WO2022177070A1 - Fragment data search device and method - Google Patents
Fragment data search device and method Download PDFInfo
- Publication number
- WO2022177070A1 WO2022177070A1 PCT/KR2021/006804 KR2021006804W WO2022177070A1 WO 2022177070 A1 WO2022177070 A1 WO 2022177070A1 KR 2021006804 W KR2021006804 W KR 2021006804W WO 2022177070 A1 WO2022177070 A1 WO 2022177070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- fragmentary
- information
- search
- search information
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2228—Indexing structures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/242—Query formulation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/242—Query formulation
- G06F16/2428—Query predicate definition using graphical user interfaces, including menus and forms
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2477—Temporal data queries
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
- G06F16/9032—Query formulation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
- G06F16/9032—Query formulation
- G06F16/90324—Query formulation using system suggestions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/907—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/909—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using geographical or spatial information, e.g. location
Definitions
- the present invention relates to an apparatus and method for retrieving fragmentary data.
- time series-based open sources include distributed processing (Hadoop), observation/collection (telegraf, prometheus), visualization (Grafana, etc.), storage management (InfouxDB, Machbase, Graphite, etc.), analysis prediction (prophet, etc.) Integration optimization of other heterogeneous fragmentary data is not considered.
- time series data analysis has been mainly researched in the direction of increasing the accuracy of the learning model by using the standardized data collected for a predetermined purpose.
- Another object of the present invention is to provide an apparatus and method for retrieving fragmented data that can minimize economic loss by utilizing local fragmented data that is difficult to use immediately due to different characteristics.
- Another object of the present invention is to provide an apparatus and method for retrieving fragmented data that can be created and utilized for a new purpose according to the range and characteristics of the fragmented data to be collected.
- Another object of the present invention is to provide a fragmentary data retrieval apparatus and method that can easily select and utilize fragmentary data collected for an unspecified purpose.
- Another object of the present invention is to provide an apparatus and method for retrieving fragmented data that can identify additional relationships between heterogeneous fragmented data and integrate and utilize a large number of private data and open big data.
- the present invention provides an information adding unit for adding a plurality of search information for searching fragmentary data to heterogeneous fragmentary data, and a selection unit for selecting at least one of the plurality of search information;
- a fragmentary data search apparatus comprising: a setting unit for setting reference information for the selected search information; and a search unit for searching relevant fragmentary data among heterogeneous fragmentary data based on the set reference information.
- the fragmentary data may include time series data, semi-time series data, and non-time series data.
- the plurality of search information may include at least one of a type of fragmentary data, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and a reliability.
- non-time series data may include acquisition time information.
- the search unit when the selection unit selects the type and acquisition time of the fragmentary data as the search information, and the setting unit sets the reference time zone as the reference information, it is possible to search the fragment data acquired in the same time zone as the reference time zone.
- the search unit when the selection unit selects the location of acquisition of fragmentary data as the search information, and the setting unit sets the reference location as the reference information, the fragments acquired from the same location as the reference location or from a place within a certain range based on the reference location You can search enemy data.
- the search unit when the selection unit selects a subject for generating fragmented data as the search information and the setting unit sets the reference generating subject as the reference information, the same generating subject as the reference generating subject or a generating subject having a certain relationship with the reference generating subject You can retrieve the fragmented data generated by
- the present invention includes the steps of: adding a plurality of pieces of search information for searching fragmentary data to heterogeneous fragmentary data by the information adding unit; selecting at least one of the plurality of pieces of search information by the selection unit;
- a fragmentary data search method comprising the steps of setting reference information for search information, and searching for relevant fragmentary data among heterogeneous fragmentary data based on the reference information set by the search unit.
- the fragmentary data includes time-series data, semi-time-series data, and non-time-series data
- the plurality of search information includes at least one of a type, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and a reliability of the fragmentary data. may contain one.
- non-time series data may include acquisition time information.
- the step of searching for the fragmentary data is Fragmental data acquired in the same time zone as the time zone can be retrieved.
- the step of retrieving the fragmentary data includes the reference location It is possible to search for fragmented data acquired from the same place as , or from a place within a certain range based on a reference place.
- the step of searching for the fragmentary data includes: Fragmented data generated by the same creator as the subject or by the creator that has a certain relationship with the reference creator can be searched.
- the present invention it is possible to seamlessly search for a large number of fragmented data generated in various places and having different characteristics, and it is possible to interpret and predict integrated and individual situations by integrating and analyzing fragmented data with complex interconnectivity. data processing costs can be reduced by linking to decision-making utilization. In addition, it is possible to minimize economic loss by utilizing local fragmented data that is difficult to use immediately due to different characteristics.
- the fragmented data to be collected it can be created and utilized for a new purpose, and the fragmentary data collected based on an unspecified purpose can be easily selected and utilized, and different types of fragmentary data can be used. Additional relationships between data can be identified. In addition, a large number of private data and open big data can be integrated and utilized.
- FIG. 1 is a diagram showing the main configuration of a fragmentary data search apparatus according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the configuration of a control unit of a fragmentary data search apparatus according to an embodiment of the present invention.
- FIG. 3 is a view for explaining a method of analyzing a cause of indoor air quality and predicting a future situation using the fragmentary data search apparatus according to an embodiment of the present invention.
- FIG. 4 is a view for explaining a method of analyzing the effect of a specific home appliance on a living body using a fragmentary data search apparatus according to an embodiment of the present invention.
- FIG. 5 is a flowchart of a method for retrieving fragmentary data according to an embodiment of the present invention.
- FIG. 1 is a diagram showing the main configuration of a fragmentary data search apparatus according to an embodiment of the present invention.
- the fragmentary data search apparatus 100 includes a communication unit 110 , an input unit 120 , a display unit 130 , a memory 140 , and a control unit 150 .
- a communication unit 110 an input unit 120 , a display unit 130 , a memory 140 , and a control unit 150 .
- the communication unit 110 may communicate with an external device such as a server (not shown) to receive different types of fragmented data.
- the communication unit 110 is 5 th generation communication (5G), long term evolution-advanced (LTE-A), long term evolution (LTE), Bluetooth, bluetooth low energe (BLE), near field communication (NFC), etc. of wireless communication, and wired communication such as cable communication may be performed.
- 5G 5 th generation communication
- LTE-A long term evolution-advanced
- LTE long term evolution
- LTE long term evolution
- Bluetooth Bluetooth
- BLE bluetooth low energe
- NFC near field communication
- the input unit 120 generates input data in response to a user's input.
- the input unit 120 includes at least one input means.
- the input unit 120 includes a keyboard, a keypad, a dome switch, a touch panel, a touch key, a mouse, a menu button, etc. may include
- the display unit 130 displays search information and reference information related to the operation of the fragmentary data retrieval apparatus 100 , and displays the fragmented data retrieved by the fragmentary data retrieval apparatus 100 .
- the display unit 130 includes a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light emitting diode (OLED) display, and a micro electro mechanical system (MEMS). systems) displays and electronic paper displays. Also, the display unit 130 may be combined with the input unit 120 to be implemented as a touch screen.
- LCD liquid crystal display
- LED light emitting diode
- OLED organic light emitting diode
- MEMS micro electro mechanical system
- systems displays and electronic paper displays.
- the display unit 130 may be combined with the input unit 120 to be implemented as a touch screen.
- the memory 140 stores operation programs of the fragmentary data retrieval apparatus 100 .
- the memory 140 may store various algorithms related to fragmentary data retrieval, and the memory 140 may store a plurality of fragmented data received from an external device.
- the controller 150 may perform a series of operation processes for retrieving fragmentary data using an operation program and an algorithm stored in the memory 140 .
- FIG. 2 is a diagram showing the configuration of a control unit of a fragmentary data search apparatus according to an embodiment of the present invention.
- the fragmentary data retrieval apparatus 100 can easily and efficiently search for relevant fragmentary data at the right time and place according to needs and purposes for fragmentary data collected at different purposes and places. can
- the control unit 150 of the apparatus 100 for searching fragmentary data includes an information adding unit 151 , a selection unit 152 , a setting unit 153 , and a search unit ( 154) may be included.
- the information adding unit 151 may add a plurality of pieces of search information for searching fragmentary data related to each other to the fragmentary data of different types.
- heterogeneous fragmentary data is data having different characteristics generated by various generating entities in various places, and may mean local and incomplete data collected with different rights.
- Such fragmentary data may include time series data, semi-time series data, and non-time series data.
- time series data includes time information, and time itself is a very important criterion.
- the image data includes time information according to the content flow, but does not include acquisition time information, so it is non-time series data.
- event data for recognizing an event is non-time-series data because it is non-periodic data that is collected according to the occurrence of an event situation, not data acquired at regular intervals.
- text-oriented issue data such as news can utilize time information at the time the issue occurred, but it is mostly non-time series data because it is stored and interpreted based on the issue itself rather than time information.
- Biometric data can be defined as time series data, but because it is collected as needed (Cross-Sectional Data), it is stored in the form of fragmented data collected for a short period of time.
- the plurality of search information may include at least one of a type of fragmentary data, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and a reliability.
- the selection unit 152 may select at least one of a plurality of pieces of search information. That is, the selection unit 152 may select at least one of a type of fragmentary data, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and a reliability.
- the type of fragmentary data means whether the fragmentary data corresponds to time series data, semi-time series data, and non-time series data, and may be utilized when integrating fragmentary data in the future.
- the location of the fragmented data acquisition means the unique location where the fragmented data was acquired, and it can be utilized when integrating the fragmentary data in the future.
- time series data naturally contains time information, so there is no problem, but non-time series data does not contain time information. have.
- the access level of the fragmented data by adding the access level of the fragmented data to the fragmented data, it is possible to check the access authority of the data and to check and manage whether it is possible to integrate when the fragmented data is integrated.
- the access level can also be linked to paying for data usage.
- fragmentary data may include numeric, character, and categorical types, and if it is necessary to perform operations with other data after fragmentary data is integrated in the future, this should be considered.
- the subject of generating fragmentary data may include a producer, generating household, generating country, and generating device. If this is added as search information, fragmentary data related to the generating subject can be searched.
- the reliability of the integrated data generated by integrating the fragmentary data in the future may be estimated by adding the reliability to the fragmentary data.
- the setting unit 153 may set reference information for the search information selected by the selection unit 152 . That is, the setting unit 153 may set a reference location for the location of acquisition of fragmentary data, and set a reference time zone (eg, specific time zone, specific day, specific month, and specific season) for the acquisition time of fragmentary data. and it is possible to set a standard generating entity (eg, a specific device, a specific user, and a specific country) for the subject of generating fragmentary data.
