[go: up one dir, main page]

WO2021039160A1 - 応力解析装置 - Google Patents

応力解析装置 Download PDF

Info

Publication number
WO2021039160A1
WO2021039160A1 PCT/JP2020/027271 JP2020027271W WO2021039160A1 WO 2021039160 A1 WO2021039160 A1 WO 2021039160A1 JP 2020027271 W JP2020027271 W JP 2020027271W WO 2021039160 A1 WO2021039160 A1 WO 2021039160A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
image
stress
images
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2020/027271
Other languages
English (en)
French (fr)
Inventor
入江 庸介
裕嗣 井上
道泰 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to CN202080059646.0A priority Critical patent/CN114303168A/zh
Priority to JP2021542608A priority patent/JP7209398B2/ja
Priority to EP20856201.7A priority patent/EP4006532A4/en
Publication of WO2021039160A1 publication Critical patent/WO2021039160A1/ja
Priority to US17/679,298 priority patent/US12073549B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the present invention relates to a stress analysis device using a plurality of temperature images.
  • Various techniques have been proposed for performing stress analysis from temperature images (see, for example, Patent Document 1).
  • a stress image is obtained from a temperature image by using the fact that there is a linear relationship between the temperature change of the object obtained from the temperature image and the stress exerted on the object.
  • an object of the present invention is to provide a stress analysis device that can obtain a stress image with improved accuracy.
  • the stress analysis apparatus includes an image pickup device that acquires two or more temperature images for the same region of an object over the same time range.
  • a feature point extraction unit that extracts feature points in each temperature image
  • a projective conversion unit that performs projective conversion on each temperature image so as to align the feature points in each temperature image and aligns the reference temperature image with respect to the reference temperature image.
  • a pixel rearrangement unit that rearranges the pixel arrangement of each of the temperature images subjected to the projective conversion with respect to the pixel arrangement of the reference temperature image.
  • a stress conversion unit that obtains each stress image by multiplying each temperature image after pixel rearrangement by a stress conversion coefficient.
  • An additive averaging unit that obtains an additive average stress image by averaging each stress image, To be equipped.
  • the stress analysis method includes a step of acquiring two or more temperature images for the same region of an object over the same time range.
  • the temperature measuring device includes an image pickup device that acquires two or more temperature images for the same region of an object over the same time range.
  • a feature point extraction unit that extracts feature points in each temperature image
  • a projective conversion unit that performs projective conversion on each temperature image so as to align the feature points in each temperature image and aligns the reference temperature image with respect to the reference temperature image.
  • a pixel rearrangement unit that rearranges the pixel arrangement of each of the temperature images subjected to the projective conversion with respect to the pixel arrangement of the reference temperature image.
  • a temperature image acquisition unit that obtains each of the temperature images after pixel rearrangement
  • a temperature image addition averaging unit that obtains an averaging temperature image by averaging each of the temperature images. To be equipped.
  • the temperature measurement method includes a step of acquiring two or more temperature images for the same region of an object over the same time range.
  • the stress analysis apparatus since a plurality of stress images are added and averaged to obtain an added average stress image, a stress image with improved accuracy can be obtained.
  • FIG. It is a block diagram which shows the structure of the stress analysis apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart of the stress analysis method which concerns on Embodiment 1.
  • It is a schematic diagram which shows four temperature images of the field of view 1 to the field of view 4 by the compound eye camera used in the stress analysis apparatus which concerns on a modification.
  • It is a schematic diagram which shows the feature point in the temperature image of the visual field 1 among the four visual fields of the visual field 1 to the visual field 4 of the stress analysis apparatus which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the characteristic point in the temperature image of the visual field 2 among the four visual fields of the visual field 1 to the visual field 4 of the stress analysis apparatus which concerns on Embodiment 1.
  • FIG. (A) is a schematic view showing a pixel array including the feature points of the temperature image of the visual field 1
  • (b) is a schematic diagram showing the pixel array including the feature points of the temperature image of the visual field 2.
  • (A) is a schematic diagram showing a pixel arrangement according to the coordinate system of the temperature image of the reference field 1 as a reference, and (b) is a schematic view showing the temperature image of the field 2 of FIG. 5A (b) so that the feature points match. It is a schematic diagram which shows the pixel arrangement of the temperature image of a visual field 2 after projection conversion to the coordinate system of the temperature image of a visual field 1.
  • (A) is a schematic diagram showing a pixel array according to the coordinate system of the temperature image of the field of view 1 as a reference, and (b) is a temperature image of the field of view 2 after projection conversion to the coordinate system of the temperature image of the field of view 1. It is the schematic which shows the pixel arrangement.
  • (A) is a schematic diagram showing the pixel arrangement of the temperature image of the visual field 1 as a reference, and (b) is the pixel array of the temperature image of the visual field 2 so as to correspond to the pixel array of the temperature image of the visual field 1.
  • It is the schematic which shows the pixel arrangement of the temperature image of the visual field 2 which pixel rearranged. It is a schematic diagram which shows that the pixel array of the field of view 2 after the projective conversion is rearranged in the pixel array of the field of view 1 which is the closest.
  • RMSE mean square error
  • RMSE mean square error
  • the stress analysis apparatus includes an image pickup device that acquires two or more temperature images over the same time range for the same region of the object.
  • a feature point extraction unit that extracts feature points in each temperature image
  • a projective conversion unit that performs projective conversion on each temperature image so as to align the feature points in each temperature image and aligns the reference temperature image with respect to the reference temperature image.
  • a pixel rearrangement unit that rearranges the pixel arrangement of each of the temperature images subjected to the projective conversion with respect to the pixel arrangement of the reference temperature image.
  • a stress conversion unit that obtains each stress image by multiplying each temperature image after pixel rearrangement by a stress conversion coefficient.
  • An additive averaging unit that obtains an additive average stress image by averaging each stress image, To be equipped.
  • the stress analysis device is the stress analysis device according to the first aspect, and may further include a background temperature subtraction unit for subtracting the background temperature from each of the temperature images after pixel rearrangement.
  • the stress analysis device is the stress analysis device according to the first or second aspect, and has a relationship between the frequency and the amplitude after the Fourier transform for each of the temperature images after the pixel rearrangement.
  • an amplitude correction unit that performs amplitude correction by dividing by a frequency response function of the first-order lag system may be further provided.
  • the stress analysis device is the stress analysis device according to any one of the first to third aspects, and spline interpolation is performed over the same time range of each temperature image after pixel rearrangement.
  • a spline interpolation unit to be performed may be further provided.
  • the stress analysis device is the stress analysis device according to any one of the first to fourth aspects, and when the two or more temperature images are acquired, the image pickup device causes a synchronization signal. Is included in the above two or more temperature images, and For each of the temperature images after the pixel rearrangement, a start point setting unit for aligning the start points based on the synchronization signal may be further provided.
  • the stress analysis method includes a step of acquiring two or more temperature images over the same time range for the same region of the object.
  • the temperature measuring device includes an image pickup device that acquires two or more temperature images over the same time range for the same region of the object.
  • a feature point extraction unit that extracts feature points in each temperature image
  • a projective conversion unit that performs projective conversion on each temperature image so as to align the feature points in each temperature image and aligns the reference temperature image with respect to the reference temperature image.
  • a pixel rearrangement unit that rearranges the pixel arrangement of each of the temperature images subjected to the projective conversion with respect to the pixel arrangement of the reference temperature image.
  • a temperature image acquisition unit that obtains each of the temperature images after pixel rearrangement
  • a temperature image addition averaging unit that obtains an averaging temperature image by averaging each of the temperature images. To be equipped.
  • the temperature measurement method includes a step of acquiring two or more temperature images over the same time range for the same region of the object.
  • FIG. 1 is a block diagram showing a configuration of the stress analysis device 40 according to the first embodiment.
  • the stress analysis device 40 includes image pickup elements 20a to 20d for acquiring two or more temperature images, a feature point extraction unit 35a for extracting feature points in each temperature image, and a projection conversion for aligning each temperature image.
  • the image pickup devices 20a to 20d acquire two or more temperature images for the same region of the object 1 over the same time range.
  • the projective transformation unit 35b performs projective transformation on each temperature image so as to align the feature points in each temperature image, and aligns the temperature image as a reference.
  • the pixel rearrangement unit 35c rearranges the pixel arrangement of each temperature image subjected to the projective conversion with respect to the pixel arrangement of the reference temperature image.
  • the stress analysis apparatus 40 two or more stress images are added and averaged to obtain an added average stress image. As a result, the noise derived from the image sensor is canceled by the averaging of each stress image, and a stress image with improved accuracy can be obtained.
  • the object 1 is an object for which stress is analyzed. Although it is shown as an elongated test piece in FIG. 1, the object 1 is not limited to this.
  • a building such as a bridge, a building, or a tower, a movable body such as a vehicle, a ship, or an aircraft, or an infrared camera side may move.
  • the object 1 is supported by the load applying portion 10.
  • a known sine wave load or a sine wave load having a plurality of frequencies may be combined and applied to the object 1 by the load applying unit 10.
  • the load applied from the load applying unit 10 to the object 1 is known.
  • the load applying portion 10 may be provided if necessary, and has an arbitrary configuration.
  • the load applied to the object 1 to be analyzed by this stress analysis apparatus includes not only the above-mentioned known load but also an unknown load.
  • the time constant of the frequency response function of the first-order lag system is different for each image sensor, and the stress conversion coefficient is also different. Therefore, by applying a known sinusoidal load to the object by the load applying unit 10, the time constant and stress conversion coefficient of the frequency response function of each image sensor can be calculated.
  • FIG. 1 shows four image pickup devices 20a to 20d. Further, in FIG. 1, these image pickup elements 20a to 20d are shown as a combination of four infrared cameras including a lens and an image pickup element, respectively. In FIG. 1, four image pickup devices 20a to 20d are arranged in two stages in one stage, and the arrangement method is not limited to this. For example, four image pickup devices 20a to 20d may be arranged side by side in a horizontal row.
  • the image pickup devices 20a to 20d have a plurality of pixels, for example, 320 ⁇ 256 pixels, and four temperature images (FIGS. 4A to 4D) of the visual fields 1 to 4 over the same time range for the same region of the object 1. ) Is taken.
  • the temperature image is also called an infrared image.
  • the shooting is performed at a predetermined frame rate, for example, 5 Hz to 3000 Hz (5 shots / sec to 3000 shots / sec).
  • the characteristics of the image pickup devices 20a to 20d are merely examples, and the present invention is not limited thereto. Further, the image sensor has shown four cases here, but is not limited to this. As long as two or more temperature images can be obtained, the number of image pickup elements may be one or a plurality as shown in a modification described later.
  • the image processing unit 30 performs image processing on a plurality of temperature images.
  • the image processing unit 30 is, for example, a computer device.
  • a general-purpose computer device can be used, and for example, as shown in FIG. 1, a processing unit 31, a storage unit 32, and a display unit 33 are included. Further, an input device, a storage device, an interface and the like may be included.
  • the processing unit 31 may be, for example, a central processing operator (CPU, MPU, etc.), a microcomputer, or a processing device capable of executing instructions that can be executed by the computer.
  • CPU central processing operator
  • MPU microcontroller
  • processing device capable of executing instructions that can be executed by the computer.
  • the storage unit 32 may be at least one such as a ROM, an EEPROM, a RAM, a flash SSD, a hard disk, a USB memory, a magnetic disk, an optical disk, and a magneto-optical disk.
  • the storage unit 32 includes the program 35. When the image processing unit 30 is connected to the network, the program 35 may be downloaded from the network as needed.
  • the program 35 includes a feature point extraction unit 35a, a projection conversion unit 35b, a pixel rearrangement unit 35c, a stress conversion unit 35h, and an addition averaging unit 35i. At the time of execution, these are read from the storage unit 32 and executed by the processing unit 31.
  • FIG. 1 includes a background temperature subtraction unit 35d, a spline interpolation unit 35e, an amplitude correction unit 35f, and a start point setting unit 35g, but these are not essential configurations and are optional. It is a component of.
