance of the air treatment device (200) is adjusted, or the predicted value exceeds the preset threshold value. Including a control unit that forcibly activates the air treatment device (200) or forcibly adjusts the performance of the air treatment device (200) after a certain period of time has passed.
The indoor air quality detection system according to any one of claims 17, 27 and 28.
ことを特徴とする、請求項29に記載の室内空気品質検出システム。 When it is predicted that the predicted value after a certain period will fall below a preset threshold value, the control unit reduces the operating load of the air treatment device (200) or operates the air treatment device (200). Stop,
29. The indoor air quality detection system according to claim 29.
ことを特徴とする、請求項29または30に記載の室内空気品質検出システム。 The control unit is a smart gateway (160).
The indoor air quality detection system according to claim 29 or 30, characterized in that.
ことを特徴とする、請求項29または30に記載の室内空気品質検出システム。 The control unit is attached to a monitoring center (180) provided in a region other than the detection area (S).
The indoor air quality detection system according to claim 29 or 30, characterized in that.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022568273A JP7560767B2 (en) | 2020-12-07 | 2021-12-06 | Indoor air quality prediction method and indoor air quality detection system |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011430194.0A CN114594202B (en) | 2020-12-07 | 2020-12-07 | Indoor air quality prediction method and indoor air quality detection system |
| CN202011430194.0 | 2020-12-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2022124276A1 true WO2022124276A1 (en) | 2022-06-16 |
Family
ID=81802270
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2021/044791 Ceased WO2022124276A1 (en) | 2020-12-07 | 2021-12-06 | Indoor air quality prediction method and indoor air quality detection system |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP7560767B2 (en) |
| CN (1) | CN114594202B (en) |
| WO (1) | WO2022124276A1 (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115112839A (en) * | 2022-06-28 | 2022-09-27 | 歌尔科技有限公司 | Air quality detection method, device, electronic device and readable storage medium |
| CN115901003A (en) * | 2022-11-23 | 2023-04-04 | 南京乾鑫电器设备有限公司 | Temperature monitoring method and system for environment-friendly gas switch cabinet |
| CN116294277A (en) * | 2023-03-21 | 2023-06-23 | 美的集团武汉暖通设备有限公司 | Control method, device, air conditioner and medium of two-stage air jet enthalpy-increasing heat pump system |
| CN116467628A (en) * | 2023-04-13 | 2023-07-21 | 沈阳兴溢节能环保科技有限公司 | An intelligent shared bathroom room and its control method |
| CN116593065A (en) * | 2023-07-14 | 2023-08-15 | 青岛义龙包装机械有限公司 | Data analysis method of bag type packaging machine detection platform |
| CN117308287A (en) * | 2023-09-08 | 2023-12-29 | 山东浪潮科学研究院有限公司 | A centralized intelligent monitoring method for central fresh air system |
| CN117390379A (en) * | 2023-12-11 | 2024-01-12 | 博睿康医疗科技(上海)有限公司 | Online signal measurement device, signal characteristic confidence measurement device |
| CN117789420A (en) * | 2023-12-28 | 2024-03-29 | 沭阳华润燃气有限公司 | Novel metering data acquisition system |
| CN118128737A (en) * | 2024-05-07 | 2024-06-04 | 德耐尔能源装备有限公司 | Intelligent exhaust pressure control method and device for protecting unit |
| CN118233856A (en) * | 2024-04-10 | 2024-06-21 | 深圳市芯伍科技有限公司 | Wi-Fi-based indoor air quality detection method and system |
| CN118746157A (en) * | 2024-08-08 | 2024-10-08 | 深圳市名汇新材料科技有限公司 | An intelligent control method and related equipment for energy-saving ventilation system |
| CN119739287A (en) * | 2024-12-10 | 2025-04-01 | 曲靖阳光新能源股份有限公司 | Online detection device and detection method for finished square bars |
| CN120833866A (en) * | 2025-09-19 | 2025-10-24 | 苏州工学院 | Multi-component toxic gas detection and classification method and system for stamping workshop |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117129036A (en) * | 2023-08-28 | 2023-11-28 | 瀚能科技有限公司 | A cloud environment monitoring method and device |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004310266A (en) * | 2003-04-03 | 2004-11-04 | Daikin Ind Ltd | Information distribution device, equipment monitoring system and information distribution program |