- a standard generating entity eg, a specific device, a specific user, and a specific country
- the search unit 154 may search for and collect fragmentary data related to each other among heterogeneous fragmentary data based on the reference information set by the setting unit 153 .
- the search unit 154 when the selection unit 152 selects the type and acquisition time of fragmentary data as the search information, and the setting unit 153 sets the reference time zone as the reference information, the set reference time zone and Fragmental data acquired in the same time period can be retrieved.
- the search unit 154 when the selection unit 152 selects the location of acquisition of fragmentary data as the search information, and the setting unit 153 sets the reference location as the reference information, the same location as the set reference location or It is possible to search for fragmentary data acquired from a place within a certain range based on the reference place.
- the search unit 154 when the selection unit 152 selects the generation subject of fragmentary data as the search information and the setting unit 153 sets the reference generation entity as the reference information, the search unit 154 generates the same generation as the set reference generation entity. Fragmental data generated by a subject or a generating subject that has a certain relationship with the reference generating subject can be retrieved.
- the selection unit 152 may select a plurality of pieces of search information, and the setting unit 153 may set reference information for each search information. Accordingly, the search unit 154 may search for and collect relevant fragmentary data based on a plurality of pieces of reference information.
- the selection unit 152 may select an acquisition time and place of the fragmentary data as the search information, and the setting unit 153 may set a reference time zone and a reference place for the acquisition time and place. Accordingly, the search unit 154 may search for and collect relevant fragmentary data based on the reference time zone and the reference location.
- the fragmentary data searched for by the search unit 154 may be integrated and analyzed in the future, thereby improving the data utilization value of the fragmentary data.
- the display unit 130 visualizes and displays the fragmentary data retrieved by the search unit 154 based on the reference information to determine the possibility of integrating the fragmentary data.
- the fragmentary data retrieval apparatus 100 enables a smooth search for a plurality of fragmented data generated in various places and having different characteristics, and has a complex interconnectivity.
- By integrating data analysis it is possible to interpret and predict aggregated and disparate situations, and to link to decision-making utilization, thereby reducing the cost of data processing.
- FIG. 3 is a view for explaining a method of analyzing a cause of indoor air quality and predicting a future situation using the fragmentary data search apparatus according to an embodiment of the present invention.
- indoor air quality meters are provided inside a plurality of furniture, respectively, to measure indoor air quality to generate indoor air quality data H1 , H2 , and H3 .
- Data that can be associated with indoor air quality data (H1, H2, H3) to analyze causes of indoor air quality and predict future situations include outdoor air quality data (A1, A2) and weather data (W) provided by the public.
- the outdoor air quality data (A1, A2) and weather data (W) are measured and disclosed by devices sporadically installed in various specific areas nationwide, so anyone can freely use them.
- the fragmentary data retrieval apparatus 100 sets the acquisition location and time of the fragmentary data to search for fragmentary data, thereby measuring and generating the outdoor measured and generated at the location closest to individual households.
- Air quality data (A1, A2) and weather data (W) can be searched easily and efficiently, and by integrating these data into indoor air quality data (H1, H2, H3) on a time axis and analyzing the cause of indoor air quality and future situation can be predicted
- FIG. 4 is a view for explaining a method of analyzing the effect of a specific home appliance on a living body using a fragmentary data search apparatus according to an embodiment of the present invention.
- a specific piece of furniture may have two separate first and second spaces, and one IoT sensor is provided inside the first space to generate the first environmental data R1 and the second space. Two IoT sensors are provided inside to generate second and third environment data R2 and R3.
- the first to third members constituting a specific household carry devices that generate biometric data P1 , P2 , and P3 by measuring individual biometric conditions.
- the specific home appliance in the first space (R1) is the first member's
- the data that can be associated with the biometric data P1 is the first environmental data R1
- a specific home appliance in the second space R2 affects the living body of the second and third members.
- Data that may be associated with the biometric data P2 and P3 in order to analyze the effect is the second and third environmental data R2 and R3.
- the fragmentary data retrieval apparatus 100 sets the acquisition location and time of fragmentary data to search fragmentary data, so that an IoT sensor located in a space with individual members is measured and generated
- One environment data can be easily and efficiently searched, and the effect of a specific home appliance on the living body can be efficiently analyzed by integrating the retrieved environmental data with the biometric data on a time axis and analyzing it.
- the fragmentary data search apparatus 100 may search fragmentary data in consideration of an access level of the fragmented data.
- a new service by integrating image data (ie, time series data about people who visited a place by time) acquired from a plurality of CCTVs installed in one area and public data on weather and traffic. If the conditions for disclosing the corresponding data (eg, payment of cost and policy authority, etc.) are different depending on the owner of each CCTV, the service provider can selectively search only fragmented data that meets the conditions.
- image data ie, time series data about people who visited a place by time
- the service provider can selectively search only fragmented data that meets the conditions.
- the fragmentary data search apparatus 100 can efficiently search fragmentary data related to each other by selecting search information and setting reference information based on various cases.
- fragmentary data retrieval apparatus 100 According to the fragmentary data retrieval apparatus 100 according to the embodiment of the present invention described above, it can be generated and utilized for a new purpose according to the range and characteristics of the fragmented data to be collected, and the fragmentary data collected based on an unspecified purpose can be easily selected and utilized, and additional relationships between heterogeneous fragmentary data can be identified. In addition, a large number of private data and open big data can be integrated and utilized.
- FIG. 5 is a flowchart of a method for retrieving fragmentary data according to an embodiment of the present invention.
- the information adding unit 151 adds a plurality of pieces of search information for searching fragmentary data to heterogeneous fragmentary data (S10).
- the fragmentary data includes time series data, semi-time series data, and non-time series data.
- the non-time series data includes acquisition time information.
- the plurality of search information includes at least one of a type of fragmentary data, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and reliability.
- the selection unit 152 selects at least one of the plurality of search information (S20).
- the setting unit 153 sets reference information for the selected search information (S30).
- the search unit 154 searches for relevant fragmentary data among heterogeneous fragmentary data based on the set reference information (S40).
- the step (S40) of searching for fragmentary data is a step (S30) of selecting the type and acquisition time of the fragmentary data as the search information in the step (S20) of selecting the search information, and setting the reference time period (S30). If the reference time zone is set as information, fragmentary data acquired in the same time zone as the reference time zone is retrieved.
- the step (S40) of retrieving the fragmentary data is, in the step (S20) of selecting the search information, an acquisition location of the fragmentary data as the search information, and as the reference information in the step (S30) of setting the reference information
- the reference location is set, the fragmented data acquired from the same location as the reference location or from a location within a certain range based on the reference location is searched.
- the step (S40) of searching for the fragmentary data is to select the generation subject of the fragmentary data as the search information in the step (S20) of selecting the search information, and as the reference information in the step (S30) of setting the reference information
- the fragment data generated by the same generating subject as the reference generating subject or by the generating subject having a certain relationship with the reference generating subject is retrieved.
- the fragment data retrieval method enables a smooth search for a large number of fragmentary data generated in various places and having different characteristics, and integrates fragmentary data with complex interconnectivity. By analyzing, it is possible to interpret and predict holistic and discrete situations, and link them to decision-making utilization, thereby reducing the cost of data processing. In addition, it is possible to minimize economic loss by utilizing local fragmented data that is difficult to use immediately due to different characteristics.
- fragmentary data retrieval method can be created and utilized for a new purpose according to the range and characteristics of the fragmentary data to be collected, and the fragmentary data collected based on an unspecified purpose can be easily selected It can be used by doing this, and additional relationships between heterogeneous fragmentary data can be identified.
- a large number of private data and open big data can be integrated and utilized.
- the fragmentary data retrieval apparatus according to the present invention can be used in various computing fields, including programs and algorithms used for data collection, retrieval, and analysis.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Library & Information Science (AREA)
- Remote Sensing (AREA)
- Fuzzy Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Human Computer Interaction (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
The present invention provides a fragment data search device comprising: an information adding unit which adds, to heterogeneous fragment data, a plurality of pieces of search information for searching fragment data; a selecting unit for selecting at least one of the plurality of pieces of search information; a setting unit for setting reference information for the selected search information; and a searching unit which searches for relevant fragment data among the heterogeneous fragment data, on the basis of the set reference information.
Description
본 발명은 파편적 데이터 검색 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for retrieving fragmentary data.
IoT(Internet of Things) 기술의 발전과 기기 보급의 확산으로 확보할 수 있는 데이터의 종류와 양이 기하급수적으로 늘어나고 있다. 그 중 시계열 기반 데이터의 경우 활용 가능한 분석 오픈 소스가 영상 등 타 데이터 포맷에 비해 많지 않고, 원시 자료의 데이터 전처리 난이도가 높아 민간이 의미 있는 통찰 정보를 뽑아내기 위한 추가 비용이 높은 편이다.With the development of Internet of Things (IoT) technology and the spread of devices, the types and amounts of data that can be secured are increasing exponentially. Among them, in the case of time series-based data, there are not many open sources of analysis available compared to other data formats such as video, and the difficulty of data preprocessing of raw data is high, so the additional cost for the private sector to extract meaningful insight information is high.
여기서, 시계열 기반 오픈 소스로는 분산 처리(Hadoop), 관측·수집(telegraf, prometheus), 시각화(Grafana 등), 저장 관리(InfouxDB, Machbase, Graphite 등), 분석 예측(prophet 등) 등이 있으나 서로 다른 이종의 파편적 데이터의 통합 최적화는 고려하지 않고 있다.Here, time series-based open sources include distributed processing (Hadoop), observation/collection (telegraf, prometheus), visualization (Grafana, etc.), storage management (InfouxDB, Machbase, Graphite, etc.), analysis prediction (prophet, etc.) Integration optimization of other heterogeneous fragmentary data is not considered.
또한, 단일 시계열 분석에 대한 기술 연구는 꾸준히 발전하여 왔으나 파편화된 이종의 시계열 데이터를 검색하고 통합 분석하는 알고리즘 및 플랫폼 연구는 더디게 진행되고 있는 실정이다.In addition, although technical research on single time series analysis has been steadily developed, research on algorithms and platforms for searching and integrated analysis of fragmented heterogeneous time series data has been slow.
