[go: up one dir, main page]

WO2019147039A1 - 대화 이해 ai 서비스 시스템과 연관된 대화 세션 중의 특정 시점에서 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법, 목표 달성 예측 확률을 결정하는 방법, 및 컴퓨터 판독가능 기록 매체 - Google Patents

대화 이해 ai 서비스 시스템과 연관된 대화 세션 중의 특정 시점에서 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법, 목표 달성 예측 확률을 결정하는 방법, 및 컴퓨터 판독가능 기록 매체 Download PDF

Info

Publication number
WO2019147039A1
WO2019147039A1 PCT/KR2019/001015 KR2019001015W WO2019147039A1 WO 2019147039 A1 WO2019147039 A1 WO 2019147039A1 KR 2019001015 W KR2019001015 W KR 2019001015W WO 2019147039 A1 WO2019147039 A1 WO 2019147039A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversation
present disclosure
determining
service server
patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2019/001015
Other languages
English (en)
French (fr)
Inventor
설재호
장세영
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Money Brain Co ltd
Original Assignee
Money Brain Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Money Brain Co ltd filed Critical Money Brain Co ltd
Publication of WO2019147039A1 publication Critical patent/WO2019147039A1/ko
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • G06F40/35Discourse or dialogue representation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/1822Parsing for meaning understanding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/28Constructional details of speech recognition systems
    • G10L15/30Distributed recognition, e.g. in client-server systems, for mobile phones or network applications

