[go: up one dir, main page]

WO2019181572A1 - Abnormality monitoring device, abnormality monitoring method, program, control device, and plant - Google Patents

Abnormality monitoring device, abnormality monitoring method, program, control device, and plant Download PDF

Info

Publication number
WO2019181572A1
WO2019181572A1 PCT/JP2019/009434 JP2019009434W WO2019181572A1 WO 2019181572 A1 WO2019181572 A1 WO 2019181572A1 JP 2019009434 W JP2019009434 W JP 2019009434W WO 2019181572 A1 WO2019181572 A1 WO 2019181572A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
degree
data
display unit
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2019/009434
Other languages
French (fr)
Japanese (ja)
Inventor
正法 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2020508199A priority Critical patent/JP7203085B2/en
Priority to KR1020207026875A priority patent/KR102560765B1/en
Publication of WO2019181572A1 publication Critical patent/WO2019181572A1/en
Priority to PH12020500651A priority patent/PH12020500651A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/0272Presentation of monitored results, e.g. selection of status reports to be displayed; Filtering information to the user
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0262Confirmation of fault detection, e.g. extra checks to confirm that a failure has indeed occurred

Definitions

  • the present invention relates to an abnormality monitoring apparatus and an abnormality monitoring method.
  • a plant abnormality detection system performs statistical processing on a large number of process data, evaluates how much the pattern of these process data differs from the normal pattern, calculates the degree of abnormality, and determines the degree of abnormality. Determine whether normal or abnormal.
  • Such an anomaly detection system outputs an anomaly judgment result comprehensively by combining multiple types of process data in order to improve the anomaly detection performance. For this reason, it is difficult for the operator to know what pattern change has occurred in which process data and which is determined to be abnormal.
  • the anomaly detection system reports an anomaly, the operator cannot confirm the validity of the anomaly judgment result by checking the pattern of individual process data, and the operator makes a final decision on whether to operate or stop the plant. May hesitate.
  • One of the exemplary purposes of an aspect of the present invention is to provide an abnormality monitoring technique capable of easily verifying the validity of an abnormality determination result.
  • an abnormality monitoring apparatus includes an abnormality degree display unit that displays time series data of an abnormality degree of a system and time series data of process values related to the state of the system. And a process data display unit.
  • Another aspect of the present invention is an abnormality monitoring method.
  • This method includes an abnormality degree display step for displaying time series data of the degree of abnormality of the system, and a process data display step for displaying time series data of process values related to the state of the system.
  • the validity of the abnormality determination result can be easily verified.
  • FIG. 1 is a configuration diagram of an abnormality monitoring apparatus 300 according to the present embodiment.
  • the abnormality monitoring device 300 is used for monitoring an abnormality in a process system such as a chemical plant or a power plant.
  • the abnormality monitoring device 300 includes a process data acquisition unit 10, an abnormality detection data selection unit 20, a statistical processing unit 30, an abnormality degree calculation unit 40, a normal / abnormality determination unit 50, a selection target display unit 60, It includes a process data selection unit 70, an original data display unit 80, a post-statistical data display unit 90, an abnormality level display unit 100, a determination result display unit 110, and a contribution level display unit 120.
  • FIG. 2 is a diagram illustrating a screen example of the abnormality monitoring apparatus 300. Each configuration of the abnormality monitoring apparatus 300 in FIG. 1 will be described with reference to the screen example in FIG.
  • the process data acquisition unit 10 acquires a plurality of process values as time series data from sensors and measurement devices of the process system.
  • the abnormality detection data selection unit 20 selects a process value to be used for specific abnormality detection from among a plurality of process values acquired by the process data acquisition unit 10. For example, when detecting abnormalities such as leaks of high-pressure steam or high-pressure water due to blasting of various pipes of the boiler, several process values used for blasting detection are selected.
  • the statistical processing unit 30 performs statistical processing on each abnormality detection process value selected by the abnormality detection data selection unit 20 and supplies each process value after statistical processing to the abnormality degree calculation unit 40.
  • the abnormality degree calculation unit 40 comprehensively evaluates each process value after statistical processing and calculates the abnormality degree. Evaluate how much the time-series pattern of each process value differs from the normal pattern, and perform an overall evaluation by weighted addition of the evaluation values indicating the degree of abnormality of each process value to calculate the final degree of abnormality .
  • the abnormality degree display unit 100 displays the abnormality degree calculated by the abnormality degree calculation unit 40 on a screen as a graph.
  • the abnormality degree graph 200 in FIG. 2 is time series data of the degree of abnormality displayed by the degree of abnormality display unit 100. As an example, a history of the degree of abnormality for the past 24 hours is displayed as a graph. Also, the abnormality level indicator 210 in FIG. 2 represents the current abnormality level as a bar graph.
  • the normal / abnormality determination unit 50 determines whether the system is in a normal state or an abnormal state in light of the abnormality level calculated by the abnormality level calculation unit 40 in accordance with a determination criterion.
  • the determination result display unit 110 displays the determination result by the normal / abnormal determination unit 50 on the screen.
  • the determination window 220 in FIG. 2 displays, for example, blue in the normal state, and displays in red, for example, in the abnormal state.
  • the operator can easily grasp the case of abnormality. Even if the determination window 220 indicates normality, the operator can check the abnormality level indicator 210 and check the abnormality level index with an analog value. It is possible to distinguish between the normal state far from the normal state and the normal state before the abnormality.
  • the selection target display unit 60 displays a list of a plurality of process values acquired by the process data acquisition unit 10 in a list format or the like, and the process value for abnormality detection selected by the data selection unit for abnormality detection 20 is displayed in the list. Highlight.
  • the selection window 260 in FIG. 2 is a list of a plurality of process values displayed by the selection target display unit 60, and the items in the window can be browsed by scrolling up and down.
  • the process values A to L among the process values A to L, the process values B, D, F, G, and J are selected by the abnormality detection data selection unit 20 and used to calculate the abnormal values. Highlighted. By highlighting in this way, the operator can easily select the process value used for the evaluation of the degree of abnormality.
  • process values used for calculating the abnormal value may be displayed in the selection window 260, and other process values may be selected from another window.
  • the process data selection unit 70 selects a process value to be browsed from among a plurality of process values displayed as a list by the selection target display unit 60.
  • the operator may select a process value to be browsed from the process values for abnormality detection highlighted in the selection window 260, and browse from among process values not highlighted, that is, not used for abnormality detection. You may select the process value you want.
  • the operator can select a process value to be viewed from among a plurality of process values listed in the selection window 260 with a mouse or the like, and click another process value with a mouse to view another process value. Then it switches.
  • FIG. 2 shows an example in which the operator selects the process value F for detecting an abnormality in the selection window 260.
  • the process data selection unit 70 notifies the process value selected by the operator to the original data display unit 80, the post-statistical data display unit 90, and the contribution display unit 120.
  • the original data display unit 80 and the post-statistic processing data display unit 90 function as a process data display unit.
  • the original data display unit 80 acquires the original data before statistical processing of the process value selected by the operator from the abnormality detection data selection unit 20 and displays it on the screen as a graph.