또한, 현재까지 시계열 데이터 분석은 정해진 목적에 의해 수집된 정형화된 데이터를 사용하여 학습 모델의 정확도를 높이는 방향으로 주로 연구가 진행되고 있다.In addition, until now, time series data analysis has been mainly researched in the direction of increasing the accuracy of the learning model by using the standardized data collected for a predetermined purpose.
또한, 현실에서 수집되는 대부분의 데이터들은 서로 다른 물리 단위, 해상도, 사이즈 및 포맷에 대한 개별 차가 뚜렷하고 대부분 목적이 합의되지 않은 채로 수집되고 있고, 데이터 수집 시 정해진 활용 용도(무엇을 분석할지, 어떻게 활용될지 등)에 따라 개별적으로 수집되고 활용되었다.In addition, most of the data collected in reality have distinct individual differences for different physical units, resolutions, sizes and formats, and most of them are collected without an agreed purpose. etc.) were collected and utilized individually.
또한, 이종의 파편적 데이터들은 서로 다른 특성으로 인해 해석되지 못한 채 데이터 공간만 차지하여 경제적 손실을 야기하고 있다.In addition, heterogeneous fragmented data are not interpreted due to their different characteristics and only occupy data space, causing economic loss.
따라서, 서로 다른 목적과 장소에서 수집된 이종의 파편적 데이터들에 대해 필요와 목적이 변하더라도 적시 적소의 데이터를 선택하고 통합하여 이를 활용할 필요가 있다.Therefore, it is necessary to select, integrate, and utilize data in the right place at the right time, even if the needs and purposes change for heterogeneous fragmented data collected from different purposes and places.
상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여, 본 발명은, 다양한 장소에서 생성되며 서로 다른 특성을 갖는 다수의 파편적 데이터에 대한 원활한 검색이 가능한 파편적 데이터 검색 장치 및 방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, it is an object of the present invention to provide a fragmentary data retrieval apparatus and method capable of smoothly searching for a plurality of fragmented data generated in various places and having different characteristics. do it with
또한, 본 발명은, 서로 다른 특성으로 인해 즉각 활용이 어려운 지엽적인 파편적 데이터를 활용할 수 있어 경제적 손실을 최소화할 수 있는 파편적 데이터 검색 장치 및 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide an apparatus and method for retrieving fragmented data that can minimize economic loss by utilizing local fragmented data that is difficult to use immediately due to different characteristics.
또한, 본 발명은, 수집되는 파편적 데이터의 범위와 특성에 따라 새로운 목적으로 생성하여 활용할 수 있는 파편적 데이터 검색 장치 및 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide an apparatus and method for retrieving fragmented data that can be created and utilized for a new purpose according to the range and characteristics of the fragmented data to be collected.
또한, 본 발명은, 불특정 목적을 기반으로 수집된 파편적 데이터를 쉽게 취사 선택하여 활용할 수 있는 파편적 데이터 검색 장치 및 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a fragmentary data retrieval apparatus and method that can easily select and utilize fragmentary data collected for an unspecified purpose.
또한, 본 발명은, 이종의 파편적 데이터 간 추가적인 관계를 파악할 수 있고, 다수의 프라이빗 데이터와 오픈 빅 데이터들을 통합 및 활용할 수 있는 파편적 데이터 검색 장치 및 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide an apparatus and method for retrieving fragmented data that can identify additional relationships between heterogeneous fragmented data and integrate and utilize a large number of private data and open big data.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. There will be.
전술한 과제를 해결하기 위해, 본 발명은, 이종의 파편적 데이터에 파편적 데이터를 검색하기 위한 복수의 검색 정보를 추가하는 정보 추가부와, 복수의 검색 정보 중 적어도 하나를 선택하는 선택부와, 선택된 검색 정보에 대한 기준 정보를 설정하는 설정부와, 설정된 기준 정보를 기준으로 이종의 파편적 데이터들 중 관련성 있는 파편적 데이터를 검색하는 검색부를 포함하는 파편적 데이터 검색 장치를 제공한다.In order to solve the above problems, the present invention provides an information adding unit for adding a plurality of search information for searching fragmentary data to heterogeneous fragmentary data, and a selection unit for selecting at least one of the plurality of search information; Provided is a fragmentary data search apparatus comprising: a setting unit for setting reference information for the selected search information; and a search unit for searching relevant fragmentary data among heterogeneous fragmentary data based on the set reference information.
여기서, 파편적 데이터는, 시계열 데이터, 반시계열 데이터 및 비시계열 데이터를 포함할 수 있다.Here, the fragmentary data may include time series data, semi-time series data, and non-time series data.
또한, 복수의 검색 정보는, 파편적 데이터의 종류, 취득 장소, 취득 시간, 에러, 접근 레벨, 속성, 생성 주체 및 신뢰도 중 적어도 하나를 포함할 수 있다.In addition, the plurality of search information may include at least one of a type of fragmentary data, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and a reliability.
또한, 비시계열 데이터는 취득 시간 정보를 포함할 수 있다.In addition, the non-time series data may include acquisition time information.
또한, 검색부는, 선택부가 검색 정보로 파편적 데이터의 종류 및 취득 시간을 선택하고, 설정부가 기준 정보로 기준 시간대를 설정하면, 기준 시간대와 동일한 시간대에 취득된 파편적 데이터를 검색할 수 있다.In addition, the search unit, when the selection unit selects the type and acquisition time of the fragmentary data as the search information, and the setting unit sets the reference time zone as the reference information, it is possible to search the fragment data acquired in the same time zone as the reference time zone.
또한, 검색부는, 선택부가 검색 정보로 파편적 데이터의 취득 장소를 선택하고, 설정부가 기준 정보로 기준 장소를 설정하면, 기준 장소와 동일한 장소 또는 기준 장소를 기준으로 일정 범위 내의 장소에서 취득된 파편적 데이터를 검색할 수 있다.In addition, the search unit, when the selection unit selects the location of acquisition of fragmentary data as the search information, and the setting unit sets the reference location as the reference information, the fragments acquired from the same location as the reference location or from a place within a certain range based on the reference location You can search enemy data.
또한, 검색부는, 선택부가 검색 정보로 파편적 데이터의 생성 주체를 선택하고, 설정부가 기준 정보로 기준 생성 주체를 설정하면, 기준 생성 주체와 동일한 생성 주체 또는 기준 생성 주체와 일정 관계가 있는 생성 주체가 생성한 파편적 데이터를 검색할 수 있다.In addition, the search unit, when the selection unit selects a subject for generating fragmented data as the search information and the setting unit sets the reference generating subject as the reference information, the same generating subject as the reference generating subject or a generating subject having a certain relationship with the reference generating subject You can retrieve the fragmented data generated by
또한, 본 발명은, 정보 추가부가 이종의 파편적 데이터에 파편적 데이터를 검색하기 위한 복수의 검색 정보를 추가하는 단계와, 선택부가 복수의 검색 정보 중 적어도 하나를 선택하는 단계와, 설정부가 선택된 검색 정보에 대한 기준 정보를 설정하는 단계와, 검색부가 설정된 기준 정보를 기준으로 이종의 파편적 데이터들 중 관련성 있는 파편적 데이터를 검색하는 단계를 포함하는 파편적 데이터 검색 방법을 제공한다.In addition, the present invention includes the steps of: adding a plurality of pieces of search information for searching fragmentary data to heterogeneous fragmentary data by the information adding unit; selecting at least one of the plurality of pieces of search information by the selection unit; There is provided a fragmentary data search method comprising the steps of setting reference information for search information, and searching for relevant fragmentary data among heterogeneous fragmentary data based on the reference information set by the search unit.
여기서, 파편적 데이터는 시계열 데이터, 반시계열 데이터 및 비시계열 데이터를 포함하고, 복수의 검색 정보는 파편적 데이터의 종류, 취득 장소, 취득 시간, 에러, 접근 레벨, 속성, 생성 주체 및 신뢰도 중 적어도 하나를 포함할 수 있다.Here, the fragmentary data includes time-series data, semi-time-series data, and non-time-series data, and the plurality of search information includes at least one of a type, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and a reliability of the fragmentary data. may contain one.
또한, 비시계열 데이터는 취득 시간 정보를 포함할 수 있다.In addition, the non-time series data may include acquisition time information.
또한, 검색 정보를 선택하는 단계에서 검색 정보로 파편적 데이터의 종류 및 취득 시간을 선택하고, 기준 시간대를 설정하는 단계에서 기준 정보로 기준 시간대를 설정하면, 파편적 데이터를 검색하는 단계는, 기준 시간대와 동일한 시간대에 취득된 파편적 데이터를 검색할 수 있다.In addition, if the type and acquisition time of fragmentary data is selected as the search information in the step of selecting the search information, and the reference time zone is set as the reference information in the step of setting the reference time zone, the step of searching for the fragmentary data is Fragmental data acquired in the same time zone as the time zone can be retrieved.
또한, 검색 정보를 선택하는 단계에서 검색 정보로 상기 파편적 데이터의 취득 장소를 선택하고, 기준 정보를 설정하는 단계에서 기준 정보로 기준 장소를 설정하면, 파편적 데이터를 검색하는 단계는, 기준 장소와 동일한 장소 또는 기준 장소를 기준으로 일정 범위 내의 장소에서 취득된 파편적 데이터를 검색할 수 있다.In addition, if the acquisition location of the fragmentary data is selected as the search information in the step of selecting the search information, and the reference location is set as the reference information in the step of setting the reference information, the step of retrieving the fragmentary data includes the reference location It is possible to search for fragmented data acquired from the same place as , or from a place within a certain range based on a reference place.
또한, 검색 정보를 선택하는 단계에서 검색 정보로 파편적 데이터의 생성 주체를 선택하고, 기준 정보를 설정하는 단계에서 기준 정보로 기준 생성 주체를 설정하면, 파편적 데이터를 검색하는 단계는, 기준 생성 주체와 동일한 생성 주체 또는 기준 생성 주체와 일정 관계가 있는 생성 주체가 생성한 파편적 데이터를 검색할 수 있다.In addition, if a subject for generating fragmentary data is selected as the search information in the step of selecting search information, and a reference generating subject is set as the reference information in the step of setting the reference information, the step of searching for the fragmentary data includes: Fragmented data generated by the same creator as the subject or by the creator that has a certain relationship with the reference creator can be searched.
