[go: up one dir, main page]

WO2019177182A1 - Multimedia content search apparatus and search method using attribute information analysis - Google Patents

Multimedia content search apparatus and search method using attribute information analysis Download PDF

Info

Publication number
WO2019177182A1
WO2019177182A1 PCT/KR2018/002911 KR2018002911W WO2019177182A1 WO 2019177182 A1 WO2019177182 A1 WO 2019177182A1 KR 2018002911 W KR2018002911 W KR 2018002911W WO 2019177182 A1 WO2019177182 A1 WO 2019177182A1
Authority
WO
WIPO (PCT)
Prior art keywords
search
attribute
information
unit
multimedia content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2018/002911
Other languages
French (fr)
Korean (ko)
Inventor
์†ก๋ฏผ๊ทœ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEDIAZEN Inc
Original Assignee
MEDIAZEN Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEDIAZEN Inc filed Critical MEDIAZEN Inc
Publication of WO2019177182A1 publication Critical patent/WO2019177182A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/43Querying
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/43Querying
    • G06F16/432Query formulation
    • G06F16/433Query formulation using audio data
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/48Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually

Definitions

  • the present invention relates to an apparatus and method for searching multimedia contents through attribute information analysis. More particularly, the present invention relates to a method of searching a text keyword by acquiring a search word of multimedia content input by speech recognition or text, or performing a similar attribute search. The multimedia information to be searched is output by outputting the search result information of the multimedia contents when performing the text keyword search by determining whether to perform the search.
  • the present invention relates to a multimedia content retrieval apparatus and a retrieval method through attribute information analysis capable of providing multimedia contents having high similarity with the attribute information of the content.
  • a portal company such as the following, and a search engine such as Google
  • the user can search for the latest keyword information related to the keyword of the user's search query, or a specific operator grouping the keywords. Through this, efforts are made to provide information closer to the information desired by the user.
  • the related search word providing service not only facilitates a user's search, but also serves as one piece of information.
  • the prior art 1 relates to a keyword visualization apparatus and a method thereof, comprising: a keyword extracting unit extracting a keyword from data obtained through the Internet; A frequency analysis unit for raising a frequency of occurrence of the keyword each time a keyword is extracted; An association analysis unit for increasing association values between the extracted keywords when a plurality of keywords are extracted from a single data; An information storage unit for storing the extracted keywords and storing occurrence frequency values for each keyword and correlation values between the keywords; And a graph having a plurality of nodes and edges is displayed on the screen by using a plurality of keywords, occurrence frequency values of the keywords, and correlation values between the keywords, and each node of the graph is displayed with keywords.
  • Nodes with high values are displayed in large sizes, and nodes with low keyword occurrence frequencies are displayed in small sizes. If the correlation values between keywords of two nodes connected by edges are high, the edges are displayed with thick edges. If it is low, characterized in that it comprises a visualization processing unit for processing so that the edge is displayed thin, suggests a change in the frequency of occurrence of the keyword and the degree of association between the keywords.
  • patent documents include "a search method and system using the ranking of keywords (patent registration no. 10-1072113, hereinafter referred to asโ€ prior art 2 ").
  • the prior art 2 is a search method and system using an association ranking of a keyword, comprising: an index module for generating an independent index by indexing a property of a keyword and an association index by indexing a correlation between a keyword and another keyword; An association score calculation module that quantifies an association degree between a keyword and another keyword based on an association index as an association score; A rank score calculation module that calculates a rank score according to the use purpose based on the association score and the independent index; And a search module for providing a related keyword for the search term based on the ranking score.
  • Prior Art 2 only discloses a technical idea of extracting a related search word for a keyword, and does not provide general information on the related search.
  • Prior Art 1 provides a graph of ranking among related search terms for a keyword to provide which related search terms for a search term is the most frequently used.
  • the related art automatically searches for the highest frequency among related search terms. It is not much different from the known technology ranking at the top of the related search word list.
  • search systems equipped with artificial intelligence-based can be divided into crawler-based, directory-based, hybrid search, and meta-search method in terms of search method.
  • the crawler-based retrieval system downloads and stores documents on the web in its database using an automated agent program called spider, crawler, webbot, and the like.
  • the user's search request is handled by finding the search keyword in the index of the stored web document and providing a link to that document.
  • web sites are classified and stored in a predetermined directory by a person, and the stored websites are ranked by a predefined rule.
  • the user's search request is processed by grouping the web documents found by keyword matching by directory.
  • the crawler method and the directory method are used together and generally provide a better search result to the user.
  • meta-search system utilizes search algorithms and evaluation criteria of other search systems.
  • search results of different search systems are merged and provided to the user.
  • Metacrawler system is a typical example.
  • a first object of the present invention is to perform a text keyword search by acquiring a search word of multimedia content input by speech recognition or text, or similar property search.
  • the search result information of the multimedia content is output when the text keyword search is performed and the search result information of the multimedia content having the similar property is output.
  • the second object of the present invention is to provide the similarity matching property analysis unit 530 to the attribute information and the multimedia content attribute assignment unit 520 for the search word stored in the search term attribute value information DB 517 when performing the similar attribute search. Similarity matching analysis is performed with the multimedia content attribute information assigned by the present invention, thereby providing search result information of the multimedia content having attributes similar to the intention of the search word (question).
  • the third object of the present invention is to provide a content crawling module 522, to collect a plurality of multimedia content information from the content server 560 to store in the content storage DB to extend the operation range of the attribute information, the content attribute allocation model
  • the module 524 By providing the module 524, the attribute information is allocated to each multimedia content stored in the content storage DB 523 and provided to the content information search module.
  • the multimedia content retrieval apparatus through attribute information analysis
  • a search start unit 100 for acquiring a search word of multimedia content input by voice recognition or text and providing search execution request information to the attribute search execution determining unit 200;
  • the search execution request information from the search start unit 100 it is determined whether to perform a text keyword search or a similar attribute search, and as a result of the determination, the text keyword search is performed when the text keyword search is performed.
  • the attribute search decision unit 200 which provides the text keyword search request information to the unit 300, and provides the similar property search request information to the attribute similarity search unit 500 when performing the similar attribute search as a result of the determination; ,
  • a text keyword search unit 300 which performs a text keyword search when obtaining the text keyword search request information provided from the attribute search performing determination unit, and provides the search result information to the text keyword result output unit;
  • a text keyword result output unit 400 for outputting search result information of the text keyword provided from the text keyword search unit;
  • An attribute similarity search means 500 which performs a similar attribute search when obtaining similar attribute search request information provided from the attribute search execution determination unit and provides the search result information to the attribute similarity search result output unit 500;
  • an attribute similarity search result output unit 600 for outputting search result information of the similar attribute provided from the attribute similarity search unit 500.
  • the multimedia content retrieval method by analyzing the attribute information
  • the attribute search execution unit 200 obtains the search execution request information from the search start unit 100, it is determined whether to perform a text keyword search or a similar attribute search.
  • the text keyword search request information is provided to the text keyword search unit 300, and as a result of the determination, when the similar property search is performed, the similar property search request information is provided to the attribute similarity search unit 500.
  • Attribute search determination step (S200) is performed when the attribute search execution request information is performed.
  • the text keyword search unit 300 obtains the text keyword search request information provided from the attribution search execution determination unit 200, the text keyword search unit performs a text keyword search and provides the search result information to the text keyword result output unit. Step S300,
  • the attribute similarity search result output unit 600 includes an attribute similarity search result output step S600 for outputting search result information of similar attributes provided from the attribute similarity search unit 500.
  • Search result of multimedia content is output when performing a text keyword search by determining whether to perform a text keyword search, and output search result information of multimedia content having a similar property when performing a similar property search.
  • the present invention provides an effect of providing a multimedia content search result using a keyword method and of providing a multimedia content search result most similar to a search word (question) that a user wants to search through a similar property search.
  • the amount of information of the multimedia content changes over time, and accordingly, the attributes of a specific object change from time to time.
  • the multimedia content attribute assignment unit By reflecting this variably by the multimedia content attribute assignment unit, various multimedia contents that change in real time may be reflected in a search. Will be effective.
  • FIG. 1 is an overall configuration diagram schematically showing an apparatus for retrieving multimedia contents through attribute information analysis according to a first embodiment of the present invention.
  • FIG. 2 is an exemplary view in which a movie of a conventional similar atmosphere is not searched.
  • FIG. 3 is an overall block diagram of an apparatus for retrieving multimedia contents through attribute information analysis according to a first embodiment of the present invention.
  • FIG. 4 is an exemplary view showing a search result output when a text keyword is searched.
  • FIG. 5 is an exemplary view of a similar property search result output through a multimedia content search apparatus through analysis of property information according to a first embodiment of the present invention.
  • FIG. 6 is a block diagram of attribute similarity retrieval means of a multimedia content retrieval apparatus by analyzing attribute information according to the first embodiment of the present invention
  • FIG. 7 is a block diagram of a keyword attribute analysis unit of a multimedia content retrieval apparatus through attribute information analysis according to the first embodiment of the present invention.
  • FIG. 8 is a block diagram of a multimedia content attribute assignment unit of the multimedia content retrieval apparatus through attribute information analysis according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a multimedia content retrieval method through attribute information analysis according to a first embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating an attribute similarity search step of a multimedia content search method through analysis of attribute information according to a first embodiment of the present invention
  • first and second may be used to describe various components, but the components may not be limited by the terms.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a component When a component is referred to as being connected or connected to another component, it may be understood that the component may be directly connected to or connected to the other component, but there may be other components in between. .
  • an apparatus for retrieving multimedia contents through attribute information analysis In accordance with a first aspect of the present invention, there is provided an apparatus for retrieving multimedia contents through attribute information analysis.
  • a search start unit 100 for acquiring a search word of multimedia content input by voice recognition or text and providing search execution request information to the attribute search execution determining unit 200;
  • the search execution request information from the search start unit 100 it is determined whether to perform a text keyword search or a similar attribute search, and as a result of the determination, the text keyword search is performed when the text keyword search is performed.
  • the attribute search decision unit 200 which provides the text keyword search request information to the unit 300, and provides the similar property search request information to the attribute similarity search unit 500 when performing the similar attribute search as a result of the determination; ,
  • a text keyword search unit 300 which performs a text keyword search when obtaining the text keyword search request information provided from the attribute search performing determination unit, and provides the search result information to the text keyword result output unit;
  • a text keyword result output unit 400 for outputting search result information of the text keyword provided from the text keyword search unit;
  • An attribute similarity search means 500 which performs a similar attribute search when obtaining similar attribute search request information provided from the attribute search execution determination unit and provides the search result information to the attribute similarity search result output unit 500;
  • It is characterized in that it comprises a property similarity search result output unit 600 for outputting the search result information of the similar property provided from the attribute similarity search unit 500.
  • a search word attribute analyzer 510 for analyzing linguistic attribute information included in a search word of multimedia content input through speech recognition or text;
  • a multimedia content attribute allocator 520 for acquiring and storing multimedia contents from the content server 560 and allocating attribute information to the stored multimedia contents;
  • a similarity matching analysis unit 530 for performing a similarity matching analysis of multimedia contents included in the multimedia contents list information
  • a similarity candidate group extracting unit 540 for sequentially extracting multimedia contents according to candidate group numbers from multimedia contents having the highest similarity with reference to a preset candidate group number;
  • a similarity reference multimedia content sorting unit 550 for sorting the multimedia contents extracted according to the number of candidate groups according to similarity and providing the sorted multimedia contents to the attribute similarity search result output unit 600. do.
  • the machine learning model module 512 provides information on requesting interpretation of linguistic attributes included in a search word of multimedia content input through speech recognition or text, and provides linguistic attribute information included in a search word interpreted from the machine learning model module.
  • Machine learning model module for providing linguistic attribute information interpreted as natural language processing module by interpreting linguistic attributes included in search term when obtaining information on interpretation of linguistic attributes included in search term from natural language processing module. 512);
  • a knowledge information DB 514 that stores attribute type information refined into attribute types that can be matched with attribute information of multimedia content
  • the probability model calculation request information is provided to the attribute model module 516, and the probability value calculated from the attribute model module 516 is obtained to provide the search term.
  • a keyword attribute value conversion module 515 for converting the attribute value into an attribute value and providing the result to the keyword attribute value information DB 517;
  • An attribute model module 516 for calculating a probability value through language modeling when obtaining the probability value calculation request information from the keyword attribute value conversion module 515 and providing the calculated probability value to the keyword attribute value conversion module 515;
  • a search word attribute value information DB 517 that stores the attribute value for the search word provided by the search word attribute value conversion module 515.
  • a content interlocking module 521 for providing multimedia content information to the content crawling module 522 in association with the content server 560;
  • a content crawling module 522 for collecting a plurality of multimedia content information provided from the content interworking module 521 and storing the multimedia content information in a content storage DB to expand the operation range of the attribute information;
  • a content storage DB 523 for storing multimedia content information provided from the content crawling module 522 and attribute information allocated to each multimedia content
  • a content property information analysis module 525 for analyzing the property information of each multimedia content assigned by the content property assignment model module 524 and providing the same to the content information search module;
  • the attribute information of each multimedia content analyzed by the content attribute information analysis module 525 is provided to the similarity matching property analysis unit 530, and similar property information is similar to the linguistic property information of the search word from the similarity matching property analysis unit 530.
  • the similarity matching analysis may be performed using the attribute information of the search word stored in the search term attribute value information DB 517 and the multimedia content attribute information allocated by the multimedia content attribute assigning unit 520.
  • a method for retrieving multimedia contents by analyzing attribute information includes:
  • the attribute search execution unit 200 obtains the search execution request information from the search start unit 100, it is determined whether to perform a text keyword search or a similar attribute search.
  • the text keyword search request information is provided to the text keyword search unit 300, and as a result of the determination, when the similar property search is performed, the similar property search request information is provided to the attribute similarity search unit 500.
  • Attribute search determination step (S200) is performed when the attribute search execution request information is performed.
  • the text keyword search unit 300 obtains the text keyword search request information provided from the attribution search execution determination unit 200, the text keyword search unit performs a text keyword search and provides the search result information to the text keyword result output unit. Step S300,
  • the attribute similarity search result output unit 600 includes an attribute similarity search result output step S600 for outputting search result information of similar attributes provided from the attribute similarity search unit 500.
  • a multimedia content attribute assignment step (S520) of the multimedia content attribute assignment unit 520 acquiring and storing multimedia content from the content server 560 and allocating attribute information to the stored multimedia content;
  • the similarity matching property analysis unit 530 provides the multimedia content property assignment unit 520 with multimedia content request information including property information similar to the linguistic property information of the search word, and the multimedia content from the multimedia content property assignment unit 520.
  • Similarity-based multimedia content sorting unit 550 sorts the multimedia contents extracted according to the number of candidate groups according to similarity, and provides similarity-based multimedia content sorting step to provide the sorted multimedia contents to the attribute similarity search result output unit 600.
  • S550 characterized in that it comprises a.
  • FIG. 1 is an overall configuration diagram schematically showing an apparatus for retrieving multimedia contents through attribute information analysis according to a first embodiment of the present invention.
  • the apparatus 1000 for retrieving multimedia contents through the analysis of attribute information of the present invention obtains and stores multimedia contents from the content server 560, and allocates and manages attribute information to the stored multimedia contents. to be.
  • the multimedia content search apparatus 1000 through attribute information analysis acquires a search word of multimedia content input by voice recognition or text, and determines whether to perform a text keyword search or a similar property search.
  • the search result information of the multimedia content is output.
  • the conventional text keyword based search has a problem of being searched again with the same title, and a movie having a similar name and a completely different content is recommended. There was a serious problem that the movies were not searched at all.
  • the user cannot search for a movie that has a similar mood, emotion, or the like.
  • the present invention by providing the above-described text keyword-based search function, by providing a structural feature for performing a similar property search, the search results of multimedia content having similar properties when performing a similar property search By outputting the information, it is possible to provide multimedia contents having high similarity to the attribute information of the multimedia contents to be searched.
  • the present invention through the configuration as described above, to determine whether to proceed to the existing keyword search or similar property search and the attributes of each multimedia content (warm, touching, fun, etc.)
  • the similarity between the constructive feature that assigns the attribute value of the searched multimedia through the constructive feature and natural language processing (data crawling, statistical modeling, etc.) and the comparable feature and attribute information that are numerically calculated (language modeling) It provides a constructive feature for recommending high multimedia content (comparison value).
  • FIG. 3 is a block diagram of an apparatus for retrieving multimedia contents through attribute information analysis according to a first embodiment of the present invention.
  • the present invention provides a multimedia content search apparatus 1000 through attribute information analysis.
  • the search start unit 100, the attribute search execution determination unit 200, the text keyword search unit 300, and the text keyword result are shown. It comprises an output unit 400, the attribute similarity search means 500, the attribute similarity search result output unit 600.
  • the present invention provides a text keyword type search and an attribute similarity type search.
  • the search start unit 100 obtains a search word of multimedia content input through voice recognition or text and provides search execution request information to the attribute search execution determining unit 200.
  • the search start unit includes a natural language processing module for speech recognition, and extracts a user's command target value from the speech recognition result text processed by the natural language processing module.
  • Embedded Natural Language Understanding technology incorporates a natural language processing module using a rule-based algorithm or statistical model inside an electronic device, so that the user's final goal in speech recognition text is a command. It means the method of automatically extracting the intention (Intention, Goal) and the specific named object, it is to extract the command target value of the user from the speech recognition result text processed by the natural language processing module.
  • the search start unit may configure a voice recognition engine, through which the function of extracting a recognition result value by recognizing a result close to a word or sentence previously input as a command based on the extracted command target value of the user. Done.
  • speech recognition is performed based on recognition grammars that can be understood by a recognizer, and a list of recognition targets is determined, and only the target list has a structure that can be output as a recognition result.
  • the search start unit 100 obtains a search word of the multimedia content input through voice recognition or text and provides the search execution request information to the attribute search execution determining unit 200.
  • a user inputs a movie such as a love act by voice or text, it can be referred to as a search word for requesting multimedia content by referring to a love act, a movie, and the like. It will be provided to the search performance determination unit 200.
  • the attribute search determining unit 200 determines whether to perform a text keyword search or a similar attribute search when obtaining the search execution request information from the search start unit 100.
  • the determination of whether to perform a text keyword search or a similar property search is performed in at least one of a first mode for determining according to a service domain and a second mode for analyzing and determining a sentence input by a search word. It is characterized by applying the mode.
  • the first mode or the second mode may be set in advance by an administrator.
  • the first mode when the first mode is set to determine whether to perform a text keyword search or similar property search, whether to perform a text keyword search with reference to the service domain address or similar property search is performed. Is determined.
  • a text keyword search is set for a domain address of 'www.naver.com'
  • a similar attribute search is set for a domain address of 'www.google.com'.
  • a sentence input as a search word is analyzed to determine whether a keyword corresponding to a similar attribute search exists.
  • a search word that is intended to search for similar attributes, such as 'same', 'similar', 'same', etc., it may be understood that this is to perform a similar attribute search.
  • the attribution search performing decision unit 200 provides the text keyword search request information to the text keyword search unit 300 when the text keyword search is performed.
  • the text keyword search unit 300 when the text keyword search unit 300 obtains the text keyword search request information provided from the attribute search performing determination unit, the text keyword search unit 300 performs a text keyword search by referring to the text keyword 'love actual', The search result information including 'Love Actually' is provided to the text keyword result output unit.
  • the text keyword result output unit 400 outputs search result information of the text keyword provided from the text keyword search unit.
  • the present invention is characterized by providing a similar attribute search method while providing a general text keyword search method.
  • the attribute search performing decision unit 200 provides similar attribute search request information to the attribute similarity search unit 500 when performing the similar attribute search.
  • the similarity property search is performed by the property similarity search unit 500. It is to provide the request information.
  • the attribute similarity search means 500 performs a similar attribute search when obtaining the similar attribute search request information provided from the attribute search determining unit 200, and provides the search result information to the attribute similarity search result output unit.
  • the attribute similarity search result output unit 600 outputs the search result information of the similar attribute provided from the attribute similarity search unit 500.
  • a similar property search is performed through the property similarity search means 500, and the search result is provided to the property similarity search result output unit 600 and displayed on the screen. Will print.
  • the attribute similarity search means 500 includes a keyword attribute analysis unit 510, a multimedia content attribute assignment unit 520, a similarity matching property analysis unit 530, a similarity candidate group extraction unit 540, and similarity degree.
  • the reference multimedia content alignment unit 550 is included.
  • the property refers to an inherent characteristic of the object, and the property itself is not meaningful. However, when an object is composed of related properties, one important expression can be expressed, and the property is generally meaningful data. It is recognized as the smallest logical unit of and used for database processing.
  • the similar property is used to search for multimedia content information having the highest similarity with a search word (question or query word).
  • the keyword attribute analyzer 510 analyzes linguistic attribute information included in a keyword of a multimedia content input through speech recognition or text.
  • a linguistic meaning included in a search word such as a movie such as a love reality is analyzed, which means to analyze linguistic attribute information.
  • attribute information such as 'warmness, inspiration, and fun' is assigned to the love reality, it is possible to search for a movie having the above-mentioned attribute information 'warmness, inspiration and fun'.
  • the multimedia content attribute assignment unit 520 acquires and stores multimedia content from the content server 560 and allocates attribute information to the stored multimedia content.
  • the content information is gathered to determine what attribute information the multimedia contents have.
  • the content information is crawled by a connected content server using an external network or communication, and the attribute information is assigned through linguistic refinement.
  • the similarity matchability analysis unit 530 provides the multimedia content attribute assignment unit 520 with multimedia content request information including attribute information similar to linguistic attribute information of a search word.
  • multimedia attribute information such as 'movie', 'love truth', and 'like', which are the linguistic attribute information of the search word
  • multimedia content attribute information such as 'warm, touching, fun'
  • Multimedia content request information including attribute information similar to โ€œim, fun,โ€ and the like
  • Similarity matching analysis of multimedia contents included in the content list information is performed.
  • the similarity matching analysis described above is content to be provided to the user by using various similarity calculation formulas such as Euclidean distance formula and vector space model, which are frequently used to search for similarity in information retrieval theory. Can be selected.
  • the most similar content with the keyword of the content may be searched and the contents may be sorted in the order of high similarity.
  • the number of contents derived as a result of the similarity search may be determined by sorting an upper predetermined number, and the predetermined number may be arbitrarily set by the user according to a situation.
  • a is a keyword inputted by a user to search for content, and there are n keywords in total up to a 1 , a 2 , a 3 ... a n , and the total n keywords are a (a 1 , a 2 , a 3 ... a n)
  • b is the content
  • the total n keywords are b (b 1 , When b 2 , b 3 ... b n)
  • the Euclidean distance formula can be expressed as follows.
  • vector space model can be expressed as follows.
  • Equation 2 the closer the value derived through Equation 2 is to 1, the higher the similarity, and the closer to 0, the lower the similarity may be determined.
  • the similarity between the search keyword and the keyword generated for each content may be inspected by Equation 1 and Equation 2 to sort the contents in the order of high similarity.
  • the similarity candidate group extracting unit 540 extracts the multimedia contents according to the number of candidate groups sequentially from the multimedia contents having the highest similarity with reference to a preset candidate group number.
  • the multimedia content is sequentially extracted according to the number of candidates, and four candidate groups of 'if only, romantic holiday, notting hill, and work-to-member' are extracted.
  • the similarity-based multimedia content sorting unit 550 sorts the multimedia contents extracted according to the number of candidate groups according to the similarity, and provides the sorted multimedia contents to the attribute similarity search result output unit 600.
  • the Euclidean distance formula is The smaller the similarity value is, the higher the similarity is. Therefore, when the content is rearranged in the order of high similarity, the information is sorted in order of work-to-member, romantic holiday, if only, and notting hill, and the corresponding information is returned to the attribute similarity search result output unit 600. Will be provided to the screen.
  • the search term attribute analysis unit 510 includes a natural language processing module 511, a machine learning model module 512, a search term attribute assignment module 513, a knowledge information DB 514, a search term attribute value conversion module 515, and an attribute model. Module 516, search word attribute value information DB (517).
  • the natural language processing module 511 provides the machine learning model module 512 to provide information on requesting interpretation of linguistic attributes included in a search word of multimedia content input through speech recognition or text, and a search word interpreted from the machine learning model module.
  • the linguistic attribute information included in the search word attribute assignment module 513 is provided.
  • the machine learning model module 512 obtains request information for interpretation of linguistic attributes included in the search word from the natural language processing module, the linguistic language interpreted by the natural language processing module is interpreted. Function to provide attribute information.
  • the linguistic attribute information such as 'Love Actually, Movie,' It is provided to the allocation module (513).
  • the knowledge information DB 514 stores attribute type information refined into a type of attribute that can be matched with attribute information of multimedia content.
  • attribute information such as 'warm, touching, fun, romance' as attribute information of a movie called love act
  • 'movie' as an attribute type that can be matched and stored.
  • the type of attribute may be used to find information, a website, a news / region / shopping, a specific field of content, or a multimedia content.
  • the search word attribute assignment module 513 obtains the linguistic attribute information included in the search word provided by the natural language processing module, extracts the attribute type information from the knowledge information DB based on the obtained linguistic attribute information, and then searches the attribute for the search term. And assign the attribute information on the assigned keyword to the keyword attribute value conversion module 515.
  • the attribute type information 'movie' is extracted from the knowledge information DB, and the attribute information of the search term 'warmness, emotion, fun, romance' 'And the like are provided to the keyword attribute value conversion module 515.
  • the search word attribute value conversion module 515 provides the probability model calculation request information to the attribute model module 516 when obtaining the attribute information for the search word provided from the search word attribute assignment module 513.
  • the attribute model module 516 calculates a probability value through language modeling when obtaining the probability value calculation request information from the keyword attribute value conversion module 515, and converts the calculated probability value to the keyword attribute value conversion module 515. Will be provided.
  • the language modeling refers to an algorithm for finding regularity about a grammar, phrase, word, etc. in a natural language and increasing the accuracy of an object to be searched using the regularity.
  • a commonly used method is a statistical modeling method for calculating a probability value, which is a method of expressing a language rule as a probability in a large corpus and restricting the search area through the probability value.
  • N-Gram which is a statistical language model in most language modeling applications, is known as the most successful language model, and the present invention preferably uses N-Gram.
  • the keyword attribute value conversion module 515 obtains the probability value calculated from the attribute model module 516, converts the probability value into an attribute value for the keyword, and provides the result to the keyword attribute value information DB 517.
  • the attribute information is converted into attribute values for each attribute information and stored in the query attribute value information DB 517.
  • the attribute information for the search word is also stored.
  • the similarity matching property analysis unit 530 has similarity with the attribute values for various search terms and contents provided by the multimedia content attribute assignment unit 520 described below. Will be analyzed.
  • the similarity matching analysis unit 530 performs similarity matching analysis using the attribute information on the search word stored in the search word attribute value information DB 517 and the multimedia content property information allocated by the multimedia content attribute assigning unit 520. will be.
  • the similarity matching analysis unit 530 obtains the multimedia content list information and performs the similarity matching analysis.
  • the multimedia content attribute assignment unit 520 includes a content linkage module 521, a content crawling module 522, a content storage DB 523, a content attribute assignment model module 524, a content attribute information interpretation module 525, and a content. And an information retrieval module 526.
  • the amount of information of multimedia contents changes with the passage of time, and accordingly, the attributes of a specific object change from time to time, and various multimedia contents that are changed in real time are searched by reflecting multimedia contents variably through the multimedia content attribute assignment unit as described above. The effect can be reflected in.
  • the content interlocking module 521 interoperates with the content server 560 to provide the multimedia content information to the content crawling module 522, and the content crawling module 522 is provided from the content interlocking module 521. Collecting a plurality of multimedia content information provided and stored in the content storage DB to extend the operation range of the attribute information.
  • the information delivered from the content server becomes a resource of the content property model through the content interworking module.
  • the multimedia content is collected through the content crawling module 522 to expand the operation range of the attribute information.
  • the content property assignment model module 524 obtains each multimedia content stored in the content storage DB 523 and allocates property information to each multimedia content.
  • the content storage DB 523 stores multimedia content information provided from the content crawling module 522 and attribute information allocated to each multimedia content.
  • it plays a role of assigning attribute information to each multimedia content, for example, assigning attribute information of 'calm and touching' to A music.
  • the content attribute information analysis module 525 interprets the attribute information of each multimedia content assigned by the content attribute assignment model module 524 and provides the same to the content information search module.
  • a content information search module requests a 'movie' that provides 'warmness, inspiration, fun, romance' corresponding to a search word
  • the corresponding content is interpreted, and each of the analyzed multimedia contents is analyzed.
  • the attribute information is provided to the content information search module 526.
  • the content information retrieval module 526 is to provide the similarity matching property analysis unit 530 with attribute information of each multimedia content analyzed by the content property information analysis module 525.
  • the multimedia content request information including attribute information similar to the linguistic attribute information of the search word is obtained from the similarity matching property analysis unit 530, the multimedia content list including the similar attribute information from the content storage DB 523.
  • the information is requested to the content attribute information analysis module 525, the multimedia content list information including similar attribute information is obtained from the content storage DB 523, and provided to the similarity matching property analysis unit 530.
  • the multimedia contents list information such as 'If Only, Romantic Holiday, Notting Hill, Work to Remember' including similar attribute information is stored in the content storage DB. It is extracted from 523.
  • FIG. 9 is a flowchart illustrating a multimedia content searching method through attribute information analysis according to a first embodiment of the present invention.
  • the multimedia content search method through attribute information analysis includes: a search start step (S100), an attribute search execution determination step (S200), a text keyword search step (S300), and a text keyword result output step (S400). ), Attribute similarity search step (S500), and attribute similarity search result output step (S600).
  • the search start step (S100) is to obtain the search request request information of the multimedia content input by voice recognition or text through the search start unit 100 to provide the search execution request information to the attribute search determination unit 200. Done.
  • the search information is provided by extracting text information and providing search request information.
  • the search start unit includes a natural language processing module for voice recognition, and processes the voice processed by the natural language processing module.
  • the command target value of the user is extracted from the recognition result text.
  • the attribute search determination step (S200) when the attribute search execution determination unit 200 obtains the search execution request information from the search start unit 100, whether to perform a text keyword search or perform a similar attribute search If it is determined whether or not to perform, and as a result of the determination, the text keyword search unit 300 provides the text keyword search request information when performing the text keyword search, and when the similar attribute search is performed, the attribute similarity search unit ( 500), similar property search request information is provided.
  • the text keyword search request information is provided to the text keyword search unit 300.
  • the text keyword search step (S300) performs a text keyword search when the text keyword search unit 300 obtains the text keyword search request information provided from the attribution search execution determination unit 200, and retrieves the search result information. It is provided to the text keyword result output unit.
  • the text keyword result output unit 400 outputs search result information of the text keyword provided from the text keyword search unit 300.
  • a text keyword search is performed by referring to a text keyword called 'love actual', and search result information including 'love actual' is provided to the text keyword result output unit.
  • the attribute search decision unit 200 when the attribute search decision unit 200 performs a similar attribute search as a result of the determination, it provides the similarity attribute search request information to the attribute similarity search unit 500, in which the attribute similarity search step (S500)
  • the similarity similarity search means 500 obtains the similar property search request information provided from the attribution search execution decision unit 200, the similar property search is performed and the search result information is provided to the property similarity search result output unit. .
  • the attribute similarity search result output unit 600 outputs search result information of similar attributes provided from the attribute similarity search unit 500.
  • a similar property search is performed through the property similarity search means 500, and the search result is provided to the property similarity search result output unit 600 and displayed on the screen. Will print.
  • FIG. 10 is a flowchart illustrating an attribute similarity retrieval step of a multimedia content retrieval method through attribute information analysis according to a first embodiment of the present invention.
  • the attribute similarity search step (S500), the keyword attribute analysis step (S510), multimedia content attribute assignment step (S520), similarity matching property analysis step (S530), similarity candidate group extraction step (540), Similarity-based multimedia content sorting step (S550) is included.
  • the search word attribute analyzer 510 analyzes linguistic attribute information included in a search word of multimedia content input by voice recognition or text.
  • attribute information such as 'warmness, inspiration, and fun' is assigned to the love reality, it is possible to search for a movie having the above-mentioned attribute information 'warmness, inspiration and fun'.
  • the multimedia content attribute assignment unit 520 acquires and stores the multimedia content from the content server 560, and assigns attribute information to the stored multimedia content.
  • the content information is gathered to determine what attribute information the multimedia contents have.
  • the content information is crawled by a connected content server using an external network or communication, and the attribute information is assigned through linguistic refinement.
  • the similarity matching property analysis unit 530 provides the multimedia content property assignment unit 520 with the multimedia content request information including the similar property information in the linguistic property information of the search word.
  • the multimedia content list information is obtained from the content property allocator 520, and similarity matching analysis of multimedia contents included in the obtained multimedia content list information is performed.
  • multimedia attribute information such as 'movie', 'love truth', and 'like', which are the linguistic attribute information of the search word
  • multimedia content attribute information such as 'warm, touching, fun'
  • Multimedia content request information including attribute information similar to โ€œim, fun,โ€ and the like
  • Similarity matching analysis of multimedia contents included in the content list information is performed.
  • the similarity candidate group extracting unit 540 extracts the multimedia contents according to the candidate group numbers sequentially from the multimedia contents having the highest similarity with reference to a preset candidate group number.
  • the multimedia content is sequentially extracted according to the number of candidates, and four candidate groups of 'if only, romantic holiday, notting hill, and work-to-member' are extracted.
  • the similarity-based multimedia content sorter 550 sorts the multimedia contents extracted according to the candidate group number according to the similarity, and arranges the sorted multimedia contents in the attribute similarity search result output unit ( 600).
  • the Euclidean distance formula is The smaller the similarity value is, the higher the similarity is. Therefore, when the content is rearranged in the order of high similarity, the information is sorted in order of work-to-member, romantic holiday, if only, and notting hill, and the corresponding information is returned to the attribute similarity search result output unit 600. Will be provided to the screen.
  • the multimedia content is obtained when a text keyword search is performed by determining whether to perform a text keyword search or a similar property search by acquiring a search word of the multimedia content input through speech recognition or text. Outputs the search result information of and outputs the search result information of the multimedia contents having the similar property when performing the similar property search.
  • the multimedia content search result most similar to the search word (question) that the user wants to search through is effective.
  • similarity matching analysis when performing a similar attribute search, similarity matching analysis is performed using the attribute information of the search term stored in the search term attribute information DB and the multimedia content attribute information assigned by the multimedia content attribute assignment unit.
  • search result information of multimedia contents having attributes similar to the intention of the search term questions
  • it provides multimedia contents that match the attributes (atmosphere, emotion, etc.) desired by the user, thereby increasing the reliability of the search. Will be effective.
  • Determining whether to perform a text keyword search or a similar property search by acquiring a search word of multimedia content input through speech recognition or text through an apparatus and method for searching multimedia contents through analyzing attribute information according to the present invention. Outputting the search result information of the multimedia content when performing a text keyword search, and outputting the search result information of the multimedia content having a similar property when performing a similar property search, thereby generating multimedia content using a general search keyword method. It is also highly applicable to the industry through providing a multimedia content search result that is most similar to a search word (question) that a user wants to search through the effect of providing a search result and similar property search.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Library & Information Science (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

