[go: up one dir, main page]

WO2019168101A1 - Learning assist system and method - Google Patents

Learning assist system and method Download PDF

Info

Publication number
WO2019168101A1
WO2019168101A1 PCT/JP2019/007820 JP2019007820W WO2019168101A1 WO 2019168101 A1 WO2019168101 A1 WO 2019168101A1 JP 2019007820 W JP2019007820 W JP 2019007820W WO 2019168101 A1 WO2019168101 A1 WO 2019168101A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
proficiency
learner
support system
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2019/007820
Other languages
French (fr)
Japanese (ja)
Inventor
元基 神野
正幹 小川
芳郎 宮田
聖 鶴野
庄平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compass
Compass Inc
Original Assignee
Compass
Compass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compass, Compass Inc filed Critical Compass
Publication of WO2019168101A1 publication Critical patent/WO2019168101A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B7/00Electrically-operated teaching apparatus or devices working with questions and answers
    • G09B7/02Electrically-operated teaching apparatus or devices working with questions and answers of the type wherein the student is expected to construct an answer to the question which is presented or wherein the machine gives an answer to the question presented by a student
    • G09B7/04Electrically-operated teaching apparatus or devices working with questions and answers of the type wherein the student is expected to construct an answer to the question which is presented or wherein the machine gives an answer to the question presented by a student characterised by modifying the teaching programme in response to a wrong answer, e.g. repeating the question, supplying a further explanation