본 발명에 따르면, 다양한 장소에서 생성되며 서로 다른 특성을 갖는 다수의 파편적 데이터에 대한 원활한 검색이 가능하며, 복합적으로 상호 연결성을 갖는 파편적 데이터를 통합 분석함으로써 통합적 및 개별적 상황을 해석 및 예측할 수 있고 의사 결정 활용에 연결시켜 데이터 처리 비용을 절감할 수 있다. 또한, 서로 다른 특성으로 인해 즉각 활용이 어려운 지엽적인 파편적 데이터를 활용할 수 있어 경제적 손실을 최소화할 수 있다.According to the present invention, it is possible to seamlessly search for a large number of fragmented data generated in various places and having different characteristics, and it is possible to interpret and predict integrated and individual situations by integrating and analyzing fragmented data with complex interconnectivity. data processing costs can be reduced by linking to decision-making utilization. In addition, it is possible to minimize economic loss by utilizing local fragmented data that is difficult to use immediately due to different characteristics.
또한, 본 발명에 따르면, 수집되는 파편적 데이터의 범위와 특성에 따라 새로운 목적으로 생성하여 활용할 수 있으며, 불특정 목적을 기반으로 수집된 파편적 데이터를 쉽게 취사 선택하여 활용할 수 있고, 이종의 파편적 데이터 간 추가적인 관계를 파악할 수 있다. 또한, 다수의 프라이빗 데이터와 오픈 빅 데이터들을 통합 및 활용할 수 있다.In addition, according to the present invention, according to the scope and characteristics of the fragmented data to be collected, it can be created and utilized for a new purpose, and the fragmentary data collected based on an unspecified purpose can be easily selected and utilized, and different types of fragmentary data can be used. Additional relationships between data can be identified. In addition, a large number of private data and open big data can be integrated and utilized.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned may be clearly understood by those of ordinary skill in the art from the following description. will be.
도 1은 본 발명의 실시 예에 따른 파편적 데이터 검색 장치의 주요 구성을 나타낸 도면이다.1 is a diagram showing the main configuration of a fragmentary data search apparatus according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 파편적 데이터 검색 장치의 제어부의 구성을 나타낸 도면이다.2 is a diagram showing the configuration of a control unit of a fragmentary data search apparatus according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 파편적 데이터 검색 장치를 이용해 실내 공기질의 원인 분석 및 향후 상황을 예측하는 방법을 설명하기 위한 도면이다.3 is a view for explaining a method of analyzing a cause of indoor air quality and predicting a future situation using the fragmentary data search apparatus according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 파편적 데이터 검색 장치를 이용해 특정 가전 기기가 생체에 미치는 영향을 분석하는 방법을 설명하기 위한 도면이다.4 is a view for explaining a method of analyzing the effect of a specific home appliance on a living body using a fragmentary data search apparatus according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 파편적 데이터 검색 방법의 순서도이다.5 is a flowchart of a method for retrieving fragmentary data according to an embodiment of the present invention.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러 가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.In order to fully understand the configuration and effect of the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and may be embodied in various forms and various modifications may be made. However, the description of the present embodiment is provided so that the disclosure of the present invention is complete, and to fully inform those of ordinary skill in the art to which the present invention pertains the scope of the invention. In the accompanying drawings, components are enlarged in size than actual for convenience of description, and ratios of each component may be exaggerated or reduced.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.Terms such as 'first' and 'second' may be used to describe various elements, but the elements should not be limited by the above terms. The above term may be used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a 'first component' may be termed a 'second component', and similarly, a 'second component' may also be termed a 'first component'. can Also, the singular expression includes the plural expression unless the context clearly dictates otherwise. Unless otherwise defined, terms used in the embodiments of the present invention may be interpreted as meanings commonly known to those of ordinary skill in the art.
도 1은 본 발명의 실시 예에 따른 파편적 데이터 검색 장치의 주요 구성을 나타낸 도면이다.1 is a diagram showing the main configuration of a fragmentary data search apparatus according to an embodiment of the present invention.
도 1에 도시한 바와 같이, 본 발명에 따른 파편적 데이터 검색 장치(100)는, 통신부(110), 입력부(120), 표시부(130), 메모리(140) 및 제어부(150)를 포함하여 구성될 수 있다. As shown in FIG. 1 , the fragmentary data search apparatus 100 according to the present invention includes a communication unit 110 , an input unit 120 , a display unit 130 , a memory 140 , and a control unit 150 . can be
통신부(110)는 서버(미도시) 등의 외부 장치와의 통신을 수행하여 이종의 파편적 데이터를 전송 받을 수 있다. 이를 위해, 통신부(110)는 5G(5th generation communication), LTE-A(long term evolution-advanced), LTE(long term evolution), 블루투스, BLE(bluetooth low energe), NFC(near field communication) 등의 무선 통신을 수행할 수 있고, 케이블 통신 등의 유선 통신을 수행할 수 있다.The communication unit 110 may communicate with an external device such as a server (not shown) to receive different types of fragmented data. To this end, the communication unit 110 is 5 th generation communication (5G), long term evolution-advanced (LTE-A), long term evolution (LTE), Bluetooth, bluetooth low energe (BLE), near field communication (NFC), etc. of wireless communication, and wired communication such as cable communication may be performed.
입력부(120)는 사용자의 입력에 대응하여, 입력 데이터를 발생시킨다. 입력부(120)는 적어도 하나의 입력 수단을 포함한다. 입력부(120)는 키보드(key board), 키패드(key pad), 돔 스위치(dome switch), 터치패널(touch panel), 터치 키(touch key), 마우스(mouse), 메뉴 버튼(menu button) 등을 포함할 수 있다.The input unit 120 generates input data in response to a user's input. The input unit 120 includes at least one input means. The input unit 120 includes a keyboard, a keypad, a dome switch, a touch panel, a touch key, a mouse, a menu button, etc. may include
표시부(130)는 파편적 데이터 검색 장치(100)의 동작과 관련된 검색 정보 및 기준 정보를 표시하고, 파편적 데이터 검색 장치(100)가 검색한 파편적 데이터를 표시한다. The display unit 130 displays search information and reference information related to the operation of the fragmentary data retrieval apparatus 100 , and displays the fragmented data retrieved by the fragmentary data retrieval apparatus 100 .
이와 같은, 표시부(130)는 액정 디스플레이(LCD; liquid crystal display), 발광 다이오드(LED; light emitting diode) 디스플레이, 유기 발광 다이오드(OLED; organic LED) 디스플레이, 마이크로 전자기계 시스템(MEMS; micro electro mechanical systems) 디스레이 및 전자 종이(electronic paper) 디스플레이를 포함한다. 또한, 표시부(130)는 입력부(120)와 결합되어 터치 스크린(touch screen)으로 구현될 수 있다.As such, the display unit 130 includes a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light emitting diode (OLED) display, and a micro electro mechanical system (MEMS). systems) displays and electronic paper displays. Also, the display unit 130 may be combined with the input unit 120 to be implemented as a touch screen.
메모리(140)는 파편적 데이터 검색 장치(100)의 동작 프로그램들을 저장한다. 또한, 메모리(140)는 파편적 데이터 검색에 관련된 각종 알고리즘을 저장할 수 있고, 메모리(140)는 외부 장치로부터 수신된 다수의 파편적 데이터를 저장할 수 있다. The memory 140 stores operation programs of the fragmentary data retrieval apparatus 100 . In addition, the memory 140 may store various algorithms related to fragmentary data retrieval, and the memory 140 may store a plurality of fragmented data received from an external device.
제어부(150)는 메모리(140)에 저장된 동작 프로그램 및 알고리즘을 이용하여 파편적 데이터를 검색하는 일련의 동작 과정을 수행할 수 있다.The controller 150 may perform a series of operation processes for retrieving fragmentary data using an operation program and an algorithm stored in the memory 140 .
도 2는 본 발명의 실시예에 따른 파편적 데이터 검색 장치의 제어부의 구성을 나타낸 도면이다.2 is a diagram showing the configuration of a control unit of a fragmentary data search apparatus according to an embodiment of the present invention.
본 발명의 실시예에 따른 파편적 데이터 검색 장치(100)는, 서로 다른 목적 및 장소에서 수집된 파편적 데이터들에 대해서 필요와 목적에 따라 적시 적소에서 관련성 있는 파편적 데이터를 쉽고 효율적으로 검색할 수 있다.The fragmentary data retrieval apparatus 100 according to an embodiment of the present invention can easily and efficiently search for relevant fragmentary data at the right time and place according to needs and purposes for fragmentary data collected at different purposes and places. can
도 2를 참조하면, 본 발명의 실시예에 따른 파편적 데이터 검색 장치(100)의 제어부(150)는, 정보 추가부(151), 선택부(152), 설정부(153) 및 검색부(154)를 포함하여 구성될 수 있다.Referring to FIG. 2 , the control unit 150 of the apparatus 100 for searching fragmentary data according to an embodiment of the present invention includes an information adding unit 151 , a selection unit 152 , a setting unit 153 , and a search unit ( 154) may be included.
정보 추가부(151)는 이종의 파편적 데이터에 서로 관련된 파편적 데이터를 검색하기 위한 복수의 검색 정보를 추가할 수 있다.The information adding unit 151 may add a plurality of pieces of search information for searching fragmentary data related to each other to the fragmentary data of different types.
여기서, 이종의 파편적 데이터는, 다양한 생성 주체가 다양한 장소에서 생성한 서로 다른 특성을 갖는 데이터로서, 서로 다른 권한을 갖고 수집된 지엽적이고 불완전한 데이터를 의미할 수 있다.Here, heterogeneous fragmentary data is data having different characteristics generated by various generating entities in various places, and may mean local and incomplete data collected with different rights.
이러한 파편적 데이터는 시계열 데이터, 반시계열 데이터 및 비시계열 데이터를 포함할 수 있다.Such fragmentary data may include time series data, semi-time series data, and non-time series data.
시계열 데이터는, 일반 데이터와 달리 시간 정보를 포함하고 있으며, 시간 자체가 매우 중요한 기준이 되는 데이터이다.Unlike general data, time series data includes time information, and time itself is a very important criterion.
IoT(Internet of Things) 센서의 센서 데이터는 대부분 일정 시간 간격을 바탕으로 수집된다. 여기서, 영상 데이터의 경우 컨텐츠 흐름에 따른 시간 정보를 포함하고 있지만 취득 시간 정보를 포함하고 있지 않아 비시계열 데이터이다.Most of the sensor data of the IoT (Internet of Things) sensor is collected based on a certain time interval. Here, the image data includes time information according to the content flow, but does not include acquisition time information, so it is non-time series data.