The present invention relates to a multimedia content search apparatus and search method using attribute information analysis and, more specifically, to a multimedia content search apparatus and search method using attribute information analysis, which acquire a multimedia content search word inputted through voice recognition or text so as to determine whether to perform a text keyword search or a similar attribute search, thereby outputting search result information of multimedia content when the text keyword search is performed and outputting search result information of multimedia content having similar attributes when the similar attribute search is performed, and thus are capable of providing pieces of multimedia content having high similarity to attribute information of multimedia content to be searched for.

Description

์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜ ๋ฐ ๊ฒ€์ƒ‰๋ฐฉ๋ฒ•Multimedia content retrieval device and search method through attribute information analysis

๋ณธ ๋ฐœ๋ช…์€ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜ ๋ฐ ๊ฒ€์ƒ‰๋ฐฉ๋ฒ•์— ๊ด€ํ•œ ๊ฒƒ์œผ๋กœ์„œ, ๋”์šฑ ์ƒ์„ธํ•˜๊ฒŒ๋Š” ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•จ์œผ๋กœ์จ, ๊ฒ€์ƒ‰ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด์™€ ์œ ์‚ฌ๋„๊ฐ€ ๋†’์€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜ ๋ฐ ๊ฒ€์ƒ‰๋ฐฉ๋ฒ•์— ๊ด€ํ•œ ๊ฒƒ์ด๋‹ค.The present invention relates to an apparatus and method for searching multimedia contents through attribute information analysis. More particularly, the present invention relates to a method of searching a text keyword by acquiring a search word of multimedia content input by speech recognition or text, or performing a similar attribute search. The multimedia information to be searched is output by outputting the search result information of the multimedia contents when performing the text keyword search by determining whether to perform the search. The present invention relates to a multimedia content retrieval apparatus and a retrieval method through attribute information analysis capable of providing multimedia contents having high similarity with the attribute information of the content.

๊ฒ€์ƒ‰ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋„ค์ด๋ฒ„๋‚˜ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํฌํ„ธ ์—…์ฒด, ๊ทธ๋ฆฌ๊ณ  ๊ตฌ๊ธ€๊ณผ ๊ฐ™์€ ๊ฒ€์ƒ‰ ์—”์ง„์˜ ๊ฒฝ์šฐ, ์‚ฌ์šฉ์ž์˜ ๊ฒ€์ƒ‰์–ด์˜ ํ‚ค์›Œ๋“œ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ, ํ•ด๋‹น ํ‚ค์›Œ๋“œ๊ฐ€ ๊ฐ€์ง€๋Š” ์ตœ๊ทผ์˜ ์ด์Šˆํ™”๋œ ์ •๋ณด๋‚˜, ์ด๋“ค ํ‚ค์›Œ๋“œ๋“ค์„ ๋ฌถ๊ณ  ์žˆ๋Š” ํŠน์ • ์—ฐ์‚ฐ์ž๋ฅผ ํ†ตํ•ด, ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์ •๋ณด์— ๋ณด๋‹ค ๊ฐ€๊นŒ์šด ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์ด๊ณ  ์žˆ๋‹ค.In the case of Naver, a portal company such as the following, and a search engine such as Google, the user can search for the latest keyword information related to the keyword of the user's search query, or a specific operator grouping the keywords. Through this, efforts are made to provide information closer to the information desired by the user.

๊ฒ€์ƒ‰ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ด๋“ค ์—…์ฒด๋“ค์€ ์‚ฌ์šฉ์ž๊ฐ€ ์ž…๋ ฅํ•˜๋Š” ํ‚ค์›Œ๋“œ์—๋งŒ ์ˆ˜๋™์ ์œผ๋กœ ๋ฐ˜์‘ํ•˜์ง€ ์•Š๊ณ , ๋‹ค์ˆ˜์˜ ์‚ฌ์šฉ์ž๋“ค์ด ์ž…๋ ฅํ•˜๋Š” ๋ณต์ˆ˜ ๊ฐœ์˜ ํ‚ค์›Œ๋“œ ํ˜น์€ ์ˆœ์ฐจ์ ์œผ๋กœ ์ž…๋ ฅํ•˜๋Š” ํ‚ค์›Œ๋“œ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ๋ถ€์—ฌํ•˜์—ฌ, ์—ฐ๊ด€์–ด๋กœ ์ฑ„ํƒํ•œ ํ›„ ํŠน์ • ํ‚ค์›Œ๋“œ๋งŒ์„ ์ž…๋ ฅํ•˜์—ฌ๋„, ์—ฐ๊ด€๋œ ํ‚ค์›Œ๋“œ๋ฅผ ์ œ๊ณตํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ์„œ๋น„์Šค๋ฅผ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค.These companies that provide a search service do not respond to only the keywords entered by the user, but give associations between a plurality of keywords entered by a plurality of users or keywords entered sequentially. In addition, a service providing a related keyword has been developed.

์ด๋Ÿฌํ•œ ์—ฐ๊ด€ ๊ฒ€์ƒ‰์–ด ์ œ๊ณต ์„œ๋น„์Šค๋Š” ์‚ฌ์šฉ์ž์˜ ๊ฒ€์ƒ‰์„ ์šฉ์ดํ•˜๊ฒŒ ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ทธ ์ž์ฒด ์—ญ์‹œ ํ•˜๋‚˜์˜ ์ •๋ณด๋กœ์„œ์˜ ์—ญํ• ์„ ํ•˜๊ฒŒ ๋œ๋‹ค.The related search word providing service not only facilitates a user's search, but also serves as one piece of information.

๊ฒ€์ƒ‰์–ด๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ํ‚ค์›Œ๋“œ ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ๋ถ€์—ฌํ•˜์—ฌ, ์—ฐ๊ด€์–ด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ธฐ์ˆ ์ ์ธ ์‹œ๋„๋Š” ๋งŽ์ด ์กด์žฌํ•œ๋‹ค.There have been many technical attempts to extract related words by giving associations between keywords constituting a search word.

๊ด€๋ จ ํŠนํ—ˆ ๋ฌธํ—Œ์œผ๋กœ๋Š”, "ํ‚ค์›Œ๋“œ ์‹œ๊ฐํ™” ์žฅ์น˜ ๋ฐ ๊ทธ ๋ฐฉ๋ฒ•(๊ณต๊ฐœ ๋ฒˆํ˜ธ ์ œ10-2011-0035001ํ˜ธ, ์ดํ•˜ '์„ ํ–‰๊ธฐ์ˆ 1'์ด๋ผ ํ•œ๋‹ค)"์ด ์กด์žฌํ•œ๋‹ค.Related patent documents include "Keyword Visualization Apparatus and Method thereof (Publication No. 10-2011-0035001, hereinafter referred to as" prior art 1 ").

์ƒ๊ธฐ ์„ ํ–‰๊ธฐ์ˆ 1์€ ํ‚ค์›Œ๋“œ ์‹œ๊ฐํ™” ์žฅ์น˜ ๋ฐ ๊ทธ ๋ฐฉ๋ฒ•์— ๊ด€ํ•œ ๊ฒƒ์œผ๋กœ, ์ธํ„ฐ๋„ท์„ ํ†ตํ•ด ํš๋“ํ•œ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํ‚ค์›Œ๋“œ๋ฅผ ์ถ”์ถœํ•˜๋Š” ํ‚ค์›Œ๋“œ ์ถ”์ถœ๋ถ€; ํ‚ค์›Œ๋“œ๊ฐ€ ์ถ”์ถœ๋  ๋•Œ๋งˆ๋‹ค ํ•ด๋‹น ํ‚ค์›Œ๋“œ์˜ ๋ฐœ์ƒ๋นˆ๋„ ๊ฐ’์„ ์ƒํ–ฅ์‹œํ‚ค๋Š” ๋นˆ๋„ ๋ถ„์„๋ถ€; ๋‹จ์ผ ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ ๋‹ค์ˆ˜์˜ ํ‚ค์›Œ๋“œ๊ฐ€ ์ถ”์ถœ๋˜๋ฉด ์ถ”์ถœ๋œ ๊ฐ ํ‚ค์›Œ๋“œ๋“ค๊ฐ„์˜ ์—ฐ๊ด€๋„ ๊ฐ’์„ ์ƒํ–ฅ์‹œํ‚ค๋Š” ์—ฐ๊ด€๋„ ๋ถ„์„๋ถ€; ์ถ”์ถœ๋œ ํ‚ค์›Œ๋“œ๋“ค์„ ์ €์žฅํ•˜๋˜, ๊ฐ ํ‚ค์›Œ๋“œ๋“ค์— ๋Œ€ํ•œ ๋ฐœ์ƒ๋นˆ๋„ ๊ฐ’ ๋ฐ ๊ฐ ํ‚ค์›Œ๋“œ๋“ค๊ฐ„ ์—ฐ๊ด€๋„ ๊ฐ’์„ ์ €์žฅํ•˜๋Š” ์ •๋ณด ์ €์žฅ๋ถ€; ๋ฐ ๋‹ค์ˆ˜์˜ ํ‚ค์›Œ๋“œ, ํ‚ค์›Œ๋“œ๋“ค์˜ ๋ฐœ์ƒ๋นˆ๋„ ๊ฐ’ ๋ฐ ํ‚ค์›Œ๋“œ๋“ค๊ฐ„ ์—ฐ๊ด€๋„ ๊ฐ’์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์ˆ˜์˜ ๋…ธ๋“œ ๋ฐ ์—์ง€๋ฅผ ๊ฐ–๋Š” ๊ทธ๋ž˜ํ”„๊ฐ€ ํ™”๋ฉด์ƒ์— ํ‘œ์‹œ๋˜๋„๋ก ์ฒ˜๋ฆฌํ•˜๋˜, ๊ทธ๋ž˜ํ”„์˜ ๊ฐ ๋…ธ๋“œ์—๋Š” ํ‚ค์›Œ๋“œ๊ฐ€ ํ‘œ์‹œ๋˜๋ฉฐ, ํ‚ค์›Œ๋“œ์˜ ๋ฐœ์ƒ๋นˆ๋„ ๊ฐ’์ด ๋†’์€ ๋…ธ๋“œ์˜ ํฌ๊ธฐ๊ฐ€ ํฌ๊ฒŒ ํ‘œ์‹œ๋˜๊ณ , ํ‚ค์›Œ๋“œ์˜ ๋ฐœ์ƒ๋นˆ๋„ ๊ฐ’์ด ๋‚ฎ์€ ๋…ธ๋“œ์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘๊ฒŒ ํ‘œ์‹œ๋˜๋˜, ์—์ง€์— ์˜ํ•ด ์—ฐ๊ฒฐ๋œ ๋‘ ๋…ธ๋“œ์˜ ํ‚ค์›Œ๋“œ๋“ค๊ฐ„ ์—ฐ๊ด€๋„ ๊ฐ’์ด ๋†’์œผ๋ฉด ์—์ง€๊ฐ€ ๋‘๊ป๊ฒŒ ํ‘œ์‹œ๋˜๊ณ , ์—ฐ๊ด€๋„ ๊ฐ’์ด ๋‚ฎ์œผ๋ฉด ์—์ง€๊ฐ€ ์–‡๊ฒŒ ํ‘œ์‹œ๋˜๋„๋ก ์ฒ˜๋ฆฌํ•˜๋Š” ์‹œ๊ฐํ™” ์ฒ˜๋ฆฌ๋ถ€๋ฅผ ๊ตฌ๋น„ํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•˜์—ฌ, ํ‚ค์›Œ๋“œ์˜ ๋ฐœ์ƒ๋นˆ๋„์™€ ํ‚ค์›Œ๋“œ๋“ค๊ฐ„ ์—ฐ๊ด€๋„์˜ ๋ณ€ํ™” ์ถ”์ด๋ฅผ ์ œ์‹œํ•œ๋‹ค.The prior art 1 relates to a keyword visualization apparatus and a method thereof, comprising: a keyword extracting unit extracting a keyword from data obtained through the Internet; A frequency analysis unit for raising a frequency of occurrence of the keyword each time a keyword is extracted; An association analysis unit for increasing association values between the extracted keywords when a plurality of keywords are extracted from a single data; An information storage unit for storing the extracted keywords and storing occurrence frequency values for each keyword and correlation values between the keywords; And a graph having a plurality of nodes and edges is displayed on the screen by using a plurality of keywords, occurrence frequency values of the keywords, and correlation values between the keywords, and each node of the graph is displayed with keywords. Nodes with high values are displayed in large sizes, and nodes with low keyword occurrence frequencies are displayed in small sizes.If the correlation values between keywords of two nodes connected by edges are high, the edges are displayed with thick edges. If it is low, characterized in that it comprises a visualization processing unit for processing so that the edge is displayed thin, suggests a change in the frequency of occurrence of the keyword and the degree of association between the keywords.

๊ด€๋ จ๋œ ๋‹ค๋ฅธ ํŠนํ—ˆ ๋ฌธํ—Œ์œผ๋กœ๋Š” "ํ‚ค์›Œ๋“œ์˜ ์—ฐ๊ด€ ์ˆœ์œ„๋ฅผ ์‚ฌ์šฉํ•œ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ• ๋ฐ ์‹œ์Šคํ…œ(ํŠนํ—ˆ ๋“ฑ๋ก ๋ฒˆํ˜ธ ์ œ10-1072113ํ˜ธ, ์ดํ•˜ '์„ ํ–‰๊ธฐ์ˆ 2'๋ผ ํ•œ๋‹ค)"์ด ์กด์žฌํ•œ๋‹ค.Other related patent documents include "a search method and system using the ranking of keywords (patent registration no. 10-1072113, hereinafter referred to as" prior art 2 ").

์ƒ๊ธฐ ์„ ํ–‰๊ธฐ์ˆ 2๋Š” ํ‚ค์›Œ๋“œ์˜ ์—ฐ๊ด€ ์ˆœ์œ„๋ฅผ ์‚ฌ์šฉํ•œ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ• ๋ฐ ์‹œ์Šคํ…œ์œผ๋กœ์„œ, ํ‚ค์›Œ๋“œ์˜ ์ž์ฒด ์†์„ฑ์„ ์ง€ํ‘œํ™”ํ•˜์—ฌ ๋…๋ฆฝ ์ง€ํ‘œ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ํ‚ค์›Œ๋“œ์™€ ๋‹ค๋ฅธ ํ‚ค์›Œ๋“œ ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ์ง€ํ‘œํ™”ํ•˜์—ฌ ์—ฐ๊ด€ ์ง€ํ‘œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์ง€ํ‘œ ๋ชจ๋“ˆ; ์—ฐ๊ด€ ์ง€ํ‘œ๋ฅผ ๊ธฐ์ดˆ๋กœ ํ‚ค์›Œ๋“œ์™€ ๋‹ค๋ฅธ ํ‚ค์›Œ๋“œ ๊ฐ„์˜ ์—ฐ๊ด€๋„๋ฅผ ์—ฐ๊ด€ ์ ์ˆ˜๋กœ ์ˆ˜์น˜ํ™”ํ•˜๋Š” ์—ฐ๊ด€ ์ ์ˆ˜ ์‚ฐ์ • ๋ชจ๋“ˆ; ์—ฐ๊ด€ ์ ์ˆ˜์™€ ๋…๋ฆฝ ์ง€ํ‘œ๋ฅผ ๊ธฐ์ดˆ๋กœ ์‚ฌ์šฉ ์šฉ๋„์— ๋”ฐ๋ฅธ ์ˆœ์œ„ ์ ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ์ˆœ์œ„ ์ ์ˆ˜ ๊ณ„์‚ฐ ๋ชจ๋“ˆ; ๋ฐ ์ˆœ์œ„ ์ ์ˆ˜์— ๊ธฐ์ดˆํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์—ฐ๊ด€ ํ‚ค์›Œ๋“œ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒ€์ƒ‰ ๋ชจ๋“ˆ์„ ๊ฐœ์‹œํ•œ๋‹ค.The prior art 2 is a search method and system using an association ranking of a keyword, comprising: an index module for generating an independent index by indexing a property of a keyword and an association index by indexing a correlation between a keyword and another keyword; An association score calculation module that quantifies an association degree between a keyword and another keyword based on an association index as an association score; A rank score calculation module that calculates a rank score according to the use purpose based on the association score and the independent index; And a search module for providing a related keyword for the search term based on the ranking score.

๊ทธ๋Ÿฌ๋‚˜, ์„ ํ–‰๊ธฐ์ˆ  2๋Š” ํ‚ค์›Œ๋“œ์— ๋Œ€ํ•œ ์—ฐ๊ด€ ๊ฒ€์ƒ‰์–ด๋ฅผ ์ถ”์ถœํ•˜๋„๋ก ํ•˜๋Š” ๊ธฐ์ˆ ์  ์‚ฌ์ƒ๋งŒ์„ ๊ฐœ์‹œํ•˜๊ณ  ์žˆ์„ ๋ฟ์ด๋ฉฐ, ํ•ด๋‹น ์—ฐ๊ด€ ๊ฒ€์ƒ‰์— ๋Œ€ํ•œ ์ „๋ฐ˜์ ์ธ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€๋Š” ๋ชปํ•˜์˜€๋‹ค.However, Prior Art 2 only discloses a technical idea of extracting a related search word for a keyword, and does not provide general information on the related search.

๋‹ค๋งŒ, ์„ ํ–‰๊ธฐ์ˆ 1์€ ํ‚ค์›Œ๋“œ์— ๋Œ€ํ•œ ์—ฐ๊ด€ ๊ฒ€์ƒ‰์–ด๋“ค ๊ฐ„์˜ ์ˆœ์œ„ ๋“ฑ์„ ๊ทธ๋ž˜ํ”„ํ™” ํ•˜์—ฌ, ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์–ด๋–ค ์—ฐ๊ด€ ๊ฒ€์ƒ‰์–ด๊ฐ€ ๊ฐ€์žฅ ๋นˆ๋„์ˆ˜๊ฐ€ ๋†’์€์ง€ ๋“ฑ์„ ์ œ๊ณตํ•˜๊ณ  ์žˆ์œผ๋‚˜, ์ด ์—ญ์‹œ, ์—ฐ๊ด€ ๊ฒ€์ƒ‰์–ด์— ์ค‘์—์„œ ๋นˆ๋„์ˆ˜๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ๊ฒƒ์„ ์ž๋™ ์—ฐ๊ด€ ๊ฒ€์ƒ‰์–ด ๋ฆฌ์ŠคํŠธ ์ค‘์—์„œ ๊ฐ€์žฅ ์ƒ์œ„์— ๋žญํฌ ์‹œํ‚ค๋Š” ๊ณต์ง€ ๊ธฐ์ˆ ๊ณผ ํฌ๊ฒŒ ๋‹ค๋ฅผ ๋ฐ” ์—†๋‹ค.However, Prior Art 1 provides a graph of ranking among related search terms for a keyword to provide which related search terms for a search term is the most frequently used. However, the related art automatically searches for the highest frequency among related search terms. It is not much different from the known technology ranking at the top of the related search word list.

ํ•œํŽธ, ํ˜„์žฌ ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜์„ ํƒ‘์žฌํ•œ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์€ ๊ฒ€์ƒ‰ ๋ฐฉ์‹ ์ธก๋ฉด์—์„œ ํฌ๋กค๋Ÿฌ ๊ธฐ๋ฐ˜, ๋””๋ ‰ํ† ๋ฆฌ ๊ธฐ๋ฐ˜, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ฒ€์ƒ‰, ๋ฉ”ํƒ€ ๊ฒ€์ƒ‰ ๋ฐฉ์‹์œผ๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค.On the other hand, search systems equipped with artificial intelligence-based can be divided into crawler-based, directory-based, hybrid search, and meta-search method in terms of search method.