Definitions

  • This disclosure relates to a learning support system.
  • the learning support system for giving a question to a learner through an electronic device (for example, see Patent Document 1).
  • the learning support system is configured to change a new question to be asked according to whether or not the problem is correct by the learner and the correct answer rate.
  • a learning support system includes a question part, an update part, and a selection part.
  • the questioning unit is configured to give a first question selected from the plurality of questions through a display device.
  • the update unit is configured to update the proficiency level data of the learner stored in the storage device based on the effort through the learner's input device for the first question given by the questioning unit.
  • the selection unit is configured to select a second question to be newly given to the questioning unit from a plurality of questions based on the proficiency level data of the learner stored in the storage device.
  • the proficiency level data indicates the proficiency level of the learner for each of a plurality of learning elements.
  • Each of the plurality of questions may include at least one of the plurality of learning elements. At least some of the plurality of questions may include two or more of the plurality of learning elements. At least some of the plurality of learning elements may be included in two or more of the plurality of problems.
  • the update unit updates the proficiency level of one or more learning elements including at least one learning element included in the first problem based on the learner's approach to the first problem.
  • the proficiency level data is updated.
  • This learning support system updates the learner's proficiency level for each learning element. Therefore, when a learner works on a problem that requires multiple skills for correct answers, based on this work, record multiple proficiency levels corresponding to multiple skills in detail to help the learner choose a question Can do. Therefore, according to this system, it is possible to provide a problem that the learner can efficiently learn and to support the learner.
  • the one or more learning elements include at least one learning element included in the first problem and at least one other element related to at least one learning element included in the first problem. And two learning elements.
  • the update unit can update the proficiency level data based on data indicating relationships between a plurality of learning elements. Extending the learning elements whose proficiency level is to be updated to other than the learning elements included in the problem is useful for improving learning efficiency.
  • the number of standard exercises may be determined for each of the plurality of learning elements.
  • the update unit sets the proficiency level of the corresponding learning element so that the change in the proficiency level decreases as the number of standard exercises defined for the corresponding learning element increases. May be updated.
  • the update unit may calculate an experience value corresponding to the learner's approach to the first problem.
  • the update unit converts, for each learning element, an experience value into a proficiency level equivalent value for each learning element, and adds the proficiency level equivalent value to the proficiency level of the corresponding learning element. By doing so, the proficiency level of the corresponding learning element may be updated.
  • the conversion formula may be configured to convert the experience value into the proficiency equivalent value so that the proficiency equivalent value decreases as the number of standard exercises determined for the corresponding learning element increases.
  • the update unit may be configured to update the learner's proficiency level data based on at least one of the learner's answer behavior and correct answer confirmation behavior through the input device.
  • the update unit determines, for each learning element, an addition amount with respect to the proficiency level of the corresponding learning element for the one or more learning elements based on whether the answer is correct or not, and determines the determined addition amount based on the proficiency level of the corresponding learning element.
  • the proficiency level of the corresponding learning element may be updated by adding to.
  • the update unit may determine the addition amount further based on at least one of the learner's answer time and the degree of browsing by the learner of the question comment displayed by the display device after the answer.
  • the learning support system may be provided with a determination unit that determines the degree of fixation among learners of skills corresponding to each of the one or more learning elements.
  • the update unit may be configured to update each of the proficiency levels of the one or more learning elements within a range equal to or less than an upper limit value corresponding to a corresponding skill fixing level.
  • the upper limit value can be larger as the fixing degree is higher.
  • the establishment of skills includes time factors. Therefore, by providing an upper limit value according to the degree of fixation in the proficiency level, it is possible to calculate an appropriate proficiency level that takes into account the forgetfulness of the learner's learning experience.
  • the selection unit selects a second problem so that a problem including a learning element with a low learner's proficiency among a plurality of problems is preferentially selected. It may be configured to.
  • the selection unit selects a problem including a learning element having a lower proficiency level from among a plurality of learning elements related to the first problem.
  • the second problem may be selected.
  • the selection unit has a corrected proficiency level based on the corrected proficiency level obtained by correcting the proficiency level of each of the multiple learning elements based on the proficiency level of the multiple learning elements related to the corresponding learning element.
  • the second question may be selected so that a problem including a low learning element is selected more preferentially. According to this problem selection, learning by the learner can be supported more efficiently.
  • a learning support method is a method in which a first problem selected from a plurality of problems is presented through a display device and learning stored in a storage device based on an approach through a learner's input device for the first problem. Updating the learner's proficiency data, and selecting a second question to be newly set out of a plurality of questions based on the learner's proficiency data stored in the storage device. Good.
  • the proficiency level data may indicate a learner's proficiency level for each of the plurality of learning elements. Updating updates the proficiency data to update the proficiency of one or more learning elements, including at least one learning element included in the first problem, based on the learner's approach to the first problem Can include.
  • the learning support method may be executed by a computer.
  • the learning support method may include a procedure executed by the learning support system described above.
  • a computer program for causing a computer to realize the functions as the learning support system described above may be provided.
  • a computer program for causing a computer to function may be provided as at least one of the questioning unit, the updating unit, the selection unit, and the determination unit.
  • a computer program for causing a computer to execute the learning support method described above may be provided.
  • a computer program for causing a computer to perform at least one of setting a question, updating, and selecting may be provided.
  • the computer program may be recorded on a computer-readable non-transitory recording medium.
  • the learning support system 1 of the present embodiment shown in FIG. 1 includes a plurality of user terminal devices 10, a server device 60, and a database system 100.
  • the user terminal device 10 is configured to be able to communicate with the server device 60 via the wide area network NT
  • the server device 60 is configured to be able to communicate with the database system 100 on the back end side.
  • the user terminal device 10 is configured to give a learning problem to the user in cooperation with the server device 60.
  • Examples of the user terminal device 10 include electronic devices such as a personal computer, a tablet, and a smartphone.
  • the user terminal device 10 shown in FIG. 1 includes a control device 20, a storage device 30, a communication device 40, a display device 50, and an input device 55.
  • the control device 20 includes a CPU (Central Processing Unit) 21 and a RAM (Random Access Memory) 23, and performs overall control of the user terminal device 10.
  • the CPU 21 executes processing according to the computer program stored in the storage device 30.
  • the RAM 23 is used as a working memory when the CPU 21 executes processing. Below, the process performed by CPU21 is demonstrated as a process which the control device 20 performs.
  • the storage device 30 stores various computer programs and data.
  • the storage device 30 is configured by, for example, a flash memory or a hard disk device.
  • an application program for asking questions for learning in cooperation with the server device 60 is installed and stored in the storage device 30.
  • the control device 20 is configured to execute a process according to the application program, thereby to give a question designated by the server device 60 through the display device 50 and to accept an answer operation from the user through the input device 55. Is done.
  • the control device 20 is configured to transmit this operation content to the server device 60 through the communication device 40.
  • the communication device 40 is configured to be able to communicate with devices in the wide area network NT including the server device 60.
  • the display device 50 is configured by, for example, a liquid crystal display or an organic EL display.
  • the display device 50 is controlled by the control device 20 and displays various screens for the user.
  • the various screens include a question screen including a question sentence and an answer column, and a comment screen including a question commentary.
  • the input device 55 is configured to accept an input operation from the user and input a corresponding operation signal to the control device 20.
  • the input device 55 may be a touch panel configured integrally with the display device 50.
  • the input device 55 receives a touch operation and a writing operation on the screen displayed on the display device 50 and inputs the operation signal to the control device 20.
  • the processing device 70 includes a CPU 71 and a RAM 73.
  • the CPU 71 executes processing according to the computer program stored in the storage device 80.
  • the RAM 73 is used as a working memory when the CPU 71 executes processing.
  • the communication device 90 is configured to be able to communicate with the user terminal device 10 through the wide area network NT, and further to be able to communicate with the database system 100 on the back end side.
  • the processing device 70 When the application program is activated in the user terminal device 10, the processing device 70 identifies the user corresponding to the user terminal device 10 based on the user identification information transmitted from the user terminal device 10, and the user terminal device 10 is established. Thereafter, the processing device 70 refers to the database system 100 to determine a problem to be presented to the user. The processing device 70 gives the determined question to the user through the user terminal device 10, acquires the content of the answer operation from the user terminal device 10, and determines whether the problem is correct or not.
  • the database system 100 includes a plurality of problem data, a plurality of learning element data, a plurality of learner data, and an upper limit value table.
  • the plurality of problem data includes one problem data for each problem.
  • each piece of question data includes question sentence data, correct answer data, commentary sentence data, hint data, and question element data for the corresponding problem.
  • the question sentence data represents a problem sentence to be displayed on the display device 50.
  • the correct answer data represents the correct answer of the corresponding problem.
  • the correct answer data is used to determine whether the user's answer is correct.
  • the comment sentence data is a problem comment sentence that explains how to solve the corresponding problem, important points, and the like, and represents a problem comment sentence that is displayed on the display device 50 after the user answers the problem.
  • the hint data represents a hint on how to solve the problem displayed on the display device 50 in response to a request from the user in the process of solving the problem.
  • the problem element data represents one or more learning elements included in the corresponding problem.
  • the learning elements will be described based on the example shown in FIG.
  • the problem shown in FIG. 4 is the subtraction of decimals and fractions.
  • a skill to convert the mixed number into an improper fraction a skill to convert a decimal number into a fraction, and a skill to subtract a fraction with a different denominator are required.
  • subtraction of fractions with different denominators requires skill for sharing and skill for subtracting fractions.
  • the problem includes a learning element corresponding to the skill
  • the problem support data representing the learning element included in the problem is prepared by the designer of the learning support system.
  • problem element data is prepared assuming that the following learning elements E1, E2, E3, E4, E5, and EG are included in the problem.
  • ⁇ Learning element E1 for acquiring skills to convert mixed numbers into improper fractions ⁇ Learning element E2 to acquire skills to convert decimals to fractions ⁇ Learning element E3 to acquire skills to subtract fractions with different denominators
  • ⁇ Learning element E4 to acquire skill to share ⁇ Learning element E5 to acquire the skill to subtract fractions
  • Learning element EG to acquire skills to subtract decimals and fractions
  • the learning element EG is a main purpose learning element for this problem.
  • FIG. 5 shows a graph in which learning elements E1, E2, E3, E4, E5, and EG included in this question are arranged along the flow of thought that leads the question to the correct answer.
  • the graph shown in FIG. 5 may be understood as a directed graph having a direction from top to bottom along the flow of thought.
  • the main purpose learning element EG included in one problem is expressed as a goal element, and in this problem, learning elements E1, E2, E3, E4 corresponding to the skills required for learning the goal element.
  • E5 is expressed as a usage element.
  • the goal element corresponds to a learning element that the user wants to newly learn with the corresponding problem.
  • the problem element data includes information that can identify one or more learning elements included in the problem, and information that can graph one or more learning elements included in the problem as shown in FIG.
  • the problem element data includes utilization element data indicating an ID of a learning element corresponding to a utilization element included in the problem, and an ID of a learning element corresponding to one goal element included in the problem. Can be included.
  • each of a plurality of problems corresponding to a plurality of problem data stored in the database system 100 includes one goal element as a learning element, but does not necessarily include a utilization element.
  • the plurality of learning element data (see FIG. 2) stored in the database system 100 includes one learning element data for each learning element included in at least one of the plurality of problems corresponding to the plurality of problem data. At least some of the plurality of learning elements corresponding to the plurality of learning element data are included in two or more of the plurality of problems.
  • each of the learning element data defines one or more learning elements related to the attention element in association with the element ID of one corresponding learning element (hereinafter referred to as the attention element).
  • Data specifically parent element data, derivation source element data, and dependency element data.
  • each of the learning element data includes standard exercise number data.
  • Parent element data represents the ID of a learning element that is conceptually higher than the element of interest.
  • the second learning element that is higher than the first learning element is expressed as a parent element of the first learning element.
  • the parent element of the learning elements C11 and C12 is the learning element C1.
  • the learning elements C11 and C12 are child elements.
  • the learning element C1 related to “the magnitude of the number” includes a learning element C11 related to “number larger than P” and a learning element C12 related to “number smaller than P” as child elements.
  • P and Q here are arbitrary natural numbers.
  • the learning element C1 related to the “number of magnitudes” includes learning elements C11 and C12 as learning elements of a smaller classification or learning elements of lower concepts.
  • the learning element C1 can be decomposed into learning elements C11 and C12 having a smaller classification or lower concept.
  • Derivation source element data represents the ID of the learning element of the derivation source for the element of interest.
  • the learning element that is the derivation source for the learning elements C21, C22, and C23 is the learning element C1.
  • the learning element C21 that is the derivation destination is a learning element related to “the magnitude of a positive integer and a positive integer” with respect to the learning element C1 related to “number of magnitudes”.
  • the learning element C22 is a learning element related to “the magnitude of a positive integer and a negative integer”.
  • the learning element C ⁇ b> 23 is a learning element related to “a positive integer and a negative decimal”. In this way, the learning elements C21, C22, and C23 of the derivation destination with respect to the learning element C1 of the derivation correspond to learning elements that are derived due to a difference in parameters or the like.
  • Dependent element data represents the ID of a learning element that is dependent on the element of interest.
  • the learning element having a dependency relationship with the learning element C1 is the learning element C3.
  • a learning element C3 having a dependency relationship with respect to the learning element C1 related to “number of magnitudes” is a learning element related to “number line”.
  • the learning element C1 depends on the learning element C3 in the sense that in order to learn the learning element C1, the learner needs to make the learning element C3 sufficiently.
  • the first learning element and the second learning element that are in the dependency relationship are learning elements that the learner needs to fully understand in order to learn the second learning element. Correspond.
  • the standard exercise number data represents the standard value of the number of exercises of the problem including the attention element necessary for learning the attention element.
  • this standard value is expressed as the number of standard exercises.
  • the number of standard exercises is set by the designer of the learning support system 1.
  • the plurality of learner data stored in the database system 100 includes one learner data for each user corresponding to the learner. As shown in FIG. 8, the learner data represents the proficiency level of the corresponding user for each of the plurality of learning elements. Specifically, the learner data includes, for each learning element, data representing the proficiency level of the corresponding learning element and exercise history data of a problem including the corresponding learning element.
  • the exercise history data includes the number of exercises and correct answers by the user of the problem including the corresponding learning element.
  • the exercise history data further includes information on the date and time when the user first corrects the problem including the corresponding learning element.
  • the exercise history data may include information that can specify the date and time of each time point when the user answers the question including the corresponding learning element and whether the answer is correct.
  • the exercise history data is used to determine the degree of fixation of the corresponding skill.
  • the upper limit value table stored in the database system 100 is configured as a table that defines the upper limit value of the proficiency level for each combination of the fixing degree and the number of standard exercises (see FIGS. 2 and 12).
  • the learning support process is executed for each user.
  • the processing device 70 selects a question to be presented to the user from a plurality of questions corresponding to the plurality of question data stored in the database system 100 (S110).
  • the processing device 70 can select a question to be presented to the user according to the curriculum. For example, the processing device 70 can select the problem to be asked next according to the curriculum as the question to be given to the user, based on the problem that the user answered last.
  • the database system 100 can store data defining a curriculum. The processing device 70 may select the same problem or the same kind of problem as the erroneously answered problem when the problem that was last answered by the user is an incorrect answer.
  • the processing device 70 executes a process for giving the selected question to the user (S120). Specifically, the processing device 70 transmits to the user terminal device 10 data for displaying a question screen including a question sentence and an answer column on the display device 50 of the corresponding user terminal device 10. As a result, a problem screen related to the problem selected by the processing device 70 is displayed on the display device 50.
  • the processing device 70 accepts the user's answer operation through the input device 55 (S130).
  • the content of the answer operation is transmitted from the user terminal device 10.
  • the processing device 70 can proceed to S140.
  • the processing device 70 can display the hint on the display device 50 of the user terminal device 10 based on the corresponding problem hint data when the user performs a hint request operation.
  • the processing device 70 may operate so as to measure the answer time from the display of the question sentence to the end of the answer operation. Alternatively, the processing device 70 may acquire answer time information from the user terminal device 10.
  • the processing device 70 determines whether or not the user has correctly answered the problem based on the content of the user's answer operation (S140).
  • the content of the answer operation transmitted from the user terminal device 10 may include user handwriting information for the answer field on the question screen.
  • the processing device 70 can recognize the character of the handwriting and determine whether or not the user has correctly answered the problem based on the recognized character information.
  • the processing device 70 determines that the user has correctly answered the problem (Yes in S140), the processing device 70 proceeds to S150. On the other hand, if it is determined that the answer is incorrect (No in S140), the process proceeds to S145, and it is determined whether or not to request redo (S145). If the processing device 70 determines that a redo is requested (Yes in S145), the processing device 70 proceeds to S130 and accepts the user's answer operation for the same question again. At this time, the processing device 70 may operate to display a hint on how to solve the problem on the display device 50 together with a message indicating an incorrect answer.
  • the processing device 70 determines in S145 that no redoing is required, and can proceed to S150.
  • the processing device 70 executes processing for causing the display device 50 to display an explanation screen including the problem explanation text based on the comment text data of the corresponding problem (S150).
  • the process proceeds to S160.
  • S150 the time from when the comment screen is displayed on the display device 50 until the comment screen is closed is measured.
  • the processing device 70 performs an experience value calculation process shown in FIG. 10 to calculate an experience value regarding the user's approach to the problem presented in S120.
  • the processing device 70 initializes the experience value X to zero (S210). Thereafter, the processing device 70 determines whether or not the user's answer is a correct answer (S220). If the answer is correct (Yes in S220), the process proceeds to S230. If the answer is incorrect (No in S220), the process proceeds to S280.
  • the processing device 70 determines whether or not the user's answer time for the question is equal to or less than the reference value T1.
  • the experience value X is added by a predetermined value A1 (S240).
  • the experience value X is added by a value A2 different from the value A1 (S245).
  • the values A1 and A2 are determined by the designer, and the value A2 can be determined to be larger than the value A1 (A2> A1). According to an example, the value A1 is the value 10 and the value A2 is the value 50.
  • the processing device 70 determines whether or not the answer operation has been performed again (S250). That is, it is determined whether or not an affirmative determination is made in S145.
  • the processing device 70 further adds the experience value X by a predetermined value A3 (S255), and proceeds to S260. If the processing device 70 determines that there is no redo (No in S250), the processing device 70 proceeds to S260 without adding the experience value X.
  • the value A3 is the value 10.
  • the processing device 70 determines whether the user has seen the hint in the answering process. Here, it is determined whether or not the hint has been displayed for a predetermined time or more.
  • the predetermined time may be set to be longer than the standard time required for the user to read while understanding the hint.
  • the user terminal device 10 operates to stop the display of hints by the display device 50 according to the user's operation.
  • the processing device 70 adds the experience value X by the predetermined value A4 (S265), and proceeds to S270. If the processing device 70 makes a negative determination in S260, the processing device 70 proceeds to S270 without adding the experience value X.
  • the value A4 is the value 10.
  • the processing device 70 determines whether or not the user has seen the problem commentary.
  • a problem commentary (comment screen) has been displayed for a predetermined time or more.
  • the predetermined time can be set to be longer than the standard time required for the user to read while understanding the problem commentary.
  • the user terminal device 10 operates to close the explanation screen displayed on the display device 50 in accordance with a user operation.
  • the processing device 70 adds the experience value X by the predetermined value A5 (S275).
  • the value A5 can be changed according to the time when the problem commentary is viewed. For example, in S275, a larger value A5 can be added to the experience value X as the commentary is viewed longer.
  • the value A5 may be changed according to the amount of viewing the explanatory text. For example, the processing device 70 determines whether or not the user has watched until the end of the commentary, based on the scroll operation of the commentary screen. When the user sees to the end of the commentary, the processing device 70 is larger than the case where the user has not seen it.
  • the value A5 may be added to the experience value X.
  • the processing device 70 ends the experience value calculation process after adding the experience value X in S275. On the other hand, if a negative determination is made in S270, the processing device 70 ends the experience value calculation process without adding the experience value X.
  • the processing device 70 determines in S280 whether or not the user has seen the hint in the answering process, as in the processing in S260. If the processing device 70 determines that the user has seen the hint (Yes in S280), the processing device 70 adds the experience value X by the predetermined value A6 (S285), and proceeds to S290. If the processing device 70 makes a negative determination in S280, the processing device 70 proceeds to S290 without adding the experience value X. According to one example, the value A6 is the value 5.
  • the processing device 70 determines whether or not the user has seen the problem commentary, as in the processing in S270.
  • the processing device 70 ends the experience value calculation process when the experience value X is updated in S295. On the other hand, if a negative determination is made in S290, the processing device 70 ends the experience value calculation process without adding the experience value X.
  • the processing device 70 calculates the experience value X according to whether the answer is correct, the answer time, whether or not to redo, the browsing of hints, and the browsing of the question explanation as an experience value corresponding to the approach to the problem. To do.
  • the processing device 70 executes the proficiency level update process shown in FIG.
  • the processing device 70 calculates the proficiency level Ye of the goal element included in the question presented in S120 (S310).
  • the standard exercise number Ne of the goal element is specified by referring to the learning element data of the corresponding learning element stored in the database system 100.
  • the user's current proficiency level Ye0 is specified by referring to the user's learner data.
  • the processing device 70 can skip the process of S320.
  • the handling of the derivation source element when the problem includes a plurality of learning elements is the same as that of the parent element.
  • the processing device 70 corrects the calculated proficiency level so that the proficiency level is equal to or lower than the upper limit value for each learning element whose proficiency level is calculated in S310 to S340 (S350).
  • the proficiency level recorded in the learner data is corrected to a value corresponding to the skill fixing level corresponding to the user's learning element.
  • the processing device 70 determines, for each learning element, the degree of fixation of the skill corresponding to the learning element in the user.
  • ⁇ Fixing degree takes 5 levels from 0 to 4.
  • a learning element hereinafter referred to as a determination target element
  • the fixing degree of the skill corresponding to the determination target element is 0. Determined.
  • the degree of fixing of the skill corresponding to the determination target element is determined to be 1.
  • the fixing degree of the skill corresponding to the determination target element is determined to be 2.
  • the fixing degree of the determination target element is 3 Is determined.
  • the fixing degree of the determination target element is 4 is determined.
  • the processing device 70 Based on the upper limit value table stored in the database system 100, the processing device 70 has, for each learning element, the proficiency level of the corresponding learning element is equal to or lower than the upper limit value defined by the combination of the determined fixing degree and the number of standard exercises. Thus, the proficiency level in which the calculated value in S310-S340 exceeds the upper limit value is corrected to the upper limit value.
  • the upper limit value table defines 80 as the upper limit value of the proficiency level of learning elements in which the fixing degree is 0 and the standard exercise number N is 2 or less. Similarly, the upper limit table defines an upper limit value of 60 when the standard exercise number N is 5 or less under the condition that the fixing degree is 0, and an upper limit value when the standard exercise number N is 8 or less. Is defined as 50, an upper limit value is defined as 40 when the standard exercise number N is 12 or less, and an upper limit value is defined as 30 when the standard exercise number N is 13 or more. As described above, the upper limit table defines a lower upper limit for learning elements having a larger number N of standard exercises.
  • the upper limit value table defines the upper limit value when the fixing degree is 1 as 60 and the upper limit value when the fixing degree is 2 as 80 under the condition that the standard exercise number N is 12 or less, The upper limit value when the fixing degree is 3 is defined as 90, and the upper limit value when the fixing degree is 4 is defined as 100. As described above, the upper limit value table defines the upper limit value higher as the fixing degree increases.
  • the processing device 70 When the processing device 70 corrects the proficiency level calculated in S310 to S340 according to the upper limit table, the processing device 70 proceeds to S360.
  • S360 for each of the learning elements whose proficiency levels have been calculated in S310-S340, the processing device 70 writes the proficiency level after correction in S350 into the corresponding user's learner data, thereby indicating the learner data. Update the proficiency level of each learning element of the user. Along with the update of the proficiency level, the processing device 70 updates the exercise history data. Thereby, the processing device 70 updates the user's learner data (S360). Thereafter, the proficiency level update process is terminated.
  • the processing device 70 determines whether or not the end condition is satisfied (S180).
  • the processing device 70 can determine that the end condition is satisfied when the user terminal device 10 notifies the user that the intention to end learning has been displayed.
  • processing device 70 determines that the end condition is satisfied (Yes in S180), the processing device 70 ends the learning support process. If the processing device 70 determines that the end condition is not satisfied (No in S180), the processing device 70 proceeds to S190, and FIG. The next problem selection process shown in FIG.
  • the processing device 70 determines whether or not the user has correctly answered the question presented in S120 (S410). If it is determined that the answer is correct (Yes in S410), the processing device 70 selects the next question according to the curriculum (S415), and ends the next question selection process.
  • the processing device 70 determines whether to perform problem selection based on the proficiency level (S420). If sufficient problem exercises for problem selection based on the proficiency level are not performed, the processing device 70 makes a negative determination here, and proceeds to S425.
  • the processing device 70 selects a standard return destination problem according to a predetermined rule for the given question as the next problem (S425), and ends the next question selection process.
  • the problem to be returned corresponds to the problem that is given before the curriculum rather than the question that has been given.
  • the processing device 70 determines whether the processing device 70 makes a positive determination in S420. If the processing device 70 makes a positive determination in S420, the processing device 70 proceeds to S430 and generates an element list.
  • the element list is a list of learning elements included in the given question. Goal elements included in the standard return problem for the question that has been presented may be added to the element list.
  • the processing device 70 calculates the combined proficiency level for each of the learning elements included in the element list.
  • the composite proficiency level corresponds to the proficiency level obtained by correcting the proficiency level of the learning element by the proficiency level of the related learning element.
  • the learning element for which the composite proficiency level is to be calculated is expressed as a target element.
  • the denominator value ⁇ Ni corresponds to the sum of the standard exercise numbers Ni of the learning elements Ei belonging to the specific group.
  • the specific group here is a group of child elements of the target element and the learning element of the dependence destination.
  • the target element is the learning element C1 shown in FIG. 7, the specific group corresponds to a group of learning elements C11 and C12 and a learning element C3.
  • the specific element may include the target element itself.
  • the value of the numerator corresponds to the sum of the values (Yi ⁇ Ni) of the learning elements Ei belonging to the specific group.
  • Yi corresponds to the proficiency level of the learning element Ei
  • Ni corresponds to the standard number of exercises of the learning element Ei. That is, the value (Yi ⁇ Ni) corresponds to the product of the proficiency level Yi related to the learning element Ei and the standard exercise number Ni.
  • the composite proficiency level Ym corresponds to a weighted average of the proficiency level Yi of a specific group consisting of learning element groups related to the target element.
  • the composite proficiency matches the proficiency of the target element itself.
  • the processing device 70 edits the element list so as to exclude a part of the learning elements included in the element list from the list (S445). Specifically, the processing device 70 edits the element list such that the ratio of the number of actual exercises of the user to the number of standard exercises is greater than the reference and the error rate is higher than the reference, and other learning elements are excluded. To do. Further, the processing device 70 edits the element list so as to exclude learning elements having a combined proficiency level equal to or higher than the reference. As a result, the processing device 70 edits the element list so that the learning element with a high level of proficiency and the learning element at the beginning of learning are excluded from the element list.
  • the processing device 70 further edits the element list so as to leave the learning elements included in the problems up to a predetermined number in the curriculum and exclude other learning elements based on the questions that have been presented. Also good. Thereby, the element list may be edited so that only learning elements that are not good at learning elements that the user has recently learned remain in the element list.
  • the processing device 70 sorts the learning elements in the edited element list in ascending order of the combined proficiency level (S450). Then, among the learning elements in the unprocessed element list for the processes after S470, the learning element with the lowest combined proficiency is selected as the processing target (S460), and the learning element to be processed is included in the goal element. A group of questions before the curriculum is extracted from the questions presented in (S470).
  • the processing device 70 arranges the extracted problem groups in the order of the problems according to the curriculum, and separates the arranged problem groups according to the chapter division in the curriculum while maintaining the arrangement, thereby separating the problem groups into a plurality of clusters. To separate. The processing device 70 selects, from among the plurality of clusters, the first problem of the cluster closest in the curriculum to the problem erroneously answered in S120 as a candidate for the next problem (S480).
  • the processing device 70 determines whether or not the candidate for the next problem selected in S480 is a problem that has recently been asked (S490).
  • the determination of whether or not the question has recently been asked is realized by determining whether or not the candidate for the next question is a question that has been given before a predetermined time (for example, within 10 minutes) from the current time. Can do.
  • the processing device 70 determines that the candidate for the next question is a recently-issued question (Yes in S490), the processing device 70 proceeds to S460, selects the learning element with the next lowest composite proficiency as a processing target, and performs S470. The subsequent processing is executed. If the processing device 70 determines that the candidate for the next question is not a question that has recently been asked (No in S490), the processing device 70 selects that candidate as the next question (S495), and ends the next question selection process.
  • the processing device 70 completes the next question selection process in S190, the processing device 70 proceeds to S120 and presents the next question selected in S190 to the user through the display device 50 of the user terminal device 10. Thereafter, the processing after S130 is executed.
  • the learning support system 1 updates the proficiency level of one or more learning elements including at least one learning element included in the given question based on the user's approach to the given question. Thus, the user's learner data is updated.
  • the learning support system 1 updates the user's proficiency level based on at least one of the user's answer behavior and correct answer confirmation behavior for the question that has been presented. More specifically, the learning support system 1 updates the user's proficiency level based on whether the answer is correct or not, the answer time, and whether or not the hint is viewed as parameters related to the answer behavior. Furthermore, the learning support system 1 updates the user's proficiency level based on the degree of browsing the problem commentary as a parameter related to correct answer confirmation behavior.
  • the learning support system 1 of the present embodiment it is possible to provide a problem that the user can efficiently learn and support the learning by the user. Specifically, when a user tackles a problem that requires multiple skills for correct answers, such as mathematics and mathematics, based on this approach, the user's multiple proficiency levels are recorded in detail and presented to the user. Can be used to select the problem to be performed.
  • the proficiency level of each learning element in the learner data can be updated so as to match the actual state of improvement of the proficiency level of the user.
  • the upper limit value of the proficiency level based on the skill fixing level is further determined, and the proficiency level is corrected to the upper limit value or less. Accordingly, it is possible to calculate an appropriate level of proficiency in consideration of the user's forgetting about the learning experience.
  • a problem including a learning element with a low proficiency level is preferentially selected as the next problem and the question is given. Therefore, learning of learning elements that the user is not good at can be intensively supported.
  • the present disclosure is not limited to the above-described embodiment, and can take various forms.
  • the technology of the present disclosure can be used for learning support of various subjects regardless of arithmetic and mathematics.
  • the specific formula for the proficiency level is not limited to the above embodiment, and is calculated using other parameters other than the above parameters such as correctness of answer, answer time, and degree of browsing of question commentary. Also good. Some of the above parameters may not be used for the proficiency level calculation.
  • the method for selecting the next problem is not limited to the above embodiment.
  • Various problem selection methods may be employed in which learning elements that support learning are changed according to the level of proficiency between learning elements.
  • the learning support system may be configured to perform problem selection according to the proficiency level in a probabilistic manner so that a learning element with a low proficiency level increases a question probability of a problem including the learning element.
  • the service by the learning support system 1 may be provided to a user terminal device such as a personal computer through a web browser.
  • the functions of one component in the above embodiment may be distributed among a plurality of components. Functions of a plurality of components may be integrated into one component. A part of the configuration of the above embodiment may be omitted. At least a part of the configuration of the above embodiment may be added to or replaced with the configuration of another embodiment. Any aspect included in the technical idea specified from the wording of the claims is an embodiment of the present disclosure.
  • the process of S120 executed by the processing device 70 corresponds to an example of a process realized by the questioning unit.
  • the processing of S160 and S170 executed by the processing device 70 corresponds to an example of processing realized by the update unit.
  • the process of S190 executed by the processing device 70 corresponds to an example of a process realized by the selection unit.
  • the process of S350 executed by the processing device 70 corresponds to an example of a process realized by the determination unit.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A learning assist method according to one aspect of the present disclosure includes: setting a first problem selected from among a plurality of problems through a display device; updating the learning level data of a learner that is stored by a storage device on the basis of the addressing of the first problem through an input device by the learner; and selecting a second problem to be newly set from the plurality of problems on the basis of the learning level data of the learner. The learning level data indicates the learning level of the learner pertaining to each of a plurality of learning elements. The updating of the learning level data includes updating the learning levels of one or more learning elements including at least one learning element included in the first problem.

