[go: up one dir, main page]

WO2020071233A1 - Information processing device, information processng method, and program - Google Patents

Information processing device, information processng method, and program

Info

Publication number
WO2020071233A1
WO2020071233A1 PCT/JP2019/037849 JP2019037849W WO2020071233A1 WO 2020071233 A1 WO2020071233 A1 WO 2020071233A1 JP 2019037849 W JP2019037849 W JP 2019037849W WO 2020071233 A1 WO2020071233 A1 WO 2020071233A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
unit
learning
recognizer
operator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2019/037849
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 亮
卓嗣 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to CN201980063660.5A priority Critical patent/CN112789630A/en
Publication of WO2020071233A1 publication Critical patent/WO2020071233A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and a program.
  • Patent Literature 1 discloses a technique for efficiently collecting learning data effective for improving the generalization performance of a recognizer.
  • Patent Literature 1 is a technique for selecting, from accidentally acquired sensing data, data suitable as learning data, and does not guide the operator to collect data appropriately.
  • a guiding unit that guides collection of learning data used for learning of a recognizer, and the guiding unit is configured to collect data by an operator so that diversity of sensing data related to a recognition target is secured.
  • An information processing device for dynamically guiding the information is provided.
  • the processor includes: guiding the collection of learning data used for learning of the recognizer, including, the guiding is to ensure the diversity of sensing data related to the recognition target,
  • An information processing method is provided, further comprising dynamically guiding data collection by an operator.
  • the computer includes a guiding unit that guides the collection of learning data used for learning of the recognizer, and the guiding unit ensures the diversity of sensing data related to the recognition target,
  • a program for functioning as an information processing device for dynamically guiding data collection by an operator is provided.
  • FIG. 1 is a block diagram illustrating a configuration example of an information processing system according to an embodiment of the present disclosure. It is a figure showing an example of the class of hand sign identification concerning the embodiment. It is a figure showing an example of appearance of an embedded device concerning the embodiment.
  • FIG. 3 is a block diagram illustrating a functional configuration example of the embedded device according to the embodiment.
  • FIG. 3 is a block diagram illustrating a functional configuration example of the information processing apparatus according to the embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example when the information processing apparatus according to the embodiment has a data collection function and a user interface display function. It is a flow chart which shows a flow of processing of an information processing system concerning the embodiment. It is an example of a data collection flow according to the embodiment.
  • FIG. 3 is a block diagram in a case where the embedded device according to the embodiment includes a reward providing unit. It is a figure for explaining diversion to the practical recognizer development concerning the embodiment.
  • 1 is a diagram illustrating an example of a hardware configuration of an information processing device according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram for explaining the effect of learning data on the generalization performance of a recognizer.
  • the development cycle consisting of design of the recognizer, collection of learning data, learning of the recognizer, and evaluation of the recognizer is repeated.
  • learning data used for learning is, for example, an existing data set that is freely released on the Internet. The diversion remains.
  • learning data collection is an important phase that greatly affects the generalization performance of a recognizer.
  • FIG. 20 is a diagram for explaining the effect of the learning data on the generalization performance of the recognizer.
  • the upper part of FIG. 20 shows an example in which the learning data has not been exhaustively collected in the sample space ⁇ .
  • the generated recognizer has high recognition accuracy for the data used for learning, but has low recognition accuracy for unknown data, that is, low so-called generalization performance.
  • Patent Literature 1 a technique for efficiently collecting learning data effective for improving the generalization performance of a recognizer has been proposed.
  • the described technology is a technology for selecting data suitable for learning data from sensing data acquired accidentally, and does not allow a user to learn a suitable learning data collection method.
  • the information processing device 20 includes a guiding unit 220 that guides collection of learning data used for learning of a recognizer.
  • the guiding unit 220 according to an embodiment of the present disclosure dynamically guides an operator to collect data so that diversity of sensing data related to a recognition target is reported.
  • FIG. 1 is a block diagram illustrating a configuration example of an information processing system according to the present embodiment. Note that FIG. 1 illustrates an example in which the technical concept according to the present disclosure is applied to a development tutorial for a recognizer that performs handsign identification.
  • FIG. 2 is a diagram illustrating an example of a class of handsign identification according to the present embodiment.
  • the hand sign identification class according to the present embodiment includes, for example, a hand shape used for rock-paper-scissors such as Rock (rock), Scissors (choki), and Paper ( ⁇ ), and a half-heart.
  • rock-paper-scissors such as Rock (rock), Scissors (choki), and Paper ( ⁇ )
  • a half-heart.
  • Various hand shapes may be included.
  • the operator who is a novice in the development of the recognizer can use the information processing system according to the present embodiment to improve the generalization performance of recognition for performing the above-described hand sign identification. It is possible to obtain data collection methods.
  • the information processing system may include, for example, an embedded device 10, an information processing device 20, and a display device 30.
  • the embedded device 10 is a device that collects sensing data related to a recognition target and presents the collected sensing data (hereinafter, also referred to as learning data) to an operator in real time.
  • the embedded device 10 according to the present embodiment includes the output unit 110 and the sensor 120.
  • the embedded device 10 captures a handsign by a beginner of the recognizer development by the sensor 120 which is a camera device, and displays an image related to the captured handsign by the output unit 110 in real time. Good.
  • FIG. 3 is a diagram illustrating an example of the appearance of the embedded device 10 according to the present embodiment.
  • the information processing device 20 allows an operator who is a novice in the development of a recognizer to experience the phases of design of the recognizer, collection of learning data, learning of the recognizer, and evaluation of the recognizer. Provide a framework. For this reason, the information processing apparatus 20 according to the present embodiment includes a guidance UI1 for performing guidance in each of the above phases and a development UI2 for an operator who is a novice of recognizer development to design a recognizer. It is provided to the user through the display device 30.
  • the information processing apparatus 20 has a function of dynamically guiding data collection by an operator so that the diversity of sensing data relating to a recognition target is ensured.
  • the display device 30 displays the above-mentioned guidance UI1 and development UI2 based on the control by the information processing device 20.
  • the display device 30 according to the present embodiment may be, for example, a liquid crystal display (LCD) device, an organic light emitting diode (OLED) device, or a projector.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • the network 40 has a function of connecting the components included in the information processing system.
  • the network 40 may include a public network such as the Internet, a telephone network, or a satellite communication network, various LANs (Local Area Network) including Ethernet (registered trademark), and a WAN (Wide Area Network). Further, the network 40 may include a dedicated line network such as an IP-VPN (Internet Protocol-Virtual Private Network).
  • the network 40 may include a wireless communication network such as Wi-Fi (registered trademark) and Bluetooth (registered trademark).
  • the configuration example of the information processing system according to the present embodiment has been described above.
  • the configuration described above with reference to FIG. 1 is merely an example, and the configuration of the information processing system according to the present embodiment is not limited to the example.
  • the configuration of the information processing system according to the present embodiment can be flexibly modified according to specifications and operations.
  • FIG. 4 is a block diagram illustrating a functional configuration example of the embedded device 10 according to the present embodiment.
  • the embedded device 10 according to the present embodiment may include an output unit 110, a sensor 120, a recognition execution unit 130, a driving unit 140, a learning data collection unit 150, and a communication unit 160.
  • the output unit 110 presents the sensing data collected by the sensor 120 to the user in real time.
  • the output unit 110 according to the embodiment may include, for example, a display device, a speaker, a vibration device, and the like.
  • the sensor 120 collects sensing data related to a recognition target.
  • the sensor 120 according to the present embodiment may include a device according to a recognition task and a recognition target.
  • the sensor 120 according to the present embodiment may include, for example, a camera device, a microphone, an IMU (Inertial Measurement Unit), a pulse sensor, an electrocardiograph, and the like.
  • IMU Inertial Measurement Unit
  • the recognition execution unit 130 performs recognition of the recognition target using a learning device generated based on the sensing data collected by the sensor 120.
  • the recognition execution unit 130 according to the present embodiment can recognize the handsign performed by the operator in real time, for example, using a recognizer generated based on the image related to the handsign collected by the sensor 120.
  • the drive unit 140 controls the driving of the embedded device 10 itself and the sensor 120 based on the control by the information processing device 20.
  • the drive unit 140 may change the position or orientation of the embedded device 10 or the sensor 120 based on the control of the information processing device 20, for example.
  • the learning data collection unit 150 causes the sensor 120 to execute data collection based on control by the information processing device 20 and transmits the collected sensing data to the information processing device 20 via the communication unit 160. .
  • the learning data collection unit 150 may cause the sensor 120 to execute data collection via the driving unit 140.
  • the communication unit 160 performs information communication with the information processing device 20 via the network 40. For example, the communication unit 160 transmits the sensing data collected by the sensor 120 to the information processing device 20. Further, for example, the communication unit 160 receives a control signal and a recognizer generated by the information processing device 20.
  • the functional configuration example of the embedded device 10 according to the present embodiment has been described.
  • the configuration described above with reference to FIG. 4 is merely an example, and the functional configuration of the embedded device 10 according to the present embodiment is not limited to the example.
  • the functional configuration of the embedded device 10 according to the present embodiment can be flexibly modified according to specifications and operation.
  • FIG. 5 is a block diagram illustrating a functional configuration example of the information processing apparatus 20 according to the present embodiment.
  • the information processing device 20 according to the present embodiment includes an output control unit 210, a guiding unit 220, a learning / evaluation unit 230, a learning data set storage unit 240, an evaluation data set storage unit 250, and a recognizer storage. And a communication unit 270.
  • the output control unit 210 controls a user interface (guidance UI1) related to data collection guidance based on control by the guidance unit 220.
  • guidance UI1 a user interface related to data collection guidance based on control by the guidance unit 220.
  • the output control unit 210 controls a user interface (development UI2) for an operator who is a novice in developing a recognizer to design a recognizer.
  • development UI2 user interface
  • the output control unit 210 may control the display of the guidance UI1 and the development UI2 by the display device 30 via the communication unit 270 and the network 40.
  • the guiding unit 220 has a function of guiding the learning / evaluating unit 230 to collect learning data used for learning the recognizer. Specifically, one of the features is that the guiding unit 220 according to the present embodiment dynamically guides the data collection by the operator so that the diversity of the sensing data related to the recognition target is secured.
  • the guidance unit 220 may impose a restriction on the collection of learning data to the operator, and perform guidance so that the diversity of the sensing data is secured within the range of the restriction.
  • the guidance unit 220 may include a labeling unit 222 that performs labeling on collected sensing data, and a data analysis unit 224 that performs determination regarding the above-mentioned diversity restriction.
  • the details of the function of the guiding unit 220 according to the present embodiment will be separately described later.
  • the learning / evaluation unit 230 functions as a learning unit that performs learning related to the recognizer using the sensing data collected by the embedded device 10 and an evaluation unit that evaluates the generated recognizer.
  • the learning data set storage unit 240 stores sensing data collected by the embedded device 10 as learning data related to recognizer learning by the learning / evaluation unit 230.
  • the evaluation data set storage unit 250 storage unit stores an evaluation data set used for the recognizer evaluation by the learning / evaluation unit 230.
  • the recognizer storage unit 260 stores information on the recognizer generated by the learning / evaluation unit 230 through learning.
  • the information includes, for example, a network configuration and various parameters.
  • the communication unit 270 performs information communication with the embedded device 10 and the display device 30 via the network 40. For example, the communication unit 270 receives the sensing data collected by the embedded device 10. Further, for example, the communication unit 270 transmits to the embedded device 10 a control signal generated by the guidance unit 220 and information on recognition generated by learning by the learning / evaluation unit 230.
  • the example of the functional configuration of the information processing device 20 according to the embodiment has been described above.
  • the configuration described above with reference to FIG. 5 is merely an example, and the functional configuration of the information processing device 20 according to the present embodiment is not limited to the example.
  • the information processing device 20 according to the present embodiment may further include the functions of the embedded device 10 and the display device 30.
  • FIG. 6 is a block diagram illustrating a configuration example when the information processing apparatus 20 according to the present embodiment has a data collection function and a user interface display function. As illustrated in FIG. 6, the information processing system according to the present embodiment does not necessarily need to include the embedded device 10, the information processing device 20, and the display device 30.
  • the functions of the information processing device 20 according to the present embodiment may be realized by two or more devices.
  • the functional configuration of the information processing device 20 according to the present embodiment can be flexibly modified according to specifications and operations.
  • FIG. 7 is a flowchart showing a flow of processing of the information processing system according to the present embodiment.
  • the output control unit 210 of the information processing device 20 displays the guidance UI1 on the display device 30 under the control of the guidance unit 220, and instructs the design of the recognizer (S1101).
  • the output control unit 210 uses the instructor avatar AV1 as shown in FIG. 1 or a moving image of the actual instructor to perform the recognition task in the tutorial and the recognition task in the tutorial. Provide guidance on the recognizer to solve.
  • An operator who is a novice in developing a recognizer may actually design a recognizer through the development UI 2 displayed on the display device 30 according to the above-described guidance.
  • the output control unit 210 provides guidance UI1 as to what learning data is required to generalize the recognizer designed by the novice operator through the development UI2. Is notified to the operator via an instruction to instruct the operator to actually collect data (S1102).
  • the output control unit 210 in the guidance UI1, under the control of the guidance unit 220, "take 300 images each in the order of Rock, Scissors, Paper, and Half-heart".
  • the data collection flow as shown in FIG. 8 may be displayed.
  • the guidance UI1 describes that the output control unit 210 imposes restrictions on collection of sensing data under the control of the guidance unit 220.
  • the above restriction is intended to simplify the recognition task in the tutorial of the recognizer development and to reduce the amount of learning data required for generalization of the recognizer.
  • FIG. 9 is a diagram illustrating an example of restrictions imposed on the operator by the guiding unit 220 according to the present embodiment.
  • the guidance unit 220 according to the present embodiment may impose a constraint on the operator that the background of the image is entirely white and the ambient light is constant. According to the above restriction, it is possible to avoid a complicated recognition task due to a different background pattern or color depending on an image, and it is possible to effectively reduce a necessary learning data amount.
  • the guidance unit 220 can determine whether or not the above-mentioned restriction is complied with, for example, by performing a density histogram analysis or a determination using an illuminance sensor.
  • the guiding unit 220 may impose a restriction on the operator that the hand to be photographed is one person, that is, one hand of the operator, and the surface to the camera is limited to one side.
  • the restriction according to the present embodiment may limit the recognition target to a part or behavior of the operator's body.
  • the output control unit 210 may realize the description related to the restriction using, for example, the voice SO1 shown in FIG. According to the above restriction, it is possible to avoid a complicated recognition task due to a difference in hand shape, color, and photographing surface depending on an image, and to effectively reduce a necessary learning data amount.
  • the guidance unit 220 can determine whether or not the above-described restriction is adhered to, for example, by using joint detection and either fingerprint detection or authentication in combination.
  • the guide unit 220 may impose on the operator that the camera device included in the sensor 120 is fixed downward, as a constraint. According to the above constraint, it is possible to prevent the recognition task from being complicated due to the difference in the posture of the camera device depending on the image, and to effectively reduce the required amount of learning data. Note that the guidance unit 220 can determine whether or not the above-described restriction is adhered to, for example, using an acceleration signal or the like of the camera device.
  • the restrictions according to the present embodiment have been described with reference to specific examples.
  • the guiding unit 220 according to the present embodiment imposes a restriction on collection of learning data to an operator who is a novice in developing a recognizer, and diversity of sensing data is secured within the range of the restriction.
  • data collection by the operator can be dynamically guided.
  • the guiding unit 220 According to the above function of the guiding unit 220 according to the present embodiment, it is possible to effectively simplify the recognition task in the tutorial of the recognizer development, and to greatly reduce the learning data required for generalizing the recognizer. Further, according to the above-described function of the guiding unit 220 according to the present embodiment, an operator who is a novice in the development of a recognizer can intuitively grasp the importance of a constraint in learning data collection. .
  • the guidance unit 220 instructs the embedded device 10 to acquire learning data via the communication unit 270 (S1103).
  • the learning data collection unit 150 of the embedded device 10 starts collection of the learning data by the sensor 120 based on the above instruction received via the communication unit 160.
  • the operator inserts his / her hand in front of the camera device provided in the sensor 120 according to the above-described restrictions from step S1103, and displays it on the display device provided in the output unit 110.
  • the operator inserts his / her hand in front of the camera device provided in the sensor 120 according to the above-described restrictions from step S1103, and displays it on the display device provided in the output unit 110.
  • the display device provided in the output unit 110.
  • the learning data collection unit 150 transmits the learning data to the information processing device 20 via the communication unit 160 as soon as learning data, that is, sensing data relating to the recognition target is obtained.
  • the guidance unit 220 of the information processing device 20 causes the learning data set storage unit 240 to store the received learning data.
  • the labeling unit 222 of the guidance unit 220 performs labeling on the learning data stored in step S1103 (S1104).
  • the labeling unit 222 labels classes according to each phase on the assumption that data collection is performed according to a predetermined flow shown in FIG. 8 and presented to the operator in step S1102. You may.
  • the labeling unit 222 may perform labeling using, for example, a generalized recognizer prepared in advance.
  • the labeling unit 222 may use labeling according to each phase in combination with labeling using a generalized recognizer to improve the accuracy of labeling.
  • the data analysis unit 224 of the guidance unit 220 analyzes the learning data stored in step S1103, and verifies compliance with the constraint imposed by the learning data in step S1102 (S1105).
  • the data analysis unit 224 can determine whether or not the constraint as shown in FIG. 9 is observed, using the verification method shown in FIG. .
  • the data analysis unit 224 verifies whether sufficient diversity for generalization of the recognizer is secured within the range of the constraint imposed in step S1102 (S1106). For example, when the recognition task is hand sign identification, the data analysis unit 224 recognizes the finger or wrist joint in the image by detecting the joint, and can realize various shootings within the degrees of freedom allowed by each class. You can check if it is.
  • FIG. 10 is a diagram for explaining the diversity of learning data according to the present embodiment.
  • FIG. 10 illustrates four images related to the class “Scissors”, but the finger joint positions are different from each other.
  • the tip of the thumb is hidden by the ring finger and the little finger, whereas in the two images on the right, the tip of the thumb is located before the ring finger and the little finger. .
  • the index finger and the middle finger are in close contact with each other, whereas in the second and fourth images from the left, the index finger and the middle finger are far apart. ing.
  • the four images shown in FIG. 10 can be said to be appropriate learning data under the condition of “an image in which Scissors is photographed by the right hand of one individual from the palm side”. For this reason, it is important to collect all the images close to the state of each joint in order to secure sufficient diversity for generalization of the recognizer.
  • the data analysis unit 224 calculates the collection rate of the already captured joint pattern after defining an assumed joint pattern as shown in FIG. Rate may be used as one of the measures of diversity.
  • the data analysis unit 224 generates, for example, a heat map related to the presence frequency of the hand in the angle of view of the camera device of the sensor 120 based on the position of the hand detected from each learning data.
  • the heat map may be used as one of the measures for measuring diversity.
  • FIG. 11 is a diagram showing an example of a heat map according to the hand presence frequency according to the present embodiment.