  • the original data graph 230 in FIG. 2 is a graph showing the original data of the process value F selected by the operator in time series.
  • the post-statistic processing data display unit 90 acquires the post-statistic processing data of the process value selected by the operator from the statistical processing unit 30 and displays it on the screen as a graph.
  • the post-statistic processing data graph 240 in FIG. 2 is a graph showing the post-statistic processing data of the process value F selected by the operator in time series.
  • the operator can see the time change of the original data before statistical processing of the process value to be viewed.
  • the operator can examine the signs of the process system that cannot be grasped from the data after statistical processing based on the experience and knowledge of the operator.
  • the operator can observe the temporal change of the process value in a state where the feature to be noticed is extracted by the statistical processing by referring to the data graph 240 after the statistical processing, and thus the feature that appears in the process value. Therefore, it is possible to easily check the state of the process system early and accurately.
  • the original data display unit 80 uses the process data acquisition unit 10 and the statistical processing unit 30 to obtain the source of the process value that has not been selected for abnormality detection. Data is supplied, and the statistical processing unit 30 performs statistical processing on the process values not selected for abnormality detection, and supplies them to the post-statistic processing data display unit 90.
  • the time change of the process value to be viewed is displayed in parallel with the abnormality degree graph 200 in which the time change of the abnormality is displayed.
  • the degree of abnormality changes, the process value that has influenced the calculation of the degree of abnormality is considered to show the same time change.
  • the operator compares the abnormality degree graph 200 with the original data graph 230 or the post-statistical processing data graph 240, compares the time change of the abnormality degree with the time change of the process value, and determines whether the currently viewed process value is abnormal. It is possible to visually grasp whether or not it contributes to.
  • the operator switches the process value desired to be browsed from among the process values for abnormality detection displayed in the selection window 260, so that a plurality of process values used for calculating the degree of abnormality are successively displayed in the original data graph 230 and the statistical process. It can be displayed on the subsequent data graph 240 to check whether or not the process value currently being viewed contributes to the abnormality determination. In general, not all process values used for calculating the degree of abnormality contribute to abnormality determination, and the degree of contribution even when contributing to abnormality determination varies depending on the process value.
  • the operator can check the time change of each process value individually by switching the process value to be viewed in the selection window 260, and can grasp the difference in influence on abnormality determination individually.
  • the operator selects a process value that is not used for abnormality detection displayed in the selection window 260, so that it is not directly used for calculation of the degree of abnormality, but the time value of the process value that the operator pays attention to is changed. It can be displayed on the original data graph 230 and the post-statistical data graph 240 and compared with the temporal change of the abnormality degree of the abnormality degree graph 200.
  • process values that are not used for calculating the degree of abnormality often show abnormal values.
  • the operator is not directly used to calculate the degree of abnormality, but by selecting a process value that seems to be relevant and looking at the change over time, the degree of abnormality is spreading. Can be determined.
  • the operator selects the process value displayed in the selection window 260 and individually shows the time change of the process value in the original data graph 230. In addition, it can be displayed and viewed on the data graph 240 after statistical processing. As a result, even if there is no unusual change in the degree of abnormality in the abnormality degree graph 200, it can be monitored whether or not any unusual change has occurred in any of the process values, and can be used for abnormality detection.
  • the time series data of the process value F displayed in the post-statistical processing data graph 240 is the process value. It can be understood that F greatly contributes to the abnormality determination. If no sign of abnormality appears in the time change of the process value F, it can be understood that the process value F does not contribute to the calculation of the degree of abnormality.
  • the operator also displays the time series of the original data before the statistical processing of the process value F displayed on the original data graph 230 and the time series of the statistical data after the statistical processing of the process value F displayed on the post-statistic processing data graph 240. The effectiveness of the statistical processing can also be confirmed by comparing whether or not a signal feature is extracted from the statistical processed data.
  • the contribution level display unit 120 displays a contribution rate indicating how much the process value selected by the operator contributes to the abnormality level determination.
  • the contribution window 250 in FIG. 2 indicates that the contribution of the process value F selected by the operator is 35%.
  • the contribution of each process may be displayed in association with the process values listed in the selection window 260. By displaying the contribution in the selection window 260, a process value having a large contribution can be quickly found. You may display the contribution of each process value used for abnormality detection with a pie chart or a bar graph. Thereby, the difference and magnitude of the contribution of each process value can be easily discriminated.
  • the operator selects a process value that is not directly used for calculation of the abnormality degree from the selection window 260 and displays a time series pattern of the process value. It can be confirmed that there is no false alarm.
  • FIG. 3 is a flowchart showing a procedure of an abnormality monitoring process performed by the abnormality monitoring apparatus 300.
  • the abnormality degree display unit 100 displays the abnormality degree history in a graph (S10).
  • the determination result display unit 110 displays a result of determining whether the system is normal or abnormal (S12).
  • the selection target display unit 60 highlights the process value used for calculating the degree of abnormality in the process value list (S14).
  • the process data selection unit 70 causes the operator to select a process value to be browsed individually from the list (S16).
  • the original data display unit 80 and the post-statistic processing data display unit 90 respectively display the original data of the process value selected by the operator and the post-statistical processing data on a graph in time series (S18).
  • the contribution display unit 120 displays the degree of contribution of the process value selected by the operator to the evaluation of the abnormality (S22). ).
  • the operator selects another process value, and the subsequent processing is repeated.
  • step S22 If the process value selected by the operator is not used for calculating the degree of abnormality (N in S20), the process skips step S22, returns to step S16, causes the operator to select another process value, and performs the subsequent processing. repeat.
  • the abnormality monitoring apparatus 300 of the present embodiment when an abnormality is notified, the operator individually selects and browses the process data that contributed to the abnormality determination, and the time series pattern of the abnormality degree and the selected process data By comparing the time series patterns, the validity of the abnormality determination result can be easily verified.
  • the operator can display not only the time-series pattern of process values directly used for abnormality detection but also the process value that is not directly used for abnormality detection, so that the time-series pattern can be displayed on the graph. It is possible to confirm whether or not the judgment is a false alarm. In this manner, the abnormality monitoring apparatus 300 can support the operator's final determination as to whether or not to stop the plant.
  • 10 process data acquisition unit, 20 anomaly detection data selection unit, 30 statistical processing unit, 40 anomaly degree calculation unit, 50 normality / abnormality determination unit, 60 selection target display unit, 70 process data selection unit, 80 original data display unit, 90 Post-statistical data display section, 100 abnormality degree display section, 110 judgment result display section, 120 contribution display section, 300 abnormality monitoring device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