Description

学習支援システム及び方法Learning support system and method 関連出願の相互参照Cross-reference of related applications

 本国際出願は、2018年3月2日に日本国特許庁に出願された日本国特許出願第2018-037528号に基づく優先権を主張するものであり、日本国特許出願第2018-037528号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2018-037528 filed with the Japan Patent Office on March 2, 2018, and is based on Japanese Patent Application No. 2018-037528. The entire contents are incorporated by reference into this international application.

 本開示は、学習支援システムに関する。 This disclosure relates to a learning support system.

 電子機器を通じて、学習者に問題を出題する学習支援システムが既に知られている(例えば特許文献1参照)。学習支援システムは、学習者による問題の正否や正答率に応じて、新たに出題する問題を変更するように構成される。 There is already known a learning support system for giving a question to a learner through an electronic device (for example, see Patent Document 1). The learning support system is configured to change a new question to be asked according to whether or not the problem is correct by the learner and the correct answer rate.

特開2004-038033号公報JP 2004-038033 A

 従来技術では、学習者が問題を間違えた際、間違えた問題と同じグループの別の問題を出題し、これにより学習を支援する。しかしながら、数学等の思考を伴う問題では、多くの場合、正答を導き出すために複数のスキルを必要とする。従って、同じグループの別の問題を出題することが、学習効率の観点で必ずしも適切な出題方法とは言えない。 In the conventional technology, when a learner makes a mistake, another question in the same group as the wrong problem is given, thereby supporting learning. However, problems involving thought such as mathematics often require multiple skills to derive correct answers. Therefore, it is not necessarily an appropriate method to ask another question of the same group from the viewpoint of learning efficiency.

 そこで、本開示の一側面では、効率的な学習を実現可能な学習支援システム及び方法を提供できることが望ましい。 Therefore, in one aspect of the present disclosure, it is desirable to be able to provide a learning support system and method capable of realizing efficient learning.

 本開示の一側面によれば、学習支援システムが提供される。学習支援システムは、出題部と、更新部と、選択部とを備える。出題部は、複数の問題の中から選択された第一の問題を、表示デバイスを通じて出題するように構成される。 According to one aspect of the present disclosure, a learning support system is provided. The learning support system includes a question part, an update part, and a selection part. The questioning unit is configured to give a first question selected from the plurality of questions through a display device.

 更新部は、出題部により出題された第一の問題に対する学習者の入力デバイスを通じた取り組みに基づき、記憶デバイスが記憶する学習者の習熟度データを更新するように構成される。選択部は、記憶デバイスが記憶する学習者の習熟度データに基づき、複数の問題の中から出題部に新たに出題させる第二の問題を選択するように構成される。 The update unit is configured to update the proficiency level data of the learner stored in the storage device based on the effort through the learner's input device for the first question given by the questioning unit. The selection unit is configured to select a second question to be newly given to the questioning unit from a plurality of questions based on the proficiency level data of the learner stored in the storage device.

 習熟度データは、複数の学習要素のそれぞれに関して学習者の習熟度を示す。複数の問題のそれぞれは、複数の学習要素の内の少なくとも一つを含み得る。複数の問題の少なくとも一部は、複数の学習要素の内の二以上を含み得る。複数の学習要素の少なくとも一部は、複数の問題の内の二以上に重複して含まれ得る。 The proficiency level data indicates the proficiency level of the learner for each of a plurality of learning elements. Each of the plurality of questions may include at least one of the plurality of learning elements. At least some of the plurality of questions may include two or more of the plurality of learning elements. At least some of the plurality of learning elements may be included in two or more of the plurality of problems.

 本開示の一側面によれば、更新部は、第一の問題に対する学習者の取り組みに基づき、第一の問題に含まれる少なくとも一つの学習要素を含む一以上の学習要素の習熟度を更新するように、習熟度データを更新する。 According to one aspect of the present disclosure, the update unit updates the proficiency level of one or more learning elements including at least one learning element included in the first problem based on the learner's approach to the first problem. Thus, the proficiency level data is updated.

 この学習支援システムによれば、学習者の習熟度を学習要素毎に更新する。従って、正答に複数のスキルが必要な問題に学習者が取り組んだ際、この取り組みに基づき、詳細に複数のスキルに対応する複数の習熟度を記録し、学習者に出題する問題選択に役立てることができる。従って、このシステムによれば、学習者が効率的に学習可能な問題を提供して、学習者による学習を支援することができる。 This learning support system updates the learner's proficiency level for each learning element. Therefore, when a learner works on a problem that requires multiple skills for correct answers, based on this work, record multiple proficiency levels corresponding to multiple skills in detail to help the learner choose a question Can do. Therefore, according to this system, it is possible to provide a problem that the learner can efficiently learn and to support the learner.

 本開示の一側面によれば、上記一以上の学習要素は、第一の問題に含まれる少なくとも一つの学習要素と、第一の問題に含まれる少なくとも一つの学習要素に関係する別の少なくとも一つの学習要素と、を含み得る。この場合、更新部は、複数の学習要素間の関係を示すデータに基づき、習熟度データを更新することができる。習熟度を更新する対象の学習要素を、問題に含まれる学習要素以外に拡張することは、学習効率の向上に役立つ。 According to one aspect of the present disclosure, the one or more learning elements include at least one learning element included in the first problem and at least one other element related to at least one learning element included in the first problem. And two learning elements. In this case, the update unit can update the proficiency level data based on data indicating relationships between a plurality of learning elements. Extending the learning elements whose proficiency level is to be updated to other than the learning elements included in the problem is useful for improving learning efficiency.

 複数の学習要素のそれぞれには、標準演習数が定められてもよい。更新部は、上記一以上の学習要素に関して、学習要素毎に、対応する学習要素の習熟度を、対応する学習要素に対して定められた標準演習数が多いほど習熟度の変化が小さくなるように更新してもよい。 The number of standard exercises may be determined for each of the plurality of learning elements. For each of the learning elements, the update unit sets the proficiency level of the corresponding learning element so that the change in the proficiency level decreases as the number of standard exercises defined for the corresponding learning element increases. May be updated.

 更新部は、第一の問題に対する学習者の取り組みに応じた経験値を算出してもよい。更新部は、上記一以上の学習要素に関して、学習要素毎に、個別の変換式を用いて経験値を習熟度相当値に変換し、習熟度相当値を、対応する学習要素の習熟度に加算することにより、対応する学習要素の習熟度を更新してもよい。変換式は、対応する学習要素に対して定められた標準演習数が多いほど、習熟度相当値が低くなるように、経験値を習熟度相当値に変換する構成にされてもよい。 The update unit may calculate an experience value corresponding to the learner's approach to the first problem. The update unit converts, for each learning element, an experience value into a proficiency level equivalent value for each learning element, and adds the proficiency level equivalent value to the proficiency level of the corresponding learning element. By doing so, the proficiency level of the corresponding learning element may be updated. The conversion formula may be configured to convert the experience value into the proficiency equivalent value so that the proficiency equivalent value decreases as the number of standard exercises determined for the corresponding learning element increases.

 更新部は、入力デバイスを通じた学習者の解答行動及び正答確認行動の少なくとも一方に基づき、学習者の習熟度データを更新するように構成されてもよい。 The update unit may be configured to update the learner's proficiency level data based on at least one of the learner's answer behavior and correct answer confirmation behavior through the input device.

 更新部は、解答の正否に基づき、上記一以上の学習要素に関して、学習要素毎に、対応する学習要素の習熟度に対する加算量を決定し、決定した加算量を、対応する学習要素の習熟度に加算することにより、対応する学習要素の習熟度を更新してもよい。 The update unit determines, for each learning element, an addition amount with respect to the proficiency level of the corresponding learning element for the one or more learning elements based on whether the answer is correct or not, and determines the determined addition amount based on the proficiency level of the corresponding learning element. The proficiency level of the corresponding learning element may be updated by adding to.

 更新部は、学習者の解答時間、及び、解答後に表示デバイスによって表示される問題解説文の学習者による閲覧度の少なくとも一方に更に基づき、加算量を決定してもよい。 The update unit may determine the addition amount further based on at least one of the learner's answer time and the degree of browsing by the learner of the question comment displayed by the display device after the answer.

 学習支援システムには、上記一以上の学習要素のそれぞれに対応するスキルの学習者における定着度を判定する判定部が設けられてもよい。更新部は、上記一以上の学習要素の習熟度のそれぞれを、対応するスキルの定着度に対応した上限値以下の範囲で更新するように構成されてもよい。上限値は、定着度が高いほど大きい値であり得る。 The learning support system may be provided with a determination unit that determines the degree of fixation among learners of skills corresponding to each of the one or more learning elements. The update unit may be configured to update each of the proficiency levels of the one or more learning elements within a range equal to or less than an upper limit value corresponding to a corresponding skill fixing level. The upper limit value can be larger as the fixing degree is higher.

 記憶と忘却との関係から、スキルの定着は、時間的な因子を含む。従って、習熟度に定着度に応じた上限値を設けることによれば、学習者の学習経験に対する忘却を考慮した適切な習熟度を算出することが可能である。 ∙ Based on the relationship between memory and forgetting, the establishment of skills includes time factors. Therefore, by providing an upper limit value according to the degree of fixation in the proficiency level, it is possible to calculate an appropriate proficiency level that takes into account the forgetfulness of the learner's learning experience.

 本開示の一側面によれば、選択部は、複数の問題のうち、学習者の習熟度が低い学習要素を含む問題ほど、当該問題を優先的に選択するように、第二の問題を選択する構成にされてもよい。 According to an aspect of the present disclosure, the selection unit selects a second problem so that a problem including a learning element with a low learner's proficiency among a plurality of problems is preferentially selected. It may be configured to.

 選択部は、第一の問題に対して学習者が誤答したとき、第一の問題に関する複数の学習要素の内、習熟度がより低い学習要素を含む問題をより優先的に選択するように、第二の問題を選択する構成にされてもよい。 When the learner answers the first question incorrectly, the selection unit selects a problem including a learning element having a lower proficiency level from among a plurality of learning elements related to the first problem. The second problem may be selected.

 選択部は、複数の学習要素のそれぞれの習熟度を、対応する学習要素に関係する複数の学習要素の習熟度に基づいて補正した補正後の習熟度に基づいて、補正後の習熟度がより低い学習要素を含む問題をより優先的に選択するように、第二の問題を選択してもよい。この問題選択によれば、学習者による学習をより効率的に支援可能である。 The selection unit has a corrected proficiency level based on the corrected proficiency level obtained by correcting the proficiency level of each of the multiple learning elements based on the proficiency level of the multiple learning elements related to the corresponding learning element. The second question may be selected so that a problem including a low learning element is selected more preferentially. According to this problem selection, learning by the learner can be supported more efficiently.

 本開示の一側面によれば、学習支援方法が提供されてもよい。学習支援方法は、複数の問題の中から選択された第一の問題を、表示デバイスを通じて出題することと、第一の問題に対する学習者の入力デバイスを通じた取り組みに基づき、記憶デバイスが記憶する学習者の習熟度データを更新することと、記憶デバイスが記憶する学習者の習熟度データに基づき、複数の問題の中から新たに出題する第二の問題を選択することと、を含んでいてもよい。習熟度データは、複数の学習要素のそれぞれに関して学習者の習熟度を示し得る。更新することは、第一の問題に対する学習者の取り組みに基づき、第一の問題に含まれる少なくとも一つの学習要素を含む一以上の学習要素の習熟度を更新するように、習熟度データを更新することを含み得る。 According to one aspect of the present disclosure, a learning support method may be provided. The learning support method is a method in which a first problem selected from a plurality of problems is presented through a display device and learning stored in a storage device based on an approach through a learner's input device for the first problem. Updating the learner's proficiency data, and selecting a second question to be newly set out of a plurality of questions based on the learner's proficiency data stored in the storage device. Good. The proficiency level data may indicate a learner's proficiency level for each of the plurality of learning elements. Updating updates the proficiency data to update the proficiency of one or more learning elements, including at least one learning element included in the first problem, based on the learner's approach to the first problem Can include.

 本開示の一側面によれば、学習支援方法は、コンピュータにより実行されてもよい。学習支援方法は、上述した学習支援システムにより実行される手順を含んでもよい。 According to one aspect of the present disclosure, the learning support method may be executed by a computer. The learning support method may include a procedure executed by the learning support system described above.

 上述した学習支援システムとしての機能をコンピュータに実現させるためのコンピュータプログラムが提供されてもよい。出題部、更新部、選択部、及び、判定部の少なくとも一つとして、コンピュータを機能させるためのコンピュータプログラムが提供されてもよい。 A computer program for causing a computer to realize the functions as the learning support system described above may be provided. A computer program for causing a computer to function may be provided as at least one of the questioning unit, the updating unit, the selection unit, and the determination unit.

 上述した学習支援方法をコンピュータに実行させるためのコンピュータプログラムが提供されてもよい。出題すること、更新すること、及び、選択することの少なくとも一つを、コンピュータに実行させるためのコンピュータプログラムが提供されてもよい。コンピュータプログラムは、コンピュータ読取可能な一時的でない記録媒体に記録されてもよい。 A computer program for causing a computer to execute the learning support method described above may be provided. A computer program for causing a computer to perform at least one of setting a question, updating, and selecting may be provided. The computer program may be recorded on a computer-readable non-transitory recording medium.

学習支援システムの構成を表すブロック図である。It is a block diagram showing the structure of a learning assistance system. データベースシステムが記憶するデータを説明した図である。It is a figure explaining the data which a database system memorizes. 問題データの構成を表す図である。It is a figure showing the structure of problem data. 問題の例を示す図である。It is a figure which shows the example of a problem. 学習要素に関するグラフを示した図である。It is the figure which showed the graph regarding a learning element. 学習要素データの構成を表す図である。It is a figure showing the structure of learning element data. 学習要素間の関係を説明した図である。It is a figure explaining the relationship between learning elements. 学習者データの構成を表す図である。It is a figure showing the structure of learner data. 処理デバイスが実行する学習支援処理を表すフローチャートである。It is a flowchart showing the learning assistance process which a processing device performs. 処理デバイスが実行する経験値算出処理を表すフローチャートである。It is a flowchart showing the experience value calculation process which a processing device performs. 処理デバイスが実行する習熟度更新処理を表すフローチャートである。It is a flowchart showing the proficiency level update process which a processing device performs. 上限値テーブルの構成を表す図である。It is a figure showing the structure of an upper limit table. 処理デバイスが実行する次問題選択処理を表すフローチャートである。It is a flowchart showing the next problem selection process which a processing device performs.

 1…学習支援システム、10…ユーザ端末装置、20…制御デバイス、21…CPU、23…RAM、30…記憶デバイス、40…通信デバイス、50…表示デバイス、55…入力デバイス、60…サーバ装置、70…処理デバイス、71…CPU、73…RAM、80…記憶デバイス、90…通信デバイス、100…データベースシステム。 DESCRIPTION OF SYMBOLS 1 ... Learning support system, 10 ... User terminal device, 20 ... Control device, 21 ... CPU, 23 ... RAM, 30 ... Storage device, 40 ... Communication device, 50 ... Display device, 55 ... Input device, 60 ... Server device, 70: Processing device, 71: CPU, 73: RAM, 80 ... Storage device, 90 ... Communication device, 100 ... Database system.

 以下に本開示の例示的実施形態を、図面を参照しながら説明する。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.

 図1に示す本実施形態の学習支援システム1は、複数のユーザ端末装置10と、サーバ装置60と、データベースシステム100とを備える。ユーザ端末装置10は、広域ネットワークNTを介してサーバ装置60と通信可能に構成され、サーバ装置60は、バックエンド側のデータベースシステム100と通信可能に構成される。 The learning support system 1 of the present embodiment shown in FIG. 1 includes a plurality of user terminal devices 10, a server device 60, and a database system 100. The user terminal device 10 is configured to be able to communicate with the server device 60 via the wide area network NT, and the server device 60 is configured to be able to communicate with the database system 100 on the back end side.

 ユーザ端末装置10は、サーバ装置60と協働して学習用の問題をユーザに向けて出題するように構成される。ユーザ端末装置10の例には、パーソナルコンピュータ、タブレット、及び、スマートフォン等の電子機器が含まれる。 The user terminal device 10 is configured to give a learning problem to the user in cooperation with the server device 60. Examples of the user terminal device 10 include electronic devices such as a personal computer, a tablet, and a smartphone.