  • the feature point extraction unit 35a extracts feature points in each temperature image.
  • the parts having different temperatures are represented by the difference in shade.
  • the parts having the same temperature are represented as the same temperature regardless of the shape and cannot be distinguished. Therefore, a difference in shape or the like that can be a feature point in a normal image does not become a noticeable difference in a temperature image, and it is difficult to use it as a feature point. That is, in the temperature image, points that appear to be different temperatures can be feature points. Therefore, for example, a pattern that partially changes the emissivity may be provided on the surface of the object.
  • a place where a pattern having a different emissivity is provided even if the temperature is substantially the same as the surroundings can be recognized as a apparently different temperature in the temperature image and can be a feature point.
  • the patterns having different emissivity may be formed by, for example, attaching an aluminum thin film having a low emissivity to a part of the object 1.
  • FIG. 4A is a schematic view showing feature points in the temperature image of the visual field 1 among the four visual fields of the visual field 1 to the visual field 4.
  • FIG. 4B is a schematic view showing the feature points in the temperature image of the visual field 2 among the four visual fields of the visual fields 1 to 4.
  • FIG. 4C is a schematic view showing feature points in the temperature image of the visual field 3 among the four visual fields of the visual fields 1 to 4.
  • FIG. 4D is a schematic view showing feature points in the temperature image of the visual field 4 among the four visual fields of the visual fields 1 to 4.
  • 4A to 4D show how different patterns of emissivity provided on the surface of the object 1 are detected as feature points having a difference in apparent temperature in each of the temperature images of the visual fields 1 to 4. There is. Specifically, a square pattern formed by four circles above and below the elongated object is detected as a feature point. In the temperature image of each field of view, the square patterns above and below the object correspond to each other.
  • the projective transformation unit 35b performs projective transformation on each temperature image so as to align the feature points in each temperature image, and aligns the temperature image as a reference.
  • the coefficient of projective transformation for superimposing the temperature images of the fields of view 2, 3 and 4 on the temperature image of the field of view 1 is obtained from the feature points.
  • the formula for the projective transformation to convert from (x, y) to (x', y') is as follows. Note that f 0 is a constant and hij is a coefficient. Here, f0 is set to 1, and the coefficient is obtained by using the least squares method.
  • x' Z [Hx] It is expressed as.
  • x, x', and H are represented as follows. It should be normalized as
  • 1.
  • M is expressed by the following equation.
  • the vector h to be obtained is a unit eigenvector with respect to the minimum value of the matrix M that minimizes J.
  • FIG. 5A (a) is a schematic view showing a pixel array including the feature points of the temperature image of the visual field 1
  • FIG. 5A (b) is a schematic diagram showing a pixel array including the feature points of the temperature image of the visual field 2.
  • FIG. 5B (a) is a schematic view showing a pixel arrangement according to the coordinate system of the temperature image of the field of view 1 as a reference
  • FIG. 5B (b) features the temperature image of the field of view 2 of FIG. 5A (b).
  • It is a schematic diagram which shows the pixel arrangement of the temperature image of the field of view 2 after projection conversion to the coordinate system of the temperature image of the field of view 1 so that it fits. Comparing the feature points of the temperature image of the field of view 1 in FIG.
  • the temperature image of the field of view 2 is a clock with respect to the temperature image of the field of view 1. It can be seen that it is rotated 45 ° around. Therefore, in order to match the corresponding feature points with the temperature image of the visual field 1 as a reference, it is necessary to perform a projective transformation in which the temperature image of the visual field 2 is rotated by 45 ° counterclockwise.
  • the temperature image of the field of view 2 in FIG. 5B (b) is a schematic view showing a pixel arrangement after performing a projective transformation in which the temperature image of the field of view 2 in FIG. 5A (b) is rotated counterclockwise by 45 °.
  • FIG. 6A (a) is a schematic view showing a pixel arrangement according to the coordinate system of the temperature image of the reference field 1
  • FIG. 6A (b) shows the field of view 2 after projection conversion to the coordinate system of the temperature image of the field of view 1.
  • FIG. 6B (a) is a schematic view showing the pixel arrangement of the temperature image of the reference field 1 as a reference
  • FIG. 6B (b) is a temperature image of the field 2 so as to correspond to the pixel arrangement of the temperature image of the field 1
  • the pixel rearrangement unit 35c rearranges the pixel arrangement of each temperature image subjected to the projective conversion with respect to the pixel arrangement of the reference temperature image. Pixel rearrangement is also called resampling. For example, as shown in FIG. 6A (b), the pixel array of the temperature image of the visual field 2 after the projective conversion may be rotated with respect to the pixel array of the temperature image of the visual field 1. In this case, it may be unclear which pixel corresponds to each temperature image.
  • the pixel rearrangement unit 35c rearranges the pixels so that the configuration of the pixel array of the temperature image in the visual field 2 matches the configuration of the pixel array of the temperature image in the visual field 1. Specifically, when the pixel arrangement of the temperature image of the visual field 2 after the projection conversion in FIG. 6A (b) and the temperature image of the visual field 2 after the pixel rearrangement in FIG. 6B (b) are compared, the pixel arrangement before the pixel rearrangement is performed.
  • the three feature points in the center of the pixel array of the field of view 2 correspond to the three vertical pixels in the center as they are.
  • the pixels at the corners on both sides before the pixel rearrangement correspond to the middle pixels on both sides after the pixel rearrangement.
  • the pixels on the side adjacent to the corners on both sides before the pixel rearrangement correspond to the pixels on the corners on both sides after the pixel rearrangement.
  • FIG. 7 is a schematic view showing that the pixel arrangement of the field of view 2 after the projective conversion is rearranged in the pixel arrangement of the closest field of view 1. Note that, in FIG. 7, unlike the one in which each pixel is arranged in the grids shown in FIGS. 6A and 6B, each pixel grids the pixel array of the visual field 1 and the pixel array of the visual field 2 after the projective conversion. It is shown as being at the point. In the case of FIG. 6A, the pixel array in the field 2 is rotated 45 ° clockwise with respect to the pixel array in the field 1, but the pixel rearrangement is limited to this. I can't. That is, when the pixel arrays of each other form an arbitrary angle, as shown in FIG.
  • each pixel of the pixel array of the visual field 2 which is closest to each pixel of the pixel array of the visual field 1 is rearranged as shown by an arrow in FIG. This method is called the "closest neighbor method".
  • the pixel array of the visual field 2 has the same configuration as the pixel array of the visual field 1.
  • the pixel array of the visual field 2 can be rearranged into the same pixel array as the pixel array of the visual field 1.
  • the pixel rearrangement method is not limited to the above-mentioned closest method, and other methods may be used. Further, the pixel rearrangement is not an indispensable configuration, and may be provided as needed.
  • the background temperature subtraction unit 35d subtracts the background temperature from each temperature image after pixel rearrangement.
  • the background temperature may be, for example, the temperature of a background object or the like that exists around the object but is not related to the object and is not stressed. By subtracting the background temperature from the temperature image, back noise caused by changes in the temperature of the environment can be reduced. Especially when the temperature change is large, it is effective for noise reduction.
  • the background object is not limited to a naturally occurring object, and may be, for example, a board installed in advance.
  • the background temperature subtraction unit is not essential when it is not necessary to substantially consider the change in the background temperature.
  • the spline interpolation unit 35e performs spline interpolation over the same time range of each temperature image after pixel rearrangement.
  • Spline interpolation is performed by obtaining a polynomial approximation, for example a cubic approximation, between the data points so that each data point is smoothly connected to each pixel of each temperature image based on the data points before interpolation by sampling. Will be done.
  • a polynomial approximation for example a cubic approximation
  • the frame rate is deviated for each image sensor, sampling is performed at different timings, and even if the data points are deviated in each temperature image, the data points at the same timing can be calculated by interpolation.
  • Spline interpolation can be performed by a commonly used method.
  • FIG. 8 is a schematic view showing data points before interpolation by sampling the temperature change of one pixel and data points after interpolation that interpolate between each data point by sampling. As shown in FIG. 8, after the interpolation, the interpolated data points are shown between the sampled data points as the data points at the same timing in each temperature image. It is necessary to perform spline interpolation when the sampling timing of each temperature image is substantially the same, or when a plurality of temperature images are obtained by the same image sensor as in the case of a compound eye infrared camera. There is no.
  • FIG. 9 is a schematic view showing the state before and after the amplitude correction with respect to the amplitude of the temperature image with respect to the frequency after the Fourier transform.
  • FIG. 10 is a diagram showing an example of the frequency response function of the first-order lag system used for the amplitude correction of FIG.
  • the amplitude correction unit 35f corrects the amplitude of each temperature image after pixel rearrangement by dividing the relationship between the frequency and the amplitude after the Fourier transform by the frequency response function of the first-order lag system.
  • the amplitude of the temperature change tends to be attenuated as the frequency increases. It is assumed that this amplitude decay tendency is represented by, for example, a first-order lag system.
  • the frequency response function in this case is shown in FIG. 10 and is represented by the following equation.
  • the frequency ⁇ to be corrected is up to 10 Hz. This is because the higher the frequency, the larger the amount of correction, so here, the upper limit of the frequency range to be corrected is 10 Hz. In this case, the frequency is high even at 10 Hz. That is, since the frequency response function of the first-order lag system becomes smaller as the frequency becomes higher, the corrected amplitude becomes larger as the frequency becomes higher. If the value is equal to or higher than the upper limit of the correction target, the value of the frequency response function is set to 1, so that the correction is not performed.
  • H ( ⁇ ) (1-j ⁇ ) / (1 + ⁇ 2 ⁇ 2 )
  • is a time constant.
  • FIG. 11A is a diagram showing a time constant in the frequency response function of the first-order lag system for the temperature image of the visual field 1 by the sinusoidal load experiment.
  • FIG. 11B is a diagram showing a time constant in the frequency response function of the first-order lag system for the temperature image of the visual field 2 by the sinusoidal load experiment.
  • FIG. 11C is a diagram showing a time constant in the frequency response function of the first-order lag system for the temperature image of the visual field 3 by the sinusoidal load experiment.
  • FIG. 11D is a diagram showing a time constant in the frequency response function of the first-order lag system for the temperature image of the visual field 4 by the sinusoidal load experiment. As shown in FIGS.
  • the temperature change obtained by applying a known sinusoidal load to the object 1 is divided by the stress and fitted by the frequency response function of the first-order lag system.
  • the time constant ⁇ can be obtained.
  • the frequency response function of the first-order lag system of each field is calculated using the obtained time constant ⁇ , and the calculated first-order lag system is obtained for each temperature image with respect to the relationship between the frequency and the amplitude after the Fourier transform.
  • Amplitude correction can be performed by dividing by the frequency response function of.
  • the upper limit of the frequency range to be corrected is not limited to 10 Hz. Further, when the frequency characteristic of the image sensor is constant, the amplitude correction is not necessary.
  • the start point setting unit 35g aligns the start points of each temperature image after pixel rearrangement based on the synchronization signal included in each temperature image.
  • the synchronization signal is recorded as, for example, a temperature change at the same time in each temperature image due to the light emission of the LED lamp. By emitting light from the LED lamp, the temperature change at the same time in each temperature image can be used as a synchronization signal.
  • the synchronization signal is not limited to recording as a temperature change at the same time in each temperature image due to the light emission of the LED lamp.
  • the opening and closing of the shutter at the time of imaging of each image sensor may be used as a synchronization signal.
  • the method of adjusting the starting point is not limited to the case where the synchronization signal included in each of the above temperature images is used.
  • the cross-correlation of the temperature images may be calculated to calculate the timing at which the amplitudes of the temperature images best match, and the start points may be aligned.
  • FIG. 12 is a diagram showing the time change of the temperature of the corresponding same pixel of each visual field after amplitude correction in an superimposed manner.
  • FIG. 13 is a diagram showing the time change of the temperature of the corresponding same pixel of each visual field after the amplitude correction of FIG. 12 with the start points aligned and superimposed.
  • the start points of the temperature images of each field of view are deviated, the temperature changes of the same period do not overlap for each field of view.