  • the data analysis unit according to the present embodiment can generate a heat map as shown in FIG. 11 using, for example, a generalized hand recognizer. At this time, the data analysis unit 224 verifies whether or not the detected positions of the hands are widely distributed in the heat map.
  • the data analysis unit 224 may determine that the collected learning data cannot secure sufficient diversity for generalization of the recognizer.
  • the learning / evaluating unit 230 performs learning of the recognizer using the learning data stored in step S1103 and the labeling result in step S1104 (S1107).
  • the learning / evaluation unit 230 according to the present embodiment may perform deep learning using a stochastic gradient descent method, for example. Further, the learning / evaluation unit 230 according to the present embodiment may be provided as software realized by various machine learning frameworks.
  • the learning / evaluation unit 230 evaluates the recognizer learned in step 1107 (S1108).
  • the learning / evaluation unit 230 according to the present embodiment may perform an open test using the evaluation data set stored in the evaluation data set storage unit 250 in advance.
  • the learning / evaluation unit 230 may perform cross-validation using a collected or stored learning data set.
  • the guiding unit 220 determines whether the development flow relating to the recognizer satisfies a predetermined termination condition (S1109). At this time, the guiding unit 220 performs the above-described determination on the condition that the amount of the collected learning data and the recognition accuracy of the recognizer obtained in the evaluation in step S1108 are equal to or higher than a predetermined threshold, for example. You may. In addition, the guidance unit 220 may set one of the end conditions such as observing the constraint imposed in step S1102, ensuring that the diversity of the collected learning data is ensured, and the like.
  • the guiding unit 220 is connected to either the output unit 110 of the embedded device 10 or the display device 30, or both.
  • the operator is instructed to end the data collection, and the recognizer trained in step S1108 is stored in the recognizer storage unit 260 (S1110).
  • the guiding unit 220 causes the operator to continue collecting learning data.
  • the guidance unit 220 determines that the constraint is not observed in the verification of the observance of the constraint in step S1105, a warning that the constraint is not observed is issued by a novice of the recognizer development. A certain operator is notified (S1111). At this time, the guidance unit 220 may cause the output unit 110 of the embedded device 10 and / or the display device 30 to notify the above warning.
  • step S1106 when the guidance unit 220 determines that sufficient diversity is not secured for the generalization of the recognizer, learning data of a pattern that is assumed to be in shortage is collected. Data collection by the operator is dynamically guided (S1112).
  • the guiding unit 220 may perform guidance such that images of the second and fourth joint patterns from the left, which have not yet been captured, are captured.
  • the guidance unit 220 may perform guidance so that an image in which the hand position is near the region R1 is captured.
  • FIG. 12 is a diagram illustrating an example of guidance by the guidance unit 220 according to the present embodiment for learning data collection of a pattern that is assumed to be in short supply.
  • the guidance unit 220 performs learning by making the output unit 110 of the embedded device 10 and the speaker included in the display device 30 output gymnastics music and announcements in common to each class. Guidance relating to data collection may be performed.
  • the guidance unit 220 may visualize the collected learning data and display it on the output unit 110 or the display device 30 so as to visually guide the variety of the learning data.
  • the guidance unit 220 causes the output unit 110 or the display device 30 to display a guidance object for guiding the collection of learning data effective for securing diversity.
  • the operator may be instructed to perform a predetermined operation on the guidance object.
  • the guiding unit 220 causes the output unit 110 or the display device 30 to display the lid of the bottle as the guiding object, and the operator May be instructed to open and close the lid of the bottle.
  • the guiding unit 220 causes the output unit 110 and the display device 30 to display a thread as a guiding object, and allows the operator to It may be instructed to perform an operation of cutting the thread with a finger.
  • the guiding unit 220 causes the output unit 110 and the display device 30 to display a virtual enemy in the game as a guiding object, and displays the virtual enemy at the position of the virtual enemy. It is also possible to instruct repulsion by joining hands and count the number of repulsions.
  • the guiding unit 220 causes the output unit 110 and the display device 30 to display dirt, and displays the dirt with the palm. Instructions may be given to wipe off.
  • the state of the joints and the positions of the hands of the operator naturally diversify by the operation corresponding to the instruction, and the learning data can be effectively collected. Can be guided.
  • the guidance unit 220 controls the learning data of the pattern whose shortage is predicted to be executed by the instructor avatar AV1 or the moving image in the guidance UI1 in addition to the above control. May be.
  • the guidance unit 220 can also drive the embedded device 10 and the sensor 120 to further increase the diversity of the learning data (S1113).
  • the guidance unit 220 gives an instruction to the driving unit 140 to drive, for example, a motor, and to rotate or move the embedded device 10 or the sensor 120, so that the recognition target is in the same state. Therefore, the diversity of the learning data can be increased.
  • the guidance unit 220 may change the setting of the sensor 120 to further increase the diversity of the learning data (S1114).
  • the guidance unit 220 changes the settings of the shutter speed, the aperture value, the ISO sensitivity, the exposure compensation, and the like in an exhaustive manner so that the recognition target is in the same state.
  • the diversity of the learning data can be increased.
  • the guidance unit 220 controls presentation of the recognition accuracy of the recognizer that has performed learning using the learning data collected up to the present time to the operator (S1115).
  • the guidance unit 220 may display the recognition accuracy of the recognizer calculated by the learning / evaluation unit 230 on the output unit 110 or the display device 30.
  • the guiding unit 220 may display a scalar value such as the accuracy or the F value at the present time, or a transition of the scalar value.
  • FIG. 13 is an example of a graph showing a change in recognition accuracy according to the present embodiment.
  • the guiding unit 220 displays the transition of the accuracy of the recognizer in a time series.
  • the guidance unit 220 may display the learning data collected at each time point in association with the recognition accuracy.
  • the captured image is displayed in association with the accuracy.
  • the image includes the thread-shaped guidance objects IOa and IOb described above, and indicates that the image has been captured under visual guidance by the guidance unit 220.
  • the guiding unit 220 As described above, according to the guiding unit 220 according to the present embodiment, it is possible to visualize and present the collected learning data together with the recognition accuracy of the recognizer. It is possible to intuitively grasp what learning data has contributed to the improvement of accuracy, and to learn the importance and the point of learning data collection.
  • the graph shown in FIG. 13 is merely an example, and the guiding unit 220 may display the recognition accuracy of the recognizer in various modes.
  • the guidance unit 220 may cause the output unit 110 and the display device 30 to display a confusion matrix and the like, for example.
  • the guidance unit 220 can display the recognition result of the recognition target by the recognizer that has performed learning based on the collected learning data on the output unit 110 in real time (S1116).
  • the recognition execution unit 130 of the embedded device 10 acquires the recognizer learned from the information processing device 20 via the communication unit 160, and uses the recognizer to perform the learning on the learning data currently acquired by the sensor 120. Perform recognition processing.
  • the guidance unit 220 may acquire the result of the recognition processing by the recognition execution unit 130 and cause the output unit 110 to display the result.
  • the operator can intuitively experience that the recognition result is grasped in real time and the accuracy is improved with the collection of the learning data. Become.
  • the information processing system according to the present embodiment may repeatedly execute the processing of steps S1103 to S1109 and S1111 to S1116 until the termination condition is satisfied.
  • the information processing system According to the above processing by the information processing system according to the present embodiment, it is possible to effectively guide the collection of suitable learning data by the operator, and to provide the operator who is a novice in the development of the recognizer with recognition. It becomes possible to make learning the point of learning data collection in instrument development.
  • the guidance unit 220 according to the present embodiment executes learning data collection guidance using a guidance object or the like when determining that diversity of learning data is not ensured.
  • the guidance unit 220 according to the present embodiment may perform the above-described guidance from the start of learning data collection.
  • the operator according to the present embodiment is a novice of the recognizer development, and has been described as an example in which the novice learns the procedure of learning data collection. It is not limited to the example.
  • the operator according to the present embodiment may be, for example, a cooperator for learning data collection that is not engaged in recognizer development (not aimed at acquiring knowledge related to recognizer development).
  • the guidance unit 220 may omit part of the guidance relating to the importance of learning data collection and the like, and may perform guidance using guidance objects or the like from the beginning.
  • the guiding unit 220 According to the above control by the guiding unit 220 according to the present embodiment, even when the operator does not have the knowledge regarding the recognizer development and is a cooperator who does not aim to acquire the knowledge, The behavior of the cooperator can be naturally induced, and learning data suitable for developing a recognizer can be efficiently collected.
  • FIG. 14 is a diagram illustrating a combination example of the embedded device 10, the sensor 120, and the recognition task according to the present embodiment.
  • the embedded device 10 may be a wearable device such as a wristwatch.
  • the sensor 120 of the embedded device 10 may include, for example, an IMU.
  • a recognizer for gesture identification, operator behavior identification, and the like can be generated by learning.
  • the embedded device 10 may be a smart speaker.
  • the sensor 120 of the embedded device 10 may include, for example, a microphone. According to the above configuration, it is possible to generate a recognizer related to specific word detection, speaker identification, speech-to-text, or the like by learning.
  • the embedded device 10 may be various wearable devices for health care.
  • the sensor 120 of the embedded device 10 may include, for example, an IMU, a pulse sensor, an electrocardiograph, and the like.
  • an estimator for estimating a heart rate or estimating consumed energy by learning it is also possible to generate an estimator for estimating a heart rate or estimating consumed energy by learning.
  • the technical idea of the present disclosure is not limited to recognition such as hand sign identification, but can be applied to regression.
  • the guidance method may be appropriately modified according to the target recognition task.
  • the embedded device 10 is a wristwatch-type wearable device worn on the operator's arm UA, and a gesture of turning the screen to the operator's face is detected by the IMU included in the sensor 120 is illustrated.
  • the IMU included in the sensor 120 Suppose.
  • the output unit 110 of the embedded device 10 may be configured by a glass device 110a that is compatible with virtual reality or augmented reality, and a tactile presentation device 110b that is worn by the operator U1.
  • the guiding unit 220 first causes the glass device 110a to display the instructor avatar AV1 in step S1112 shown in FIG.
  • the guiding unit 220 is configured so that a variety of learning data can be acquired for both a gesture of turning the screen of the embedded device 10 that is a wristwatch-type wearable device to the face and an operation that is not similar to the gesture.
  • Let AV1 exemplify a specific hand movement.
  • the guiding unit 220 exemplifies how to move a hand with the sound SO2.
  • the guidance unit 220 performs control such as pseudo-pulling the hand of the operator U1 by causing the tactile presentation device 110b to present traction so that diversity is generated in the learning data. Good. According to the above control by the guidance unit 220 according to the present embodiment, it is possible to intuitively teach the operator U1 what kind of hand movement brings diversity to the learning data through tactile presentation or the like. Becomes
  • the embedded device 10 may further include a reward providing unit 170, for example, as illustrated in FIG.
  • a reward providing unit 170 for example, as illustrated in FIG.
  • the following is a specific example of the conversion to practical recognition development after the tutorial.
  • steps S1101, S1103, and S1112 is redefined as follows.
  • step S1101 the guiding unit 220 searches the recognizer storage unit 260, and displays a list of recognizers generated in the tutorial on the development UI2.
  • the learning / evaluation unit 230 uses the parameters such as the weight of the recognizer and enables the transfer learning.
  • step S1103 the processing in step S1103 will be described.
  • the recognizer development is for the purpose of a tutorial, and, for example, learning data is collected after imposing restrictions such as limiting the recognition target to one hand of the operator. Was mentioned.
  • learning data may be collected from various environments and various data providers.
  • the embedded device 10 is realized as a projector and installed in a public space such as an urban area or an event venue. Further, for example, a data provider is recruited in digital signage, and learning data is collected.
  • the guide unit 220 guides the data provider U2 by controlling the embedded device 10 as a projector in order to collect predetermined learning data.
  • the guiding unit 220 measures position information, environmental information such as temperature and humidity, etc., based on various information collected by the sensor 120, and determines the sex, age, and And the like.
  • the guidance unit 220 according to the present embodiment can perform optimal guidance according to the context at the time of data collection and the data provider based on the results of the measurement and recognition as described above.
  • the guiding unit 220 is configured to perform Is made to project the female avatar AV2 on the screen.
  • the guiding unit 220 controls the female talent avatar AV2 to perform the Half-heart hand sign shown in FIG. 2, and instructs the data provider U2 to match the female talent avatar AV2 with the hand of the female talent avatar AV2. -Prompt to perform a heart hand sign.
  • the embedded device 10 can photograph the data provider U2's Half-heart handsign using the camera device provided in the sensor 120 and collect the learning data D1.
  • learning data by various data providers can be collected in various environments, and the generalization performance of a recognizer generated in a tutorial or the like is further improved. It becomes possible.
  • the guidance unit 220 may control the reward providing unit 170 and provide a reward to the data provider U2 so that the data provider U2 cooperates more actively in learning data collection.
  • the guiding unit 220 controls the reward providing unit 170 and sets a heart symbol together with the avatar AV2 of the female talent.
  • the formed two-shot photograph may be provided to the data provider U2 as a reward RW.
  • the provision to the data provider according to the present embodiment is not limited to the image as described above, food such as confectionery, physical banknotes such as gift certificates, digital currency such as virtual currency, music and video, etc. It may be multimedia content.
  • the modified examples according to an embodiment of the present disclosure have been described with reference to specific examples.
  • the information processing system according to an embodiment of the present disclosure can be flexibly deformed according to specifications and operations.
  • FIG. 19 is a block diagram illustrating a hardware configuration example of the information processing device 20 according to an embodiment of the present disclosure.
  • the information processing device 20 includes, for example, a processor 871, a ROM 872, a RAM 873, a host bus 874, a bridge 875, an external bus 876, an interface 877, an input device 878, and an output device 879.
  • a storage 880, a drive 881, a connection port 882, and a communication device 883 Note that the hardware configuration shown here is an example, and some of the components may be omitted. Further, components other than the components shown here may be further included.
  • the processor 871 functions as, for example, an arithmetic processing device or a control device, and controls the entire operation of each component or a part thereof based on various programs recorded in the ROM 872, the RAM 873, the storage 880, or the removable recording medium 901. .
  • the ROM 872 is a means for storing a program read by the processor 871, data used for calculation, and the like.
  • the RAM 873 temporarily or permanently stores, for example, a program read by the processor 871 and various parameters that appropriately change when the program is executed.
  • the processor 871, the ROM 872, and the RAM 873 are mutually connected, for example, via a host bus 874 capable of high-speed data transmission.
  • the host bus 874 is connected to, for example, an external bus 876 having a relatively low data transmission speed via a bridge 875.
  • the external bus 876 is connected to various components via an interface 877.
  • Input device 8708 As the input device 878, for example, a mouse, a keyboard, a touch panel, a button, a switch, a lever, and the like are used. Further, as the input device 878, a remote controller (hereinafter, remote controller) capable of transmitting a control signal using infrared rays or other radio waves may be used. Further, the input device 878 includes a voice input device such as a microphone.
  • the output device 879 transmits acquired information to the user, such as a display device such as a CRT (Cathode Ray Tube), an LCD or an organic EL, an audio output device such as a speaker or a headphone, a printer, a mobile phone, or a facsimile. It is a device that can visually or audibly notify the user.
  • the output device 879 according to the present disclosure includes various vibration devices capable of outputting a tactile stimulus.
  • the storage 880 is a device for storing various data.
  • a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like is used.
  • the drive 881 is a device that reads information recorded on a removable recording medium 901 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, or writes information on the removable recording medium 901.
  • a removable recording medium 901 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory
  • the removable recording medium 901 is, for example, a DVD medium, a Blu-ray (registered trademark) medium, an HD DVD medium, various semiconductor storage media, and the like.
  • the removable recording medium 901 may be, for example, an IC card on which a non-contact type IC chip is mounted, or an electronic device.
  • connection port 882 is, for example, a port for connecting an external connection device 902 such as a USB (Universal Serial Bus) port, an IEEE1394 port, a SCSI (Small Computer System Interface), an RS-232C port, or an optical audio terminal. is there.
  • an external connection device 902 such as a USB (Universal Serial Bus) port, an IEEE1394 port, a SCSI (Small Computer System Interface), an RS-232C port, or an optical audio terminal. is there.
  • the external connection device 902 is, for example, a printer, a portable music player, a digital camera, a digital video camera, or an IC recorder.
  • the communication device 883 is a communication device for connecting to a network.
  • the information processing device 20 includes the guiding unit 220 that guides collection of learning data used for learning of a recognizer.
  • the guiding unit 220 according to an embodiment of the present disclosure dynamically guides an operator to collect data so that diversity of sensing data related to a recognition target is reported. According to such a configuration, it is possible to guide the operator to collect suitable learning data.
  • a program for causing hardware such as a CPU, a ROM, and a RAM built in the computer to exhibit the same function as the configuration of the information processing device 20 can be created.
  • Possible non-transitory recording media can also be provided.
  • a guiding unit for guiding the collection of learning data used for learning the recognizer With The guiding unit dynamically guides data collection by the operator so that diversity of sensing data related to the recognition target is ensured, Information processing device.
  • the guidance unit imposes a constraint on the collection of the learning data to the operator, and dynamically performs the data collection by the operator so as to ensure the diversity of the sensing data within the range of the constraint.
  • the information processing device according to (1), which guides the user.
  • the guiding unit determines whether or not the diversity sufficient for generalization of the recognizer is secured. If the diversity is not secured, the sensing data of a pattern that is assumed to be in shortage is collected.
  • the information processing apparatus wherein the data collection is guided by the operator so as to be performed.
  • the guide unit determines whether or not the collected sensing data complies with the constraint.If the constraint is not complied with, a warning to the effect that the constraint is not complied with is issued to the operator.
  • the information processing device according to (2) or (3), wherein the information is notified.
  • the operator is a first-time scholar involved in learning the recognizer,
  • the guiding unit dynamically guides the data collection by the beginner in the tutorial related to the collection of the learning data.
  • the information processing device according to any one of (2) to (4).
  • An information processing device according to any one of the above.
  • the recognition target includes a body sign or a gesture
  • the guidance unit displays a guidance object that guides the collection of the sensing data effective for securing the diversity, and instructs the operator to perform a predetermined operation on the guidance object.
  • the information processing device according to (11).
  • the information processing apparatus according to any one of (1) to (12), wherein the guidance unit controls provision of a reward to the operator.
  • An output control unit that controls a user interface according to the guidance of the data collection based on the control by the guidance unit. Further comprising, The information processing apparatus according to any one of (1) to (13).
  • the information processing device according to (14), wherein the output control unit further controls a user interface for the operator to design the recognizer.
  • a learning unit that performs learning related to the recognizer using the collected sensing data, Further comprising, The information processing device according to any one of (1) to (15).
  • the processor guiding the collection of learning data used for learning the recognizer; Including The guiding is to dynamically guide data collection by the operator so that diversity of sensing data related to the recognition target is ensured,
  • An information processing method further comprising: (18) Computer A guiding unit for guiding the collection of learning data used for learning the recognizer, With The guiding unit dynamically guides data collection by the operator so that diversity of sensing data related to the recognition target is ensured, A program for functioning as an information processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)
  • Image Analysis (AREA)

Abstract

In order to guide the collection of suitable learning data by an operator, provided is an information processing device (20) equipped with a guide unit (220) for guiding the collection of learning data used in learning by a classifier, wherein the guide unit dynamically guides the collection of data by an operator so as to ensure diversity of sensing data associated with a recognition subject. Also provided is an information processing method that involves a processor (871) guiding the collection of learning data used in learning by a classifier, and the guiding further includes dynamically guiding the collection of data by an operator so as to ensure diversity of sensing data associated with a recognition subject.