또한, 이벤트(문 개폐 등)를 인식하는 이벤트 데이터는 일정 간격에 의해 획득된 데이터가 아니라 이벤트 상황 발생에 따라 수집되는 비 정기적인 데이터이기 때문에 비시계열 데이터이다.In addition, event data for recognizing an event (door opening/closing, etc.) is non-time-series data because it is non-periodic data that is collected according to the occurrence of an event situation, not data acquired at regular intervals.
또한, 뉴스 등의 텍스트 위주의 이슈 데이터는 이슈가 발생한 시점의 시간 정보를 활용할 수는 있으나, 대부분 시간 정보 보다는 이슈 그 자체를 중심으로 보관되고 해석 되어지기 때문에 비시계열 데이터이다.In addition, text-oriented issue data such as news can utilize time information at the time the issue occurred, but it is mostly non-time series data because it is stored and interpreted based on the issue itself rather than time information.
생체 데이터는 시계열 데이터라고 정의할 수는 있으나 필요에 따라 수집되기 때문에(Cross-Sectional Data) 단기간 수집된 파편화된 데이터 형태로 저장되어있고 장기간 관점에서는 측정되지 않고 비어있는 시간대가 많아 반시계열 데이터이다.Biometric data can be defined as time series data, but because it is collected as needed (Cross-Sectional Data), it is stored in the form of fragmented data collected for a short period of time.
복수의 검색 정보는 파편적 데이터의 종류, 취득 장소, 취득 시간, 에러, 접근 레벨, 속성, 생성 주체 및 신뢰도 중 적어도 하나를 포함할 수 있다.The plurality of search information may include at least one of a type of fragmentary data, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and a reliability.
선택부(152)는 복수의 검색 정보 중 적어도 하나를 선택할 수 있다. 즉, 선택부(152)는 파편적 데이터의 종류, 취득 장소, 취득 시간, 에러, 접근 레벨, 속성, 생성 주체 및 신뢰도 중 적어도 하나를 선택할 수 있다.The selection unit 152 may select at least one of a plurality of pieces of search information. That is, the selection unit 152 may select at least one of a type of fragmentary data, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and a reliability.
여기서, 파편적 데이터의 종류는 파편적 데이터가 시계열 데이터, 반시계열 데이터 및 비시계열 데이터 중 어디에 해당하는지를 의미하며, 향후 파편적 데이터 통합 시 활용될 수 있다.Here, the type of fragmentary data means whether the fragmentary data corresponds to time series data, semi-time series data, and non-time series data, and may be utilized when integrating fragmentary data in the future.
또한, 파편적 데이터의 취득 장소는 파편적 데이터를 취득한 고유의 장소를 의미하며, 향후 파편적 데이터 통합 시 활용될 수 있다.In addition, the location of the fragmented data acquisition means the unique location where the fragmented data was acquired, and it can be utilized when integrating the fragmentary data in the future.
또한, 파편적 데이터의 취득 시간과 관련하여, 시계열 데이터는 당연히 시간 정보를 포함하고 있어 문제 없지만, 비시계열 데이터는 시간 정보를 포함하고 있지 않아 데이터를 취득한 취득 시간 정보를 파편적 데이터에 추가할 수 있다.In addition, with respect to the acquisition time of fragmentary data, time series data naturally contains time information, so there is no problem, but non-time series data does not contain time information. have.
또한, 파편적 데이터의 에러와 관련하여, 데이터에 이상이 발생한 시간 정보를 파편적 데이터에 추가하여 향후 파편적 데이터를 통합하여 생성된 통합 데이터의 에러율을 추정할 수 있다.In addition, with respect to the error of the fragmentary data, it is possible to estimate the error rate of the integrated data generated by integrating the fragmentary data in the future by adding information about when an abnormality occurred in the data to the fragmentary data.
또한, 파편적 데이터의 접근 레벨을 파편적 데이터에 추가하여, 데이터의 접근 권한을 확인하고 파편적 데이터 통합 시 통합 가능 여부를 확인 및 관리할 수 있다. 여기서, 접근 레벨은 데이터 사용에 대한 비용 지불과도 연결될 수 있다.In addition, by adding the access level of the fragmented data to the fragmented data, it is possible to check the access authority of the data and to check and manage whether it is possible to integrate when the fragmented data is integrated. Here, the access level can also be linked to paying for data usage.
또한, 파편적 데이터의 속성은 수치형(numeric), 문자형(string) 및 범주형(categorical) 등이 있을 수 있으며, 향후 파편적 데이터가 통합된 후 다른 테이터와의 연산을 수행해야 할 경우 이를 고려할 수 있다.In addition, the properties of fragmentary data may include numeric, character, and categorical types, and if it is necessary to perform operations with other data after fragmentary data is integrated in the future, this should be considered. can
또한, 파편적 데이터의 생성 주체는 생성자, 생성 가구, 생성 국가 및 생성 기기 등이 있을 수 있으며, 이를 검색 정보로 추가하면 생성 주체와 관련된 파편적 데이터를 검색할 수 있다.In addition, the subject of generating fragmentary data may include a producer, generating household, generating country, and generating device. If this is added as search information, fragmentary data related to the generating subject can be searched.
또한, 파편적 데이터의 신뢰도와 관련하여, 신뢰도를 파편적 데이터에 추가하여 향후 파편적 데이터를 통합하여 생성된 통합 데이터의 신뢰도를 추정할 수 있다.In addition, with respect to the reliability of the fragmentary data, the reliability of the integrated data generated by integrating the fragmentary data in the future may be estimated by adding the reliability to the fragmentary data.
설정부(153)는 선택부(152)에 의해 선택된 검색 정보에 대한 기준 정보를 설정할 수 있다. 즉, 설정부(153)는 파편적 데이터의 취득 장소에 대한 기준 장소를 설정할 수 있고, 파편적 데이터의 취득 시간에 대한 기준 시간대(예컨대, 특정 시간대, 특정 일, 특정 월 및 특정 계절)를 설정할 수 있고, 파편적 데이터의 생성 주체에 대한 기준 생성 주체(예컨대, 특정 기기, 특정 사용자 및 특정 국가)를 설정할 수 있다.The setting unit 153 may set reference information for the search information selected by the selection unit 152 . That is, the setting unit 153 may set a reference location for the location of acquisition of fragmentary data, and set a reference time zone (eg, specific time zone, specific day, specific month, and specific season) for the acquisition time of fragmentary data. and it is possible to set a standard generating entity (eg, a specific device, a specific user, and a specific country) for the subject of generating fragmentary data.
검색부(154)는 설정부(153)에 의해 설정된 기준 정보를 기준으로 이종의 파편적 데이터들 중 서로 관련성 있는 파편적 데이터를 검색 및 수집할 수 있다.The search unit 154 may search for and collect fragmentary data related to each other among heterogeneous fragmentary data based on the reference information set by the setting unit 153 .
구체적으로, 검색부(154)는, 선택부(152)가 검색 정보로 파편적 데이터의 종류 및 취득 시간을 선택하고, 설정부(153)가 기준 정보로 기준 시간대를 설정하면, 설정된 기준 시간대와 동일한 시간대에 취득된 파편적 데이터를 검색할 수 있다.Specifically, the search unit 154, when the selection unit 152 selects the type and acquisition time of fragmentary data as the search information, and the setting unit 153 sets the reference time zone as the reference information, the set reference time zone and Fragmental data acquired in the same time period can be retrieved.
또한, 검색부(154)는, 선택부(152)가 검색 정보로 파편적 데이터의 취득 장소를 선택하고, 설정부(153)가 기준 정보로 기준 장소를 설정하면, 설정된 기준 장소와 동일한 장소 또는 기준 장소를 기준으로 일정 범위 내의 장소에서 취득된 파편적 데이터를 검색할 수 있다.In addition, the search unit 154, when the selection unit 152 selects the location of acquisition of fragmentary data as the search information, and the setting unit 153 sets the reference location as the reference information, the same location as the set reference location or It is possible to search for fragmentary data acquired from a place within a certain range based on the reference place.
또한, 검색부(154)는 선택부(152)가 검색 정보로 파편적 데이터의 생성 주체를 선택하고, 설정부(153)가 기준 정보로 기준 생성 주체를 설정하면, 설정된 기준 생성 주체와 동일한 생성 주체 또는 기준 생성 주체와 일정 관계가 있는 생성 주체가 생성한 파편적 데이터를 검색할 수 있다.In addition, when the selection unit 152 selects the generation subject of fragmentary data as the search information and the setting unit 153 sets the reference generation entity as the reference information, the search unit 154 generates the same generation as the set reference generation entity. Fragmental data generated by a subject or a generating subject that has a certain relationship with the reference generating subject can be retrieved.
한편, 선택부(152)는 복수의 검색 정보를 선택할 수 있고, 설정부(153)는 각 검색 정보에 대한 기준 정보를 설정할 수 있다. 이에 따라, 검색부(154)는 복수의 기준 정보를 기준으로 관련성 있는 파편적 데이터를 검색 및 수집할 수 있다. 예를 들어, 선택부(152)는 검색 정보로 파편적 데이터의 취득 시간 및 장소를 선택할 수 있고, 설정부(153)는 취득 시간 및 장소에 대한 기준 시간대 및 기준 장소를 설정할 수 있다. 이에 따라, 검색부(154)는 기준 시간대 및 기준 장소를 기준으로 관련성 있는 파편적 데이터를 검색 및 수집할 수 있다.Meanwhile, the selection unit 152 may select a plurality of pieces of search information, and the setting unit 153 may set reference information for each search information. Accordingly, the search unit 154 may search for and collect relevant fragmentary data based on a plurality of pieces of reference information. For example, the selection unit 152 may select an acquisition time and place of the fragmentary data as the search information, and the setting unit 153 may set a reference time zone and a reference place for the acquisition time and place. Accordingly, the search unit 154 may search for and collect relevant fragmentary data based on the reference time zone and the reference location.
이와 같이, 검색부(154)에 의해 검색된 파편적 데이터는 향후 통합되어 분석됨으로써, 파편적 데이터의 데이터 활용 가치를 향상시킬 수 있다.As such, the fragmentary data searched for by the search unit 154 may be integrated and analyzed in the future, thereby improving the data utilization value of the fragmentary data.