  • FIG. 13 by aligning the start points of the temperature images of each field of view, it can be seen that the temperature changes of the same period overlap with each other for the temperature images of each field of view. It is not necessary to set the starting point when the starting points are aligned on the hardware side like a compound eye infrared camera.
  • the stress conversion unit 35h multiplies each temperature image after pixel rearrangement by a stress conversion coefficient to obtain each stress image.
  • the stress conversion unit 35h calculates the stress change amount ⁇ from the temperature change amount ⁇ T by using, for example, the following equation (1) representing the thermoelastic effect.
  • ⁇ T ⁇ KT ⁇ ⁇ ⁇ ⁇ (1)
  • K is a thermoelastic modulus
  • K ⁇ / (CP)
  • T the absolute temperature of the surface of the object.
  • is the coefficient of linear expansion of the surface of the object
  • is the density of the surface of the object
  • CP is the specific heat of the surface of the object under constant stress. Then, the stress conversion unit 35h can obtain a stress image based on the amount of stress change of all the pixels.
  • FIG. 14A is a diagram showing the stress conversion coefficient calculated as the reciprocal of the intercept for the temperature image of the visual field 1 by the sinusoidal load experiment.
  • FIG. 14B is a diagram showing the stress conversion coefficient calculated as the reciprocal of the intercept for the temperature image of the visual field 2 by the sinusoidal load experiment.
  • FIG. 14C is a diagram showing the stress conversion coefficient calculated as the reciprocal of the intercept for the temperature image of the visual field 3 by the sinusoidal load experiment.
  • FIG. 14D is a diagram showing the stress conversion coefficient calculated as the reciprocal of the intercept for the temperature image of the visual field 4 by the sinusoidal load experiment.
  • this stress conversion is not limited to the case where it is performed at the timing after the start point is set. For example, it may be performed after reading the temperature image. Further, it may be performed at any timing after the background temperature subtraction, the spline interpolation, the amplitude correction, and the addition averaging.
  • each stress image is added and averaged to obtain an averaging stress image.
  • the number of stress images to be added and averaged may be 2 or more. Increasing the number of stress images will increase the accuracy, but if there are too many, it will take time for processing. Further, as the number of image pickup elements increases, it becomes difficult to arrange them. Therefore, usually, for example, four stress images may be added and averaged. It should be noted that at most 8 to 10 stress images may be added and averaged.
  • FIG. 15A is a diagram showing a superposition of temperature data and load data, which are temporal changes in the temperature of one pixel in a temperature image of one visual field.
  • FIG. 15B is a diagram showing the temperature data and the load data, which are the temperature changes of the added average of the temperatures of the corresponding same pixels in the temperature images of the two visual fields, superimposed.
  • FIG. 15C is a diagram showing a superposition of temperature data and load data, which are temperature changes of the summed average of the temperatures of the corresponding same pixels in the temperature images of the three visual fields.
  • FIG. 15D is a diagram showing a superposition of temperature data and load data, which are temperature changes of the summed average of the temperatures of the corresponding same pixels in the temperature images of the four visual fields.
  • the load data applied to the object is known.
  • the accuracy of stress conversion from the temperature image to the stress image can be understood by superimposing the temperature data obtained from the time change of the temperature image and the load data. That is, the more the temperature data is in line with the load data, the higher the accuracy of stress conversion. Since the stress conversion from "temperature data” to “stress data” is a linear conversion, it is represented by "MPa” after the stress conversion as a unit of "temperature data” in the figure.
  • the temperature data based on one temperature image has a large amount of noise with respect to the load data, and the accuracy of the stress image is not sufficient.
  • FIG. 15B in which the temperature data of the two temperature images are added and averaged
  • FIG. 15C in which the temperature data of the three temperature images are added and averaged
  • FIG. 15D in which the temperature data of the four temperature images are added and averaged
  • the added average is obtained. It can be seen that the load data is approaching as the number of times increases.
  • FIG. 16 is a diagram showing the relationship between the number of averaging for one pixel and the correlation coefficient between the temperature data and the load data.
  • FIG. 17 is a diagram showing the relationship between the number of addition averages for one pixel and the mean square error (RMSE) between the temperature data and the load data.
  • FIG. 18A is a diagram showing the root mean square error (RMSE) between the temperature data and the load data when the addition average is once and four times along the X direction of the temperature image.
  • FIG. 18B is a diagram showing the root mean square error (RMSE) of the temperature data and the load data when the addition average is once and four times along the Y direction of the temperature image.
  • the correlation coefficient between the temperature data and the load data increases.
  • the mean square error (RMSE) between the temperature data and the load data decreases as the number of addition averaging increases.
  • the mean square error (RMSE) between the temperature data and the load data is larger in the case of four addition averages than in the case of one addition average along the X direction of the temperature image. Is low.
  • the mean square error (RMSE) between the temperature data and the load data is larger in the case of four addition averages than in the case of one addition average along the Y direction of the temperature image. ) Is low.
  • the display unit 33 may display a captured temperature image, a graph of temperature change, a obtained stress image, an additive average stress image, and the like.
  • FIG. 3 is a schematic view showing four temperature images of the field of view 1 to the field of view 4 by the compound eye infrared camera of the image pickup device used in the stress analysis device 40 according to the modified example.
  • This modification differs in that a plurality of image pickup elements are not used as shown in FIG. That is, it is characterized in that a plurality of temperature images of the visual fields 1 to 4 are captured in one image sensor.
  • a compound-eye infrared camera having a plurality of lenses for one image sensor is used.
  • the compound eye infrared camera has a plurality of lenses for one image sensor, and can capture four temperature images of the field of view 1 to the field of view 4 by each lens with one image sensor.
  • the number of fields of view is an example and is not limited to this.
  • the optical paths leading to the image sensor are different optical paths from different viewpoints, but the optical paths are not limited to this.
  • an optical path may be divided from the same optical axis using a prism and guided to a plurality of image pickup devices to obtain a plurality of temperature images having the same optical axis.
  • FIG. 2 is a flowchart of the stress analysis method according to the first embodiment. This stress analysis method will be described below. The details of each step are as follows: “image sensor”, “feature point extraction unit”, “projection conversion unit”, “pixel rearrangement unit”, “background temperature subtraction unit”, “spline interpolation unit”, “amplitude correction unit”. , “Start point setting unit”, “Stress conversion unit”, and “Additional averaging unit” are substantially the same as those described above, so duplicate description will be omitted here.
  • (1) Two or more temperature images over the same time range are read for the same region of the object 1 (S01). Specifically, two or more temperature images taken by the image pickup devices 20a to 20d are read into the image processing unit 30.
  • Feature points are extracted for each temperature image (S02).
  • an aluminum thin film having a low emissivity may be attached to a part of the object 1 to form a pattern of feature points.
  • Projection transformation is performed on each temperature image so as to align the feature points, and the alignment is performed with respect to the reference temperature image (S03).
  • the pixel array of each temperature image subjected to the projective conversion is rearranged with respect to the pixel array of the reference temperature image (S04). By rearranging each pixel of the pixel array of the field 2 into a pixel array similar to the pixel array of the nearest field 1, the pixel array of the field 2 has the same configuration as the pixel array of the field 1.
  • the background temperature is subtracted from each temperature image (S05). This makes it possible to reduce back noise caused by changes in the temperature of the environment. Specifically, the background temperature may be detected from the background object, and the background temperature may be subtracted from the temperature image. (6) Spline interpolation is performed over the same time range of each temperature image (S06). As a result, the frame rate is different for each image sensor, sampling is performed at different timings, and even if the data points are different in each temperature image, the data points at the same timing can be calculated by interpolation. (7) For each temperature image, the relationship between the frequency and the amplitude after the Fourier transform is divided by the frequency response function of the first-order lag system to correct the amplitude (S07).
  • the amplitude is corrected by dividing by the frequency response function shown in FIG. (8)
  • the starting points are aligned based on the synchronization signal included in advance (S08).
  • the synchronization signal may be recorded, for example, as a temperature change at the same time in each temperature image due to the light emission of the LED lamp.
  • the opening and closing of the shutter at the time of imaging of each image sensor may be used as a synchronization signal.
  • the method of adjusting the starting point is not limited to the case where the synchronization signal included in each of the above temperature images is used.
  • the cross-correlation of each temperature image may be calculated to match the starting point.
  • Each temperature image is multiplied by a stress conversion coefficient to obtain each stress image (S09).
  • the stress conversion coefficient of each image sensor can be calculated based on the temperature image obtained by applying a known load.
  • Each stress image is added and averaged to obtain an added average stress image (S10).
  • the number of stress images to be added and averaged may be 2 or more.
  • FIG. 19 is a block diagram showing the configuration of the temperature measuring device 50 according to the second embodiment.
  • the temperature measuring device 50 includes image pickup elements 20a to 20d for acquiring two or more temperature images, a feature point extraction unit 35a for extracting feature points in each temperature image, and a projection conversion for aligning each temperature image. Section 35b, pixel rearrangement section 35c that rearranges the pixel arrangement of each temperature image, temperature image acquisition section 35j that obtains each temperature image, and addition average of each temperature image. Temperature image addition to obtain an average temperature image. It has an average portion of 35k.
  • the image pickup devices 20a to 20d acquire two or more temperature images for the same region of the object 1 over the same time range.
  • the projective transformation unit 35b performs projective transformation on each temperature image so as to align the feature points in each temperature image, and aligns the temperature image as a reference.
  • the pixel rearrangement unit 35c rearranges the pixel arrangement of each temperature image subjected to the projective conversion with respect to the pixel arrangement of the reference temperature image.
  • the temperature measuring device 40 when compared with the stress analysis device according to the first embodiment, the temperature image is acquired as it is without multiplying the temperature image by the stress conversion coefficient, and two or more temperature images are added and averaged and added. An average temperature image is obtained. As a result, the noise derived from the image sensor is canceled by the averaging of each temperature image, and a temperature image with improved accuracy can be obtained.
  • the temperature image acquisition unit 35j acquires the temperature image as it is without multiplying the temperature image by the stress conversion coefficient.
  • ⁇ Temperature image addition average part> The temperature image addition averaging unit 35k obtains an addition average temperature image by adding and averaging two or more temperature images.
  • FIG. 20 is a flowchart of the temperature measuring method according to the second embodiment. This temperature measurement method will be described below. The details of each step are as follows: “image sensor”, “feature point extraction unit”, “projection conversion unit”, “pixel rearrangement unit”, “background temperature subtraction unit”, “spline interpolation unit”, “amplitude correction unit”. , “Start point setting unit”, “Temperature image acquisition unit”, and “Temperature image addition average unit” are substantially the same as those described above, so duplicate description will be omitted here. Further, since the following steps S11 to S18 are substantially the same as the steps S01 to S08 of the stress analysis method according to the first embodiment, a part of the description will be omitted.
  • the background temperature is subtracted from each temperature image (S15). This makes it possible to reduce back noise caused by changes in the temperature of the environment.
  • Spline interpolation is performed over the same time range of each temperature image (S16). As a result, the frame rate is different for each image sensor, sampling is performed at different timings, and even if the data points are different in each temperature image, the data points at the same timing can be calculated by interpolation.
  • the relationship between the frequency and the amplitude after the Fourier transform is divided by the frequency response function of the first-order lag system to correct the amplitude (S17).
  • the starting points are aligned based on the synchronization signal included in advance (S18).
  • Each temperature image is obtained (S19).
  • Each temperature image is added and averaged to obtain an added average temperature image (S20).
  • the number of temperature images to be added and averaged may be 2 or more. As described above, by adding and averaging a plurality of temperature images to calculate the added average temperature image, a temperature image with improved accuracy can be obtained.
  • a stress image with improved accuracy can be obtained by calculating an added average stress image by adding and averaging a plurality of temperature images, that is, a plurality of stress images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