 図1に示すユーザ端末装置10は、制御デバイス20と、記憶デバイス30と、通信デバイス40と、表示デバイス50と、入力デバイス55と、を備える。 The user terminal device 10 shown in FIG. 1 includes a control device 20, a storage device 30, a communication device 40, a display device 50, and an input device 55.

 制御デバイス20は、CPU(Central Processing Unit)21及びRAM(Random Access Memory)23を備え、ユーザ端末装置10を統括制御する。CPU21は、記憶デバイス30が記憶するコンピュータプログラムに従う処理を実行する。RAM23は、CPU21による処理実行時に作業用メモリとして使用される。以下では、CPU21により実行される処理を、制御デバイス20が実行する処理として説明する。 The control device 20 includes a CPU (Central Processing Unit) 21 and a RAM (Random Access Memory) 23, and performs overall control of the user terminal device 10. The CPU 21 executes processing according to the computer program stored in the storage device 30. The RAM 23 is used as a working memory when the CPU 21 executes processing. Below, the process performed by CPU21 is demonstrated as a process which the control device 20 performs.

 記憶デバイス30は、各種コンピュータプログラム及びデータを記憶する。記憶デバイス30は、例えばフラッシュメモリ又はハードディスク装置で構成される。ユーザ端末装置10には、学習用の問題をサーバ装置60との協働により出題するためのアプリケーションプログラムがインストールされ、記憶デバイス30に記憶される。 The storage device 30 stores various computer programs and data. The storage device 30 is configured by, for example, a flash memory or a hard disk device. In the user terminal device 10, an application program for asking questions for learning in cooperation with the server device 60 is installed and stored in the storage device 30.

 制御デバイス20は、このアプリケーションプログラムに従う処理を実行することにより、サーバ装置60から指定された問題を、表示デバイス50を通じて出題し、それに対するユーザからの解答操作を、入力デバイス55を通じて受け付けるように構成される。制御デバイス20は、この操作内容を、通信デバイス40を通じて、サーバ装置60に伝達するように構成される。 The control device 20 is configured to execute a process according to the application program, thereby to give a question designated by the server device 60 through the display device 50 and to accept an answer operation from the user through the input device 55. Is done. The control device 20 is configured to transmit this operation content to the server device 60 through the communication device 40.

 通信デバイス40は、サーバ装置60を含む広域ネットワークNT内の装置と通信可能に構成される。表示デバイス50は、例えば、液晶ディスプレイ又は有機ELディスプレイで構成される。表示デバイス50は、制御デバイス20に制御されて、各種画面をユーザに向けて表示する。各種画面には、問題文及び解答欄を含む問題画面、及び、問題解説文を含む解説画面が含まれる。 The communication device 40 is configured to be able to communicate with devices in the wide area network NT including the server device 60. The display device 50 is configured by, for example, a liquid crystal display or an organic EL display. The display device 50 is controlled by the control device 20 and displays various screens for the user. The various screens include a question screen including a question sentence and an answer column, and a comment screen including a question commentary.

 入力デバイス55は、ユーザからの入力操作を受け付けて、対応する操作信号を制御デバイス20に入力するように構成される。入力デバイス55は、表示デバイス50と一体に構成されるタッチパネルであり得る。入力デバイス55は、表示デバイス50に表示される画面に対するタッチ操作及び書込操作を受け付けて、その操作信号を制御デバイス20に入力する。 The input device 55 is configured to accept an input operation from the user and input a corresponding operation signal to the control device 20. The input device 55 may be a touch panel configured integrally with the display device 50. The input device 55 receives a touch operation and a writing operation on the screen displayed on the display device 50 and inputs the operation signal to the control device 20.

 図1に示すサーバ装置60は、処理デバイス70と、記憶デバイス80と、通信デバイス90とを備える。処理デバイス70は、CPU71及びRAM73を備える。CPU71は、記憶デバイス80が記憶するコンピュータプログラムに従う処理を実行する。RAM73は、CPU71による処理実行時に作業用メモリとして使用される。 1 includes a processing device 70, a storage device 80, and a communication device 90. The processing device 70 includes a CPU 71 and a RAM 73. The CPU 71 executes processing according to the computer program stored in the storage device 80. The RAM 73 is used as a working memory when the CPU 71 executes processing.

 以下では、CPU71により実行される処理を、処理デバイス70が実行する処理として説明する。通信デバイス90は、広域ネットワークNTを通じてユーザ端末装置10と通信可能に、更には、バックエンド側のデータベースシステム100と通信可能に構成される。 Hereinafter, processing executed by the CPU 71 will be described as processing executed by the processing device 70. The communication device 90 is configured to be able to communicate with the user terminal device 10 through the wide area network NT, and further to be able to communicate with the database system 100 on the back end side.

 処理デバイス70は、ユーザ端末装置10において上記アプリケーションプログラムが起動されると、ユーザ端末装置10から送信されてくるユーザの識別情報に基づき、ユーザ端末装置10に対応するユーザを識別し、ユーザ端末装置10との接続を確立する。その後、処理デバイス70は、データベースシステム100を参照して、ユーザに出題する問題を決定する。処理デバイス70は、決定した問題を、ユーザ端末装置10を通じてユーザに出題し、ユーザ端末装置10から、その解答操作の内容を取得して、問題の正否を判定する。 When the application program is activated in the user terminal device 10, the processing device 70 identifies the user corresponding to the user terminal device 10 based on the user identification information transmitted from the user terminal device 10, and the user terminal device 10 is established. Thereafter, the processing device 70 refers to the database system 100 to determine a problem to be presented to the user. The processing device 70 gives the determined question to the user through the user terminal device 10, acquires the content of the answer operation from the user terminal device 10, and determines whether the problem is correct or not.

 データベースシステム100は、図2に示すように、複数の問題データ、複数の学習要素データ、複数の学習者データ、及び、上限値テーブルを備える。複数の問題データは、問題毎に一つの問題データを含む。問題データのそれぞれは、図3に示すように、対応する問題についての問題文データ、正答データ、解説文データ、ヒントデータ、及び、問題要素データを備える。 As shown in FIG. 2, the database system 100 includes a plurality of problem data, a plurality of learning element data, a plurality of learner data, and an upper limit value table. The plurality of problem data includes one problem data for each problem. As shown in FIG. 3, each piece of question data includes question sentence data, correct answer data, commentary sentence data, hint data, and question element data for the corresponding problem.

 問題文データは、表示デバイス50に表示させる問題文を表す。正答データは、対応する問題の正答を表す。正答データは、ユーザの解答の正否を判断するのに用いられる。解説文データは、対応する問題についての解き方や重要なポイント等を解説する問題解説文であって、ユーザによる問題解答後に表示デバイス50に表示される問題解説文を表す。ヒントデータは、問題を解く過程で、ユーザからの要求に応じて表示デバイス50に表示される問題を解き方に関するヒントを表す。 The question sentence data represents a problem sentence to be displayed on the display device 50. The correct answer data represents the correct answer of the corresponding problem. The correct answer data is used to determine whether the user's answer is correct. The comment sentence data is a problem comment sentence that explains how to solve the corresponding problem, important points, and the like, and represents a problem comment sentence that is displayed on the display device 50 after the user answers the problem. The hint data represents a hint on how to solve the problem displayed on the display device 50 in response to a request from the user in the process of solving the problem.

 問題要素データは、対応する問題に含まれる一以上の学習要素を表す。ここで図4に示す例に基づき学習要素を説明する。図4に示される問題は、小数と分数との引き算である。この引き算を解くためには、帯分数を仮分数に直すスキルと、小数を分数に直すスキルと、分母の違う分数を引き算するスキルと、が必要とされる。更に、分母の違う分数の引き算には、通分するスキルと、分数を引き算するスキルと、が必要とされる。 The problem element data represents one or more learning elements included in the corresponding problem. Here, the learning elements will be described based on the example shown in FIG. The problem shown in FIG. 4 is the subtraction of decimals and fractions. In order to solve this subtraction, a skill to convert the mixed number into an improper fraction, a skill to convert a decimal number into a fraction, and a skill to subtract a fraction with a different denominator are required. Furthermore, subtraction of fractions with different denominators requires skill for sharing and skill for subtracting fractions.

 本実施形態では、この問題には、上記スキルに対応する学習要素が含まれるとみなして、問題に含まれる学習要素を表す問題要素データを、学習支援システムの設計者が用意する。 In this embodiment, it is assumed that the problem includes a learning element corresponding to the skill, and the problem support data representing the learning element included in the problem is prepared by the designer of the learning support system.

 具体的には、次の学習要素E1,E2,E3,E4,E5,EG、が問題に含まれるとみなして、問題要素データを用意する。
・帯分数を仮分数に直すスキルを習得するための学習要素E1
・小数を分数に直すスキルを習得するための学習要素E2
・分母の違う分数を引き算するスキルを習得するための学習要素E3
・通分するスキルを習得するため学習要素E4
・分数を引き算するスキルを習得するための学習要素E5
・小数と分数とを引き算するスキルを習得するための学習要素EG
 学習要素EGは、この問題に対する主目的の学習要素である。図5は、この問題に含まれる学習要素E1,E2,E3,E4,E5,EGを、問題を正答に導く思考の流れに沿って配置したグラフを示す。図5に示されるグラフは、思考の流れに沿う上から下に向きを有する有向グラフであると理解されてもよい。
Specifically, problem element data is prepared assuming that the following learning elements E1, E2, E3, E4, E5, and EG are included in the problem.
・ Learning element E1 for acquiring skills to convert mixed numbers into improper fractions
・ Learning element E2 to acquire skills to convert decimals to fractions
・ Learning element E3 to acquire skills to subtract fractions with different denominators
・ Learning element E4 to acquire skill to share
・ Learning element E5 to acquire the skill to subtract fractions
・ Learning element EG to acquire skills to subtract decimals and fractions
The learning element EG is a main purpose learning element for this problem. FIG. 5 shows a graph in which learning elements E1, E2, E3, E4, E5, and EG included in this question are arranged along the flow of thought that leads the question to the correct answer. The graph shown in FIG. 5 may be understood as a directed graph having a direction from top to bottom along the flow of thought.

 以下では、一つの問題に含まれる主目的の学習要素EGを、ゴール要素と表現し、この問題において、ゴール要素の学習に必要とされるスキルに対応する学習要素E1,E2,E3,E4,E5を、利用要素と表現する。ゴール要素は、上述のように、対応する問題で新たにユーザに習得させたい学習要素に対応する。 In the following, the main purpose learning element EG included in one problem is expressed as a goal element, and in this problem, learning elements E1, E2, E3, E4 corresponding to the skills required for learning the goal element. E5 is expressed as a usage element. As described above, the goal element corresponds to a learning element that the user wants to newly learn with the corresponding problem.

 問題要素データは、問題に含まれる一以上の学習要素を特定可能な情報と共に、問題に含まれる一以上の学習要素を、図5に示すようにグラフ化可能な情報を含む。例えば、問題要素データは、図3に示すように、問題に含まれる利用要素に対応する学習要素のIDを示す利用要素データ、及び、問題に含まれる一つのゴール要素に対応する学習要素のIDを示すゴール要素データを有することができる。 The problem element data includes information that can identify one or more learning elements included in the problem, and information that can graph one or more learning elements included in the problem as shown in FIG. For example, as shown in FIG. 3, the problem element data includes utilization element data indicating an ID of a learning element corresponding to a utilization element included in the problem, and an ID of a learning element corresponding to one goal element included in the problem. Can be included.

 以下では、学習要素のIDのことを要素IDとも表現する。データベースシステム100が記憶する複数の問題データに対応する複数の問題のそれぞれは、学習要素として、一つのゴール要素を含むが、利用要素を含むとは限らないことに留意されたい。 In the following, the ID of a learning element is also expressed as an element ID. It should be noted that each of a plurality of problems corresponding to a plurality of problem data stored in the database system 100 includes one goal element as a learning element, but does not necessarily include a utilization element.

 データベースシステム100が記憶する複数の学習要素データ(図2参照)は、複数の問題データに対応する複数の問題の少なくともいずれかに含まれる学習要素毎に、一つの学習要素データを含む。複数の学習要素データに対応する複数の学習要素の少なくとも一部は、複数の問題の内の二以上に重複して含まれる。 The plurality of learning element data (see FIG. 2) stored in the database system 100 includes one learning element data for each learning element included in at least one of the plurality of problems corresponding to the plurality of problem data. At least some of the plurality of learning elements corresponding to the plurality of learning element data are included in two or more of the plurality of problems.

 学習要素データのそれぞれは、図6に示すように、対応する一つの学習要素(以下、注目要素と表現する。)の要素IDに関連付けて、その注目要素に関係する一以上の学習要素を規定するデータ、具体的には、親要素データ、派生元要素データ、及び、依存要素データを備える。更に、学習要素データのそれぞれは、標準演習数データを備える。 As shown in FIG. 6, each of the learning element data defines one or more learning elements related to the attention element in association with the element ID of one corresponding learning element (hereinafter referred to as the attention element). Data, specifically parent element data, derivation source element data, and dependency element data. Further, each of the learning element data includes standard exercise number data.

 親要素データは、注目要素より概念的に上位にある学習要素のIDを表す。以下では、第一の学習要素より上位にある第二の学習要素のことを、第一の学習要素の親要素と表現する。図7によれば、学習要素C11,C12の親要素は、学習要素C1である。この場合、学習要素C1から見て、学習要素C11,C12は、子要素である。 Parent element data represents the ID of a learning element that is conceptually higher than the element of interest. Hereinafter, the second learning element that is higher than the first learning element is expressed as a parent element of the first learning element. According to FIG. 7, the parent element of the learning elements C11 and C12 is the learning element C1. In this case, when viewed from the learning element C1, the learning elements C11 and C12 are child elements.

 例を挙げて説明すれば、「数の大小」に関する学習要素C1は、「PよりQ大きい数」に関する学習要素C11及び「PよりQ小さい数」に関する学習要素C12を、子要素として含む。ここでいうP及びQは、任意の自然数である。 For example, the learning element C1 related to “the magnitude of the number” includes a learning element C11 related to “number larger than P” and a learning element C12 related to “number smaller than P” as child elements. P and Q here are arbitrary natural numbers.

 このように「数の大小」に関する学習要素C1は、それより小さな分類の学習要素又はそれより下位概念の学習要素として、学習要素C11,C12を含む。学習要素C1は、それより小さな分類又はそれより下位概念の学習要素C11,C12に分解できる。 As described above, the learning element C1 related to the “number of magnitudes” includes learning elements C11 and C12 as learning elements of a smaller classification or learning elements of lower concepts. The learning element C1 can be decomposed into learning elements C11 and C12 having a smaller classification or lower concept.

 派生元要素データは、注目要素に対する派生元の学習要素のIDを表す。図7によれば、学習要素C21,C22,C23に対する派生元の学習要素は、学習要素C1である。一例によれば、「数の大小」に関する学習要素C1に対し、派生先の学習要素C21は、「正の整数と正の整数の大小」に関する学習要素である。学習要素C22は、「正の整数と負の整数の大小」に関する学習要素である。学習要素C23は、「正の整数と負の小数の大小」に関する学習要素である。このように派生元の学習要素C1に対する派生先の学習要素C21,C22,C23は、パラメータの違い等で派生する学習要素に対応する。 Derivation source element data represents the ID of the learning element of the derivation source for the element of interest. According to FIG. 7, the learning element that is the derivation source for the learning elements C21, C22, and C23 is the learning element C1. According to an example, the learning element C21 that is the derivation destination is a learning element related to “the magnitude of a positive integer and a positive integer” with respect to the learning element C1 related to “number of magnitudes”. The learning element C22 is a learning element related to “the magnitude of a positive integer and a negative integer”. The learning element C <b> 23 is a learning element related to “a positive integer and a negative decimal”. In this way, the learning elements C21, C22, and C23 of the derivation destination with respect to the learning element C1 of the derivation correspond to learning elements that are derived due to a difference in parameters or the like.

 依存要素データは、注目要素と依存関係にある学習要素のIDを表す。図7によれば、学習要素C1と依存関係のある学習要素が、学習要素C3である。「数の大小」に関する学習要素C1に対し、依存関係にある学習要素C3は、「数直線」に関する学習要素である。ここで学習要素C1は、学習要素C1を学習するためには学習者が学習要素C3を十分にできている必要があるという意味で、学習要素C3に依存している。依存関係にある第一の学習要素及び第二の学習要素は、第二の学習要素を学習するためには、第一の学習要素を学習者が十分に理解できている必要がある学習要素に対応する。 Dependent element data represents the ID of a learning element that is dependent on the element of interest. According to FIG. 7, the learning element having a dependency relationship with the learning element C1 is the learning element C3. A learning element C3 having a dependency relationship with respect to the learning element C1 related to “number of magnitudes” is a learning element related to “number line”. Here, the learning element C1 depends on the learning element C3 in the sense that in order to learn the learning element C1, the learner needs to make the learning element C3 sufficiently. The first learning element and the second learning element that are in the dependency relationship are learning elements that the learner needs to fully understand in order to learn the second learning element. Correspond.