์ƒ๊ธฐ ํฌ๋กค๋Ÿฌ ๊ธฐ๋ฐ˜ ๋ฐฉ์‹์˜ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์—์„œ๋Š” ์ŠคํŒŒ์ด๋”, ํฌ๋กค๋Ÿฌ, ์›น๋ด‡ ๋“ฑ์œผ๋กœ ๋ถˆ๋ฆฌ๋Š” ์ž๋™ํ™”๋œ ์—์ด์ „ํŠธ ํ”„๋กœ๊ทธ๋žจ์„ ์ด์šฉํ•˜์—ฌ ์›น์ƒ์˜ ๋ฌธ์„œ๋ฅผ ์ž์‹ ์˜ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ๋‹ค์šด๋กœ๋“œํ•˜๊ณ  ์ €์žฅํ•œ๋‹ค. The crawler-based retrieval system downloads and stores documents on the web in its database using an automated agent program called spider, crawler, webbot, and the like.

์‚ฌ์šฉ์ž์˜ ๊ฒ€์ƒ‰ ์š”์ฒญ์€ ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ๋ฅผ ์ €์žฅ๋œ ์›น ๋ฌธ์„œ์˜ ์ธ๋ฑ์Šค์—์„œ ์ฐพ์•„ ํ•ด๋‹น ๋ฌธ์„œ์˜ ๋งํฌ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ ์ฒ˜๋ฆฌ๋œ๋‹ค. The user's search request is handled by finding the search keyword in the index of the stored web document and providing a link to that document.

์ด ๋ฐฉ์‹์€ ๊ตฌ๊ธ€ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์ด ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์ด๋‹ค. This is a good example of the Google search system.

๋˜ํ•œ, ์ƒ๊ธฐ ๋””๋ ‰ํ† ๋ฆฌ ๊ธฐ๋ฐ˜ ๋ฐฉ์‹์˜ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์—์„œ๋Š” ์‚ฌ๋žŒ์— ์˜ํ•ด ์›น ์‚ฌ์ดํŠธ๋“ค์ด ์‚ฌ์ „์— ์ •์˜๋œ ํŠน์ • ๋””๋ ‰ํ„ฐ๋ฆฌ์— ๋ถ„๋ฅ˜ ์ €์žฅ๋˜๊ณ , ์ €์žฅ๋œ ์›น์‚ฌ์ดํŠธ๋“ค์ด ์‚ฌ์ „์— ์ •์˜๋œ ๊ทœ์น™์— ์˜ํ•ด ๋žญํ‚น๋œ๋‹ค. In addition, in the directory-based search system, web sites are classified and stored in a predetermined directory by a person, and the stored websites are ranked by a predefined rule.

์‚ฌ์šฉ์ž์˜ ๊ฒ€์ƒ‰ ์š”์ฒญ์€ ํ‚ค์›Œ๋“œ ๋งค์นญ์— ์˜ํ•ด ์ฐพ์•„์ง„ ์›น ๋ฌธ์„œ๋ฅผ ๋””๋ ‰ํ„ฐ๋ฆฌ ๋ณ„๋กœ ๊ทธ๋ฃนํ•‘ํ•˜์—ฌ ์ œ๊ณตํ•จ์œผ๋กœ์จ ์ฒ˜๋ฆฌ๋œ๋‹ค. The user's search request is processed by grouping the web documents found by keyword matching by directory.

์ด ๋ฐฉ์‹์€ ์•ผํ›„, ๋„ค์ด๋ฒ„ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์ด ๋Œ€ํ‘œ์  ์˜ˆ์ด๋‹ค. ๋˜ํ•œ, This is the case with Yahoo and Naver search system. Also,

์ƒ๊ธฐ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ฐฉ์‹์˜ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์—์„œ๋Š” ์ƒ๊ธฐ ํฌ๋กค๋Ÿฌ ๋ฐฉ์‹๊ณผ ์ƒ๊ธฐ ๋””๋ ‰ํ† ๋ฆฌ ๋ฐฉ์‹์„ ๋ณ‘์šฉํ•˜๋ฉฐ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ์ž์—๊ฒŒ ๋” ์ข‹์€ ๊ฒ€์ƒ‰๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. In the hybrid search system, the crawler method and the directory method are used together and generally provide a better search result to the user.

์ด ๋ฐฉ์‹์€ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์˜ MSN๊ฒ€์ƒ‰์ด ๋Œ€ํ‘œ์  ์˜ˆ์ด๋‹ค. Microsoft's MSN search is a good example of this.

๋˜ํ•œ, ์ƒ๊ธฐ ๋ฉ”ํƒ€ ๊ฒ€์ƒ‰ ๋ฐฉ์‹์˜ ์‹œ์Šคํ…œ์—์„œ๋Š” ๋‹ค๋ฅธ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ํ‰๊ฐ€ ๊ธฐ์ค€์„ ํ™œ์šฉํ•œ๋‹ค. In addition, the meta-search system utilizes search algorithms and evaluation criteria of other search systems.

์ฆ‰, ๋‹ค๋ฅธ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ๊ฒ€์ƒ‰๊ฒฐ๊ณผ๋ฅผ ๋ณ‘ํ•ฉํ•˜์—ฌ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ œ๊ณตํ•œ๋‹ค.That is, the search results of different search systems are merged and provided to the user.

Metacrawler ์‹œ์Šคํ…œ์ด ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์ด๋‹ค.Metacrawler system is a typical example.

ํ•œํŽธ, ์›น ๊ธฐ๋ฐ˜ ํ•œ๊ธ€ ์ •๋ณด๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•์ด ์กด์žฌํ•˜๊ณ  ์žˆ๋Š”๋ฐ, ์ด๋Š” ์›น ๊ธฐ๋ฐ˜์˜ ํ•œ๊ธ€ ์ •๋ณด ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ, ํ•ต์‹ฌ ๋ถ€๋ถ„์ด ๋˜๋Š” ํ•œ๊ธ€ ๊ฒ€์ƒ‰์—”์ง„์ด ๊ฐ–์ถ”์–ด์•ผ ํ•  ๊ธฐ๋Šฅ ๋ฐ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•, ํŠนํžˆ ๋ช…์‚ฌ, ์กฐ์‚ฌ, ๋ถˆ์šฉ์–ด ๋“ฑ ๊ฐ์ข… ํ•œ๊ธ€ ์‚ฌ์ „ ๋“ฑ์„ ์ด์šฉํ•˜์—ฌ ํ•œ๊ธ€์˜ ํŠน์„ฑ์— ๋งž๋Š” ํ˜•ํƒœ์†Œ ๋ถ„์„์„ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. On the other hand, there is a method of implementing a web-based Hangul information retrieval system, which is a function and an implementation method of the Hangul search engine, which is a key part in implementing a web-based Hangul information retrieval system, especially nouns, investigations, and stopwords Using various Hangul dictionaries etc., this paper suggests how to use morphological analysis suitable for the characteristics of Hangul.

ํ•˜์ง€๋งŒ, ์ƒ๊ธฐ ์›น ๊ธฐ๋ฐ˜ ํ•œ๊ธ€ ์ •๋ณด๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•๊ณผ ํฌ๋กค๋Ÿฌ ๊ธฐ๋ฐ˜, ๋””๋ ‰ํ† ๋ฆฌ๊ธฐ๋ฐ˜, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ฒ€์ƒ‰, ๋ฐ ๋ฉ”ํƒ€ ๊ฒ€์ƒ‰ ๋ฐฉ์‹์˜ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์€ ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•จ์— ๋”ฐ๋ผ, ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์†์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ ์ง„์ • ์›ํ•˜๋Š” ์ •ํ™•ํ•œ ์ปจํ…์ธ ๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์น˜๋ช…์ ์ธ ๋‹จ์ ์ด ์กด์žฌํ•œ๋‹ค.However, as the web-based Korean information retrieval system and the crawler-based, directory-based, hybrid search, and meta-search methods search for information using only search keywords, the user cannot reflect the desired attributes. There is a fatal drawback that it does not provide the exact content it really wants.

๋”ฐ๋ผ์„œ, ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์†์„ฑ๊ณผ ๊ฐ€์žฅ ๊ทผ์ ‘ํ•˜๊ฑฐ๋‚˜ ์ผ์น˜ํ•˜๋Š” ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์ด ํ•„์š”ํ•˜๊ฒŒ ๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ๊ธฐ์ˆ ์„ ํ†ตํ•ด ์œ ์‚ฌ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•  ์ˆ˜ ์žˆ๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๊ธฐ์ˆ ์ด ํ•„์š”ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค.Therefore, there is a need for a technique that can perform a similar attribute search that is closest to or matching the desired attribute of the user, and through this technique, analysis of attribute information that can output search result information of multimedia content having similar attributes is performed. Through multimedia content retrieval technology has become necessary.

<์„ ํ–‰๊ธฐ์ˆ ๋ฌธํ—Œ><Preceding technical literature>

์„ ํ–‰๋ฌธํ—Œ1 ๋Œ€ํ•œ๋ฏผ๊ตญ ๊ณต๊ฐœํŠนํ—ˆ๋ฒˆํ˜ธ ์ œ10-2011-0035001ํ˜ธPrior Art 1 Republic of Korea Patent Publication No. 10-2011-0035001

์„ ํ–‰๋ฌธํ—Œ2 ๋Œ€ํ•œ๋ฏผ๊ตญ ๋“ฑ๋กํŠนํ—ˆ๋ฒˆํ˜ธ ์ œ10-1072113ํ˜ธPrior Art 2 Republic of Korea Patent No. 10-1072113

๋”ฐ๋ผ์„œ ๋ณธ ๋ฐœ๋ช…์€ ์ƒ๊ธฐ์™€ ๊ฐ™์€ ์ข…๋ž˜ ๊ธฐ์ˆ ์˜ ๋ฌธ์ œ์ ์„ ๊ฐ์•ˆํ•˜์—ฌ ์ œ์•ˆ๋œ ๊ฒƒ์œผ๋กœ์„œ, ๋ณธ ๋ฐœ๋ช…์˜ ์ œ 1 ๋ชฉ์ ์€ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•˜๋Š”๋ฐ ์žˆ๋‹ค.Therefore, the present invention has been proposed in view of the above-described problems of the prior art, and a first object of the present invention is to perform a text keyword search by acquiring a search word of multimedia content input by speech recognition or text, or similar property search. In this case, the search result information of the multimedia content is output when the text keyword search is performed and the search result information of the multimedia content having the similar property is output.

๋ณธ ๋ฐœ๋ช…์˜ ์ œ 2 ๋ชฉ์ ์€ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰์‹œ, ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)์— ์ €์žฅ๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด์™€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)์— ์˜ํ•ด ํ• ๋‹น๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์‹ค์‹œํ•จ์œผ๋กœ์จ, ๊ฒ€์ƒ‰์–ด(์งˆ๋ฌธ)์˜ ์˜๋„์™€ ์œ ์‚ฌํ•œ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ ์ž ํ•œ๋‹ค.The second object of the present invention is to provide the similarity matching property analysis unit 530 to the attribute information and the multimedia content attribute assignment unit 520 for the search word stored in the search term attribute value information DB 517 when performing the similar attribute search. Similarity matching analysis is performed with the multimedia content attribute information assigned by the present invention, thereby providing search result information of the multimedia content having attributes similar to the intention of the search word (question).

๋ณธ ๋ฐœ๋ช…์˜ ์ œ 3 ๋ชฉ์ ์€ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ปจํ…์ธ ์„œ๋ฒ„(560)๋กœ๋ถ€ํ„ฐ ๋‹ค์ˆ˜์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด๋“ค์„ ์ˆ˜์ง‘ํ•˜์—ฌ ์ปจํ…์ธ ์ €์žฅDB๋กœ ์ €์žฅ์‹œ์ผœ ์†์„ฑ ์ •๋ณด์˜ ์—ฐ์‚ฐ ๋ฒ”์œ„๋ฅผ ํ™•์žฅ์‹œํ‚ค๋ฉฐ, ์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ชจ๋ธ๋ชจ๋“ˆ(524)์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ปจํ…์ธ ์ €์žฅDB(523)์— ์ €์žฅ๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ๋Œ€ํ•˜์—ฌ ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜์—ฌ ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ๋กœ ์ œ๊ณตํ•˜๊ณ ์ž ํ•œ๋‹ค.The third object of the present invention is to provide a content crawling module 522, to collect a plurality of multimedia content information from the content server 560 to store in the content storage DB to extend the operation range of the attribute information, the content attribute allocation model By providing the module 524, the attribute information is allocated to each multimedia content stored in the content storage DB 523 and provided to the content information search module.

๋ณธ ๋ฐœ๋ช…์ด ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ๊ณผ์ œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜๋Š”,In order to achieve the problem to be solved by the present invention, the multimedia content retrieval apparatus through attribute information analysis,

์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)์™€,A search start unit 100 for acquiring a search word of multimedia content input by voice recognition or text and providing search execution request information to the attribute search execution determining unit 200;

์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ํŒ๋‹จ ๊ฒฐ๊ณผ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)์™€,When obtaining the search execution request information from the search start unit 100, it is determined whether to perform a text keyword search or a similar attribute search, and as a result of the determination, the text keyword search is performed when the text keyword search is performed. The attribute search decision unit 200 which provides the text keyword search request information to the unit 300, and provides the similar property search request information to the attribute similarity search unit 500 when performing the similar attribute search as a result of the determination; ,

์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)์™€,A text keyword search unit 300 which performs a text keyword search when obtaining the text keyword search request information provided from the attribute search performing determination unit, and provides the search result information to the text keyword result output unit;

์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400)์™€,A text keyword result output unit 400 for outputting search result information of the text keyword provided from the text keyword search unit;

์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)๊ณผ,An attribute similarity search means 500 which performs a similar attribute search when obtaining similar attribute search request information provided from the attribute search execution determination unit and provides the search result information to the attribute similarity search result output unit 500;

์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋ฅผ ํฌํ•จํ•œ๋‹ค.And an attribute similarity search result output unit 600 for outputting search result information of the similar attribute provided from the attribute similarity search unit 500.

๋˜ํ•œ, ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์€,In addition, the multimedia content retrieval method by analyzing the attribute information,

๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๊ฐ€ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋‹จ๊ณ„(S100)์™€,A search start step (S100) of providing a search execution request information to the attribute search performing determination unit 200 by obtaining a search word of the multimedia content inputted by voice recognition or text by the search start unit 100;

์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๊ฐ€ ์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ํŒ๋‹จ ๊ฒฐ๊ณผ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋‹จ๊ณ„(S200)์™€,When the attribute search execution unit 200 obtains the search execution request information from the search start unit 100, it is determined whether to perform a text keyword search or a similar attribute search. When performing a search, the text keyword search request information is provided to the text keyword search unit 300, and as a result of the determination, when the similar property search is performed, the similar property search request information is provided to the attribute similarity search unit 500. Attribute search determination step (S200),

ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋‹จ๊ณ„(S300)์™€,When the text keyword search unit 300 obtains the text keyword search request information provided from the attribution search execution determination unit 200, the text keyword search unit performs a text keyword search and provides the search result information to the text keyword result output unit. Step S300,

ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400)๊ฐ€ ์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S400)์™€,A text keyword result output step (S400) for the text keyword result output unit 400 to output search result information of the text keyword provided from the text keyword search unit 300;

์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„(S500)์™€,When the property similarity search means 500 obtains the similar property search request information provided from the property search execution decision unit 200, the property similarity search is performed and the search result information is provided to the property similarity search result output unit. Search step (S500),

์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S600)๋ฅผ ํฌํ•จํ•œ๋‹ค.The attribute similarity search result output unit 600 includes an attribute similarity search result output step S600 for outputting search result information of similar attributes provided from the attribute similarity search unit 500.

์ด์ƒ์˜ ๊ตฌ์„ฑ ๋ฐ ์ž‘์šฉ์„ ์ง€๋‹ˆ๋Š” ๋ณธ ๋ฐœ๋ช…์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜ ๋ฐ ๊ฒ€์ƒ‰๋ฐฉ๋ฒ•์„ ํ†ตํ•ด, ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•จ์œผ๋กœ์จ, ์ผ๋ฐ˜์ ์ธ ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ ๋ฐฉ์‹์„ ์ด์šฉํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” ํšจ๊ณผ์™€ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ํ†ตํ•œ ์‚ฌ์šฉ์ž๊ฐ€ ๊ฒ€์ƒ‰ํ•˜๊ธฐ๋ฅผ ์›ํ•˜๋Š” ๊ฒ€์ƒ‰์–ด(์งˆ๋ฌธ)์— ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํƒ ์ธ  ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•œ๋‹ค.Whether to perform a text keyword search by acquiring a search word of multimedia content input by speech recognition or text through a multimedia content search apparatus and a search method through attribute information analysis according to the present invention having the above-described configuration and operation, or similar property search Search result of multimedia content is output when performing a text keyword search by determining whether to perform a text keyword search, and output search result information of multimedia content having a similar property when performing a similar property search. The present invention provides an effect of providing a multimedia content search result using a keyword method and of providing a multimedia content search result most similar to a search word (question) that a user wants to search through a similar property search.

๋˜ํ•œ, ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰์‹œ, ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB์— ์ €์žฅ๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด์™€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€์— ์˜ํ•ด ํ• ๋‹น๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์‹ค์‹œํ•จ์œผ๋กœ์จ, ๊ฒ€์ƒ‰์–ด(์งˆ๋ฌธ)์˜ ์˜๋„์™€ ์œ ์‚ฌํ•œ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์†์„ฑ(๋ถ„์œ„๊ธฐ, ๊ฐ์ • ๋“ฑ)๊ณผ ์ผ์น˜ํ•˜๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋˜์–ด ์ด์— ๋”ฐ๋ฅธ ๊ฒ€์ƒ‰์˜ ์‹ ๋ขฐ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜๊ฒŒ ๋œ๋‹ค.In addition, by providing a similarity matching analysis unit, when performing a similar attribute search, by performing a similarity matching analysis with the attribute information about the search term stored in the search term attribute information DB and the multimedia content attribute information assigned by the multimedia content attribute assignment unit , By providing search result information of multimedia contents having attributes similar to the intention of the search term (question), it provides multimedia contents that match the attributes (atmosphere, emotion, etc.) desired by the user, thereby increasing the reliability of the search. Will be effective.

๋˜ํ•œ, ์‹œ๊ฐ„์˜ ํ๋ฆ„์— ๋”ฐ๋ผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์ •๋ณด๋Ÿ‰์ด ๋ณ€๊ฒฝ๋˜๊ณ  ์ด์— ๋”ฐ๋ผ ํŠน์ • ๋Œ€์ƒ์˜ ์†์„ฑ๋„ ์‹œ์‹œ๊ฐ๊ฐ ๋ณ€ํ™”ํ•˜๋Š”๋ฐ, ์ด๋ฅผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€์— ์˜ํ•ด ๊ฐ€๋ณ€์ ์œผ๋กœ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ๊ฒ€์ƒ‰์— ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜๊ฒŒ ๋œ๋‹ค.In addition, the amount of information of the multimedia content changes over time, and accordingly, the attributes of a specific object change from time to time. By reflecting this variably by the multimedia content attribute assignment unit, various multimedia contents that change in real time may be reflected in a search. Will be effective.

๋„ 1์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜๋ฅผ ๊ฐœ๋žต์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ์ „์ฒด ๊ตฌ์„ฑ๋„.1 is an overall configuration diagram schematically showing an apparatus for retrieving multimedia contents through attribute information analysis according to a first embodiment of the present invention.

๋„ 2๋Š” ์ข…๋ž˜์˜ ์œ ์‚ฌํ•œ ๋ถ„์œ„๊ธฐ์˜ ์˜ํ™”๊ฐ€ ๊ฒ€์ƒ‰๋˜์ง€ ์•Š๋Š” ์˜ˆ์‹œ๋„.2 is an exemplary view in which a movie of a conventional similar atmosphere is not searched.

๋„ 3์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜์˜ ์ „์ฒด ๋ธ”๋ก๋„.3 is an overall block diagram of an apparatus for retrieving multimedia contents through attribute information analysis according to a first embodiment of the present invention.

๋„ 4๋Š” ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์‹œ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ถœ๋ ฅ ์˜ˆ์‹œ๋„.4 is an exemplary view showing a search result output when a text keyword is searched.

๋„ 5๋Š” ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜๋ฅผ ํ†ตํ•ด ์ถœ๋ ฅ๋˜๋Š” ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์˜ˆ์‹œ๋„.5 is an exemplary view of a similar property search result output through a multimedia content search apparatus through analysis of property information according to a first embodiment of the present invention.

๋„ 6์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜์˜ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ์˜ ๋ธ”๋ก๋„.6 is a block diagram of attribute similarity retrieval means of a multimedia content retrieval apparatus by analyzing attribute information according to the first embodiment of the present invention;

๋„ 7์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜์˜ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€์˜ ๋ธ”๋ก๋„.7 is a block diagram of a keyword attribute analysis unit of a multimedia content retrieval apparatus through attribute information analysis according to the first embodiment of the present invention.

๋„ 8์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€์˜ ๋ธ”๋ก๋„.8 is a block diagram of a multimedia content attribute assignment unit of the multimedia content retrieval apparatus through attribute information analysis according to the first embodiment of the present invention.

๋„ 9๋Š” ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์˜ ์ „์ฒด ํ๋ฆ„๋„.9 is a flowchart illustrating a multimedia content retrieval method through attribute information analysis according to a first embodiment of the present invention.

๋„ 10์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์˜ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ ํ๋ฆ„๋„.10 is a flowchart illustrating an attribute similarity search step of a multimedia content search method through analysis of attribute information according to a first embodiment of the present invention;

<๋ถ€ํ˜ธ์˜ ์„ค๋ช…><Description of the code>

100 : ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€100: start of search

200 : ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€200: Attribute search performance decision unit

300 : ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€300: text keyword search unit

400 : ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€400: text keyword result output unit

500 : ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ500: attribute similarity search means

560 : ์ปจํ…์ธ ์„œ๋ฒ„560 content server

600 : ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€600: attribute similarity search result output unit

์ดํ•˜์˜ ๋‚ด์šฉ์€ ๋‹จ์ง€ ๋ณธ ๋ฐœ๋ช…์˜ ์›๋ฆฌ๋ฅผ ์˜ˆ์‹œํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋‹น์—…์ž๋Š” ๋น„๋ก ๋ณธ ๋ช…์„ธ์„œ์— ๋ช…ํ™•ํžˆ ์„ค๋ช…๋˜๊ฑฐ๋‚˜ ๋„์‹œ๋˜์ง€ ์•Š์•˜์ง€๋งŒ, ๋ณธ ๋ฐœ๋ช…์˜ ์›๋ฆฌ๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ  ๋ณธ ๋ฐœ๋ช…์˜ ๊ฐœ๋…๊ณผ ๋ฒ”์œ„์— ํฌํ•จ๋œ ๋‹ค์–‘ํ•œ ์žฅ์น˜๋ฅผ ๋ฐœ๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. The following merely illustrates the principles of the invention. Therefore, those skilled in the art, although not explicitly described or illustrated herein, can embody the principles of the present invention and invent various devices that fall within the spirit and scope of the present invention.

๋˜ํ•œ, ๋ณธ ๋ช…์„ธ์„œ์— ์—ด๊ฑฐ๋œ ๋ชจ๋“  ์กฐ๊ฑด๋ถ€ ์šฉ์–ด ๋ฐ ์‹ค์‹œ ์˜ˆ๋“ค์€ ์›์น™์ ์œผ๋กœ, ๋ณธ ๋ฐœ๋ช…์˜ ๊ฐœ๋…์ด ์ดํ•ด๋˜๋„๋ก ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ๋งŒ ๋ช…๋ฐฑํžˆ ์˜๋„๋˜๊ณ , ์ด์™€ ๊ฐ™์ด ํŠน๋ณ„ํžˆ ์—ด๊ฑฐ๋œ ์‹ค์‹œ ์˜ˆ๋“ค ๋ฐ ์ƒํƒœ๋“ค์— ์ œํ•œ์ ์ด์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ์ดํ•ด๋˜์–ด์•ผ ํ•œ๋‹ค.In addition, all conditional terms and embodiments listed herein are in principle clearly intended to be understood only for the purpose of understanding the concept of the invention and are not to be limited to the specifically listed embodiments and states. do.

๋ณธ ๋ฐœ๋ช…์„ ์„ค๋ช…ํ•จ์— ์žˆ์–ด์„œ ์ œ1, ์ œ2 ๋“ฑ์˜ ์šฉ์–ด๋Š” ๋‹ค์–‘ํ•œ ๊ตฌ์„ฑ์š”์†Œ๋“ค์„ ์„ค๋ช…ํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์ง€๋งŒ, ๊ตฌ์„ฑ์š”์†Œ๋“ค์€ ์šฉ์–ด๋“ค์— ์˜ํ•ด ํ•œ์ •๋˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค.In describing the present invention, terms such as first and second may be used to describe various components, but the components may not be limited by the terms.

์˜ˆ๋ฅผ ๋“ค์–ด, ๋ณธ ๋ฐœ๋ช…์˜ ๊ถŒ๋ฆฌ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜์ง€ ์•Š์œผ๋ฉด์„œ ์ œ1 ๊ตฌ์„ฑ์š”์†Œ๋Š” ์ œ2 ๊ตฌ์„ฑ์š”์†Œ๋กœ ๋ช…๋ช…๋  ์ˆ˜ ์žˆ๊ณ , ์œ ์‚ฌํ•˜๊ฒŒ ์ œ2 ๊ตฌ์„ฑ์š”์†Œ๋„ ์ œ1 ๊ตฌ์„ฑ์š”์†Œ๋กœ ๋ช…๋ช…๋  ์ˆ˜ ์žˆ๋‹ค.For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.

์–ด๋–ค ๊ตฌ์„ฑ์š”์†Œ๊ฐ€ ๋‹ค๋ฅธ ๊ตฌ์„ฑ์š”์†Œ์— ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋‹ค๊ฑฐ๋‚˜ ์ ‘์†๋˜์–ด ์žˆ๋‹ค๊ณ  ์–ธ๊ธ‰๋˜๋Š” ๊ฒฝ์šฐ๋Š”, ๊ทธ ๋‹ค๋ฅธ ๊ตฌ์„ฑ์š”์†Œ์— ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๊ฑฐ๋‚˜ ๋˜๋Š” ์ ‘์†๋˜์–ด ์žˆ์„ ์ˆ˜๋„ ์žˆ์ง€๋งŒ, ์ค‘๊ฐ„์— ๋‹ค๋ฅธ ๊ตฌ์„ฑ์š”์†Œ๊ฐ€ ์กด์žฌํ•  ์ˆ˜๋„ ์žˆ๋‹ค๊ณ  ์ดํ•ด๋  ์ˆ˜ ์žˆ๋‹ค.When a component is referred to as being connected or connected to another component, it may be understood that the component may be directly connected to or connected to the other component, but there may be other components in between. .

๋ณธ ๋ช…์„ธ์„œ์—์„œ ์‚ฌ์šฉํ•œ ์šฉ์–ด๋Š” ๋‹จ์ง€ ํŠน์ •ํ•œ ์‹ค์‹œ์˜ˆ๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ ๊ฒƒ์œผ๋กœ, ๋ณธ ๋ฐœ๋ช…์„ ํ•œ์ •ํ•˜๋ ค๋Š” ์˜๋„๊ฐ€ ์•„๋‹ˆ๋ฉฐ, ๋‹จ์ˆ˜์˜ ํ‘œํ˜„์€ ๋ฌธ๋งฅ์ƒ ๋ช…๋ฐฑํ•˜๊ฒŒ ๋‹ค๋ฅด๊ฒŒ ๋œปํ•˜์ง€ ์•Š๋Š” ํ•œ, ๋ณต์ˆ˜์˜ ํ‘œํ˜„์„ ํฌํ•จํ•  ์ˆ˜ ์žˆ๋‹ค.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention, and singular forms may include plural forms unless the context clearly indicates otherwise.