より改善された精度の応力画像が得られる応力解析装置を提供する。応力解析装置は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する撮像素子と、各温度画像の中の特徴点を抽出する特徴点抽出部と、各温度画像の中の特徴点を合わせるように、各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う射影変換部と、射影変換を行った各温度画像の画素配列を、基準となる温度画像の画素配列に対して再配列する画素再配列部と、画素再配列後の各温度画像について、応力変換係数を乗じて各応力画像を得る応力変換部と、各応力画像を加算平均して加算平均応力画像を得る加算平均部と、を備える。

Description

応力解析装置
 本発明は、複数の温度画像を用いた応力解析装置に関する。
 温度画像から応力解析を行う技術については様々なものが提案されてきた(例えば、特許文献1参照。)。これらの応力解析技術では、温度画像から得られる対象物の温度変化とその対象物に及ぼされる応力との間に線形関係があることを用いて、温度画像から応力画像を得ている。
国際公開第2017/141294号
 しかし、一般的な温度画像から応力変化を得る場合、撮像素子に由来するノイズのために十分な精度の応力画像が得られていなかった。
 そこで、本発明は、より改善された精度の応力画像が得られる応力解析装置を提供することを目的とする。
 本開示に係る応力解析装置は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する撮像素子と、
 前記各温度画像の中の特徴点を抽出する特徴点抽出部と、
 前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う射影変換部と、
 射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列する画素再配列部と、
 画素再配列後の前記各温度画像について、応力変換係数を乗じて各応力画像を得る応力変換部と、
 前記各応力画像を加算平均して加算平均応力画像を得る加算平均部と、
を備える。
 本発明に係る応力解析方法は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得するステップと、
 前記各温度画像の中の特徴点を抽出するステップと、
 前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行うステップと、
 射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列するステップと、
 画素再配列後の前記各温度画像について、応力変換係数を乗じて各応力画像を得るステップと、
 前記各応力画像を加算平均して加算平均応力画像を得るステップと、
を含む。
 本発明に係る温度測定装置は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する撮像素子と、
 前記各温度画像の中の特徴点を抽出する特徴点抽出部と、
 前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う射影変換部と、
 射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列する画素再配列部と、
 画素再配列後の前記各温度画像を得る温度画像取得部と、
 前記各温度画像を加算平均して加算平均温度画像を得る温度画像加算平均部と、
を備える。
 本発明に係る温度測定方法は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得するステップと、
 前記各温度画像の中の特徴点を抽出するステップと、
 前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行うステップと、
 射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列するステップと、
 画素再配列後の前記各温度画像を得るステップと、
 前記各温度画像を加算平均して加算平均温度画像を得るステップと、
を含む。
 これらの概括的かつ特定の態様は、システム、方法、コンピュータプログラム並びにシステム、方法及びコンピュータプログラムの任意の組み合わせにより実現してもよい。
 本発明に係る応力解析装置によれば、複数の応力画像を加算平均して加算平均応力画像を得ているので、改善された精度の応力画像が得られる。
実施の形態1に係る応力解析装置の構成を示すブロック図である。 実施の形態1に係る応力解析方法のフローチャートである。 変形例に係る応力解析装置に用いられる複眼カメラによる視野1乃至視野4の4つの温度画像を示す概略図である。 実施の形態1に係る応力解析装置の視野1乃至視野4の4つの視野のうち視野1の温度画像における特徴点を示す概略図である。 実施の形態1に係る応力解析装置の視野1乃至視野4の4つの視野のうち視野2の温度画像における特徴点を示す概略図である。 実施の形態1に係る応力解析装置の視野1乃至視野4の4つの視野のうち視野3の温度画像における特徴点を示す概略図である。 実施の形態1に係る応力解析装置の視野1乃至視野4の4つの視野のうち視野4の温度画像における特徴点を示す概略図である。 (a)は、視野1の温度画像の特徴点を含む画素配列を示す概略図であり、(b)は、視野2の温度画像の特徴点を含む画素配列を示す概略図である。 (a)は、基準となる視野1の温度画像の座標系による画素配列を示す概略図であり、(b)は、図5Aの(b)の視野2の温度画像を特徴点が合うように視野1の温度画像の座標系に射影変換した後の視野2の温度画像の画素配列を示す概略図である。 (a)は、基準となる視野1の温度画像の座標系による画素配列を示す概略図であり、(b)は、視野1の温度画像の座標系に射影変換後の視野2の温度画像の画素配列を示す概略図である。 (a)は、基準となる視野1の温度画像の画素配列を示す概略図であり、(b)は、視野1の温度画像の画素配列と対応するように視野2の温度画像の画素配列を画素再配列した視野2の温度画像の画素配列を示す概略図である。 射影変換後の視野2の画素配列について、最近接の視野1の画素配列に画素再配列を行うことを示す概略図である。 1画素の温度変化のサンプリングによる補間前のデータ点と、サンプリングによる各データ点の間を補間する補間後のデータ点を示す概略図である。 温度画像のフーリエ変換後の周波数に対する振幅について、振幅補正の前後の様子を示す概略図である。 図9の振幅補正に用いられる1次遅れ系の周波数応答関数の一例を示す図である。 正弦波負荷実験による視野1の温度画像についての1次遅れ系の周波数応答関数における時定数を示す図である。 正弦波負荷実験による視野2の温度画像についての1次遅れ系の周波数応答関数における時定数を示す図である。 正弦波負荷実験による視野3の温度画像についての1次遅れ系の周波数応答関数における時定数を示す図である。 正弦波負荷実験による視野4の温度画像についての1次遅れ系の周波数応答関数における時定数を示す図である。 振幅補正後の各視野の対応する同一画素の温度の時間変化を重ね合わせて示す図である。 図12の振幅補正後の各視野の対応する同一画素の温度の時間変化について、開始点をそろえて重ね合わせて示す図である。 正弦波負荷実験による視野1の温度画像について切片の逆数として算出された応力変換係数を示す図である。 正弦波負荷実験による視野2の温度画像について切片の逆数として算出された応力変換係数を示す図である。 正弦波負荷実験による視野3の温度画像について切片の逆数として算出された応力変換係数を示す図である。 正弦波負荷実験による視野4の温度画像について切片の逆数として算出された応力変換係数を示す図である。 1つの視野の温度画像における1つの画素の温度の時間変化である温度データと荷重データとを重ね合わせて示す図である。 2つの視野の温度画像における対応する同一画素の温度の加算平均の温度変化である温度データと荷重データとを重ね合わせて示す図である。 3つの視野の温度画像における対応する同一画素の温度の加算平均の温度変化である温度データと荷重データとを重ね合わせて示す図である。 4つの視野の温度画像における対応する同一画素の温度の加算平均の温度変化である温度データと荷重データとを重ね合わせて示す図である。 1画素についての加算平均の回数と、温度データと荷重データとの相関係数との関係を示す図である。 1画素についての加算平均の回数と、温度データと荷重データとの平均平方2乗誤差(RMSE)との関係を示す図である。 温度画像のX方向に沿って加算平均を1回の場合と4回の場合の温度データと荷重データとの平均平方2乗誤差(RMSE)を示す図である。 温度画像のY方向に沿って加算平均を1回の場合と4回の場合の温度データと荷重データとの平均平方2乗誤差(RMSE)を示す図である。 実施の形態2に係る温度測定装置50の構成を示すブロック図である。 実施の形態2に係る温度測定方法のフローチャートである。
 第1の態様に係る応力解析装置は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する撮像素子と、
 前記各温度画像の中の特徴点を抽出する特徴点抽出部と、
 前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う射影変換部と、
 射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列する画素再配列部と、
 画素再配列後の前記各温度画像について、応力変換係数を乗じて各応力画像を得る応力変換部と、
 前記各応力画像を加算平均して加算平均応力画像を得る加算平均部と、
を備える。
 第2の態様に係る応力解析装置は、上記第1の態様に係る応力解析装置であって、画素再配列後の前記各温度画像から背景温度を差し引く背景温度減算部をさらに備えてもよい。
 第3の態様に係る応力解析装置は、上記第1又は第2の態様に係る応力解析装置であって、画素再配列後の前記各温度画像について、フーリエ変換後の周波数と振幅との関係に対して、1次遅れ系の周波数応答関数で割り算して振幅補正を行う振幅補正部をさらに備えてもよい。
 第4の態様に係る応力解析装置は、上記第1から第3のいずれかの態様に係る応力解析装置であって、画素再配列後の前記各温度画像の前記同一の時間範囲にわたってスプライン補間を行うスプライン補間部をさらに備えてもよい。
 第5の態様に係る応力解析装置は、上記第1から第4のいずれかの態様に係る応力解析装置であって、前記2以上の温度画像を取得する際に、前記撮像素子は、同期信号を前記2以上の温度画像に含めるようにすると共に、
 画素再配列後の前記各温度画像について、前記同期信号に基づいて開始点をそろえる開始点設定部をさらに備えてもよい。
 第6の態様に係る応力解析方法は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得するステップと、
 前記各温度画像の中の特徴点を抽出するステップと、
 前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行うステップと、
 射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列するステップと、
 画素再配列後の前記各温度画像について、応力変換係数を乗じて各応力画像を得るステップと、
 前記各応力画像を加算平均して加算平均応力画像を得るステップと、
を含む。
 第7の態様に係る温度測定装置は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する撮像素子と、
 前記各温度画像の中の特徴点を抽出する特徴点抽出部と、