In this abnormality monitoring device 300, a degree of abnormality display unit 100 displays time series data of the degree of abnormality of a system. A determination result display unit 110 displays a determination result of whether the system is in a normal state or an abnormal state. From multiple process values relating to the state of the system, a process data selection unit 70 allows an operator to select a process value to be viewed. An original data display unit 80 and a statistically processed data display unit 90 display time series data of a process value relating to the state of the system.

Description

[規則37.2に基づきISAが決定した発明の名称] 異常監視装置、異常監視方法、プログラム、制御装置およびプラント[Name of invention determined by ISA based on Rule 37.2] Abnormality monitoring device, abnormality monitoring method, program, control device and plant

 本発明は、異常監視装置および異常監視方法に関する。 The present invention relates to an abnormality monitoring apparatus and an abnormality monitoring method.

 プロセスデータのパターンを解析・監視することにより、ボイラの各種配管の噴破による高圧蒸気や高圧水のリーク等の異常を検知するシステムがある。一般にプラントの異常検知システムは、多数のプロセスデータに対して統計処理を施し、これらのプロセスデータのパターンが正常時のパターンとどの程度異なるかを評価して異常度を算出し、異常度の大小から正常か異常かを判定する。 There is a system that detects abnormalities such as high-pressure steam and high-pressure water leaks caused by blasting of various boiler piping by analyzing and monitoring process data patterns. In general, a plant abnormality detection system performs statistical processing on a large number of process data, evaluates how much the pattern of these process data differs from the normal pattern, calculates the degree of abnormality, and determines the degree of abnormality. Determine whether normal or abnormal.

特開2017-211839号公報JP 2017-211839 A

 このような異常検知システムは、異常検知性能を高めるために複数種類のプロセスデータを組み合わせて総合的に異常判定結果を出力する。そのため、いずれのプロセスデータにどのようなパターン変化が生じた結果、異常と判定されたのかをオペレータが把握することは難しい。異常検知システムが異常を報知した際にオペレータが個々のプロセスデータのパターンを確認して異常判定結果の妥当性を検証することができず、オペレータはプラントを稼働させるか停止させるかの最終判断にためらうことがある。 Such an anomaly detection system outputs an anomaly judgment result comprehensively by combining multiple types of process data in order to improve the anomaly detection performance. For this reason, it is difficult for the operator to know what pattern change has occurred in which process data and which is determined to be abnormal. When the anomaly detection system reports an anomaly, the operator cannot confirm the validity of the anomaly judgment result by checking the pattern of individual process data, and the operator makes a final decision on whether to operate or stop the plant. May hesitate.

 本発明のある態様の例示的な目的のひとつは、異常判定結果の妥当性を容易に検証することができる異常監視技術を提供することにある。 One of the exemplary purposes of an aspect of the present invention is to provide an abnormality monitoring technique capable of easily verifying the validity of an abnormality determination result.

 上記課題を解決するために、本発明のある態様の異常監視装置は、システムの異常度の時系列データを表示する異常度表示部と、前記システムの状態に関わるプロセス値の時系列データを表示するプロセスデータ表示部とを含む。 In order to solve the above problems, an abnormality monitoring apparatus according to an aspect of the present invention includes an abnormality degree display unit that displays time series data of an abnormality degree of a system and time series data of process values related to the state of the system. And a process data display unit.

 この態様によると、システムのプロセス値の時系列データを個別に閲覧して異常判定の妥当性を確認することができる。 こ の According to this aspect, it is possible to check the validity of the abnormality determination by individually browsing the time series data of the process values of the system.

 本発明の別の態様は、異常監視方法である。この方法は、システムの異常度の時系列データを表示する異常度表示ステップと、前記システムの状態に関わるプロセス値の時系列データを表示するプロセスデータ表示ステップとを含む。 Another aspect of the present invention is an abnormality monitoring method. This method includes an abnormality degree display step for displaying time series data of the degree of abnormality of the system, and a process data display step for displaying time series data of process values related to the state of the system.

 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システム、コンピュータプログラム、データ構造、記録媒体などの間で相互に置換したものもまた、本発明の態様として有効である。 Note that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention are mutually replaced among methods, apparatuses, systems, computer programs, data structures, recording media, and the like. It is effective as

 本発明によれば、異常判定結果の妥当性を容易に検証することができる。 According to the present invention, the validity of the abnormality determination result can be easily verified.

本実施の形態に係る異常監視装置の構成図である。It is a block diagram of the abnormality monitoring apparatus which concerns on this Embodiment. 図1の異常監視装置の画面例を説明する図である。It is a figure explaining the example of a screen of the abnormality monitoring apparatus of FIG. 図1の異常監視装置による異常監視処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the abnormality monitoring process by the abnormality monitoring apparatus of FIG.

 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

 図1は、本実施の形態に係る異常監視装置300の構成図である。異常監視装置300は、化学プラントや電力プラントなどのプロセス系システムの異常を監視するために用いられる。異常監視装置300は、プロセスデータ取得部10と、異常検知用データ選択部20と、統計処理部30と、異常度算出部40と、正常/異常判定部50と、選択対象表示部60と、プロセスデータ選択部70と、元データ表示部80と、統計処理後データ表示部90と、異常度表示部100と、判定結果表示部110と、寄与度表示部120とを含む。 FIG. 1 is a configuration diagram of an abnormality monitoring apparatus 300 according to the present embodiment. The abnormality monitoring device 300 is used for monitoring an abnormality in a process system such as a chemical plant or a power plant. The abnormality monitoring device 300 includes a process data acquisition unit 10, an abnormality detection data selection unit 20, a statistical processing unit 30, an abnormality degree calculation unit 40, a normal / abnormality determination unit 50, a selection target display unit 60, It includes a process data selection unit 70, an original data display unit 80, a post-statistical data display unit 90, an abnormality level display unit 100, a determination result display unit 110, and a contribution level display unit 120.