๋ณธ ๋ช…์„ธ์„œ์—์„œ, ํฌํ•จํ•˜๋‹ค ๋˜๋Š” ๊ตฌ๋น„ํ•˜๋‹ค ๋“ฑ์˜ ์šฉ์–ด๋Š” ๋ช…์„ธ์„œ์ƒ์— ๊ธฐ์žฌ๋œ ํŠน์ง•, ์ˆซ์ž, ๋‹จ๊ณ„, ๋™์ž‘, ๊ตฌ์„ฑ์š”์†Œ, ๋ถ€ํ’ˆ ๋˜๋Š” ์ด๋“ค์„ ์กฐํ•ฉํ•œ ๊ฒƒ์ด ์กด์žฌํ•จ์„ ์ง€์ •ํ•˜๋ ค๋Š” ๊ฒƒ์œผ๋กœ์„œ, ํ•˜๋‚˜ ๋˜๋Š” ๊ทธ ์ด์ƒ์˜ ๋‹ค๋ฅธ ํŠน์ง•๋“ค์ด๋‚˜ ์ˆซ์ž, ๋‹จ๊ณ„, ๋™์ž‘, ๊ตฌ์„ฑ์š”์†Œ, ๋ถ€ํ’ˆ ๋˜๋Š” ์ด๋“ค์„ ์กฐํ•ฉํ•œ ๊ฒƒ๋“ค์˜ ์กด์žฌ ๋˜๋Š” ๋ถ€๊ฐ€ ๊ฐ€๋Šฅ์„ฑ์„ ๋ฏธ๋ฆฌ ๋ฐฐ์ œํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ์ดํ•ด๋  ์ˆ˜ ์žˆ๋‹ค.In this specification, the terms including or including are intended to designate that there exists a feature, a number, a step, an operation, a component, a part, or a combination thereof described in the specification, and one or more other features or numbers, It can be understood that it does not exclude in advance the possibility of the presence or addition of steps, actions, components, parts or combinations thereof.

<์ œ1 ์‹ค์‹œ์˜ˆ><First Embodiment>

๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜๋Š”,In accordance with a first aspect of the present invention, there is provided an apparatus for retrieving multimedia contents through attribute information analysis.

์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)์™€,A search start unit 100 for acquiring a search word of multimedia content input by voice recognition or text and providing search execution request information to the attribute search execution determining unit 200;

์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ํŒ๋‹จ ๊ฒฐ๊ณผ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)์™€,When obtaining the search execution request information from the search start unit 100, it is determined whether to perform a text keyword search or a similar attribute search, and as a result of the determination, the text keyword search is performed when the text keyword search is performed. The attribute search decision unit 200 which provides the text keyword search request information to the unit 300, and provides the similar property search request information to the attribute similarity search unit 500 when performing the similar attribute search as a result of the determination; ,

์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)์™€,A text keyword search unit 300 which performs a text keyword search when obtaining the text keyword search request information provided from the attribute search performing determination unit, and provides the search result information to the text keyword result output unit;

์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400)์™€,A text keyword result output unit 400 for outputting search result information of the text keyword provided from the text keyword search unit;

์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)๊ณผ,An attribute similarity search means 500 which performs a similar attribute search when obtaining similar attribute search request information provided from the attribute search execution determination unit and provides the search result information to the attribute similarity search result output unit 500;

์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋ฅผ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.It is characterized in that it comprises a property similarity search result output unit 600 for outputting the search result information of the similar property provided from the attribute similarity search unit 500.

๊ทธ๋ฆฌ๊ณ , ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋Š”,And, the attribute search determination unit 200,

ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์•„๋‹ˆ๋ฉด ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€์˜ ํŒ๋‹จ์„ ์„œ๋น„์Šค ๋„๋ฉ”์ธ์— ๋”ฐ๋ผ ๋ฏธ๋ฆฌ ์„ค์ •ํ•˜๋Š” ์ œ1 ๋ชจ๋“œ, ๊ฒ€์ƒ‰์–ด๋กœ ์ž…๋ ฅ๋œ ๋ฌธ์žฅ์„ ๋ถ„์„ํ•˜๋Š” ์ œ2 ๋ชจ๋“œ ์ค‘ ์ ์–ด๋„ ์–ด๋А ํ•˜๋‚˜์˜ ๋ชจ๋“œ๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.Applying at least one of a first mode of pre-determining whether to perform a text keyword search or a similar property search according to a service domain, and a second mode of analyzing a sentence entered as a search word. It is characterized by.

๊ทธ๋ฆฌ๊ณ , ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)์€,And, the attribute similarity search means 500,

์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510);A search word attribute analyzer 510 for analyzing linguistic attribute information included in a search word of multimedia content input through speech recognition or text;

์ปจํ…์ธ ์„œ๋ฒ„(560)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ณ , ์ €์žฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ธฐ ์œ„ํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520);A multimedia content attribute allocator 520 for acquiring and storing multimedia contents from the content server 560 and allocating attribute information to the stored multimedia contents;

๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์— ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ ์ œ๊ณตํ•˜๊ณ , ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๋ฉฐ, ํš๋“๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด์— ํฌํ•จ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์˜ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530);It provides multimedia content request information including attribute information similar to linguistic attribute information of a search word to the multimedia content attribute assigning unit 520, obtains multimedia content list information from the multimedia content attribute assigning unit 520, and obtains the multimedia content list information. A similarity matching analysis unit 530 for performing a similarity matching analysis of multimedia contents included in the multimedia contents list information;

์‚ฌ์ „์— ์„ค์ •๋œ ํ›„๋ณด๊ตฐ ์ˆซ์ž๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ๊ฐ€์žฅ ๋†’์€ ์œ ์‚ฌ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋ถ€(540);A similarity candidate group extracting unit 540 for sequentially extracting multimedia contents according to candidate group numbers from multimedia contents having the highest similarity with reference to a preset candidate group number;

์ƒ๊ธฐ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ์ถ”์ถœ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์œ ์‚ฌ๋„์— ๋”ฐ๋ผ ์ •๋ ฌ์‹œํ‚ค๋ฉฐ, ์ •๋ ฌ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋ถ€(550);๋ฅผ ํฌํ•จํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.And a similarity reference multimedia content sorting unit 550 for sorting the multimedia contents extracted according to the number of candidate groups according to similarity and providing the sorted multimedia contents to the attribute similarity search result output unit 600. do.

๊ทธ๋ฆฌ๊ณ , ์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510)๋Š”,And, the search word attribute analysis unit 510,

๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ(512)๋กœ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์— ๋Œ€ํ•œ ํ•ด์„ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ๋กœ๋ถ€ํ„ฐ ํ•ด์„๋œ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ(511);The machine learning model module 512 provides information on requesting interpretation of linguistic attributes included in a search word of multimedia content input through speech recognition or text, and provides linguistic attribute information included in a search word interpreted from the machine learning model module. A natural language processing module 511 for providing the query attribute assignment module 513;

์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์— ๋Œ€ํ•œ ํ•ด์„ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์„ ํ•ด์„ํ•˜์—ฌ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ๋กœ ํ•ด์„๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ(512);Machine learning model module for providing linguistic attribute information interpreted as natural language processing module by interpreting linguistic attributes included in search term when obtaining information on interpretation of linguistic attributes included in search term from natural language processing module. 512);

๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด์™€ ๋งค์นญ๋  ์ˆ˜ ์žˆ๋Š” ์†์„ฑ์˜ ์œ ํ˜•์œผ๋กœ ์ •์ œ๋˜์–ด ์žˆ๋Š” ์†์„ฑ ์œ ํ˜• ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๊ณ  ์žˆ๋Š” ์ง€์‹์ •๋ณดDB(514);A knowledge information DB 514 that stores attribute type information refined into attribute types that can be matched with attribute information of multimedia content;

์ƒ๊ธฐ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ์—์„œ ์ œ๊ณต๋œ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๊ณ , ํš๋“๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ํ† ๋Œ€๋กœ ์ง€์‹์ •๋ณดDB๋กœ๋ถ€ํ„ฐ ์†์„ฑ ์œ ํ˜• ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ์„ ํ• ๋‹นํ•˜๊ณ , ํ• ๋‹น๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513);Obtains the linguistic attribute information included in the search word provided by the natural language processing module, extracts the attribute type information from the knowledge information DB based on the obtained linguistic attribute information, allocates the attribute for the search term, and the attribute for the assigned search term. A search word attribute assignment module 513 for providing information to the search term attribute value conversion module 515;

์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516)๋กœ ํ™•๋ฅ ๊ฐ’ ์‚ฐ์ถœ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516)๋กœ๋ถ€ํ„ฐ ์‚ฐ์ถœ๋œ ํ™•๋ฅ ๊ฐ’์„ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515);When obtaining the attribute information for the search term provided from the search term attribute assignment module 513, the probability model calculation request information is provided to the attribute model module 516, and the probability value calculated from the attribute model module 516 is obtained to provide the search term. A keyword attribute value conversion module 515 for converting the attribute value into an attribute value and providing the result to the keyword attribute value information DB 517;

๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ๋ถ€ํ„ฐ ํ™•๋ฅ ๊ฐ’ ์‚ฐ์ถœ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์–ธ์–ด ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ํ™•๋ฅ ๊ฐ’์„ ์‚ฐ์ถœํ•˜๋ฉฐ, ์‚ฐ์ถœ๋œ ํ™•๋ฅ ๊ฐ’์„ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516);An attribute model module 516 for calculating a probability value through language modeling when obtaining the probability value calculation request information from the keyword attribute value conversion module 515 and providing the calculated probability value to the keyword attribute value conversion module 515;

๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)์— ์˜ํ•ด ์ œ๊ณต๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ๊ฐ’์„ ํฌํ•จํ•˜์—ฌ ์ €์žฅํ•˜๊ณ  ์žˆ๋Š” ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517);๋ฅผ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.And a search word attribute value information DB 517 that stores the attribute value for the search word provided by the search word attribute value conversion module 515.

๊ทธ๋ฆฌ๊ณ , ์ƒ๊ธฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋Š”,And, the multimedia content attribute assignment unit 520,

์ปจํ…์ธ ์„œ๋ฒ„(560)์™€ ์—ฐ๋™์‹œ์ผœ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)๋กœ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ์—ฐ๋™๋ชจ๋“ˆ(521);A content interlocking module 521 for providing multimedia content information to the content crawling module 522 in association with the content server 560;

์ปจํ…์ธ ์—ฐ๋™๋ชจ๋“ˆ(521)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋˜๋Š” ๋‹ค์ˆ˜์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด๋“ค์„ ์ˆ˜์ง‘ํ•˜์—ฌ ์ปจํ…์ธ ์ €์žฅDB๋กœ ์ €์žฅ์‹œ์ผœ ์†์„ฑ ์ •๋ณด์˜ ์—ฐ์‚ฐ ๋ฒ”์œ„๋ฅผ ํ™•์žฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522);A content crawling module 522 for collecting a plurality of multimedia content information provided from the content interworking module 521 and storing the multimedia content information in a content storage DB to expand the operation range of the attribute information;

์ƒ๊ธฐ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด์™€ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋งˆ๋‹ค ํ• ๋‹น๋œ ์†์„ฑ ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๊ณ  ์žˆ๋Š” ์ปจํ…์ธ ์ €์žฅDB(523);A content storage DB 523 for storing multimedia content information provided from the content crawling module 522 and attribute information allocated to each multimedia content;

์ƒ๊ธฐ ์ปจํ…์ธ ์ €์žฅDB(523)์— ์ €์žฅ๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ๋Œ€ํ•˜์—ฌ ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ชจ๋ธ๋ชจ๋“ˆ(524);A content attribute assignment model module 524 for allocating attribute information for each multimedia content stored in the content storage DB 523;

์ƒ๊ธฐ ์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ชจ๋ธ๋ชจ๋“ˆ(524)์— ์˜ํ•ด ํ• ๋‹น๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ํ•ด์„ํ•˜์—ฌ ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ์†์„ฑ์ •๋ณดํ•ด์„๋ชจ๋“ˆ(525);A content property information analysis module 525 for analyzing the property information of each multimedia content assigned by the content property assignment model module 524 and providing the same to the content information search module;

์ปจํ…์ธ ์†์„ฑ์ •๋ณดํ•ด์„๋ชจ๋“ˆ(525)์— ์˜ํ•ด ํ•ด์„๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ ์ œ๊ณตํ•˜๋ฉฐ, ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์— ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์ปจํ…์ธ ์ €์žฅDB(523)๋กœ๋ถ€ํ„ฐ ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ(526);์„ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.The attribute information of each multimedia content analyzed by the content attribute information analysis module 525 is provided to the similarity matching property analysis unit 530, and similar property information is similar to the linguistic property information of the search word from the similarity matching property analysis unit 530. A content information retrieval module 526 for providing multimedia content list information including similar attribute information from the content storage DB 523 to the similarity matching property analysis unit 530 when acquiring the included multimedia content request information; Characterized in that comprises a.

๊ทธ๋ฆฌ๊ณ , ์ƒ๊ธฐ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋Š”,And, the similarity matching property analysis unit 530,

๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)์— ์ €์žฅ๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด์™€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)์— ์˜ํ•ด ํ• ๋‹น๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์‹ค์‹œํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.The similarity matching analysis may be performed using the attribute information of the search word stored in the search term attribute value information DB 517 and the multimedia content attribute information allocated by the multimedia content attribute assigning unit 520.

๋˜ํ•œ, ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์€,In addition, according to the first embodiment of the present invention, a method for retrieving multimedia contents by analyzing attribute information includes:

๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๊ฐ€ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋‹จ๊ณ„(S100)์™€,A search start step (S100) of providing a search execution request information to the attribute search performing determination unit 200 by obtaining a search word of the multimedia content inputted by voice recognition or text by the search start unit 100;

์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๊ฐ€ ์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ํŒ๋‹จ ๊ฒฐ๊ณผ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋‹จ๊ณ„(S200)์™€,When the attribute search execution unit 200 obtains the search execution request information from the search start unit 100, it is determined whether to perform a text keyword search or a similar attribute search. When performing a search, the text keyword search request information is provided to the text keyword search unit 300, and as a result of the determination, when the similar property search is performed, the similar property search request information is provided to the attribute similarity search unit 500. Attribute search determination step (S200),

ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋‹จ๊ณ„(S300)์™€,When the text keyword search unit 300 obtains the text keyword search request information provided from the attribution search execution determination unit 200, the text keyword search unit performs a text keyword search and provides the search result information to the text keyword result output unit. Step S300,

ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400)๊ฐ€ ์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S400)์™€,A text keyword result output step (S400) for the text keyword result output unit 400 to output search result information of the text keyword provided from the text keyword search unit 300;

์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„(S500)์™€,When the property similarity search means 500 obtains the similar property search request information provided from the property search execution decision unit 200, the property similarity search is performed and the search result information is provided to the property similarity search result output unit. Search step (S500),

์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S600)๋ฅผ ํฌํ•จํ•œ๋‹ค.The attribute similarity search result output unit 600 includes an attribute similarity search result output step S600 for outputting search result information of similar attributes provided from the attribute similarity search unit 500.

์ด๋•Œ, ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„(S500)๋Š”,At this time, the attribute similarity search step (S500),

๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510)๊ฐ€ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋‹จ๊ณ„(S510);A keyword attribute analysis step (S510) for the keyword attribute analyzer 510 to analyze linguistic attribute information included in a keyword of a multimedia content input through speech recognition or text;

๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๊ฐ€ ์ปจํ…์ธ ์„œ๋ฒ„(560)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ณ , ์ €์žฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ธฐ ์œ„ํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋‹จ๊ณ„(S520);A multimedia content attribute assignment step (S520) of the multimedia content attribute assignment unit 520 acquiring and storing multimedia content from the content server 560 and allocating attribute information to the stored multimedia content;

์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๊ฐ€ ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์— ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ ์ œ๊ณตํ•˜๊ณ , ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๋ฉฐ, ํš๋“๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด์— ํฌํ•จ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์˜ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋‹จ๊ณ„(S530);The similarity matching property analysis unit 530 provides the multimedia content property assignment unit 520 with multimedia content request information including property information similar to the linguistic property information of the search word, and the multimedia content from the multimedia content property assignment unit 520. A similarity matching analysis step (S530) of acquiring list information and performing similarity matching analysis of multimedia contents included in the obtained multimedia contents list information;

์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋ถ€(540)๊ฐ€ ์‚ฌ์ „์— ์„ค์ •๋œ ํ›„๋ณด๊ตฐ ์ˆซ์ž๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ๊ฐ€์žฅ ๋†’์€ ์œ ์‚ฌ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋‹จ๊ณ„(540);A similarity candidate group extracting step 540 for extracting, by the similarity candidate group extracting unit 540, multimedia contents having the highest similarity sequentially from the multimedia contents having the highest similarity, according to the candidate group number;

์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋ถ€(550)๊ฐ€ ์ƒ๊ธฐ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ์ถ”์ถœ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์œ ์‚ฌ๋„์— ๋”ฐ๋ผ ์ •๋ ฌ์‹œํ‚ค๋ฉฐ, ์ •๋ ฌ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋‹จ๊ณ„(S550);๋ฅผ ํฌํ•จํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.Similarity-based multimedia content sorting unit 550 sorts the multimedia contents extracted according to the number of candidate groups according to similarity, and provides similarity-based multimedia content sorting step to provide the sorted multimedia contents to the attribute similarity search result output unit 600. (S550); characterized in that it comprises a.

์ดํ•˜์—์„œ๋Š”, ๋ณธ ๋ฐœ๋ช…์— ์˜ํ•œ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜ ๋ฐ ๊ฒ€์ƒ‰๋ฐฉ๋ฒ•์˜ ์‹ค์‹œ์˜ˆ๋ฅผ ํ†ตํ•ด ์ƒ์„ธํžˆ ์„ค๋ช…ํ•˜๋„๋ก ํ•œ๋‹ค.Hereinafter, an embodiment of a multimedia content search apparatus and a search method through attribute information analysis according to the present invention will be described in detail.

๋„ 1์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜๋ฅผ ๊ฐœ๋žต์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ์ „์ฒด ๊ตฌ์„ฑ๋„์ด๋‹ค.1 is an overall configuration diagram schematically showing an apparatus for retrieving multimedia contents through attribute information analysis according to a first embodiment of the present invention.

๋„ 1์— ๋„์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด, ๋ณธ ๋ฐœ๋ช…์ธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜(1000)๋Š” ์ปจํ…์ธ ์„œ๋ฒ„(560)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ €์žฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜์—ฌ ๊ด€๋ฆฌํ•˜๋Š” ์žฅ์น˜์ด๋‹ค.As shown in FIG. 1, the apparatus 1000 for retrieving multimedia contents through the analysis of attribute information of the present invention obtains and stores multimedia contents from the content server 560, and allocates and manages attribute information to the stored multimedia contents. to be.

๊ทธ๋ฆฌ๊ณ , ๋ณธ ๋ฐœ๋ช…์ธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜(1000)๋Š” ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜๊ฒŒ ๋˜๊ณ , ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•˜๊ฒŒ ๋œ๋‹ค.In addition, the present invention, the multimedia content search apparatus 1000 through attribute information analysis acquires a search word of multimedia content input by voice recognition or text, and determines whether to perform a text keyword search or a similar property search. When the text keyword search is performed, the search result information of the multimedia content is output.

์ด๋Š” ์ข…๋ž˜์— ์ผ๋ฐ˜์ ์œผ๋กœ ์ด์šฉํ•˜๊ณ  ์žˆ๋Š” ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜์˜ ๊ฒ€์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜๊ฒŒ ๋˜์ง€๋งŒ, ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์†์„ฑ ์ •๋ณด์™€ ์œ ์‚ฌํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์—๋Š” ํ•œ๊ณ„๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค.This uses a text keyword-based search algorithm that is generally used, but there is a limit in the search for multimedia content similar to the attribute information desired by the user.

๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋ฉด, ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์ธ ์˜ํ™”๋ฅผ ๊ฒ€์ƒ‰ํ•  ๊ฒฝ์šฐ์—, ์ข…๋ž˜ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜์˜ ๊ฒ€์ƒ‰์€ ๊ฐ™์€ ์ œ๋ชฉ์œผ๋กœ ๋‹ค์‹œ ๊ฒ€์ƒ‰๋˜๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์œผ๋ฉฐ, ๊ฒ€์ƒ‰์–ด์™€ ์ด๋ฆ„๋งŒ ๋น„์Šทํ•˜๊ณ  ๋‚ด์šฉ์ด ์™„์ „ํžˆ ๋‹ค๋ฅธ ์˜ํ™”๊ฐ€ ์ถ”์ฒœ๋˜๋ฉฐ, ์œ ์‚ฌํ•œ ๋‚ด์šฉ์˜ ์˜ํ™”๋“ค์ด ์ „ํ˜€ ๊ฒ€์ƒ‰๋˜์ง€ ์•Š๋Š” ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค.Specifically, in the case of searching for a movie that is multimedia content, the conventional text keyword based search has a problem of being searched again with the same title, and a movie having a similar name and a completely different content is recommended. There was a serious problem that the movies were not searched at all.

์ฆ‰, ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์˜ํ™”์™€ ๋ถ„์œ„๊ธฐ ํ˜น์€ ๊ฐ์ • ๋“ฑ์ด ์œ ์‚ฌํ•œ ์˜ํ™”๋ฅผ ๊ฒ€์ƒ‰ํ•  ์ˆ˜๊ฐ€ ์—†๋Š” ๊ฒƒ์ด๋‹ค.In other words, the user cannot search for a movie that has a similar mood, emotion, or the like.

์˜ˆ๋ฅผ ๋“ค์–ด, ๋„ 2์— ๋„์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ ๊ฐ™์€ ์˜ํ™”'๋ผ๋Š” ๊ฒ€์ƒ‰์–ด๋ฅผ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ์— ํ•ด๋‹น ๊ฒ€์ƒ‰์–ด๋กœ๋Š” ์œ ์‚ฌํ•œ ๋ถ„์œ„๊ธฐ์˜ ์˜ํ™”๊ฐ€ ๊ฒ€์ƒ‰๋˜์ง€ ์•Š๊ฒŒ ๋œ๋‹ค.For example, as shown in FIG. 2, when a search term 'movie like a love reality' is inputted, a movie having a similar atmosphere is not searched for by the search term.

์ด๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ๋ผ๋Š” ์˜ํ™”๋ฅผ ๋ณด๊ณ  ๋‚˜์„œ ์žฌ๋ฏธ๋ฅผ ๋А๊ผˆ๊ณ , ์ด๋Ÿฌํ•œ ๋น„์Šทํ•œ ๋ถ„์œ„๊ธฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์˜ํ™”๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ณ  ์‹ถ์–ด์„œ '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ' ๋ผ๋Š” ํ‚ค์›Œ๋“œ๋กœ ๊ฒ€์ƒ‰์„ ํ•˜๋ฉด, ์ด๋ฆ„๋งŒ ๋น„์Šทํ•  ๋ฟ, ์ „ํ˜€ ๋‚ด์šฉ์ด ๋น„์Šทํ•˜์ง€ ์•Š์€ ๊ฒฐ๊ณผ๋ฌผ์„ ์ถœ๋ ฅํ•ด์ฃผ๊ฒŒ ๋˜๋ฉฐ, ํŠนํžˆ ์ผ๋ถ€ ์ถ”์ฒœ ๋ฆฌ์ŠคํŠธ๋Š” ๊ด€๊ฐ ํ‰์ ์ด ๋งค์šฐ ๋‚ฎ์€ ์˜ํ™”๋„ ์ถ”์ฒœํ•˜๊ฒŒ ๋˜์–ด ์ถ”์ฒœ ํšจ๊ณผ๋ฅผ ์‚ฌ์šฉ์ž๊ฐ€ ๋А๋ผ์ง€ ๋ชปํ•˜๊ฒŒ ๋œ๋‹ค.It was fun after the user saw a movie called Love Actual, and wanted to search for a movie with a similar mood, and if they searched with the keyword 'Love Actually', the result would be similar but not at all. In particular, some of the recommendation lists recommend a movie with a very low audience rating, so that the user does not feel the recommendation effect.

์š”์•ฝํ•˜๋ฉด, ์ข…๋ž˜์˜ ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ ๋ฐฉ์‹์—์„œ๋Š” ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์— ๋Œ€ํ•œ ํŒ๋‹จ์„ ์ˆ˜ํ–‰ํ•˜์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ์ ๊ณผ ์‹œ๊ฐ„์˜ ํ๋ฆ„์— ๋”ฐ๋ผ ์ •๋ณด๋Ÿ‰์ด ๋ณ€๊ฒฝ๋˜๊ณ , ์ด์— ๋”ฐ๋ผ ํŠน์ • ๋Œ€์ƒ์˜ ์†์„ฑ๋„ ์‹œ์‹œ๊ฐ๊ฐ ๋ณ€ํ™”ํ•˜๋Š”๋ฐ, ์ด๋ฅผ ๊ฐ€๋ณ€์ ์œผ๋กœ ๋ฐ˜์˜ํ•  ์ˆ˜ ์—†๋‹ค.In summary, in the conventional search keyword method, a problem of failing to perform a similar attribute search and the amount of information change according to the passage of time, and accordingly, an attribute of a specific target also changes every time, and cannot be variably reflected.

๋”ฐ๋ผ์„œ, ๋ณธ ๋ฐœ๋ช…์—์„œ๋Š” ์ƒ๊ธฐํ•œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜์˜ ๊ฒ€์ƒ‰ ๊ธฐ๋Šฅ์„ ๊ธฐ๋ณธ์ ์œผ๋กœ ์ œ๊ณตํ•˜๋ฉด์„œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ๊ตฌ์„ฑ์  ํŠน์ง•์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•จ์œผ๋กœ์จ, ๊ฒ€์ƒ‰ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด์™€ ์œ ์‚ฌ๋„๊ฐ€ ๋†’์€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜๊ฒŒ ๋œ๋‹ค.Therefore, in the present invention, by providing the above-described text keyword-based search function, by providing a structural feature for performing a similar property search, the search results of multimedia content having similar properties when performing a similar property search By outputting the information, it is possible to provide multimedia contents having high similarity to the attribute information of the multimedia contents to be searched.

๋˜ํ•œ, ๋ณธ ๋ฐœ๋ช…์€ ์ƒ๊ธฐ์™€ ๊ฐ™์€ ๊ตฌ์„ฑ์„ ํ†ตํ•ด, ๊ธฐ์กด ํ‚ค์›ŒํŠธ ๊ฒ€์ƒ‰์„ ์ง„ํ–‰ํ•  ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ง„ํ–‰ํ•  ์ง€๋ฅผ ํŒ๋‹จํ•˜๋Š” ๊ตฌ์„ฑ์  ํŠน์ง•๊ณผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฐ๊ฐ์˜ ์†์„ฑ์„ ์ •์˜(๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ ๋“ฑ)ํ•˜๋Š” ๊ตฌ์„ฑ์  ํŠน์ง•๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•œ ๊ฒ€์ƒ‰ ๋Œ€์ƒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์˜ ์†์„ฑ๊ฐ’์„ ํ• ๋‹น(๋ฐ์ดํ„ฐ ํฌ๋กค๋ง, ํ†ต๊ณ„ ๋ชจ๋ธ๋ง ๋“ฑ)ํ•˜๋Š” ๊ตฌ์„ฑ์  ํŠน์ง•๊ณผ ์†์„ฑ ์ •๋ณด๋ฅผ ์ˆ˜์น˜ํ™”ํ•˜์—ฌ ๊ณ„์‚ฐ(์–ธ์–ด ๋ชจ๋ธ๋ง)ํ•˜๋Š” ๊ตฌ์„ฑ์  ํŠน์ง•๊ณผ ์†์„ฑ ์ •๋ณด์˜ ์œ ์‚ฌ๋„๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ฒœ(ํ™•๋ฅ ๊ฐ’ ๋น„๊ต)ํ•˜๋Š” ๊ตฌ์„ฑ์  ํŠน์ง•์„ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.In addition, the present invention, through the configuration as described above, to determine whether to proceed to the existing keyword search or similar property search and the attributes of each multimedia content (warm, touching, fun, etc.) The similarity between the constructive feature that assigns the attribute value of the searched multimedia through the constructive feature and natural language processing (data crawling, statistical modeling, etc.) and the comparable feature and attribute information that are numerically calculated (language modeling) It provides a constructive feature for recommending high multimedia content (comparison value).