 標準演習数データは、注目要素の習得に必要な、注目要素を含む問題の演習数の標準値を表す。以下、この標準値を標準演習数と表現する。標準演習数は、学習支援システム1の設計者によって設定される。 The standard exercise number data represents the standard value of the number of exercises of the problem including the attention element necessary for learning the attention element. Hereinafter, this standard value is expressed as the number of standard exercises. The number of standard exercises is set by the designer of the learning support system 1.

 データベースシステム100が記憶する複数の学習者データは、学習者に対応するユーザ毎に一つの学習者データを含む。学習者データは、図8に示すように、複数の学習要素のそれぞれに関して、対応するユーザの習熟度を表す。具体的に、学習者データは、学習要素毎に、対応する学習要素の習熟度を表すデータと、対応する学習要素を含む問題の演習履歴データと、を含む。 The plurality of learner data stored in the database system 100 includes one learner data for each user corresponding to the learner. As shown in FIG. 8, the learner data represents the proficiency level of the corresponding user for each of the plurality of learning elements. Specifically, the learner data includes, for each learning element, data representing the proficiency level of the corresponding learning element and exercise history data of a problem including the corresponding learning element.

 演習履歴データは、対応する学習要素を含む問題のユーザによる演習数及び正解数を含む。演習履歴データは更に、ユーザが上記対応する学習要素を含む問題を最初に正解した日時の情報を含む。演習履歴データは、ユーザが上記対応する学習要素を含む問題に解答した各時点の日時及び解答の正否を特定可能な情報を含んでいてもよい。演習履歴データは、対応するスキルの定着度を判定するのに用いられる。 The exercise history data includes the number of exercises and correct answers by the user of the problem including the corresponding learning element. The exercise history data further includes information on the date and time when the user first corrects the problem including the corresponding learning element. The exercise history data may include information that can specify the date and time of each time point when the user answers the question including the corresponding learning element and whether the answer is correct. The exercise history data is used to determine the degree of fixation of the corresponding skill.

 データベースシステム100が記憶する上限値テーブルは、定着度と標準演習数との組合せ毎に、習熟度の上限値を規定するテーブルとして構成される(図2及び図12参照)。 The upper limit value table stored in the database system 100 is configured as a table that defines the upper limit value of the proficiency level for each combination of the fixing degree and the number of standard exercises (see FIGS. 2 and 12).

 続いて、サーバ装置60の処理デバイス70が実行する学習支援処理の詳細を、図9を用いて説明する。学習支援処理は、ユーザ毎に実行される。学習支援処理を開始すると、処理デバイス70は、データベースシステム100が記憶する複数の問題データに対応する複数の問題の中から、ユーザに出題する問題を選択する(S110)。 Next, details of the learning support process executed by the processing device 70 of the server device 60 will be described with reference to FIG. The learning support process is executed for each user. When the learning support process is started, the processing device 70 selects a question to be presented to the user from a plurality of questions corresponding to the plurality of question data stored in the database system 100 (S110).

 S110において、処理デバイス70は、カリキュラムに従って、ユーザに出題する問題を選択することができる。例えば、処理デバイス70は、ユーザが最後に解答した問題を基準に、カリキュラムに従って次に出題すべき問題を、ユーザに出題する問題に選択することができる。データベースシステム100は、カリキュラムを規定するデータを記憶することができる。処理デバイス70は、ユーザが最後に解答した問題が誤答である場合、誤答した問題と同一の問題又は同種の問題を選択してもよい。 In S110, the processing device 70 can select a question to be presented to the user according to the curriculum. For example, the processing device 70 can select the problem to be asked next according to the curriculum as the question to be given to the user, based on the problem that the user answered last. The database system 100 can store data defining a curriculum. The processing device 70 may select the same problem or the same kind of problem as the erroneously answered problem when the problem that was last answered by the user is an incorrect answer.

 続いて、処理デバイス70は、選択した問題をユーザに出題するための処理を実行する(S120)。具体的には、処理デバイス70は、問題文と解答欄とを含む問題画面を、対応するユーザ端末装置10の表示デバイス50に表示させるためのデータを、ユーザ端末装置10に送信する。これにより、表示デバイス50には、処理デバイス70が選択した問題に関する問題画面が表示される。 Subsequently, the processing device 70 executes a process for giving the selected question to the user (S120). Specifically, the processing device 70 transmits to the user terminal device 10 data for displaying a question screen including a question sentence and an answer column on the display device 50 of the corresponding user terminal device 10. As a result, a problem screen related to the problem selected by the processing device 70 is displayed on the display device 50.

 その後、処理デバイス70は、入力デバイス55を通じたユーザの解答操作を受け付ける(S130)。解答操作の内容は、ユーザ端末装置10から送信されてくる。処理デバイス70は、ユーザの解答操作が終了したとき、S140に移行することができる。 Thereafter, the processing device 70 accepts the user's answer operation through the input device 55 (S130). The content of the answer operation is transmitted from the user terminal device 10. When the user's answer operation is completed, the processing device 70 can proceed to S140.

 S130において、処理デバイス70は、ユーザからヒントの要求操作がなされたとき、対応する問題のヒントデータに基づき、ユーザ端末装置10の表示デバイス50に、ヒントを表示させることができる。処理デバイス70は、問題文の表示から解答操作が終了するまでの解答時間を計測するように動作し得る。あるいは、処理デバイス70は、解答時間の情報をユーザ端末装置10から取得し得る。 In S130, the processing device 70 can display the hint on the display device 50 of the user terminal device 10 based on the corresponding problem hint data when the user performs a hint request operation. The processing device 70 may operate so as to measure the answer time from the display of the question sentence to the end of the answer operation. Alternatively, the processing device 70 may acquire answer time information from the user terminal device 10.

 S140に移行すると、処理デバイス70は、ユーザの解答操作の内容に基づき、ユーザが問題に正解したか否かを判断する(S140)。一例によれば、ユーザ端末装置10から送信される解答操作の内容には、問題画面の解答欄に対するユーザの筆跡情報が含まれ得る。処理デバイス70は、この筆跡を文字認識し、認識した文字情報に基づいて、ユーザが問題に正解したか否かを判断することができる。 After shifting to S140, the processing device 70 determines whether or not the user has correctly answered the problem based on the content of the user's answer operation (S140). According to an example, the content of the answer operation transmitted from the user terminal device 10 may include user handwriting information for the answer field on the question screen. The processing device 70 can recognize the character of the handwriting and determine whether or not the user has correctly answered the problem based on the recognized character information.

 処理デバイス70は、ユーザが問題に正解したと判断すると(S140でYes)、S150に移行する。一方、誤答したと判断すると(S140でNo)、S145に移行して、やり直しを要求するか否かを判断する(S145)。処理デバイス70は、やり直しを要求すると判断すると(S145でYes)、S130に移行して、再度、同じ問題に対するユーザの解答操作を受け付ける。この際、処理デバイス70は、誤答である旨のメッセージと共に問題の解き方に関するヒントを表示デバイス50に表示させるように動作し得る。 When the processing device 70 determines that the user has correctly answered the problem (Yes in S140), the processing device 70 proceeds to S150. On the other hand, if it is determined that the answer is incorrect (No in S140), the process proceeds to S145, and it is determined whether or not to request redo (S145). If the processing device 70 determines that a redo is requested (Yes in S145), the processing device 70 proceeds to S130 and accepts the user's answer operation for the same question again. At this time, the processing device 70 may operate to display a hint on how to solve the problem on the display device 50 together with a message indicating an incorrect answer.

 処理デバイス70は、所定回(例えば1回)のやり直しによってもユーザが誤答し続ける場合、S145において、やり直しを要求しないと判断し、S150に移行することができる。 If the user continues to answer incorrectly even after redoing a predetermined number of times (for example, once), the processing device 70 determines in S145 that no redoing is required, and can proceed to S150.

 S150において、処理デバイス70は、対応する問題の解説文データに基づき、問題解説文を含む解説画面を表示デバイス50に表示させるための処理を実行する(S150)。そして、解説画面を閉じる操作が入力デバイス55を通じてなされたことがユーザ端末装置10から通知されると、S160に移行する。S150では、解説画面が表示デバイス50に表示されてから、解説画面が閉じられるまでの時間が計測される。 In S150, the processing device 70 executes processing for causing the display device 50 to display an explanation screen including the problem explanation text based on the comment text data of the corresponding problem (S150). When the user terminal device 10 notifies that the operation for closing the explanation screen has been performed through the input device 55, the process proceeds to S160. In S150, the time from when the comment screen is displayed on the display device 50 until the comment screen is closed is measured.

 S160において、処理デバイス70は、図10に示す経験値算出処理を実行することにより、S120で出題された問題に対するユーザの取り組みについての経験値を算出する。 In S160, the processing device 70 performs an experience value calculation process shown in FIG. 10 to calculate an experience value regarding the user's approach to the problem presented in S120.

 経験値算出処理において、処理デバイス70は、経験値Xをゼロに初期化する(S210)。その後、処理デバイス70は、ユーザの解答が正答であったか否かを判断する(S220)。解答が正答であった場合(S220でYes)、S230に移行し、解答が誤答であった場合(S220でNo)、S280に移行する。 In the experience value calculation process, the processing device 70 initializes the experience value X to zero (S210). Thereafter, the processing device 70 determines whether or not the user's answer is a correct answer (S220). If the answer is correct (Yes in S220), the process proceeds to S230. If the answer is incorrect (No in S220), the process proceeds to S280.

 S230において、処理デバイス70は、問題に対するユーザの解答時間が基準値T1以下であるか否かを判断する。解答時間が基準値T1以下であると判断した場合(S230でYes)、経験値Xを所定値A1だけ加算する(S240)。一方、解答時間が基準値T1より大きいと判断した場合(S230でNo)、経験値Xを、値A1とは異なる値A2だけ加算する(S245)。値A1,A2は、設計者により定められ、値A2は、値A1より大きく定められ得る(A2>A1)。一例によれば、値A1は、値10、値A2は、値50である。 In S230, the processing device 70 determines whether or not the user's answer time for the question is equal to or less than the reference value T1. When it is determined that the answer time is equal to or less than the reference value T1 (Yes in S230), the experience value X is added by a predetermined value A1 (S240). On the other hand, when it is determined that the answer time is greater than the reference value T1 (No in S230), the experience value X is added by a value A2 different from the value A1 (S245). The values A1 and A2 are determined by the designer, and the value A2 can be determined to be larger than the value A1 (A2> A1). According to an example, the value A1 is the value 10 and the value A2 is the value 50.

 S240,S245における加算後、処理デバイス70は、解答操作のやり直しがあったか否かを判断する(S250)。即ち、S145で肯定判断したか否かを判断する。 After the addition in S240 and S245, the processing device 70 determines whether or not the answer operation has been performed again (S250). That is, it is determined whether or not an affirmative determination is made in S145.

 ここで、やり直しがあったと判断すると(S250でYes)、処理デバイス70は、経験値Xを所定値A3だけ更に加算して(S255)、S260に移行する。処理デバイス70は、やり直しがなかったと判断すると(S250でNo)、経験値Xを加算せずにS260に移行する。一例によれば、値A3は、値10である。 Here, if it is determined that there has been a redo (Yes in S250), the processing device 70 further adds the experience value X by a predetermined value A3 (S255), and proceeds to S260. If the processing device 70 determines that there is no redo (No in S250), the processing device 70 proceeds to S260 without adding the experience value X. According to one example, the value A3 is the value 10.

 S260において、処理デバイス70は、ユーザが解答過程でヒントを見たか否かを判断する。ここでは、ヒントが所定時間以上表示されたか否かを判断する。所定時間は、ユーザがヒントを理解しながら読むのに必要な標準の時間以上に設定され得る。ユーザ端末装置10は、表示デバイス50によるヒントの表示をユーザの操作に従って止めるように動作する。 In S260, the processing device 70 determines whether the user has seen the hint in the answering process. Here, it is determined whether or not the hint has been displayed for a predetermined time or more. The predetermined time may be set to be longer than the standard time required for the user to read while understanding the hint. The user terminal device 10 operates to stop the display of hints by the display device 50 according to the user's operation.

 処理デバイス70は、ユーザがヒントを見たと判断した場合(S260でYes)、経験値Xを所定値A4だけ加算して(S265)、S270に移行する。処理デバイス70は、S260で否定判断すると、経験値Xを加算せずにS270に移行する。一例によれば、値A4は、値10である。 When it is determined that the user has seen the hint (Yes in S260), the processing device 70 adds the experience value X by the predetermined value A4 (S265), and proceeds to S270. If the processing device 70 makes a negative determination in S260, the processing device 70 proceeds to S270 without adding the experience value X. According to an example, the value A4 is the value 10.

 S270において、処理デバイス70は、ユーザが問題解説文を見たか否かを判断する。ここでは、問題解説文(解説画面)が所定時間以上表示されたか否かを判断する。所定時間は、ユーザが問題解説文を理解しながら読むのに必要な標準の時間以上に設定され得る。ユーザ端末装置10は、表示デバイス50に表示される解説画面をユーザの操作に従って閉じるように動作する。 In S270, the processing device 70 determines whether or not the user has seen the problem commentary. Here, it is determined whether or not a problem commentary (comment screen) has been displayed for a predetermined time or more. The predetermined time can be set to be longer than the standard time required for the user to read while understanding the problem commentary. The user terminal device 10 operates to close the explanation screen displayed on the display device 50 in accordance with a user operation.

 処理デバイス70は、ユーザが問題解説文を見たと判断した場合(S270でYes)、経験値Xを所定値A5だけ加算する(S275)。値A5は、問題解説文を見た時間に応じて変更され得る。例えば、S275では、解説文の見た時間が長いほど、大きい値A5が経験値Xに加算され得る。値A5は、解説文を見た量に応じて変更されてもよい。例えば、処理デバイス70は、解説文の最後までユーザが見たか否かを解説画面のスクロール操作に基づき判断し、解説文の最後までユーザが見た場合には、見ていない場合よりも、大きい値A5を経験値Xに加算してもよい。 When it is determined that the user has seen the problem commentary (Yes in S270), the processing device 70 adds the experience value X by the predetermined value A5 (S275). The value A5 can be changed according to the time when the problem commentary is viewed. For example, in S275, a larger value A5 can be added to the experience value X as the commentary is viewed longer. The value A5 may be changed according to the amount of viewing the explanatory text. For example, the processing device 70 determines whether or not the user has watched until the end of the commentary, based on the scroll operation of the commentary screen. When the user sees to the end of the commentary, the processing device 70 is larger than the case where the user has not seen it. The value A5 may be added to the experience value X.

 例えば、処理デバイス70は、解説文を見た時間が短い場合には、経験値Xに値A5=5を加算し、解説文を見た時間が長い場合には、経験値Xに値A5=15を加算し、解説文を最後まで見た場合には、経験値Xに値A5=20を加算するように動作してもよい。 For example, the processing device 70 adds the value A5 = 5 to the experience value X when the time for viewing the comment is short, and when the time for viewing the comment is long, the processing device 70 adds the value A5 = to the experience value X. When 15 is added and the commentary is viewed to the end, the value A5 = 20 may be added to the experience value X.

 処理デバイス70は、S275で経験値Xを加算すると、当該経験値算出処理を終了する。一方、S270で否定判断すると、処理デバイス70は、経験値Xを加算せずに、当該経験値算出処理を終了する。 The processing device 70 ends the experience value calculation process after adding the experience value X in S275. On the other hand, if a negative determination is made in S270, the processing device 70 ends the experience value calculation process without adding the experience value X.

 ユーザが問題に誤答した際、処理デバイス70は、S280において、S260での処理と同様に、ユーザが解答過程でヒントを見たか否かを判断する。処理デバイス70は、ユーザがヒントを見たと判断した場合(S280でYes)、経験値Xを所定値A6だけ加算して(S285)、S290に移行する。処理デバイス70は、S280で否定判断すると、経験値Xを加算せずにS290に移行する。一例によれば、値A6は、値5である。 When the user answers the question incorrectly, the processing device 70 determines in S280 whether or not the user has seen the hint in the answering process, as in the processing in S260. If the processing device 70 determines that the user has seen the hint (Yes in S280), the processing device 70 adds the experience value X by the predetermined value A6 (S285), and proceeds to S290. If the processing device 70 makes a negative determination in S280, the processing device 70 proceeds to S290 without adding the experience value X. According to one example, the value A6 is the value 5.