Description

情報処理装置、情報処理方法、およびプログラムInformation processing apparatus, information processing method, and program

 本開示は、情報処理装置、情報処理方法、およびプログラムに関する。 The present disclosure relates to an information processing device, an information processing method, and a program.

 近年、収集したセンシングデータに基づいて、各種の認識処理を行う装置が普及している。また、上記のような認識処理を実現するための認識器を効率的に生成するための技術も報告されている。例えば、特許文献1には、認識器の汎化性能の向上に有効な学習データを効率的に収集する技術が開示されている。 In recent years, devices that perform various types of recognition processing based on collected sensing data have become widespread. Also, a technique for efficiently generating a recognizer for realizing the above-described recognition processing has been reported. For example, Patent Literature 1 discloses a technique for efficiently collecting learning data effective for improving the generalization performance of a recognizer.

特開2018-60268号公報JP, 2018-60268, A

 しかし、特許文献1に記載の技術は、偶発的に取得されたセンシングデータのうち、学習データとして好適なものを選別する技術であり、操作者による好適なデータ収集を誘導するものではない。 However, the technique described in Patent Literature 1 is a technique for selecting, from accidentally acquired sensing data, data suitable as learning data, and does not guide the operator to collect data appropriately.

 本開示によれば、認識器の学習に用いる学習データの収集を誘導する誘導部、を備え、前記誘導部は、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導する、情報処理装置が提供される。 According to the present disclosure, there is provided a guiding unit that guides collection of learning data used for learning of a recognizer, and the guiding unit is configured to collect data by an operator so that diversity of sensing data related to a recognition target is secured. An information processing device for dynamically guiding the information is provided.

 また、本開示によれば、プロセッサが、認識器の学習に用いる学習データの収集を誘導すること、を含み、前記誘導することは、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導すること、をさらに含む、情報処理方法が提供される。 Further, according to the present disclosure, the processor includes: guiding the collection of learning data used for learning of the recognizer, including, the guiding is to ensure the diversity of sensing data related to the recognition target, An information processing method is provided, further comprising dynamically guiding data collection by an operator.

 また、本開示によれば、コンピュータを、認識器の学習に用いる学習データの収集を誘導する誘導部、を備え、前記誘導部は、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導する、情報処理装置、として機能させるためのプログラムが提供される。 According to the present disclosure, the computer includes a guiding unit that guides the collection of learning data used for learning of the recognizer, and the guiding unit ensures the diversity of sensing data related to the recognition target, A program for functioning as an information processing device for dynamically guiding data collection by an operator is provided.

本開示の一実施形態に係る情報処理システムの構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of an information processing system according to an embodiment of the present disclosure. 同実施形態に係るハンドサイン識別のクラスの一例を示す図である。It is a figure showing an example of the class of hand sign identification concerning the embodiment. 同実施形態に係る組み込み機器の外観例を示す図である。It is a figure showing an example of appearance of an embedded device concerning the embodiment. 同実施形態に係る組み込み機器の機能構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a functional configuration example of the embedded device according to the embodiment. 同実施形態に係る情報処理装置の機能構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a functional configuration example of the information processing apparatus according to the embodiment. 同実施形態に係る情報処理装置が、データ収集機能やユーザインタフェースの表示機能を有する場合の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example when the information processing apparatus according to the embodiment has a data collection function and a user interface display function. 同実施形態に係る情報処理システムの処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing of an information processing system concerning the embodiment. 同実施形態に係るデータ収集フローの一例である。It is an example of a data collection flow according to the embodiment. 同実施形態に係る誘導部が操作者に課す制約の一例を示す図である。It is a figure showing an example of a restriction which a guidance part concerning the embodiment imposes on an operator. 同実施形態に係る学習データの多様性について説明するための図である。It is a figure for explaining the diversity of the learning data concerning the embodiment. 同実施形態に係る手の存在頻度に係るヒートマップの一例を示す図である。It is a figure showing an example of a heat map concerning the frequency of a hand concerning the embodiment. 同実施形態に係る誘導部による、不足が想定されるパターンの学習データ収集の誘導の一例を示す図である。It is a figure which shows an example of the guidance of the learning data collection of the pattern which a shortage is assumed by the guidance part which concerns on the embodiment. 同実施形態に係る認識精度の推移を示すグラフの一例である。It is an example of a graph showing transition of recognition accuracy according to the embodiment. 同実施形態に係る組み込み機器、センサ、および認識タスクの組み合わせ例を示す図である。It is a figure showing an example of combination of an embedded device, a sensor, and a recognition task concerning the embodiment. 同実施形態に係る組み込み機器が腕時計型のウェアラブル機器として実現される場合の一例を示す図である。It is a figure showing an example when the embedded device concerning the embodiment is realized as a wristwatch type wearable device. 同実施形態に係るグラス機器および触覚提示機器を用いた誘導の一例を示す図である。It is a figure showing an example of guidance using the glass equipment and tactile sense presentation equipment concerning the embodiment. 同実施形態に係る組み込み機器が報酬提供部を備える場合のブロック図である。FIG. 3 is a block diagram in a case where the embedded device according to the embodiment includes a reward providing unit. 同実施形態に係る実用的な認識器開発への転用について説明するための図である。It is a figure for explaining diversion to the practical recognizer development concerning the embodiment. 本開示の一実施形態に係る情報処理装置のハードウェア構成例を示す図である。1 is a diagram illustrating an example of a hardware configuration of an information processing device according to an embodiment of the present disclosure. 認識器の汎化性能に対する学習データの影響について説明するための図である。FIG. 7 is a diagram for explaining the effect of learning data on the generalization performance of a recognizer.

 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

 なお、説明は以下の順序で行うものとする。
 1.実施形態
  1.1.概要
  1.2.システム構成例
  1.3.組み込み機器10の機能構成例
  1.4.情報処理装置20の機能構成例
  1.5.処理の詳細
  1.6.変形例
 2.ハードウェア構成例
 3.まとめ
The description will be made in the following order.
1. Embodiment 1.1. Overview 1.2. System configuration example 1.3. Example of functional configuration of embedded device 10 1.4. Example of functional configuration of information processing device 20 1.5. Details of processing 1.6. Modified example 2. 2. Hardware configuration example Conclusion

 <1.実施形態>
 <<1.1.概要>>
 まず、本開示の一実施形態の概要について述べる。上述したように、近年、IoT(Internet of things)やロボティクスの分野などにおいて、収集したセンシングデータに基づく各種の認識処理を行う装置が普及している。
<1. Embodiment>
<< 1.1. Overview >>
First, an outline of an embodiment of the present disclosure will be described. As described above, in recent years, devices that perform various recognition processes based on collected sensing data have become widespread in the fields of IoT (Internet of things) and robotics.

 ここで、深層学習などの教師あり機械学習技術を用いて認識器を開発する場合、認識器の設計、学習データの収集、認識器の学習、および認識器の評価から成る開発サイクルを繰り返すのが一般的である。 Here, when developing a recognizer using supervised machine learning technology such as deep learning, the development cycle consisting of design of the recognizer, collection of learning data, learning of the recognizer, and evaluation of the recognizer is repeated. General.

 また、機械学習分野の初学者が認識器の開発技術を習得しようとする場合にも、個々人が上記のような開発サイクルを一通り体験することが重要となる。 に も Also, even if a novice in the field of machine learning tries to acquire the development technology of the recognizer, it is important that each individual experiences the development cycle as described above.

 近年においては、初学者は、例えば、無償または有償で提供される機械学習フレームワークや学習データセットを用いて、認識器の設計、学習、また評価を体験し、認識器の開発技術を習得することが可能である。 In recent years, beginners have experienced recognizer design, learning, and evaluation using, for example, free or paid machine learning frameworks and learning datasets, and mastered recognizer development techniques. It is possible.

 しかし、上記のような機械学習フレームワークでは、認識器の設計、学習および評価に係るチュートリアルは提供されるものの、学習に用いる学習データに関しては、例えば、インターネット上で無償公開される既存のデータセットの流用に留まっている。一方、学習データの収集は、認識器の汎化性能に大きく影響を与える重要なフェーズである。 However, in the above-described machine learning framework, although a tutorial on the design, learning, and evaluation of a recognizer is provided, learning data used for learning is, for example, an existing data set that is freely released on the Internet. The diversion remains. On the other hand, learning data collection is an important phase that greatly affects the generalization performance of a recognizer.

 図20は、認識器の汎化性能に対する学習データの影響について説明するための図である。例えば、図20の上段には、標本空間Ωにおいて、学習データが網羅的に収集できていない場合の一例が示されている。このような場合、生成される認識器は、学習に用いたデータに対しては認識精度が高いものの未知データに対する認識精度が低い、いわゆる汎化性能の低いものとなる。 FIG. 20 is a diagram for explaining the effect of the learning data on the generalization performance of the recognizer. For example, the upper part of FIG. 20 shows an example in which the learning data has not been exhaustively collected in the sample space Ω. In such a case, the generated recognizer has high recognition accuracy for the data used for learning, but has low recognition accuracy for unknown data, that is, low so-called generalization performance.

 一方、図20の下段に示すように、標本空間Ωにおいて網羅的に学習データが収集できている場合、生成される認識器の汎化性能が高くなり、より多くのデータを正しく認識することが可能となる。 On the other hand, as shown in the lower part of FIG. 20, when the learning data has been exhaustively collected in the sample space Ω, the generalization performance of the generated recognizer increases, and it is possible to correctly recognize more data. It becomes possible.

 このため、認識器の開発における学習データの収集においては、想定される種々の状況に係るデータを網羅的に集めることが重要となる。しかし、上記のような既存のデータセットを流用する機械学習フレームワークを用いて認識器の開発技術を学ぶ初学者は、認識器の汎化性能の向上に好適な学習データの収集手法を習得することが困難である。 Therefore, in collecting learning data in the development of a recognizer, it is important to collect data on various assumed situations comprehensively. However, beginners who learn recognizer development techniques using a machine learning framework that diverts existing data sets as described above will learn a learning data collection method suitable for improving the generalization performance of recognizers. It is difficult.

 また、例えば、特許文献1に開示されるように、認識器の汎化性能の向上に有効な学習データを効率的に収集する技術が提案されているが、上述したように、特許文献1に記載の技術は、偶発的に取得されたセンシングデータのうち、学習データとして好適なものを選別する技術であり、好適な学習データの収集手法を習得させるものではない。 Further, for example, as disclosed in Patent Literature 1, a technique for efficiently collecting learning data effective for improving the generalization performance of a recognizer has been proposed. The described technology is a technology for selecting data suitable for learning data from sensing data acquired accidentally, and does not allow a user to learn a suitable learning data collection method.

 本開示に係る技術思想は、上記のような点に着目して発想されたものであり、操作者による好適な学習データの収集を誘導することを可能となる。このために、本開示の一実施形態に係る情報処理装置20は、認識器の学習に用いる学習データの収集を誘導する誘導部220を有する。また、本開示の一実施形態に係る誘導部220は、認識対象に係るセンシングデータの多様性が確報されるよう、操作者によるデータ収集を動的に誘導すること、を特徴の一つとする。 技術 The technical idea according to the present disclosure has been conceived by focusing on the above points, and it is possible to guide the operator to appropriately collect learning data. To this end, the information processing device 20 according to an embodiment of the present disclosure includes a guiding unit 220 that guides collection of learning data used for learning of a recognizer. In addition, the guiding unit 220 according to an embodiment of the present disclosure dynamically guides an operator to collect data so that diversity of sensing data related to a recognition target is reported.

 以下、上記の特徴を実現する情報処理装置20の構成、および上記特徴が奏する効果について詳細に説明する。 Hereinafter, the configuration of the information processing apparatus 20 that realizes the above-described features and the effects of the above-described features will be described in detail.

 <<1.2.システム構成例>>
 まず、本開示の一実施形態に係る情報処理システムの構成例について述べる。図1は、本実施形態に係る情報処理システムの構成例を示すブロック図である。なお、図1においては、本開示に係る技術思想が、ハンドサイン識別を行う認識器の開発チュートリアルに適用される場合の一例が示されている。
<< 1.2. System configuration example >>
First, a configuration example of an information processing system according to an embodiment of the present disclosure will be described. FIG. 1 is a block diagram illustrating a configuration example of an information processing system according to the present embodiment. Note that FIG. 1 illustrates an example in which the technical concept according to the present disclosure is applied to a development tutorial for a recognizer that performs handsign identification.

 ここで、上記のハンドサイン識別とは、画像に写された人の手を、その形状に応じて、最適なクラスに分類する認識タスクを指す。図2は、本実施形態に係るハンドサイン識別のクラスの一例を示す図である。図2に示すように、本実施形態に係るハンドサイン識別のクラスには、例えば、Rock(ぐー)、Scissors(ちょき)、Paper(ぱー)などのじゃんけんに用いる手の形状や、Half-heartなどの各種の手の形状が含まれ得る。 ハ ン ド Here, the above-mentioned hand sign identification refers to a recognition task of classifying a human hand shown in an image into an optimal class according to its shape. FIG. 2 is a diagram illustrating an example of a class of handsign identification according to the present embodiment. As shown in FIG. 2, the hand sign identification class according to the present embodiment includes, for example, a hand shape used for rock-paper-scissors such as Rock (rock), Scissors (choki), and Paper (ぱ), and a half-heart. Various hand shapes may be included.

 認識器開発の初学者である操作者は、本実施形態に係る情報処理システムを利用することにより、上記のようなハンドサイン識別を行う認識の汎化性能を向上させる好適なセンシングデータ、すなわち学習データの収集手法を取得することが可能である。 By using the information processing system according to the present embodiment, the operator who is a novice in the development of the recognizer can use the information processing system according to the present embodiment to improve the generalization performance of recognition for performing the above-described hand sign identification. It is possible to obtain data collection methods.

 図1に示すように、本実施形態に係る情報処理システムは、例えば、組み込み機器10、情報処理装置20、および表示装置30を備え得る。 As shown in FIG. 1, the information processing system according to the present embodiment may include, for example, an embedded device 10, an information processing device 20, and a display device 30.

 (組み込み機器10)
 本実施形態に係る組み込み機器10は、認識対象に係るセンシングデータを収集し、また収集したセンシングデータ(以下、学習データ、ともいう)をリアルタイムで操作者に対し提示する装置である。このために、本実施形態に係る組み込み機器10は、出力部110やセンサ120を備える。
(Embedded device 10)
The embedded device 10 according to the present embodiment is a device that collects sensing data related to a recognition target and presents the collected sensing data (hereinafter, also referred to as learning data) to an operator in real time. For this purpose, the embedded device 10 according to the present embodiment includes the output unit 110 and the sensor 120.

 図1に示す一例の場合、組み込み機器10は、認識器開発の初学者によるハンドサインをカメラ装置であるセンサ120により撮影し、撮影したハンドサインに係る画像を出力部110によりリアルタイムに表示してよい。 In the case of the example shown in FIG. 1, the embedded device 10 captures a handsign by a beginner of the recognizer development by the sensor 120 which is a camera device, and displays an image related to the captured handsign by the output unit 110 in real time. Good.

 図3は、本実施形態に係る組み込み機器10の外観例を示す図である。初学者である操作者は、例えば、下向きに固定されたカメラ装置であるセンサ120の下に手を差し入れ、撮影された画像を出力部110により確認しながら各種のハンドサインに係るデータ収集を実行する。 FIG. 3 is a diagram illustrating an example of the appearance of the embedded device 10 according to the present embodiment. An operator who is a novice, for example, inserts his hand under the sensor 120 which is a camera device fixed downward, and executes data collection related to various hand signs while confirming a captured image by the output unit 110. I do.

 (情報処理装置20)
 本実施形態に係る情報処理装置20は、認識器開発の初学者である操作者に対し、認識器の設計、学習データ収集、認識器の学習、認識器の評価の各フェーズを一通り体験させるフレームワークを提供する。このために、本実施形態に係る情報処理装置20は、上記各フェーズにおけるガイダンスを行うためのガイダンスUI1や、認識器開発の初学者である操作者が認識器の設計を行うための開発UI2を表示装置30を通じてユーザに提供する。
(Information processing device 20)
The information processing device 20 according to the present embodiment allows an operator who is a novice in the development of a recognizer to experience the phases of design of the recognizer, collection of learning data, learning of the recognizer, and evaluation of the recognizer. Provide a framework. For this reason, the information processing apparatus 20 according to the present embodiment includes a guidance UI1 for performing guidance in each of the above phases and a development UI2 for an operator who is a novice of recognizer development to design a recognizer. It is provided to the user through the display device 30.