표시부(130)는 검색부(154)에 의해 검색된 파편적 데이터들을 기준 정보를 기준으로 시각화하여 표시함으로써 파편적 데이터의 통합 가능성을 판단할 수 있다.The display unit 130 visualizes and displays the fragmentary data retrieved by the search unit 154 based on the reference information to determine the possibility of integrating the fragmentary data.
전술한 본 발명의 실시예에 따른 파편적 데이터 검색 장치(100)는, 다양한 장소에서 생성되며 서로 다른 특성을 갖는 다수의 파편적 데이터에 대한 원활한 검색이 가능하며, 복합적으로 상호 연결성을 갖는 파편적 데이터를 통합 분석함으로써 통합적 및 개별적 상황을 해석 및 예측할 수 있고 의사 결정 활용에 연결시켜 데이터 처리 비용을 절감할 수 있다. 또한, 서로 다른 특성으로 인해 즉각 활용이 어려운 지엽적인 파편적 데이터를 활용할 수 있어 경제적 손실을 최소화할 수 있다.The fragmentary data retrieval apparatus 100 according to the above-described embodiment of the present invention enables a smooth search for a plurality of fragmented data generated in various places and having different characteristics, and has a complex interconnectivity. By integrating data analysis, it is possible to interpret and predict aggregated and disparate situations, and to link to decision-making utilization, thereby reducing the cost of data processing. In addition, it is possible to minimize economic loss by utilizing local fragmented data that is difficult to use immediately due to different characteristics.
도 3은 본 발명의 실시예에 따른 파편적 데이터 검색 장치를 이용해 실내 공기질의 원인 분석 및 향후 상황을 예측하는 방법을 설명하기 위한 도면이다.3 is a view for explaining a method of analyzing a cause of indoor air quality and predicting a future situation using the fragmentary data search apparatus according to an embodiment of the present invention.
도 3을 참조하면, 복수의 가구 내부에 실내 공기질 측정기가 각각 구비되어 실내 공기질을 측정하여 실내 공기질 데이터(H1, H2, H3)를 생성한다. 실내 공기질의 원인 분석 및 향후 상황을 예측하기 위해 실내 공기질 데이터(H1, H2, H3)와 연관될 수 있는 데이터로는 공공에서 제공하는 실외 공기질 데이터(A1, A2)와 날씨 데이터(W)가 있을 수 있다. 여기서, 실외 공기질 데이터(A1, A2) 및 날씨 데이터(W)는 전국적으로 여러 특정 지역들에 산발적으로 설치된 기기에 의해 측정되어 공개되기 때문에 누구든지 자유롭게 활용 가능하다.Referring to FIG. 3 , indoor air quality meters are provided inside a plurality of furniture, respectively, to measure indoor air quality to generate indoor air quality data H1 , H2 , and H3 . Data that can be associated with indoor air quality data (H1, H2, H3) to analyze causes of indoor air quality and predict future situations include outdoor air quality data (A1, A2) and weather data (W) provided by the public. can Here, the outdoor air quality data (A1, A2) and weather data (W) are measured and disclosed by devices sporadically installed in various specific areas nationwide, so anyone can freely use them.
이 때, 실내 공기질(H1, H2, H3)의 원인 분석 및 향후 상황을 예측하기 위해서는 개별 가구와 가장 가까운 위치에서 측정 및 생성된 실외 공기질 데이터(A1, A2) 및 날씨 데이터(W)를 검색 및 수집하고 이를 가공하여 활용해야 한다.At this time, in order to analyze the causes of indoor air quality (H1, H2, H3) and predict the future situation, search for and generate outdoor air quality data (A1, A2) and weather data (W) measured and generated at the location closest to each household. It must be collected, processed and used.
이를 위해, 본 발명의 실시예에 따른 파편적 데이터 검색 장치(100)는, 파편적 데이터의 취득 장소 및 시간을 설정하여 파편적 데이터를 검색함으로써, 개별 가구와 가장 가까운 위치에서 측정 및 생성된 실외 공기질 데이터(A1, A2) 및 날씨 데이터(W)를 쉽고 효율적으로 검색할 수 있고, 이들 데이터들을 실내 공기질 데이터(H1, H2, H3)에 시간축으로 통합하여 분석함으로써 실내 공기질의 원인 분석 및 향후 상황을 예측할 수 있다.To this end, the fragmentary data retrieval apparatus 100 according to an embodiment of the present invention sets the acquisition location and time of the fragmentary data to search for fragmentary data, thereby measuring and generating the outdoor measured and generated at the location closest to individual households. Air quality data (A1, A2) and weather data (W) can be searched easily and efficiently, and by integrating these data into indoor air quality data (H1, H2, H3) on a time axis and analyzing the cause of indoor air quality and future situation can be predicted
도 4는 본 발명의 실시예에 따른 파편적 데이터 검색 장치를 이용해 특정 가전 기기가 생체에 미치는 영향을 분석하는 방법을 설명하기 위한 도면이다.4 is a view for explaining a method of analyzing the effect of a specific home appliance on a living body using a fragmentary data search apparatus according to an embodiment of the present invention.
도 4를 참조하면, 특정 가구는 두 개의 분리된 제1 및 제2 공간을 가질 수 있으며, 제1 공간 내부에는 하나의 IoT 센서가 구비되어 제1 환경 데이터(R1)를 생성하고, 제2 공간 내부에는 두 개의 IoT 센서가 구비되어 제2 및 제3 환경 데이터(R2, R3)를 생성한다. 또한, 특정 가구를 구성하는 제1 내지 제3 구성원들은 개개의 생체 상황을 측정하여 생체 데이터(P1, P2, P3)를 생성하는 기기를 휴대하고 있다.Referring to FIG. 4 , a specific piece of furniture may have two separate first and second spaces, and one IoT sensor is provided inside the first space to generate the first environmental data R1 and the second space. Two IoT sensors are provided inside to generate second and third environment data R2 and R3. In addition, the first to third members constituting a specific household carry devices that generate biometric data P1 , P2 , and P3 by measuring individual biometric conditions.
여기서, 제1 구성원이 제1 공간(R1) 내부에 있고, 제2 및 제3 구성원이 제2 공간(R2) 내부에 있는 경우, 제1 공간(R1)에 있는 특정 가전 기기가 제1 구성원의 생체에 미치는 영향을 분석하기 위해 생체 데이터(P1)와 연관될 수 있는 데이터는 제1 환경 데이터(R1)이고, 제2 공간(R2)에 있는 특정 가전 기기가 제2 및 제3 구성원의 생체에 미치는 영향을 분석하기 위해 생체 데이터(P2, P3)와 연관될 수 있는 데이터는 제2 및 제3 환경 데이터(R2, R3)이다.Here, when the first member is inside the first space (R1), and the second and third members are inside the second space (R2), the specific home appliance in the first space (R1) is the first member's In order to analyze the effect on the living body, the data that can be associated with the biometric data P1 is the first environmental data R1, and a specific home appliance in the second space R2 affects the living body of the second and third members. Data that may be associated with the biometric data P2 and P3 in order to analyze the effect is the second and third environmental data R2 and R3.
여기서, 본 발명의 실시예에 따른 파편적 데이터 검색 장치(100)는, 파편적 데이터의 취득 장소 및 시간을 설정하여 파편적 데이터를 검색함으로써, 개별 구성원이 있는 공간에 위치한 IoT 센서가 측정 및 생성한 환경 데이터를 쉽고 효율적으로 검색할 수 있고, 검색된 환경 데이터를 생체 데이터에 시간축으로 통합하여 분석함으로써 특정 가전 기기가 생체에 미치는 영향을 효율적으로 분석할 수 있다.Here, the fragmentary data retrieval apparatus 100 according to an embodiment of the present invention sets the acquisition location and time of fragmentary data to search fragmentary data, so that an IoT sensor located in a space with individual members is measured and generated One environment data can be easily and efficiently searched, and the effect of a specific home appliance on the living body can be efficiently analyzed by integrating the retrieved environmental data with the biometric data on a time axis and analyzing it.
본 발명의 실시예에 따른 파편적 데이터 검색 장치(100)는, 파편적 데이터의 접근 레벨을 고려하여 파편적 데이터를 검색할 수 있다.The fragmentary data search apparatus 100 according to an embodiment of the present invention may search fragmentary data in consideration of an access level of the fragmented data.
예를 들어, 한 지역에 설치된 복수의 CCTV에서 회득한 영상 데이터(즉, 시간별 장소에 방문한 사람에 대한 시계열 데이터)와 날씨 및 교통 등에 관한 공공 데이터를 통합하여 새로운 서비스를 제공할 수 있다 이 때, 각 CCTV의 소유자에 따라 해당 데이터를 공개하는 조건(예컨대, 비용 지불 및 정책적 권한 등)이 서로 다른 경우 서비스 제공자는 조건에 맞는 파편적 데이터만을 선별적으로 검색할 수 있다.For example, it is possible to provide a new service by integrating image data (ie, time series data about people who visited a place by time) acquired from a plurality of CCTVs installed in one area and public data on weather and traffic. If the conditions for disclosing the corresponding data (eg, payment of cost and policy authority, etc.) are different depending on the owner of each CCTV, the service provider can selectively search only fragmented data that meets the conditions.
이 외에도 본 발명의 실시예에 따른 파편적 데이터 검색 장치(100)는 다양한 사례에 기반하여 검색 정보를 선택하고 기준 정보를 설정함으로써, 서로 관련성 있는 파편적 데이터를 효율적으로 검색할 수 있다.In addition to this, the fragmentary data search apparatus 100 according to an embodiment of the present invention can efficiently search fragmentary data related to each other by selecting search information and setting reference information based on various cases.
전술한 본 발명의 실시예에 따른 파편적 데이터 검색 장치(100)에 따르면, 수집되는 파편적 데이터의 범위와 특성에 따라 새로운 목적으로 생성하여 활용할 수 있으며, 불특정 목적을 기반으로 수집된 파편적 데이터를 쉽게 취사 선택하여 활용할 수 있고, 이종의 파편적 데이터 간 추가적인 관계를 파악할 수 있다. 또한, 다수의 프라이빗 데이터와 오픈 빅 데이터들을 통합 및 활용할 수 있다.According to the fragmentary data retrieval apparatus 100 according to the embodiment of the present invention described above, it can be generated and utilized for a new purpose according to the range and characteristics of the fragmented data to be collected, and the fragmentary data collected based on an unspecified purpose can be easily selected and utilized, and additional relationships between heterogeneous fragmentary data can be identified. In addition, a large number of private data and open big data can be integrated and utilized.
