WO2021100265A1 - 学習装置、学習方法、および測定装置 - Google Patents
学習装置、学習方法、および測定装置 Download PDFInfo
- Publication number
- WO2021100265A1 WO2021100265A1 PCT/JP2020/030608 JP2020030608W WO2021100265A1 WO 2021100265 A1 WO2021100265 A1 WO 2021100265A1 JP 2020030608 W JP2020030608 W JP 2020030608W WO 2021100265 A1 WO2021100265 A1 WO 2021100265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- learning
- data
- subject
- sensor data
- electrocardiographic waveform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/35—Detecting specific parameters of the electrocardiograph cycle by template matching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0223—Operational features of calibration, e.g. protocols for calibrating sensors
- A61B2560/0238—Means for recording calibration data
Definitions
- the present invention relates to a learning device, a learning method, and a measuring device.
- Patent Document 1 discloses a technique for measuring an electrocardiographic waveform of a subject using electrodes provided on a moving body seat and a steering wheel. According to this technique, it is possible to reduce the burden on the subject due to the acquisition of the electrocardiographic waveform.
- an object of the present invention is to provide a mechanism capable of more efficiently acquiring vital data less affected by noise. is there.
- the first sensor data acquired from the subject by the first method is used as learning data, and the influence of noise is affected as compared with the first method.
- a learning device including a learning unit for performing learning according to the above is provided.
- the first sensor data acquired from the subject by the first method is used as learning data, and noise is compared with the first method.
- Learning methods are provided, including learning about data output.
- the first sensor data acquired from the subject by the first method is input, and the vital data indicating the life sign of the subject is output.
- the measuring unit uses the first sensor data as learning data, and the measuring unit uses the first sensor data as learning data, and the first sensor data is subjected to the second method, which is less affected by noise as compared with the first method.
- the vital data is output using a trained model in which training related to the output of the vital data is performed using the teacher data based on the second sensor data acquired from the subject during the acquisition period and the same period.
- a measuring device is provided.
- a mechanism capable of more efficiently acquiring vital data that is less affected by noise is provided.
- the learning device 10 may be a device that performs supervised learning by inputting the same type of sensor data acquired during the same period by two different methods.
- supervised learning refers to a method in which a set of input data (learning data) and correct answer data (teacher data) for the input data is given to a computer, and the computer learns the correspondence between the two.
- FIG. 1 is a diagram showing a functional configuration example of the learning device 10 according to the present embodiment.
- the learning device 10 according to the present embodiment may include a learning unit 110 and a storage unit 120.
- the learning device 10 performs learning related to the output of vital data indicating the vital signs of the subject will be described as an example.
- the learning unit 110 uses the first sensor data acquired from the subject by the first method as learning data, and uses the second method, which is less affected by noise than the first method, to obtain the first sensor data.
- One of the features is that learning related to the output of vital data is performed using the second sensor data acquired from the subject during the acquisition period of the sensor data of 1 and the second sensor data acquired from the subject as teacher data. According to this configuration, by learning the correspondence between the first sensor data containing a lot of noise and the second sensor data having less influence of noise, the vital data obtained by removing noise from the first sensor data is output. It is possible to generate a trained model to be used.
- the learning unit 110 may perform the above-mentioned learning by using an arbitrary machine learning method capable of realizing supervised learning.
- the learning unit 110 performs learning by using an algorithm such as a neural network or an SVM (Support Vector Machine).
- the function of the learning unit 110 is realized by, for example, a processor such as a GPU (Graphics Processing Unit). The details of the function of the learning unit 110 according to the present embodiment will be described in detail separately.
- the storage unit 120 stores various information related to the operation of the learning device 10.
- the storage unit 120 stores, for example, the first sensor data and the second sensor data used for learning of the learning unit 110, various parameters, and the like.
- the functional configuration example of the learning device 10 according to the present embodiment has been described above.
- the above configuration described with reference to FIG. 1 is merely an example, and the configuration of the learning device 10 according to the present embodiment is not limited to such an example.
- the learning device 10 according to the present embodiment may further include, for example, an operation unit that accepts operations by the operator, an output unit for outputting various data, and the like.
- the configuration of the learning device 10 according to the present embodiment can be flexibly modified according to specifications and operations.
- the measuring device 20 according to the present embodiment may be a device that measures vital data using the learned model constructed by the learning device 10.
- FIG. 2 is a diagram showing a functional configuration example of the measuring device 20 according to the present embodiment. As shown in FIG. 2, the measuring device 20 according to the present embodiment may include an acquisition unit 210 and a measuring unit 220.
- the acquisition unit 210 according to the present embodiment is configured to acquire the first sensor data from the subject.
- the acquisition unit 210 according to the present embodiment includes various sensors according to the characteristics of the first sensor data to be acquired.
- the measurement unit 220 receives the first sensor data acquired by the acquisition unit 210 as an input and outputs vital data indicating a life sign of the subject. At this time, the measurement unit 220 according to the present embodiment outputs vital data using the trained model constructed by learning by the learning unit 110. That is, the measurement unit 220 according to the present embodiment uses the first sensor data as learning data, and uses the second method, which is less affected by noise than the first method, during synchronization with the first sensor data.
- One of the features is that the vital data is output using the trained model in which the training related to the output of the vital data is performed using the teacher data based on the second sensor data acquired from the subject.
- the function of the measuring unit 220 according to the present embodiment is realized by various processors.
- the functional configuration example of the measuring device 20 according to the present embodiment has been described above.
- the above configuration described with reference to FIG. 2 is merely an example, and the functional configuration of the measuring device 20 according to the present embodiment is not limited to such an example.