 また、本実施形態に係る情報処理装置20は、認識対象に係るセンシングデータの多様性が確保されるように、操作者によるデータ収集を動的に誘導する機能を有する。 The information processing apparatus 20 according to the present embodiment has a function of dynamically guiding data collection by an operator so that the diversity of sensing data relating to a recognition target is ensured.

 本実施形態に係る情報処理装置20が有する機能の詳細については別途後述する。 機能 The details of the functions of the information processing apparatus 20 according to the present embodiment will be separately described later.

 (表示装置30)
 本実施形態に係る表示装置30は、情報処理装置20による制御に基づいて、上述したガイダンスUI1や開発UI2を表示する。本実施形態に係る表示装置30は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)装置、OLED(Organic Light Emitting Diode)装置、またはプロジェクタなどであってもよい。
(Display device 30)
The display device 30 according to the present embodiment displays the above-mentioned guidance UI1 and development UI2 based on the control by the information processing device 20. The display device 30 according to the present embodiment may be, for example, a liquid crystal display (LCD) device, an organic light emitting diode (OLED) device, or a projector.

 (ネットワーク40)
 ネットワーク40は、情報処理システムが備える各構成を接続する機能を有する。ネットワーク40は、インターネット、電話回線網、衛星通信網などの公衆回線網や、Ethernet(登録商標)を含む各種のLAN(Local Area Network)、WAN(Wide Area Network)などを含んでもよい。また、ネットワーク40は、IP-VPN(Internet Protocol-Virtual Private Network)などの専用回線網を含んでもよい。また、ネットワーク40は、Wi-Fi(登録商標)、Bluetooth(登録商標)など無線通信網を含んでもよい。
(Network 40)
The network 40 has a function of connecting the components included in the information processing system. The network 40 may include a public network such as the Internet, a telephone network, or a satellite communication network, various LANs (Local Area Network) including Ethernet (registered trademark), and a WAN (Wide Area Network). Further, the network 40 may include a dedicated line network such as an IP-VPN (Internet Protocol-Virtual Private Network). The network 40 may include a wireless communication network such as Wi-Fi (registered trademark) and Bluetooth (registered trademark).

 以上、本実施形態に係る情報処理システムの構成例について説明した。なお、図1を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る情報処理システムの構成は係る例に限定されない。本実施形態に係る情報処理システムの構成は、仕様や運用に応じて柔軟に変形可能である。 The configuration example of the information processing system according to the present embodiment has been described above. The configuration described above with reference to FIG. 1 is merely an example, and the configuration of the information processing system according to the present embodiment is not limited to the example. The configuration of the information processing system according to the present embodiment can be flexibly modified according to specifications and operations.

 <<1.3.組み込み機器10の機能構成例>>
 次に、本実施形態に係る組み込み機器10の機能構成例について述べる。図4は、本実施形態に係る組み込み機器10の機能構成例を示すブロック図である。図4に示すように、本実施形態に係る組み込み機器10は、出力部110、センサ120、認識実行部130、駆動部140、学習データ収集部150、および通信部160を備え得る。
<< 1.3. Functional configuration example of embedded device 10 >>
Next, a functional configuration example of the embedded device 10 according to the present embodiment will be described. FIG. 4 is a block diagram illustrating a functional configuration example of the embedded device 10 according to the present embodiment. As illustrated in FIG. 4, the embedded device 10 according to the present embodiment may include an output unit 110, a sensor 120, a recognition execution unit 130, a driving unit 140, a learning data collection unit 150, and a communication unit 160.

 (出力部110)
 本実施形態に係る出力部110は、センサ120が収集したセンシングデータをリアルタイムにユーザに提示する。本実施形態に係る出力部110は、例えば、ディスプレイ装置、スピーカー、振動デバイスなどを備えてよい。
(Output unit 110)
The output unit 110 according to the embodiment presents the sensing data collected by the sensor 120 to the user in real time. The output unit 110 according to the embodiment may include, for example, a display device, a speaker, a vibration device, and the like.

 (センサ120)
 本実施形態に係るセンサ120は、認識対象に係るセンシングデータを収集する。本実施形態に係るセンサ120は、認識タスクおよび認識対象に応じたデバイスを備えてよい。本実施形態に係るセンサ120は、例えば、カメラ装置、マイクロフォン、IMU(Inertial Measurement Unit)、脈拍センサ、心電計などを備え得る。
(Sensor 120)
The sensor 120 according to the present embodiment collects sensing data related to a recognition target. The sensor 120 according to the present embodiment may include a device according to a recognition task and a recognition target. The sensor 120 according to the present embodiment may include, for example, a camera device, a microphone, an IMU (Inertial Measurement Unit), a pulse sensor, an electrocardiograph, and the like.

 (認識実行部130)
 認識実行部130は、センサ120が収集したセンシングデータに基づいて生成された学習器を用いて認識対象の認識を行う。本実施形態に係る認識実行部130は、例えば、センサ120が収集したハンドサインに係る画像に基づいて生成された認識器を用いて、操作者の行うハンドサインをリアルタイムに認識することができる。
(Recognition execution unit 130)
The recognition execution unit 130 performs recognition of the recognition target using a learning device generated based on the sensing data collected by the sensor 120. The recognition execution unit 130 according to the present embodiment can recognize the handsign performed by the operator in real time, for example, using a recognizer generated based on the image related to the handsign collected by the sensor 120.

 (駆動部140)
 本実施形態に係る駆動部140は、情報処理装置20による制御に基づいて、組み込み機器10自体やセンサ120の駆動を制御する。駆動部140は、例えば、情報処理装置20による制御に基づいて、組み込み機器10やセンサ120の位置や姿勢を変化させてもよい。
(Drive unit 140)
The drive unit 140 according to the present embodiment controls the driving of the embedded device 10 itself and the sensor 120 based on the control by the information processing device 20. The drive unit 140 may change the position or orientation of the embedded device 10 or the sensor 120 based on the control of the information processing device 20, for example.

 (学習データ収集部150)
 本実施形態に係る学習データ収集部150は、情報処理装置20による制御に基づいて、センサ120によるデータ収集を実行させ、通信部160を介して収集されたセンシングデータを情報処理装置20に送信する。学習データ収集部150は、駆動部140を介してセンサ120によるデータ収集を実行させてもよい。
(Learning data collection unit 150)
The learning data collection unit 150 according to the present embodiment causes the sensor 120 to execute data collection based on control by the information processing device 20 and transmits the collected sensing data to the information processing device 20 via the communication unit 160. . The learning data collection unit 150 may cause the sensor 120 to execute data collection via the driving unit 140.

 (通信部160)
 本実施形態に係る通信部160は、ネットワーク40を介して、情報処理装置20との情報通信を行う。例えば、通信部160は、センサ120が収集したセンシングデータを情報処理装置20に送信する。また、例えば、通信部160は、情報処理装置20が生成した制御信号や認識器を受信する。
(Communication unit 160)
The communication unit 160 according to the present embodiment performs information communication with the information processing device 20 via the network 40. For example, the communication unit 160 transmits the sensing data collected by the sensor 120 to the information processing device 20. Further, for example, the communication unit 160 receives a control signal and a recognizer generated by the information processing device 20.

 以上、本実施形態に係る組み込み機器10の機能構成例について説明した。なお、図4を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る組み込み機器10の機能構成は係る例に限定されない。本実施形態に係る組み込み機器10の機能構成は、仕様や運用に応じて柔軟に変形可能である。 As described above, the functional configuration example of the embedded device 10 according to the present embodiment has been described. The configuration described above with reference to FIG. 4 is merely an example, and the functional configuration of the embedded device 10 according to the present embodiment is not limited to the example. The functional configuration of the embedded device 10 according to the present embodiment can be flexibly modified according to specifications and operation.

 <<1.4.情報処理装置20の機能構成例>>
 次に、本実施形態に係る情報処理装置20の機能構成例について述べる。図5は、本実施形態に係る情報処理装置20の機能構成例を示すブロック図である。図5に示すように、本実施形態に係る情報処理装置20は、出力制御部210、誘導部220、学習・評価部230、学習データセット保管部240、評価データセット保管部250、認識器保管部260、および通信部270を備える。
<< 1.4. Functional configuration example of information processing device 20 >>
Next, an example of a functional configuration of the information processing device 20 according to the present embodiment will be described. FIG. 5 is a block diagram illustrating a functional configuration example of the information processing apparatus 20 according to the present embodiment. As shown in FIG. 5, the information processing device 20 according to the present embodiment includes an output control unit 210, a guiding unit 220, a learning / evaluation unit 230, a learning data set storage unit 240, an evaluation data set storage unit 250, and a recognizer storage. And a communication unit 270.

 (出力制御部210)
 本実施形態に係る出力制御部210は、誘導部220による制御に基づいて、データ収集のガイダンスに係るユーザインタフェース(ガイダンスUI1)を制御する。
(Output control unit 210)
The output control unit 210 according to the present embodiment controls a user interface (guidance UI1) related to data collection guidance based on control by the guidance unit 220.

 また、本実施形態に係る出力制御部210は、認識器開発の初学者である操作者が認識器の設計を行うためのユーザインタフェース(開発UI2)を制御する。 The output control unit 210 according to the present embodiment controls a user interface (development UI2) for an operator who is a novice in developing a recognizer to design a recognizer.

 本実施形態に係る出力制御部210は、通信部270およびネットワーク40を介して、表示装置30によるガイダンスUI1および開発UI2の表示を制御してよい。 The output control unit 210 according to the present embodiment may control the display of the guidance UI1 and the development UI2 by the display device 30 via the communication unit 270 and the network 40.

 (誘導部220)
 本実施形態に係る誘導部220は、学習・評価部230による認識器の学習に用いる学習データの収集を誘導する機能を有する。具体的には、本実施形態に係る誘導部220は、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導すること、を特徴の一つとする。
(Guiding unit 220)
The guiding unit 220 according to the present embodiment has a function of guiding the learning / evaluating unit 230 to collect learning data used for learning the recognizer. Specifically, one of the features is that the guiding unit 220 according to the present embodiment dynamically guides the data collection by the operator so that the diversity of the sensing data related to the recognition target is secured.

 この際、本実施形態に係る誘導部220は、学習データの収集に係る制約を操作者に課し、当該制約の範囲内においてセンシングデータの多様性が確保されるよう、誘導を行ってよい。 At this time, the guidance unit 220 according to the present embodiment may impose a restriction on the collection of learning data to the operator, and perform guidance so that the diversity of the sensing data is secured within the range of the restriction.

 また、本実施形態に係る誘導部220は、収集されたセンシングデータに対するラベリングを行うラベリング部222、および上記の多様性が制約に係る判定を行うデータ解析部224を備えてよい。本実施形態に係る誘導部220が有する機能の詳細については、別途後述する。 The guidance unit 220 according to the present embodiment may include a labeling unit 222 that performs labeling on collected sensing data, and a data analysis unit 224 that performs determination regarding the above-mentioned diversity restriction. The details of the function of the guiding unit 220 according to the present embodiment will be separately described later.

 (学習・評価部230)
 本実施形態に係る学習・評価部230は、組み込み機器10が収集したセンシングデータを用いて認識器に係る学習を行う学習部、および生成した認識器の評価を行う評価部として機能する。
(Learning / evaluation unit 230)
The learning / evaluation unit 230 according to the present embodiment functions as a learning unit that performs learning related to the recognizer using the sensing data collected by the embedded device 10 and an evaluation unit that evaluates the generated recognizer.

 (学習データセット保管部240)
 本実施形態に係る学習データセット保管部240は、組み込み機器10が収集したセンシングデータを、学習・評価部230による認識器学習に係る学習データとして保管する。
(Learning data set storage unit 240)
The learning data set storage unit 240 according to the present embodiment stores sensing data collected by the embedded device 10 as learning data related to recognizer learning by the learning / evaluation unit 230.

 (評価データセット保管部250)
 本実施形態に係る評価データセット保管部250保管部は、学習・評価部230による認識器評価に用いられる評価データセットを保管する。
(Evaluation data set storage unit 250)
The evaluation data set storage unit 250 storage unit according to the present embodiment stores an evaluation data set used for the recognizer evaluation by the learning / evaluation unit 230.

 (認識器保管部260)
 本実施形態に係る認識器保管部260は、学習・評価部230が学習により生成した認識器に係る情報を保管する。上記の情報には、例えば、ネットワーク構成や各種のパラメータが含まれる。
(Recognizer storage unit 260)
The recognizer storage unit 260 according to the present embodiment stores information on the recognizer generated by the learning / evaluation unit 230 through learning. The information includes, for example, a network configuration and various parameters.

 (通信部270)
 本実施形態に係る通信部270は、ネットワーク40を介して、組み込み機器10や表示装置30との情報通信を行う。例えば、通信部270は、組み込み機器10が収集したセンシングデータを受信する。また、例えば、通信部270は、誘導部220が生成した制御信号や、学習・評価部230が学習により生成した認識に係る情報を組み込み機器10に送信する。
(Communication unit 270)
The communication unit 270 according to the present embodiment performs information communication with the embedded device 10 and the display device 30 via the network 40. For example, the communication unit 270 receives the sensing data collected by the embedded device 10. Further, for example, the communication unit 270 transmits to the embedded device 10 a control signal generated by the guidance unit 220 and information on recognition generated by learning by the learning / evaluation unit 230.

 以上、本実施形態に係る情報処理装置20の機能構成例について説明した。なお、図5を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る情報処理装置20の機能構成は係る例に限定されない。 The example of the functional configuration of the information processing device 20 according to the embodiment has been described above. The configuration described above with reference to FIG. 5 is merely an example, and the functional configuration of the information processing device 20 according to the present embodiment is not limited to the example.

 例えば、本実施形態に係る情報処理装置20は、組み込み機器10および表示装置30が有する機能をさらに備えてもよい。図6は、本実施形態に係る情報処理装置20が、データ収集機能やユーザインタフェースの表示機能を有する場合の構成例を示すブロック図である。図6に示すように、本実施形態に係る情報処理システムは、必ずしも、組み込み機器10、情報処理装置20、および表示装置30の複数の装置から成る必要はない。 For example, the information processing device 20 according to the present embodiment may further include the functions of the embedded device 10 and the display device 30. FIG. 6 is a block diagram illustrating a configuration example when the information processing apparatus 20 according to the present embodiment has a data collection function and a user interface display function. As illustrated in FIG. 6, the information processing system according to the present embodiment does not necessarily need to include the embedded device 10, the information processing device 20, and the display device 30.

 一方で、本実施形態に係る情報処理装置20が有する機能は、2台以上の複数の装置により実現されてもよい。このように、本実施形態に係る情報処理装置20の機能構成は、仕様や運用に応じて柔軟に変形され得る。 On the other hand, the functions of the information processing device 20 according to the present embodiment may be realized by two or more devices. As described above, the functional configuration of the information processing device 20 according to the present embodiment can be flexibly modified according to specifications and operations.

 <<1.5.処理の詳細>>
 次に、本実施形態に係る情報処理システムの処理の流れについて詳細に説明する。なお、以下においては、引き続き、本実施形態に係る情報処理システムが、ハンドサイン識別を行う認識器の開発チュートリアルに適用される場合を主な例に説明を行う。
<< 1.5. Details of processing >>
Next, a processing flow of the information processing system according to the present embodiment will be described in detail. In the following, a description will be mainly given of a case where the information processing system according to the present embodiment is applied to a development tutorial for a recognizer that performs handsign identification.

 図7は、本実施形態に係る情報処理システムの処理の流れを示すフローチャートである。図7を参照すると、まず、情報処理装置20の出力制御部210が、誘導部220による制御の下、表示装置30にガイダンスUI1を表示させ、認識器の設計を指示する(S1101)。 FIG. 7 is a flowchart showing a flow of processing of the information processing system according to the present embodiment. Referring to FIG. 7, first, the output control unit 210 of the information processing device 20 displays the guidance UI1 on the display device 30 under the control of the guidance unit 220, and instructs the design of the recognizer (S1101).

 この際、出力制御部210は、誘導部220による制御の下、図1に示すような講師アバターAV1や実際の講師を撮影した動画などを用いて、チュートリアル内の認識タスク、および当該認識タスクを解くための認識器についてのガイダンスを実施する。 At this time, under the control of the guidance unit 220, the output control unit 210 uses the instructor avatar AV1 as shown in FIG. 1 or a moving image of the actual instructor to perform the recognition task in the tutorial and the recognition task in the tutorial. Provide guidance on the recognizer to solve.

 認識器開発の初学者である操作者は、上記のガイダンスに従い、表示装置30に表示される開発UI2を通じて、実際に認識器の設計を行えてよい。 An operator who is a novice in developing a recognizer may actually design a recognizer through the development UI 2 displayed on the display device 30 according to the above-described guidance.

 次に、出力制御部210は、誘導部220による制御の下、初学者である操作者が開発UI2を通じて設計した認識器を汎化させるためには、どのような学習データが必要かをガイダンスUI1を介して操作者に通知し、操作者に実際のデータ収集を指示する(S1102)。 Next, under the control of the guidance unit 220, the output control unit 210 provides guidance UI1 as to what learning data is required to generalize the recognizer designed by the novice operator through the development UI2. Is notified to the operator via an instruction to instruct the operator to actually collect data (S1102).

 上述したハンドサイン識別の場合、出力制御部210は、誘導部220による制御の下、ガイダンスUI1において、「Rock、Scissors、Paper、Half-heartの順に、それぞれ画像を300枚ずつ撮影しましょう」、などと説明を行い、図8に示すようなデータ収集フローを表示させてもよい。 In the case of the above-described handsign identification, the output control unit 210, in the guidance UI1, under the control of the guidance unit 220, "take 300 images each in the order of Rock, Scissors, Paper, and Half-heart". The data collection flow as shown in FIG. 8 may be displayed.

 また、この際、出力制御部210は、誘導部220による制御の下、センシングデータの収集に係る制約を課す旨をガイダンスUI1内で説明する。ここで、上記の制約とは、認識器開発のチュートリアルにおいて認識タスクを簡易化し、認識器の汎化に要する学習データ量を削減することを目的とするものである。 {At this time, the guidance UI1 describes that the output control unit 210 imposes restrictions on collection of sensing data under the control of the guidance unit 220. Here, the above restriction is intended to simplify the recognition task in the tutorial of the recognizer development and to reduce the amount of learning data required for generalization of the recognizer.