 前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う射影変換部と、
 射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列する画素再配列部と、
 画素再配列後の前記各温度画像を得る温度画像取得部と、
 前記各温度画像を加算平均して加算平均温度画像を得る温度画像加算平均部と、
を備える。
 第8の態様に係る温度測定方法は、対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得するステップと、
 前記各温度画像の中の特徴点を抽出するステップと、
 前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行うステップと、
 射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列するステップと、
 画素再配列後の前記各温度画像を得るステップと、
 前記各温度画像を加算平均して加算平均温度画像を得るステップと、
を含む。
 以下、実施の形態に係る応力解析装置について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。
(実施の形態1)
<応力解析装置>
 図1は、実施の形態1に係る応力解析装置40の構成を示すブロック図である。
 この応力解析装置40は、2以上の温度画像を取得する撮像素子20a~20dと、各温度画像の中の特徴点を抽出する特徴点抽出部35aと、各温度画像について位置合わせを行う射影変換部35bと、各温度画像の画素配列を再配列する画素再配列部35cと、各温度画像について、応力変換係数を乗じて各応力画像を得る応力変換部35hと、各応力画像を加算平均して加算平均応力画像を得る加算平均部35iと、を備える。撮像素子20a~20dは、対象物1の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する。射影変換部35bは、各温度画像の中の特徴点を合わせるように、各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う。画素再配列部35cは、射影変換を行った各温度画像の画素配列を、基準となる温度画像の画素配列に対して再配列する。
 この応力解析装置40によれば、2以上の応力画像を加算平均して加算平均応力画像を得ている。これによって、撮像素子に由来するノイズが各応力画像の加算平均によって相殺され、改善された精度の応力画像が得られる。
 以下に、この応力解析装置40を構成する各部材について説明する。
 <対象物>
 対象物1は、応力を解析する対象となる物体である。図1では細長い試験片として示しているが、対象物1はこれに限られない。例えば、橋梁、ビル、塔等の建築物、車両、船舶、航空機等の可動体および赤外線カメラ側が移動する場合であってもよい。
 <荷重印加部>
 図1において、対象物1を荷重印加部10によって支持している。この荷重印加部10によって、対象物1に既知の正弦波負荷や、複数の周波数の正弦波負荷を複合して印加してもよい。この場合には、荷重印加部10から対象物1に印加される荷重は既知のものである。なお、荷重印加部10は必要により設ければよく、任意の構成である。また、この応力解析装置において解析の対象となる対象物1に印加される荷重は、上記既知の荷重だけではなく未知の荷重も含む。
 この荷重印加部10によって対象物1に既知の荷重を印加することで、得られる温度画像による温度データと既知の荷重データとの対比を行うことができる。各撮像素子ごとに1次遅れ系の周波数応答関数の時定数が異なり、応力変換係数も異なる。そこで、この荷重印加部10によって既知の正弦波負荷を対象物に印加することで、各撮像素子の周波数応答関数の時定数及び応力変換係数を算出することができる。
 <撮像素子>
 図1では、4つの撮像素子20a~20dを示している。また、図1では、これらの撮像素子20a~20dは、それぞれレンズと撮像素子からなる赤外線カメラを4つ組み合わせたものとして示している。図1では、4つの撮像素子20a~20dを1段に2つ、全体で2段に配置しているが、配置方法はこれに限られない。例えば、横一列に4つの撮像素子20a~20dを並べて配置してもよい。
 撮像素子20a~20dは、複数の画素、例えば、320×256の画素を有し、対象物1の同一領域について同一の時間範囲にわたる視野1乃至視野4の4つの温度画像(図4A乃至図4D)を撮影する。温度画像は、赤外線画像ともいわれる。撮影は、所定のフレームレート、例えば、5Hz~3000Hz(5枚/秒~3000枚/秒)で撮影する。なお、上記撮像素子20a~20dの上記特性は、一例であって、これらに限定するものではない。
 また、撮像素子は、ここでは4つの場合を示したが、これに限られない。撮像素子は、2以上の温度画像が得られればよく、後述の変形例に示すように1つでもよく、複数でもよい。
 <画像処理部(コンピュータ装置)>
 画像処理部30によって、複数の温度画像の画像処理を行う。画像処理部30は、例えば、コンピュータ装置である。このコンピュータ装置としては、汎用的なコンピュータ装置を用いることができ、例えば、図1に示すように、処理部31、記憶部32、表示部33を含む。なお、さらに、入力装置、記憶装置、インタフェース等を含んでもよい。
  <処理部>
 処理部31は、例えば、中央処理演算子(CPU、MPU等)、マイクロコンピュータ、又は、コンピュータで実行可能な命令を実行できる処理装置であればよい。
  <記憶部>
 記憶部32は、例えば、ROM、EEPROM、RAM、フラッシュSSD、ハードディスク、USBメモリ、磁気ディスク、光ディスク、光磁気ディスク等の少なくとも一つであってもよい。
 記憶部32には、プログラム35を含む。なお、画像処理部30がネットワークに接続されている場合には、必要に応じてプログラム35をネットワークからダウンロードしてもよい。
  <プログラム>
 プログラム35には、特徴点抽出部35aと、射影変換部35bと、画素再配列部35cと、応力変換部35hと、加算平均部35iと、を含む。これらは、実行時には、記憶部32から読み出されて処理部31にて実行される。
 なお、図1には、上記以外にも背景温度減算部35dと、スプライン補間部35eと、振幅補正部35fと、開始点設定部35gと、を含むが、これらは必須の構成ではなく、任意の構成要素である。
   <特徴点抽出部>
 特徴点抽出部35aでは、各温度画像の中の特徴点を抽出する。なお、温度画像では、温度の異なる箇所が濃淡の差異となって表される。一方、同一温度の箇所は形状にかかわらず同一温度として表され、区別できない。したがって通常の画像において特徴点となりうる形状等の差異は、温度画像の中では目立った差異とはならず、特徴点として用いることは困難である。つまり、温度画像の中では、見かけ上、異なった温度として見える箇所が特徴点となりえる。そこで、例えば、対象物の表面に部分的に放射率を変えるパターンを設けてもよい。周囲と実質的に同じ温度であっても放射率の異なるパターンを設けた箇所は、温度画像内で見かけ上異なる温度としてパターンを認識でき、特徴点となりえる。放射率の異なるパターンは、対象物1の表面が黒体に近い放射率の場合には、例えば、放射率の低いアルミニウム薄膜を対象物1の一部に貼ってパターンを形成してもよい。
 図4Aは、視野1乃至視野4の4つの視野のうち視野1の温度画像における特徴点を示す概略図である。図4Bは、視野1乃至視野4の4つの視野のうち視野2の温度画像における特徴点を示す概略図である。図4Cは、視野1乃至視野4の4つの視野のうち視野3の温度画像における特徴点を示す概略図である。図4Dは、視野1乃至視野4の4つの視野のうち視野4の温度画像における特徴点を示す概略図である。
 図4A乃至図4Dでは、視野1乃至視野4のそれぞれの温度画像において、対象物1の表面に設けた放射率の異なるパターンが見かけ温度の差を有する特徴点として検出されている様子を示している。具体的には、細長い対象物の上下にそれぞれ4つの丸○で形成される正方形のパターンが特徴点として検出されている。各視野の温度画像において、対象物の上下の正方形のパターンがそれぞれ対応する。
   <射影変換部>
 射影変換部35bでは、各温度画像の中の特徴点を合わせるように、各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う。
 まず、特徴点から視野2,3,4の温度画像を視野1の温度画像に重ね合わせるための射影変換の係数を求める。(x,y)→(x’,y’)に変換する射影変換の式は、以下の通りである。
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
 なお、fは定数であり、hijは係数である。ここではf0を1とし、係数は最小二乗法を用いて求める。
 第三成分を1にする正規化作用素Z[ ]を用いると、
x’=Z[Hx]
と表される。
 ここで、x、x’、Hは、以下のように表される。
Figure JPOXMLDOC01-appb-I000003
 なお、||H||=1と正規化する。
 式x’=Z[Hx]は、ベクトルx’とHxが平行なことを表すため、以下の式と等価である。
x’×Hx=0
 次に、9次元ベクトルh、ξ(1)、ξ(2)、ξ(3)を以下のように定義する。
Figure JPOXMLDOC01-appb-I000004
 x’×Hx=0から以下の拘束式が得られる。
(ξ(1),h)=0、(ξ(2),h)=0、(ξ(3),h)=0
 ただし、(a,b)をa,bの内積とする。
 N個の特徴点(xα、yα)と対応する特徴点(x’α、y’α)、(α=1~N)が与えられたとき、ξ(1)、ξ(2)、ξ(3)をそれぞれξα (1)、ξα (2)、ξα (3)とする。
 そこで、(ξ(1),h)~0、(ξ(2),h)~0、(ξ(3),h)~0、(α=1~N)となるようなベクトルhを求める。
 拘束式の二乗和は、次のようになる。
Figure JPOXMLDOC01-appb-I000005
 ただし、Mは、以下の式で表される。
Figure JPOXMLDOC01-appb-I000006
 求めるべきベクトルhは、Jを最小にする行列Mの最小値に対する単位固有ベクトルである。
 図5A(a)は、視野1の温度画像の特徴点を含む画素配列を示す概略図であり、図5A(b)は、視野2の温度画像の特徴点を含む画素配列を示す概略図である。図5B(a)は、基準となる視野1の温度画像の座標系による画素配列を示す概略図であり、図5B(b)は、図5A(b)の視野2の温度画像を特徴点が合うように視野1の温度画像の座標系に射影変換した後の視野2の温度画像の画素配列を示す概略図である。
 図5A(a)の視野1の温度画像の特徴点と図5A(b)の視野2の温度画像の特徴点とを対比すると、視野2の温度画像は、視野1の温度画像に対して時計回りに45°回転していることがわかる。そこで、視野1の温度画像を基準として、対応する特徴点が合うようにするには、視野2の温度画像を反時計回りに45°回転させる射影変換を行う必要がある。
 図5B(b)の視野2の温度画像は、図5A(b)の視野2の温度画像を反時計回りに45°回転させる射影変換を行った後の画素配列を示す概略図である。図5B(a)の視野1の温度画像と図5B(b)の射影変換後の視野2の温度画像とを対比すると、それぞれの特徴点が互いに対応していることがわかる。
 これによって、視野1の温度画像を基準として、視野2の温度画像を位置合わせすることができる。
   <画素再配列部(リサンプリング)>