 図2は、異常監視装置300の画面例を説明する図である。図2の画面例を参照しながら、図1の異常監視装置300の各構成を説明する。 FIG. 2 is a diagram illustrating a screen example of the abnormality monitoring apparatus 300. Each configuration of the abnormality monitoring apparatus 300 in FIG. 1 will be described with reference to the screen example in FIG.

 プロセスデータ取得部10は、プロセス系システムのセンサや測定機器から複数のプロセス値を時系列データで取得する。異常検知用データ選択部20は、プロセスデータ取得部10が取得する複数のプロセス値の内、特定の異常検知に用いるプロセス値を選択する。たとえば、ボイラの各種配管の噴破による高圧蒸気や高圧水のリーク等の異常を検知する場合、噴破検知に用いるプロセス値をいくつか選択する。 The process data acquisition unit 10 acquires a plurality of process values as time series data from sensors and measurement devices of the process system. The abnormality detection data selection unit 20 selects a process value to be used for specific abnormality detection from among a plurality of process values acquired by the process data acquisition unit 10. For example, when detecting abnormalities such as leaks of high-pressure steam or high-pressure water due to blasting of various pipes of the boiler, several process values used for blasting detection are selected.

 統計処理部30は、異常検知用データ選択部20により選択された異常検知用の各プロセス値に対して統計処理を行い、統計処理後の各プロセス値を異常度算出部40に供給する。 The statistical processing unit 30 performs statistical processing on each abnormality detection process value selected by the abnormality detection data selection unit 20 and supplies each process value after statistical processing to the abnormality degree calculation unit 40.

 異常度算出部40は、統計処理後の各プロセス値を総合評価して異常度を算出する。各プロセス値の時系列パターンが正常時のパターンとどの程度異なるかを評価し、各プロセス値の異常度合いを示す評価値を重み付き加算することで総合評価し、最終的な異常度を算出する。 The abnormality degree calculation unit 40 comprehensively evaluates each process value after statistical processing and calculates the abnormality degree. Evaluate how much the time-series pattern of each process value differs from the normal pattern, and perform an overall evaluation by weighted addition of the evaluation values indicating the degree of abnormality of each process value to calculate the final degree of abnormality .

 異常度表示部100は、異常度算出部40により算出された異常度をグラフで画面に表示する。図2の異常度グラフ200は、異常度表示部100により表示される異常度の時系列データであり、一例として過去24時間の異常度の履歴がグラフで表示される。また、図2の異常度インジケータ210は、現時点の異常度を棒グラフで表したものである。 The abnormality degree display unit 100 displays the abnormality degree calculated by the abnormality degree calculation unit 40 on a screen as a graph. The abnormality degree graph 200 in FIG. 2 is time series data of the degree of abnormality displayed by the degree of abnormality display unit 100. As an example, a history of the degree of abnormality for the past 24 hours is displayed as a graph. Also, the abnormality level indicator 210 in FIG. 2 represents the current abnormality level as a bar graph.

 正常/異常判定部50は、異常度算出部40により算出された異常度を判断基準に照らして、システムが正常状態であるか異常状態であるかを判定する。 The normal / abnormality determination unit 50 determines whether the system is in a normal state or an abnormal state in light of the abnormality level calculated by the abnormality level calculation unit 40 in accordance with a determination criterion.

 判定結果表示部110は、正常/異常判定部50による判定結果を画面に表示する。図2の判定ウィンドウ220は、正常状態の場合はたとえば青色を表示し、異常状態の場合はたとえば赤色で表示する。 The determination result display unit 110 displays the determination result by the normal / abnormal determination unit 50 on the screen. The determination window 220 in FIG. 2 displays, for example, blue in the normal state, and displays in red, for example, in the abnormal state.

 判定ウィンドウ220において正常か異常かの判定の結果を2値で示すことにより、オペレータは異常である場合を把握しやすくなる。また、判定ウィンドウ220において正常と示されている場合でも、オペレータは異常度インジケータ210を見て、異常度の指標をアナログ値で確認することができるため、同じ正常判定であっても、異常にはほど遠い正常状態であるのか、異常の手前にある正常状態であるのかを区別することができる。 By indicating the result of determination as normal or abnormal in the determination window 220 in binary, the operator can easily grasp the case of abnormality. Even if the determination window 220 indicates normality, the operator can check the abnormality level indicator 210 and check the abnormality level index with an analog value. It is possible to distinguish between the normal state far from the normal state and the normal state before the abnormality.

 選択対象表示部60は、プロセスデータ取得部10により取得された複数のプロセス値をリスト形式などで一覧表示し、異常検知用データ選択部20により選択された異常検知用のプロセス値をリスト内で強調表示する。 The selection target display unit 60 displays a list of a plurality of process values acquired by the process data acquisition unit 10 in a list format or the like, and the process value for abnormality detection selected by the data selection unit for abnormality detection 20 is displayed in the list. Highlight.

 図2の選択ウィンドウ260は、選択対象表示部60が表示する複数のプロセス値のリストであり、ウィンドウ内の項目は上下にスクロールすることで表示しきれない部分の閲覧が可能である。この例では、プロセス値A~Lの内、プロセス値B、D、F、G、Jが異常検知用データ選択部20により選択されて異常値の算出に使用されており、これらのプロセス値が強調表示される。このように強調表示することでオペレータが異常度の評価に用いられたプロセス値を選択しやすくなる。 The selection window 260 in FIG. 2 is a list of a plurality of process values displayed by the selection target display unit 60, and the items in the window can be browsed by scrolling up and down. In this example, among the process values A to L, the process values B, D, F, G, and J are selected by the abnormality detection data selection unit 20 and used to calculate the abnormal values. Highlighted. By highlighting in this way, the operator can easily select the process value used for the evaluation of the degree of abnormality.

 なお、選択ウィンドウ260には異常値の算出に使用されたプロセス値のみを表示し、それ以外のプロセス値は別のウィンドウから選択できるようにしてもよい。 It should be noted that only the process values used for calculating the abnormal value may be displayed in the selection window 260, and other process values may be selected from another window.