 図9は、本実施形態に係る誘導部220が操作者に課す制約の一例を示す図である。例えば、本実施形態に係る誘導部220は、画像の背景を一面白色とし、かつ環境光を一定とする制約を操作者に課してもよい。上記の制約によれば、画像により背景の模様や色が異なることで認識タスクが複雑化することを避け、必要な学習データ量を効果的に低減することが可能である。なお、誘導部220は、例えば、濃度ヒストグラム解析や照度センサによる判定などを行うことで、上記の制約が順守されているか否かを判定することができる。 FIG. 9 is a diagram illustrating an example of restrictions imposed on the operator by the guiding unit 220 according to the present embodiment. For example, the guidance unit 220 according to the present embodiment may impose a constraint on the operator that the background of the image is entirely white and the ambient light is constant. According to the above restriction, it is possible to avoid a complicated recognition task due to a different background pattern or color depending on an image, and it is possible to effectively reduce a necessary learning data amount. Note that the guidance unit 220 can determine whether or not the above-mentioned restriction is complied with, for example, by performing a density histogram analysis or a determination using an illuminance sensor.

 また、例えば、誘導部220は、撮影される手が一個人、すなわち操作者の片手とし、かつカメラに対する面を片面に限定する制約を操作者に課してもよい。このように、本実施形態に係る制約は、認識対象を操作者の体の一部または挙動に限定するものであってもよい。出力制御部210は、誘導部220による制御の下、例えば、図1に示す音声SO1などを用いて制約に係る説明を実現してもよい。上記の制約によれば、画像により手の形状や色、撮影面が異なることで認識タスクが複雑化することを避け、必要な学習データ量を効果的に低減することが可能である。なお、誘導部220は、例えば、関節検出と、指紋検出または認証のいずれかと、を併用するなどして、上記の制約が順守されているか否かを判定することができる。 誘導 In addition, for example, the guiding unit 220 may impose a restriction on the operator that the hand to be photographed is one person, that is, one hand of the operator, and the surface to the camera is limited to one side. As described above, the restriction according to the present embodiment may limit the recognition target to a part or behavior of the operator's body. Under the control of the guidance unit 220, the output control unit 210 may realize the description related to the restriction using, for example, the voice SO1 shown in FIG. According to the above restriction, it is possible to avoid a complicated recognition task due to a difference in hand shape, color, and photographing surface depending on an image, and to effectively reduce a necessary learning data amount. The guidance unit 220 can determine whether or not the above-described restriction is adhered to, for example, by using joint detection and either fingerprint detection or authentication in combination.

 また、例えば、誘導部220は、センサ120が備えるカメラ装置を下向きに固定することを制約として操作者に課してもよい。上記の制約によれば、画像によりカメラ装置の姿勢が異なることで認識タスクが複雑化することを避け、必要な学習データ量を効果的に低減することが可能である。なお、誘導部220は、例えば、上記カメラ装置に係る加速度信号などを用いて、上記の制約が順守されているか否かを判定することができる。 For example, the guide unit 220 may impose on the operator that the camera device included in the sensor 120 is fixed downward, as a constraint. According to the above constraint, it is possible to prevent the recognition task from being complicated due to the difference in the posture of the camera device depending on the image, and to effectively reduce the required amount of learning data. Note that the guidance unit 220 can determine whether or not the above-described restriction is adhered to, for example, using an acceleration signal or the like of the camera device.

 以上、本実施形態に係る制約について具体例を挙げて説明した。このように、本実施形態に係る誘導部220は、学習データの収集に係る制約を認識器開発の初学者である操作者に課し、当該制約の範囲内においてセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導することができる。 制約 Above, the restrictions according to the present embodiment have been described with reference to specific examples. As described above, the guiding unit 220 according to the present embodiment imposes a restriction on collection of learning data to an operator who is a novice in developing a recognizer, and diversity of sensing data is secured within the range of the restriction. Thus, data collection by the operator can be dynamically guided.

 本実施形態に係る誘導部220が有する上記の機能によれば、認識器開発のチュートリアルにおいて認識タスクを効果的に簡略し、認識器の汎化に要する学習データを大幅に削減することができる。また、本実施形態に係る誘導部220が有する上記の機能によれば、認識器開発の初学者である操作者が、学習データ収集における制約の重要性を直観的に把握することが可能となる。 According to the above function of the guiding unit 220 according to the present embodiment, it is possible to effectively simplify the recognition task in the tutorial of the recognizer development, and to greatly reduce the learning data required for generalizing the recognizer. Further, according to the above-described function of the guiding unit 220 according to the present embodiment, an operator who is a novice in the development of a recognizer can intuitively grasp the importance of a constraint in learning data collection. .

 次に、誘導部220は、通信部270を介して、組み込み機器10に学習データの取得を指示する(S1103)。この際、組み込み機器10の学習データ収集部150は、通信部160を介して受信した上記の指示に基づいて、センサ120による学習データの収取を開始する。 Next, the guidance unit 220 instructs the embedded device 10 to acquire learning data via the communication unit 270 (S1103). At this time, the learning data collection unit 150 of the embedded device 10 starts collection of the learning data by the sensor 120 based on the above instruction received via the communication unit 160.

 なお、認識タスクがハンドサイン識別である場合には、操作者は、ステップS1103から、上述した制約に従い自らの手をセンサ120が備えるカメラ装置の前に差し出し、出力部110が備えるディスプレイ装置に表示される画像を確認しながら、学習データの収集を体験する。 If the recognition task is handsign identification, the operator inserts his / her hand in front of the camera device provided in the sensor 120 according to the above-described restrictions from step S1103, and displays it on the display device provided in the output unit 110. Experience the collection of learning data while checking the images that are displayed.

 また、学習データ収集部150は、学習データ、すなわち認識対象に係るセンシングデータが取得でき次第、通信部160を介して、当該学習データを情報処理装置20に送信する。情報処理装置20の誘導部220は、受信した学習データを学習データセット保管部240に保管させる。 (4) The learning data collection unit 150 transmits the learning data to the information processing device 20 via the communication unit 160 as soon as learning data, that is, sensing data relating to the recognition target is obtained. The guidance unit 220 of the information processing device 20 causes the learning data set storage unit 240 to store the received learning data.

 次に、誘導部220のラベリング部222は、ステップS1103で保管された学習データに対するラベリングを実行する(S1104)。この際、ラベリング部222は、ステップS1102において操作者に提示された、図8に示すような既定のフローに従ってデータ収集が行われていることを前提とし、各フェーズに応じたクラスをラベリングをしてもよい。また、ラベリング部222は、例えば、事前に用意された、汎化済みの認識器を用いてラベリングを行ってもよい。また、ラベリング部222は、各フェーズに応じたラベリングと汎化済みの認識器を用いたラベリングとを併用し、ラベリングに係る精度向上を図ってもよい。 Next, the labeling unit 222 of the guidance unit 220 performs labeling on the learning data stored in step S1103 (S1104). At this time, the labeling unit 222 labels classes according to each phase on the assumption that data collection is performed according to a predetermined flow shown in FIG. 8 and presented to the operator in step S1102. You may. The labeling unit 222 may perform labeling using, for example, a generalized recognizer prepared in advance. The labeling unit 222 may use labeling according to each phase in combination with labeling using a generalized recognizer to improve the accuracy of labeling.

 次に、誘導部220のデータ解析部224は、ステップS1103において保管された学習データを解析し、当該学習データがステップS1102において課した制約の遵守に係る検証を行う(S1105)。 Next, the data analysis unit 224 of the guidance unit 220 analyzes the learning data stored in step S1103, and verifies compliance with the constraint imposed by the learning data in step S1102 (S1105).

 例えば、認識タスクがハンドサイン識別である場合、データ解析部224は、図9に示すような制約が順守されているか否かを、同図に併せて示す検証方法を用いて判定することができる。 For example, when the recognition task is handsign identification, the data analysis unit 224 can determine whether or not the constraint as shown in FIG. 9 is observed, using the verification method shown in FIG. .

 また、データ解析部224は、ステップS1102において課した制約の範囲内において、認識器の汎化に十分な多様性が確保されているか否かを検証する(S1106)。例えば、認識タスクがハンドサイン識別である場合、データ解析部224は、関節検出により画像中における指や手首の関節を認識し、各クラスが許容する自由度の中で多様な撮影が実現できているかを確認してよい。 {Circle around (1)} The data analysis unit 224 verifies whether sufficient diversity for generalization of the recognizer is secured within the range of the constraint imposed in step S1102 (S1106). For example, when the recognition task is hand sign identification, the data analysis unit 224 recognizes the finger or wrist joint in the image by detecting the joint, and can realize various shootings within the degrees of freedom allowed by each class. You can check if it is.

 図10は、本実施形態に係る学習データの多様性について説明するための図である。図10には、クラス「Scissors」に係る4枚の画像が例示されているが、それぞれで指の関節位置が異なっている。 FIG. 10 is a diagram for explaining the diversity of learning data according to the present embodiment. FIG. 10 illustrates four images related to the class “Scissors”, but the finger joint positions are different from each other.

 具体的には、左側2枚の画像においては、親指の先が薬指および小指に隠れているのに対し、右側2枚の画像においては、親指の先が薬指および小指の手前に位置している。また、左から1枚目および3枚目の画像においては、人差し指および中指が密着しているのに対し、左から2枚目および4枚目の画像においては、人差し指および中指の間が大きく離れている。 Specifically, in the two images on the left, the tip of the thumb is hidden by the ring finger and the little finger, whereas in the two images on the right, the tip of the thumb is located before the ring finger and the little finger. . In the first and third images from the left, the index finger and the middle finger are in close contact with each other, whereas in the second and fourth images from the left, the index finger and the middle finger are far apart. ing.

 一方、図10に示す4枚の画像は、「一個人の右手によるScissorsを掌側から撮影した画像」という条件下では、いずれも妥当な学習データといえる。このため、各関節の状態に近い画像を一通り収集することが、認識器の汎化に十分な多様性の確保に重要となる。 On the other hand, the four images shown in FIG. 10 can be said to be appropriate learning data under the condition of “an image in which Scissors is photographed by the right hand of one individual from the palm side”. For this reason, it is important to collect all the images close to the state of each joint in order to secure sufficient diversity for generalization of the recognizer.

 このため、本実施形態に係るデータ解析部224は、例えば、図10に示すような、想定される関節パターンを予め定義したうえで、既に撮影された関節パターンの収集率を算出し、当該収集率を多様性を測る尺度の一つとして用いてもよい。 For this reason, the data analysis unit 224 according to the present embodiment calculates the collection rate of the already captured joint pattern after defining an assumed joint pattern as shown in FIG. Rate may be used as one of the measures of diversity.

 また、関節の状態の他、手の位置から多様性を測る手法も有効である。このため、本実施形態に係るデータ解析部224は、例えば、各学習データから検出した手の位置に基づいて、センサ120のカメラ装置の画角内における手の存在頻度に係るヒートマップを生成し、当該ヒートマップを多様性を測る尺度の一つとして用いてもよい。 手法 In addition, a method of measuring diversity from the position of the hand as well as the state of the joint is also effective. For this reason, the data analysis unit 224 according to the present embodiment generates, for example, a heat map related to the presence frequency of the hand in the angle of view of the camera device of the sensor 120 based on the position of the hand detected from each learning data. Alternatively, the heat map may be used as one of the measures for measuring diversity.

 図11は、本実施形態に係る手の存在頻度に係るヒートマップの一例を示す図である。本実施形態に係るデータ解析部は、例えば、汎化済みの手認識器を用いて、図11に示すようなヒートマップを生成することができる。この際、データ解析部224は、ヒートマップ中において、遍く場所に手の検出位置が分布しているか否かを検証する。 FIG. 11 is a diagram showing an example of a heat map according to the hand presence frequency according to the present embodiment. The data analysis unit according to the present embodiment can generate a heat map as shown in FIG. 11 using, for example, a generalized hand recognizer. At this time, the data analysis unit 224 verifies whether or not the detected positions of the hands are widely distributed in the heat map.

 例えば、図11に示す一例の場合、領域R1付近においては、手が検出されていないことがわかる。この場合、データ解析部224は、収集済の学習データが、認識器の汎化に十分な多様性を確保できていない、と判定してもよい。 {For example, in the case of the example shown in FIG. 11, it can be seen that no hand is detected near the region R1. In this case, the data analysis unit 224 may determine that the collected learning data cannot secure sufficient diversity for generalization of the recognizer.

 次に、本実施形態に係る学習・評価部230は、ステップS1103において保管された学習データと、ステップS1104におけるラベリング結果とを用いて、認識器の学習を行う(S1107)。 Next, the learning / evaluating unit 230 according to the present embodiment performs learning of the recognizer using the learning data stored in step S1103 and the labeling result in step S1104 (S1107).

 本実施形態に係る学習・評価部230は、例えば、確率的勾配下降法を用いた深層学習を行ってもよい。また、本実施形態に係る学習・評価部230は、各種の機械学習フレームワークにより実現されるソフトウェアとして備えられてもよい。 The learning / evaluation unit 230 according to the present embodiment may perform deep learning using a stochastic gradient descent method, for example. Further, the learning / evaluation unit 230 according to the present embodiment may be provided as software realized by various machine learning frameworks.

 続いて、本実施形態に係る学習・評価部230は、ステップ1107において学習した認識器の評価を行う(S1108)。この際、本実施形態に係る学習・評価部230は、事前に評価データセット保管部250に保管された評価データセットを用いたオープンテストを行ってもよい。一方、学習・評価部230は、収集また保管された学習データセットを用いた交差検証を行ってもよい。 Next, the learning / evaluation unit 230 according to the present embodiment evaluates the recognizer learned in step 1107 (S1108). At this time, the learning / evaluation unit 230 according to the present embodiment may perform an open test using the evaluation data set stored in the evaluation data set storage unit 250 in advance. On the other hand, the learning / evaluation unit 230 may perform cross-validation using a collected or stored learning data set.

 次に、本実施形態に係る誘導部220は、認識器に係る開発フローが所定の終了条件を満たしているか否かを判定する(S1109)。この際、誘導部220は、例えば、収集した学習データの量や、ステップS1108における評価において得られた認識器の認識精度などが所定の閾値以上であることを終了条件として、上記の判定を行ってもよい。また、誘導部220は、ステップS1102において課した制約が順守されていることや、収集された学習データの多様性が確保されていることなどを終了条件の一つとしてもよい。 Next, the guiding unit 220 according to the present embodiment determines whether the development flow relating to the recognizer satisfies a predetermined termination condition (S1109). At this time, the guiding unit 220 performs the above-described determination on the condition that the amount of the collected learning data and the recognition accuracy of the recognizer obtained in the evaluation in step S1108 are equal to or higher than a predetermined threshold, for example. You may. In addition, the guidance unit 220 may set one of the end conditions such as observing the constraint imposed in step S1102, ensuring that the diversity of the collected learning data is ensured, and the like.

 ここで、認識器に係る開発フローが所定の終了条件を満たしている場合(S1109:YES)、誘導部220は、組み込み機器10の出力部110または表示装置30のいずれか、もしくは両方を介してデータ収集の終了を操作者に指示し、ステップS1108で学習が行われた認識器を認識器保管部260に保管させる(S1110)。 Here, when the development flow relating to the recognizer satisfies a predetermined termination condition (S1109: YES), the guiding unit 220 is connected to either the output unit 110 of the embedded device 10 or the display device 30, or both. The operator is instructed to end the data collection, and the recognizer trained in step S1108 is stored in the recognizer storage unit 260 (S1110).

 一方、認識器に係る開発フローが所定の終了条件を満たしていない場合(S1109:NO)、誘導部220は、操作者に学習データの収集を続行させる。 On the other hand, when the development flow relating to the recognizer does not satisfy the predetermined termination condition (S1109: NO), the guiding unit 220 causes the operator to continue collecting learning data.

 ここで、例えば、誘導部220は、ステップS1105における制約順守に係る検証において、制約が順守されていないと判定した場合、当該制約が順守されていない旨の警告を、認識器開発の初学者である操作者に対し通知させる(S1111)。この際、誘導部220は、組み込み機器10の出力部110または表示装置30のいずれか、もしくは両方に上記の警告を通知させてよい。 Here, for example, when the guidance unit 220 determines that the constraint is not observed in the verification of the observance of the constraint in step S1105, a warning that the constraint is not observed is issued by a novice of the recognizer development. A certain operator is notified (S1111). At this time, the guidance unit 220 may cause the output unit 110 of the embedded device 10 and / or the display device 30 to notify the above warning.

 また、誘導部220は、ステップS1106における多様性検証において、認識器の汎化に十分な多様性が確保されていないと判定した場合、不足が想定されるパターンの学習データ収集されるように、操作者によるデータ収集を動的に誘導する(S1112)。 In addition, in the diversity verification in step S1106, when the guidance unit 220 determines that sufficient diversity is not secured for the generalization of the recognizer, learning data of a pattern that is assumed to be in shortage is collected. Data collection by the operator is dynamically guided (S1112).

 例えば、図10に示した一例の場合、誘導部220は、まだ撮影されていない左から2枚目および4枚目の関節パターンの画像が撮影されるよう誘導を行ってよい。また、例えば、図11に示した一例の場合、誘導部220は、手の位置が領域R1付近にある画像が撮影されるよう誘導を行ってよい。 For example, in the case of the example illustrated in FIG. 10, the guiding unit 220 may perform guidance such that images of the second and fourth joint patterns from the left, which have not yet been captured, are captured. In addition, for example, in the case of the example illustrated in FIG. 11, the guidance unit 220 may perform guidance so that an image in which the hand position is near the region R1 is captured.

 図12は、本実施形態に係る誘導部220による、不足が想定されるパターンの学習データ収集の誘導の一例を示す図である。例えば、関節の状態に関しては、誘導部220は、各クラスに共通して、組み込み機器10の出力部110や表示装置30が備えるスピーカーに体操用の音楽やアナウンスなどを出力させるなどして、学習データ収集に係る誘導を行ってもよい。 FIG. 12 is a diagram illustrating an example of guidance by the guidance unit 220 according to the present embodiment for learning data collection of a pattern that is assumed to be in short supply. For example, with respect to the state of the joint, the guidance unit 220 performs learning by making the output unit 110 of the embedded device 10 and the speaker included in the display device 30 output gymnastics music and announcements in common to each class. Guidance relating to data collection may be performed.