 図6A(a)は、基準となる視野1の温度画像の座標系による画素配列を示す概略図であり、図6A(b)は、視野1の温度画像の座標系に射影変換後の視野2の温度画像の画素配列を示す概略図である。図6B(a)は、基準となる視野1の温度画像の画素配列を示す概略図であり、図6B(b)は、視野1の温度画像の画素配列と対応するように視野2の温度画像の画素配列を画素再配列した視野2の温度画像の画素配列を示す概略図である。なお、各図では、3行3列の枡目にそれぞれ画素が配置されているものとして示している。
 画素再配列部35cでは、射影変換を行った各温度画像の画素配列を、基準となる温度画像の画素配列に対して再配列する。画素再配列は、リサンプリングとも呼ばれる。例えば、図6A(b)に示すように、視野1の温度画像の画素配列に対して、射影変換後の視野2の温度画像の画素配列が回転している場合がある。この場合に、各温度画像に対応する画素がいずれであるか不明確となる可能性がある。そこで、画素再配列部35cによって、視野2の温度画像の画素配列の構成を視野1の温度画像の画素配列の構成とあわせるように画素を再配列する。
 具体的には、図6A(b)の射影変換後の視野2の温度画像と図6B(b)の画素再配列後の視野2の温度画像の画素配列とを対比すると、画素再配列前の視野2の画素配列の中央の特徴点3つの画素は、そのまま中央の縦3つの画素に対応している。一方、画素再配列前の両側角部の画素は、画素再配列後の両側の真ん中の画素にそれぞれ対応している。また、画素再配列前の両側角部に隣接する側部の画素は、画素再配列後の両側の角部の画素と対応している。
 これによって、図6B(a)の視野1の画素配列と図6B(b)の視野2の画素配列とを対比すると、両者の画素配列は構成が一致しており、互いに対応する画素が明確となっている。
 図7は、射影変換後の視野2の画素配列について、最近接の視野1の画素配列に画素再配列を行うことを示す概略図である。なお、図7では、図6A及び図6Bに示す枡目に各画素が配置されているものとは異なり、視野1の画素配列と射影変換後の視野2の画素配列とをそれぞれ各画素が格子点にあるものとして示している。
 図6Aの場合には、視野1の画素配列に対して視野2の画素配列が時計回りに45°回転した関係にある場合の画素再配列の例であったが、画素再配列はこれに限られない。つまり、互いの画素配列が任意の角度をなす場合には、図7に示すように、視野2の画素配列の各画素について、最近接の視野1の画素配列の各画素への画素再配列を行えばよい。具体的には、視野1の画素配列の各画素に最近接である視野2の画素配列の各画素を図7の矢印に示すように再配置する。この方法は「最近接法(ニアレストネイバー法)」と呼ばれる。これによって、視野2の画素配列が視野1の画素配列と同様の構成となる。
 これによって、互いの画素配列が任意の角度をなす場合にも、視野2の画素配列について、視野1の画素配列と同様の画素配列に画素再配列を行うことができる。
 なお、画素再配列の方法は、上記の最近接法に限られず、他の方法で行ってもよい。また、画素再配列は必須の構成ではなく、必要によって設ければよい。
   <背景温度減算部>
 背景温度減算部35dでは、画素再配列後の各温度画像から背景温度を差し引く。背景温度は、例えば、対象物の周囲に存在するが、対象物と関連せず、応力を受けていない背景物等の温度であってもよい。温度画像から背景温度を差し引くことによって、環境の温度変化に起因するバックノイズを低減できる。特に温度変化が大きい場合にはノイズ低減に有効である。なお、背景物は、自然に存在するものに限られず、例えば、あらかじめ設置した板等であってもよい。
 また、冷却型の撮像素子のように温度ドリフトが発生する撮像素子の場合には、温度変動が一定と考えられる物を背景温度が得られるものとして温度画像内に映り込ませることが有効である。
 なお、背景温度の変化を実質的に考慮する必要がない場合には、背景温度減算部は必須ではない。
   <スプライン補間部>
 スプライン補間部35eでは、画素再配列後の各温度画像の同一の時間範囲にわたってスプライン補間を行う。スプライン補間は、各温度画像の各画素にサンプリングによる補間前のデータ点に基づいて、各データ点を滑らかに接続するように、データ点間について多項式近似、例えば3次式近似式を得ることによって行われる。スプライン補間を行うことによって、各温度画像のデータ点間の連続的な時間にわたる温度変化を得ることができる。これにより、各撮像素子ごとにフレームレートがずれて、異なるタイミングでサンプリングが行われ、各温度画像でデータ点がずれた場合であっても、補間によって同一のタイミングのデータ点を算出できる。なお、スプライン補間は一般的に行われている方法によって行うことができる。
 計測データ(x、y)、(x、y)、...(x、y)に対して、区間[x,xi+1](i=0、1、...、n-1)内のxの補間値yは、次式により得られる。
y=Ay+Byi+1+Cy”+Dy”
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010
 図8は、1画素の温度変化のサンプリングによる補間前のデータ点と、サンプリングによる各データ点の間を補間する補間後のデータ点を示す概略図である。図8に示すように、補間後は、サンプリングによるデータ点の間に、各温度画像で同一のタイミングでのデータ点として補間されたデータ点が示されている。
 なお、各温度画像のサンプリングのタイミングが実質的に同一である場合や、複眼赤外線カメラの場合のように同一の撮像素子によって複数の温度画像が得られている場合には、スプライン補間を行う必要はない。
   <振幅補正部>
 図9は、温度画像のフーリエ変換後の周波数に対する振幅について、振幅補正の前後の様子を示す概略図である。図10は、図9の振幅補正に用いられる1次遅れ系の周波数応答関数の一例を示す図である。
 振幅補正部35fでは、画素再配列後の各温度画像について、フーリエ変換後の周波数と振幅との関係に対して、1次遅れ系の周波数応答関数で割り算して振幅補正を行う。
 温度変化の振幅は、周波数の高い場合ほど減衰しやすい。この振幅の減衰傾向は、例えば、1次遅れ系で表されるものと仮定した。この場合の周波数応答関数は、図10に示され、下記式で表される。なお、図10では、補正対象の周波数ωを10Hzまでとしている。これは、周波数が高いほど補正量が多くなるため、ここでは補正対象の周波数範囲として10Hzを上限としている。この場合10Hzでも高周波数となる。つまり、1次遅れ系の周波数応答関数は、周波数が高いほど小さくなるため、高周波数になるほど補正後の振幅が大きくなる。なお、補正対象の上限以上では周波数応答関数の値を1とするので補正されない。
H(ω)=(1-jωα)/(1+ωα
なお、αは時定数である。
 図11Aは、正弦波負荷実験による視野1の温度画像についての1次遅れ系の周波数応答関数における時定数を示す図である。図11Bは、正弦波負荷実験による視野2の温度画像についての1次遅れ系の周波数応答関数における時定数を示す図である。図11Cは、正弦波負荷実験による視野3の温度画像についての1次遅れ系の周波数応答関数における時定数を示す図である。図11Dは、正弦波負荷実験による視野4の温度画像についての1次遅れ系の周波数応答関数における時定数を示す図である。
 図11A乃至図11Dに示すように、対象物1に既知の正弦波負荷を印加することによって、得られた温度変化について、応力で除算し、上記1次遅れ系の周波数応答関数でフィッティングして、時定数αを求めることができる。得られた時定数αを用いて各視野の1次遅れ系の周波数応答関数が算出され、各温度画像について、フーリエ変換後の周波数と振幅との関係に対して、算出された1次遅れ系の周波数応答関数で割り算して振幅補正を行うことができる。
 なお、補正対象の周波数範囲の上限は10Hzに限られない。
 また、撮像素子の周波数特性が一定の場合には振幅補正は不要である。
   <開始点設定部>
 開始点設定部35gでは、画素再配列後の各温度画像について、各温度画像に含められた同期信号に基づいて開始点をそろえる。各温度画像に同期信号を含めることで、各温度画像の同一時間を特定することができ、開始点を合わせることができる。同期信号は、例えば、LEDランプの発光による各温度画像内への同一時間の温度変化としての記録がある。LEDランプの発光によって、各温度画像内で同一時間での温度変化を同期信号として用いることができる。
 なお、同期信号は、上記LEDランプの発光による各温度画像内への同一時間の温度変化としての記録に限られない。例えば、各撮像素子の撮像時のシャッターの開閉を同期信号として用いてもよい。
 また、開始点の合わせ方は、上述の各温度画像に含められた同期信号を用いる場合に限られない。例えば、各温度画像の相互相関を計算して各温度画像の振幅が最も一致するタイミングを算出して、開始点を合わせてもよい。
 図12は、振幅補正後の各視野の対応する同一画素の温度の時間変化を重ね合わせて示す図である。図13は、図12の振幅補正後の各視野の対応する同一画素の温度の時間変化について、開始点をそろえて重ね合わせて示す図である。
 図12では、各視野の温度画像の開始点がずれているため、同一の周期の温度変化も各視野について重なり合わない。一方、図13に示すように、各視野の温度画像の開始点をそろえることによって、同一の周期の温度変化が各視野の温度画像について重なり合うことがわかる。
 なお、複眼赤外線カメラのようにハード面で開始点が揃っている場合には開始点設定は行う必要がない。
   <応力変換部>
 応力変換部35hでは、画素再配列後の各温度画像について、応力変換係数を乗じて各応力画像を得る。応力変換部35hは、例えば、熱弾性効果を表す次式(1)を用いて、温度変化量ΔTから応力変化量Δδを算出する。
ΔT=-KTΔδ・・・(1)
Kは、熱弾性係数で、K=α/(CP)であり、Tは、対象物の表面の絶対温度である。αは、対象物の表面の線膨張係数であり、ρは対象物の表面の密度であり、CPは、応力一定のもとでの対象物の表面の比熱である。
 そして、応力変換部35hは、全画素の応力変化量による応力画像を得ることができる。
 図14Aは、正弦波負荷実験による視野1の温度画像について切片の逆数として算出された応力変換係数を示す図である。図14Bは、正弦波負荷実験による視野2の温度画像について切片の逆数として算出された応力変換係数を示す図である。図14Cは、正弦波負荷実験による視野3の温度画像について切片の逆数として算出された応力変換係数を示す図である。図14Dは、正弦波負荷実験による視野4の温度画像について切片の逆数として算出された応力変換係数を示す図である。
 図14A乃至図14Dに示される各応力変換係数を用いて、各視野の温度画像の時間変化について、応力画像を得ることができる。
 なお、この応力変換は、開始点設定後のタイミングで行う場合に限られない。例えば、温度画像読み込み後に行ってもよい。また、その後の背景温度減算後、スプライン補間後、振幅補正後、加算平均後のいずれのタイミングで行ってもよい。
   <加算平均部>
 加算平均部35iでは、各応力画像を加算平均して加算平均応力画像を得る。加算平均する応力応力画像の数は、2以上であればよい。応力画像の数を増やせば精度は高くなるが、多すぎても処理に要する時間等がかかってしまう。また、撮像素子の数が多くなるとその配置等も難しくなる。そこで、通常は、例えば、4つの応力画像を加算平均すればよい。なお、多くても高々8~10の応力画像を加算平均すればよい。
 図15Aは、1つの視野の温度画像における1つの画素の温度の時間変化である温度データと荷重データとを重ね合わせて示す図である。図15Bは、2つの視野の温度画像における対応する同一画素の温度の加算平均の温度変化である温度データと荷重データとを重ね合わせて示す図である。図15Cは、3つの視野の温度画像における対応する同一画素の温度の加算平均の温度変化である温度データと荷重データとを重ね合わせて示す図である。図15Dは、4つの視野の温度画像における対応する同一画素の温度の加算平均の温度変化である温度データと荷重データとを重ね合わせて示す図である。図15A乃至図15Dでは、対象物に印加された荷重データは既知のものである。そこで、温度画像の時間変化から得られる温度データと荷重データとを重ね合わせて示すことで、温度画像から応力画像への応力変換の精度がわかる。つまり、温度データが荷重データに沿っているほど応力変換の精度が高い。