 プロセスデータ選択部70は、選択対象表示部60により一覧表示された複数のプロセス値の中から、閲覧したいプロセス値を選択する。オペレータは選択ウィンドウ260において強調表示された異常検知用のプロセス値の中から閲覧したいプロセス値を選択してもよく、強調表示されていない、つまり異常検知に用いられていないプロセス値の中から閲覧したいプロセス値を選択してもよい。 The process data selection unit 70 selects a process value to be browsed from among a plurality of process values displayed as a list by the selection target display unit 60. The operator may select a process value to be browsed from the process values for abnormality detection highlighted in the selection window 260, and browse from among process values not highlighted, that is, not used for abnormality detection. You may select the process value you want.

 オペレータはマウスなどで選択ウィンドウ260にリストされた複数のプロセス値の中から閲覧したいプロセス値をクリックして選択することができ、別のプロセス値を閲覧したければ再度マウスでそのプロセス値をクリックすると切り替わる。図2は、選択ウィンドウ260において異常検知用のプロセス値Fをオペレータが選択した例を示す。 The operator can select a process value to be viewed from among a plurality of process values listed in the selection window 260 with a mouse or the like, and click another process value with a mouse to view another process value. Then it switches. FIG. 2 shows an example in which the operator selects the process value F for detecting an abnormality in the selection window 260.

 プロセスデータ選択部70は、オペレータが選択したプロセス値を元データ表示部80、統計処理後データ表示部90、寄与度表示部120に通知する。元データ表示部80および統計処理後データ表示部90は、プロセスデータ表示部として機能する。 The process data selection unit 70 notifies the process value selected by the operator to the original data display unit 80, the post-statistical data display unit 90, and the contribution display unit 120. The original data display unit 80 and the post-statistic processing data display unit 90 function as a process data display unit.

 元データ表示部80は、オペレータが選択したプロセス値の統計処理前の元データを異常検知用データ選択部20から取得して画面にグラフで表示する。図2の元データグラフ230は、オペレータが選択したプロセス値Fの元データを時系列で示すグラフである。 The original data display unit 80 acquires the original data before statistical processing of the process value selected by the operator from the abnormality detection data selection unit 20 and displays it on the screen as a graph. The original data graph 230 in FIG. 2 is a graph showing the original data of the process value F selected by the operator in time series.

 統計処理後データ表示部90は、オペレータが選択したプロセス値の統計処理後のデータを統計処理部30から取得して画面にグラフで表示する。図2の統計処理後データグラフ240は、オペレータが選択したプロセス値Fの統計処理後データを時系列で示すグラフである。 The post-statistic processing data display unit 90 acquires the post-statistic processing data of the process value selected by the operator from the statistical processing unit 30 and displays it on the screen as a graph. The post-statistic processing data graph 240 in FIG. 2 is a graph showing the post-statistic processing data of the process value F selected by the operator in time series.

 オペレータは、元データグラフ230を参照することにより、閲覧したいプロセス値の統計処理前の元データの時間変化を見ることができる。オペレータは生データを観察することで、オペレータの経験や知識にもとづいて、統計処理後のデータからは把握できないようなプロセス系システムの兆候を調べることができる。また、オペレータは、統計処理後データグラフ240を参照することにより、プロセス値の時間変化を、統計処理によって注目すべき特徴が抽出された状態で観察することができるため、プロセス値に現れた特徴的な変化を容易に短時間で調べ、プロセス系システムの状態を早期に的確に判断することができる。 By referring to the original data graph 230, the operator can see the time change of the original data before statistical processing of the process value to be viewed. By observing the raw data, the operator can examine the signs of the process system that cannot be grasped from the data after statistical processing based on the experience and knowledge of the operator. In addition, the operator can observe the temporal change of the process value in a state where the feature to be noticed is extracted by the statistical processing by referring to the data graph 240 after the statistical processing, and thus the feature that appears in the process value. Therefore, it is possible to easily check the state of the process system early and accurately.

 なお、オペレータが、異常検知用に選択されていないプロセス値を選択した場合は、元データ表示部80がプロセスデータ取得部10および統計処理部30に異常検知用に選択されていないプロセス値の元データを供給し、統計処理部30が異常検知用に選択されていないプロセス値を統計処理して統計処理後データ表示部90に供給する。 When the operator selects a process value that has not been selected for abnormality detection, the original data display unit 80 uses the process data acquisition unit 10 and the statistical processing unit 30 to obtain the source of the process value that has not been selected for abnormality detection. Data is supplied, and the statistical processing unit 30 performs statistical processing on the process values not selected for abnormality detection, and supplies them to the post-statistic processing data display unit 90.

 オペレータが選択ウィンドウ260に表示された異常検知用のプロセス値の中から閲覧したいプロセス値を選択すると、異常度の時間変化が表示される異常度グラフ200と並列に、閲覧したいプロセス値の時間変化が元データグラフ230および統計処理後データグラフ240に表示される。異常度が変化する場合、異常度の算出に影響を与えたプロセス値も同じような時間変化を示していると考えられる。オペレータは、異常度グラフ200と、元データグラフ230または統計処理後データグラフ240とを見比べて、異常度の時間変化とプロセス値の時間変化を比較し、現在閲覧しているプロセス値が異常判定に寄与するものであるかどうかを視覚的に把握することができる。 When the operator selects a process value to be viewed from the process values for abnormality detection displayed on the selection window 260, the time change of the process value to be viewed is displayed in parallel with the abnormality degree graph 200 in which the time change of the abnormality is displayed. Are displayed in the original data graph 230 and the statistical data graph 240. When the degree of abnormality changes, the process value that has influenced the calculation of the degree of abnormality is considered to show the same time change. The operator compares the abnormality degree graph 200 with the original data graph 230 or the post-statistical processing data graph 240, compares the time change of the abnormality degree with the time change of the process value, and determines whether the currently viewed process value is abnormal. It is possible to visually grasp whether or not it contributes to.

 オペレータは、選択ウィンドウ260に表示された異常検知用のプロセス値の中から閲覧したいプロセス値を切り替えることにより、異常度の算出に用いられた複数のプロセス値を次々に元データグラフ230および統計処理後データグラフ240に表示して、現在閲覧しているプロセス値が異常判定に寄与するものであるかどうかを確認していくことができる。一般に、異常度の算出に用いられたすべてのプロセス値が異常判定に寄与しているとは限られず、また、異常判定に寄与する場合でもどの程度寄与するかはプロセス値によって異なる。オペレータは、選択ウィンドウ260で閲覧したいプロセス値を切り替えることにより、各プロセス値の時間変化を個別に調べて、異常判定への影響の違いを個別に把握することができる。 The operator switches the process value desired to be browsed from among the process values for abnormality detection displayed in the selection window 260, so that a plurality of process values used for calculating the degree of abnormality are successively displayed in the original data graph 230 and the statistical process. It can be displayed on the subsequent data graph 240 to check whether or not the process value currently being viewed contributes to the abnormality determination. In general, not all process values used for calculating the degree of abnormality contribute to abnormality determination, and the degree of contribution even when contributing to abnormality determination varies depending on the process value. The operator can check the time change of each process value individually by switching the process value to be viewed in the selection window 260, and can grasp the difference in influence on abnormality determination individually.