| JP2016164730A (en) * | 2015-03-06 | 2016-09-08 | 富士通株式会社 | Information processing apparatus, information processing method, and program |
| CN206649297U (en) * | 2016-11-30 | 2017-11-17 | 桂林师范高等专科学校 | The indoor temperature Intelligent Measurement and control system of smart home |
| JP2017207218A (en) * | 2016-05-16 | 2017-11-24 | パナソニックIpマネジメント株式会社 | Absorption type refrigerating machine |
| WO2018173401A1 (en) * | 2017-03-21 | 2018-09-27 | ソニー株式会社 | Information processing device, information processing method, and program |
| CN210573339U (en) * | 2019-12-10 | 2020-05-19 | 郑州优美智能科技有限公司 | Intelligent gateway with monitoring function |
| US20200224915A1 (en) * | 2019-01-16 | 2020-07-16 | Airviz Inc. | Proactive building air quality management |
| CN112050397A (en) * | 2020-08-27 | 2020-12-08 | 浙江省邮电工程建设有限公司 | Method and system for regulating and controlling temperature of machine room |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108764460A (en) * | 2018-05-16 | 2018-11-06 | 华中科技大学 | A kind of Time Series Forecasting Methods based on time convolution sum LSTM |
| CN111797289A (en) * | 2019-04-09 | 2020-10-20 | Oppo广东移动通信有限公司 | Model processing method, device, storage medium and electronic device |
| CN110009245A (en) * | 2019-04-12 | 2019-07-12 | 阳江职业技术学院 | Indoor air quality prediction technique, device and electronic equipment neural network based |
| CN110390425A (en) * | 2019-06-20 | 2019-10-29 | 阿里巴巴集团控股有限公司 | Prediction technique and device |
| CN110866786A (en) * | 2019-11-12 | 2020-03-06 | 德邦物流股份有限公司 | Goods quantity prediction method and device, electronic equipment and storage medium |
-
2020
- 2020-12-07 CN CN202011430194.0A patent/CN114594202B/en active Active
-
2021
- 2021-12-06 WO PCT/JP2021/044791 patent/WO2022124276A1/en not_active Ceased
- 2021-12-06 JP JP2022568273A patent/JP7560767B2/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004310266A (en) * | 2003-04-03 | 2004-11-04 | Daikin Ind Ltd | Information distribution device, equipment monitoring system and information distribution program |
| JP2016164730A (en) * | 2015-03-06 | 2016-09-08 | 富士通株式会社 | Information processing apparatus, information processing method, and program |
| JP2017207218A (en) * | 2016-05-16 | 2017-11-24 | パナソニックIpマネジメント株式会社 | Absorption type refrigerating machine |
| CN206649297U (en) * | 2016-11-30 | 2017-11-17 | 桂林师范高等专科学校 | The indoor temperature Intelligent Measurement and control system of smart home |
| WO2018173401A1 (en) * | 2017-03-21 | 2018-09-27 | ソニー株式会社 | Information processing device, information processing method, and program |
| US20200224915A1 (en) * | 2019-01-16 | 2020-07-16 | Airviz Inc. | Proactive building air quality management |
| CN210573339U (en) * | 2019-12-10 | 2020-05-19 | 郑州优美智能科技有限公司 | Intelligent gateway with monitoring function |
| CN112050397A (en) * | 2020-08-27 | 2020-12-08 | 浙江省邮电工程建设有限公司 | Method and system for regulating and controlling temperature of machine room |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115112839A (en) * | 2022-06-28 | 2022-09-27 | 歌尔科技有限公司 | Air quality detection method, device, electronic device and readable storage medium |
| CN115901003A (en) * | 2022-11-23 | 2023-04-04 | 南京乾鑫电器设备有限公司 | Temperature monitoring method and system for environment-friendly gas switch cabinet |
| CN115901003B (en) * | 2022-11-23 | 2024-04-09 | 南京乾鑫电器设备有限公司 | Temperature monitoring method and system for environment-friendly gas switch cabinet |
| CN116294277A (en) * | 2023-03-21 | 2023-06-23 | 美的集团武汉暖通设备有限公司 | Control method, device, air conditioner and medium of two-stage air jet enthalpy-increasing heat pump system |
| CN116467628A (en) * | 2023-04-13 | 2023-07-21 | 沈阳兴溢节能环保科技有限公司 | An intelligent shared bathroom room and its control method |
| CN116593065A (en) * | 2023-07-14 | 2023-08-15 | 青岛义龙包装机械有限公司 | Data analysis method of bag type packaging machine detection platform |
| CN116593065B (en) * | 2023-07-14 | 2023-09-15 | 青岛义龙包装机械有限公司 | Data analysis method of bag type packaging machine detection platform |
| CN117308287A (en) * | 2023-09-08 | 2023-12-29 | 山东浪潮科学研究院有限公司 | A centralized intelligent monitoring method for central fresh air system |