 S290において、処理デバイス70は、S270での処理と同様、ユーザが問題解説文を見たか否かを判断する。処理デバイス70は、ユーザが問題解説文を見たと判断した場合(S290でYes)、経験値Xを所定値A7だけ加算する(S295)。例えば、処理デバイス70は、解説文を見た時間が短い場合には、経験値Xに値A7=15を加算し、解説文を見た時間が長い場合には、経験値Xに値A7=20を加算し、解説文を最後まで見た場合には、経験値Xに値A7=25を加算するように動作し得る。 In S290, the processing device 70 determines whether or not the user has seen the problem commentary, as in the processing in S270. When the processing device 70 determines that the user has seen the problem commentary (Yes in S290), the processing device 70 adds the experience value X by the predetermined value A7 (S295). For example, the processing device 70 adds the value A7 = 15 to the experience value X when the time when the commentary is viewed is short, and when the time when the commentary is viewed is long, the value A7 = When 20 is added and the commentary is viewed to the end, the value A7 = 25 may be added to the experience value X.

 処理デバイス70は、S295で経験値Xを更新すると、当該経験値算出処理を終了する。一方、S290で否定判断すると、処理デバイス70は、経験値Xを加算せずに、当該経験値算出処理を終了する。 The processing device 70 ends the experience value calculation process when the experience value X is updated in S295. On the other hand, if a negative determination is made in S290, the processing device 70 ends the experience value calculation process without adding the experience value X.

 このようにして、処理デバイス70は、問題に対する取り組みに応じた経験値として、解答の正否、解答時間、やり直しの有無、ヒントの閲覧、及び、問題解説文の閲覧に応じた経験値Xを算出する。 In this way, the processing device 70 calculates the experience value X according to whether the answer is correct, the answer time, whether or not to redo, the browsing of hints, and the browsing of the question explanation as an experience value corresponding to the approach to the problem. To do.

 処理デバイス70は、S160において経験値算出処理を終了すると、続くS170において、図11に示す習熟度更新処理を実行する。習熟度更新処理において、処理デバイス70は、S120で出題された問題に含まれるゴール要素の習熟度Yeを算出する(S310)。 When the processing device 70 ends the experience value calculation process in S160, the processing device 70 executes the proficiency level update process shown in FIG. In the proficiency level update process, the processing device 70 calculates the proficiency level Ye of the goal element included in the question presented in S120 (S310).

 具体的には、処理デバイス70は、S160で算出された経験値Xと、ゴール要素の標準演習数Neと、予め定められた係数Keとに基づき、経験値Xを変換式C=(Ke・X/Ne)に従って習熟度相当値Cに変換する。処理デバイス70は、習熟度相当値Cを、ゴール要素についてのユーザの現在の習熟度Ye0に加算することにより、上記出題された問題に対する取り組み後の、ゴール要素の習熟度Yeを算出する(Ye=Ye0+Ke・X/Ne)。 Specifically, the processing device 70 converts the experience value X into a conversion formula C = (Ke · K) based on the experience value X calculated in S160, the standard exercise number Ne of the goal element, and a predetermined coefficient Ke. X / Ne) and converted to a proficiency equivalent value C. The processing device 70 adds the proficiency level equivalent value C to the current proficiency level Ye0 of the user regarding the goal element, thereby calculating the proficiency level Ye of the goal element after tackling the above-mentioned problem (Ye) = Ye0 + Ke · X / Ne).

 ここで、係数Keは、学習要素に依存しない値であり、例えばKe=1である。ゴール要素の標準演習数Neは、データベースシステム100が記憶する対応する学習要素の学習要素データを参照することにより特定される。ユーザの現在の習熟度Ye0は、ユーザの学習者データを参照することにより特定される。 Here, the coefficient Ke is a value that does not depend on the learning element, for example, Ke = 1. The standard exercise number Ne of the goal element is specified by referring to the learning element data of the corresponding learning element stored in the database system 100. The user's current proficiency level Ye0 is specified by referring to the user's learner data.

 その後、処理デバイス70は、出題された問題に含まれる利用要素の習熟度Yhを算出する(S320)。具体的には、処理デバイス70は、経験値Xと、利用要素の標準演習数Nhと、予め定められた係数Khとに基づき、経験値Xを変換式C=(Kh・X/Nh)に従って習熟度相当値Cに変換する。処理デバイス70は、習熟度相当値C=(Kh・X/Nh)を、利用要素についてのユーザの現在の習熟度Yh0に加算して、上記出題された問題に対する取り組み後の、利用要素の習熟度Yhを算出する(Yh=Yh0+Kh・X/Nh)。係数Khは、学習要素に依存しない値であり、例えばKh=0.3である。 After that, the processing device 70 calculates the proficiency level Yh of the use element included in the question that has been asked (S320). Specifically, the processing device 70 converts the experience value X according to the conversion formula C = (Kh · X / Nh) based on the experience value X, the standard practice number Nh of the use elements, and a predetermined coefficient Kh. It is converted into a proficiency equivalent value C. The processing device 70 adds the proficiency level equivalent value C = (Kh · X / Nh) to the current proficiency level Yh0 of the user regarding the usage factor, and masters the usage factor after tackling the above-mentioned problem. The degree Yh is calculated (Yh = Yh0 + Kh · X / Nh). The coefficient Kh is a value that does not depend on the learning element, for example, Kh = 0.3.

 出題された問題に、複数の利用要素が含まれる場合、処理デバイス70は、複数の利用要素のそれぞれの習熟度Yhを、対応する利用要素の標準演習数Nhに基づき、個別の変換式C=(Kh・X/Nh)を用いて算出することができる。問題に利用要素が含まれない場合、処理デバイス70は、S320の処理をスキップすることができる。 When a plurality of usage elements are included in the question, the processing device 70 sets the individual conversion formula C = based on the proficiency level Yh of each of the usage elements based on the standard practice number Nh of the corresponding usage elements. It can be calculated using (Kh · X / Nh). When the utilization element is not included in the problem, the processing device 70 can skip the process of S320.

 S320での処理を終えると、処理デバイス70は、続くS330において、問題に含まれる学習要素に対応する親要素の習熟度Ypを算出する。具体的には、処理デバイス70は、経験値Xを変換式C=(Kp・X/Np)に従って習熟度相当値Cに変換する。Npは、親要素の標準演習数である。親要素は、問題に含まれる学習要素の上記親要素データを参照することにより特定される。 After completing the process in S320, the processing device 70 calculates the mastery level Yp of the parent element corresponding to the learning element included in the problem in the subsequent S330. Specifically, the processing device 70 converts the experience value X into a proficiency equivalent value C according to the conversion formula C = (Kp · X / Np). Np is the number of standard exercises of the parent element. The parent element is specified by referring to the parent element data of the learning element included in the problem.

 処理デバイス70は、この習熟度相当値C=(Kp・X/Np)を、親要素についてのユーザの現在の習熟度Yp0に加算して、上記出題された問題に対する取り組み後の、親要素の習熟度Ypを算出する(Yp=Yp0+Kp・X/Np)。ここで、係数Kpは、学習要素に依存しない値であり、例えばKp=0.1である。 The processing device 70 adds the proficiency level equivalent value C = (Kp · X / Np) to the current proficiency level Yp0 of the user regarding the parent element, and the parent element after tackling the above-mentioned problem is processed. A proficiency level Yp is calculated (Yp = Yp0 + Kp · X / Np). Here, the coefficient Kp is a value that does not depend on the learning element, and for example, Kp = 0.1.

 問題に、複数の学習要素が含まれる場合、処理デバイス70は、複数の学習要素のそれぞれについて、対応する学習要素の親要素の標準演習数Npに基づき、個別の変換式C=(Kp・X/Np)を用いて習熟度Ypを算出することができる。あるいは、S330では、ゴール要素の親要素のみに関して、習熟度Ypを算出してもよい。 When the problem includes a plurality of learning elements, the processing device 70 determines, for each of the plurality of learning elements, an individual conversion formula C = (Kp · X) based on the standard practice number Np of the parent element of the corresponding learning element. / Np) can be used to calculate the proficiency level Yp. Alternatively, in S330, the proficiency level Yp may be calculated for only the parent element of the goal element.

 S330での処理を終えると、処理デバイス70は、続くS340において、問題に含まれる学習要素に対応する派生元要素の習熟度Ydを算出する。具体的には、処理デバイス70は、経験値Xを変換式C=(Kd・X/Nd)に従って習熟度相当値Cに変換する。Ndは、派生元要素の標準演習数である。派生元要素は、問題に含まれる学習要素の上記派生元要素データを参照することにより特定される。 After finishing the process in S330, the processing device 70 calculates the proficiency level Yd of the derivation source element corresponding to the learning element included in the problem in the subsequent S340. Specifically, the processing device 70 converts the experience value X into a proficiency equivalent value C according to the conversion formula C = (Kd · X / Nd). Nd is the number of standard exercises of the derivation source element. The derivation source element is specified by referring to the derivation element data of the learning element included in the problem.

 処理デバイス70は、この習熟度相当値C=(Kd・X/Nd)を、派生元要素についてのユーザの現在の習熟度Yd0に加算して、上記出題された問題に対する取り組み後の、派生元要素の習熟度Ydを算出する(Yd=Yd0+Kd・X/Nd)。ここで、係数Kdは、学習要素に依存しない値であり、例えばKd=0.3である。問題に、複数の学習要素が含まれる場合における派生元要素の取り扱いについては、親要素と同様である。 The processing device 70 adds the proficiency level equivalent value C = (Kd · X / Nd) to the user's current proficiency level Yd0 for the derivation source element, and derives the derivation source after tackling the above-mentioned problem. Element proficiency Yd is calculated (Yd = Yd0 + Kd · X / Nd). Here, the coefficient Kd is a value that does not depend on the learning element, for example, Kd = 0.3. The handling of the derivation source element when the problem includes a plurality of learning elements is the same as that of the parent element.

 その後、処理デバイス70は、S310-S340で習熟度を算出した学習要素毎に、算出後の習熟度を、その習熟度が上限値以下となるように補正する(S350)。この補正により、学習者データに記録される習熟度は、ユーザの学習要素に対応するスキルの定着度に応じた値に補正される。 Thereafter, the processing device 70 corrects the calculated proficiency level so that the proficiency level is equal to or lower than the upper limit value for each learning element whose proficiency level is calculated in S310 to S340 (S350). By this correction, the proficiency level recorded in the learner data is corrected to a value corresponding to the skill fixing level corresponding to the user's learning element.

 具体的に、S350において、処理デバイス70は、学習要素毎に、その学習要素に対応するスキルのユーザにおける定着度を判定する。 Specifically, in S350, the processing device 70 determines, for each learning element, the degree of fixation of the skill corresponding to the learning element in the user.

 定着度は、値0から値4までの5段階の値を採る。定着度判定対象の学習要素(以下、判定対象要素)に関して、その判定対象要素を含む問題をユーザが一度も正解したことがないとき、その判定対象要素に対応するスキルの定着度は値0に判定される。 ¡Fixing degree takes 5 levels from 0 to 4. With respect to a learning element (hereinafter referred to as a determination target element) for a fixing degree determination target, when the user has never answered a problem including the determination target element, the fixing degree of the skill corresponding to the determination target element is 0. Determined.

 判定対象要素を含む問題をユーザが一度だけ正解しているとき、判定対象要素に対応するスキルの定着度は値1に判定される。判定対象要素を含む問題をユーザが二度だけ正解しているとき、判定対象要素に対応するスキルの定着度は値2に判定される。 When the user corrects the problem including the determination target element only once, the degree of fixing of the skill corresponding to the determination target element is determined to be 1. When the user corrects the problem including the determination target element only twice, the fixing degree of the skill corresponding to the determination target element is determined to be 2.

 判定対象要素を含む問題をユーザが初回の正解日から1日以上期間をあけて、複数回正解しており、これにより合計3回以上正解しているとき、判定対象要素の定着度は値3に判定される。 When the user corrects the problem including the determination target element a plurality of times with a period of one day or more from the first correct answer date, and thus corrects the total three times or more, the fixing degree of the determination target element is 3 Is determined.

 判定対象要素を含む問題をユーザが初回の正解日から3日以上期間をあけて、複数回正解しており、これにより合計3回以上正解しているとき、判定対象要素の定着度は、値4に判定される。 When a user corrects a problem including a determination target element multiple times over a period of three days or more from the first correct answer date, and the correct answer is made three or more times in total, the fixing degree of the determination target element is 4 is determined.

 処理デバイス70は、データベースシステム100が記憶する上限値テーブルに基づき、学習要素毎に、対応する学習要素の習熟度が、判定した定着度と標準演習数との組合せから規定される上限値以下となるように、S310-S340での算出値が上限値を超える習熟度を上限値に補正する。 Based on the upper limit value table stored in the database system 100, the processing device 70 has, for each learning element, the proficiency level of the corresponding learning element is equal to or lower than the upper limit value defined by the combination of the determined fixing degree and the number of standard exercises. Thus, the proficiency level in which the calculated value in S310-S340 exceeds the upper limit value is corrected to the upper limit value.

 上限値テーブルは、図12に示すように、定着度が0であり標準演習数Nが2以下である学習要素の習熟度の上限値を80に規定している。同様に、上限値テーブルは、定着度が0である条件下で、標準演習数Nが5以下であるときの上限値を60に規定し、標準演習数Nが8以下であるときの上限値を50に規定し、標準演習数Nが12以下であるときの上限値を40に規定し、標準演習数Nが13以上であるときの上限値を30に規定している。このように上限値テーブルは、標準演習数Nが多い学習要素ほど上限値を低く規定している。 As shown in FIG. 12, the upper limit value table defines 80 as the upper limit value of the proficiency level of learning elements in which the fixing degree is 0 and the standard exercise number N is 2 or less. Similarly, the upper limit table defines an upper limit value of 60 when the standard exercise number N is 5 or less under the condition that the fixing degree is 0, and an upper limit value when the standard exercise number N is 8 or less. Is defined as 50, an upper limit value is defined as 40 when the standard exercise number N is 12 or less, and an upper limit value is defined as 30 when the standard exercise number N is 13 or more. As described above, the upper limit table defines a lower upper limit for learning elements having a larger number N of standard exercises.

 上限値テーブルは、標準演習数Nが12以下である条件下で、定着度が1であるときの上限値を60に規定し、定着度が2であるときの上限値を80に規定し、定着度が3であるときの上限値を90に規定し、定着度が4であるときの上限値を100に規定している。このように上限値テーブルは、定着度が大きいほど上限値を高く規定している。 The upper limit value table defines the upper limit value when the fixing degree is 1 as 60 and the upper limit value when the fixing degree is 2 as 80 under the condition that the standard exercise number N is 12 or less, The upper limit value when the fixing degree is 3 is defined as 90, and the upper limit value when the fixing degree is 4 is defined as 100. As described above, the upper limit value table defines the upper limit value higher as the fixing degree increases.

 処理デバイス70は、この上限値テーブルに従って、S310-S340で算出された習熟度の補正を行うと、S360に移行する。S360において、処理デバイス70は、S310-S340で習熟度を算出した学習要素のそれぞれに関して、S350での補正後の習熟度を、対応するユーザの学習者データに書き込むことにより、学習者データが示すユーザの各学習要素の習熟度を更新する。この習熟度の更新と併せて、処理デバイス70は、演習履歴データを更新する。これにより処理デバイス70は、ユーザの学習者データを更新する(S360)。その後、習熟度更新処理を終了する。 When the processing device 70 corrects the proficiency level calculated in S310 to S340 according to the upper limit table, the processing device 70 proceeds to S360. In S360, for each of the learning elements whose proficiency levels have been calculated in S310-S340, the processing device 70 writes the proficiency level after correction in S350 into the corresponding user's learner data, thereby indicating the learner data. Update the proficiency level of each learning element of the user. Along with the update of the proficiency level, the processing device 70 updates the exercise history data. Thereby, the processing device 70 updates the user's learner data (S360). Thereafter, the proficiency level update process is terminated.

 S170において習熟度更新処理を終了すると、処理デバイス70は、終了条件が満足されたか否かを判断する(S180)。処理デバイス70は、ユーザから学習終了の意思表示がなされたことがユーザ端末装置10から通知されたとき終了条件が満足されたと判断することができる。 When the proficiency level update process ends in S170, the processing device 70 determines whether or not the end condition is satisfied (S180). The processing device 70 can determine that the end condition is satisfied when the user terminal device 10 notifies the user that the intention to end learning has been displayed.

 処理デバイス70は、終了条件が満足されたと判断すると(S180でYes)、学習支援処理を終了し、終了条件が満足されていないと判断すると(S180でNo)、S190に移行して、図13に示す次問題選択処理を実行する。 If the processing device 70 determines that the end condition is satisfied (Yes in S180), the processing device 70 ends the learning support process. If the processing device 70 determines that the end condition is not satisfied (No in S180), the processing device 70 proceeds to S190, and FIG. The next problem selection process shown in FIG.

 次問題選択処理において、処理デバイス70は、S120で出題された問題にユーザが正解しているか否かを判断する(S410)。正解していると判断した場合(S410でYes)、処理デバイス70は、カリキュラムに従って次問題を選択し(S415)、当該次問題選択処理を終了する。 In the next question selection process, the processing device 70 determines whether or not the user has correctly answered the question presented in S120 (S410). If it is determined that the answer is correct (Yes in S410), the processing device 70 selects the next question according to the curriculum (S415), and ends the next question selection process.