 また、オペレータは、選択ウィンドウ260に表示された異常検知に用いられていないプロセス値を選択することにより、異常度の算出には直接用いられていないが、オペレータが注目するプロセス値の時間変化を元データグラフ230および統計処理後データグラフ240に表示し、異常度グラフ200の異常度の時間変化と見比べることができる。一般に、プロセス系システムが異常状態に遷移する過程では、異常度の算出には用いられていないプロセス値についても異常な値を示すことが多い。オペレータは、異常度の算出には直接用いられていないが、関連すると思われるプロセス値を選択して、時間変化を見ることで、本当に異常が発生しているのか、どの程度異常が広がりつつあるのかを判断することができる。 In addition, the operator selects a process value that is not used for abnormality detection displayed in the selection window 260, so that it is not directly used for calculation of the degree of abnormality, but the time value of the process value that the operator pays attention to is changed. It can be displayed on the original data graph 230 and the post-statistical data graph 240 and compared with the temporal change of the abnormality degree of the abnormality degree graph 200. In general, in the process in which a process system transitions to an abnormal state, process values that are not used for calculating the degree of abnormality often show abnormal values. The operator is not directly used to calculate the degree of abnormality, but by selecting a process value that seems to be relevant and looking at the change over time, the degree of abnormality is spreading. Can be determined.

 なお、異常度グラフ200が異常度の特異な変化を示すものでなかったとしても、オペレータは、選択ウィンドウ260に表示されたプロセス値を選択し、個別にプロセス値の時間変化を元データグラフ230および統計処理後データグラフ240に表示して閲覧することができる。これにより、異常度グラフ200の異常度には特異な変化がなくても、いずれかのプロセス値に特異な変化が生じていないか監視し、異常検知に役立てることができる。 Even if the abnormality degree graph 200 does not indicate a peculiar change in the abnormality degree, the operator selects the process value displayed in the selection window 260 and individually shows the time change of the process value in the original data graph 230. In addition, it can be displayed and viewed on the data graph 240 after statistical processing. As a result, even if there is no unusual change in the degree of abnormality in the abnormality degree graph 200, it can be monitored whether or not any unusual change has occurred in any of the process values, and can be used for abnormality detection.

 この例では、オペレータは、統計処理後データグラフ240に表示されたプロセス値Fの時系列データが異常度グラフ200に表示された異常度の時系列データに類似したパターンであることから、プロセス値Fが異常判定に大きく寄与していることを把握することができる。もしプロセス値Fの時間変化に異常を示す兆候が現れていないなら、プロセス値Fは異常度の算出に寄与していないことがわかる。また、オペレータは、元データグラフ230に表示されたプロセス値Fの統計処理前の元データの時系列と、統計処理後データグラフ240に表示されたプロセス値Fの統計処理後データの時系列を比較して統計処理後データに信号の特徴が抽出されているかどうかを見ることで統計処理の有効性を確認することもできる。 In this example, since the operator has a pattern similar to the time series data of the degree of abnormality displayed in the abnormality degree graph 200, the time series data of the process value F displayed in the post-statistical processing data graph 240 is the process value. It can be understood that F greatly contributes to the abnormality determination. If no sign of abnormality appears in the time change of the process value F, it can be understood that the process value F does not contribute to the calculation of the degree of abnormality. The operator also displays the time series of the original data before the statistical processing of the process value F displayed on the original data graph 230 and the time series of the statistical data after the statistical processing of the process value F displayed on the post-statistic processing data graph 240. The effectiveness of the statistical processing can also be confirmed by comparing whether or not a signal feature is extracted from the statistical processed data.

 寄与度表示部120は、オペレータが選択したプロセス値が異常度判定にどの程度寄与しているかを寄与率で表示する。図2の寄与度ウィンドウ250は、オペレータが選択したプロセス値Fの寄与度が35%であることを示している。各プロセスの寄与度を選択ウィンドウ260にリストされるプロセス値に関連づけて表示してもよい。選択ウィンドウ260に寄与度を表示することにより寄与度が大きいプロセス値を迅速に見つけることができる。異常検知に用いられた各プロセス値の寄与度を円グラフや棒グラフで表示してもよい。これにより各プロセス値の寄与度の違いや大小を容易に判別することができる。 The contribution level display unit 120 displays a contribution rate indicating how much the process value selected by the operator contributes to the abnormality level determination. The contribution window 250 in FIG. 2 indicates that the contribution of the process value F selected by the operator is 35%. The contribution of each process may be displayed in association with the process values listed in the selection window 260. By displaying the contribution in the selection window 260, a process value having a large contribution can be quickly found. You may display the contribution of each process value used for abnormality detection with a pie chart or a bar graph. Thereby, the difference and magnitude of the contribution of each process value can be easily discriminated.

 異常度の算出に数個のプロセス値が用いられている場合でも、異常が広がると他のプロセス値にもその影響が現れる。そこで、オペレータは、異常判定が誤報でないか確認するために、異常度の算出には直接用いられていないプロセス値を選択ウィンドウ260から選んでそのプロセス値の時系列パターンを表示させ、異常判定が誤報でないことを確認することができる。 Even if several process values are used to calculate the degree of abnormality, if the abnormality spreads, the effect will appear on other process values. Therefore, in order to confirm whether the abnormality determination is not a false alarm, the operator selects a process value that is not directly used for calculation of the abnormality degree from the selection window 260 and displays a time series pattern of the process value. It can be confirmed that there is no false alarm.

 図3は、異常監視装置300による異常監視処理の手順を示すフローチャートである。 FIG. 3 is a flowchart showing a procedure of an abnormality monitoring process performed by the abnormality monitoring apparatus 300.

 異常度表示部100は、異常度の履歴をグラフで表示する(S10)。判定結果表示部110は、システムが正常か異常かを判定した結果を表示する(S12)。選択対象表示部60は、プロセス値のリストにおいて、異常度算出に用いたプロセス値を強調表示する(S14)。 The abnormality degree display unit 100 displays the abnormality degree history in a graph (S10). The determination result display unit 110 displays a result of determining whether the system is normal or abnormal (S12). The selection target display unit 60 highlights the process value used for calculating the degree of abnormality in the process value list (S14).