- the measuring device 20 according to the present embodiment may further include an operation unit, an output unit, an analysis unit that analyzes vital data, a notification unit that performs various notifications based on the analysis result, and the like.
- the configuration of the measuring device 20 according to the present embodiment can be flexibly modified according to the characteristics of the vital data to be measured, the intended use of the vital data, and the like.
- Examples of the method for acquiring the electrocardiographic waveform include a method in which a plurality of electrodes are directly attached to the skin of the subject and changes in voltage are recorded by the plurality of electrodes, for example, a 12-lead electrocardiogram. According to such a method, it is possible to obtain a highly accurate electrocardiographic waveform that is less affected by noise. On the other hand, such a method often restricts the behavior of the subject, and also causes the subject to feel annoyed because the electrodes are directly attached to the skin.
- electrodes are installed at a plurality of places where the subject is expected to come into contact with the subject, and the change in voltage obtained when the subject comes into contact with the plurality of electrodes is measured.
- a recording method can be mentioned. Such a method is used, for example, when it is desired to acquire an electrocardiographic waveform of a subject who operates the device.
- a technology is known in which a driver who drives a moving body such as a vehicle places electrodes on the steering wheel or the driver's seat, which are expected to come into contact with the driver during driving, and obtains an electrocardiogram of the driver. Has been done.
- the learning unit 110 uses the first sensor data obtained by the first method as learning data, and is less affected by noise as compared with the first method.
- learning is performed using the teacher data based on the first sensor data and the second sensor data acquired during the same period. According to this, it is possible to construct a trained model that outputs highly accurate vital data that is less affected by noise even from only the first sensor data.
- the learning unit 110 uses the first electrocardiographic waveform acquired by the first method as learning data, and the second electrocardiographic radio wave acquired in synchronization with the first electrocardiographic waveform by the second method.
- Shape-based teacher data may be used to learn the output of data relating to the subject's tested cardiac activity.
- the first method described above is a method of acquiring an electrocardiographic waveform using at least two electrodes that are expected to come into contact with the subject
- the second method described above is a method of directly touching the skin of the subject.
- a method of acquiring an electrocardiographic waveform using at least two attached electrodes may be used.
- the two electrodes used in the first method described above are a seat on which the subject sits and a device to be operated by the subject (for example, steering). ) And may be provided.
- the advantages of the first method such as not causing the driver to feel annoyed, are maintained, and the noise generated by the driver's body movement, vehicle vibration, etc. is eliminated with high accuracy. It becomes possible to acquire data.
- the learning unit 110 uses the second electrocardiographic waveform itself as teacher data to perform learning related to the output of the third electrocardiographic waveform in which noise is removed from the first electrocardiographic waveform. May be good.
- various physiological indexes can be obtained by analyzing the third electrocardiographic waveform according to the purpose.
- the learning unit 110 learn the specified feature points according to the rearranging index.
- feature points feature waveforms in a general electrocardiographic waveform will be described.
- FIG. 3 is a diagram showing an example of a general electrocardiographic waveform in one cycle.
- the horizontal axis shows the passage of time, and the vertical axis shows the change in voltage.
- a plurality of characteristic waveforms showing characteristic shapes can be observed in a general electrocardiographic waveform. Examples of characteristic waveforms include P wave, Q wave, R wave, S wave, QRS wave (formed from Q wave, R wave, and S wave) T wave, U wave, and the like.
- the R wave is an important characteristic waveform as an index of heart rate variability (fluctuation).
- the interval between the R wave in one cycle and the R wave in the next cycle (RRI: RR Interval) is used to calculate the cycle of the heartbeat.
- RRI RR Interval
- RRI fluctuates due to stress and fatigue, and it is an effective physiological index when detecting the physical burden and psychological burden of a subject.
- QTI QT Interval
- QT Interval which is the interval between Q waves and T waves in one cycle, indicates the time from the onset of ventricular excitement to the disappearance of excitement, which is important for the detection of arrhythmia and the like. It is a physiological index.
- the learning unit 110 uses the existence probability data indicating the existence probability of the feature points in the second electrocardiographic waveform obtained from the second electrocardiographic waveform as the teacher data as the first. Learning related to the output of existence probability data indicating the existence probability of the above-defined feature points in the electrocardiographic waveform may be performed.
- the learning unit 110 uses, for example, the existence probability data indicating the existence probability of the R wave in the second electrocardiographic waveform as the teacher data, and the existence probability indicating the existence probability of the R wave in the first electrocardiographic waveform. Learning related to data output may be performed.
- the above learning for example, it is possible to construct a trained model that detects an arbitrary feature point such as an R wave with high accuracy.
- the trained model it is possible to measure a physiological index such as RRI of a subject in real time.
- the learning unit 110 may perform learning using the teacher data according to the usage purpose of the measuring device 20 on which the learned model is mounted.
- FIG. 4 is a diagram showing an example of learning data and teacher data according to the present embodiment.
- the first sensor data (first electrocardiographic waveform) used as learning data is shown in the upper part of FIG.
- the second sensor data (second electrocardiographic waveform) acquired during the same period as the first sensor data used as the teacher data A is shown.
- the existence probability data of the R wave generated based on the second sensor data used as the teacher data B is shown.
- the position of the R wave (R wave peak) in each data is indicated by a dotted line.
- the first sensor data acquired by the first method contains a lot of noise, and the R wave may not be detected well as it is.
- the learning unit 110 learns the correspondence between the first sensor data and the second sensor data.
- the measurement unit 220 uses the trained model constructed by the above learning, and as shown in FIG. 5, the third sensor data is input and noise is eliminated.
- Sensor data third electrocardiographic waveform
- the measurement unit 220 uses the trained model constructed by the above learning, and as shown in FIG. 5, the third sensor data is input and noise is eliminated.