 また、誘導部220は、収集される学習データを可視化して出力部110や表示装置30に表示させ、学習データの多様性が確保されるよう、視覚的な誘導を行ってもよい。 The guidance unit 220 may visualize the collected learning data and display it on the output unit 110 or the display device 30 so as to visually guide the variety of the learning data.

 例えば、認識対象がハンドサインを含むボディサインや、ジェスチャである場合、誘導部220は、多様性の確保に有効な学習データの収集を誘導する誘導オブジェクトを出力部110や表示装置30に表示させ、当該誘導オブジェクトに対する所定の動作を操作者に指示してもよい。 For example, when the recognition target is a body sign including a hand sign or a gesture, the guidance unit 220 causes the output unit 110 or the display device 30 to display a guidance object for guiding the collection of learning data effective for securing diversity. Alternatively, the operator may be instructed to perform a predetermined operation on the guidance object.

 例えば、クラス「Rock」に関し、関節の状態に係る多様性が確保されていない場合、誘導部220は、出力部110や表示装置30に、上記の誘導オブジェクトとしてボトルの蓋を表示させ、操作者に当該ボトルの蓋を開閉するよう指示してもよい。 For example, when the diversity regarding the state of the joint is not ensured for the class “Rock”, the guiding unit 220 causes the output unit 110 or the display device 30 to display the lid of the bottle as the guiding object, and the operator May be instructed to open and close the lid of the bottle.

 また、例えば、クラス「Scissors」に関し、関節の状態に係る多様性が確保されていない場合、誘導部220は、出力部110や表示装置30に、誘導オブジェクトとして糸を表示させ、操作者に当該糸を指で切る動作を行うよう指示してもよい。 Further, for example, in the case where the diversity relating to the state of the joint is not ensured for the class “Scissors”, the guiding unit 220 causes the output unit 110 and the display device 30 to display a thread as a guiding object, and allows the operator to It may be instructed to perform an operation of cutting the thread with a finger.

 また、例えば、手の位置に係る多様性が確保されていない場合、誘導部220は、出力部110や表示装置30に、誘導オブジェクトとしてゲーム上の仮想敵を表示させ、当該仮想敵の位置に手を合わせることによる撃退を指示し、撃退数などをカウントしてもよい。 Further, for example, when the diversity related to the position of the hand is not ensured, the guiding unit 220 causes the output unit 110 and the display device 30 to display a virtual enemy in the game as a guiding object, and displays the virtual enemy at the position of the virtual enemy. It is also possible to instruct repulsion by joining hands and count the number of repulsions.

 また、例えば、クラス「Paper」に関し、手の位置に係る多様性が確保されていない場合においては、誘導部220は、出力部110や表示装置30に、汚れを表示させ、当該汚れを掌で拭き取るよう指示を行ってもよい。 Further, for example, in the case where the diversity relating to the position of the hand is not ensured for the class “Paper”, the guiding unit 220 causes the output unit 110 and the display device 30 to display dirt, and displays the dirt with the palm. Instructions may be given to wipe off.

 本実施形態に係る誘導部220による上記のような制御によれば、指示に対応する動作により操作者の手の関節の状態や手の位置が自然と多様化し、効果的に学習データの収集を誘導することができる。 According to the above control by the guidance unit 220 according to the present embodiment, the state of the joints and the positions of the hands of the operator naturally diversify by the operation corresponding to the instruction, and the learning data can be effectively collected. Can be guided.

 また、本実施形態に係る誘導部220は、上記のような制御と併せて、不足が予測されるパターンの学習データに関する説明が、ガイダンスUI1内で講師アバターAV1や動画などにより実行されるよう制御してもよい。 Further, the guidance unit 220 according to the present embodiment controls the learning data of the pattern whose shortage is predicted to be executed by the instructor avatar AV1 or the moving image in the guidance UI1 in addition to the above control. May be.

 また、本実施形態に係る誘導部220は、学習データの多様性をさらに高めるために、組み込み機器10自体やセンサ120を駆動させることもできる(S1113)。誘導部220は、駆動部140に指示を与えることで例えばモーターを駆動させ、組み込み機器10やセンサ120を回転させたり、移動させたりすることで、認識対象が同じ状態にある場合であっても、学習データの多様性を高めることができる。 The guidance unit 220 according to the present embodiment can also drive the embedded device 10 and the sensor 120 to further increase the diversity of the learning data (S1113). The guidance unit 220 gives an instruction to the driving unit 140 to drive, for example, a motor, and to rotate or move the embedded device 10 or the sensor 120, so that the recognition target is in the same state. Therefore, the diversity of the learning data can be increased.

 また、本実施形態に係る誘導部220は、学習データの多様性をさらに高めるために、センサ120の設定を変更してもよい(S1114)。例えば、センサ120がカメラ装置を備える場合、誘導部220は、シャッター速度、絞り値、ISO感度、露出補正などのあらゆる設定を網羅的に変更することで、認識対象が同じ状態にある場合であっても、学習データの多様性を高めることができる。 The guidance unit 220 according to the present embodiment may change the setting of the sensor 120 to further increase the diversity of the learning data (S1114). For example, when the sensor 120 includes a camera device, the guidance unit 220 changes the settings of the shutter speed, the aperture value, the ISO sensitivity, the exposure compensation, and the like in an exhaustive manner so that the recognition target is in the same state. However, the diversity of the learning data can be increased.

 また、本実施形態に係る誘導部220は、現時点までに収集された学習データを用いて学習を実施した認識器の認識精度に係る操作者への提示を制御する(S1115)。誘導部220は、学習・評価部230が算出した認識器の認識精度を出力部110や表示装置30に表示させてよい。 The guidance unit 220 according to the present embodiment controls presentation of the recognition accuracy of the recognizer that has performed learning using the learning data collected up to the present time to the operator (S1115). The guidance unit 220 may display the recognition accuracy of the recognizer calculated by the learning / evaluation unit 230 on the output unit 110 or the display device 30.

 例えば、認識タスクがハンドサイン識別である場合、本実施形態に係る誘導部220は、現時点における正確度やF値などのスカラー値、もしくはこれらの推移をグラフにより表示させてもよい。 For example, when the recognition task is handsign identification, the guiding unit 220 according to the present embodiment may display a scalar value such as the accuracy or the F value at the present time, or a transition of the scalar value.

 図13は、本実施形態に係る認識精度の推移を示すグラフの一例である。図13に示す一例の場合、誘導部220は、認識器の正確度の推移を時系列に表示させている。また、この際、本実施形態に係る誘導部220は、各時点において収集された学習データを、認識精度と対応付けて表示させてもよい。図13に示す一例では、2回目のScsissorsの撮影フェーズにおいて、撮影された画像が正確度と対応付いて表示されている。また、当該画像には、上述した糸型の誘導オブジェクトIOaおよびIObが含まれており、当該画像が誘導部220による視覚的な誘導の下、撮影されたことを示している。 FIG. 13 is an example of a graph showing a change in recognition accuracy according to the present embodiment. In the case of the example illustrated in FIG. 13, the guiding unit 220 displays the transition of the accuracy of the recognizer in a time series. At this time, the guidance unit 220 according to the present embodiment may display the learning data collected at each time point in association with the recognition accuracy. In the example shown in FIG. 13, in the second Scissors imaging phase, the captured image is displayed in association with the accuracy. The image includes the thread-shaped guidance objects IOa and IOb described above, and indicates that the image has been captured under visual guidance by the guidance unit 220.

 このように、本実施形態に係る誘導部220によれば、認識器の認識精度と共に、収集された学習データを可視化して提示することが可能となり、認識器開発の初学者である操作者が、どのような学習データが精度向上に寄与したのか、を直観的に把握し、学習データ収集の重要性および要領を習得することができる。 As described above, according to the guiding unit 220 according to the present embodiment, it is possible to visualize and present the collected learning data together with the recognition accuracy of the recognizer. It is possible to intuitively grasp what learning data has contributed to the improvement of accuracy, and to learn the importance and the point of learning data collection.

 なお、図13に示したグラフはあくまで一例であり、誘導部220は、種々の態様を以って認識器の認識精度を表示させてよい。誘導部220は、例えば、混同行列などを出力部110や表示装置30に表示させてもよい。 Note that the graph shown in FIG. 13 is merely an example, and the guiding unit 220 may display the recognition accuracy of the recognizer in various modes. The guidance unit 220 may cause the output unit 110 and the display device 30 to display a confusion matrix and the like, for example.

 また、本実施形態に係る誘導部220は、収集された学習データに基づく学習を実施した認識器による認識対象の認識結果をリアルタイムで出力部110に表示させることができる(S1116)。 The guidance unit 220 according to the present embodiment can display the recognition result of the recognition target by the recognizer that has performed learning based on the collected learning data on the output unit 110 in real time (S1116).

 この際、組み込み機器10の認識実行部130は、通信部160を介して情報処理装置20から学習された認識器を取得し、当該認識器を用いてセンサ120が現在取得している学習データに対する認識処理を実行する。本実施形態に係る誘導部220は、認識実行部130による認識処理の結果を取得し、当該結果を出力部110に表示させてよい。 At this time, the recognition execution unit 130 of the embedded device 10 acquires the recognizer learned from the information processing device 20 via the communication unit 160, and uses the recognizer to perform the learning on the learning data currently acquired by the sensor 120. Perform recognition processing. The guidance unit 220 according to the present embodiment may acquire the result of the recognition processing by the recognition execution unit 130 and cause the output unit 110 to display the result.

 本実施形態に係る誘導部220による上記の制御によれば、操作者が認識結果をリアルタイムで把握し、学習データの収集に伴い、精度が向上することなどを直観的に体験することが可能となる。 According to the above control by the guidance unit 220 according to the present embodiment, the operator can intuitively experience that the recognition result is grasped in real time and the accuracy is improved with the collection of the learning data. Become.

 以上、本実施形態に係る情報処理システムの処理の流れについて詳細に説明した。本実施形態に係る情報処理システムは、終了条件が満たされるまで、上述したステップS1103~S1109、S1111~S1116の処理を繰り返し実行してよい。 As described above, the processing flow of the information processing system according to the present embodiment has been described in detail. The information processing system according to the present embodiment may repeatedly execute the processing of steps S1103 to S1109 and S1111 to S1116 until the termination condition is satisfied.

 本実施形態に係る情報処理システムによる上記の処理によれば、操作者による好適な学習データの収集を効果的に誘導することができ、また、認識器開発の初学者である操作者に、認識器開発における学習データ収集の要領を習得させることが可能となる。 According to the above processing by the information processing system according to the present embodiment, it is possible to effectively guide the collection of suitable learning data by the operator, and to provide the operator who is a novice in the development of the recognizer with recognition. It becomes possible to make learning the point of learning data collection in instrument development.

 なお、図7を用いて説明したフローチャートはあくまで一例であり、上述した情報処理システムの各ステップは、必ずしもフローチャートに記載された順序に沿って時系列に処理される必要はない。例えば、情報処理システムの処理に係る各ステップは、フローチャートに記載された順序と異なる順序で処理されても、並列的に処理されてもよい。 Note that the flowchart described with reference to FIG. 7 is merely an example, and the steps of the information processing system described above do not necessarily need to be processed in chronological order in the order described in the flowchart. For example, each step related to the processing of the information processing system may be processed in an order different from the order described in the flowchart, or may be processed in parallel.

 例えば、上記では、本実施形態に係る誘導部220が、学習データの多様性が確保されていないと判断した場合に、誘導オブジェクトなどを用いた学習データ収集誘導を実行する場合を例として述べたが、本実施形態に係る誘導部220は、学習データ収集の開始時点から、上記のような誘導を実施してもよい。 For example, in the above description, an example has been described in which the guidance unit 220 according to the present embodiment executes learning data collection guidance using a guidance object or the like when determining that diversity of learning data is not ensured. However, the guidance unit 220 according to the present embodiment may perform the above-described guidance from the start of learning data collection.

 上記では、本実施形態に係る操作者が認識器開発の初学者であり、当該初学者に学習データ収集の要領を習得させることを一例として述べたが、本実施形態に係る操作者は、係る例に限定されない。本実施形態に係る操作者は、例えば、認識器開発に従事しない(認識器開発に係る知識の習得を目的としない)学習データ収集のための協力者である場合もある。 In the above description, the operator according to the present embodiment is a novice of the recognizer development, and has been described as an example in which the novice learns the procedure of learning data collection. It is not limited to the example. The operator according to the present embodiment may be, for example, a cooperator for learning data collection that is not engaged in recognizer development (not aimed at acquiring knowledge related to recognizer development).

 このような場合においては、当該協力者に学習データ収集の重要性を必ずしも知らしめる必要はなく、学習データの収集効率そのものを優先したい状況も想定される。 In such a case, it is not always necessary to inform the cooperator of the importance of learning data collection, and there may be situations in which it is desirable to prioritize the collection efficiency of learning data itself.

 このため、上記のような状況においては、誘導部220は、学習データ収集の重要性等に係るガイダンスの一部を省略し、誘導オブジェクト等による誘導を初めから実施してもよい。 Therefore, in the above situation, the guidance unit 220 may omit part of the guidance relating to the importance of learning data collection and the like, and may perform guidance using guidance objects or the like from the beginning.

 本実施形態に係る誘導部220による上記の制御によれば、操作者が、認識器開発に係る知識を有しない、かつ当該知識の習得を目的としない協力者などである場合であっても、当該協力者の挙動を自然に誘導し、認識器開発に好適な学習データを効率的に収集することが可能となる。 According to the above control by the guiding unit 220 according to the present embodiment, even when the operator does not have the knowledge regarding the recognizer development and is a cooperator who does not aim to acquire the knowledge, The behavior of the cooperator can be naturally induced, and learning data suitable for developing a recognizer can be efficiently collected.

 <<1.6.変形例>>
 次に、本開示の一実施形態に係る変形例について述べる。上記では、認識タスクがハンドサイン識別である場合を主な例として説明したが、本開示に係る技術思想の適用範囲は、係る例に限定されない。本開示に係る技術思想は、種々の認識タスクに適用可能である。
<< 1.6. Modifications >>
Next, a modified example according to an embodiment of the present disclosure will be described. In the above description, the case where the recognition task is handsign identification is described as a main example, but the application range of the technical idea according to the present disclosure is not limited to such an example. The technical concept according to the present disclosure is applicable to various recognition tasks.

 図14は、本実施形態に係る組み込み機器10、センサ120、および認識タスクの組み合わせ例を示す図である。 FIG. 14 is a diagram illustrating a combination example of the embedded device 10, the sensor 120, and the recognition task according to the present embodiment.

 図14に示すように、例えば、本実施形態に係る組み込み機器10は、腕時計型などのウェアラブル機器であってもよい。この場合、組み込み機器10のセンサ120は、例えば、IMUなどを備えてもよい。上記の構成によれば、上述したハンドサイン識別のほか、ジェスチャ識別や操作者の行動識別などに係る認識器を学習により生成することができる。 示 す As shown in FIG. 14, for example, the embedded device 10 according to the present embodiment may be a wearable device such as a wristwatch. In this case, the sensor 120 of the embedded device 10 may include, for example, an IMU. According to the above configuration, in addition to the above-described hand sign identification, a recognizer for gesture identification, operator behavior identification, and the like can be generated by learning.

 また、例えば、本実施形態に係る組み込み機器10は、スマートスピーカーであってもよい。この場合、組み込み機器10のセンサ120は、例えば、マイクロフォンを備えてよい。上記の構成によれば、特定ワード検出や話者識別、またSpeech-to-Textなどに係る認識器を学習により生成することができる。 For example, the embedded device 10 according to the present embodiment may be a smart speaker. In this case, the sensor 120 of the embedded device 10 may include, for example, a microphone. According to the above configuration, it is possible to generate a recognizer related to specific word detection, speaker identification, speech-to-text, or the like by learning.

 また、例えば、本実施形態に係る組み込み機器10は、ヘルスケア向けの各種のウェアラブル機器であってもよい。この場合、組み込み機器10のセンサ120は、例えば、IMU,脈拍センサ、心電計などを備えてもよい。上記の構成によれば、心拍数推定や消費エネルギー推定などに係る推定器を学習により生成することも可能である。このように、本開示の技術思想は、ハンドサイン識別などの認識(classification)に限らず、回帰(regression)にも適用することが可能である。 For example, the embedded device 10 according to the present embodiment may be various wearable devices for health care. In this case, the sensor 120 of the embedded device 10 may include, for example, an IMU, a pulse sensor, an electrocardiograph, and the like. According to the configuration described above, it is also possible to generate an estimator for estimating a heart rate or estimating consumed energy by learning. As described above, the technical idea of the present disclosure is not limited to recognition such as hand sign identification, but can be applied to regression.

 また、本実施形態では、対象とする認識タスクに応じて誘導手法も適宜変形され得る。例えば、図15に示すように、組み込み機器10が操作者の腕UAに装着される腕時計型のウェアラブル機器であり、画面を操作者の顔に向けるジェスチャをセンサ120が備えるIMUにより検出する場合を想定する。 In addition, in the present embodiment, the guidance method may be appropriately modified according to the target recognition task. For example, as shown in FIG. 15, a case where the embedded device 10 is a wristwatch-type wearable device worn on the operator's arm UA, and a gesture of turning the screen to the operator's face is detected by the IMU included in the sensor 120 is illustrated. Suppose.

 この場合、組み込み機器10の出力部110は、図16に示すように、操作者U1が装着する、仮想現実もしくは拡張現実に対応したグラス機器110aと触覚提示機器110bから構成されてもよい。 In this case, as shown in FIG. 16, the output unit 110 of the embedded device 10 may be configured by a glass device 110a that is compatible with virtual reality or augmented reality, and a tactile presentation device 110b that is worn by the operator U1.