 処理デバイス70は、正解していないと判断すると(S410でNo)、習熟度に基づく問題選択を行うか否かを判断する(S420)。習熟度に基づく問題選択のために十分な問題演習が行われていない場合、処理デバイス70は、ここで否定判断し、S425に移行する。 If the processing device 70 determines that the answer is not correct (No in S410), the processing device 70 determines whether to perform problem selection based on the proficiency level (S420). If sufficient problem exercises for problem selection based on the proficiency level are not performed, the processing device 70 makes a negative determination here, and proceeds to S425.

 S425において、処理デバイス70は、出題された問題に対する、予め定められた規則に従う標準の戻り先の問題を、次問題に選択して(S425)、当該次問題選択処理を終了する。戻り先の問題は、出題された問題よりもカリキュラム上前に出題される問題に対応する。 In S425, the processing device 70 selects a standard return destination problem according to a predetermined rule for the given question as the next problem (S425), and ends the next question selection process. The problem to be returned corresponds to the problem that is given before the curriculum rather than the question that has been given.

 処理デバイス70は、S420において肯定判断すると、S430に移行し、要素リストを生成する。要素リストは、出題された問題に含まれる学習要素のリストである。要素リストには、出題された問題に対する標準の戻り先の問題に含まれるゴール要素が付加されてもよい。 If the processing device 70 makes a positive determination in S420, the processing device 70 proceeds to S430 and generates an element list. The element list is a list of learning elements included in the given question. Goal elements included in the standard return problem for the question that has been presented may be added to the element list.

 続くS440において、処理デバイス70は、要素リストに含まれる学習要素のそれぞれに関して、合成習熟度を算出する。合成習熟度は、学習要素の習熟度を、関係する学習要素の習熟度で補正した習熟度に対応する。以下、合成習熟度算出対象の学習要素のことを、対象要素と表現する。 In subsequent S440, the processing device 70 calculates the combined proficiency level for each of the learning elements included in the element list. The composite proficiency level corresponds to the proficiency level obtained by correcting the proficiency level of the learning element by the proficiency level of the related learning element. Hereinafter, the learning element for which the composite proficiency level is to be calculated is expressed as a target element.

 具体的に、合成習熟度Ymは、式Ym=Σ(Yi・Ni)/ΣNiに従って算出される。分母の値ΣNiは、特定グループに属する学習要素Eiのそれぞれの標準演習数Niの和に対応する。ここでいう特定グループは、対象要素の子要素及び依存先の学習要素の一群である。例えば、対象要素が、図7に示す学習要素C1である場合、特定グループは、学習要素C11,C12及び学習要素C3の一群に対応する。特定グループには、対象要素自身が含まれていてもよい。 Specifically, the composite proficiency level Ym is calculated according to the formula Ym = Σ (Yi · Ni) / ΣNi. The denominator value ΣNi corresponds to the sum of the standard exercise numbers Ni of the learning elements Ei belonging to the specific group. The specific group here is a group of child elements of the target element and the learning element of the dependence destination. For example, when the target element is the learning element C1 shown in FIG. 7, the specific group corresponds to a group of learning elements C11 and C12 and a learning element C3. The specific element may include the target element itself.

 分子の値は、上記特定グループに属する各学習要素Eiの値(Yi・Ni)の和に対応する。Yiは、学習要素Eiの習熟度に対応し、Niは、学習要素Eiの標準演習数に対応する。即ち、値(Yi・Ni)は、学習要素Eiに関する習熟度Yiと標準演習数Niとの積に対応する。 The value of the numerator corresponds to the sum of the values (Yi · Ni) of the learning elements Ei belonging to the specific group. Yi corresponds to the proficiency level of the learning element Ei, and Ni corresponds to the standard number of exercises of the learning element Ei. That is, the value (Yi · Ni) corresponds to the product of the proficiency level Yi related to the learning element Ei and the standard exercise number Ni.

 このことから理解できるように、合成習熟度Ymは、対象要素に関係する学習要素群からなる特定グループの習熟度Yiの加重平均に対応する。対象要素に、子要素及び依存先の学習要素が存在しない場合、合成習熟度は、対象要素自身の習熟度に一致する。 As can be understood from this, the composite proficiency level Ym corresponds to a weighted average of the proficiency level Yi of a specific group consisting of learning element groups related to the target element. When the target element has no child element and dependent learning element, the composite proficiency matches the proficiency of the target element itself.

 その後、処理デバイス70は、要素リストに含まれる学習要素の一部をリストから除外するように、要素リストを編集する(S445)。具体的に、処理デバイス70は、標準演習数に対するユーザの実演習数の割合が基準以上且つ誤答率が基準以上の学習要素を残し、他の学習要素を除外するように、要素リストを編集する。更に、処理デバイス70は、合成習熟度が基準以上の学習要素を除外するように、要素リストを編集する。これにより、処理デバイス70は、要素リストから、習熟度が高い学習要素、及び、習い始めの学習要素を除くように、要素リストを編集する。 Thereafter, the processing device 70 edits the element list so as to exclude a part of the learning elements included in the element list from the list (S445). Specifically, the processing device 70 edits the element list such that the ratio of the number of actual exercises of the user to the number of standard exercises is greater than the reference and the error rate is higher than the reference, and other learning elements are excluded. To do. Further, the processing device 70 edits the element list so as to exclude learning elements having a combined proficiency level equal to or higher than the reference. As a result, the processing device 70 edits the element list so that the learning element with a high level of proficiency and the learning element at the beginning of learning are excluded from the element list.

 S445において、処理デバイス70は、出題された問題を基準に、カリキュラム上、所定数前までの問題に含まれる学習要素を残し、他の学習要素を除外するように、更に要素リストを編集してもよい。これにより、最近ユーザが学んでいる学習要素で苦手な学習要素のみが要素リストに残るように、要素リストを編集してもよい。 In S445, the processing device 70 further edits the element list so as to leave the learning elements included in the problems up to a predetermined number in the curriculum and exclude other learning elements based on the questions that have been presented. Also good. Thereby, the element list may be edited so that only learning elements that are not good at learning elements that the user has recently learned remain in the element list.

 S445での処理後、処理デバイス70は、編集後の要素リスト内の学習要素を、合成習熟度が低い順にソートする(S450)。そして、S470以降の処理について未処理の要素リスト内の学習要素の内、合成習熟度が最も低い学習要素を、処理対象に選択し(S460)、処理対象の学習要素をゴール要素に含む、S120で出題された問題よりカリキュラム上前の問題群を抽出する(S470)。 After the processing in S445, the processing device 70 sorts the learning elements in the edited element list in ascending order of the combined proficiency level (S450). Then, among the learning elements in the unprocessed element list for the processes after S470, the learning element with the lowest combined proficiency is selected as the processing target (S460), and the learning element to be processed is included in the goal element. A group of questions before the curriculum is extracted from the questions presented in (S470).

 その後、処理デバイス70は、抽出した問題群を、カリキュラムに従う問題順に配列し、配列した問題群を、その配列を維持しながら、カリキュラムでの章分けに従って分離することにより、問題群を複数のクラスタに分離する。処理デバイス70は、この複数のクラスタの内、S120で誤答した問題にカリキュラム上最も近いクラスタの先頭問題を、次問題の候補に選択する(S480)。 After that, the processing device 70 arranges the extracted problem groups in the order of the problems according to the curriculum, and separates the arranged problem groups according to the chapter division in the curriculum while maintaining the arrangement, thereby separating the problem groups into a plurality of clusters. To separate. The processing device 70 selects, from among the plurality of clusters, the first problem of the cluster closest in the curriculum to the problem erroneously answered in S120 as a candidate for the next problem (S480).

 続いて、処理デバイス70は、S480で選択した次問題の候補が、最近出題された問題であるか否かを判別する(S490)。最近出題された問題か否かの判別は、次問題の候補が、現時刻から所定時間前までに(例えば10分以内に)出題された問題であるか否かを判別することにより実現することができる。 Subsequently, the processing device 70 determines whether or not the candidate for the next problem selected in S480 is a problem that has recently been asked (S490). The determination of whether or not the question has recently been asked is realized by determining whether or not the candidate for the next question is a question that has been given before a predetermined time (for example, within 10 minutes) from the current time. Can do.

 処理デバイス70は、次問題の候補が最近出題された問題であると判別した場合(S490でYes)、S460に移行し、次に合成習熟度が低い学習要素を処理対象に選択して、S470以降の処理を実行する。処理デバイス70は、次問題の候補が最近出題された問題ではないと判別した場合(S490でNo)、その候補を次問題に選択して(S495)、次問題選択処理を終了する。 If the processing device 70 determines that the candidate for the next question is a recently-issued question (Yes in S490), the processing device 70 proceeds to S460, selects the learning element with the next lowest composite proficiency as a processing target, and performs S470. The subsequent processing is executed. If the processing device 70 determines that the candidate for the next question is not a question that has recently been asked (No in S490), the processing device 70 selects that candidate as the next question (S495), and ends the next question selection process.

 処理デバイス70は、S190で次問題選択処理を終了すると、S120に移行し、S190で選択された次問題をユーザ端末装置10の表示デバイス50を通じてユーザに出題する。その後、S130以降の処理を実行する。 When the processing device 70 completes the next question selection process in S190, the processing device 70 proceeds to S120 and presents the next question selected in S190 to the user through the display device 50 of the user terminal device 10. Thereafter, the processing after S130 is executed.

 以上に説明した本実施形態の学習支援システム1は、出題された問題に対するユーザの取り組みに基づき、出題された問題に含まれる少なくとも一つの学習要素を含む一以上の学習要素の習熟度を更新するように、ユーザの学習者データを更新する。 The learning support system 1 according to the present embodiment described above updates the proficiency level of one or more learning elements including at least one learning element included in the given question based on the user's approach to the given question. Thus, the user's learner data is updated.

 具体的には、学習支援システム1は、出題された問題に対するユーザの解答行動及び正答確認行動の少なくとも一方に基づき、ユーザの習熟度を更新する。より具体的には、学習支援システム1は、解答行動に関するパラメータとしての、解答の正否、解答時間、及びヒントの閲覧有無に基づき、ユーザの習熟度を更新する。更には、学習支援システム1は、正答確認行動に関するパラメータとしての、問題解説文の閲覧度に基づき、ユーザの習熟度を更新する。 Specifically, the learning support system 1 updates the user's proficiency level based on at least one of the user's answer behavior and correct answer confirmation behavior for the question that has been presented. More specifically, the learning support system 1 updates the user's proficiency level based on whether the answer is correct or not, the answer time, and whether or not the hint is viewed as parameters related to the answer behavior. Furthermore, the learning support system 1 updates the user's proficiency level based on the degree of browsing the problem commentary as a parameter related to correct answer confirmation behavior.

 従って、本実施形態の学習支援システム1によれば、ユーザが効率的に学習可能な問題を提供し、ユーザによる学習を支援することができる。具体的には、算数及び数学のように、正答に複数のスキルが必要な問題にユーザが取り組んだ際、この取り組みに基づき、詳細にユーザの複数の習熟度を記録し、これをユーザに出題する問題選択に役立てることができる。 Therefore, according to the learning support system 1 of the present embodiment, it is possible to provide a problem that the user can efficiently learn and support the learning by the user. Specifically, when a user tackles a problem that requires multiple skills for correct answers, such as mathematics and mathematics, based on this approach, the user's multiple proficiency levels are recorded in detail and presented to the user. Can be used to select the problem to be performed.

 本実施形態によれば特に、ユーザが問題に取り組んだ際、その取り組んだ問題に含まれる学習要素だけでなく、その学習要素に関係する学習要素、具体的には、親子関係、依存関係、及び派生関係の存在する学習要素の習熟度も更新する。従って、ユーザの習熟度の向上の実態に適合するように、学習者データ内の各学習要素の習熟度を更新することができる。 In particular, according to the present embodiment, when a user tackles a problem, not only the learning elements included in the tackled problem, but also learning elements related to the learning element, specifically, a parent-child relationship, a dependency relationship, and It also updates the proficiency level of learning elements that have derivation relationships. Therefore, the proficiency level of each learning element in the learner data can be updated so as to match the actual state of improvement of the proficiency level of the user.

 本実施形態によれば更に、各学習要素の習熟度Yの加算量Cを、学習要素の標準演習数Nに基づいて調整することにより、標準演習数Nが多い学習要素ほど習熟度Yの上昇が小さくなるように更新する。具体的には、各学習要素の習熟度Yの加算量Cを、学習要素の種類に基づく係数K、その学習要素の標準演習数N、及び、問題の取り組みに関する経験値Xに基づき、式C=K・X/Nに従って算出する。従って、習得難度の異なる各学習要素の習熟度を適切に更新可能である。 According to the present embodiment, the learning amount Y increases as the number of standard exercises N increases by adjusting the addition amount C of the learning level Y of each learning element based on the standard exercise number N of learning elements. Update so that becomes smaller. Specifically, based on the coefficient K based on the type of learning element, the standard number of exercises N for that learning element, and the experience value X related to the problem approach, = Calculated according to K · X / N. Therefore, it is possible to appropriately update the proficiency level of each learning element having different learning difficulty levels.

 本実施形態によれば更に、スキルの定着度に基づく習熟度の上限値を定め、習熟度を上限値以下に補正する。従って、学習経験に対するユーザの忘却を考慮した適切な習熟度を算出することが可能である。 According to this embodiment, the upper limit value of the proficiency level based on the skill fixing level is further determined, and the proficiency level is corrected to the upper limit value or less. Accordingly, it is possible to calculate an appropriate level of proficiency in consideration of the user's forgetting about the learning experience.

 本実施形態によれば更に、ユーザが誤答した問題に含まれる学習要素の内、習熟度が低い学習要素を含む問題を優先的に次問題に選択して、出題する。従って、ユーザの苦手な学習要素の学習を重点的に支援することができる。 Further, according to the present embodiment, among the learning elements included in the problem that the user has answered incorrectly, a problem including a learning element with a low proficiency level is preferentially selected as the next problem and the question is given. Therefore, learning of learning elements that the user is not good at can be intensively supported.

 本開示は、上述の実施形態に限定されるものではなく、種々の態様を採ることができることは言うまでもない。本開示の技術は、算数及び数学によらず様々な科目の学習支援に利用可能である。習熟度の具体的な計算式は、上記実施形態に限定されるものではなく、解答の正否、解答時間、及び、問題解説文の閲覧度等の上記パラメータ以外の別パラメータを用いて計算されてもよい。上記パラメータの一部が習熟度の計算に用いられなくてもよい。 It goes without saying that the present disclosure is not limited to the above-described embodiment, and can take various forms. The technology of the present disclosure can be used for learning support of various subjects regardless of arithmetic and mathematics. The specific formula for the proficiency level is not limited to the above embodiment, and is calculated using other parameters other than the above parameters such as correctness of answer, answer time, and degree of browsing of question commentary. Also good. Some of the above parameters may not be used for the proficiency level calculation.

 次問題の選択方法も、上記実施形態に限定されるものではない。学習要素間の習熟度の高低に応じて、重点的に学習を支援する学習要素を変更する、様々な問題選択方法が採用され得る。例えば、学習支援システムは、習熟度の低い学習要素ほど、その学習要素を含む問題の出題確率が上昇するように、確率的に習熟度に応じた問題選択を行うように構成されてもよい。 The method for selecting the next problem is not limited to the above embodiment. Various problem selection methods may be employed in which learning elements that support learning are changed according to the level of proficiency between learning elements. For example, the learning support system may be configured to perform problem selection according to the proficiency level in a probabilistic manner so that a learning element with a low proficiency level increases a question probability of a problem including the learning element.

 サーバ装置60及びデータベースシステム100が有する機能の一部又は全部は、ユーザ端末装置10に組み込まれてもよい。学習支援システム1によるサービスは、ウェブブラウザを通じて、パーソナルコンピュータ等のユーザ端末装置に提供されてもよい。 Some or all of the functions of the server device 60 and the database system 100 may be incorporated in the user terminal device 10. The service by the learning support system 1 may be provided to a user terminal device such as a personal computer through a web browser.

 上記実施形態における1つの構成要素が有する機能は、複数の構成要素に分散して設けられてもよい。複数の構成要素が有する機能は、1つの構成要素に統合されてもよい。上記実施形態の構成の一部は、省略されてもよい。上記実施形態の構成の少なくとも一部は、他の実施形態の構成に対して付加又は置換されてもよい。特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 The functions of one component in the above embodiment may be distributed among a plurality of components. Functions of a plurality of components may be integrated into one component. A part of the configuration of the above embodiment may be omitted. At least a part of the configuration of the above embodiment may be added to or replaced with the configuration of another embodiment. Any aspect included in the technical idea specified from the wording of the claims is an embodiment of the present disclosure.