์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ๊ตฌ์ฒด์ ์ธ ๊ตฌ์„ฑ์ˆ˜๋‹จ๋“ค์€ ํ•˜๊ธฐ์˜ ๋„๋ฉด์„ ์ฐธ์กฐํ•˜์—ฌ ๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋„๋ก ํ•˜๊ฒ ๋‹ค.Detailed configuration means for performing a similar attribute search will be described in detail with reference to the following drawings.

๋„ 3์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜์˜ ์ „์ฒด ๋ธ”๋ก๋„์ด๋‹ค.3 is a block diagram of an apparatus for retrieving multimedia contents through attribute information analysis according to a first embodiment of the present invention.

๋„ 3์— ๋„์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด, ๋ณธ ๋ฐœ๋ช…์ธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜(1000)๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100), ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200), ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300), ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400), ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500), ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋ฅผ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋œ๋‹ค.As shown in FIG. 3, the present invention provides a multimedia content search apparatus 1000 through attribute information analysis. The search start unit 100, the attribute search execution determination unit 200, the text keyword search unit 300, and the text keyword result are shown. It comprises an output unit 400, the attribute similarity search means 500, the attribute similarity search result output unit 600.

์ƒ๊ธฐ์™€ ๊ฐ™์€ ๊ตฌ์„ฑ์„ ํ†ตํ•ด ๋ณธ ๋ฐœ๋ช…์—์„œ๋Š” ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๋ฐฉ์‹์˜ ๊ฒ€์ƒ‰๊ณผ ์†์„ฑ ์œ ์‚ฌ๋„ ๋ฐฉ์‹์˜ ๊ฒ€์ƒ‰์„ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.Through the above configuration, the present invention provides a text keyword type search and an attribute similarity type search.

์ƒ๊ธฐํ•œ ๊ฒ€์ƒ‰ ๋ฐฉ์‹์„ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๊ตฌ์ฒด์ ์ธ ๊ตฌ์„ฑ์  ํŠน์ง•์„ ํ•˜๊ธฐ์™€ ๊ฐ™์ด ์„ค๋ช…ํ•˜๋„๋ก ํ•˜๊ฒ ๋‹ค.Specific structural features for providing the search method will be described as follows.

์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋Š” ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค.The search start unit 100 obtains a search word of multimedia content input through voice recognition or text and provides search execution request information to the attribute search execution determining unit 200.

์Œ์„ฑ ์ธ์‹์„ ์œ„ํ•˜์—ฌ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€๋Š” ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ชจ๋“ˆ์„ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋˜, ์ƒ๊ธฐ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ชจ๋“ˆ์— ์˜ํ•ด ์ฒ˜๋ฆฌ๋œ ์Œ์„ฑ์ธ์‹ ๊ฒฐ๊ณผ ํ…์ŠคํŠธ์—์„œ ์‚ฌ์šฉ์ž์˜ ๋ช…๋ น ๋Œ€์ƒ๊ฐ’์„ ์ถ”์ถœํ•˜๊ฒŒ ๋œ๋‹ค.The search start unit includes a natural language processing module for speech recognition, and extracts a user's command target value from the speech recognition result text processed by the natural language processing module.

์ƒ๊ธฐํ•œ ์–ธ์–ด ์ดํ•ด(Embedded Natural Language Understanding) ๊ธฐ์ˆ ์€ ์ „์ž ๊ธฐ๊ธฐ ๋‚ด๋ถ€์— ๊ทœ์น™ ๊ธฐ๋ฐ˜(Rule Based) ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋˜๋Š” ํ†ต๊ณ„ ๋ชจ๋ธ(Statistic Model)์„ ์ด์šฉํ•˜๋Š” ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ์„ ๋‚ด์žฅํ•˜์—ฌ, ์Œ์„ฑ์ธ์‹ ๊ฒฐ๊ณผ ํ…์ŠคํŠธ์—์„œ ์‚ฌ์šฉ์ž์˜ ์ตœ์ข… ๋ชฉํ‘œ์ธ ๋ช…๋ น ์˜๋„(Intention, Goal)์™€ ๊ตฌ์ฒด์ ์ธ ๋ช…๋ น ๋Œ€์ƒ(Named Entity)์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์˜๋ฏธํ•˜์—ฌ, ์ƒ๊ธฐ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ชจ๋“ˆ์— ์˜ํ•ด ์ฒ˜๋ฆฌ๋œ ์Œ์„ฑ์ธ์‹ ๊ฒฐ๊ณผ ํ…์ŠคํŠธ์—์„œ ์‚ฌ์šฉ์ž์˜ ๋ช…๋ น ๋Œ€์ƒ๊ฐ’์„ ์ถ”์ถœํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Embedded Natural Language Understanding technology incorporates a natural language processing module using a rule-based algorithm or statistical model inside an electronic device, so that the user's final goal in speech recognition text is a command. It means the method of automatically extracting the intention (Intention, Goal) and the specific named object, it is to extract the command target value of the user from the speech recognition result text processed by the natural language processing module.

์ƒ๊ธฐ ์‚ฌ์šฉ์ž์˜ ๋ช…๋ น ๋Œ€์ƒ๊ฐ’์„ ์ถ”์ถœํ•˜๋Š” ๊ธฐ์ˆ ์€ ์ผ๋ฐ˜์ ์ธ ๊ธฐ์ˆ ์ด๋ฏ€๋กœ ์ƒ์„ธํ•œ ์„ค๋ช…์€ ์ƒ๋žตํ•˜๊ฒ ๋‹ค.Since the technique of extracting the command target value of the user is a general technique, a detailed description thereof will be omitted.

๋˜ํ•œ, ์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€๋Š” ์Œ์„ฑ์ธ์‹์—”์ง„๋ถ€๋ฅผ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์ƒ๊ธฐ ์ถ”์ถœ๋œ ์‚ฌ์šฉ์ž์˜ ๋ช…๋ น ๋Œ€์ƒ๊ฐ’์„ ํ† ๋Œ€๋กœ ๋ฏธ๋ฆฌ ์ž…๋ ฅ๋œ ๋‹จ์–ด๋‚˜ ๋ฌธ์žฅ์— ๊ทผ์ ‘ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ช…๋ น์–ด๋กœ ์ธ์‹ํ•˜์—ฌ ์ธ์‹ ๊ฒฐ๊ณผ๊ฐ’์„ ์ถ”์ถœํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค.In addition, the search start unit may configure a voice recognition engine, through which the function of extracting a recognition result value by recognizing a result close to a word or sentence previously input as a command based on the extracted command target value of the user. Done.

์ฆ‰, ๋ณดํ†ต ์ธ์‹๊ธฐ๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ์ธ์‹ ๋ฌธ๋ฒ•(Grammar) ๊ธฐ๋ฐ˜์œผ๋กœ ์Œ์„ฑ์ธ์‹์ด ์ˆ˜ํ–‰๋˜๋Š”๋ฐ, ์ธ์‹ ๋Œ€์ƒ ๋ชฉ๋ก์ด ์ •ํ•ด์ ธ ์žˆ๊ณ , ๊ทธ ๋Œ€์ƒ ๋ชฉ๋ก๋งŒ์ด ์ธ์‹ ๊ฒฐ๊ณผ๋กœ ์ถœ๋ ฅ๋  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋ฅผ ์ง€๋‹Œ๋‹ค.In other words, speech recognition is performed based on recognition grammars that can be understood by a recognizer, and a list of recognition targets is determined, and only the target list has a structure that can be output as a recognition result.

์ด๋•Œ, ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋Š” ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.In this case, the search start unit 100 obtains a search word of the multimedia content input through voice recognition or text and provides the search execution request information to the attribute search execution determining unit 200.

์˜ˆ๋ฅผ ๋“ค์–ด, ์Œ์„ฑ ํ˜น์€ ํ…์ŠคํŠธ๋กœ '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ ๊ฐ™์€ ์˜ํ™”'๋ฅผ ์ž…๋ ฅํ•˜๊ฒŒ ๋˜๋ฉด ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ, ์˜ํ™” ๋“ฑ์„ ์ฐธ์กฐํ•˜์—ฌ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์š”์ฒญํ•˜๋Š” ๊ฒ€์ƒ‰์–ด์ž„์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€๋Š” ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, if a user inputs a movie such as a love act by voice or text, it can be referred to as a search word for requesting multimedia content by referring to a love act, a movie, and the like. It will be provided to the search performance determination unit 200.

์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ฒŒ ๋œ๋‹ค.The attribute search determining unit 200 determines whether to perform a text keyword search or a similar attribute search when obtaining the search execution request information from the search start unit 100.

๊ตฌ์ฒด์ ์œผ๋กœ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์•„๋‹ˆ๋ฉด ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€์˜ ํŒ๋‹จ์€ ์„œ๋น„์Šค ๋„๋ฉ”์ธ์— ๋”ฐ๋ผ ํŒ๋‹จํ•˜๋Š” ์ œ1 ๋ชจ๋“œ, ๊ฒ€์ƒ‰์–ด๋กœ ์ž…๋ ฅ๋œ ๋ฌธ์žฅ์„ ๋ถ„์„ํ•˜์—ฌ ํŒ๋‹จํ•˜๋Š” ์ œ2 ๋ชจ๋“œ ์ค‘ ์ ์–ด๋„ ์–ด๋А ํ•˜๋‚˜์˜ ๋ชจ๋“œ๋ฅผ ์ ์šฉํ•˜์—ฌ ํŒ๋‹จํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.In detail, the determination of whether to perform a text keyword search or a similar property search is performed in at least one of a first mode for determining according to a service domain and a second mode for analyzing and determining a sentence input by a search word. It is characterized by applying the mode.

์ƒ๊ธฐ ์ œ1๋ชจ๋“œ ๋˜๋Š” ์ œ2 ๋ชจ๋“œ๋Š” ๊ด€๋ฆฌ์ž์— ์˜ํ•ด ์‚ฌ์ „์— ์„ค์ •๋˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค.The first mode or the second mode may be set in advance by an administrator.

์ฆ‰, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์•„๋‹ˆ๋ฉด ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€์˜ ํŒ๋‹จ์— ๋Œ€ํ•ด ์ œ1 ๋ชจ๋“œ๋กœ ์„ค์ •๋˜๋ฉด ์„œ๋น„์Šค ๋„๋ฉ”์ธ ์ฃผ์†Œ๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์•„๋‹ˆ๋ฉด ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๊ฐ€ ๊ฒฐ์ •๋˜๋Š” ๊ฒƒ์ด๋‹ค.That is, when the first mode is set to determine whether to perform a text keyword search or similar property search, whether to perform a text keyword search with reference to the service domain address or similar property search is performed. Is determined.

์˜ˆ๋ฅผ ๋“ค์–ด, 'www.naver.com'์˜ ๋„๋ฉ”์ธ ์ฃผ์†Œ์ผ ๊ฒฝ์šฐ์—๋Š” ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„, 'www.google.com'์˜ ๋„๋ฉ”์ธ ์ฃผ์†Œ์ผ ๊ฒฝ์šฐ์—๋Š” ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์„ค์ •ํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, a text keyword search is set for a domain address of 'www.naver.com', and a similar attribute search is set for a domain address of 'www.google.com'.

๋˜๋Š”, ๊ด€๋ฆฌ์ž์— ์˜ํ•ด ์ œ2 ๋ชจ๋“œ๋กœ ์„ค์ •๋˜๋ฉด ๊ฒ€์ƒ‰์–ด๋กœ ์ž…๋ ฅ๋œ ๋ฌธ์žฅ์„ ๋ถ„์„ํ•˜์—ฌ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์— ํ•ด๋‹นํ•˜๋Š” ํ‚ค์›Œ๋“œ๊ฐ€ ์กด์žฌํ•˜๋Š” ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Alternatively, when the second mode is set by the administrator, a sentence input as a search word is analyzed to determine whether a keyword corresponding to a similar attribute search exists.

์˜ˆ๋ฅผ ๋“ค์–ด, '๊ฐ™์€', '๋น„์Šทํ•œ', '๋™์ผํ•œ' ๋“ฑ๊ณผ ๊ฐ™์ด ์œ ์‚ฌ ์†์„ฑ์„ ๊ฒ€์ƒ‰ํ•˜๋ ค๋Š” ์˜๋„๊ฐ€ ๋‹ด๊ธด ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•œ๋‹ค๋ฉด ์ด๋Š” ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.For example, if a user obtains a search word that is intended to search for similar attributes, such as 'same', 'similar', 'same', etc., it may be understood that this is to perform a similar attribute search.

์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋Š” ํŒ๋‹จ ๊ฒฐ๊ณผ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.As a result of the determination, the attribution search performing decision unit 200 provides the text keyword search request information to the text keyword search unit 300 when the text keyword search is performed.

์ด๋•Œ, ์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋Š” ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์—๋Š” ์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ'๋ผ๋Š” ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ'๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.In this case, when the text keyword search unit 300 obtains the text keyword search request information provided from the attribute search performing determination unit, the text keyword search unit 300 performs a text keyword search by referring to the text keyword 'love actual', The search result information including 'Love Actually' is provided to the text keyword result output unit.

์ด๋•Œ, ์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400)๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.In this case, the text keyword result output unit 400 outputs search result information of the text keyword provided from the text keyword search unit.

์ฆ‰, ๋„ 4์™€ ๊ฐ™์ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ'๋ผ๋Š” ํ‚ค์›Œ๋“œ๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ชจ๋“  ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•  ํ™•๋ฅ ์€ ๊ฐ์†Œํ•˜๊ฒŒ ๋œ๋‹ค.That is, as shown in FIG. 4, since all search result information including the keyword 'love reality' is output, the probability of providing a desired search result is reduced.

์ด๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์†์„ฑ ์ •๋ณด๋ฅผ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฐœ์ƒ๋˜๋Š” ๋ฌธ์ œ์ ์ด๋ฉฐ, ๋ณธ ๋ฐœ๋ช…์—์„œ๋Š” ์ผ๋ฐ˜์ ์ธ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ๋ฐฉ์‹์„ ์ œ๊ณตํ•˜๋ฉด์„œ ๋™์‹œ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ๋ฐฉ์‹์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•˜๊ณ  ์žˆ๋‹ค.This is a problem caused by not reflecting the attribute information desired by the user. The present invention is characterized by providing a similar attribute search method while providing a general text keyword search method.

์ด๋ฅผ ์œ„ํ•˜์—ฌ, ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋Š” ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.To this end, the attribute search performing decision unit 200 provides similar attribute search request information to the attribute similarity search unit 500 when performing the similar attribute search.

์ฆ‰, ์„œ๋น„์Šค ๋„๋ฉ”์ธ์— ๋”ฐ๋ผ ๋ฏธ๋ฆฌ ์„ค์ •ํ•˜๋Š” ์ œ1 ๋ชจ๋“œ, ๊ฒ€์ƒ‰์–ด๋กœ ์ž…๋ ฅ๋œ ๋ฌธ์žฅ์„ ๋ถ„์„ํ•˜๋Š” ์ œ2 ๋ชจ๋“œ ์ค‘ ์–ด๋А ํ•˜๋‚˜์— ์˜ํ•ด ๋ถ„์„๋œ ๊ฒฐ๊ณผ๊ฐ€ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์— ํ•ด๋‹น๋œ๋‹ค๋ฉด ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค.That is, when the result analyzed by any one of the first mode preset according to the service domain and the second mode analyzing the sentence inputted by the search word corresponds to the similar property search, the similarity property search is performed by the property similarity search unit 500. It is to provide the request information.

์ดํ›„, ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)์€ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋ฉฐ, ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Thereafter, the attribute similarity search means 500 performs a similar attribute search when obtaining the similar attribute search request information provided from the attribute search determining unit 200, and provides the search result information to the attribute similarity search result output unit. The attribute similarity search result output unit 600 outputs the search result information of the similar attribute provided from the attribute similarity search unit 500.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ ๊ฐ™์€ ์˜ํ™”'๋ฅผ ๊ฒ€์ƒ‰์–ด๋กœ ์ž…๋ ฅํ•˜๊ฒŒ ๋˜๋ฉด, ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)์„ ํ†ตํ•ด ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ๊ฒ€์ƒ‰๋œ ๊ฒฐ๊ณผ๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜์—ฌ ์ด๋ฅผ ํ™”๋ฉด์— ์ถœ๋ ฅํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, if a keyword such as โ€œlove actualโ€ is entered as a search word, a similar property search is performed through the property similarity search means 500, and the search result is provided to the property similarity search result output unit 600 and displayed on the screen. Will print.

๋„ 5์— ๋„์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด, '์ดํ”„ ์˜จ๋ฆฌ, ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด, ๋…ธํŒ… ํž, ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„' ๋“ฑ์˜ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.As shown in FIG. 5, similar property search results such as 'if only, romantic holiday, notting hill, walk to member', etc. will be provided.

๋‹ค์Œ์€ ๋„ 6 ๋‚ด์ง€ ๋„ 8์„ ์ฐธ์กฐํ•˜์—ฌ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ๋ณธ ๋ฐœ๋ช…์˜ ํ•ต์‹ฌ ๊ตฌ์„ฑ์  ํŠน์ง•์„ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)์˜ ๊ตฌ์„ฑ์š”์†Œ์™€ ๋™์ž‘ ๊ณผ์ •์— ๋Œ€ํ•˜์—ฌ ๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜๊ฒ ๋‹ค.Next, the components and operation process of the attribute similarity search means 500 that provide the core structural features of the present invention according to the first embodiment will be described in detail with reference to FIGS. 6 to 8.

๋„ 6์— ๋„์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด, ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)์€ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510), ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520), ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530), ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋ถ€(540), ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋ถ€(550)๋ฅผ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋œ๋‹ค.As shown in FIG. 6, the attribute similarity search means 500 includes a keyword attribute analysis unit 510, a multimedia content attribute assignment unit 520, a similarity matching property analysis unit 530, a similarity candidate group extraction unit 540, and similarity degree. The reference multimedia content alignment unit 550 is included.

์ƒ๊ธฐ์™€ ๊ฐ™์€ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)์˜ ๊ตฌ์„ฑ์— ์˜ํ•ด ์œ ์‚ฌ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ๊ฒ€์ƒ‰ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด์™€ ์œ ์‚ฌ๋„๊ฐ€ ๋†’์€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์ œ๊ณตํ•˜์—ฌ ๊ฒ€์ƒ‰์˜ ์ •ํ™•์„ฑ ๋ฐ ์‹ ๋ขฐ์„ฑ์„ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.By providing the search result information of the multimedia content having the similar property by the configuration of the attribute similarity search means 500 as described above, by providing the multimedia content with high similarity to the property information of the multimedia content to search for accuracy and Provide reliability.

๋ณธ ๋ฐœ๋ช…์—์„œ ์†์„ฑ์ด๋ž€, ๊ฐœ์ฒด๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ณ ์œ ์˜ ํŠน์„ฑ์„ ์˜๋ฏธํ•˜๋ฉฐ, ์†์„ฑ ์ž์ฒด๋งŒ์œผ๋กœ๋Š” ์˜๋ฏธ๊ฐ€ ์—†์ง€๋งŒ, ๊ด€๋ จ์žˆ๋Š” ์†์„ฑ๋“ค์„ ๋ชจ์•„ ๊ฐœ์ฒด๋ฅผ ๊ตฌ์„ฑํ•˜๋ฉด ํ•˜๋‚˜์˜ ์ค‘์š”ํ•œ ์˜๋ฏธ๋ฅผ ํ‘œํ˜„ํ•  ์ˆ˜๊ฐ€ ์žˆ๊ฒŒ ๋˜๋ฉฐ, ์†์„ฑ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์˜๋ฏธ์žˆ๋Š” ๋ฐ์ดํ„ฐ์˜ ๊ฐ€์žฅ ์ž‘์€ ๋…ผ๋ฆฌ์  ๋‹จ์œ„๋กœ ์ธ์‹๋˜๋ฉฐ, ์ด๋ฅผ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๊ฐ€๊ณต์— ํ™œ์šฉํ•˜๊ฒŒ ๋œ๋‹ค.In the present invention, the property refers to an inherent characteristic of the object, and the property itself is not meaningful. However, when an object is composed of related properties, one important expression can be expressed, and the property is generally meaningful data. It is recognized as the smallest logical unit of and used for database processing.

์ด์— ๋”ฐ๋ผ ๋ณธ ๋ฐœ๋ช…์—์„œ๋Š” ์œ ์‚ฌ ์†์„ฑ์„ ์ด์šฉํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด(์งˆ๋ฌธ ํ˜น์€ ์งˆ์˜์–ด)์™€ ๊ฐ€์žฅ ์œ ์‚ฌ๋„๊ฐ€ ๋†’์€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด ๊ฒ€์ƒ‰์— ํ™œ์šฉํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Accordingly, in the present invention, the similar property is used to search for multimedia content information having the highest similarity with a search word (question or query word).

์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510)๋Š” ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜๊ฒŒ ๋œ๋‹ค.The keyword attribute analyzer 510 analyzes linguistic attribute information included in a keyword of a multimedia content input through speech recognition or text.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ ๊ฐ™์€ ์˜ํ™”'์™€ ๊ฐ™์€ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์˜๋ฏธ๋ฅผ ๋ถ„์„ํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋Š” ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค.For example, a linguistic meaning included in a search word such as a movie such as a love reality is analyzed, which means to analyze linguistic attribute information.

์ฆ‰, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ'๋ผ๋Š” ์˜ํ™”๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์†์„ฑ๊ณผ ์œ ์‚ฌํ•œ ์†์„ฑ์„ ๊ฐ€์ง„ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ธฐ ์œ„ํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•ด์•ผ๋งŒ ์ด๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ์œ ์‚ฌํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ๊ฒ€์ƒ‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค.In other words, it is possible to search for similar multimedia contents only by analyzing attribute information for searching for multimedia contents having attributes similar to those of a movie called 'Love Actually'.

์ฆ‰, '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ' ๋“ฑ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ์— ํ• ๋‹นํ•˜๊ฒŒ ๋œ๋‹ค๋ฉด ์ƒ๊ธฐ ์†์„ฑ ์ •๋ณด์ธ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ'์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์˜ํ™”๋ฅผ ๊ฒ€์ƒ‰ํ•  ์ˆ˜๊ฐ€ ์žˆ๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.That is, if attribute information such as 'warmness, inspiration, and fun' is assigned to the love reality, it is possible to search for a movie having the above-mentioned attribute information 'warmness, inspiration and fun'.

์ƒ๊ธฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋Š” ์ปจํ…์ธ ์„œ๋ฒ„(560)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ณ , ์ €์žฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋œ๋‹ค.The multimedia content attribute assignment unit 520 acquires and stores multimedia content from the content server 560 and allocates attribute information to the stored multimedia content.

์ฆ‰, ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์ด ์–ด๋–ค ์†์„ฑ ์ •๋ณด๋ฅผ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š”์ง€ ์ปจํ…์ธ  ์ •๋ณด๋ฅผ ๊ฒŒ๋”๋งํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ, ์ปจํ…์ธ  ์ •๋ณด๋Š” ์™ธ๋ถ€ ๋„คํŠธ์›Œํฌ ๋˜๋Š” ํ†ต์‹ ์„ ์ด์šฉํ•˜์—ฌ ์—ฐ๊ฒฐ๋œ ์ปจํ…์ธ ์„œ๋ฒ„์—์„œ ํฌ๋กค๋ง๋œ ๊ฒƒ์ด๋ฉฐ, ์–ธ์–ด์  ์ •์ œ๋ฅผ ๊ฑฐ์ณ ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋œ๋‹ค.That is, the content information is gathered to determine what attribute information the multimedia contents have. The content information is crawled by a connected content server using an external network or communication, and the attribute information is assigned through linguistic refinement.

๊ตฌ์ฒด์ ์œผ๋กœ, ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ๋ผ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ฒŒ ๋˜๋ฉฐ, ์ƒ๊ธฐ ์ €์žฅ๋œ ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ ์˜ํ™”์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด, ์†์„ฑ ์ •๋ณด์ธ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ' ๋“ฑ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Specifically, it acquires and stores multimedia content called love actuation, and assigns attribute information to the stored love actuary movie, for example, assigns attribute information such as 'warmness, emotion, fun', etc. It is done.

์ƒ๊ธฐํ•œ ๋ฐ”์™€ ๊ฐ™์ด, ๊ฒŒ๋”๋ง๋˜๋Š” ๋ชจ๋“  ์ปจํ…์ธ ๋งˆ๋‹ค ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜์—ฌ ๊ด€๋ฆฌํ•˜๊ฒŒ ๋˜๋ฉด, ๊ฒ€์ƒ‰์–ด์˜ ์†์„ฑ ์ •๋ณด์™€ ์œ ์‚ฌํ•œ ์ปจํ…์ธ ๋“ค์„ ์ถ”์ถœํ•ด๋‚ผ ์ˆ˜๊ฐ€ ์žˆ๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.As described above, when attribute information is allocated and managed for every content to be gathered, contents similar to the attribute information of a search word may be extracted.

์ƒ๊ธฐ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋Š” ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์— ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.The similarity matchability analysis unit 530 provides the multimedia content attribute assignment unit 520 with multimedia content request information including attribute information similar to linguistic attribute information of a search word.

์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์ธ '์˜ํ™”', '๋Ÿฌ๋ธŒ์•ก์ถ”์–ผ๋ฆฌ', '๊ฐ™์€'์ด๋ผ๋Š” ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์™€ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ'์ด๋ผ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ , '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ' ๋“ฑ๊ณผ ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋ฉฐ, ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๋ฉฐ, ํš๋“๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด์— ํฌํ•จ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์˜ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, with linguistic attribute information such as 'movie', 'love truth', and 'like', which are the linguistic attribute information of the search word, and multimedia content attribute information such as 'warm, touching, fun', Multimedia content request information including attribute information similar to โ€œim, fun,โ€ and the like, is generated and provided to the multimedia content attribute assignment unit 520, and the multimedia content list information is obtained from the multimedia content attribute assignment unit. Similarity matching analysis of multimedia contents included in the content list information is performed.

์ƒ๊ธฐํ•œ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์ด๋ž€, ์ •๋ณด๊ฒ€์ƒ‰๋ก ์—์„œ ์œ ์‚ฌ๋„๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋งŽ์ด ํ™œ์šฉํ•˜๋Š” ์œ ํด๋ฆฌ๋””์•ˆ ๊ฑฐ๋ฆฌ(Euclidean distance) ๊ณต์‹, ๋ฒกํ„ฐ ๊ณต๊ฐ„ ๋ชจ๋ธ(Vector space model) ๋“ฑ ๋‹ค์–‘ํ•œ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ ๊ณต์‹์„ ์ด์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ œ๊ณตํ•  ์ปจํ…์ธ ๋ฅผ ์„ ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. The similarity matching analysis described above is content to be provided to the user by using various similarity calculation formulas such as Euclidean distance formula and vector space model, which are frequently used to search for similarity in information retrieval theory. Can be selected.