 この際、本実施形態に係る誘導部220は、図7に示したステップS1112において、まず、グラス機器110aに講師アバターAV1を表示させる。また、誘導部220は、腕時計型のウェアラブル機器である組み込み機器10の画面を顔に向けるジェスチャと、当該ジェスチャに似て非なる動作との両方について、多様な学習データが取得できるように講師アバターAV1に具体的な手の動かし方を例示させる。図16に示す一例の場合、誘導部220は、音声SO2により手の動かし方を例示させている。 At this time, the guiding unit 220 according to the present embodiment first causes the glass device 110a to display the instructor avatar AV1 in step S1112 shown in FIG. In addition, the guiding unit 220 is configured so that a variety of learning data can be acquired for both a gesture of turning the screen of the embedded device 10 that is a wristwatch-type wearable device to the face and an operation that is not similar to the gesture. Let AV1 exemplify a specific hand movement. In the case of the example illustrated in FIG. 16, the guiding unit 220 exemplifies how to move a hand with the sound SO2.

 また、この際、誘導部220は、学習データに多様性が生まれるように、例えば、触覚提示機器110bに牽引力を提示させることで、操作者U1の手を擬似的に引っ張るなどの制御を行ってよい。本実施形態に係る誘導部220による上記の制御によれば、触覚提示などを通じて、どのような手の動かし方が学習データに多様性をもたらすのかを操作者U1に感覚的に教示することが可能となる。 Further, at this time, the guidance unit 220 performs control such as pseudo-pulling the hand of the operator U1 by causing the tactile presentation device 110b to present traction so that diversity is generated in the learning data. Good. According to the above control by the guidance unit 220 according to the present embodiment, it is possible to intuitively teach the operator U1 what kind of hand movement brings diversity to the learning data through tactile presentation or the like. Becomes

 次に、本開示に係る技術思想の実用的な認識器開発への転用について例を述べる。本実施形態に係る誘導部220による動作は、各種拡張が可能であり、図7に示した各ステップの処理内容を再定義できてよい。上記のような拡張性を利用することで、チュートリアルで生成した認識器を、その後の実用的な認識器開発に転用することが可能である。 Next, an example will be described in which the technical idea according to the present disclosure is applied to the development of a practical recognizer. The operation of the guidance unit 220 according to the present embodiment can be extended in various ways, and the processing content of each step shown in FIG. 7 may be redefined. By utilizing the extensibility as described above, it is possible to divert the recognizer generated in the tutorial to the development of a practical recognizer thereafter.

 この場合、本実施形態に係る組み込み機器10は、例えば、図17に示すように、報酬提供部170をさらに備えてもよい。以下、チュートリアル後の実用的な認識開発への転用について、具体例を示す。 In this case, the embedded device 10 according to the present embodiment may further include a reward providing unit 170, for example, as illustrated in FIG. The following is a specific example of the conversion to practical recognition development after the tutorial.

 まず、操作者は、図7に示したフローチャートに沿ってチュートリアルを完了する。次に、操作者は、もう一度、上記のフローチャートに沿い、実用的な認識器開発を行う。この際、ステップS1101、S1103、およびS1112における処理は以下のように再定義される。 First, the operator completes the tutorial according to the flowchart shown in FIG. Next, the operator once again develops a practical recognizer according to the above flowchart. At this time, the processing in steps S1101, S1103, and S1112 is redefined as follows.

 まず、ステップS1101における処理について説明する。ステップS1101において、誘導部220は、認識器保管部260を検索し、チュートリアルで生成した認識器の一覧を開発UI2に表示させる。ここで、操作者がいずれかの認識器を選択した場合、学習・評価部230は、当該認識器の重みなどのパラメータを流用し、転移学習を可能とする。 First, the process in step S1101 will be described. In step S1101, the guiding unit 220 searches the recognizer storage unit 260, and displays a list of recognizers generated in the tutorial on the development UI2. Here, when the operator selects any one of the recognizers, the learning / evaluation unit 230 uses the parameters such as the weight of the recognizer and enables the transfer learning.

 次に、ステップS1103における処理について説明する。図7を用いた上記の説明においては、認識器開発がチュートリアルを目的としたものであり、例えば、認識対象を操作者の片手に限定するなどの制約を課したうえで学習データを収集する場合について述べた。一方、本例においては、上記のチュートリアルとは異なり、様々な環境、様々なデータ提供者から学習データを収集してよい。 Next, the processing in step S1103 will be described. In the above description using FIG. 7, the recognizer development is for the purpose of a tutorial, and, for example, learning data is collected after imposing restrictions such as limiting the recognition target to one hand of the operator. Was mentioned. On the other hand, in the present example, unlike the above-described tutorial, learning data may be collected from various environments and various data providers.

 例えば、チュートリアルにおいて生成したハンドサイン識別器の精度をより向上させようとする場合を想定する。この場合、例えば、図18に示すように、組み込み機器10をプロジェクタとして実現し、市街地やイベント会場などの公共の空間に設置する。また、例えば、デジタルサイネージの中でデータ提供者を募り、学習データの収集を行う。 For example, suppose a case where the accuracy of the handsign classifier generated in the tutorial is to be further improved. In this case, for example, as shown in FIG. 18, the embedded device 10 is realized as a projector and installed in a public space such as an urban area or an event venue. Further, for example, a data provider is recruited in digital signage, and learning data is collected.

 上記の場合、ステップS1112において、誘導部220は、所定の学習データを収集するために、プロジェクタである組み込み機器10を制御することで、データ提供者U2を誘導する。この際、誘導部220は、センサ120が収集した各種の情報に基づいて、位置情報や温度、湿度などの環境情報を測定したり、認識実行部130を通じてデータ提供者U2の性別、年齢、嗜好などの属性を認識してもよい。本実施形態に係る誘導部220は、上記のような測定と認識の結果に基づいて、データ収集時のコンテキストやデータ提供者に応じた最適な誘導を行うことが可能である。 In the above case, in step S1112, the guide unit 220 guides the data provider U2 by controlling the embedded device 10 as a projector in order to collect predetermined learning data. At this time, the guiding unit 220 measures position information, environmental information such as temperature and humidity, etc., based on various information collected by the sensor 120, and determines the sex, age, and And the like. The guidance unit 220 according to the present embodiment can perform optimal guidance according to the context at the time of data collection and the data provider based on the results of the measurement and recognition as described above.

 例えば、図16に示す状況において、組み込み機器10の設置場所がイベント会場であることがコンテキストとして認識され、データ提供者U2が男性であることが認識された場合、誘導部220は、組み込み機器10の出力部110に、スクリーン上に女性タレントのアバターAV2を投影させる。 For example, in the situation illustrated in FIG. 16, when it is recognized that the installation location of the embedded device 10 is an event venue and that the data provider U2 is a male, the guiding unit 220 is configured to perform Is made to project the female avatar AV2 on the screen.

 次に、誘導部220は、女性タレントアバターAV2が、図2に示すHalf-heartのハンドサインを行うよう制御し、またデータ提供者U2に対して、女性タレントアバターAV2の手に合わせて、Half-heartのハンドサインを行うよう促す。この際、組み込み機器10は、センサ120が備えるカメラ装置によりデータ提供者U2のHalf-heartのハンドサインを撮影し、学習データD1として収集することができる。 Next, the guiding unit 220 controls the female talent avatar AV2 to perform the Half-heart hand sign shown in FIG. 2, and instructs the data provider U2 to match the female talent avatar AV2 with the hand of the female talent avatar AV2. -Prompt to perform a heart hand sign. At this time, the embedded device 10 can photograph the data provider U2's Half-heart handsign using the camera device provided in the sensor 120 and collect the learning data D1.

 本実施形態に係る誘導部220による上記の制御によれば、様々な環境において様々なデータ提供者による学習データを収集することができ、チュートリアル等において生成した認識器の汎化性能をより向上させることが可能となる。 According to the above control by the guiding unit 220 according to the present embodiment, learning data by various data providers can be collected in various environments, and the generalization performance of a recognizer generated in a tutorial or the like is further improved. It becomes possible.

 また、誘導部220は、データ提供者U2がより積極的に学習データ収集に協力してくれるように、報酬提供部170を制御し、データ提供者U2に報酬を提供してもよい。 The guidance unit 220 may control the reward providing unit 170 and provide a reward to the data provider U2 so that the data provider U2 cooperates more actively in learning data collection.

 例えば、図16に示す一例のように、Half-heartのハンドサインに係る画像を学習データとして収集する場合、誘導部220は、報酬提供部170を制御し、女性タレントのアバターAV2と共にハートマークを形成したツーショット写真を報酬RWとしてデータ提供者U2に提供させてもよい。 For example, as in the example shown in FIG. 16, when collecting an image related to a Half-heart hand sign as learning data, the guiding unit 220 controls the reward providing unit 170 and sets a heart symbol together with the avatar AV2 of the female talent. The formed two-shot photograph may be provided to the data provider U2 as a reward RW.

 なお、本実施形態に係るデータ提供者への提供は、上記のような画像に限定されず、菓子などの食品、商品券などの物的紙幣、仮想通貨などのデジタル貨幣、音楽や動画などのマルチメディアコンテンツであってもよい。 The provision to the data provider according to the present embodiment is not limited to the image as described above, food such as confectionery, physical banknotes such as gift certificates, digital currency such as virtual currency, music and video, etc. It may be multimedia content.

 以上、本開示の一実施形態に係る変形例について具体例を挙げて説明した。上述したように、本開示の一実施形態に係る情報処理システムは、仕様や運用に応じて柔軟に変形可能である。 As described above, the modified examples according to an embodiment of the present disclosure have been described with reference to specific examples. As described above, the information processing system according to an embodiment of the present disclosure can be flexibly deformed according to specifications and operations.

 <2.ハードウェア構成例>
 次に、本開示の一実施形態に係る情報処理装置20のハードウェア構成例について説明する。図19は、本開示の一実施形態に係る情報処理装置20のハードウェア構成例を示すブロック図である。図19を参照すると、情報処理装置20は、例えば、プロセッサ871と、ROM872と、RAM873と、ホストバス874と、ブリッジ875と、外部バス876と、インターフェース877と、入力装置878と、出力装置879と、ストレージ880と、ドライブ881と、接続ポート882と、通信装置883と、を有する。なお、ここで示すハードウェア構成は一例であり、構成要素の一部が省略されてもよい。また、ここで示される構成要素以外の構成要素をさらに含んでもよい。
<2. Example of hardware configuration>
Next, a hardware configuration example of the information processing device 20 according to an embodiment of the present disclosure will be described. FIG. 19 is a block diagram illustrating a hardware configuration example of the information processing device 20 according to an embodiment of the present disclosure. Referring to FIG. 19, the information processing device 20 includes, for example, a processor 871, a ROM 872, a RAM 873, a host bus 874, a bridge 875, an external bus 876, an interface 877, an input device 878, and an output device 879. , A storage 880, a drive 881, a connection port 882, and a communication device 883. Note that the hardware configuration shown here is an example, and some of the components may be omitted. Further, components other than the components shown here may be further included.

 (プロセッサ871)
 プロセッサ871は、例えば、演算処理装置又は制御装置として機能し、ROM872、RAM873、ストレージ880、又はリムーバブル記録媒体901に記録された各種プログラムに基づいて各構成要素の動作全般又はその一部を制御する。
(Processor 871)
The processor 871 functions as, for example, an arithmetic processing device or a control device, and controls the entire operation of each component or a part thereof based on various programs recorded in the ROM 872, the RAM 873, the storage 880, or the removable recording medium 901. .

 (ROM872、RAM873)
 ROM872は、プロセッサ871に読み込まれるプログラムや演算に用いるデータ等を格納する手段である。RAM873には、例えば、プロセッサ871に読み込まれるプログラムや、そのプログラムを実行する際に適宜変化する各種パラメータ等が一時的又は永続的に格納される。
(ROM 872, RAM 873)
The ROM 872 is a means for storing a program read by the processor 871, data used for calculation, and the like. The RAM 873 temporarily or permanently stores, for example, a program read by the processor 871 and various parameters that appropriately change when the program is executed.

 (ホストバス874、ブリッジ875、外部バス876、インターフェース877)
 プロセッサ871、ROM872、RAM873は、例えば、高速なデータ伝送が可能なホストバス874を介して相互に接続される。一方、ホストバス874は、例えば、ブリッジ875を介して比較的データ伝送速度が低速な外部バス876に接続される。また、外部バス876は、インターフェース877を介して種々の構成要素と接続される。
(Host bus 874, bridge 875, external bus 876, interface 877)
The processor 871, the ROM 872, and the RAM 873 are mutually connected, for example, via a host bus 874 capable of high-speed data transmission. On the other hand, the host bus 874 is connected to, for example, an external bus 876 having a relatively low data transmission speed via a bridge 875. The external bus 876 is connected to various components via an interface 877.

 (入力装置878)
 入力装置878には、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、及びレバー等が用いられる。さらに、入力装置878としては、赤外線やその他の電波を利用して制御信号を送信することが可能なリモートコントローラ(以下、リモコン)が用いられることもある。また、入力装置878には、マイクロフォンなどの音声入力装置が含まれる。
(Input device 878)
As the input device 878, for example, a mouse, a keyboard, a touch panel, a button, a switch, a lever, and the like are used. Further, as the input device 878, a remote controller (hereinafter, remote controller) capable of transmitting a control signal using infrared rays or other radio waves may be used. Further, the input device 878 includes a voice input device such as a microphone.

 (出力装置879)
 出力装置879は、例えば、CRT(Cathode Ray Tube)、LCD、又は有機EL等のディスプレイ装置、スピーカー、ヘッドホン等のオーディオ出力装置、プリンタ、携帯電話、又はファクシミリ等、取得した情報を利用者に対して視覚的又は聴覚的に通知することが可能な装置である。また、本開示に係る出力装置879は、触覚刺激を出力することが可能な種々の振動デバイスを含む。
(Output device 879)
The output device 879 transmits acquired information to the user, such as a display device such as a CRT (Cathode Ray Tube), an LCD or an organic EL, an audio output device such as a speaker or a headphone, a printer, a mobile phone, or a facsimile. It is a device that can visually or audibly notify the user. In addition, the output device 879 according to the present disclosure includes various vibration devices capable of outputting a tactile stimulus.

 (ストレージ880)
 ストレージ880は、各種のデータを格納するための装置である。ストレージ880としては、例えば、ハードディスクドライブ(HDD)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイス等が用いられる。
(Storage 880)
The storage 880 is a device for storing various data. As the storage 880, for example, a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like is used.

 (ドライブ881)
 ドライブ881は、例えば、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体901に記録された情報を読み出し、又はリムーバブル記録媒体901に情報を書き込む装置である。
(Drive 881)
The drive 881 is a device that reads information recorded on a removable recording medium 901 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, or writes information on the removable recording medium 901.

 (リムーバブル記録媒体901)
 リムーバブル記録媒体901は、例えば、DVDメディア、Blu-ray(登録商標)メディア、HD DVDメディア、各種の半導体記憶メディア等である。もちろん、リムーバブル記録媒体901は、例えば、非接触型ICチップを搭載したICカード、又は電子機器等であってもよい。
(Removable recording medium 901)
The removable recording medium 901 is, for example, a DVD medium, a Blu-ray (registered trademark) medium, an HD DVD medium, various semiconductor storage media, and the like. Of course, the removable recording medium 901 may be, for example, an IC card on which a non-contact type IC chip is mounted, or an electronic device.

 (接続ポート882)
 接続ポート882は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)、RS-232Cポート、又は光オーディオ端子等のような外部接続機器902を接続するためのポートである。
(Connection port 882)
The connection port 882 is, for example, a port for connecting an external connection device 902 such as a USB (Universal Serial Bus) port, an IEEE1394 port, a SCSI (Small Computer System Interface), an RS-232C port, or an optical audio terminal. is there.

 (外部接続機器902)
 外部接続機器902は、例えば、プリンタ、携帯音楽プレーヤ、デジタルカメラ、デジタルビデオカメラ、又はICレコーダ等である。
(External connection device 902)
The external connection device 902 is, for example, a printer, a portable music player, a digital camera, a digital video camera, or an IC recorder.

 (通信装置883)
 通信装置883は、ネットワークに接続するための通信デバイスであり、例えば、有線又は無線LAN、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カード、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は各種通信用のモデム等である。
(Communication device 883)
The communication device 883 is a communication device for connecting to a network. For example, a communication card for a wired or wireless LAN, Bluetooth (registered trademark), or WUSB (Wireless USB), a router for optical communication, and an ADSL (Asymmetric Digital) Subscriber Line) or a modem for various communications.

 <3.まとめ>
 以上説明したように、本開示の一実施形態に係る情報処理装置20は、認識器の学習に用いる学習データの収集を誘導する誘導部220を有する。また、本開示の一実施形態に係る誘導部220は、認識対象に係るセンシングデータの多様性が確報されるよう、操作者によるデータ収集を動的に誘導すること、を特徴の一つとする。係る構成によれば、操作者による好適な学習データの収集を誘導することを可能となる。
<3. Summary>
As described above, the information processing device 20 according to an embodiment of the present disclosure includes the guiding unit 220 that guides collection of learning data used for learning of a recognizer. In addition, the guiding unit 220 according to an embodiment of the present disclosure dynamically guides an operator to collect data so that diversity of sensing data related to a recognition target is reported. According to such a configuration, it is possible to guide the operator to collect suitable learning data.

 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present disclosure have been described above in detail with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is apparent that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Is naturally understood to belong to the technical scope of the present disclosure.

 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 効果 In addition, the effects described in this specification are merely illustrative or exemplary and not restrictive. That is, the technology according to the present disclosure can exhibit other effects that are obvious to those skilled in the art from the description in the present specification, in addition to or instead of the above effects.

 また、コンピュータに内蔵されるCPU、ROMおよびRAMなどのハードウェアに、情報処理装置20が有する構成と同等の機能を発揮させるためのプログラムも作成可能であり、当該プログラムを記録した、コンピュータに読み取り可能な非一過性の記録媒体も提供され得る。 In addition, a program for causing hardware such as a CPU, a ROM, and a RAM built in the computer to exhibit the same function as the configuration of the information processing device 20 can be created. Possible non-transitory recording media can also be provided.