- Sensor data third electrocardiographic waveform
- the learning unit 110 can directly learn the correspondence between the first sensor data and an arbitrary feature point.
- the measuring unit 220 can output the existence probability data related to a predetermined feature point such as an R wave by inputting the first sensor data.
- a physiological index such as RRI in real time
- FIGS. 4 and 5 the case where the existence probability data takes two values of 0 (non-existent) or 1 (exists) is illustrated, but the existence probability data according to the present embodiment may have three or more values. Good.
- FIG. 7 is a flowchart showing the flow of the learning phase according to the present embodiment.
- the first sensor data and the second sensor data are acquired (S102).
- the first sensor data and the second sensor data may be acquired together with information such as a time stamp so that synchronization on the time axis is possible.
- the first sensor data and the second sensor data may be acquired by a device separate from the learning device 10.
- the acquired first sensor data and the second sensor data are stored in the storage unit 120 of the learning device 10.
- the first sensor data and the second sensor data are processed as needed (S104). For example, when the existence probability data related to the specified feature point is used as the teacher data, in step S104, a process of converting the second sensor data acquired in step S102 into existence probability data may be performed. Further, various filter processings and the like for reducing noise included in the first sensor data and the second sensor data may be performed. The above-mentioned processing may be executed by a device separate from the learning device 10.
- the learning unit 110 uses the first sensor data as learning data and performs learning using the teacher data based on the second sensor data (S106). At this time, the learning unit 110 may use the second sensor data itself (or the filtered second sensor data) as the teacher data, or use the existence probability data generated in step S104 as the teacher data. May be.
- FIG. 8 is a flowchart showing the flow of the measurement phase according to the present embodiment.
- the acquisition unit 210 first acquires the first sensor data by the first method (S202).
- the acquisition unit 210 may acquire the electrocardiographic waveform of the driver as the first sensor data by, for example, the stalling of the vehicle and a plurality of electrodes arranged on the seat.
- the measurement unit 220 inputs the first sensor data acquired in step S202 into the trained model and outputs vital data (S204).
- the above vital data can be the third sensor data in which noise is removed from the first sensor data.
- the above vital data can be existence probability data indicating the existence probability of an arbitrary feature point.
- various operations based on the vital data output in step S204 are executed (S206).
- the above operation may be, for example, notification based on RRI detected from vital data.
- the above operation may be performed by a device separate from the measuring device 20.
- the learning unit 110 performs learning related to the output of vital data indicating the vital signs of the subject has been described as a main example.
- the target of learning by the learning unit 110 is not limited to the output of vital data.
- the learning unit 110 can also perform learning related to the output of data or the like indicating the operating status of an arbitrary device, for example.