๋˜ํ•œ, ์‚ฌ์šฉ์ž๊ฐ€ ์ œ๊ณตํ•œ ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ปจํ…์ธ ์˜ ํ‚ค์›Œ๋“œ์™€์˜ ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ์ปจํ…์ธ ๋ฅผ ๊ฒ€์ƒ‰ํ•˜์—ฌ ์œ ์‚ฌ๋„๊ฐ€ ๋†’์€ ์ˆœ์„œ๋Œ€๋กœ ์ปจํ…์ธ ๋ฅผ ์ •๋ ฌํ•  ์ˆ˜ ์žˆ๋‹ค. In addition, based on a search keyword provided by the user, the most similar content with the keyword of the content may be searched and the contents may be sorted in the order of high similarity.

์—ฌ๊ธฐ์„œ, ์ƒ๊ธฐ ์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋กœ ๋„์ถœ๋˜๋Š” ์ปจํ…์ธ ์˜ ์ˆ˜๋Š” ์ƒ์œ„ ์ผ์ • ๊ฐœ์ˆ˜๋ฅผ ์ •ํ•˜์—ฌ ์ •๋ ฌ์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ƒ๊ธฐ ์ผ์ • ๊ฐœ์ˆ˜๋Š” ์ƒํ™ฉ์— ๋”ฐ๋ผ ์‚ฌ์šฉ์ž๊ฐ€ ์ž„์˜ ์„ค์ • ๊ฐ€๋Šฅํ•  ์ˆ˜ ์žˆ๋‹ค.Here, the number of contents derived as a result of the similarity search may be determined by sorting an upper predetermined number, and the predetermined number may be arbitrarily set by the user according to a situation.

์—ฌ๊ธฐ์„œ, a๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ปจํ…์ธ ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ž…๋ ฅํ•œ ํ‚ค์›Œ๋“œ์ด๊ณ , a1, a2, a3 ...an ๊นŒ์ง€ ์ด n๊ฐœ์˜ ํ‚ค์›Œ๋“œ๊ฐ€ ์žˆ๊ณ , ์ƒ๊ธฐ ์ด n๊ฐœ์˜ ํ‚ค์›Œ๋“œ๋Š” a(a1, a2, a3 ...an)์œผ๋กœ ํ‘œํ˜„ํ•˜๊ณ , b๋Š” ์ปจํ…์ธ ์ด๊ณ , b1, b2, b3 ...bn ๊นŒ์ง€ ์ด n๊ฐœ์˜ ํ‚ค์›Œ๋“œ๊ฐ€ ์žˆ๊ณ , ์ƒ๊ธฐ ์ด n๊ฐœ์˜ ํ‚ค์›Œ๋“œ๋Š” b(b1, b2, b3 ...bn)๋ผ๊ณ  ํ•  ๋•Œ, ์ƒ๊ธฐ ์œ ํด๋ฆฌ๋””์•ˆ ๊ฑฐ๋ฆฌ ๊ณต์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.Here, a is a keyword inputted by a user to search for content, and there are n keywords in total up to a 1 , a 2 , a 3 ... a n , and the total n keywords are a (a 1 , a 2 , a 3 ... a n) , b is the content, and there are n keywords up to b 1 , b 2 , b 3 ... b n , and the total n keywords are b (b 1 , When b 2 , b 3 ... b n) , the Euclidean distance formula can be expressed as follows.

Figure PCTKR2018002911-appb-I000001
(์ˆ˜์‹ 1)
Figure PCTKR2018002911-appb-I000001
(Formula 1)

์—ฌ๊ธฐ์„œ, ๊ฐ ํ‚ค์›Œ๋“œ ๊ฐ„์˜ ์œ ํด๋ฆฌ๋””์•ˆ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์ฆ‰, ์ˆ˜์‹ 1์„ ํ†ตํ•ด ๋„์ถœ๋œ ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ์œ ์‚ฌ๋„๋Š” ๋†’๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค.Here, the closer the Euclidean distance between each keyword, that is, the smaller the value derived through Equation 1, the higher the similarity may be determined.

๋˜ํ•œ, ์ƒ๊ธฐ ๋ฒกํ„ฐ ๊ณต๊ฐ„ ๋ชจ๋ธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.In addition, the vector space model can be expressed as follows.

Figure PCTKR2018002911-appb-I000002
(์ˆ˜์‹ 2)
Figure PCTKR2018002911-appb-I000002
(Formula 2)

์—ฌ๊ธฐ์„œ, ์ˆ˜์‹2๋ฅผ ํ†ตํ•ด ๋„์ถœ๋œ ๊ฐ’์ด 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์œ ์‚ฌ๋„๊ฐ€ ๋†’์œผ๋ฉฐ, 0์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์œ ์‚ฌ๋„๊ฐ€ ๋‚ฎ๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. Here, the closer the value derived through Equation 2 is to 1, the higher the similarity, and the closer to 0, the lower the similarity may be determined.

๋”ฐ๋ผ์„œ, ์ˆ˜์‹ 1 ๋ฐ ์ˆ˜์‹ 2๋ฅผ ํ†ตํ•ด ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ์™€ ์ฝ˜ํ…์ธ ๋ณ„๋กœ ์ƒ์„ฑ๋œ ํ‚ค์›Œ๋“œ์™€์˜ ์œ ์‚ฌ๋„๋ฅผ ๊ฒ€์‚ฌํ•˜์—ฌ ์œ ์‚ฌ๋„๊ฐ€ ๋†’์€ ์ˆœ์„œ๋Œ€๋กœ ์ปจํ…์ธ ๋ฅผ ์ •๋ ฌ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.Therefore, the similarity between the search keyword and the keyword generated for each content may be inspected by Equation 1 and Equation 2 to sort the contents in the order of high similarity.

์ด๋•Œ, ์ƒ๊ธฐ ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋ถ€(540)๋Š” ์‚ฌ์ „์— ์„ค์ •๋œ ํ›„๋ณด๊ตฐ ์ˆซ์ž๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ๊ฐ€์žฅ ๋†’์€ ์œ ์‚ฌ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ถœํ•˜๊ฒŒ ๋œ๋‹ค.In this case, the similarity candidate group extracting unit 540 extracts the multimedia contents according to the number of candidate groups sequentially from the multimedia contents having the highest similarity with reference to a preset candidate group number.

์˜ˆ๋ฅผ ๋“ค์–ด, 4๊ฐœ์˜ ํ›„๋ณด๊ตฐ ์ˆซ์ž๋กœ ์„ค์ •ํ•˜๊ฒŒ ๋˜๋ฉด ์ˆœ์ฐจ์ ์œผ๋กœ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ถœํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, '์ดํ”„ ์˜จ๋ฆฌ, ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด, ๋…ธํŒ… ํž, ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„' ๋ผ๋Š” 4๊ฐœ์˜ ํ›„๋ณด๊ตฐ์„ ์ถ”์ถœํ•˜๊ฒŒ ๋œ๋‹ค.For example, if the number of four candidates is set, the multimedia content is sequentially extracted according to the number of candidates, and four candidate groups of 'if only, romantic holiday, notting hill, and work-to-member' are extracted.

์ด๋•Œ, ์ƒ๊ธฐ ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋ถ€(550)๋Š” ์ƒ๊ธฐ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ์ถ”์ถœ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์œ ์‚ฌ๋„์— ๋”ฐ๋ผ ์ •๋ ฌ์‹œํ‚ค๋ฉฐ, ์ •๋ ฌ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.In this case, the similarity-based multimedia content sorting unit 550 sorts the multimedia contents extracted according to the number of candidate groups according to the similarity, and provides the sorted multimedia contents to the attribute similarity search result output unit 600.

์˜ˆ๋ฅผ ๋“ค์–ด, ์ดํ”„ ์˜จ๋ฆฌ์™€์˜ ์œ ์‚ฌ๋„๊ฐ€ 1.215, ์ƒ๊ธฐ ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด๊ณผ์˜ ์œ ์‚ฌ๋„๊ฐ€ 0.75, ์ƒ๊ธฐ ๋…ธํŒ… ํž๊ณผ์˜ ์œ ์‚ฌ๋„๊ฐ€ 1.787, ์ƒ๊ธฐ ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„์™€์˜ ์œ ์‚ฌ๋„๊ฐ€ 0.454๋กœ ๊ฐ๊ฐ ๋„์ถœ๋˜๋ฉด, ์ƒ๊ธฐ ์œ ํด๋ฆฌ๋””์–ธ ๊ฑฐ๋ฆฌ ๊ณต์‹์€ ์œ ์‚ฌ๋„ ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ์œ ์‚ฌ๋„๊ฐ€ ๋†’์œผ๋ฏ€๋กœ, ์ƒ๊ธฐ ์ปจํ…์ธ ๋ฅผ ์œ ์‚ฌ๋„๊ฐ€ ๋†’์€ ์ˆœ์„œ๋Œ€๋กœ ์žฌ์ •๋ ฌํ•  ๊ฒฝ์šฐ ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„, ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด, ์ดํ”„ ์˜จ๋ฆฌ, ๋…ธํŒ… ํž ์ˆœ์„œ๋กœ ์ •๋ ฌํ•˜์—ฌ ํ•ด๋‹น ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜์—ฌ ํ™”๋ฉด์— ์ถœ๋ ฅ์‹œํ‚ค๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, when the similarity with IF ONLY is 1.215, the similarity with the romantic holiday is 0.75, the similarity with the Notting Hill is 1.787, and the similarity with the walk-to-remember is 0.454, respectively, the Euclidean distance formula is The smaller the similarity value is, the higher the similarity is. Therefore, when the content is rearranged in the order of high similarity, the information is sorted in order of work-to-member, romantic holiday, if only, and notting hill, and the corresponding information is returned to the attribute similarity search result output unit 600. Will be provided to the screen.

๋‹ค์Œ์€ ๋„ 7์„ ์ฐธ์กฐํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510)์˜ ๊ตฌ์„ฑ์ˆ˜๋‹จ๊ณผ ๋™์ž‘ ๊ณผ์ •์„ ๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋„๋ก ํ•˜๊ฒ ๋‹ค.Next, the configuration means and operation process of the keyword attribute analyzer 510 will be described in detail with reference to FIG. 7.

์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510)๋Š” ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ(511), ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ(512), ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513), ์ง€์‹์ •๋ณดDB(514), ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515), ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516), ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)๋ฅผ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋œ๋‹ค.The search term attribute analysis unit 510 includes a natural language processing module 511, a machine learning model module 512, a search term attribute assignment module 513, a knowledge information DB 514, a search term attribute value conversion module 515, and an attribute model. Module 516, search word attribute value information DB (517).

์ƒ๊ธฐ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ(511)์€ ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ(512)๋กœ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์— ๋Œ€ํ•œ ํ•ด์„ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ๋กœ๋ถ€ํ„ฐ ํ•ด์„๋œ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.The natural language processing module 511 provides the machine learning model module 512 to provide information on requesting interpretation of linguistic attributes included in a search word of multimedia content input through speech recognition or text, and a search word interpreted from the machine learning model module. The linguistic attribute information included in the search word attribute assignment module 513 is provided.

์ด๋•Œ, ์ƒ๊ธฐ ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ(512)์€ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์— ๋Œ€ํ•œ ํ•ด์„ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์„ ํ•ด์„ํ•˜์—ฌ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ๋กœ ํ•ด์„๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค.In this case, when the machine learning model module 512 obtains request information for interpretation of linguistic attributes included in the search word from the natural language processing module, the linguistic language interpreted by the natural language processing module is interpreted. Function to provide attribute information.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ ๊ฐ™์€ ์˜ํ™”๋ฅผ ์•Œ๋ ค์ค˜'๋ผ๋Š” ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์— ๋Œ€ํ•œ ํ•ด์„์„ ์š”์ฒญํ•˜๊ฒŒ ๋˜๋ฉด, ์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์–ธ์–ด์  ์†์„ฑ์„ ํ•ด์„ํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋Š” ์ผ๋ฐ˜์ ์ธ ๋จธ์‹  ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์งˆ๋ฌธ์˜ ์˜๋ฏธ ์ •๋ณด๋ฅผ ํ•ด์„ํ•˜๊ฒŒ ๋˜๋ฉฐ, ๋จธ์‹  ๋Ÿฌ๋‹์„ ํ†ตํ•ด ์ƒ์„ฑ๋œ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์งˆ๋ฌธ์˜ ์˜๋„์™€ ๋‹ค์–‘ํ•œ ์˜๋ฏธ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๊ฒŒ ๋˜๋ฉฐ, ์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ, ๊ฐ™์€, ์˜ํ™”'์ด๋ผ๋Š” ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513)๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค.For example, if you request an interpretation of the linguistic attributes included in the search term 'tell me a movie like love actual', you will interpret the linguistic attributes of the search term, using a general machine learning model technique. It analyzes the semantic information of, and extracts the intention of the question and various semantic information based on the model generated through machine learning. For example, the linguistic attribute information such as 'Love Actually, Movie,' It is provided to the allocation module (513).

์ƒ๊ธฐ ์ง€์‹์ •๋ณดDB(514)์—๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด์™€ ๋งค์นญ๋  ์ˆ˜ ์žˆ๋Š” ์†์„ฑ์˜ ์œ ํ˜•์œผ๋กœ ์ •์ œ๋˜์–ด ์žˆ๋Š” ์†์„ฑ ์œ ํ˜• ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๊ณ  ์žˆ๊ฒŒ ๋œ๋‹ค.The knowledge information DB 514 stores attribute type information refined into a type of attribute that can be matched with attribute information of multimedia content.

์˜ˆ๋ฅผ ๋“ค์–ด, ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ๋ผ๋Š” ์˜ํ™”์˜ ์†์„ฑ ์ •๋ณด๋กœ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ, ๋กœ๋งจ์Šค' ๋“ฑ์˜ ์†์„ฑ ์ •๋ณด๋กœ ์„ค์ •๋˜๊ณ , ์ด์— ๋งค์นญ๋  ์ˆ˜ ์žˆ๋Š” ์†์„ฑ์˜ ์œ ํ˜•์œผ๋กœ '์˜ํ™”'๋กœ ์„ค์ •ํ•˜์—ฌ ์ €์žฅํ•˜๊ฒŒ ๋œ๋‹ค.For example, it is set as attribute information such as 'warm, touching, fun, romance' as attribute information of a movie called love act, and is set as 'movie' as an attribute type that can be matched and stored.

์†์„ฑ์˜ ์œ ํ˜•์„ ํ†ตํ•ด ์ •๋ณด๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ธ์ง€, ์›น์‚ฌ์ดํŠธ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ธ์ง€, ๋‰ด์Šค/์ง€์—ญ/์‡ผํ•‘ ๋“ฑ ํŠน์ • ๋ถ„์•ผ์˜ ์ปจํ…์ธ ๋ฅผ ์›ํ•˜๋Š” ์ง€, ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ธ์ง€ ๋“ฑ์„ ์•Œ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.The type of attribute may be used to find information, a website, a news / region / shopping, a specific field of content, or a multimedia content.

์ด๋•Œ, ์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513)์€ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ์—์„œ ์ œ๊ณต๋œ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๊ณ , ํš๋“๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ํ† ๋Œ€๋กœ ์ง€์‹์ •๋ณดDB๋กœ๋ถ€ํ„ฐ ์†์„ฑ ์œ ํ˜• ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ์„ ํ• ๋‹นํ•˜๊ณ , ํ• ๋‹น๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.In this case, the search word attribute assignment module 513 obtains the linguistic attribute information included in the search word provided by the natural language processing module, extracts the attribute type information from the knowledge information DB based on the obtained linguistic attribute information, and then searches the attribute for the search term. And assign the attribute information on the assigned keyword to the keyword attribute value conversion module 515.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ, ๊ฐ™์€, ์˜ํ™”'์ด๋ผ๋Š” ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ํ† ๋Œ€๋กœ ์ง€์‹์ •๋ณดDB๋กœ๋ถ€ํ„ฐ ์†์„ฑ ์œ ํ˜• ์ •๋ณด์ธ '์˜ํ™”'๋ฅผ ์ถ”์ถœํ•˜์—ฌ ํ•ด๋‹น ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด์ธ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ, ๋กœ๋งจ์Šค' ๋“ฑ์„ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.For example, based on the linguistic attribute information of 'Love Actually, Like, Movie', the attribute type information 'movie' is extracted from the knowledge information DB, and the attribute information of the search term 'warmness, emotion, fun, romance' 'And the like are provided to the keyword attribute value conversion module 515.

์ด๋•Œ, ์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)์€ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516)๋กœ ํ™•๋ฅ ๊ฐ’ ์‚ฐ์ถœ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.In this case, the search word attribute value conversion module 515 provides the probability model calculation request information to the attribute model module 516 when obtaining the attribute information for the search word provided from the search word attribute assignment module 513.

์ดํ›„, ์ƒ๊ธฐ ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516)์€ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ๋ถ€ํ„ฐ ํ™•๋ฅ ๊ฐ’ ์‚ฐ์ถœ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์–ธ์–ด ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ํ™•๋ฅ ๊ฐ’์„ ์‚ฐ์ถœํ•˜๋ฉฐ, ์‚ฐ์ถœ๋œ ํ™•๋ฅ ๊ฐ’์„ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Subsequently, the attribute model module 516 calculates a probability value through language modeling when obtaining the probability value calculation request information from the keyword attribute value conversion module 515, and converts the calculated probability value to the keyword attribute value conversion module 515. Will be provided.

์ƒ๊ธฐํ•œ ์–ธ์–ด ๋ชจ๋ธ๋ง์ด๋ž€, ์ž์—ฐ์–ด ์•ˆ์—์„œ ๋ฌธ๋ฒ•, ๊ตฌ๋ฌธ, ๋‹จ์–ด ๋“ฑ์— ๋Œ€ํ•œ ๊ทœ์น™์„ฑ์„ ์ฐพ์•„๋‚ด๊ณ , ๊ทธ ๊ทœ์น™์„ฑ์„ ์ด์šฉํ•˜์—ฌ ๊ฒ€์ƒ‰ํ•˜๊ณ ์ž ํ•˜๋Š” ๋Œ€์ƒ์˜ ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์˜๋ฏธํ•œ๋‹ค.The language modeling refers to an algorithm for finding regularity about a grammar, phrase, word, etc. in a natural language and increasing the accuracy of an object to be searched using the regularity.

์ด๋•Œ, ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ์‹์ด ํ™•๋ฅ ๊ฐ’์„ ์‚ฐ์ถœํ•˜๋Š” ํ†ต๊ณ„์  ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•์ด๋ฉฐ, ์ด๋Š” ๋Œ€๋Ÿ‰์˜ ๋ง๋ญ‰์น˜์—์„œ ์–ธ์–ด ๊ทœ์น™์„ ํ™•๋ฅ ๋กœ ๋‚˜ํƒ€๋‚ด๊ณ , ํ™•๋ฅ ๊ฐ’์„ ํ†ตํ•ด์„œ ํƒ์ƒ‰ ์˜์—ญ์„ ์ œํ•œํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.In this case, a commonly used method is a statistical modeling method for calculating a probability value, which is a method of expressing a language rule as a probability in a large corpus and restricting the search area through the probability value.

๊ทธ๋ฆฌ๊ณ , ์Œ์„ฑ ์ธ์‹์—์„œ ์ •ํ™•์„ฑ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ํƒ์ƒ‰ ๊ณต๊ฐ„์„ ๊ธ‰๊ฒฉํžˆ ์ค„์—ฌ์ฃผ์—ฌ ์ฃผ๋Š” ์žฅ์ ์ด ์žˆ์œผ๋ฉฐ, ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ ๋ฌธ์žฅ์˜ ํ™•๋ฅ ์  ๋ถ„ํฌ๋กœ ๋ฌธ์žฅ์˜ ํ™•๋ฅ  ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํ™•๋ฅ  ๋ชจ๋ธ์˜ ํ•™์Šต์ด ํ•„์š”ํ•˜๋‹ค. In addition, there is an advantage that the search space is sharply reduced as well as accuracy in speech recognition, and since the probability model of the sentence is based on the probability distribution of all possible sentences, it is necessary to learn the probability model from the training data.

๊ทธ๋ฆฌ๊ณ , ๋Œ€๋ถ€๋ถ„์˜ ์–ธ์–ด ๋ชจ๋ธ๋ง ์‘์šฉ๋ถ„์•ผ์—์„œ ํ†ต๊ณ„์  ์–ธ์–ด๋ชจ๋ธ์ธ N-Gram์ด ๊ฐ€์žฅ ์„ฑ๊ณต์ ์ธ ์–ธ์–ด ๋ชจ๋ธ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋ฉฐ, ๋ณธ ๋ฐœ๋ช…์—์„œ๋„ ๋ฐ”๋žŒ์งํ•˜๊ฒŒ๋Š” N-Gram์„ ์‚ฌ์šฉํ•˜๊ฒŒ ๋œ๋‹ค.In addition, N-Gram, which is a statistical language model in most language modeling applications, is known as the most successful language model, and the present invention preferably uses N-Gram.

๋˜ํ•œ, ์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)์€ ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516)๋กœ๋ถ€ํ„ฐ ์‚ฐ์ถœ๋œ ํ™•๋ฅ ๊ฐ’์„ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.In addition, the keyword attribute value conversion module 515 obtains the probability value calculated from the attribute model module 516, converts the probability value into an attribute value for the keyword, and provides the result to the keyword attribute value information DB 517.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋”ฐ๋œปํ•จ - 8, ๊ฐ๋™์ ์ž„ - 9, ์žฌ๋ฏธ์žˆ์Œ - 7, ๋กœ๋งจ์Šค -10'๊ณผ ๊ฐ™์ด, ์†์„ฑ ์ •๋ณด๋งˆ๋‹ค ์†์„ฑ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)์— ์ €์žฅํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, such as 'warm-8, touching-9, fun-7, romance-10', the attribute information is converted into attribute values for each attribute information and stored in the query attribute value information DB 517.

๋˜ํ•œ, ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด๋„ ์ €์žฅํ•˜๊ฒŒ ๋œ๋‹ค.In addition, the attribute information for the search word is also stored.

์ƒ๊ธฐ์™€ ๊ฐ™์ด, ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ๊ฐ’์ด ํ• ๋‹น๋˜๋ฉด, ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)์—์„œ๋Š” ํ•˜๊ธฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)์—์„œ ์ œ๊ณตํ•˜๋Š” ๋‹ค์–‘ํ•œ ์†์„ฑ๊ฐ’์„ ๊ฐ€์ง„ ์ปจํ…์ธ ๋“ค๊ณผ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ๊ฐ’์„ ๊ฐ€์ง€๊ณ  ์œ ์‚ฌ๋„๋ฅผ ๋ถ„์„ํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.As described above, when an attribute value for a search term is assigned, the similarity matching property analysis unit 530 has similarity with the attribute values for various search terms and contents provided by the multimedia content attribute assignment unit 520 described below. Will be analyzed.

์ฆ‰, ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋Š” ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)์— ์ €์žฅ๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด์™€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)์— ์˜ํ•ด ํ• ๋‹น๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์‹ค์‹œํ•˜๋Š” ๊ฒƒ์ด๋‹ค.That is, the similarity matching analysis unit 530 performs similarity matching analysis using the attribute information on the search word stored in the search word attribute value information DB 517 and the multimedia content property information allocated by the multimedia content attribute assigning unit 520. will be.

์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด๊ฐ€ '๊ฐ๋™์ ์ธ ๋กœ๋งจ์Šค ์˜ํ™”'๋กœ ํ• ๋‹น๋˜์—ˆ๋‹ค๋ฉด, '๊ฐ๋™์ ์ธ ๋กœ๋งจ์Šค ์˜ํ™”'๋กœ ํ• ๋‹น๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” '์ดํ”„ ์˜จ๋ฆฌ, ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด, ๋…ธํŒ… ํž, ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„' ๋“ฑ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)์—์„œ ํš๋“ํ•˜์—ฌ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์‹ค์‹œํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, if the attribute information for a search term is assigned to 'inspiring romance movie', 'if only, romantic holiday, notting hill, walk-to-remember' etc., which has multimedia content attribute information assigned to 'inspiring romance movie' The similarity matching analysis unit 530 obtains the multimedia content list information and performs the similarity matching analysis.

๋‹ค์Œ์€ ๋„ 8์„ ์ฐธ์กฐํ•˜์—ฌ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)์˜ ๊ตฌ์„ฑ์ˆ˜๋‹จ๊ณผ ๋™์ž‘ ๊ณผ์ •์„ ๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋„๋ก ํ•˜๊ฒ ๋‹ค.Next, the configuration means and operation process of the multimedia content attribute assignment unit 520 will be described in detail with reference to FIG. 8.

์ƒ๊ธฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋Š” ์ปจํ…์ธ ์—ฐ๋™๋ชจ๋“ˆ(521), ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522), ์ปจํ…์ธ ์ €์žฅDB(523), ์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ชจ๋ธ๋ชจ๋“ˆ(524), ์ปจํ…์ธ ์†์„ฑ์ •๋ณดํ•ด์„๋ชจ๋“ˆ(525), ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ(526)์„ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋œ๋‹ค.The multimedia content attribute assignment unit 520 includes a content linkage module 521, a content crawling module 522, a content storage DB 523, a content attribute assignment model module 524, a content attribute information interpretation module 525, and a content. And an information retrieval module 526.

์‹œ๊ฐ„์˜ ํ๋ฆ„์— ๋”ฐ๋ผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์ •๋ณด๋Ÿ‰์ด ๋ณ€๊ฒฝ๋˜๊ณ  ์ด์— ๋”ฐ๋ผ ํŠน์ • ๋Œ€์ƒ์˜ ์†์„ฑ๋„ ์‹œ์‹œ๊ฐ๊ฐ ๋ณ€ํ™”ํ•˜๋Š”๋ฐ, ์ƒ๊ธฐ์™€ ๊ฐ™์€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€๋ฅผ ํ†ตํ•ด ๊ฐ€๋ณ€์ ์œผ๋กœ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ๊ฒ€์ƒ‰์— ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜๊ฒŒ ๋œ๋‹ค.The amount of information of multimedia contents changes with the passage of time, and accordingly, the attributes of a specific object change from time to time, and various multimedia contents that are changed in real time are searched by reflecting multimedia contents variably through the multimedia content attribute assignment unit as described above. The effect can be reflected in.

๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋ฉด, ์ปจํ…์ธ ์—ฐ๋™๋ชจ๋“ˆ(521)์€ ์ปจํ…์ธ ์„œ๋ฒ„(560)์™€ ์—ฐ๋™์‹œ์ผœ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)๋กœ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๊ณ , ์ƒ๊ธฐ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)์€ ์ปจํ…์ธ ์—ฐ๋™๋ชจ๋“ˆ(521)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋˜๋Š” ๋‹ค์ˆ˜์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด๋“ค์„ ์ˆ˜์ง‘ํ•˜์—ฌ ์ปจํ…์ธ ์ €์žฅDB๋กœ ์ €์žฅ์‹œ์ผœ ์†์„ฑ ์ •๋ณด์˜ ์—ฐ์‚ฐ ๋ฒ”์œ„๋ฅผ ํ™•์žฅ์‹œํ‚ค๋Š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค.Specifically, the content interlocking module 521 interoperates with the content server 560 to provide the multimedia content information to the content crawling module 522, and the content crawling module 522 is provided from the content interlocking module 521. Collecting a plurality of multimedia content information provided and stored in the content storage DB to extend the operation range of the attribute information.

์ฆ‰, ์ƒ๊ธฐ ์ปจํ…์ธ ์„œ๋ฒ„์—์„œ ์ „๋‹ฌ๋˜๋Š” ์ •๋ณด๋Š” ์ปจํ…์ธ ์—ฐ๋™๋ชจ๋“ˆ์„ ํ†ตํ•ด ์ปจํ…์ธ  ์†์„ฑ ๋ชจ๋ธ์˜ ๋ฆฌ์†Œ์Šค๊ฐ€ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.That is, the information delivered from the content server becomes a resource of the content property model through the content interworking module.

์ด๋•Œ, ์ƒ๊ธฐ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์ˆ˜์ง‘ํ•˜์—ฌ ์†์„ฑ ์ •๋ณด์˜ ์—ฐ์‚ฐ ๋ฒ”์œ„๋ฅผ ํ™•์žฅ์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค.At this time, the multimedia content is collected through the content crawling module 522 to expand the operation range of the attribute information.

์˜ˆ๋ฅผ ๋“ค์–ด, ์˜ํ™”์˜ ์†์„ฑ ์ •๋ณด์ธ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ, ๋กœ๋งจ์Šค' ๋“ฑ์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ๋‹ค์–‘ํ•˜๊ฒŒ ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, it is possible to collect various multimedia contents including 'warmness, emotion, fun, romance', etc., which are attribute information of a movie.

์ด๋•Œ, ์ƒ๊ธฐ ์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ชจ๋ธ๋ชจ๋“ˆ(524)์€ ์ƒ๊ธฐ ์ปจํ…์ธ ์ €์žฅDB(523)์— ์ €์žฅ๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ํš๋“ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋งˆ๋‹ค ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.In this case, the content property assignment model module 524 obtains each multimedia content stored in the content storage DB 523 and allocates property information to each multimedia content.

๋”ฐ๋ผ์„œ, ์ƒ๊ธฐ ์ปจํ…์ธ ์ €์žฅDB(523)์—๋Š” ์ƒ๊ธฐ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด์™€ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋งˆ๋‹ค ํ• ๋‹น๋œ ์†์„ฑ ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๊ณ  ์žˆ๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Accordingly, the content storage DB 523 stores multimedia content information provided from the content crawling module 522 and attribute information allocated to each multimedia content.

์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ๋Œ€ํ•˜์—ฌ ์ผ์ผํžˆ ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ์—ญํ• ์„ ๋‹ด๋‹นํ•˜๋Š”๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด, A๋ผ๋Š” ์Œ์•…์— '์ฐจ๋ถ„ํ•จ, ๊ฐ๋™์ ์ž„'์ด๋ผ๋Š” ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, it plays a role of assigning attribute information to each multimedia content, for example, assigning attribute information of 'calm and touching' to A music.

๊ทธ๋ฆฌ๊ณ , ์ƒ๊ธฐ ์ปจํ…์ธ ์†์„ฑ์ •๋ณดํ•ด์„๋ชจ๋“ˆ(525)์€ ์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ชจ๋ธ๋ชจ๋“ˆ(524)์— ์˜ํ•ด ํ• ๋‹น๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ํ•ด์„ํ•˜์—ฌ ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.The content attribute information analysis module 525 interprets the attribute information of each multimedia content assigned by the content attribute assignment model module 524 and provides the same to the content information search module.

์˜ˆ๋ฅผ ๋“ค์–ด, ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ์—์„œ ๊ฒ€์ƒ‰์–ด์— ํ•ด๋‹นํ•˜๋Š” '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ, ๋กœ๋งจ์Šค'๋ฅผ ์ œ๊ณตํ•˜๋Š” '์˜ํ™”'๋ฅผ ์š”์ฒญํ•˜๊ฒŒ ๋˜๋ฉด ์ด์— ํ•ด๋‹นํ•˜๋Š” ์ปจํ…์ธ ๋“ค์„ ํ•ด์„ํ•˜๊ฒŒ ๋˜๋ฉฐ, ํ•ด์„๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ(526)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.For example, when a content information search module requests a 'movie' that provides 'warmness, inspiration, fun, romance' corresponding to a search word, the corresponding content is interpreted, and each of the analyzed multimedia contents is analyzed. The attribute information is provided to the content information search module 526.

๋”ฐ๋ผ์„œ, ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ(526)์€ ์ปจํ…์ธ ์†์„ฑ์ •๋ณดํ•ด์„๋ชจ๋“ˆ(525)์— ์˜ํ•ด ํ•ด์„๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Accordingly, the content information retrieval module 526 is to provide the similarity matching property analysis unit 530 with attribute information of each multimedia content analyzed by the content property information analysis module 525.

์ดํ›„, ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์™€ ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์ปจํ…์ธ ์ €์žฅDB(523)๋กœ๋ถ€ํ„ฐ ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ์ปจํ…์ธ ์†์„ฑ์ •๋ณดํ•ด์„๋ชจ๋“ˆ(525)๋กœ ์š”์ฒญํ•˜๊ณ , ์ปจํ…์ธ ์ €์žฅDB(523)๋กœ๋ถ€ํ„ฐ ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ํš๋“ํ•˜์—ฌ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Subsequently, when the multimedia content request information including attribute information similar to the linguistic attribute information of the search word is obtained from the similarity matching property analysis unit 530, the multimedia content list including the similar attribute information from the content storage DB 523. The information is requested to the content attribute information analysis module 525, the multimedia content list information including similar attribute information is obtained from the content storage DB 523, and provided to the similarity matching property analysis unit 530.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ, ๊ฐ™์€, ์˜ํ™”'์ด๋ผ๋Š” ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๋Š” '์ดํ”„ ์˜จ๋ฆฌ, ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด, ๋…ธํŒ… ํž, ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„' ๋“ฑ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ์ปจํ…์ธ ์ €์žฅDB(523)๋กœ๋ถ€ํ„ฐ ์ถ”์ถœํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, referring to the linguistic attribute information of 'Love Actually, Same, Movie', the multimedia contents list information such as 'If Only, Romantic Holiday, Notting Hill, Work to Remember' including similar attribute information is stored in the content storage DB. It is extracted from 523.

๋‹ค์Œ์€ ๋ณธ ๋ฐœ๋ช…์ธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ๋„ 9 ๋‚ด์ง€ ๋„ 10์„ ์ฐธ์กฐํ•˜์—ฌ ๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋„๋ก ํ•˜๊ฒ ๋‹ค.Next, a method for retrieving multimedia contents through the present inventors attribute information analysis will be described in detail with reference to FIGS. 9 to 10.

๋„ 9๋Š” ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์˜ ์ „์ฒด ํ๋ฆ„๋„์ด๋‹ค.9 is a flowchart illustrating a multimedia content searching method through attribute information analysis according to a first embodiment of the present invention.

๋„ 9์— ๋„์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด, ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์€, ๊ฒ€์ƒ‰์‹œ์ž‘๋‹จ๊ณ„(S100), ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋‹จ๊ณ„(S200), ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋‹จ๊ณ„(S300), ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S400), ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„(S500), ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S600)๋ฅผ ํฌํ•จํ•œ๋‹ค.As shown in FIG. 9, the multimedia content search method through attribute information analysis includes: a search start step (S100), an attribute search execution determination step (S200), a text keyword search step (S300), and a text keyword result output step (S400). ), Attribute similarity search step (S500), and attribute similarity search result output step (S600).

๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜์ž๋ฉด, ์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋‹จ๊ณ„(S100)๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋ฅผ ํ†ตํ•ด ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.Specifically, the search start step (S100) is to obtain the search request request information of the multimedia content input by voice recognition or text through the search start unit 100 to provide the search execution request information to the attribute search determination unit 200. Done.

ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ์‹œ์—๋Š” ํ…์ŠคํŠธ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€๋งŒ, ์Œ์„ฑ ์ธ์‹์œผ๋กœ ์ž…๋ ฅ๋  ๊ฒฝ์šฐ์—๋Š” ์Œ์„ฑ ์ธ์‹์„ ์œ„ํ•˜์—ฌ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€๋Š” ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ชจ๋“ˆ์„ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋˜, ์ƒ๊ธฐ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ชจ๋“ˆ์— ์˜ํ•ด ์ฒ˜๋ฆฌ๋œ ์Œ์„ฑ์ธ์‹ ๊ฒฐ๊ณผ ํ…์ŠคํŠธ์—์„œ ์‚ฌ์šฉ์ž์˜ ๋ช…๋ น ๋Œ€์ƒ๊ฐ’์„ ์ถ”์ถœํ•˜๊ฒŒ ๋œ๋‹ค.When inputting text, the search information is provided by extracting text information and providing search request information. However, when inputted by voice recognition, the search start unit includes a natural language processing module for voice recognition, and processes the voice processed by the natural language processing module. The command target value of the user is extracted from the recognition result text.

์ดํ›„, ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋‹จ๊ณ„(S200)๋Š” ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๊ฐ€ ์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ํŒ๋‹จ ๊ฒฐ๊ณผ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.Subsequently, in the attribute search determination step (S200), when the attribute search execution determination unit 200 obtains the search execution request information from the search start unit 100, whether to perform a text keyword search or perform a similar attribute search If it is determined whether or not to perform, and as a result of the determination, the text keyword search unit 300 provides the text keyword search request information when performing the text keyword search, and when the similar attribute search is performed, the attribute similarity search unit ( 500), similar property search request information is provided.

์ฆ‰, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์—๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.That is, when the text keyword search is performed, the text keyword search request information is provided to the text keyword search unit 300.

๋”ฐ๋ผ์„œ, ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋‹จ๊ณ„(S300)๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.Therefore, the text keyword search step (S300) performs a text keyword search when the text keyword search unit 300 obtains the text keyword search request information provided from the attribution search execution determination unit 200, and retrieves the search result information. It is provided to the text keyword result output unit.

์ดํ›„, ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S400)๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400)๊ฐ€ ์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Subsequently, in the text keyword result output step S400, the text keyword result output unit 400 outputs search result information of the text keyword provided from the text keyword search unit 300.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ'๋ผ๋Š” ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ'๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.For example, a text keyword search is performed by referring to a text keyword called 'love actual', and search result information including 'love actual' is provided to the text keyword result output unit.

ํ•œํŽธ, ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๊ฐ€ ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋•Œ, ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„(S500)๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค.On the other hand, when the attribute search decision unit 200 performs a similar attribute search as a result of the determination, it provides the similarity attribute search request information to the attribute similarity search unit 500, in which the attribute similarity search step (S500) When the similarity similarity search means 500 obtains the similar property search request information provided from the attribution search execution decision unit 200, the similar property search is performed and the search result information is provided to the property similarity search result output unit. .

์ดํ›„, ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S600)๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ฒŒ ๋œ๋‹ค.Thereafter, in the attribute similarity search result output step (S600), the attribute similarity search result output unit 600 outputs search result information of similar attributes provided from the attribute similarity search unit 500.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ ๊ฐ™์€ ์˜ํ™”'๋ฅผ ๊ฒ€์ƒ‰์–ด๋กœ ์ž…๋ ฅํ•˜๊ฒŒ ๋˜๋ฉด, ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)์„ ํ†ตํ•ด ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ๊ฒ€์ƒ‰๋œ ๊ฒฐ๊ณผ๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜์—ฌ ์ด๋ฅผ ํ™”๋ฉด์— ์ถœ๋ ฅํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, if a keyword such as โ€œlove actualโ€ is entered as a search word, a similar property search is performed through the property similarity search means 500, and the search result is provided to the property similarity search result output unit 600 and displayed on the screen. Will print.

๋„ 10์€ ๋ณธ ๋ฐœ๋ช…์˜ ์ œ1 ์‹ค์‹œ์˜ˆ์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์˜ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ ํ๋ฆ„๋„์ด๋‹ค.10 is a flowchart illustrating an attribute similarity retrieval step of a multimedia content retrieval method through attribute information analysis according to a first embodiment of the present invention.

๋„ 10์— ๋„์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด, ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„(S500)๋Š”, ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋‹จ๊ณ„(S510), ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋‹จ๊ณ„(S520), ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋‹จ๊ณ„(S530), ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋‹จ๊ณ„(540), ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋‹จ๊ณ„(S550)๋ฅผ ํฌํ•จํ•œ๋‹ค.As shown in Figure 10, the attribute similarity search step (S500), the keyword attribute analysis step (S510), multimedia content attribute assignment step (S520), similarity matching property analysis step (S530), similarity candidate group extraction step (540), Similarity-based multimedia content sorting step (S550) is included.

๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ•˜์ž๋ฉด, ์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋‹จ๊ณ„(S510)๋Š” ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510)๊ฐ€ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜๊ฒŒ ๋œ๋‹ค.In detail, in the search word attribute analysis step S510, the search word attribute analyzer 510 analyzes linguistic attribute information included in a search word of multimedia content input by voice recognition or text.

์˜ˆ๋ฅผ ๋“ค์–ด, '๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ'๋ผ๋Š” ์˜ํ™”๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์†์„ฑ๊ณผ ์œ ์‚ฌํ•œ ์†์„ฑ์„ ๊ฐ€์ง„ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ธฐ ์œ„ํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•ด์•ผ๋งŒ ์ด๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ์œ ์‚ฌํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ๊ฒ€์ƒ‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค.For example, it is possible to search for similar multimedia contents only by analyzing attribute information for searching for multimedia contents having attributes similar to those of a movie called 'Love Actually'.

์ฆ‰, '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ' ๋“ฑ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ์— ํ• ๋‹นํ•˜๊ฒŒ ๋œ๋‹ค๋ฉด ์ƒ๊ธฐ ์†์„ฑ ์ •๋ณด์ธ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ'์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์˜ํ™”๋ฅผ ๊ฒ€์ƒ‰ํ•  ์ˆ˜๊ฐ€ ์žˆ๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.That is, if attribute information such as 'warmness, inspiration, and fun' is assigned to the love reality, it is possible to search for a movie having the above-mentioned attribute information 'warmness, inspiration and fun'.

์ดํ›„, ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋‹จ๊ณ„(S520)๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๊ฐ€ ์ปจํ…์ธ ์„œ๋ฒ„(560)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ณ , ์ €์žฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Subsequently, in the multimedia content attribute assignment step S520, the multimedia content attribute assignment unit 520 acquires and stores the multimedia content from the content server 560, and assigns attribute information to the stored multimedia content.

์ฆ‰, ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์ด ์–ด๋–ค ์†์„ฑ ์ •๋ณด๋ฅผ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š”์ง€ ์ปจํ…์ธ  ์ •๋ณด๋ฅผ ๊ฒŒ๋”๋งํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ, ์ปจํ…์ธ  ์ •๋ณด๋Š” ์™ธ๋ถ€ ๋„คํŠธ์›Œํฌ ๋˜๋Š” ํ†ต์‹ ์„ ์ด์šฉํ•˜์—ฌ ์—ฐ๊ฒฐ๋œ ์ปจํ…์ธ ์„œ๋ฒ„์—์„œ ํฌ๋กค๋ง๋œ ๊ฒƒ์ด๋ฉฐ, ์–ธ์–ด์  ์ •์ œ๋ฅผ ๊ฑฐ์ณ ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋œ๋‹ค.That is, the content information is gathered to determine what attribute information the multimedia contents have. The content information is crawled by a connected content server using an external network or communication, and the attribute information is assigned through linguistic refinement.

๊ตฌ์ฒด์ ์œผ๋กœ, ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ๋ผ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ฒŒ ๋˜๋ฉฐ, ์ƒ๊ธฐ ์ €์žฅ๋œ ๋Ÿฌ๋ธŒ ์•ก์ถ”์–ผ๋ฆฌ ์˜ํ™”์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด, ์†์„ฑ ์ •๋ณด์ธ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ' ๋“ฑ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Specifically, it acquires and stores multimedia content called love actuation, and assigns attribute information to the stored love actuary movie, for example, assigns attribute information such as 'warmness, emotion, fun', etc. It is done.

์ƒ๊ธฐํ•œ ๋ฐ”์™€ ๊ฐ™์ด, ๊ฒŒ๋”๋ง๋˜๋Š” ๋ชจ๋“  ์ปจํ…์ธ ๋งˆ๋‹ค ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜์—ฌ ๊ด€๋ฆฌํ•˜๊ฒŒ ๋˜๋ฉด, ๊ฒ€์ƒ‰์–ด์˜ ์†์„ฑ ์ •๋ณด์™€ ์œ ์‚ฌํ•œ ์ปจํ…์ธ ๋“ค์„ ์ถ”์ถœํ•ด๋‚ผ ์ˆ˜๊ฐ€ ์žˆ๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.As described above, when attribute information is allocated and managed for every content to be gathered, contents similar to the attribute information of a search word may be extracted.

์ดํ›„, ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋‹จ๊ณ„(S530)๋Š” ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๊ฐ€ ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์— ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ ์ œ๊ณตํ•˜๊ณ , ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๋ฉฐ, ํš๋“๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด์— ํฌํ•จ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์˜ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค.Then, in the similarity matching property analysis step (S530), the similarity matching property analysis unit 530 provides the multimedia content property assignment unit 520 with the multimedia content request information including the similar property information in the linguistic property information of the search word. The multimedia content list information is obtained from the content property allocator 520, and similarity matching analysis of multimedia contents included in the obtained multimedia content list information is performed.

์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์ธ '์˜ํ™”', '๋Ÿฌ๋ธŒ์•ก์ถ”์–ผ๋ฆฌ', '๊ฐ™์€'์ด๋ผ๋Š” ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์™€ '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ'์ด๋ผ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ , '๋”ฐ๋œปํ•จ, ๊ฐ๋™์ ์ž„, ์žฌ๋ฏธ์žˆ์Œ' ๋“ฑ๊ณผ ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋ฉฐ, ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๋ฉฐ, ํš๋“๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด์— ํฌํ•จ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์˜ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, with linguistic attribute information such as 'movie', 'love truth', and 'like', which are the linguistic attribute information of the search word, and multimedia content attribute information such as 'warm, touching, fun', Multimedia content request information including attribute information similar to โ€œim, fun,โ€ and the like, is generated and provided to the multimedia content attribute assignment unit 520, and the multimedia content list information is obtained from the multimedia content attribute assignment unit. Similarity matching analysis of multimedia contents included in the content list information is performed.

์ดํ›„, ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋‹จ๊ณ„(540)๋Š” ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋ถ€(540)๊ฐ€ ์‚ฌ์ „์— ์„ค์ •๋œ ํ›„๋ณด๊ตฐ ์ˆซ์ž๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ๊ฐ€์žฅ ๋†’์€ ์œ ์‚ฌ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ถœํ•˜๊ฒŒ ๋œ๋‹ค.Thereafter, in the similarity candidate group extracting step 540, the similarity candidate group extracting unit 540 extracts the multimedia contents according to the candidate group numbers sequentially from the multimedia contents having the highest similarity with reference to a preset candidate group number.

์˜ˆ๋ฅผ ๋“ค์–ด, 4๊ฐœ์˜ ํ›„๋ณด๊ตฐ ์ˆซ์ž๋กœ ์„ค์ •ํ•˜๊ฒŒ ๋˜๋ฉด ์ˆœ์ฐจ์ ์œผ๋กœ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ถœํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, '์ดํ”„ ์˜จ๋ฆฌ, ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด, ๋…ธํŒ… ํž, ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„' ๋ผ๋Š” 4๊ฐœ์˜ ํ›„๋ณด๊ตฐ์„ ์ถ”์ถœํ•˜๊ฒŒ ๋œ๋‹ค.For example, if the number of four candidates is set, the multimedia content is sequentially extracted according to the number of candidates, and four candidate groups of 'if only, romantic holiday, notting hill, and work-to-member' are extracted.

์ดํ›„, ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋‹จ๊ณ„(S550)๋Š” ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋ถ€(550)๊ฐ€ ์ƒ๊ธฐ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ์ถ”์ถœ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์œ ์‚ฌ๋„์— ๋”ฐ๋ผ ์ •๋ ฌ์‹œํ‚ค๋ฉฐ, ์ •๋ ฌ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.Thereafter, in the similarity-based multimedia content sorting step (S550), the similarity-based multimedia content sorter 550 sorts the multimedia contents extracted according to the candidate group number according to the similarity, and arranges the sorted multimedia contents in the attribute similarity search result output unit ( 600).

์˜ˆ๋ฅผ ๋“ค์–ด, ์ดํ”„ ์˜จ๋ฆฌ์™€์˜ ์œ ์‚ฌ๋„๊ฐ€ 1.215, ์ƒ๊ธฐ ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด๊ณผ์˜ ์œ ์‚ฌ๋„๊ฐ€ 0.75, ์ƒ๊ธฐ ๋…ธํŒ… ํž๊ณผ์˜ ์œ ์‚ฌ๋„๊ฐ€ 1.787, ์ƒ๊ธฐ ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„์™€์˜ ์œ ์‚ฌ๋„๊ฐ€ 0.454๋กœ ๊ฐ๊ฐ ๋„์ถœ๋˜๋ฉด, ์ƒ๊ธฐ ์œ ํด๋ฆฌ๋””์–ธ ๊ฑฐ๋ฆฌ ๊ณต์‹์€ ์œ ์‚ฌ๋„ ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ์œ ์‚ฌ๋„๊ฐ€ ๋†’์œผ๋ฏ€๋กœ, ์ƒ๊ธฐ ์ปจํ…์ธ ๋ฅผ ์œ ์‚ฌ๋„๊ฐ€ ๋†’์€ ์ˆœ์„œ๋Œ€๋กœ ์žฌ์ •๋ ฌํ•  ๊ฒฝ์šฐ ์›Œํฌ ํˆฌ ๋ฆฌ๋ฉค๋ฒ„, ๋กœ๋งจํ‹ฑ ํ™€๋ฆฌ๋ฐ์ด, ์ดํ”„ ์˜จ๋ฆฌ, ๋…ธํŒ… ํž ์ˆœ์„œ๋กœ ์ •๋ ฌํ•˜์—ฌ ํ•ด๋‹น ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜์—ฌ ํ™”๋ฉด์— ์ถœ๋ ฅ์‹œํ‚ค๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.For example, when the similarity with IF ONLY is 1.215, the similarity with the romantic holiday is 0.75, the similarity with the Notting Hill is 1.787, and the similarity with the walk-to-remember is 0.454, respectively, the Euclidean distance formula is The smaller the similarity value is, the higher the similarity is. Therefore, when the content is rearranged in the order of high similarity, the information is sorted in order of work-to-member, romantic holiday, if only, and notting hill, and the corresponding information is returned to the attribute similarity search result output unit 600. Will be provided to the screen.

์ง€๊ธˆ๊นŒ์ง€ ์„ค๋ช…ํ•œ ๋ณธ ๋ฐœ๋ช…์— ์˜ํ•˜๋ฉด, ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•จ์œผ๋กœ์จ, ์ผ๋ฐ˜์ ์ธ ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ ๋ฐฉ์‹์„ ์ด์šฉํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” ํšจ๊ณผ์™€ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ํ†ตํ•œ ์‚ฌ์šฉ์ž๊ฐ€ ๊ฒ€์ƒ‰ํ•˜๊ธฐ๋ฅผ ์›ํ•˜๋Š” ๊ฒ€์ƒ‰์–ด(์งˆ๋ฌธ)์— ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํƒ ์ธ  ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•œ๋‹ค.According to the present invention described above, the multimedia content is obtained when a text keyword search is performed by determining whether to perform a text keyword search or a similar property search by acquiring a search word of the multimedia content input through speech recognition or text. Outputs the search result information of and outputs the search result information of the multimedia contents having the similar property when performing the similar property search. The multimedia content search result most similar to the search word (question) that the user wants to search through is effective.

ํŠนํžˆ, ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰์‹œ, ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB์— ์ €์žฅ๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด์™€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€์— ์˜ํ•ด ํ• ๋‹น๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์‹ค์‹œํ•จ์œผ๋กœ์จ, ๊ฒ€์ƒ‰์–ด(์งˆ๋ฌธ)์˜ ์˜๋„์™€ ์œ ์‚ฌํ•œ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์†์„ฑ(๋ถ„์œ„๊ธฐ, ๊ฐ์ • ๋“ฑ)๊ณผ ์ผ์น˜ํ•˜๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ œ๊ณตํ•˜๊ฒŒ ๋˜์–ด ์ด์— ๋”ฐ๋ฅธ ๊ฒ€์ƒ‰์˜ ์‹ ๋ขฐ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜๊ฒŒ ๋œ๋‹ค.In particular, by providing a similarity matching analysis unit, when performing a similar attribute search, similarity matching analysis is performed using the attribute information of the search term stored in the search term attribute information DB and the multimedia content attribute information assigned by the multimedia content attribute assignment unit. , By providing search result information of multimedia contents having attributes similar to the intention of the search term (question), it provides multimedia contents that match the attributes (atmosphere, emotion, etc.) desired by the user, thereby increasing the reliability of the search. Will be effective.

๋˜ํ•œ, ์ด์ƒ์—์„œ๋Š” ๋ณธ ๋ฐœ๋ช…์˜ ๋ฐ”๋žŒ์งํ•œ ์‹ค์‹œ์˜ˆ์— ๋Œ€ํ•˜์—ฌ ๋„์‹œํ•˜๊ณ  ์„ค๋ช…ํ•˜์˜€์ง€๋งŒ, ๋ณธ ๋ฐœ๋ช…์€ ์ƒ์ˆ ํ•œ ํŠน์ •์˜ ์‹ค์‹œ ์˜ˆ์— ํ•œ์ •๋˜์ง€ ์•„๋‹ˆํ•˜๋ฉฐ, ์ฒญ๊ตฌ๋ฒ”์œ„์—์„œ ์ฒญ๊ตฌํ•˜๋Š” ๋ณธ ๋ฐœ๋ช…์˜ ์š”์ง€๋ฅผ ๋ฒ—์–ด๋‚จ์ด ์—†์ด ๋‹นํ•ด ๋ฐœ๋ช…์ด ์†ํ•˜๋Š” ๊ธฐ์ˆ ๋ถ„์•ผ์—์„œ ํ†ต์ƒ์˜ ์ง€์‹์„ ๊ฐ€์ง„ ์ž์— ์˜ํ•ด ๋‹ค์–‘ํ•œ ๋ณ€ํ˜• ์‹ค์‹œ๊ฐ€ ๊ฐ€๋Šฅํ•œ ๊ฒƒ์€ ๋ฌผ๋ก ์ด๊ณ , ์ด๋Ÿฌํ•œ ๋ณ€ํ˜• ์‹ค์‹œ๋“ค์€ ๋ณธ ๋ฐœ๋ช…์˜ ๊ธฐ์ˆ ์  ์‚ฌ์ƒ์ด๋‚˜ ์ „๋ง์œผ๋กœ๋ถ€ํ„ฐ ๊ฐœ๋ณ„์ ์œผ๋กœ ์ดํ•ด๋˜์–ด์„œ๋Š” ์•ˆ๋  ๊ฒƒ์ด๋‹ค.In addition, although the preferred embodiment of the present invention has been shown and described above, the present invention is not limited to the above-described specific embodiment, the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.

๋ณธ ๋ฐœ๋ช…์— ๋”ฐ๋ฅธ ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜ ๋ฐ ๊ฒ€์ƒ‰๋ฐฉ๋ฒ•์„ ํ†ตํ•ด, ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜์—ฌ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•จ์œผ๋กœ์จ, ์ผ๋ฐ˜์ ์ธ ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ ๋ฐฉ์‹์„ ์ด์šฉํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” ํšจ๊ณผ์™€ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ํ†ตํ•œ ์‚ฌ์šฉ์ž๊ฐ€ ๊ฒ€์ƒ‰ํ•˜๊ธฐ๋ฅผ ์›ํ•˜๋Š” ๊ฒ€์ƒ‰์–ด(์งˆ๋ฌธ)์— ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํƒ ์ธ  ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” ํšจ๊ณผ๋ฅผ ํ†ตํ•ด ์‚ฐ์—…์ƒ ์ด์šฉ๊ฐ€๋Šฅ์„ฑ๋„ ๋†’๋‹ค.Determining whether to perform a text keyword search or a similar property search by acquiring a search word of multimedia content input through speech recognition or text through an apparatus and method for searching multimedia contents through analyzing attribute information according to the present invention. Outputting the search result information of the multimedia content when performing a text keyword search, and outputting the search result information of the multimedia content having a similar property when performing a similar property search, thereby generating multimedia content using a general search keyword method. It is also highly applicable to the industry through providing a multimedia content search result that is most similar to a search word (question) that a user wants to search through the effect of providing a search result and similar property search.