 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 認識器の学習に用いる学習データの収集を誘導する誘導部、
 を備え、
 前記誘導部は、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導する、
 情報処理装置。
(2)
 前記誘導部は、前記学習データの収集に係る制約を前記操作者に課し、前記制約の範囲内において前記センシングデータの多様性が確保されるよう、前記操作者による前記データ収集を動的に誘導する、前記(1)に記載の情報処理装置。
(3)
 前記誘導部は、前記認識器の汎化に十分な前記多様性が確保されているか否かを判定し、前記多様性が確保されていない場合、不足が想定されるパターンの前記センシングデータが収集されるよう、前記操作者による前記データ収集を誘導する、前記(2)に記載の情報処理装置。
(4)
 前記誘導部は、収集された前記センシングデータが前記制約を順守しているか否かを判定し、前記制約が順守されていない場合、前記制約が順守されていない旨の警告を、前記操作者に対し通知させる、前記(2)または(3)に記載の情報処理装置。
(5)
 前記操作者は、前記認識器の学習に係る初学者であり、
 前記誘導部は、前記学習データの収集に係るチュートリアルにおいて、前記初学者による前記データ収集を動的に誘導する、
 前記(2)~(4)のいずれかに記載の情報処理装置。
(6)
 前記制約は、前記認識対象を前記操作者の体の一部または挙動に限定する制約を含む、前記(2)~(5)のいずれかに記載の情報処理装置。
(7)
 前記誘導部は、収集された前記センシングデータを用いて学習を実施した前記認識器の認識精度に係る前記操作者への提示を制御する、前記(1)~(6)のいずれかに記載の情報処理装置。
(8)
 前記誘導部は、前記認識器の認識精度の推移を提示させる、前記(7)に記載の情報処理装置。
(9)
 前記誘導部は、前記認識器の認識精度と共に、収集された前記センシングデータを時系列に提示させる、前記(8)に記載の情報処理装置。
(10)
 前記誘導部は、収集された前記センシングデータを用いて学習を実施した前記認識器による前記認識対象の認識結果をリアルタイムで表示させる、前記(1)~(9)のいずれかに記載の情報処理装置。
(11)
 前記誘導部は、収集される前記センシングデータを可視化してリアルタイムに前記操作者に対し表示させ、前記多様性が確保されるよう、視覚的な誘導を行う、前記(1)~(10)のいずれかに記載の情報処理装置。
(12)
 前記認識対象は、ボディサインまたはジェスチャを含み、
 前記誘導部は、前記多様性の確保に有効な前記センシングデータの収集を誘導する誘導オブジェクトを表示させ、前記誘導オブジェクトに対する所定の動作を前記操作者に指示する、
 前記(11)に記載の情報処理装置。
(13)
 前記誘導部は、前記操作者に対する報酬の提供を制御する、前記(1)~(12)のいずれかに記載の情報処理装置。
(14)
 前記誘導部による制御に基づいて、前記データ収集のガイダンスに係るユーザインタフェースを制御する出力制御部、
 をさらに備える、
 前記(1)~(13)のいずれかに記載の情報処理装置。
(15)
 前記出力制御部は、前記操作者が前記認識器の設計を行うためのユーザインタフェースをさらに制御する、前記(14)に記載の情報処理装置。
(16)
 収集された前記センシングデータを用いて前記認識器に係る学習を行う学習部、
 をさらに備える、
 前記(1)~(15)のいずれかに記載の情報処理装置。
(17)
 プロセッサが、認識器の学習に用いる学習データの収集を誘導すること、
 を含み、
 前記誘導することは、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導すること、
 をさらに含む、情報処理方法。
(18)
 コンピュータを、
 認識器の学習に用いる学習データの収集を誘導する誘導部、
 を備え、
 前記誘導部は、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導する、
 情報処理装置、として機能させるためのプログラム。
Note that the following configuration also belongs to the technical scope of the present disclosure.
(1)
A guiding unit for guiding the collection of learning data used for learning the recognizer,
With
The guiding unit dynamically guides data collection by the operator so that diversity of sensing data related to the recognition target is ensured,
Information processing device.
(2)
The guidance unit imposes a constraint on the collection of the learning data to the operator, and dynamically performs the data collection by the operator so as to ensure the diversity of the sensing data within the range of the constraint. The information processing device according to (1), which guides the user.
(3)
The guiding unit determines whether or not the diversity sufficient for generalization of the recognizer is secured. If the diversity is not secured, the sensing data of a pattern that is assumed to be in shortage is collected. The information processing apparatus according to (2), wherein the data collection is guided by the operator so as to be performed.
(4)
The guide unit determines whether or not the collected sensing data complies with the constraint.If the constraint is not complied with, a warning to the effect that the constraint is not complied with is issued to the operator. The information processing device according to (2) or (3), wherein the information is notified.
(5)
The operator is a first-time scholar involved in learning the recognizer,
The guiding unit dynamically guides the data collection by the beginner in the tutorial related to the collection of the learning data.
The information processing device according to any one of (2) to (4).
(6)
The information processing apparatus according to any one of (2) to (5), wherein the restriction includes a restriction that limits the recognition target to a part or behavior of the operator's body.
(7)
The guidance unit according to any one of (1) to (6), wherein the guidance unit controls presentation to the operator relating to recognition accuracy of the recognizer that has performed learning using the collected sensing data. Information processing device.
(8)
The information processing device according to (7), wherein the guidance unit causes a transition of recognition accuracy of the recognizer to be presented.
(9)
The information processing device according to (8), wherein the guidance unit causes the collected sensing data to be presented in chronological order together with the recognition accuracy of the recognizer.
(10)
The information processing according to any one of (1) to (9), wherein the guidance unit displays, in real time, a recognition result of the recognition target by the recognizer that has performed learning using the collected sensing data. apparatus.
(11)
The guidance unit according to any one of (1) to (10), wherein the guidance unit visualizes the collected sensing data, displays the sensing data in real time to the operator, and performs visual guidance so as to ensure the diversity. An information processing device according to any one of the above.
(12)
The recognition target includes a body sign or a gesture,
The guidance unit displays a guidance object that guides the collection of the sensing data effective for securing the diversity, and instructs the operator to perform a predetermined operation on the guidance object.
The information processing device according to (11).
(13)
The information processing apparatus according to any one of (1) to (12), wherein the guidance unit controls provision of a reward to the operator.
(14)
An output control unit that controls a user interface according to the guidance of the data collection based on the control by the guidance unit.
Further comprising,
The information processing apparatus according to any one of (1) to (13).
(15)
The information processing device according to (14), wherein the output control unit further controls a user interface for the operator to design the recognizer.
(16)
A learning unit that performs learning related to the recognizer using the collected sensing data,
Further comprising,
The information processing device according to any one of (1) to (15).
(17)
The processor guiding the collection of learning data used for learning the recognizer;
Including
The guiding is to dynamically guide data collection by the operator so that diversity of sensing data related to the recognition target is ensured,
An information processing method, further comprising:
(18)
Computer
A guiding unit for guiding the collection of learning data used for learning the recognizer,
With
The guiding unit dynamically guides data collection by the operator so that diversity of sensing data related to the recognition target is ensured,
A program for functioning as an information processing device.

 10   組み込み機器
 110  出力部
 120  センサ
 130  認識実行部
 140  駆動部
 150  学習データ収集部
 170  報酬提供部
 20   情報処理装置
 210  出力制御部
 220  誘導部
 222  ラベリング部
 224  データ解析部
 230  学習・評価部
 240  学習データセット保管部
 250  評価データセット保管部
 260  認識器保管部
 30   表示装置
Reference Signs List 10 embedded device 110 output unit 120 sensor 130 recognition execution unit 140 drive unit 150 learning data collection unit 170 reward providing unit 20 information processing device 210 output control unit 220 guidance unit 222 labeling unit 224 data analysis unit 230 learning / evaluation unit 240 learning data Set storage unit 250 Evaluation data set storage unit 260 Recognition device storage unit 30 Display device

Claims (18)

 認識器の学習に用いる学習データの収集を誘導する誘導部、
 を備え、
 前記誘導部は、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導する、
 情報処理装置。
A guiding unit for guiding the collection of learning data used for learning the recognizer,
With
The guiding unit dynamically guides data collection by the operator so that diversity of sensing data related to the recognition target is ensured,
Information processing device.
 前記誘導部は、前記学習データの収集に係る制約を前記操作者に課し、前記制約の範囲内において前記センシングデータの多様性が確保されるよう、前記操作者による前記データ収集を動的に誘導する、請求項1に記載の情報処理装置。 The guidance unit imposes a constraint on the collection of the learning data to the operator, and dynamically performs the data collection by the operator so as to ensure the diversity of the sensing data within the range of the constraint. The information processing apparatus according to claim 1, which guides.  前記誘導部は、前記認識器の汎化に十分な前記多様性が確保されているか否かを判定し、前記多様性が確保されていない場合、不足が想定されるパターンの前記センシングデータが収集されるよう、前記操作者による前記データ収集を誘導する、請求項2に記載の情報処理装置。 The guiding unit determines whether or not the diversity sufficient for generalization of the recognizer is secured. If the diversity is not secured, the sensing data of a pattern that is assumed to be in shortage is collected. The information processing device according to claim 2, wherein the data collection is guided by the operator so as to be performed.  前記誘導部は、収集された前記センシングデータが前記制約を順守しているか否かを判定し、前記制約が順守されていない場合、前記制約が順守されていない旨の警告を、前記操作者に対し通知させる、請求項2に記載の情報処理装置。 The guide unit determines whether or not the collected sensing data complies with the constraint.If the constraint is not complied with, a warning to the effect that the constraint is not complied with is issued to the operator. The information processing apparatus according to claim 2, wherein the information processing apparatus is notified.  前記操作者は、前記認識器の学習に係る初学者であり、
 前記誘導部は、前記学習データの収集に係るチュートリアルにおいて、前記初学者による前記データ収集を動的に誘導する、
 請求項2に記載の情報処理装置。
The operator is a first-time scholar involved in learning the recognizer,
The guiding unit dynamically guides the data collection by the beginner in the tutorial related to the collection of the learning data.
The information processing device according to claim 2.
 前記制約は、前記認識対象を前記操作者の体の一部または挙動に限定する制約を含む、請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the constraint includes a constraint that limits the recognition target to a part or behavior of the operator's body.  前記誘導部は、収集された前記センシングデータを用いて学習を実施した前記認識器の認識精度に係る前記操作者への提示を制御する、請求項1に記載の情報処理装置。 2. The information processing device according to claim 1, wherein the guidance unit controls presentation to the operator regarding recognition accuracy of the recognizer that has performed learning using the collected sensing data. 3.  前記誘導部は、前記認識器の認識精度の推移を提示させる、請求項7に記載の情報処理装置。 The information processing apparatus according to claim 7, wherein the guidance unit causes a transition of the recognition accuracy of the recognizer to be presented.  前記誘導部は、前記認識器の認識精度と共に、収集された前記センシングデータを時系列に提示させる、請求項8に記載の情報処理装置。 The information processing apparatus according to claim 8, wherein the guidance unit causes the collected sensing data to be presented in a time series together with the recognition accuracy of the recognizer.  前記誘導部は、収集された前記センシングデータを用いて学習を実施した前記認識器による前記認識対象の認識結果をリアルタイムで表示させる、請求項1に記載の情報処理装置。 2. The information processing apparatus according to claim 1, wherein the guidance unit displays, in real time, a recognition result of the recognition target by the recognizer that has performed learning using the collected sensing data.  前記誘導部は、収集される前記センシングデータを可視化してリアルタイムに前記操作者に対し表示させ、前記多様性が確保されるよう、視覚的な誘導を行う、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the guidance unit visualizes the collected sensing data and displays the collected sensing data to the operator in real time, and performs visual guidance so as to ensure the diversity. .  前記認識対象は、ボディサインまたはジェスチャを含み、
 前記誘導部は、前記多様性の確保に有効な前記センシングデータの収集を誘導する誘導オブジェクトを表示させ、前記誘導オブジェクトに対する所定の動作を前記操作者に指示する、
 請求項11に記載の情報処理装置。
The recognition target includes a body sign or a gesture,
The guidance unit displays a guidance object that guides collection of the sensing data effective for securing the diversity, and instructs the operator to perform a predetermined operation on the guidance object.
The information processing device according to claim 11.
 前記誘導部は、前記操作者に対する報酬の提供を制御する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the guidance unit controls provision of a reward to the operator.  前記誘導部による制御に基づいて、前記データ収集のガイダンスに係るユーザインタフェースを制御する出力制御部、
 をさらに備える、
 請求項1に記載の情報処理装置。
An output control unit that controls a user interface according to the guidance of the data collection based on the control by the guidance unit.
Further comprising,
The information processing device according to claim 1.
 前記出力制御部は、前記操作者が前記認識器の設計を行うためのユーザインタフェースをさらに制御する、請求項14に記載の情報処理装置。 The information processing apparatus according to claim 14, wherein the output control unit further controls a user interface for the operator to design the recognizer.  収集された前記センシングデータを用いて前記認識器に係る学習を行う学習部、
 をさらに備える、
 請求項1に記載の情報処理装置。
A learning unit that performs learning related to the recognizer using the collected sensing data,
Further comprising,
The information processing device according to claim 1.
 プロセッサが、認識器の学習に用いる学習データの収集を誘導すること、
 を含み、
 前記誘導することは、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導すること、
 をさらに含む、情報処理方法。
The processor guiding the collection of learning data used for learning the recognizer;
Including
The guiding is to dynamically guide data collection by the operator so that diversity of sensing data related to the recognition target is ensured,
An information processing method, further comprising:
 コンピュータを、
 認識器の学習に用いる学習データの収集を誘導する誘導部、
 を備え、
 前記誘導部は、認識対象に係るセンシングデータの多様性が確保されるよう、操作者によるデータ収集を動的に誘導する、
 情報処理装置、として機能させるためのプログラム。
Computer
A guiding unit for guiding the collection of learning data used for learning the recognizer,
With
The guiding unit dynamically guides data collection by the operator so that diversity of sensing data related to the recognition target is ensured,
A program for functioning as an information processing device.
PCT/JP2019/037849 2018-10-04 2019-09-26 Information processing device, information processng method, and program Ceased WO2020071233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980063660.5A CN112789630A (en) 2018-10-04 2019-09-26 Information processing apparatus, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018188960 2018-10-04
JP2018-188960 2018-10-04

Publications (1)

Publication Number Publication Date
WO2020071233A1 true WO2020071233A1 (en) 2020-04-09

Family

ID=70055037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037849 Ceased WO2020071233A1 (en) 2018-10-04 2019-09-26 Information processing device, information processng method, and program

Country Status (2)

Country Link
CN (1) CN112789630A (en)
WO (1) WO2020071233A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023161432A (en) * 2022-04-25 2023-11-07 パナソニックIpマネジメント株式会社 Image processing device and image processing method
JPWO2023214483A1 (en) * 2022-05-02 2023-11-09
WO2025100127A1 (en) * 2023-11-10 2025-05-15 コニカミノルタ株式会社 Information processing system, information processing device, information processing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252507A (en) * 2011-06-02 2012-12-20 Panasonic Corp Personal attribute estimation system, personal attribute estimation device and personal attribute estimation method
JP2014178957A (en) * 2013-03-15 2014-09-25 Nec Corp Learning data generation device, learning data creation system, method and program
JP2016029568A (en) * 2014-07-23 2016-03-03 国立大学法人電気通信大学 Linear discriminator, large-scale general object recognition device, electronic computer, mobile terminal, data processing device, and image recognition system
WO2016152053A1 (en) * 2015-03-23 2016-09-29 日本電気株式会社 Accuracy-estimating-model generating system and accuracy estimating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252507A (en) * 2011-06-02 2012-12-20 Panasonic Corp Personal attribute estimation system, personal attribute estimation device and personal attribute estimation method
JP2014178957A (en) * 2013-03-15 2014-09-25 Nec Corp Learning data generation device, learning data creation system, method and program
JP2016029568A (en) * 2014-07-23 2016-03-03 国立大学法人電気通信大学 Linear discriminator, large-scale general object recognition device, electronic computer, mobile terminal, data processing device, and image recognition system
WO2016152053A1 (en) * 2015-03-23 2016-09-29 日本電気株式会社 Accuracy-estimating-model generating system and accuracy estimating system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023161432A (en) * 2022-04-25 2023-11-07 パナソニックIpマネジメント株式会社 Image processing device and image processing method
JPWO2023214483A1 (en) * 2022-05-02 2023-11-09
JP7796215B2 (en) 2022-05-02 2026-01-08 株式会社Nttドコモ Behavior modification devices
WO2025100127A1 (en) * 2023-11-10 2025-05-15 コニカミノルタ株式会社 Information processing system, information processing device, information processing method, and program

Also Published As

Publication number Publication date
CN112789630A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
US20220291753A1 (en) Spatial Gesture Recognition using Inputs from Different Devices to Control a Computing Device
KR101904889B1 (en) Display apparatus and method and system for input processing therof
US20200097082A1 (en) Neuromuscular text entry, writing and drawing in augmented reality systems
US20200097081A1 (en) Neuromuscular control of an augmented reality system
US20190026589A1 (en) Information processing device, information processing method, and program
US20160291699A1 (en) Touch fee interface for augmented reality systems
US20220398937A1 (en) Information processing device, information processing method, and program
US11175729B2 (en) Orientation determination based on both images and inertial measurement units
CN105308536A (en) Dynamic user interaction for display control and custom gesture interpretation
CN110832433A (en) Sensor-based component activation
US20200269421A1 (en) Information processing device, information processing method, and program
WO2022240829A1 (en) Virtual guided fitness routines for augmented reality experiences
WO2020071233A1 (en) Information processing device, information processng method, and program
US20220058529A1 (en) Detecting Human Input Activity in a Cognitive Environment Using Wearable Inertia and Audio Sensors
CN115023732A (en) Information processing apparatus, information processing method, and information processing program
WO2015098304A1 (en) Analysis device, recording medium, and analysis method
JP6841232B2 (en) Information processing equipment, information processing methods, and programs
AU2020360304A1 (en) Language teaching machine
US20190150837A1 (en) Detecting Human Input Activity for Engagement Assessment Using Wearable Inertia and Audio Sensors
CN117492555A (en) Object movement control method, device and equipment
JPWO2014119382A1 (en) Haptic sensation presentation device, information terminal, haptic presentation method, and computer-readable recording medium
JP2025027566A (en) Eye tracking system, eye tracking method, and eye tracking program
JPWO2014119383A1 (en) Haptic sensation presentation device, haptic presentation system, haptic presentation method, and program
Lundgren Making Embedded Computer Vision a Design Material: Exploring Expressive Qualities Through Prototyping And Interaction
WO2022224504A1 (en) Information processing device, information processing method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP