[go: up one dir, main page]

WO2019240330A1 - Système de prédiction de force basé sur des images et procédé correspondant - Google Patents

Système de prédiction de force basé sur des images et procédé correspondant Download PDF

Info

Publication number
WO2019240330A1
WO2019240330A1 PCT/KR2018/011808 KR2018011808W WO2019240330A1 WO 2019240330 A1 WO2019240330 A1 WO 2019240330A1 KR 2018011808 W KR2018011808 W KR 2018011808W WO 2019240330 A1 WO2019240330 A1 WO 2019240330A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot arm
motion information
force
time series
interaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2018/011808
Other languages
English (en)
Korean (ko)
Inventor
임수철
황원준
신호철
이동한
고대관
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajou University Industry Academic Cooperation Foundation
Industry Academic Cooperation Foundation of Dongguk University
Original Assignee
Ajou University Industry Academic Cooperation Foundation
Industry Academic Cooperation Foundation of Dongguk University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajou University Industry Academic Cooperation Foundation, Industry Academic Cooperation Foundation of Dongguk University filed Critical Ajou University Industry Academic Cooperation Foundation
Publication of WO2019240330A1 publication Critical patent/WO2019240330A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Definitions

  • the interaction time and the object of the robot arm predicted by inputting the time series motion information of the robot and the actual images to the deep learning algorithm of the neural network structure It can be learned by comparing the physical properties of the object and the interaction force of the robot arm measured using the sensor and the physical properties of the object.
  • Deep learning algorithm of the robot arm force prediction method the process of extracting the region associated with the operation of the robot from the actual images using the CNN (Convolutional Neural Network) that the actual images are input ; Calculating class scores of the time series motion information of the robot using a first FC (fully-connected) layer to which the time series motion information of the robot is input; Inputting the extracted region and class scores of the time series motion information into a recurrent neural network (RNN) to learn a relationship between the area that changes over time and the time series motion information; And calculating class scores of the learning result as a second FC layer into which the learning result of the RNN is input, and predicting interaction force of the robot arm corresponding to the time series motion information and the actual image and physical property values of the object.
  • the correlation between the actual images and time series motion information of the robot and the interaction force of the robot arm may be learned.
  • Time series operation information of the force prediction method of the robot arm changes over time, the robot arm It may include at least one of a change in the position and a change in the operation of the robot arm.
  • the force predicting unit of the force learning device of the robotic arm generates a virtual image representing a change in motion information over time based on the time series motion information in a graph form, thereby generating the first cone ball of the CNN.
  • a virtual image representing a change in motion information over time based on the time series motion information in a graph form, thereby generating the first cone ball of the CNN.
  • the real images output from the convolutional layer are matched using the unified layer, the matched information is classified through the FC layer, and the interaction force of the robot arm corresponding to the time series motion information and the real image and the physical property values of the object. It can be predicted.
  • Figure 7 is an example of the interaction force prediction process of the robot arm according to an embodiment of the present invention.
  • the force predictor 230 may input the actual images 511 accumulated over time to the second convolutional layer 510 which is different from the first convolutional layer.
  • the force predictor 230 classifies the matched information through the FC layer 540 to predict the interaction force of the robot arm and the physical property of the object corresponding to the real time image. have.
  • the force predictor 630 may predict the interaction force of the robot arm based on the actual images and the time series motion information.
  • the force predictor 630 may store the actual images, time series motion information, and the object in the database 120 in which the learning result of the correlation between the actual images, time series motion information, physical properties of the object, and the interaction force of the robot arm is stored. By applying the properties, we can predict the interaction force of the robot arm.
  • the present invention can predict the interaction force of the robot arm using the actual image, so if an error occurs in the sensor, the interaction between the interaction force of the robot arm measured by the sensor and the robot arm predicted using the actual image By comparing the working force, it is possible to determine whether the sensor is abnormal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Image Analysis (AREA)