 最後に用語間の対応関係について説明する。処理デバイス70が実行するS120の処理は、出題部により実現される処理の一例に対応する。処理デバイス70が実行するS160,S170の処理は、更新部により実現される処理の一例に対応する。処理デバイス70が実行するS190の処理は、選択部により実現される処理の一例に対応する。処理デバイス70が実行するS350の処理は、判定部により実現される処理の一例に対応する。 Finally, the correspondence between terms will be explained. The process of S120 executed by the processing device 70 corresponds to an example of a process realized by the questioning unit. The processing of S160 and S170 executed by the processing device 70 corresponds to an example of processing realized by the update unit. The process of S190 executed by the processing device 70 corresponds to an example of a process realized by the selection unit. The process of S350 executed by the processing device 70 corresponds to an example of a process realized by the determination unit.

Claims (14)

 複数の問題の中から選択された第一の問題を、表示デバイスを通じて出題するように構成される出題部と、
 前記出題部により出題された前記第一の問題に対する学習者の入力デバイスを通じた取り組みに基づき、記憶デバイスが記憶する前記学習者の習熟度データを更新するように構成される更新部と、
 前記記憶デバイスが記憶する前記学習者の習熟度データに基づき、前記複数の問題の中から前記出題部に新たに出題させる第二の問題を選択するように構成される選択部と、
 を備え、
 前記習熟度データは、複数の学習要素のそれぞれに関して前記学習者の習熟度を示し、
 前記複数の問題の少なくとも一部は、前記複数の学習要素の内の二以上を含み、
 前記複数の学習要素の少なくとも一部は、前記複数の問題の内の二以上に重複して含まれ、
 前記更新部は、前記第一の問題に対する前記学習者の取り組みに基づき、前記第一の問題に含まれる少なくとも一つの学習要素を含む一以上の学習要素の習熟度を更新するように、前記習熟度データを更新する学習支援システム。
A question section configured to present a first question selected from a plurality of questions through a display device;
An update unit configured to update the learner's proficiency data stored in a storage device based on an effort through the learner's input device for the first question presented by the question unit;
Based on the learner's proficiency data stored in the storage device, a selection unit configured to select a second question to be newly given to the questioning unit from the plurality of questions;
With
The proficiency data indicates the proficiency of the learner for each of a plurality of learning elements,
At least some of the plurality of questions includes two or more of the plurality of learning elements;
At least some of the plurality of learning elements are included in two or more of the plurality of questions,
The update unit is configured to update the proficiency level of one or more learning elements including at least one learning element included in the first problem based on the learner's approach to the first problem. Learning support system that updates degree data.
 請求項1記載の学習支援システムであって、
 前記一以上の学習要素は、前記第一の問題に含まれる前記少なくとも一つの学習要素と、前記第一の問題に含まれる前記少なくとも一つの学習要素に関係する別の少なくとも一つの学習要素と、を含み、
 前記更新部は、前記複数の学習要素間の関係を示すデータに基づき、前記習熟度データを更新する学習支援システム。
The learning support system according to claim 1,
The one or more learning elements include the at least one learning element included in the first problem, another at least one learning element related to the at least one learning element included in the first problem, and Including
The said update part is a learning assistance system which updates the said proficiency level data based on the data which show the relationship between these learning elements.
 請求項1又は請求項2記載の学習支援システムであって、
 前記複数の学習要素のそれぞれには、標準演習数が定められており、
 前記更新部は、前記一以上の学習要素に関して、学習要素毎に、対応する学習要素の習熟度を、前記対応する学習要素に対して定められた標準演習数が多いほど習熟度の変化が小さくなるように、更新する学習支援システム。
The learning support system according to claim 1 or 2,
Each of the plurality of learning elements has a standard number of exercises,
For the one or more learning elements, the updating unit sets the proficiency level of the corresponding learning element for each learning element, and the change in the proficiency level is smaller as the number of standard exercises determined for the corresponding learning element is larger. Learning support system to be updated.
 請求項1~請求項3のいずれか一項記載の学習支援システムであって、
 前記更新部は、前記第一の問題に対する前記学習者の取り組みに応じた経験値を算出し、前記一以上の学習要素に関して、学習要素毎に、個別の変換式を用いて前記経験値を習熟度相当値に変換し、前記習熟度相当値を、対応する学習要素の習熟度に加算することにより、前記対応する学習要素の習熟度を更新する学習支援システム。
The learning support system according to any one of claims 1 to 3,
The updating unit calculates an experience value corresponding to the learner's approach to the first problem, and learns the experience value using an individual conversion formula for each learning element with respect to the one or more learning elements. A learning support system that converts a proficiency level equivalent value and adds the proficiency level equivalent value to the proficiency level of the corresponding learning element, thereby updating the proficiency level of the corresponding learning element.
 請求項4記載の学習支援システムであって、
 前記変換式は、前記対応する学習要素に対して定められた標準演習数が多いほど、前記習熟度相当値が低くなるように、前記経験値を前記習熟度相当値に変換するように構成される学習支援システム。
The learning support system according to claim 4,
The conversion formula is configured to convert the experience value to the proficiency equivalent value so that the more the number of standard exercises defined for the corresponding learning element is, the lower the proficiency equivalent value is. Learning support system.
 請求項1~請求項5のいずれか一項記載の学習支援システムであって、
 前記更新部は、前記取り組みとして、前記入力デバイスを通じた前記学習者の解答行動及び正答確認行動の少なくとも一方に基づき、前記学習者の習熟度データを更新する学習支援システム。
The learning support system according to any one of claims 1 to 5,
The update unit is a learning support system that updates the learner's proficiency data based on at least one of the learner's answer behavior and correct answer confirmation behavior through the input device as the effort.
 請求項1~請求項6のいずれか一項記載の学習支援システムであって、
 前記更新部は、前記学習者の解答の正否に基づき、前記一以上の学習要素に関して、学習要素毎に、対応する学習要素の習熟度に対する加算量を決定し、前記決定した加算量を、前記対応する学習要素の習熟度に加算することにより、前記対応する学習要素の習熟度を更新する学習支援システム。
The learning support system according to any one of claims 1 to 6,
The updating unit determines, based on whether the learner's answer is correct or not, for each learning element, an addition amount for the proficiency level of the corresponding learning element, and the determined addition amount is A learning support system that updates the proficiency level of the corresponding learning element by adding to the proficiency level of the corresponding learning element.
 請求項7記載の学習支援システムであって、
 前記更新部は、前記学習者の解答時間、及び、解答後に前記表示デバイスによって表示される問題解説文の前記学習者による閲覧度の少なくとも一方に更に基づき、前記加算量を決定する学習支援システム。
The learning support system according to claim 7,
The said update part is a learning assistance system which determines the said addition amount further based on at least one of the said learner's answer time and the said student's browsing degree of the question commentary displayed by the said display device after an answer.
 請求項1~請求項8のいずれか一項記載の学習支援システムであって、
 前記一以上の学習要素のそれぞれに対応するスキルの前記学習者における定着度を判定する判定部
 を備え、前記更新部は、前記一以上の学習要素の習熟度のそれぞれを、対応するスキルの定着度に対応した上限値以下の範囲で更新するように構成され、
 前記上限値は、前記定着度が高いほど大きい学習支援システム。
The learning support system according to any one of claims 1 to 8,
A determination unit that determines a degree of fixation of the skill corresponding to each of the one or more learning elements in the learner, and the update unit fixes each of the proficiency levels of the one or more learning elements. It is configured to update within the range below the upper limit corresponding to the degree,
The learning support system is such that the upper limit value is larger as the fixing degree is higher.
 請求項1~請求項9のいずれか一項に記載の学習支援システムであって、
 前記選択部は、前記複数の問題のうち、前記学習者の習熟度が低い学習要素を含む問題ほど、当該問題を優先的に選択するように、前記第二の問題を選択する学習支援システム。
The learning support system according to any one of claims 1 to 9,
The learning selection system, wherein the selection unit selects the second problem so that a problem including a learning element having a lower learning level of the learner among the plurality of problems is preferentially selected.
 請求項10記載の学習支援システムであって、
 前記選択部は、前記第一の問題に対して前記学習者が誤答したとき、前記第一の問題に関する複数の学習要素の内、習熟度がより低い学習要素を含む問題をより優先的に選択するように、前記第二の問題を選択する学習支援システム。
The learning support system according to claim 10,
The selection unit gives priority to a problem including a learning element having a lower proficiency among a plurality of learning elements related to the first problem when the learner answers the first problem incorrectly. A learning support system for selecting the second problem to select.
 請求項11記載の学習支援システムであって、
 前記選択部は、前記複数の学習要素のそれぞれの習熟度を、対応する学習要素に関係する複数の学習要素の習熟度に基づいて補正した補正後の習熟度に基づいて、前記補正後の習熟度がより低い学習要素を含む問題をより優先的に選択するように、前記第二の問題を選択する学習支援システム。
The learning support system according to claim 11,
The selection unit is configured to correct the proficiency level after the correction based on the corrected proficiency level corrected based on the proficiency levels of the plurality of learning elements related to the corresponding learning element. A learning support system for selecting the second problem so that a problem including a learning element having a lower degree is selected with higher priority.
 請求項1~請求項12のいずれか一項記載の学習支援システムが備える前記出題部と、前記更新部と、前記選択部として、コンピュータを機能させるためのコンピュータプログラム。 A computer program for causing a computer to function as the questioning unit, the updating unit, and the selection unit provided in the learning support system according to any one of claims 1 to 12.  コンピュータが実行する学習支援方法であって、
 複数の問題の中から選択された第一の問題を、表示デバイスを通じて出題することと、
 前記第一の問題に対する学習者の入力デバイスを通じた取り組みに基づき、記憶デバイスが記憶する前記学習者の習熟度データを更新することと、
 前記記憶デバイスが記憶する前記学習者の習熟度データに基づき、前記複数の問題の中から新たに出題する第二の問題を選択することと、
 を含み、
 前記習熟度データは、複数の学習要素のそれぞれに関して前記学習者の習熟度を示し、
 前記複数の問題の少なくとも一部は、前記複数の学習要素の内の二以上を含み、
 前記複数の学習要素の少なくとも一部は、前記複数の問題の内の二以上に重複して含まれ、
 前記更新することは、前記第一の問題に対する前記学習者の取り組みに基づき、前記第一の問題に含まれる少なくとも一つの学習要素を含む一以上の学習要素の習熟度を更新するように、前記習熟度データを更新することを含む学習支援方法。
A learning support method executed by a computer,
The first question selected from multiple questions is given through the display device,
Updating the learner's proficiency data stored in a storage device based on the learner's input device approach to the first problem;
Selecting a second question to be newly set out of the plurality of questions based on the learner's proficiency data stored in the storage device;
Including
The proficiency data indicates the proficiency of the learner for each of a plurality of learning elements,
At least some of the plurality of questions includes two or more of the plurality of learning elements;
At least some of the plurality of learning elements are included in two or more of the plurality of questions,
The updating is based on the learner's approach to the first problem, so as to update the proficiency level of one or more learning elements including at least one learning element included in the first problem. A learning support method including updating proficiency data.
PCT/JP2019/007820 2018-03-02 2019-02-28 Learning assist system and method Ceased WO2019168101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-037528 2018-03-02
JP2018037528A JP7055350B2 (en) 2018-03-02 2018-03-02 Learning support systems and methods, as well as computer programs

Publications (1)

Publication Number Publication Date
WO2019168101A1 true WO2019168101A1 (en) 2019-09-06

Family

ID=67805378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007820 Ceased WO2019168101A1 (en) 2018-03-02 2019-02-28 Learning assist system and method

Country Status (2)

Country Link
JP (1) JP7055350B2 (en)
WO (1) WO2019168101A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021144095A (en) * 2020-03-10 2021-09-24 株式会社ベネッセコーポレーション Learning support system, learning support method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7555288B2 (en) * 2021-03-02 2024-09-24 株式会社トライグループ Selection system and selection program
JP2023536769A (en) * 2021-07-01 2023-08-30 リイイド インク METHOD, APPARATUS AND SYSTEM FOR RECOMMENDING EXPLANATION CONTENT FOR MAXIMIZING EDUCATIONAL EFFECT TO USER

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082598A (en) * 2000-09-07 2002-03-22 Keynet:Kk Learning support system and learning supporting method
JP2002221893A (en) * 2001-01-25 2002-08-09 Takeshi Hashimoto Learning support system
US20020164564A1 (en) * 2001-05-07 2002-11-07 Fretwell Jack W. System to teach, measure and rate learner knowledge of basic mathematics facts
JP2011138024A (en) * 2009-12-28 2011-07-14 Kyoiku Dojinsha:Kk Evaluation support system
JP2012093599A (en) * 2010-10-28 2012-05-17 Planexus Co Ltd Learning support device, system, method, and program
JP2012113059A (en) * 2010-11-22 2012-06-14 Advanced Telecommunication Research Institute International Learning support device, learning support method and program
JP2012137699A (en) * 2010-12-28 2012-07-19 Dainippon Printing Co Ltd Learning support device, learning support method and program
JP2013044770A (en) * 2011-08-22 2013-03-04 Hitachi Consumer Electronics Co Ltd System and method for learning support
JP2016148800A (en) * 2015-02-13 2016-08-18 株式会社ブリーズ Learning support system, learning support server, learning support program, and learning support method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082598A (en) * 2000-09-07 2002-03-22 Keynet:Kk Learning support system and learning supporting method
JP2002221893A (en) * 2001-01-25 2002-08-09 Takeshi Hashimoto Learning support system
US20020164564A1 (en) * 2001-05-07 2002-11-07 Fretwell Jack W. System to teach, measure and rate learner knowledge of basic mathematics facts
JP2011138024A (en) * 2009-12-28 2011-07-14 Kyoiku Dojinsha:Kk Evaluation support system
JP2012093599A (en) * 2010-10-28 2012-05-17 Planexus Co Ltd Learning support device, system, method, and program
JP2012113059A (en) * 2010-11-22 2012-06-14 Advanced Telecommunication Research Institute International Learning support device, learning support method and program
JP2012137699A (en) * 2010-12-28 2012-07-19 Dainippon Printing Co Ltd Learning support device, learning support method and program
JP2013044770A (en) * 2011-08-22 2013-03-04 Hitachi Consumer Electronics Co Ltd System and method for learning support
JP2016148800A (en) * 2015-02-13 2016-08-18 株式会社ブリーズ Learning support system, learning support server, learning support program, and learning support method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021144095A (en) * 2020-03-10 2021-09-24 株式会社ベネッセコーポレーション Learning support system, learning support method, and program
JP7010987B2 (en) 2020-03-10 2022-01-26 株式会社ベネッセコーポレーション Learning support systems, learning support methods and programs

Also Published As

Publication number Publication date
JP2019152741A (en) 2019-09-12
JP7055350B2 (en) 2022-04-18

Similar Documents

Publication Publication Date Title
KR102022415B1 (en) Learning and Scheduling Apparatus and Method of Word Recognition State Quantification and Smart Devices using Memorizing Learning Data
US12033533B2 (en) Systems and methods for inquiry-based learning including collaborative question generation
JP6442546B2 (en) Learning support system, learning support method, and learner terminal
JP7537555B2 (en) Scoring support device, scoring support method and program
WO2019168101A1 (en) Learning assist system and method
CN114511425A (en) Method for providing user-customized learning content
WO2018168880A1 (en) Learning assistance terminal, learning assistance server, learning assistance system, learning assistance method, learning assistance program, and computer-readable recording medium including learning assistance program
US20140295400A1 (en) Systems and Methods for Assessing Conversation Aptitude
JP2009048098A (en) Skill measurement program, computer-readable recording medium recording the program, skill measurement device, and skill measurement method
CN120409650A (en) Knowledge point mastery updating method, device, equipment and readable storage medium
US10665120B2 (en) System and method for encouraging studying by controlling student&#39;s access to a device based on results of studying
WO2017208433A1 (en) Learning program provision system and method for providing learning program
Tetreault et al. Comparing the utility of state features in spoken dialogue using reinforcement learning
WO2016018336A1 (en) Create a heterogeneous learner group
CN111950852A (en) A user behavior analysis and guidance method, device, electronic device and readable storage device
Fischer 10 Designing Intuitive Products in an Agile World
CN120298176A (en) A method, system, computer equipment and medium for training electric power metering equipment
CN109035885B (en) Teaching method and device
JP6262948B2 (en) English grammar learning system
JP5395595B2 (en) Learning support program
JP2018004699A (en) Learning support device, program, learning support method, and learning support system
JP6100749B2 (en) Soft keyboard generation system for test score input
CN113706951A (en) On-line education method, system and computer storage medium
JP2017111292A (en) Presentation question determination method, presentation question determination apparatus, and program
CN112287115A (en) Personalized teaching method, system and device based on knowledge mastery degree map

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761506

Country of ref document: EP

Kind code of ref document: A1