 プロセスデータ選択部70は、リストから個別に閲覧したいプロセス値をオペレータに選択させる(S16)。元データ表示部80、統計処理後データ表示部90はそれぞれ、オペレータが選択したプロセス値の元データ、統計処理後データを時系列でグラフに表示する(S18)。 The process data selection unit 70 causes the operator to select a process value to be browsed individually from the list (S16). The original data display unit 80 and the post-statistic processing data display unit 90 respectively display the original data of the process value selected by the operator and the post-statistical processing data on a graph in time series (S18).

 オペレータが選択したプロセス値が異常検知に用いられたものである場合(S20のY)、寄与度表示部120は、オペレータが選択したプロセス値が異常度の評価に寄与した度合いを表示する(S22)。ステップS16に戻り、オペレータに別のプロセス値を選択させ、それ以降の処理を繰り返す。 When the process value selected by the operator is used for abnormality detection (Y in S20), the contribution display unit 120 displays the degree of contribution of the process value selected by the operator to the evaluation of the abnormality (S22). ). Returning to step S16, the operator selects another process value, and the subsequent processing is repeated.

 オペレータが選択したプロセス値が異常度算出に用いられたものではない場合(S20のN)、ステップS22をスキップし、ステップS16に戻り、オペレータに別のプロセス値を選択させ、それ以降の処理を繰り返す。 If the process value selected by the operator is not used for calculating the degree of abnormality (N in S20), the process skips step S22, returns to step S16, causes the operator to select another process value, and performs the subsequent processing. repeat.

 本実施の形態の異常監視装置300によれば、異常が通知された場合、オペレータが異常判定に寄与したプロセスデータを個別に選択して閲覧し、異常度の時系列パターンと選択したプロセスデータの時系列パターンを比較して、異常判定結果の妥当性を容易に検証することができる。また、オペレータは、異常検知に直接用いられたプロセス値の時系列パターンだけでなく、異常検知に直接には用いられていないプロセス値についても時系列パターンをグラフに表示させることができるため、異常判定が誤報であるかどうかを確認することができる。このようにして異常監視装置300は、プラントを停止すべきかどうかのオペレータの最終判断を支援することができる。 According to the abnormality monitoring apparatus 300 of the present embodiment, when an abnormality is notified, the operator individually selects and browses the process data that contributed to the abnormality determination, and the time series pattern of the abnormality degree and the selected process data By comparing the time series patterns, the validity of the abnormality determination result can be easily verified. In addition, the operator can display not only the time-series pattern of process values directly used for abnormality detection but also the process value that is not directly used for abnormality detection, so that the time-series pattern can be displayed on the graph. It is possible to confirm whether or not the judgment is a false alarm. In this manner, the abnormality monitoring apparatus 300 can support the operator's final determination as to whether or not to stop the plant.

 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It will be understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, various modifications are possible, and such modifications are within the scope of the present invention. By the way.

 システムの異常監視技術に利用できる。 Can be used for system abnormality monitoring technology.

 10 プロセスデータ取得部、 20 異常検知用データ選択部、 30 統計処理部、 40 異常度算出部、 50 正常/異常判定部、 60 選択対象表示部、 70 プロセスデータ選択部、 80 元データ表示部、 90 統計処理後データ表示部、 100 異常度表示部、 110 判定結果表示部、 120 寄与度表示部、 300 異常監視装置。 10 process data acquisition unit, 20 anomaly detection data selection unit, 30 statistical processing unit, 40 anomaly degree calculation unit, 50 normality / abnormality determination unit, 60 selection target display unit, 70 process data selection unit, 80 original data display unit, 90 Post-statistical data display section, 100 abnormality degree display section, 110 judgment result display section, 120 contribution display section, 300 abnormality monitoring device.

Claims (9)

 システムの異常度の時系列データを表示する異常度表示部と、
 前記システムの状態に関わるプロセス値の時系列データを表示するプロセスデータ表示部とを含むことを特徴とする異常監視装置。
An anomaly display section that displays time series data of the system anomaly,
And a process data display unit that displays time-series data of process values related to the state of the system.
 システムが正常状態または異常状態のいずれであるかの判定結果を表示する判定結果表示部をさらに含むことを特徴とする請求項1に記載の異常監視装置。 The abnormality monitoring apparatus according to claim 1, further comprising a determination result display unit that displays a determination result indicating whether the system is in a normal state or an abnormal state.  前記システムの状態に関わる複数のプロセス値の中から閲覧すべきプロセス値をオペレータに選択させる選択部をさらに含み、
 前記プロセスデータ表示部は、前記オペレータにより選択されたプロセス値の時系列データを切り替えて表示することを特徴とする請求項1または2に記載の異常監視装置。
A selection unit that allows an operator to select a process value to be viewed from a plurality of process values related to the state of the system;
The abnormality monitoring apparatus according to claim 1, wherein the process data display unit switches and displays time-series data of process values selected by the operator.
 前記システムの状態に関わる複数のプロセス値を一覧表示し、前記異常度の評価に用いられたプロセス値については強調表示する選択対象表示部をさらに含む請求項3に記載の異常監視装置。 The abnormality monitoring apparatus according to claim 3, further comprising a selection target display unit that displays a list of a plurality of process values related to the state of the system and highlights the process values used for the evaluation of the degree of abnormality.  前記システムの状態に関わるプロセス値が前記異常度に寄与する度合いを表示する寄与度表示部をさらに含む請求項1から4のいずれかに記載の異常監視装置。 5. The abnormality monitoring apparatus according to claim 1, further comprising a contribution degree display unit that displays a degree that a process value related to the state of the system contributes to the degree of abnormality.  システムの異常度の時系列データを表示する異常度表示ステップと、
 前記システムの状態に関わるプロセス値の時系列データを表示するプロセスデータ表示ステップとを含むことを特徴とする異常監視方法。
An abnormality level display step for displaying time series data of the system abnormality level,
And a process data display step for displaying time-series data of process values related to the state of the system.
 システムの異常度の時系列データを表示する異常度表示ステップと、
 前記システムの状態に関わるプロセス値の時系列データを表示するプロセスデータ表示ステップとをコンピュータに実行させることを特徴とするプログラム。
An abnormality level display step for displaying time series data of the system abnormality level,
A program causing a computer to execute a process data display step of displaying time-series data of process values related to the state of the system.
 システムの制御を支援するために、前記システムの異常時に、前記システムの異常度の時系列データと、前記システムの状態に関わるプロセス値の時系列データとを表示する制御装置。 A control device that displays time-series data of the degree of abnormality of the system and time-series data of process values related to the state of the system in order to support the control of the system.  プロセス系システムの異常時に、前記プロセス系システムの異常度の時系列データと、前記プロセス系システムの状態に関わるプロセス値の時系列データとを表示するプラント。 A plant that displays time series data of the degree of abnormality of the process system and time series data of process values related to the state of the process system when the process system is abnormal.
PCT/JP2019/009434 2018-03-20 2019-03-08 Abnormality monitoring device, abnormality monitoring method, program, control device, and plant Ceased WO2019181572A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020508199A JP7203085B2 (en) 2018-03-20 2019-03-08 Abnormality monitoring device, abnormality monitoring method, program, control device and plant
KR1020207026875A KR102560765B1 (en) 2018-03-20 2019-03-08 Abnormal monitoring device, abnormal monitoring method, program, control device and plant
PH12020500651A PH12020500651A1 (en) 2018-03-20 2020-08-27 Abnormally monitoring device, abnormality monitoring method, program, control device, and plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-053117 2018-03-20
JP2018053117 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181572A1 true WO2019181572A1 (en) 2019-09-26