 なお、「温度データ」から「応力データ」への応力変換は線形変換であるので、図では、「温度データ」の単位として、応力変換後の「MPa」で表している。
 図15Aに示すように、一つの温度画像による温度データでは、荷重データに対してノイズが大きく応力画像の精度は十分ではない。一方、2つの温度画像による温度データを加算平均した図15B、3つの温度画像による温度データを加算平均した図15C、4つの温度画像による温度データを加算平均した図15Dを対比すると、加算平均の回数が増すにつれて荷重データに近づいていることがわかる。複数の温度画像、つまり複数の応力画像を加算平均して加算平均応力画像を算出することで、改善された精度の応力画像が得られる。
 図16は、1画素についての加算平均の回数と、温度データと荷重データとの相関係数との関係を示す図である。図17は、1画素についての加算平均の回数と、温度データと荷重データとの平均平方2乗誤差(RMSE)との関係を示す図である。図18Aは、温度画像のX方向に沿って加算平均を1回の場合と4回の場合の温度データと荷重データとの平均平方2乗誤差(RMSE)を示す図である。図18Bは、温度画像のY方向に沿って加算平均を1回の場合と4回の場合の温度データと荷重データとの平均平方2乗誤差(RMSE)を示す図である。
 図16に示すように、加算平均の回数が増えるにつれて温度データと荷重データとの相関係数が高くなる。また、図17に示すように、加算平均の回数が増えるにつれて温度データと荷重データとの平均平方2乗誤差(RMSE)が小さくなる。さらに、図18Aに示すように、温度画像のX方向に沿って加算平均1回の場合に比べて、加算平均4回の場合のほうが温度データと荷重データとの平均平方2乗誤差(RMSE)が低い。同様に、図18Bに示すように、温度画像のY方向に沿って加算平均1回の場合に比べて、加算平均4回の場合のほうが温度データと荷重データとの平均平方2乗誤差(RMSE)が低い。
 以上のように、複数の温度画像、つまり複数の応力画像を加算平均して加算平均応力画像を算出することで、改善された精度の応力画像が得られることがわかる。
  <表示部>
 表示部33によって、撮影した温度画像、温度変化のグラフ、得られた応力画像、及び、加算平均応力画像等を表示してもよい。
(変形例)
 図3は、変形例に係る応力解析装置40に用いられる撮像素子の複眼赤外線カメラによる視野1乃至視野4の4つの温度画像を示す概略図である。この変形例では、図1のように複数の撮像素子を用いていない点で相違する。つまり、1つの撮像素子の中に視野1乃至視野4の複数の温度画像を撮影していることを特徴としている。この変形例では、一つの撮像素子に対して複数のレンズを有する複眼赤外線カメラを用いている。複眼赤外線カメラは、図3に示すように、一つの撮像素子について複数のレンズを有し、各レンズによる視野1乃至視野4の4つの温度画像を一つの撮像素子によって撮影できる。なお、視野の数は例示であってこれに限定されない。
 また、図1では、撮像素子に導く光路はそれぞれ異なる視点からの異なる光路であるが、これに限られない。別の変形例として、例えば、同一の光軸からプリズムを用いて光路分割を行って複数の撮像素子に導いて、同一の光軸を有する複数の温度画像を得る構成としてもよい。これによって、各温度画像が同一の光軸を有し、実質的に同一の画素配列を有するので、後述する特徴点抽出、射影変換、及び画素再配列の負荷を軽減できる。
<応力解析方法>
 図2は、実施の形態1に係る応力解析方法のフローチャートである。以下に、この応力解析方法について説明する。なお、各ステップの詳細は、「撮像素子」、「特徴点抽出部」、「射影変換部」、「画素再配列部」、「背景温度減算部」、「スプライン補間部」、「振幅補正部」、「開始点設定部」、「応力変換部」、「加算平均部」について説明したものと実質的に同様であるので、ここでは重複する説明を省略する。
(1)対象物1の同一領域について同一の時間範囲にわたる2以上の温度画像を読み込む(S01)。具体的には、撮像素子20a~20dで撮影した2以上の温度画像を画像処理部30に読み込む。
(2)各温度画像について特徴点を抽出する(S02)。例えば、放射率の低いアルミニウム薄膜を対象物1の一部に貼って特徴点のパターンを形成してもよい。
(3)特徴点を合わせるように、各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う(S03)。
(4)射影変換を行った各温度画像の画素配列を、基準となる温度画像の画素配列に対して再配列する(S04)。視野2の画素配列の各画素を最近接の視野1の画素配列と同様の画素配列に再配列を行うことによって、視野2の画素配列が視野1の画素配列と同様の構成となる。
(5)各温度画像から背景温度を差し引く(S05)。これによって、環境の温度変化に起因するバックノイズを低減できる。具体的には、背景物から背景温度を検出し、温度画像から背景温度を差し引けばよい。
(6)各温度画像の同一の時間範囲にわたってスプライン補間を行う(S06)。これにより、各撮像素子ごとにフレームレートが異なり、異なるタイミングでサンプリングが行われ、各温度画像でデータ点が異なった場合であっても、補間によって同一のタイミングのデータ点を算出できる。
(7)各温度画像について、フーリエ変換後の周波数と振幅との関係に対して、1次遅れ系の周波数応答関数で割り算して振幅補正を行う(S07)。例えば、図10に示す周波数応答関数で除算して振幅補正を行う。
(8)各温度画像について、あらかじめ含められた同期信号に基づいて開始点をそろえる(S08)。同期信号は、例えば、LEDランプの発光による各温度画像内への同一時間の温度変化として記録してもよい。あるいは、各撮像素子の撮像時のシャッターの開閉を同期信号として用いてもよい。また、開始点の合わせ方は、上述の各温度画像に含められた同期信号を用いる場合に限られない。例えば、各温度画像の相互相関を計算して開始点を合わせてもよい。
(9)各温度画像について、応力変換係数を乗じて各応力画像を得る(S09)。例えば、熱弾性効果を表す式ΔT=-KTΔδを用いて温度変化量ΔTから応力変化量Δδを算出する。各撮像素子の応力変換係数は、上述のように、既知の荷重を印加して得られる温度画像に基づいて算出できる。
(10)各応力画像を加算平均して加算平均応力画像を得る(S10)。加算平均する応力画像の数は、2以上であればよい。複数の温度画像、つまり複数の応力画像を加算平均して加算平均応力画像を算出することで、改善された精度の応力画像が得られる。
 以上によって、改善された精度の応力画像を得ることができる。
(実施の形態2)
<温度測定装置>
 図19は、実施の形態2に係る温度測定装置50の構成を示すブロック図である。
 この温度測定装置50は、2以上の温度画像を取得する撮像素子20a~20dと、各温度画像の中の特徴点を抽出する特徴点抽出部35aと、各温度画像について位置合わせを行う射影変換部35bと、各温度画像の画素配列を再配列する画素再配列部35cと、各温度画像を得る温度画像取得部35jと、各温度画像を加算平均して加算平均温度画像を得る温度画像加算平均部35kと、を備える。撮像素子20a~20dは、対象物1の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する。射影変換部35bは、各温度画像の中の特徴点を合わせるように、各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う。画素再配列部35cは、射影変換を行った各温度画像の画素配列を、基準となる温度画像の画素配列に対して再配列する。
 この温度測定装置40によれば、実施の形態1に係る応力解析装置と対比すると、温度画像に応力変換係数を乗じないでそのまま温度画像を取得し、2以上の温度画像を加算平均して加算平均温度画像を得ている。これによって、撮像素子に由来するノイズが各温度画像の加算平均によって相殺され、改善された精度の温度画像が得られる。
 以下に、この温度測定装置50を構成する各部材について説明する。
 なお、撮像素子20a~20dと、特徴点抽出部35aと、射影変換部35bと、画素再配列部35cと、背景温度減算部35dと、スプライン補間部35eと、振幅補正部35fと、開始点設定部35gと、は実施の形態1と実質的に同一であるので説明を省略する。
 <温度画像取得部>
 温度画像取得部35jによって、温度画像に応力変換係数を乗じないでそのまま温度画像を取得する。
 <温度画像加算平均部>
 温度画像加算平均部35kによって、2以上の温度画像を加算平均して加算平均温度画像を得る。
<温度測定方法>
 図20は、実施の形態2に係る温度測定方法のフローチャートである。以下に、この温度測定方法について説明する。なお、各ステップの詳細は、「撮像素子」、「特徴点抽出部」、「射影変換部」、「画素再配列部」、「背景温度減算部」、「スプライン補間部」、「振幅補正部」、「開始点設定部」、「温度画像取得部」、「温度画像加算平均部」について説明したものと実質的に同様であるので、ここでは重複する説明を省略する。また、以下の各ステップS11~S18は、実施の形態1に係る応力解析方法の各ステップS01~S08と実質的に同一であるので、説明の一部を省略する。
(1)対象物1の同一領域について同一の時間範囲にわたる2以上の温度画像を読み込む(S11)。
(2)各温度画像について特徴点を抽出する(S12)。
(3)特徴点を合わせるように、各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う(S13)。
(4)射影変換を行った各温度画像の画素配列を、基準となる温度画像の画素配列に対して再配列する(S14)。
(5)各温度画像から背景温度を差し引く(S15)。これによって、環境の温度変化に起因するバックノイズを低減できる。
(6)各温度画像の同一の時間範囲にわたってスプライン補間を行う(S16)。これにより、各撮像素子ごとにフレームレートが異なり、異なるタイミングでサンプリングが行われ、各温度画像でデータ点が異なった場合であっても、補間によって同一のタイミングのデータ点を算出できる。
(7)各温度画像について、フーリエ変換後の周波数と振幅との関係に対して、1次遅れ系の周波数応答関数で割り算して振幅補正を行う(S17)。
(8)各温度画像について、あらかじめ含められた同期信号に基づいて開始点をそろえる(S18)。
(9)各温度画像を得る(S19)。
(10)各温度画像を加算平均して加算平均温度画像を得る(S20)。加算平均する温度画像の数は、2以上であればよい。
 以上によって、複数の温度画像を加算平均して加算平均温度画像を算出することで、改善された精度の温度画像が得られる。
 なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。
 本発明に係る応力解析装置によれば、複数の温度画像、つまり複数の応力画像を加算平均して加算平均応力画像を算出することで、改善された精度の応力画像が得られる。
1 対象物
10 荷重印加部
20a、20b、20c、20d 撮像素子
30 画像処理部(コンピュータ装置)
31 処理部
32 記憶部
33 表示部
35 プログラム
35a 特徴点抽出部
35b 射影変換部
35c 画素再配列部
35d 背景温度減算部
35e スプライン補間部
35f 振幅補正部
35g 開始点設定部
35h 応力変換部
35i 加算平均部
35j 温度画像取得部
35k 温度画像加算平均部
40 応力解析装置
50 温度測定装置