- the first method of acquiring the electrocardiographic waveform a method of arranging the electrodes at a place where the subject is expected to come into contact is used, and as a second method, the electrodes are placed on the skin of the subject.
- the direct method was given as an example.
- the first method and the second method in the present technology may be any different method having a difference in susceptibility to noise.
- the first method when acquiring a heartbeat, the first method may be a non-contact method using a Doppler sensor, or the second method may be a contact method in which electrodes are attached to the skin of a subject. ..
- the series of processes by each device described in the present specification may be realized by using any of software, hardware, and a combination of software and hardware.
- the programs constituting the software are stored in advance in, for example, a recording medium (non-temporary medium: non-transitory media) provided inside or outside each device. Then, each program is read into RAM at the time of execution by a computer and executed by a processor such as a CPU.
- the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
- the above computer program may be distributed via, for example, a network without using a recording medium.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Software Systems (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Computational Linguistics (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
【課題】ノイズの影響が少ないバイタルデータをより効率的に取得する。 【解決手段】被験者から第1の方式により取得された第1のセンサデータを学習データとし、前記第1の方式と比較してノイズの影響が少ない第2の方式により、前記第1のセンサデータの取得期間と同期間に前記被験者から取得された第2のセンサデータに基づく教師データを用いて、前記被験者の生命兆候を示すバイタルデータの出力に係る学習を行う学習部、を備える、学習装置が提供される。
Description
本発明は、学習装置、学習方法、および測定装置に関する。
近年、被験者のバイタルデータを取得する種々の装置が開発されている。例えば、特許文献1には、移動体のシートとステアリングとに設けた電極を用いて被験者の心電波形を計測する技術が開示されている。当該技術によれば、心電波形の取得に伴う被験者の負担を低減することができる。
しかし、特許文献1に記載の技術では、移動体の振動や被験者の体動等によりノイズが発生しやすく、心電波形の取得精度が低下する可能性がある。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、ノイズの影響が少ないバイタルデータをより効率的に取得することが可能な仕組みを提供することにある。
上記課題を解決するために、本発明のある観点によれば、被験者から第1の方式により取得された第1のセンサデータを学習データとし、前記第1の方式と比較してノイズの影響が少ない第2の方式により、前記第1のセンサデータの取得期間と同期間に前記被験者から取得された第2のセンサデータに基づく教師データを用いて、前記被験者の生命兆候を示すバイタルデータの出力に係る学習を行う学習部、を備える、学習装置が提供される。
また、上記課題を解決するために、本発明の別の観点によれば、被験者から第1の方式により取得された第1のセンサデータを学習データとし、前記第1の方式と比較してノイズの影響が少ない第2の方式により、前記第1のセンサデータの取得期間と同期間に前記被験者から取得された第2のセンサデータに基づく教師データを用いて、前記被験者の生命兆候を示すバイタルデータの出力に係る学習を行うこと、を含む、学習方法が提供される。
また、上記課題を解決するために、本発明の別の観点によれば、被験者から第1の方式により取得された第1のセンサデータを入力として、前記被験者の生命兆候を示すバイタルデータを出力する測定部、を備え、前記測定部は、前記第1のセンサデータを学習データとし、前記第1の方式と比較してノイズの影響が少ない第2の方式により、前記第1のセンサデータの取得期間と同期間に前記被験者から取得された第2のセンサデータに基づく教師データを用いて、前記バイタルデータの出力に係る学習を行った学習済みモデルを用いて、前記バイタルデータを出力する、測定装置が提供される。
以上説明したように、本発明によれば、ノイズの影響が少ないバイタルデータをより効率的に取得することが可能な仕組みが提供される。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<構成例>
(学習装置10)
本実施形態に係る学習装置10は、異なる2つの方式により同期間に取得された同一種のセンサデータを入力とした教師あり学習を行う装置であってよい。ここで、教師あり学習とは、入力データ(学習データ)と当該入力データに対する正解データ(教師データ)のセットをコンピュータに与え、コンピュータに両者の対応を学習させる手法を指す。図1は、本実施形態に係る学習装置10の機能構成例を示す図である。図1に示すように、本実施形態に係る学習装置10は、学習部110および記憶部120を備えてもよい。なお、以下においては、学習装置10が被験者の生命兆候を示すバイタルデータの出力に係る学習を行う場合を一例として説明する。
(学習装置10)
本実施形態に係る学習装置10は、異なる2つの方式により同期間に取得された同一種のセンサデータを入力とした教師あり学習を行う装置であってよい。ここで、教師あり学習とは、入力データ(学習データ)と当該入力データに対する正解データ(教師データ)のセットをコンピュータに与え、コンピュータに両者の対応を学習させる手法を指す。図1は、本実施形態に係る学習装置10の機能構成例を示す図である。図1に示すように、本実施形態に係る学習装置10は、学習部110および記憶部120を備えてもよい。なお、以下においては、学習装置10が被験者の生命兆候を示すバイタルデータの出力に係る学習を行う場合を一例として説明する。
本実施形態に係る学習部110は、被験者から第1の方式により取得された第1のセンサデータを学習データとし、第1の方式と比較してノイズの影響が少ない第2の方式により、第1のセンサデータの取得期間と同期間に当該被験者から取得された第2のセンサデータ、を教師データとして、バイタルデータの出力に係る学習を行う、ことを特徴の一つとする。係る構成によれば、ノイズが多く含まれる第1のセンサデータとノイズの影響が少ない第2のセンサデータの対応関係を学習することで、第1のセンサデータからノイズを除去したバイタルデータを出力する学習済みモデルを生成することが可能となる。