Claims (7)

์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜์— ์žˆ์–ด์„œ,In the multimedia content retrieval apparatus through attribute information analysis, ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)์™€,A search start unit 100 for acquiring a search word of multimedia content input by voice recognition or text and providing search execution request information to the attribute search execution determining unit 200; ์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ํŒ๋‹จ ๊ฒฐ๊ณผ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)์™€,When obtaining the search execution request information from the search start unit 100, it is determined whether to perform a text keyword search or a similar attribute search, and as a result of the determination, the text keyword search is performed when the text keyword search is performed. The attribute search decision unit 200 which provides the text keyword search request information to the unit 300, and provides the similar property search request information to the attribute similarity search unit 500 when performing the similar attribute search as a result of the determination; , ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)์™€,A text keyword search unit 300 which performs a text keyword search when obtaining the text keyword search request information provided from the attribute search performing determination unit, and provides the search result information to the text keyword result output unit; ์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400)์™€,A text keyword result output unit 400 for outputting search result information of the text keyword provided from the text keyword search unit; ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)๊ณผ,An attribute similarity search means 500 which performs a similar attribute search when obtaining similar attribute search request information provided from the attribute search execution determination unit and provides the search result information to the attribute similarity search result output unit 500; ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋ฅผ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜.And an attribute similarity search result output unit (600) for outputting search result information of similar attributes provided from the attribute similarity search unit (500). ์ œ 1ํ•ญ์— ์žˆ์–ด์„œ,The method of claim 1, ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)์€,The attribute similarity search means 500, ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510);A search word attribute analyzer 510 for analyzing linguistic attribute information included in a search word of multimedia content input through speech recognition or text; ์ปจํ…์ธ ์„œ๋ฒ„(560)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ณ , ์ €์žฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ธฐ ์œ„ํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520);A multimedia content attribute allocator 520 for acquiring and storing multimedia contents from the content server 560 and allocating attribute information to the stored multimedia contents; ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์— ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ ์ œ๊ณตํ•˜๊ณ , ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๋ฉฐ, ํš๋“๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด์— ํฌํ•จ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์˜ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530);It provides multimedia content request information including attribute information similar to linguistic attribute information of a search word to the multimedia content attribute assigning unit 520, obtains multimedia content list information from the multimedia content attribute assigning unit 520, and obtains the multimedia content list information. A similarity matching analysis unit 530 for performing a similarity matching analysis of multimedia contents included in the multimedia contents list information; ์‚ฌ์ „์— ์„ค์ •๋œ ํ›„๋ณด๊ตฐ ์ˆซ์ž๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ๊ฐ€์žฅ ๋†’์€ ์œ ์‚ฌ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋ถ€(540);A similarity candidate group extracting unit 540 for sequentially extracting multimedia contents according to candidate group numbers from multimedia contents having the highest similarity with reference to a preset candidate group number; ์ƒ๊ธฐ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ์ถ”์ถœ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์œ ์‚ฌ๋„์— ๋”ฐ๋ผ ์ •๋ ฌ์‹œํ‚ค๋ฉฐ, ์ •๋ ฌ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋ถ€(550);๋ฅผ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜.A similarity reference multimedia content sorting unit 550 for sorting the multimedia contents extracted according to the number of candidate groups according to similarity and providing the sorted multimedia contents to the property similarity search result output unit 600. Multimedia content retrieval apparatus through information analysis. ์ œ 2ํ•ญ์— ์žˆ์–ด์„œ,The method of claim 2, ์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510)๋Š”,The search word attribute analysis unit 510, ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ(512)๋กœ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์— ๋Œ€ํ•œ ํ•ด์„ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ๋กœ๋ถ€ํ„ฐ ํ•ด์„๋œ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ(511);The machine learning model module 512 provides information on requesting interpretation of linguistic attributes included in a search word of multimedia content input through speech recognition or text, and provides linguistic attribute information included in a search word interpreted from the machine learning model module. A natural language processing module 511 for providing the query attribute assignment module 513; ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์— ๋Œ€ํ•œ ํ•ด์„ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ์„ ํ•ด์„ํ•˜์—ฌ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ๋กœ ํ•ด์„๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹๋ชจ๋ธ๋ชจ๋“ˆ(512);Machine learning model module for providing linguistic attribute information interpreted as natural language processing module by interpreting linguistic attributes included in search term when obtaining information on interpretation of linguistic attributes included in search term from natural language processing module. 512); ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด์™€ ๋งค์นญ๋  ์ˆ˜ ์žˆ๋Š” ์†์„ฑ์˜ ์œ ํ˜•์œผ๋กœ ์ •์ œ๋˜์–ด ์žˆ๋Š” ์†์„ฑ ์œ ํ˜• ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๊ณ  ์žˆ๋Š” ์ง€์‹์ •๋ณดDB(514);A knowledge information DB 514 that stores attribute type information refined into attribute types that can be matched with attribute information of multimedia content; ์ƒ๊ธฐ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ชจ๋“ˆ์—์„œ ์ œ๊ณต๋œ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๊ณ , ํš๋“๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ํ† ๋Œ€๋กœ ์ง€์‹์ •๋ณดDB๋กœ๋ถ€ํ„ฐ ์†์„ฑ ์œ ํ˜• ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ์„ ํ• ๋‹นํ•˜๊ณ , ํ• ๋‹น๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513);Obtains the linguistic attribute information included in the search word provided by the natural language processing module, extracts the attribute type information from the knowledge information DB based on the obtained linguistic attribute information, allocates the attribute for the search term, and the attribute for the assigned search term. A search word attribute assignment module 513 for providing information to the search term attribute value conversion module 515; ์ƒ๊ธฐ ๊ฒ€์ƒ‰์–ด์†์„ฑํ• ๋‹น๋ชจ๋“ˆ(513)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516)๋กœ ํ™•๋ฅ ๊ฐ’ ์‚ฐ์ถœ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516)๋กœ๋ถ€ํ„ฐ ์‚ฐ์ถœ๋œ ํ™•๋ฅ ๊ฐ’์„ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515);When obtaining the attribute information for the search term provided from the search term attribute assignment module 513, the probability model calculation request information is provided to the attribute model module 516, and the probability value calculated from the attribute model module 516 is obtained to provide the search term. A search word attribute value conversion module 515 for converting the value into an attribute value to provide the search term attribute value information DB 517; ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ๋ถ€ํ„ฐ ํ™•๋ฅ ๊ฐ’ ์‚ฐ์ถœ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์–ธ์–ด ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ํ™•๋ฅ ๊ฐ’์„ ์‚ฐ์ถœํ•˜๋ฉฐ, ์‚ฐ์ถœ๋œ ํ™•๋ฅ ๊ฐ’์„ ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์†์„ฑ๋ชจ๋ธ๋ชจ๋“ˆ(516);An attribute model module 516 for calculating a probability value through language modeling when obtaining the probability value calculation request information from the keyword attribute value conversion module 515 and providing the calculated probability value to the keyword attribute value conversion module 515; ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜๋ณ€ํ™˜๋ชจ๋“ˆ(515)์— ์˜ํ•ด ์ œ๊ณต๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ๊ฐ’์„ ํฌํ•จํ•˜์—ฌ ์ €์žฅํ•˜๊ณ  ์žˆ๋Š” ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517);๋ฅผ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜.And a search term attribute value information database (517) including the attribute value for the search term provided by the search term attribute value conversion module (515). ์ œ 2ํ•ญ์— ์žˆ์–ด์„œ,The method of claim 2, ์ƒ๊ธฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋Š”,The multimedia content attribute assignment unit 520, ์ปจํ…์ธ ์„œ๋ฒ„(560)์™€ ์—ฐ๋™์‹œ์ผœ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)๋กœ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ์—ฐ๋™๋ชจ๋“ˆ(521);A content interlocking module 521 for providing multimedia content information to the content crawling module 522 in association with the content server 560; ์ปจํ…์ธ ์—ฐ๋™๋ชจ๋“ˆ(521)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋˜๋Š” ๋‹ค์ˆ˜์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด๋“ค์„ ์ˆ˜์ง‘ํ•˜์—ฌ ์ปจํ…์ธ ์ €์žฅDB๋กœ ์ €์žฅ์‹œ์ผœ ์†์„ฑ ์ •๋ณด์˜ ์—ฐ์‚ฐ ๋ฒ”์œ„๋ฅผ ํ™•์žฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522);A content crawling module 522 for collecting a plurality of multimedia content information provided from the content interworking module 521 and storing the multimedia content information in a content storage DB to expand the operation range of the attribute information; ์ƒ๊ธฐ ์ปจํ…์ธ ํฌ๋กค๋ง๋ชจ๋“ˆ(522)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์ •๋ณด์™€ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋งˆ๋‹ค ํ• ๋‹น๋œ ์†์„ฑ ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๊ณ  ์žˆ๋Š” ์ปจํ…์ธ ์ €์žฅDB(523);A content storage DB 523 for storing multimedia content information provided from the content crawling module 522 and attribute information allocated to each multimedia content; ์ƒ๊ธฐ ์ปจํ…์ธ ์ €์žฅDB(523)์— ์ €์žฅ๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ๋Œ€ํ•˜์—ฌ ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ชจ๋ธ๋ชจ๋“ˆ(524);A content attribute assignment model module 524 for allocating attribute information for each multimedia content stored in the content storage DB 523; ์ƒ๊ธฐ ์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ชจ๋ธ๋ชจ๋“ˆ(524)์— ์˜ํ•ด ํ• ๋‹น๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ํ•ด์„ํ•˜์—ฌ ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ์†์„ฑ์ •๋ณดํ•ด์„๋ชจ๋“ˆ(525);A content property information analysis module 525 for analyzing the property information of each multimedia content assigned by the content property assignment model module 524 and providing the same to the content information search module; ์ปจํ…์ธ ์†์„ฑ์ •๋ณดํ•ด์„๋ชจ๋“ˆ(525)์— ์˜ํ•ด ํ•ด์„๋œ ๊ฐ๊ฐ์˜ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ์†์„ฑ ์ •๋ณด๋ฅผ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ ์ œ๊ณตํ•˜๋ฉฐ, ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์— ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์ปจํ…์ธ ์ €์žฅDB(523)๋กœ๋ถ€ํ„ฐ ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์ปจํ…์ธ ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋“ˆ(526);์„ ํฌํ•จํ•˜์—ฌ ๊ตฌ์„ฑ๋˜๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜.The attribute information of each multimedia content analyzed by the content attribute information analysis module 525 is provided to the similarity matching property analysis unit 530, and similar property information is similar to the linguistic property information of the search word from the similarity matching property analysis unit 530. A content information retrieval module 526 for providing multimedia content list information including similar attribute information from the content storage DB 523 to the similarity matching property analysis unit 530 when acquiring the included multimedia content request information; Multimedia content retrieval apparatus through the analysis of the attribute information configured to include. ์ œ 2ํ•ญ์— ์žˆ์–ด์„œ,The method of claim 2, ์ƒ๊ธฐ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๋Š”,The similarity matchability analysis unit 530, ๊ฒ€์ƒ‰์–ด์†์„ฑ์ˆ˜์น˜์ •๋ณดDB(517)์— ์ €์žฅ๋œ ๊ฒ€์ƒ‰์–ด์— ๋Œ€ํ•œ ์†์„ฑ ์ •๋ณด์™€ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)์— ์˜ํ•ด ํ• ๋‹น๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์†์„ฑ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์‹ค์‹œํ•˜๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•˜๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰์žฅ์น˜.Multimedia through attribute information analysis, characterized in that similarity matching analysis is performed with attribute information on the search term stored in the keyword attribute value information database 517 and multimedia content attribute information allocated by the multimedia content attribute assignment unit 520. Content search device. ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์— ์žˆ์–ด์„œ,In the multimedia content retrieval method through attribute information analysis, ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๊ฐ€ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด๋ฅผ ํš๋“ํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ ์ œ๊ณตํ•˜๋Š” ๊ฒ€์ƒ‰์‹œ์ž‘๋‹จ๊ณ„(S100)์™€,A search start step (S100) of providing a search execution request information to the attribute search performing determination unit 200 by obtaining a search word of the multimedia content inputted by voice recognition or text by the search start unit 100; ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๊ฐ€ ์ƒ๊ธฐ ๊ฒ€์ƒ‰์‹œ์ž‘๋ถ€(100)๋กœ๋ถ€ํ„ฐ ๊ฒ€์ƒ‰ ์‹ค์‹œ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ํŒ๋‹จํ•˜๊ณ , ํŒ๋‹จ ๊ฒฐ๊ณผ, ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, ํŒ๋‹จ ๊ฒฐ๊ณผ, ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ๊ฒฝ์šฐ์— ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋‹จ๊ณ„(S200)์™€,When the attribute search execution unit 200 obtains the search execution request information from the search start unit 100, it is determined whether to perform a text keyword search or a similar attribute search. When performing a search, the text keyword search request information is provided to the text keyword search unit 300, and as a result of the determination, when the similar property search is performed, the similar property search request information is provided to the attribute similarity search unit 500. Attribute search determination step (S200), ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋‹จ๊ณ„(S300)์™€,When the text keyword search unit 300 obtains the text keyword search request information provided from the attribution search execution determination unit 200, the text keyword search unit performs a text keyword search and provides the search result information to the text keyword result output unit. Step S300, ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(400)๊ฐ€ ์ƒ๊ธฐ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒ€์ƒ‰๋ถ€(300)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ํ…์ŠคํŠธ ํ‚ค์›Œ๋“œ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ…์ŠคํŠธํ‚ค์›Œ๋“œ๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S400)์™€,A text keyword result output step (S400) for the text keyword result output unit 400 to output search result information of the text keyword provided from the text keyword search unit 300; ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰์ˆ˜๋‹จ(500)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ๊ฒ€์ƒ‰์ˆ˜ํ–‰ํŒ๋‹จ๋ถ€(200)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰ ์š”์ฒญ ์ •๋ณด๋ฅผ ํš๋“ํ•  ๊ฒฝ์šฐ์— ์œ ์‚ฌ ์†์„ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€๋กœ ์ œ๊ณตํ•˜๋Š” ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„(S500)์™€,When the property similarity search means 500 obtains the similar property search request information provided from the property search execution decision unit 200, the property similarity search is performed and the search result information is provided to the property similarity search result output unit. Search step (S500), ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๊ฐ€ ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋ถ€(500)๋กœ๋ถ€ํ„ฐ ์ œ๊ณต๋œ ์œ ์‚ฌ ์†์„ฑ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ •๋ณด๋ฅผ ์ถœ๋ ฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋‹จ๊ณ„(S600)๋ฅผ ํฌํ•จํ•˜๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•.Searching for multimedia content through attribute information analysis including attribute similarity search result output step (S600) for the attribute similarity search result output unit 600 to output search result information of similar attributes provided from the attribute similarity search unit 500. Way. ์ œ 6ํ•ญ์— ์žˆ์–ด์„œ,The method of claim 6, ์ƒ๊ธฐ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๋‹จ๊ณ„(S500)๋Š”,The attribute similarity search step (S500), ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋ถ€(510)๊ฐ€ ์Œ์„ฑ ์ธ์‹ ๋˜๋Š” ํ…์ŠคํŠธ๋กœ ์ž…๋ ฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์˜ ๊ฒ€์ƒ‰์–ด์— ํฌํ•จ๋œ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒ€์ƒ‰์–ด์†์„ฑ๋ถ„์„๋‹จ๊ณ„(S510);A keyword attribute analysis step (S510) for the keyword attribute analyzer 510 to analyze linguistic attribute information included in a keyword of a multimedia content input through speech recognition or text; ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๊ฐ€ ์ปจํ…์ธ ์„œ๋ฒ„(560)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ํš๋“ํ•˜์—ฌ ์ €์žฅํ•˜๊ณ , ์ €์žฅ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ์— ์†์„ฑ ์ •๋ณด๋ฅผ ํ• ๋‹นํ•˜๊ธฐ ์œ„ํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋‹จ๊ณ„(S520);A multimedia content attribute assignment step (S520) of the multimedia content attribute assignment unit 520 acquiring and storing multimedia content from the content server 560 and allocating attribute information to the stored multimedia content; ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋ถ€(530)๊ฐ€ ๊ฒ€์ƒ‰์–ด์˜ ์–ธ์–ด์  ์†์„ฑ ์ •๋ณด์— ์œ ์‚ฌํ•œ ์†์„ฑ ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ์š”์ฒญ ์ •๋ณด๋ฅผ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ ์ œ๊ณตํ•˜๊ณ , ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์†์„ฑํ• ๋‹น๋ถ€(520)๋กœ๋ถ€ํ„ฐ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๋ฉฐ, ํš๋“๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๋ฆฌ์ŠคํŠธ ์ •๋ณด์— ํฌํ•จ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์˜ ์œ ์‚ฌ๋„ ๋งค์นญ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„๋งค์นญ์„ฑ๋ถ„์„๋‹จ๊ณ„(S530);The similarity matching property analysis unit 530 provides the multimedia content property assignment unit 520 with multimedia content request information including property information similar to the linguistic property information of the search word, and the multimedia content from the multimedia content property assignment unit 520. A similarity matching analysis step (S530) of acquiring list information and performing similarity matching analysis of multimedia contents included in the obtained multimedia contents list information; ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋ถ€(540)๊ฐ€ ์‚ฌ์ „์— ์„ค์ •๋œ ํ›„๋ณด๊ตฐ ์ˆซ์ž๋ฅผ ์ฐธ์กฐํ•˜์—ฌ ๊ฐ€์žฅ ๋†’์€ ์œ ์‚ฌ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„ํ›„๋ณด๊ตฐ์ถ”์ถœ๋‹จ๊ณ„(540);A similarity candidate group extracting step 540 for extracting, by the similarity candidate group extracting unit 540, multimedia contents having the highest similarity sequentially from the multimedia contents having the highest similarity, according to the candidate group number; ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋ถ€(550)๊ฐ€ ์ƒ๊ธฐ ํ›„๋ณด๊ตฐ ์ˆซ์ž์— ๋งž๊ฒŒ ์ถ”์ถœ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์œ ์‚ฌ๋„์— ๋”ฐ๋ผ ์ •๋ ฌ์‹œํ‚ค๋ฉฐ, ์ •๋ ฌ๋œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ ๋“ค์„ ์†์„ฑ์œ ์‚ฌ๋„๊ฒ€์ƒ‰๊ฒฐ๊ณผ์ถœ๋ ฅ๋ถ€(600)๋กœ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์œ ์‚ฌ๋„๊ธฐ์ค€๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด์ปจํ…์ธ ์ •๋ ฌ๋‹จ๊ณ„(S550);๋ฅผ ํฌํ•จํ•˜๋Š” ์†์„ฑ ์ •๋ณด ๋ถ„์„์„ ํ†ตํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ์ปจํ…์ธ  ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•.Similarity-based multimedia content sorting unit 550 sorts the multimedia contents extracted according to the number of candidate groups according to similarity, and provides similarity-based multimedia content sorting step to provide the sorted multimedia contents to the attribute similarity search result output unit 600. (S550); multimedia content search method through the analysis of the attribute information comprising a.
PCT/KR2018/002911 2018-03-12 2018-03-13 Multimedia content search apparatus and search method using attribute information analysis Ceased WO2019177182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0028507 2018-03-12
KR1020180028507A KR101873873B1 (en) 2018-03-12 2018-03-12 Multimedia content search device through attribute information analysis and Method

Publications (1)

Publication Number Publication Date
WO2019177182A1 true WO2019177182A1 (en) 2019-09-19

Family

ID=62918154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002911 Ceased WO2019177182A1 (en) 2018-03-12 2018-03-13 Multimedia content search apparatus and search method using attribute information analysis

Country Status (2)

Country Link
KR (1) KR101873873B1 (en)
WO (1) WO2019177182A1 (en)

Cited By (2)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN111428120A (en) * 2020-03-17 2020-07-17 ๅŒ—ไบฌๅญ—่Š‚่ทณๅŠจ็ฝ‘็ปœๆŠ€ๆœฏๆœ‰้™ๅ…ฌๅธ Information determination method and device, electronic equipment and storage medium
CN112000822A (en) * 2020-08-21 2020-11-27 ๅŒ—ไบฌ่พพไฝณไบ’่”ไฟกๆฏๆŠ€ๆœฏๆœ‰้™ๅ…ฌๅธ Multimedia resource sequencing method and device, electronic equipment and storage medium

Families Citing this family (6)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913191B1 (en) * 2018-07-05 2018-10-30 ๋ฏธ๋””์–ด์  (์ฃผ) Understanding the language based on domain extraction Performance enhancement device and Method
KR20210098135A (en) 2020-01-31 2021-08-10 ์ฃผ์‹ํšŒ์‚ฌ ์ผ€์ดํ‹ฐ Apparatus, method and computer program for analyzing query data
KR102400995B1 (en) * 2020-05-11 2022-05-24 ๋„ค์ด๋ฒ„ ์ฃผ์‹ํšŒ์‚ฌ Method and system for extracting product attribute for shopping search
KR102399837B1 (en) * 2020-05-11 2022-05-19 ๋„ค์ด๋ฒ„ ์ฃผ์‹ํšŒ์‚ฌ Method and system for extracting product category for shopping search
KR102486440B1 (en) * 2020-11-09 2023-01-09 ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ์› Method and apparatus for training unsupervised question generation model
US20240411792A1 (en) * 2021-10-25 2024-12-12 Lg Electronics Inc. Display device

Citations (5)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000030847A (en) * 2000-03-21 2000-06-05 ์ „๋Œ€์‹ An internet full service system and user interface accessible at this system
KR20010028772A (en) * 1999-09-22 2001-04-06 ๊ตฌ์žํ™ Multimedia browser based on user profile having ordering preference of searching item of multimedia data
KR20090066608A (en) * 2007-12-20 2009-06-24 ์ฃผ์‹ํšŒ์‚ฌ ๋‹ค์Œ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ Method and system for retrieving multimedia contents
KR100968858B1 (en) * 2002-04-26 2010-07-09 ํ•œ๊ตญ์ „์žํ†ต์‹ ์—ฐ๊ตฌ์› Method and apparatus for performing contents-based searching of multimedia contents by using user preference information
KR20100081871A (en) * 2009-01-07 2010-07-15 ํฌํ•ญ๊ณต๊ณผ๋Œ€ํ•™๊ต ์‚ฐํ•™ํ˜‘๋ ฅ๋‹จ Method of searching personalized ordering sequence based on user context

Patent Citations (5)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028772A (en) * 1999-09-22 2001-04-06 ๊ตฌ์žํ™ Multimedia browser based on user profile having ordering preference of searching item of multimedia data
KR20000030847A (en) * 2000-03-21 2000-06-05 ์ „๋Œ€์‹ An internet full service system and user interface accessible at this system
KR100968858B1 (en) * 2002-04-26 2010-07-09 ํ•œ๊ตญ์ „์žํ†ต์‹ ์—ฐ๊ตฌ์› Method and apparatus for performing contents-based searching of multimedia contents by using user preference information
KR20090066608A (en) * 2007-12-20 2009-06-24 ์ฃผ์‹ํšŒ์‚ฌ ๋‹ค์Œ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ Method and system for retrieving multimedia contents
KR20100081871A (en) * 2009-01-07 2010-07-15 ํฌํ•ญ๊ณต๊ณผ๋Œ€ํ•™๊ต ์‚ฐํ•™ํ˜‘๋ ฅ๋‹จ Method of searching personalized ordering sequence based on user context

Cited By (4)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN111428120A (en) * 2020-03-17 2020-07-17 ๅŒ—ไบฌๅญ—่Š‚่ทณๅŠจ็ฝ‘็ปœๆŠ€ๆœฏๆœ‰้™ๅ…ฌๅธ Information determination method and device, electronic equipment and storage medium
CN111428120B (en) * 2020-03-17 2023-06-20 ๅŒ—ไบฌๅญ—่Š‚่ทณๅŠจ็ฝ‘็ปœๆŠ€ๆœฏๆœ‰้™ๅ…ฌๅธ Information determination method and device, electronic equipment and storage medium
CN112000822A (en) * 2020-08-21 2020-11-27 ๅŒ—ไบฌ่พพไฝณไบ’่”ไฟกๆฏๆŠ€ๆœฏๆœ‰้™ๅ…ฌๅธ Multimedia resource sequencing method and device, electronic equipment and storage medium
CN112000822B (en) * 2020-08-21 2024-05-14 ๅŒ—ไบฌ่พพไฝณไบ’่”ไฟกๆฏๆŠ€ๆœฏๆœ‰้™ๅ…ฌๅธ Method and device for ordering multimedia resources, electronic equipment and storage medium

Also Published As

Publication number Publication date
KR101873873B1 (en) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2020009297A1 (en) Domain extraction based language comprehension performance enhancement apparatus and performance enhancement method
WO2019177182A1 (en) Multimedia content search apparatus and search method using attribute information analysis
WO2022065811A1 (en) Multimodal translation method, apparatus, electronic device and computer-readable storage medium
WO2018034426A1 (en) Method for automatically correcting error in tagged corpus by using kernel pdr
WO2010068068A2 (en) Information search method and information provision method based on user&#39;s intention
WO2012134180A2 (en) Emotion classification method for analyzing inherent emotions in a sentence, and emotion classification method for multiple sentences using context information
WO2018174603A1 (en) Method and device for displaying explanation of reference numeral in patent drawing image using artificial intelligence technology based machine learning
WO2012074338A2 (en) Natural language and mathematical formula processing method and device therefor
WO2017156893A1 (en) Voice control method and smart television
WO2025079774A1 (en) Method for optimizing prompt information for generative ai
WO2020082766A1 (en) Association method and apparatus for input method, device and readable storage medium
WO2010021527A2 (en) System and method for indexing object in image
WO2010036012A2 (en) Internet-based opinion search system, and opinion search, advertisement service system and method for same
WO2020101108A1 (en) Artificial-intelligence model platform and method for operating artificial-intelligence model platform
WO2023172025A1 (en) Method for predicting association-related information between entity-pair by using model for encoding time series information, and prediction system generated by using same
WO2020022819A1 (en) Communication via simulated user
WO2020032564A1 (en) Electronic device and method for providing one or more items in response to user speech
WO2014021567A1 (en) Method for providing message service, and device and system therefor
WO2023229376A1 (en) Intelligent response recommendation system and method for real-time voice counseling support
WO2011155736A2 (en) Method for dynamically generating additional terms for each meaning of every natural language expression; dictionary manager, document generator, term annotator, search system, and device for building a document information system based on the method
WO2012130145A1 (en) Method and device for acquiring and searching for relevant knowledge information
WO2020197257A1 (en) Translating method using visually represented elements, and device therefor
WO2016127459A1 (en) Method and device for recognizing unlogged word in intelligent interaction system
WO2011025162A2 (en) Method for searching for a list of entities belonging to a specific class
WO2017094967A1 (en) Natural language processing schema and method and system for establishing knowledge database therefor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.04.21)

122 Ep: pct application non-entry in european phase

Ref document number: 18909726

Country of ref document: EP

Kind code of ref document: A1