Abstract

La présente invention concerne un système de prédiction de force basé sur des images et un procédé correspondant. Le procédé de prédiction de la force d'un bras robotisé du système de prédiction de force basé sur des images peut comprendre les étapes consistant à : acquérir des images réelles générées par une prise de vues photographiques continue d'un mouvement d'un bras robotisé interagissant avec un objet ; acquérir des informations de série chronologique de mouvement relatives à un changement du mouvement du bras robotisé dans le temps ; et prédire une force d'interaction du bras robotisé sur la base des images réelles et des informations de série chronologique de mouvement.
PCT/KR2018/011808 2018-06-11 2018-10-08 Système de prédiction de force basé sur des images et procédé correspondant Ceased WO2019240330A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180066861A KR102094360B1 (ko) 2018-06-11 2018-06-11 영상 기반 힘 예측 시스템 및 그 방법
KR10-2018-0066861 2018-06-11

Publications (1)

Publication Number Publication Date
WO2019240330A1 true WO2019240330A1 (fr) 2019-12-19

Family

ID=68843407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011808 Ceased WO2019240330A1 (fr) 2018-06-11 2018-10-08 Système de prédiction de force basé sur des images et procédé correspondant

Country Status (2)

Country Link
KR (1) KR102094360B1 (fr)
WO (1) WO2019240330A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530553A (zh) * 2020-12-03 2021-03-19 中国科学院深圳先进技术研究院 软组织与工具之间的交互力估计方法及装置
US12306611B1 (en) * 2020-12-11 2025-05-20 Amazon Technologies, Inc. Validation of a robotic manipulation event based on a classifier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386009B1 (ko) * 2020-07-30 2022-04-13 네이버랩스 주식회사 로봇 작업의 학습 방법 및 로봇 시스템
KR102401800B1 (ko) * 2021-10-28 2022-05-26 주식회사 오비고 오브젝트 실감 기술을 구현하기 위한 학습 방법과 체험 방법 및 이를 이용한 학습 장치와 체험 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008746A (ja) * 2006-06-29 2008-01-17 Univ Of Tokyo 反射像を用いた触覚センサ
JP2010066028A (ja) * 2008-09-08 2010-03-25 Hiroshima Univ 印加力推定装置及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199940B1 (ko) * 2010-12-15 2012-11-09 전자부품연구원 이동체 탑재형 영상 추적 장치
US9327406B1 (en) * 2014-08-19 2016-05-03 Google Inc. Object segmentation based on detected object-specific visual cues
JP6522488B2 (ja) * 2015-07-31 2019-05-29 ファナック株式会社 ワークの取り出し動作を学習する機械学習装置、ロボットシステムおよび機械学習方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008746A (ja) * 2006-06-29 2008-01-17 Univ Of Tokyo 反射像を用いた触覚センサ
JP2010066028A (ja) * 2008-09-08 2010-03-25 Hiroshima Univ 印加力推定装置及び方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AVILES ET AL.: "A Recurrent Neural Network Approach for 3d Vision-based Force Estimation", 2014 4TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 14 October 2014 (2014-10-14), pages 1 - 6, XP032716190, DOI: 10.1109/IPTA.2014.7001941 *
AVILES ET AL.: "Sensorless Force Estimation using a Neuro-Vision-Based Approa ch for Robotic-Assisted Surgery", 2015 7TH INTERNATIONAL IEEE /EMBS CONFERENCE ON NEURAL ENGINEERING (NER, 22 April 2015 (2015-04-22), pages 86 - 89, XP033166170, DOI: 10.1109/NER.2015.7146566 *
AVILES ET AL.: "V-ANFIS for Dealing with Visual Uncertainty for Force Estimat ion in Robotic Surgery", 16TH WORLD CONGRESS OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION (IFSA), 1 January 2015 (2015-01-01), pages 1465 - 1472, XP055664910, DOI: 10.2991/ifsa-eusflat-15.2015.208 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530553A (zh) * 2020-12-03 2021-03-19 中国科学院深圳先进技术研究院 软组织与工具之间的交互力估计方法及装置
US12306611B1 (en) * 2020-12-11 2025-05-20 Amazon Technologies, Inc. Validation of a robotic manipulation event based on a classifier