本実施形態に係る学習部110は、教師あり学習を実現可能な任意の機械学習手法を用いて上記のような学習を行ってよい。学習部110は、例えば、ニューラルネットワーク、SVM(Support Vector Machine)などのアルゴリズムを用いて学習を行う。
学習部110の機能は、例えば、GPU(Graphics Processing Unit)等のプロセッサによって実現される。本実施形態に係る学習部110が有する機能の詳細については別途詳細に説明する。
本実施形態に係る記憶部120は、学習装置10の動作に係る各種の情報を記憶する。記憶部120は、例えば、学習部110の学習に用いられる第1のセンサデータおよび第2センサデータ、各種のパラメータ等を記憶する。
以上、本実施形態に係る学習装置10の機能構成例について述べた。なお、図1を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る学習装置10の構成は係る例に限定されない。本実施形態に係る学習装置10は、例えば、操作者による操作を受け付ける操作部や、各種のデータを出力するための出力部等をさらに備えてもよい。本実施形態に係る学習装置10の構成は、仕様や運用に応じて柔軟に変形され得る。
続いて、本実施形態に係る測定装置20の機能構成例について述べる。本実施形態に係る測定装置20は、学習装置10が構築した学習済みモデルを用いてバイタルデータの測定を実施する装置であってよい。図2は、本実施形態に係る測定装置20の機能構成例を示す図である。図2に示すように、本実施形態に係る測定装置20は、取得部210および測定部220を備えてもよい。
本実施形態に係る取得部210は、被験者から第1のセンサデータを取得するための構成である。このために、本実施形態に係る取得部210は、取得する第1のセンサデータの特性に応じた各種のセンサを備える。
本実施形態に係る測定部220は、取得部210が取得した第1のセンサデータを入力として、被験者の生命兆候を示すバイタルデータを出力する。この際、本実施形態に係る測定部220は、学習部110による学習により構築された学習済みモデルを用いてバイタルデータの出力を行う。すなわち、本実施形態に係る測定部220は、第1のセンサデータを学習データとし、第1の方式と比較してノイズの影響が少ない第2の方式により、第1のセンサデータと同期間に被験者から取得された第2のセンサデータに基づく教師データを用いて、バイタルデータの出力に係る学習を行った学習済みモデルを用いて、バイタルデータを出力すること、を特徴の一つとする。
上記の構成によれば、ノイズの混入が想定される第1のセンサデータのみを用いて、当該ノイズの影響を取り除いた高精度のバイタルデータを得ることが可能となる。なお、本実施形態に係る測定部220の機能は、各種のプロセッサにより実現される。
以上、本実施形態に係る測定装置20の機能構成例について述べた。なお、図2を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る測定装置20の機能構成は係る例に限定されない。本実施形態に係る測定装置20は、操作部や出力部、バイタルデータの解析を行う解析部、解析結果に基づいて各種の報知を行う報知部等をさらに備えてもよい。本実施形態に係る測定装置20の構成は、測定対象とするバイタルデータの特性や、バイタルデータの活用用途等に応じて柔軟に変形され得る。
<詳細>
次に、本実施形態に係るセンサデータについて具体例を挙げながら説明する。近年では、様々な種別のセンサデータを取得する装置が開発されている。また、同一種のセンサデータを取得する場合であっても、複数の方式が存在する場合がある。ここでは、被験者の心臓の活動により生じる電圧の変化を心電波形として取得する場合を想定する。
次に、本実施形態に係るセンサデータについて具体例を挙げながら説明する。近年では、様々な種別のセンサデータを取得する装置が開発されている。また、同一種のセンサデータを取得する場合であっても、複数の方式が存在する場合がある。ここでは、被験者の心臓の活動により生じる電圧の変化を心電波形として取得する場合を想定する。
心電波形を取得する方式としては、被験者の皮膚に複数の電極を直接装着し、当該複数の電極により電圧の変化を記録する、例えば12誘導心電図等の方式が挙げられる。係る方式によれば、ノイズの影響が少ない高精度の心電波形を得ることができる。一方、係る方式は、被験者の行動を制限する場合も多く、また皮膚に電極を直接装着するために、被験者に煩わしさを感じさせる場合もある。
また、心電波形を取得する他の方式としては、被験者と接触することが予想される複数の箇所に電極を設置し、複数の当該電極に被験者が接触した際に得られた電圧の変化を記録する方式が挙げられる。このような方式は、例えば、装置の操作を行う被験者の心電波形を取得したい場合等に用いられる。一例としては、車両等の移動体を運転する運転手が、運転中に接触することが予想されるステアリングや運転席の座席等に電極を配置し、当該運転手の心電図を取得する技術が知られている。係る技術によれば、運転手の皮膚に電極を直接貼り付ける必要がないため、運転手に意識させることなく心電波形を取得することが可能である。一方、この場合、運転行動に伴う運転手の体動や、車両の振動等によりノイズが生じやすく、取得される心電波形の精度が低下する可能性がある。
このように、センサデータを取得するための複数の方式には、それぞれに利点がある一方で、取得されるセンサデータの精度に差が生じるケースも存在する。このため、ある方式が有する利点を活かしながら、同時にセンサデータの取得精度を向上させる技術が求められている。
上記の点を解決するために、本実施形態に係る学習部110は、第1の方式により得られた第1のセンサデータを学習データとし、第1の方式と比較してノイズの影響が少ない第2の方式により、第1のセンサデータと同期間に取得された第2のセンサデータに基づく教師データを用いて学習を行う。これによれば、第1のセンサデータのみからでもノイズの影響が少ない高精度のバイタルデータを出力する学習済みモデルを構築することが可能となる。
以下では、本実施形態に係るバイタルデータが心臓の活動に係るデータである場合を一例として説明する。この場合、学習部110は、第1の方式により取得された第1の心電波形を学習データとし、第2の方式により第1の心電波形と同期間に取得された第2の心電波形に基づく教師データを用いて、被験者の被検査の心臓の活動に係るデータの出力を学習してもよい。
この場合、上記の第1の方式は、被験者と接触することが予想される少なくとも2つの電極を用いて心電波形を取得する方式であり、上記の第2の方式は、被験者の皮膚に直接装着された少なくとも2つの電極を用いて心電波形を取得する方式であってもよい。
例えば、被験者が車両等の移動体を運転する運転手である場合、上記の第1の方式において用いられる2つの電極は、被験者が着座する座席と、被験者が操作する被操作装置(例えば、ステアリング)とに設けられてもよい。
上記のような構成によれば、運転手に煩わしさを感じさせない等の第1の方式が有する利点をそのままに、かつ運転手の体動や車両の振動等により生じるノイズを排除した高精度のデータを取得することが可能となる。
なお、本実施形態に係る学習部110は、第2の心電波形そのものを教師データとして、第1の心電波形からノイズが除去された第3の心電波形の出力に係る学習を行ってもよい。この場合、第3の心電波形を目的に応じて解析することで、様々な生理指標を得ることができる。
一方で、予め心電波形から得たい生理指標が定まっている場合においては、当該整理指標に応じた規定の特徴点を学習部110に学習させることも可能である。ここで、一般的な心電波形における特徴点(特徴波形)について説明する。
図3は、一周期における一般的な心電波形の例を示す図である。なお、図3においては、横軸において時間の経過が、縦軸において電圧の変化が示されている。図3に示すように、一般的な心電波形には、特徴的な形状を示す複数の特徴波形が観察され得る。特徴波形の一例としては、P波、Q波、R波、S波、QRS波(Q波、R波、およびS波から形成される)T波、およびU波等が挙げられる。