Claims (8)

  1.  対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する撮像素子と、
     前記各温度画像の中の特徴点を抽出する特徴点抽出部と、
     前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う射影変換部と、
     射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列する画素再配列部と、
     画素再配列後の前記各温度画像について、応力変換係数を乗じて各応力画像を得る応力変換部と、
     前記各応力画像を加算平均して加算平均応力画像を得る加算平均部と、
    を備える、応力解析装置。
  2.  画素再配列後の前記各温度画像から背景温度を差し引く背景温度減算部をさらに備える、請求項1に記載の応力解析装置。
  3.  画素再配列後の前記各温度画像について、フーリエ変換後の周波数と振幅との関係に対して、1次遅れ系の周波数応答関数で割り算して振幅補正を行う振幅補正部をさらに備える、請求項1又は2に記載の応力解析装置。
  4.  画素再配列後の前記各温度画像の前記同一の時間範囲にわたってスプライン補間を行うスプライン補間部をさらに備える、請求項1から3のいずれか一項に記載の応力解析装置。
  5.  前記2以上の温度画像を取得する際に、前記撮像素子は、同期信号を前記2以上の温度画像に含めるようにすると共に、
     画素再配列後の前記各温度画像について、前記同期信号に基づいて開始点をそろえる開始点設定部をさらに備える、請求項1から4のいずれか一項に記載の応力解析装置。
  6.  対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得するステップと、
     前記各温度画像の中の特徴点を抽出するステップと、
     前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行うステップと、
     射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列するステップと、
     画素再配列後の前記各温度画像について、応力変換係数を乗じて各応力画像を得るステップと、
     前記各応力画像を加算平均して加算平均応力画像を得るステップと、
    を含む、応力解析方法。
  7.  対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得する撮像素子と、
     前記各温度画像の中の特徴点を抽出する特徴点抽出部と、
     前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行う射影変換部と、
     射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列する画素再配列部と、
     画素再配列後の前記各温度画像を得る温度画像取得部と、
     前記各温度画像を加算平均して加算平均温度画像を得る温度画像加算平均部と、
    を備える、温度測定装置。
  8.  対象物の同一領域について同一の時間範囲にわたって2以上の温度画像を取得するステップと、
     前記各温度画像の中の特徴点を抽出するステップと、
     前記各温度画像の中の特徴点を合わせるように、前記各温度画像について射影変換を行って、基準となる温度画像に対して位置合わせを行うステップと、
     射影変換を行った前記各温度画像の画素配列を、前記基準となる温度画像の画素配列に対して再配列するステップと、
     画素再配列後の前記各温度画像を得るステップと、
     前記各温度画像を加算平均して加算平均温度画像を得るステップと、
    を含む、温度測定方法。
PCT/JP2020/027271 2019-08-30 2020-07-13 応力解析装置 Ceased WO2021039160A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080059646.0A CN114303168A (zh) 2019-08-30 2020-07-13 应力解析装置
JP2021542608A JP7209398B2 (ja) 2019-08-30 2020-07-13 応力解析装置
EP20856201.7A EP4006532A4 (en) 2019-08-30 2020-07-13 STRESS ANALYSIS DEVICE
US17/679,298 US12073549B2 (en) 2019-08-30 2022-02-24 Stress analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-158453 2019-08-30
JP2019158453 2019-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/679,298 Continuation US12073549B2 (en) 2019-08-30 2022-02-24 Stress analysis device

Publications (1)

Publication Number Publication Date
WO2021039160A1 true WO2021039160A1 (ja) 2021-03-04

Family

ID=74684010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027271 Ceased WO2021039160A1 (ja) 2019-08-30 2020-07-13 応力解析装置

Country Status (5)

Country Link
US (1) US12073549B2 (ja)
EP (1) EP4006532A4 (ja)
JP (1) JP7209398B2 (ja)
CN (1) CN114303168A (ja)
WO (1) WO2021039160A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025121107A1 (ja) * 2023-12-06 2025-06-12 パナソニックIpマネジメント株式会社 撮像システム、及び、画像の位置合わせ方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114303168A (zh) * 2019-08-30 2022-04-08 松下知识产权经营株式会社 应力解析装置
DE102020205031A1 (de) * 2020-04-21 2021-10-21 Deckel Maho Seebach Gmbh Werkzeugmaschinensteuerung und Verfahren zur kennfeldbasierten Fehlerkompensation an einer Werkzeugmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366953A (ja) * 2001-06-11 2002-12-20 Central Res Inst Of Electric Power Ind 画像抽出方法および装置ならびに画像抽出プログラム、画像抽出方法を利用した配電柱の柱上機材の異常検出方法および装置ならびに異常検出プログラム
CN1632481A (zh) * 2004-12-17 2005-06-29 华中科技大学 红外序列图像历史趋势分析方法
US20120029840A1 (en) * 2011-06-24 2012-02-02 General Electric Company System and method for determining lifetime of wind turbine blade
JP2013130541A (ja) * 2011-12-22 2013-07-04 Tohto C-Tech Corp 接着検査装置
WO2017141294A1 (ja) 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 応力分布測定方法及び応力分布測定システム
WO2018198702A1 (ja) * 2017-04-26 2018-11-01 パナソニックIpマネジメント株式会社 応力測定装置、応力測定システム及び応力測定方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041832A (ja) * 1999-07-30 2001-02-16 Jeol Ltd 応力分布画像測定方法
JP4610955B2 (ja) * 2004-07-15 2011-01-12 ▲隆▼英 阪上 塑性変形による熱的影響度の測定方法及び装置
JP4595733B2 (ja) * 2005-08-02 2010-12-08 カシオ計算機株式会社 画像処理装置
JP5000895B2 (ja) * 2006-02-01 2012-08-15 株式会社コンステック 赤外線熱弾性応力計測における位置補正法
JP5281495B2 (ja) * 2009-06-18 2013-09-04 キヤノン株式会社 画像処理装置およびその方法
KR20130020421A (ko) * 2011-08-19 2013-02-27 삼성전자주식회사 초음파를 이용하여 치료부위의 온도를 모니터링하는 방법 및 장치, 초음파를 이용한 치료 및 진단 시스템
CN103268596B (zh) * 2013-05-30 2017-04-05 华南理工大学 一种降低图像噪声和使颜色接近标准的方法
JP6261994B2 (ja) * 2014-01-28 2018-01-17 三菱重工業株式会社 画像補正方法、これを用いる検査方法及び検査装置
JP6248706B2 (ja) * 2014-03-03 2017-12-20 株式会社ジェイテクト 応力分布計測装置及び応力分布計測方法
JP6347675B2 (ja) * 2014-06-06 2018-06-27 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、撮像方法及びプログラム
CN104236457A (zh) * 2014-09-09 2014-12-24 中国电子科技集团公司第三十八研究所 以红外光源作为散斑靶标的数字散斑测量装置及测量方法
CN105205818A (zh) * 2015-09-18 2015-12-30 国网上海市电力公司 一种电气设备红外图像和可见光图像配准的方法
CN105547834B (zh) * 2016-01-13 2018-06-29 南京航空航天大学 基于双目视觉的快速应力应变曲线测量系统的测量方法
JP6034524B1 (ja) * 2016-04-08 2016-11-30 Jfeテクノリサーチ株式会社 共振周波数推定方法
US10297034B2 (en) * 2016-09-30 2019-05-21 Qualcomm Incorporated Systems and methods for fusing images
CN207081508U (zh) * 2017-08-31 2018-03-09 北京蓝海华业科技股份有限公司 一种检测输电线路应力状态的系统
CN107689029A (zh) * 2017-09-01 2018-02-13 努比亚技术有限公司 图像处理方法、移动终端和计算机可读存储介质
EP3879248A1 (en) * 2018-11-05 2021-09-15 Sony Group Corporation Temperature estimating device, temperature estimating method, and temperature estimating program
CN109886878B (zh) * 2019-03-20 2020-11-03 中南大学 一种基于由粗到精配准的红外图像拼接方法
CN110057399B (zh) * 2019-03-28 2021-05-11 东南大学 一种基于3d-dic的温度场与位移场同步测量系统及测量方法
CN114303168A (zh) * 2019-08-30 2022-04-08 松下知识产权经营株式会社 应力解析装置
KR102292547B1 (ko) * 2020-04-10 2021-08-20 코그넥스코오포레이션 가변 확산판을 이용한 광학 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366953A (ja) * 2001-06-11 2002-12-20 Central Res Inst Of Electric Power Ind 画像抽出方法および装置ならびに画像抽出プログラム、画像抽出方法を利用した配電柱の柱上機材の異常検出方法および装置ならびに異常検出プログラム
CN1632481A (zh) * 2004-12-17 2005-06-29 华中科技大学 红外序列图像历史趋势分析方法
US20120029840A1 (en) * 2011-06-24 2012-02-02 General Electric Company System and method for determining lifetime of wind turbine blade
JP2013130541A (ja) * 2011-12-22 2013-07-04 Tohto C-Tech Corp 接着検査装置
WO2017141294A1 (ja) 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 応力分布測定方法及び応力分布測定システム
WO2018198702A1 (ja) * 2017-04-26 2018-11-01 パナソニックIpマネジメント株式会社 応力測定装置、応力測定システム及び応力測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006532A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025121107A1 (ja) * 2023-12-06 2025-06-12 パナソニックIpマネジメント株式会社 撮像システム、及び、画像の位置合わせ方法

Also Published As

Publication number Publication date
CN114303168A (zh) 2022-04-08
US12073549B2 (en) 2024-08-27
US20220180502A1 (en) 2022-06-09
JP7209398B2 (ja) 2023-01-20
EP4006532A4 (en) 2023-02-01
EP4006532A1 (en) 2022-06-01
JPWO2021039160A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
US12073549B2 (en) Stress analysis device
US8289405B2 (en) Image processing apparatus and method thereof
Tzannes et al. Measurement of the modulation transfer function of infrared cameras
US20090230293A1 (en) Method for correction of non-uniformity in detector elements comprised in an ir-detector
CN101208721A (zh) 图像处理装置和图像处理程序
JP2014178265A (ja) 校正装置、方法及びプログラム
JP2008500529A (ja) デジタル画像化システムを特徴付ける方法
US10288523B2 (en) Method and device for characterising optical aberrations of an optical system
US11852538B2 (en) Temperature estimation device, temperature estimating method, and temperature estimating program
CA2849019A1 (en) Motion analysis through geometry correction and warping
EP2767093B1 (en) Blur-calibration system for electro-optical sensors and method using a moving multi-focal multi-target constellation
US8737687B2 (en) System and method for tracking a subject using raw images and tracking errors
US10264164B2 (en) System and method of correcting imaging errors for a telescope by referencing a field of view of the telescope
US7729559B2 (en) System and method for optical section image line removal
CN119516362A (zh) 基于单应性矩阵映射的变焦双目系统图像船只目标识别方法
Neuner et al. Digital adaptive optical imaging for oceanic turbulence mitigation
KR20240125181A (ko) 복수의 이미지들에 대한 이미지 정합을 수행하는 장치 및 방법
KR101227936B1 (ko) 대응 영상의 컬러 보정 방법 및 그 기록매체
JP5696528B2 (ja) 画像処理システムおよび画像処理装置
Joyce et al. Precise modulation transfer function measurements for focal plane array systems
KR100913218B1 (ko) Nuc 렌즈 정렬 방법
Zhang et al. Qualitative assessment of video stabilization and mosaicking systems
JP4695557B2 (ja) 要素画像群補正装置、要素画像群取得システム、要素画像群補正方法及び要素画像群補正プログラム
Weeks et al. Pseudo-imaging the spectral-temporal evolution of energetic transient events
CN110692235A (zh) 图像处理装置、图像处理程序及图像处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020856201

Country of ref document: EP

Effective date: 20220224