Family

ID=67987153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009434 Ceased WO2019181572A1 (en) 2018-03-20 2019-03-08 Abnormality monitoring device, abnormality monitoring method, program, control device, and plant

Country Status (5)

Country Link
JP (1) JP7203085B2 (en)
KR (1) KR102560765B1 (en)
PH (1) PH12020500651A1 (en)
TW (1) TWI711911B (en)
WO (1) WO2019181572A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105933A (en) * 2019-12-27 2021-07-26 住友重機械工業株式会社 Apparatus and system
US11415972B2 (en) * 2019-03-13 2022-08-16 Omron Corporation Display system, display method, and non-transitory computer-readable recording medium recording display program
JP2024023993A (en) * 2019-12-27 2024-02-21 住友重機械工業株式会社 equipment and systems
WO2024176634A1 (en) * 2023-02-22 2024-08-29 横河電機株式会社 Information processing device, information processing method, and information processing program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435126B2 (en) * 2010-04-26 2014-03-05 株式会社日立製作所 Time series data diagnostic compression method
JP2016012240A (en) * 2014-06-30 2016-01-21 株式会社日立製作所 Abnormality detection system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212007A (en) * 1975-07-18 1977-01-29 Takao Suzuki Method of producing print plate
JP5813317B2 (en) * 2010-12-28 2015-11-17 株式会社東芝 Process status monitoring device
JP2013008234A (en) * 2011-06-24 2013-01-10 Omron Corp Data comparison device, data comparison method, control program, and recording medium
JPWO2016143072A1 (en) * 2015-03-10 2017-04-27 三菱電機株式会社 Programmable logic controller
JP2017211839A (en) 2016-05-25 2017-11-30 横河電機株式会社 Instrument maintenance device, instrument maintenance method, instrument maintenance program, and recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435126B2 (en) * 2010-04-26 2014-03-05 株式会社日立製作所 Time series data diagnostic compression method
JP2016012240A (en) * 2014-06-30 2016-01-21 株式会社日立製作所 Abnormality detection system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415972B2 (en) * 2019-03-13 2022-08-16 Omron Corporation Display system, display method, and non-transitory computer-readable recording medium recording display program
JP2021105933A (en) * 2019-12-27 2021-07-26 住友重機械工業株式会社 Apparatus and system
JP7423138B2 (en) 2019-12-27 2024-01-29 住友重機械工業株式会社 equipment and systems
JP2024023993A (en) * 2019-12-27 2024-02-21 住友重機械工業株式会社 equipment and systems
JP2024032776A (en) * 2019-12-27 2024-03-12 住友重機械工業株式会社 equipment and systems
JP7557606B2 (en) 2019-12-27 2024-09-27 住友重機械工業株式会社 Apparatus and system
JP7557639B2 (en) 2019-12-27 2024-09-27 住友重機械工業株式会社 Apparatus and system
WO2024176634A1 (en) * 2023-02-22 2024-08-29 横河電機株式会社 Information processing device, information processing method, and information processing program

Also Published As

Publication number Publication date
JPWO2019181572A1 (en) 2021-03-11
TWI711911B (en) 2020-12-01
TW201941010A (en) 2019-10-16
PH12020500651A1 (en) 2021-06-21
KR20200135346A (en) 2020-12-02
JP7203085B2 (en) 2023-01-12
KR102560765B1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
JP6777069B2 (en) Information processing equipment, information processing methods, and programs
WO2019181572A1 (en) Abnormality monitoring device, abnormality monitoring method, program, control device, and plant
JP6394726B2 (en) Operation management apparatus, operation management method, and program
JP6708203B2 (en) Information processing apparatus, information processing method, and program
JP4046309B2 (en) Plant monitoring device
KR101233264B1 (en) Plant and Building Facility Monitoring Apparatus and Technique based on Sector Graphs
JP6969320B2 (en) Monitoring status display device, monitoring status display method, and monitoring status display program
WO2019087508A1 (en) Monitoring target selecting device, monitoring target selecting method and program
TWI632478B (en) Visualization program of manufacturing process, visualizing method of manufacturing process, and visualizing system of manufacturing process
CN107077135B (en) Method and auxiliary system for identifying interference in a device
JP7597578B2 (en) Monitoring device, monitoring method, program, control device, and plant
JP5621967B2 (en) Abnormal data analysis system
WO2018073960A1 (en) Display method, display device, and program
WO2017051562A1 (en) Abnormality diagnosis system
JP2007310665A (en) Process monitoring device
US20240118685A1 (en) Assistance apparatus and method for automatically identifying failure types of a technical system
JP2010276339A (en) Method and device for diagnosis sensor
JP6931615B2 (en) Sensor selection device and sensor selection method
CA3013822A1 (en) Detection of temperature sensor failure in turbine systems
JP6973445B2 (en) Display method, display device, and program
JP7315017B2 (en) Time series data processing method
WO2017164368A1 (en) Monitoring device, monitoring method, and program
KR101067440B1 (en) Cause analysis method of power plant performance failure
JP2023114670A (en) Anomaly detection device, anomaly detection system, anomaly detection method and program
JP6459345B2 (en) Fluctuation data management system and its specificity detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772553

Country of ref document: EP

Kind code of ref document: A1