このうち、例えば、R波は、心拍変動(揺らぎ)の指標として重要な特徴波形である。ある周期におけるR波と次周期におけるR波の間隔(RRI:R-R Interval)は、心拍の周期を算出するために用いられる。また、RRIにはストレスや疲労により揺らぎが生じることも知られており、被験者の身体的負担や心理的負担を検出する際にも有効な生理指標となる。その他、例えば、一周期におけるQ波とT波の間隔であるQTI(Q-T Interval)は、心室の興奮の始まりから興奮が消退するまでの時間を示しており、不整脈の検出等に重要な生理指標である。
このことから、本実施形態に係る学習部110は、第2の心電波形から得られた、第2の心電波形における特徴点の存在確率を示す存在確率データを教師データとして、第1の心電波形における上記規定の特徴点の存在確率を示す存在確率データの出力に係る学習を行ってもよい。
本実施形態に係る学習部110は、例えば、第2の心電波形におけるR波の存在確率を示す存在確率データを教師データとして、第1の心電波形におけるR波の存在確率を示す存在確率データの出力に係る学習を行ってもよい。
上記のような学習によれば、例えば、R波等の任意の特徴点を高精度に検出する学習済みモデルを構築することができる。また、当該学習済みモデルを用いることで、被験者のRRI等の生理指標をリアルタイムに測定することが可能となる。
このように、本実施形態に係る学習部110は、学習済みモデルが搭載される測定装置20の利用用途に応じた教師データを用いて学習を行ってよい。
図4は、本実施形態に係る学習データおよび教師データの一例を示す図である。図4の上段には、学習データとして用いられる第1のセンサデータ(第1の心電波形)が示されている。また、図4の中段には、教師データAとして用いられる、第1のセンサデータと同期間に取得された第2のセンサデータ(第2の心電波形)が示されている。また、図4の下段には、教師データBとして用いられる、上記第2のセンサデータに基づいて生成されたR波の存在確率データが示されている。なお、図4においては、各データにおけるR波(R波ピーク)の位置が点線により示されている。
図4に示すように、第1の方式により取得される第1のセンサデータは、ノイズを多く含むものであり、そのままでは、R波をうまく検出できない場合がある。この際、ノイズの影響が少ない第2のセンサデータを教師データAとして用いることで、第1のセンサデータと第2のセンサデータとの対応関係を学習部110に学習させることが可能である。
本実施形態に係る測定部220は、上記のような学習により構築された学習済みモデルを用いることで、図5に示すように、第1のセンサデータを入力として、ノイズが排除された第3のセンサデータ(第3の心電波形)を出力することができる。これによれば、出力された第3のセンサデータに対し任意の加工や解析を行うことで、被験者に係る様々な生理指標を精度高く得ることが可能となる。
一方、図4に示したような存在確率データを教師データBとして用いる場合、第1のセンサデータと任意の特徴点の対応関係を直接的に学習部110に学習させることが可能である。
この場合、本実施形態に係る測定部220は、図6に示すように、第1のセンサデータを入力として、例えばR波等の規定の特徴点に係る存在確率データを出力することができる。これによれば、例えば、RRI等の生理指標をリアルタイムに測定し、測定値に応じた各種のアクションを行うこと等が可能となる。なお、図4および図5においては、存在確率データが0(存在しない)または1(存在する)の2値をとる場合を例示したが、本実施形態係る存在確率データは、3値以上をとってもよい。
<学習フェーズおよび測定フェーズの流れ>
次に、本実施形態に係る学習装置10を用いた学習を行う学習フェーズ、および測定装置20を用いた測定を行う測定フェーズの流れについて説明する。図7は、本実施形態に係る学習フェーズの流れを示すフローチャートである。
次に、本実施形態に係る学習装置10を用いた学習を行う学習フェーズ、および測定装置20を用いた測定を行う測定フェーズの流れについて説明する。図7は、本実施形態に係る学習フェーズの流れを示すフローチャートである。
図7に示すように、本実施形態に係る学習フェーズにおいては、まず、第1のセンサデータおよび第2のセンサデータの取得が行われる(S102)。この際、第1のセンサデータおよび第2のセンサデータは、時間軸における同期が可能なようにタイムスタンプ等の情報と共に取得されてよい。また、第1のセンサデータおよび第2のセンサデータは、学習装置10とは別途の装置により取得されてもよい。取得された第1のセンサデータおよび第2のセンサデータは、学習装置10の記憶部120に記憶される。
次に、必要に応じて第1のセンサデータおよび第2のセンサデータの加工が行われる(S104)。例えば、教師データとして、規定の特徴点に係る存在確率データを用いる場合、ステップS104では、ステップS102において取得された第2のセンサデータを存在確率データに変換する処理が行われてよい。また、第1のセンサデータや第2のセンサデータに含まれるノイズを軽減するための各種のフィルタ処理等が行われてもよい。なお、上記のような加工は学習装置10とは別途の装置により実行されてもよい。
次に、学習部110は、第1のセンサデータを学習データとし、第2のセンサデータに基づく教師データを用いた学習を行う(S106)。この際、学習部110は、第2のセンサデータそのもの(あるいはフィルタ処理が施された第2のセンサデータ)を教師データとして用いてもよいし、ステップS104において生成された存在確率データを教師データとしてもよい。
以上、本実施形態に係る学習フェーズの流れについて説明した。続いて、本実施形態に係る測定フェーズの流れについて説明する。図8は、本実施形態に係る測定フェーズの流れを示すフローチャートである。
図8に示すように、本実施形態に係る測定フェーズにおいては、まず、取得部210が第1の方式により第1のセンサデータを取得する(S202)。取得部210は、例えば、車両のスタリングと座席に配置した複数の電極により運転手の心電波形を第1のセンサデータとして取得してもよい。
次に、測定部220は、ステップS202において取得された第1のセンサデータを学習済みモデルに入力し、バイタルデータの出力を行う(S204)。学習フェーズにおいて第2のセンサデータを教師データとして学習を行った場合、上記のバイタルデータは、第1のセンサデータからノイズが除去された第3のセンサデータであり得る。一方、学習フェーズにおいて存在確率データを教師データとして学習を行った場合、上記のバイタルデータは、任意の特徴点の存在確率を示す存在確率データであり得る。
次に、必要に応じて、ステップS204において出力されたバイタルデータに基づく各種の動作が実行される(S206)。上記の動作は、例えば、バイタルデータから検出されたRRIに基づく報知等であってもよい。上記の動作は、測定装置20とは別途の装置により実行されてもよい。
<補足>
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
例えば、上記の実施形態では、学習部110が被験者の生命兆候を示すバイタルデータの出力に係る学習を行う場合を主な例として述べた。一方、学習部110による学習の対象は、バイタルデータの出力に限定されない。学習部110は、例えば、任意の装置の稼働状況を示すデータ等の出力に係る学習を行うことも可能である。
また、上記の実施形態では、心電波形を取得する第1の方式として、被験者が接触することが予想される箇所に電極を配置する方式を、第2の方式として、被験者の皮膚に電極を直接する方式を例に挙げた。一方、本技術における第1の方式および第2の方式は、ノイズの影響の受けやすさに差がある任意の異なる方式であってよい。例えば、心拍を取得する場合、第1の方式は、ドップラーセンサを用いた非接触方式であってもよいし、第2の方式は、被験者の皮膚に電極を装着する接触方式であってもよい。