도 5는 본 발명의 실시예에 따른 파편적 데이터 검색 방법의 순서도이다.5 is a flowchart of a method for retrieving fragmentary data according to an embodiment of the present invention.
이하, 도 1 내지 도 5를 참조하여 본 발명의 실시예에 따른 파편적 데이터 검색 방법을 설명하되 전술한 내용과 동일한 내용에 대해서는 생략하겠다.Hereinafter, a fragmentary data retrieval method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5, but the same contents as those described above will be omitted.
본 발명의 실시예에 따른 파편적 데이터 검색 방법은, 먼저, 정보 추가부(151)가 이종의 파편적 데이터에 파편적 데이터를 검색하기 위한 복수의 검색 정보를 추가한다(S10). 여기서, 파편적 데이터는 시계열 데이터, 반시계열 데이터 및 비시계열 데이터를 포함한다. 그리고, 그리고, 비시계열 데이터는 취득 시간 정보를 포함한다. 그리고, 복수의 검색 정보는 파편적 데이터의 종류, 취득 장소, 취득 시간, 에러, 접근 레벨, 속성, 생성 주체 및 신뢰도 중 적어도 하나를 포함한다.In the fragmentary data search method according to an embodiment of the present invention, first, the information adding unit 151 adds a plurality of pieces of search information for searching fragmentary data to heterogeneous fragmentary data (S10). Here, the fragmentary data includes time series data, semi-time series data, and non-time series data. And, the non-time series data includes acquisition time information. In addition, the plurality of search information includes at least one of a type of fragmentary data, an acquisition location, an acquisition time, an error, an access level, an attribute, a generation subject, and reliability.
다음, 선택부(152)가 복수의 검색 정보 중 적어도 하나를 선택한다(S20).Next, the selection unit 152 selects at least one of the plurality of search information (S20).
다음, 설정부(153)가 선택된 검색 정보에 대한 기준 정보를 설정한다(S30).Next, the setting unit 153 sets reference information for the selected search information (S30).
다음, 검색부(154)가 설정된 기준 정보를 기준으로 이종의 파편적 데이터들 중 관련성 있는 파편적 데이터를 검색한다(S40).Next, the search unit 154 searches for relevant fragmentary data among heterogeneous fragmentary data based on the set reference information (S40).
여기서, 파편적 데이터를 검색하는 단계(S40)는, 검색 정보를 선택하는 단계(S20)에서 검색 정보로 파편적 데이터의 종류 및 취득 시간을 선택하고, 기준 시간대를 설정하는 단계(S30)에서 기준 정보로 기준 시간대를 설정하면, 기준 시간대와 동일한 시간대에 취득된 파편적 데이터를 검색한다.Here, the step (S40) of searching for fragmentary data is a step (S30) of selecting the type and acquisition time of the fragmentary data as the search information in the step (S20) of selecting the search information, and setting the reference time period (S30). If the reference time zone is set as information, fragmentary data acquired in the same time zone as the reference time zone is retrieved.
또한, 파편적 데이터를 검색하는 단계(S40)는, 검색 정보를 선택하는 단계(S20)에서 검색 정보로 파편적 데이터의 취득 장소를 선택하고, 기준 정보를 설정하는 단계(S30)에서 기준 정보로 기준 장소를 설정하면, 기준 장소와 동일한 장소 또는 기준 장소를 기준으로 일정 범위 내의 장소에서 취득된 파편적 데이터를 검색한다.In addition, the step (S40) of retrieving the fragmentary data is, in the step (S20) of selecting the search information, an acquisition location of the fragmentary data as the search information, and as the reference information in the step (S30) of setting the reference information When the reference location is set, the fragmented data acquired from the same location as the reference location or from a location within a certain range based on the reference location is searched.
또한, 파편적 데이터를 검색하는 단계(S40)는, 검색 정보를 선택하는 단계(S20)에서 검색 정보로 파편적 데이터의 생성 주체를 선택하고, 기준 정보를 설정하는 단계(S30)에서 기준 정보로 기준 생성 주체를 설정하면, 기준 생성 주체와 동일한 생성 주체 또는 기준 생성 주체와 일정 관계가 있는 생성 주체가 생성한 상기 파편적 데이터를 검색한다.In addition, the step (S40) of searching for the fragmentary data is to select the generation subject of the fragmentary data as the search information in the step (S20) of selecting the search information, and as the reference information in the step (S30) of setting the reference information When the reference generating subject is set, the fragment data generated by the same generating subject as the reference generating subject or by the generating subject having a certain relationship with the reference generating subject is retrieved.
전술한 본 발명의 실시예에 따른 파편적 데이터 검색 방법은, 다양한 장소에서 생성되며 서로 다른 특성을 갖는 다수의 파편적 데이터에 대한 원활한 검색이 가능하며, 복합적으로 상호 연결성을 갖는 파편적 데이터를 통합 분석함으로써 통합적 및 개별적 상황을 해석 및 예측할 수 있고 의사 결정 활용에 연결시켜 데이터 처리 비용을 절감할 수 있다. 또한, 서로 다른 특성으로 인해 즉각 활용이 어려운 지엽적인 파편적 데이터를 활용할 수 있어 경제적 손실을 최소화할 수 있다.The fragment data retrieval method according to the embodiment of the present invention described above enables a smooth search for a large number of fragmentary data generated in various places and having different characteristics, and integrates fragmentary data with complex interconnectivity. By analyzing, it is possible to interpret and predict holistic and discrete situations, and link them to decision-making utilization, thereby reducing the cost of data processing. In addition, it is possible to minimize economic loss by utilizing local fragmented data that is difficult to use immediately due to different characteristics.
또한, 본 발명의 실시예에 따른 파편적 데이터 검색 방법은, 수집되는 파편적 데이터의 범위와 특성에 따라 새로운 목적으로 생성하여 활용할 수 있으며, 불특정 목적을 기반으로 수집된 파편적 데이터를 쉽게 취사 선택하여 활용할 수 있고, 이종의 파편적 데이터 간 추가적인 관계를 파악할 수 있다. 또한, 다수의 프라이빗 데이터와 오픈 빅 데이터들을 통합 및 활용할 수 있다.In addition, the fragmentary data retrieval method according to an embodiment of the present invention can be created and utilized for a new purpose according to the range and characteristics of the fragmentary data to be collected, and the fragmentary data collected based on an unspecified purpose can be easily selected It can be used by doing this, and additional relationships between heterogeneous fragmentary data can be identified. In addition, a large number of private data and open big data can be integrated and utilized.
본 발명의 상세한 설명에서는 구체적인 실시 예에 관하여 설명하였으나 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되지 않으며, 후술되는 청구범위 및 이 청구범위와 균등한 것들에 의해 정해져야 한다.In the detailed description of the present invention, although specific embodiments have been described, various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention is not limited to the described embodiments, and should be defined by the following claims and their equivalents.
본 발명에 따른 파편적 데이터 검색 장치는 데이터 수집, 검색 및 분석 등에 이용되는 프로그램 및 알고리즘을 포함하여 다양한 컴퓨팅 분야에 이용될 수 있다.The fragmentary data retrieval apparatus according to the present invention can be used in various computing fields, including programs and algorithms used for data collection, retrieval, and analysis.
Claims (13)
- 이종의 파편적 데이터에 상기 파편적 데이터를 검색하기 위한 복수의 검색 정보를 추가하는 정보 추가부;an information adding unit for adding a plurality of pieces of search information for searching the fragmentary data to heterogeneous fragmentary data;상기 복수의 검색 정보 중 적어도 하나를 선택하는 선택부;a selection unit for selecting at least one of the plurality of pieces of search information;선택된 상기 검색 정보에 대한 기준 정보를 설정하는 설정부; 및a setting unit for setting reference information for the selected search information; and설정된 상기 기준 정보를 기준으로 상기 이종의 파편적 데이터들 중 관련성 있는 상기 파편적 데이터를 검색하는 검색부A search unit that searches for the relevant fragmentary data among the heterogeneous fragmentary data based on the set reference information를 포함하는 파편적 데이터 검색 장치.A fragmentary data retrieval device comprising a.
- 제 1 항에 있어서,The method of claim 1,상기 파편적 데이터는The fragmented data시계열 데이터, 반시계열 데이터 및 비시계열 데이터를 포함하는time series data, semi-time series data, and non-time series data.파편적 데이터 검색 장치.Fragmental data retrieval device.
- 제 2 항에 있어서,3. The method of claim 2,상기 복수의 검색 정보는The plurality of search information is상기 파편적 데이터의 종류, 취득 장소, 취득 시간, 에러, 접근 레벨, 속성, 생성 주체 및 신뢰도 중 적어도 하나를 포함하는including at least one of a type of the fragmented data, a location of acquisition, a time of acquisition, an error, an access level, an attribute, a creation subject, and a reliability파편적 데이터 검색 장치.Fragmental data retrieval device.
- 제 3 항에 있어서,4. The method of claim 3,상기 비시계열 데이터는The non-time series data is취득 시간 정보를 포함하는Acquisition time information파편적 데이터 검색 장치.Fragmental data retrieval device.
- 제 4 항에 있어서,5. The method of claim 4,상기 검색부는the search unit상기 선택부가 상기 검색 정보로 상기 파편적 데이터의 종류 및 취득 시간을 선택하고, 상기 설정부가 상기 기준 정보로 기준 시간대를 설정하면,When the selection unit selects the type and acquisition time of the fragmentary data as the search information, and the setting unit sets the reference time period as the reference information,상기 기준 시간대와 동일한 시간대에 취득된 상기 파편적 데이터를 검색하는retrieving the fragmentary data acquired in the same time zone as the reference time zone파편적 데이터 검색 장치.Fragmental data retrieval device.
- 제 3 항에 있어서,4. The method of claim 3,상기 검색부는the search unit상기 선택부가 상기 검색 정보로 상기 파편적 데이터의 취득 장소를 선택하고, 상기 설정부가 상기 기준 정보로 기준 장소를 설정하면,When the selection unit selects a location for acquiring the fragmentary data with the search information, and the setting unit sets a reference location with the reference information,상기 기준 장소와 동일한 장소 또는 상기 기준 장소를 기준으로 일정 범위 내의 장소에서 취득된 상기 파편적 데이터를 검색하는retrieving the fragmented data acquired from the same place as the reference place or from a place within a certain range based on the reference place파편적 데이터 검색 장치.Fragmental data retrieval device.