Also Published As

Publication number Publication date
KR102094360B1 (ko) 2020-03-30
KR20190140546A (ko) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2019240330A1 (fr) Système de prédiction de force basé sur des images et procédé correspondant
WO2019132168A1 (fr) Système d'apprentissage de données d'images chirurgicales
WO2017164478A1 (fr) Procédé et appareil de reconnaissance de micro-expressions au moyen d'une analyse d'apprentissage profond d'une dynamique micro-faciale
WO2022059969A1 (fr) Procédé de pré-apprentissage de réseau neuronal profond permettant une classification de données d'électrocardiogramme
WO2017022882A1 (fr) Appareil de classification de diagnostic pathologique d'image médicale, et système de diagnostic pathologique l'utilisant
WO2022265197A1 (fr) Procédé et dispositif pour analyser une image endoscopique sur la base de l'intelligence artificielle
WO2020196985A1 (fr) Appareil et procédé de reconnaissance d'action vidéo et de détection de section d'action
WO2021045367A1 (fr) Procédé et programme informatique visant à déterminer un état psychologique par un processus de dessin du bénéficiaire de conseils
WO2022149894A1 (fr) Procédé pour entraîner un réseau neuronal artificiel fournissant un résultat de détermination d'un échantillon pathologique, et système informatique pour sa mise en œuvre
WO2019117563A1 (fr) Appareil d'analyse prédictive intégrée pour télésanté interactive et procédé de fonctionnement associé
WO2022231392A1 (fr) Procédé et dispositif pour mettre en œuvre une plateforme à évolution automatique par apprentissage automatique de machine
WO2023033270A1 (fr) Procédé et dispositif à base d'apprentissage profond destinés à prédire des résultats d'analyse
WO2023068440A1 (fr) Système de main de robot et procédé de commande de main de robot
WO2021246700A1 (fr) Procédé et dispositif pour prédire un état d'utilisateur
WO2017171266A1 (fr) Procédé de génération de modèle de diagnostic et appareil de génération de modèle de diagnostic s'y rapportant
WO2023182796A1 (fr) Dispositif d'intelligence artificielle permettant de détecter des produits défectueux sur la base d'images de produit et procédé associé
WO2023018299A1 (fr) Appareil basé sur une transformée en ondelettes de pression artérielle et procédé de prédiction d'hypotension, et procédé d'apprentissage de modèle de prédiction d'hypotension de celui-ci
WO2020050456A1 (fr) Procédé d'évaluation du degré d'anomalie de données d'équipement
WO2019112385A1 (fr) Procédé de codage d'informations temporelles de caractéristiques spécifiques à une trame de segment d'image en vue d'une reconnaissance de vidéo
WO2019164273A1 (fr) Méthode et dispositif de prédiction de temps de chirurgie sur la base d'une image chirurgicale
WO2020045903A1 (fr) Procédé et dispositif de détection d'objet indépendamment de la taille au moyen d'un réseau neuronal convolutif
WO2023200038A1 (fr) Système et procédé de suivi oculaire pour surveiller une frappe de golf, et support d'enregistrement lisible par ordinateur non transitoire
WO2019164278A1 (fr) Procédé et dispositif permettant d'obtenir des informations chirurgicales à l'aide d'une image chirurgicale
WO2022181919A1 (fr) Dispositif et procédé pour fournir un environnement d'opération basé sur la réalité virtuelle
WO2019124602A1 (fr) Procédé et dispositifs de suivi d'un objet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922362

Country of ref document: EP

Kind code of ref document: A1