また、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記録媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、コンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。上記記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
10:学習装置、110:学習部、120:記憶部、20:測定装置、210:取得部、220:測定部
Claims (10)
- 被験者から第1の方式により取得された第1のセンサデータを学習データとし、
前記第1の方式と比較してノイズの影響が少ない第2の方式により、前記第1のセンサデータの取得期間と同期間に前記被験者から取得された第2のセンサデータに基づく教師データを用いて、
前記被験者の生命兆候を示すバイタルデータの出力に係る学習を行う学習部、
を備える、
学習装置。 - 前記バイタルデータは、心臓の活動に係るデータを含み、
前記学習部は、前記第1の方式により取得された第1の心電波形を学習データとし、前記第2の方式により前記第1の心電波形の取得期間と同期間に取得された第2の心電波形に基づく教師データを用いて、前記被験者の心臓の活動に係るデータの出力を学習する、
請求項1に記載の学習装置。 - 前記学習部は、前記第2の心電波形を教師データとして、前記第1の心電波形からノイズが除去された第3の心電波形の出力に係る学習を行う、
請求項2に記載の学習装置。 - 前記学習部は、前記第2の心電波形から得られた、前記第2の心電波形における規定の特徴点の存在確率を示す存在確率データを教師データとして、前記第1の心電波形における前記規定の特徴点の存在確率を示す存在確率データの出力に係る学習を行う、
請求項2に記載の学習装置。 - 前記規定の特徴点は、心電波形におけるR波を含み、
前記学習部は、前記第1の心電波形におけるR波の存在確率を示す存在確率データの出力に係る学習を行う、
請求項4に記載の学習装置。 - 前記第1の方式は、前記被験者と接触することが予想される少なくとも2つの電極を用いて心電波形を取得する方式であり、
前記第2の方式は、前記被験者の皮膚に装着された少なくとも2つの電極を用いて心電波形を取得する方式である、
請求項2から請求項5までのいずれか一項に記載の学習装置。 - 前記第1の方式において用いられる2つの前記電極は、前記被験者が着座する座席と、前記被験者が操作する被操作装置と、に設けられる、
請求項6に記載の学習装置。 - 前記被験者は、移動体を運転する運転手である、
請求項1から請求項7までのいずれか一項に記載の学習装置。 - 被験者から第1の方式により取得された第1のセンサデータを学習データとし、
前記第1の方式と比較してノイズの影響が少ない第2の方式により、前記第1のセンサデータの取得期間と同期間に前記被験者から取得された第2のセンサデータに基づく教師データを用いて、
前記被験者の生命兆候を示すバイタルデータの出力に係る学習を行うこと、
を含む、
学習方法。 - 被験者から第1の方式により取得された第1のセンサデータを入力として、前記被験者の生命兆候を示すバイタルデータを出力する測定部、
を備え、
前記測定部は、前記第1のセンサデータを学習データとし、前記第1の方式と比較してノイズの影響が少ない第2の方式により、前記第1のセンサデータの取得期間と同期間に前記被験者から取得された第2のセンサデータに基づく教師データを用いて、前記バイタルデータの出力に係る学習を行った学習済みモデルを用いて、前記バイタルデータを出力する、
測定装置。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202080074933.9A CN114599286A (zh) | 2019-11-18 | 2020-08-11 | 学习装置、学习方法以及测定装置 |
| US17/763,479 US20220336102A1 (en) | 2019-11-18 | 2020-08-11 | Learning device, learning method, and measurement device |
| DE112020005694.5T DE112020005694T5 (de) | 2019-11-18 | 2020-08-11 | Lerngerät, Lernverfahren, und Messgerät |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019208015A JP7458170B2 (ja) | 2019-11-18 | 2019-11-18 | 学習装置、学習方法、および測定装置 |
| JP2019-208015 | 2019-11-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021100265A1 true WO2021100265A1 (ja) | 2021-05-27 |
Family
ID=75961805
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2020/030608 Ceased WO2021100265A1 (ja) | 2019-11-18 | 2020-08-11 | 学習装置、学習方法、および測定装置 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20220336102A1 (ja) |
| JP (1) | JP7458170B2 (ja) |
| CN (1) | CN114599286A (ja) |
| DE (1) | DE112020005694T5 (ja) |
| WO (1) | WO2021100265A1 (ja) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102794730B1 (ko) * | 2021-08-17 | 2025-04-10 | 주식회사 메디컬에이아이 | 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011022738A (ja) * | 2009-07-15 | 2011-02-03 | Nissan Motor Co Ltd | 運転者状態推定装置及び方法 |
| JP2017225489A (ja) * | 2016-06-20 | 2017-12-28 | ソニー株式会社 | 情報処理装置、情報処理方法及びプログラム |
| WO2018163558A1 (ja) * | 2017-03-08 | 2018-09-13 | ソニー株式会社 | 情報処理装置、情報処理方法、およびプログラム |
| JP2018202130A (ja) * | 2017-05-30 | 2018-12-27 | アルパイン株式会社 | 状態推定装置、情報処理装置、状態推定システム |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5050828B2 (ja) | 2007-12-17 | 2012-10-17 | 富士通株式会社 | 片手対応ステアリング心電検知装置 |
| US8897860B2 (en) * | 2011-03-25 | 2014-11-25 | Zoll Medical Corporation | Selection of optimal channel for rate determination |
| EP3318187A1 (en) * | 2016-11-07 | 2018-05-09 | Nokia Technologies OY | Electrode for physiological measurements |
| KR102496643B1 (ko) * | 2017-09-19 | 2023-02-07 | 현대자동차주식회사 | 차량용 심전도 측정 장치, 그를 포함한 시스템 및 그 방법 |
| US10694967B2 (en) * | 2017-10-18 | 2020-06-30 | Medtronic, Inc. | State-based atrial event detection |
| IT201700120714A1 (it) * | 2017-10-24 | 2019-04-24 | St Microelectronics Srl | Procedimento per trattare segnali elettrofisiologici, sistema, veicolo e prodotto informatico corrispondenti |
| JP6853159B2 (ja) * | 2017-10-31 | 2021-03-31 | トヨタ自動車株式会社 | 状態推定装置 |
| US11317872B2 (en) * | 2017-12-15 | 2022-05-03 | Mayo Foundation For Medical Education And Research | Predicting transient ischemic events using ECG data |
| CN109864737B (zh) * | 2019-04-02 | 2022-02-25 | 安徽心之声医疗科技有限公司 | 一种心电信号中p波识别方法和系统 |
-
2019
- 2019-11-18 JP JP2019208015A patent/JP7458170B2/ja active Active
-
2020
- 2020-08-11 DE DE112020005694.5T patent/DE112020005694T5/de not_active Withdrawn
- 2020-08-11 CN CN202080074933.9A patent/CN114599286A/zh active Pending
- 2020-08-11 US US17/763,479 patent/US20220336102A1/en active Pending
- 2020-08-11 WO PCT/JP2020/030608 patent/WO2021100265A1/ja not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011022738A (ja) * | 2009-07-15 | 2011-02-03 | Nissan Motor Co Ltd | 運転者状態推定装置及び方法 |
| JP2017225489A (ja) * | 2016-06-20 | 2017-12-28 | ソニー株式会社 | 情報処理装置、情報処理方法及びプログラム |
| WO2018163558A1 (ja) * | 2017-03-08 | 2018-09-13 | ソニー株式会社 | 情報処理装置、情報処理方法、およびプログラム |
| JP2018202130A (ja) * | 2017-05-30 | 2018-12-27 | アルパイン株式会社 | 状態推定装置、情報処理装置、状態推定システム |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2021078682A (ja) | 2021-05-27 |
| US20220336102A1 (en) | 2022-10-20 |
| CN114599286A (zh) | 2022-06-07 |
| JP7458170B2 (ja) | 2024-03-29 |
| DE112020005694T5 (de) | 2022-09-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3581361B1 (ja) | 脳活動測定装置 | |
| JP7002168B1 (ja) | 心電図分析装置、心電図分析方法及びプログラム | |
| EP2698112B1 (en) | Real-time stress determination of an individual | |
| CN114246589B (zh) | 记忆认知能力测评方法及系统 | |
| US20090076402A1 (en) | Method and apparatus for determining susceptibility for arrhythmias using wedensky modulated electrocardiography and alternans analysis | |
| JP2002248087A (ja) | 脳活動自動判定方法及び装置 | |
| KR20140054542A (ko) | 생체 신호를 측정하는 장치 및 방법 | |
| CN116504398A (zh) | 用于使用基于变换器的神经网络来进行心律失常预测的方法和系统 | |
| KR20220028967A (ko) | 뉴로피드백 기반의 치료 장치 및 치료 방법 | |
| US11559244B2 (en) | System and methods for consciousness evaluation in non-communicating subjects | |
| Harrison et al. | EEG and fMRI agree: Mental arithmetic is the easiest form of imagery to detect | |
| Horáček et al. | Development of an automated Selvester Scoring System for estimating the size of myocardial infarction from the electrocardiogram | |
| WO2021100265A1 (ja) | 学習装置、学習方法、および測定装置 | |
| JPH11137530A (ja) | 特徴脳電磁波検出装置 | |
| JP7285763B2 (ja) | 学習装置、学習方法、および測定装置 | |
| WO2021215070A1 (ja) | 学習装置、学習方法、および測定装置 | |
| JP7254399B1 (ja) | プログラム、出力装置及びデータ処理方法 | |
| JP7234100B2 (ja) | 学習データ拡張方法、および学習データ生成装置 | |
| JP7479106B1 (ja) | プログラム、出力装置及び出力方法 | |
| Skoric et al. | Machine Learning-Based Detection of Driver Distraction by Capacitive Electrocardiogram Signals | |
| EP4368115A1 (en) | Cardiotocographic scanning session duration | |
| US20240268743A1 (en) | Method and device for the technical support of the analysis of signals acquired by measurement, the signals having a time- and space-dependent signal characteristic | |
| US20230277107A1 (en) | Systems and methods for visual tracing of abnormality in diagnostic and monitoring clinical applications | |
| WO2024106005A1 (ja) | プログラム、出力装置及び出力方法 | |
| Grasso et al. | Convolutional Autoencoder-Based Anomaly Detection in PPG Signals Using a Necklace Wearable Device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20891291 Country of ref document: EP Kind code of ref document: A1 |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20891291 Country of ref document: EP Kind code of ref document: A1 |