- 제 3 항에 있어서,4. The method of claim 3,상기 검색부는the search unit상기 선택부가 상기 검색 정보로 상기 파편적 데이터의 생성 주체를 선택하고, 상기 설정부가 상기 기준 정보로 기준 생성 주체를 설정하면,When the selection unit selects the generation subject of the fragmentary data as the search information, and the setting unit sets the reference generation entity as the reference information,상기 기준 생성 주체와 동일한 생성 주체 또는 상기 기준 생성 주체와 일정 관계가 있는 생성 주체가 생성한 상기 파편적 데이터를 검색하는retrieving the fragmented data generated by the same generating subject as the reference generating subject or by the generating subject having a certain relationship with the reference generating subject파편적 데이터 검색 장치.Fragmental data retrieval device.
- 정보 추가부가 이종의 파편적 데이터에 상기 파편적 데이터를 검색하기 위한 복수의 검색 정보를 추가하는 단계;adding, by an information adding unit, a plurality of pieces of search information for searching the fragmentary data to heterogeneous fragmentary data;선택부가 상기 복수의 검색 정보 중 적어도 하나를 선택하는 단계;selecting, by a selection unit, at least one of the plurality of pieces of search information;설정부가 선택된 상기 검색 정보에 대한 기준 정보를 설정하는 단계; 및setting, by a setting unit, reference information for the selected search information; and검색부가 설정된 상기 기준 정보를 기준으로 상기 이종의 파편적 데이터들 중 관련성 있는 상기 파편적 데이터를 검색하는 단계Searching for the relevant fragmentary data among the heterogeneous fragmentary data based on the reference information set by the search unit를 포함하는 파편적 데이터 검색 방법.A method of retrieving fragmentary data, including
- 제 8 항에 있어서,9. The method of claim 8,상기 파편적 데이터는The fragmented data시계열 데이터, 반시계열 데이터 및 비시계열 데이터를 포함하는time series data, semi-time series data, and non-time series data.상기 복수의 검색 정보는The plurality of search information is상기 파편적 데이터의 종류, 취득 장소, 취득 시간, 에러, 접근 레벨, 속성, 생성 주체 및 신뢰도 중 적어도 하나를 포함하는including at least one of a type of the fragmented data, a location of acquisition, a time of acquisition, an error, an access level, an attribute, a creation subject, and a reliability파편적 데이터 검색 방법.How to retrieve fragmentary data.
- 제 9 항에 있어서,10. The method of claim 9,상기 비시계열 데이터는The non-time series data is취득 시간 정보를 포함하는Acquisition time information파편적 데이터 검색 방법.How to retrieve fragmentary data.
- 제 10 항에 있어서,11. The method of claim 10,상기 검색 정보를 선택하는 단계에서 상기 검색 정보로 상기 파편적 데이터의 종류 및 취득 시간을 선택하고, 상기 기준 시간대를 설정하는 단계에서 상기 기준 정보로 기준 시간대를 설정하면,When the type and acquisition time of the fragmentary data are selected as the search information in the step of selecting the search information, and the reference time zone is set as the reference information in the step of setting the reference time zone,상기 파편적 데이터를 검색하는 단계는The step of retrieving the fragmentary data is상기 기준 시간대와 동일한 시간대에 취득된 상기 파편적 데이터를 검색하는retrieving the fragmentary data acquired in the same time zone as the reference time zone파편적 데이터 검색 방법.How to retrieve fragmentary data.
- 제 9 항에 있어서,10. The method of claim 9,상기 검색 정보를 선택하는 단계에서 상기 검색 정보로 상기 파편적 데이터의 취득 장소를 선택하고, 상기 기준 정보를 설정하는 단계에서 상기 기준 정보로 기준 장소를 설정하면,In the step of selecting the search information, when the location of acquisition of the fragmentary data is selected as the search information, and in the step of setting the reference information, the reference location is set as the reference information,상기 파편적 데이터를 검색하는 단계는The step of retrieving the fragmentary data is상기 기준 장소와 동일한 장소 또는 상기 기준 장소를 기준으로 일정 범위 내의 장소에서 취득된 상기 파편적 데이터를 검색하는retrieving the fragmented data acquired from the same place as the reference place or from a place within a certain range based on the reference place파편적 데이터 검색 방법.How to retrieve fragmentary data.
- 제 9 항에 있어서,10. The method of claim 9,상기 검색 정보를 선택하는 단계에서 상기 검색 정보로 상기 파편적 데이터의 생성 주체를 선택하고, 상기 기준 정보를 설정하는 단계에서 상기 기준 정보로 기준 생성 주체를 설정하면,When a subject for generating the fragmented data is selected as the search information in the step of selecting the search information, and a reference generating subject is set as the reference information in the step of setting the reference information,상기 파편적 데이터를 검색하는 단계는The step of retrieving the fragmentary data is상기 기준 생성 주체와 동일한 생성 주체 또는 상기 기준 생성 주체와 일정 관계가 있는 생성 주체가 생성한 상기 파편적 데이터를 검색하는retrieving the fragmented data generated by the same generating subject as the reference generating subject or by the generating subject having a certain relationship with the reference generating subject파편적 데이터 검색 방법.How to retrieve fragmentary data.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210021631A KR102457964B1 (en) | 2021-02-18 | 2021-02-18 | Apparatus and method for searching fragmented data |
KR10-2021-0021631 | 2021-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022177070A1 true WO2022177070A1 (en) | 2022-08-25 |
Family
ID=82932024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/006804 WO2022177070A1 (en) | 2021-02-18 | 2021-06-01 | Fragment data search device and method |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102457964B1 (en) |
WO (1) | WO2022177070A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240039439A (en) | 2022-09-19 | 2024-03-26 | 주식회사 엘지에너지솔루션 | Battery rack, battery container and energy storage system including the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080225738A1 (en) * | 2007-03-16 | 2008-09-18 | Sankar Virdhagriswaran | Method and system for retrieving time series data |
US20130103657A1 (en) * | 2010-05-14 | 2013-04-25 | Hitachi, Ltd. | Time-series data management device, system, method, and program |
US20140172868A1 (en) * | 2012-12-17 | 2014-06-19 | General Electric Company | System and method for storage, querying, and analysis service for time series data |
KR20170107500A (en) * | 2015-01-22 | 2017-09-25 | 미쓰비시덴키 가부시키가이샤 | Time series data retrieval apparatus and a time series data retrieval program stored in a recording medium |
KR20200020347A (en) * | 2018-08-17 | 2020-02-26 | 주식회사 마크베이스 | Method and device of searching index for sensor tag data |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10248621B2 (en) * | 2016-02-09 | 2019-04-02 | Moonshadow Mobile, Inc. | Systems and methods for storing, updating, searching, and filtering time-series datasets |
KR102592071B1 (en) * | 2018-06-06 | 2023-10-19 | 지멘스 악티엔게젤샤프트 | Method and computerized device for performing range searching in numerical time series data |
KR102205267B1 (en) * | 2019-02-28 | 2021-01-20 | 김상준 | 3D Visualization System and method for time series data |
-
2021
- 2021-02-18 KR KR1020210021631A patent/KR102457964B1/en active Active
- 2021-06-01 WO PCT/KR2021/006804 patent/WO2022177070A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080225738A1 (en) * | 2007-03-16 | 2008-09-18 | Sankar Virdhagriswaran | Method and system for retrieving time series data |
US20130103657A1 (en) * | 2010-05-14 | 2013-04-25 | Hitachi, Ltd. | Time-series data management device, system, method, and program |
US20140172868A1 (en) * | 2012-12-17 | 2014-06-19 | General Electric Company | System and method for storage, querying, and analysis service for time series data |
KR20170107500A (en) * | 2015-01-22 | 2017-09-25 | 미쓰비시덴키 가부시키가이샤 | Time series data retrieval apparatus and a time series data retrieval program stored in a recording medium |
KR20200020347A (en) * | 2018-08-17 | 2020-02-26 | 주식회사 마크베이스 | Method and device of searching index for sensor tag data |
Also Published As
Publication number | Publication date |
---|---|
KR102457964B1 (en) | 2022-10-24 |
KR20220118026A (en) | 2022-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tönjes et al. | Real time iot stream processing and large-scale data analytics for smart city applications | |
US7982603B2 (en) | Sensor net system, sensor net system data managing method, and sensor net system data managing program | |
WO2011162446A1 (en) | Module and method for deciding named entity of term using named entity dictionary combined with ontology schema and mining rule | |
EP2622788A2 (en) | Method and apparatus for controlling device and computer readable medium storing the method | |
WO2014193065A1 (en) | Video search apparatus and method | |
WO2015099394A1 (en) | Building management system for converting equipment in building into database and method for same | |
WO2023106504A1 (en) | Method, device, and computer-readable recording medium for machine learning-based observation level measurement using server system log, and for risk level calculation according to same measurement | |
WO2013089303A1 (en) | Energy management apparatus and method of registering devices of same | |
WO2016133234A1 (en) | Image analysis system for analyzing dynamically allocated camera image, integrated control system including same, and operation method therefor | |
WO2019117637A1 (en) | Device for providing visitor behavior analysis data of dynamic webpage, and method for providing visitor behavior analysis data of website using same | |
WO2022177070A1 (en) | Fragment data search device and method | |
WO2021225217A1 (en) | System for integral analysis and management of video data | |
WO2023075097A1 (en) | System and method for analyzing experiment data of science experiment apparatus | |
WO2015099390A1 (en) | Building control method using network map and system for same | |
WO2021256597A1 (en) | System for generation of user-customized image identification deep learning model through object labeling and operation method thereof | |
WO2019124770A1 (en) | Terminal apparatus and control method of terminal apparatus | |
WO2020032502A1 (en) | Method for platform for energy analysis and solution suggestion on basis of collection of big data on energy | |
Chamari et al. | Extensible real-time data acquisition and management for IoT enabled smart buildings | |
WO2015080371A1 (en) | Image search system and method | |
WO2022177268A1 (en) | Fragmented data integration device and method | |
WO2020204267A1 (en) | Device and method for automatically generating file names of documents | |
WO2011037329A2 (en) | Apparatus and method for providing context-aware service | |
WO2013133545A1 (en) | Search system and operating method thereof | |
WO2021230662A1 (en) | Method for generating online report using form structure definition db, and computer program for same | |
WO2014069754A1 (en) | System and method for providing content based on area of interest |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21926869 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21926869 Country of ref document: EP Kind code of ref document: A1 |