| CN117390379B (en) * | 2023-12-11 | 2024-03-19 | 博睿康医疗科技(上海)有限公司 | On-line signal measuring device and confidence measuring device for signal characteristics |
| CN117390379A (en) * | 2023-12-11 | 2024-01-12 | 博睿康医疗科技(上海)有限公司 | Online signal measurement device, signal characteristic confidence measurement device |
| CN117789420A (en) * | 2023-12-28 | 2024-03-29 | 沭阳华润燃气有限公司 | Novel metering data acquisition system |
| CN118233856A (en) * | 2024-04-10 | 2024-06-21 | 深圳市芯伍科技有限公司 | Wi-Fi-based indoor air quality detection method and system |
| CN118128737A (en) * | 2024-05-07 | 2024-06-04 | 德耐尔能源装备有限公司 | Intelligent exhaust pressure control method and device for protecting unit |
| CN118746157A (en) * | 2024-08-08 | 2024-10-08 | 深圳市名汇新材料科技有限公司 | An intelligent control method and related equipment for energy-saving ventilation system |
| CN119739287A (en) * | 2024-12-10 | 2025-04-01 | 曲靖阳光新能源股份有限公司 | Online detection device and detection method for finished square bars |
| CN120833866A (en) * | 2025-09-19 | 2025-10-24 | 苏州工学院 | Multi-component toxic gas detection and classification method and system for stamping workshop |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7560767B2 (en) | 2024-10-03 |
| CN114594202B (en) | 2024-07-30 |
| CN114594202A (en) | 2022-06-07 |
| JPWO2022124276A1 (en) | 2022-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7560767B2 (en) | Indoor air quality prediction method and indoor air quality detection system | |
| US10223896B2 (en) | Operating a security system | |
| US10490198B2 (en) | Device-specific multi-channel data compression neural network | |
| JP6807556B2 (en) | Air conditioning control method, air conditioning control device and air conditioning control program | |
| US11769066B2 (en) | Building data platform with digital twin triggers and actions | |
| CN112145020B (en) | Window control method, device, equipment and storage medium | |
| KR20210041806A (en) | METHOD FOR MANAGING SMART BUILDING USING IoT SENSOR AND ARTIFICIAL INTELIGENCE | |
| CN110136832B (en) | Cognitive ability assessment system and method based on daily behaviors of old people | |
| US10605470B1 (en) | Controlling connected devices using an optimization function | |
| US11409989B2 (en) | Video object detection with co-occurrence | |
| US20190278242A1 (en) | Training server and method for generating a predictive model for controlling an appliance | |
| US20250199487A1 (en) | Control of building services systems | |
| CN119394373B (en) | A smart gas accessory safety monitoring method, Internet of Things system and medium | |
| CN113687609A (en) | Intelligent monitoring system and monitoring method for Internet of things applied to abnormal environment | |
| CN117408680B (en) | Intelligent power distribution room management method and system based on Internet of things | |
| CN114216246B (en) | Air conditioning unit control method and device, storage medium and electronic equipment | |
| CN119644953A (en) | A kind of intelligent manufacturing production line management system and method | |
| KR20230022546A (en) | Deep learning method and apparatus for detecting operating conditions of heating and cooling facilities | |
| US12270801B2 (en) | System and method for monitoring and classifying smoking events in monitored spaces | |
| CN114183898B (en) | Fresh air machine system reservation method, device and system, electronic equipment and storage medium | |
| CN121048238A (en) | Central air conditioning zone control methods, devices, air conditioners and computer-readable media | |
| CN119472427A (en) | A computer room air conditioning control method, device, electronic equipment and storage medium | |
| CN119887097A (en) | Cultural relic preventive protection system based on storage environment monitoring and regulation and control | |
| CN119916731A (en) | An environmental monitoring method based on Internet of Things | |
| CN119335889A (en) | Smart home control method, device, equipment, storage medium and program product |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21903376 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2022568273 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 21903376 Country of ref document: EP Kind code of ref document: A1 |