Definitions

  • the present disclosure relates to the determination of an interactive response by a conversation understanding AI service system, and more particularly to an interactive progress of a conversation that occurs with customers on a conversation understanding AI service system of a specific domain having a predetermined target task And how to determine the optimal dialog response for achieving the goal at each point in time.
  • An agent in the Customer Response Center (a human agent or conversation AI Service System Agent) will interact with the customer who has accessed the Customer Response Center and convince the customer to reach the target action of the Customer Response Center.
  • a method comprising: on a conversation understanding AI service server configured to process a natural language conversation for each of a plurality of user terminals, a conversation session between a user terminal of one of a plurality of user terminals and a conversation understanding AI service server A method for determining a target achievement prediction probability for achieving a predetermined goal is provided.
  • the method of the present disclosure includes receiving natural language input from a user terminal at a particular point in time; Determining an intent corresponding to the received natural language input;
  • the conversation history at a specific point-of-conversation history represents the flow of intents between the user terminal and the conversation comprehension AI service server that occurred up to a certain point on the conversation session, and includes the determined intent at the end of the flow of intents.
  • the template-template prepared in advance for the conversation history and the conversation comprehension AI service server includes a plurality of conversation patterns representing flows of the corresponding intents, and has a goal achievement frequency and a target failure frequency for each conversation pattern - determining, based on the at least one dialog pattern, one or more dialog patterns comprising a conversation history; And determining a target achievement prediction probability at a specific time point based on each of the corresponding goal achievement times and the target achievement failure times of the determined one or more conversation patterns.
  • the target achievement prediction probability at a specific point in time is a ratio of the total sum of successes of achievement of the target achievement to the total sum of the corresponding goal achievement times and the target achievement failure times of the determined one or more conversation patterns, .
  • the template may have a success rate determined based on the number of successes of the target achievement and the number of failure of the goal achievement of each dialog pattern for each of the plurality of conversation patterns.
  • a method comprising: on a conversation understanding AI service server configured to process a natural language conversation for each of a plurality of user terminals, a conversation session between a user terminal of one of a plurality of user terminals and a conversation understanding AI service server There is provided a method for determining an optimal conversation pattern for achieving a predetermined goal at a time point.
  • the method of the present disclosure includes receiving natural language input from a user terminal at a particular point in time; Determining an intent corresponding to the received natural language input;
  • the conversation history at a specific point-of-conversation history represents the flow of intents between the user terminal and the conversation comprehension AI service server that occurred up to a certain point on the conversation session, and includes the determined intent at the end of the flow of intents.
  • the template-template prepared in advance for the conversation history and the conversation comprehension AI service server includes a plurality of conversation patterns representing flows of the corresponding intents, and has a goal achievement frequency and a target failure frequency for each conversation pattern - determining, based on the at least one dialog pattern, one or more dialog patterns comprising a conversation history; Determining, for each of the determined one or more conversation patterns, a goal achievement probability determined based on the number of successes of the goal achievement and the number of failures of the goal achievement of each conversation pattern; And determining a conversation pattern having the highest goal achievement probability among the determined one or more conversation patterns as an optimal conversation pattern.
  • the method may further comprise selecting a next conversation response on the conversation session from the determined optimal conversation pattern.
  • the conversation understanding AI service server includes a predetermined display device, and may be presented on the optimal conversation pattern determined through the display device or on the optimal conversation pattern, followed by the conversation response.
  • a target may be associated with at least one of a predetermined product and / or service sale, a subscription, and a subscription.
  • a method comprising collecting a plurality of conversation records, each conversation record comprising a series of correlated natural language inputs and responses associated with a target, occurring over a communication session, - the result of the achievement of; For each conversation record, determining each intent corresponding to each of the natural language inputs and responses of the conversation record and generating a corresponding set of flows of intents; Each conversation record corresponding to a conversation pattern of one of the predetermined conversation patterns in accordance with a flow of intents generated corresponding to the conversation record; Having a probability of achieving a goal corresponding to a conversation pattern, according to the results of the achievement; And generating a conversation template based on a result of associating the plurality of conversation records with one of the conversation patterns.
  • a computer readable medium having stored thereon one or more instructions for causing a computer to perform any one of the methods described above when executed by the computer, A possible recording medium is provided.
  • the embodiment of the present disclosure it is possible to analyze the conversation history recorded between the customer and the agent, and to determine various conversation patterns that may occur in the customer response center and the probability of achieving the goal for each conversation pattern. According to the embodiment of the present disclosure, it is possible to present the target achievement prediction probability at each point in the progress of the conversation progress between the customer and the agent, and to determine the optimal conversation pattern thereafter in order to improve the target achievement probability. Thus, according to the embodiments of the present disclosure, ultimately, the conversion rate of the customer response center can be improved.
  • FIG. 1 is a schematic representation of a customer response center system environment 100 that may be implemented in accordance with one embodiment of the present disclosure.
  • FIG. 2 is a functional block diagram that schematically illustrates the functional configuration of the customer user terminal 102 of FIG. 1, in accordance with one embodiment of the present disclosure.
  • FIG. 3 is a functional block diagram that schematically illustrates the functional configuration of the AI service server 106 of FIG. 1 in accordance with one embodiment of the present disclosure.
  • FIG. 4 is a functional block diagram schematically illustrating the functional configuration of the dialog / task processing unit 304 of FIG. 3, according to one embodiment of the present disclosure.
  • FIG. 5 is an exemplary operational flow diagram performed by the dialog template creation / storage 308 of FIG. 3, in accordance with one embodiment of the present disclosure.
  • FIG. 6 is a diagram conceptually showing an example of a template 600 for the conversation understanding AI service server 106. As shown in FIG.
  • FIG. 7 is an exemplary operational flow diagram performed by the dialog / task processing unit 304 of FIG. 3, in accordance with one embodiment of the present disclosure.
  • 'module' or 'sub-module' means a functional part that performs at least one function or operation, and may be implemented in hardware or software, or a combination of hardware and software. Also, a plurality of "modules” or “sub-modules” may be integrated into at least one software module and implemented by at least one processor, except for "module” or "sub-module” have.
  • a 'conversation understanding AI service system' is a system in which a natural language input (for example, a command from a user in a natural language, a statement from a user in a natural language) input from a user through an interactive interaction via a natural- , Requests, questions, etc.) to determine the intent of the user and to provide the necessary actions, such as appropriate dialog response and / or predetermined task performance, based on the learned intent of the user
  • a natural language input for example, a command from a user in a natural language, a statement from a user in a natural language
  • a natural- , Requests, questions, etc. to determine the intent of the user and to provide the necessary actions, such as appropriate dialog response and / or predetermined task performance, based on the learned intent of the user
  • the present invention is not limited to any particular type of information processing system.
  • the conversation response provided by the " Conversation Comprehension AI Service System &quot may be in the form of a visual, auditory and / or tactile (e.g., voice, sound, text, video, image, symbol, emoticon, hyperlink, Animation, various notices, motion, haptic feedback, and the like), and the like.
  • the tasks performed by the " Dialogue AI Service System &quot may include, for example, searching for and providing information, progressing payment, membership, or any other type of task, ). ≪ / RTI >
  • a 'conversation template' may be a template that includes all types of conversation patterns (flows of intents) between a customer and an agent that may occur on a customer response center system.
  • a 'conversation template' is defined for each of the above-described conversation patterns as a goal of the customer response center system, that is, a target response center system, And / or the sale, subscription, and subscription of services, but are not limited thereby, and may be a variety of goals that have a particular purpose and may be explicitly identified as achievable) .
  • FIG. 1 is a schematic representation of a customer response center system environment 100 that may be implemented in accordance with one embodiment of the present disclosure.
  • the system environment 100 includes a plurality of customer user terminals 102, a communication network 104, and a conversation understanding AI service server 106.
  • each of the plurality of customer user terminals 102 may be any user electronic device having wired or wireless communication capability.
  • Each of the customer user terminals 102 may be a variety of wired or wireless communication terminals including, for example, a smart phone, a tablet PC, a music player, a smart speaker, a desktop, a laptop, a PDA, a game console, a digital TV, a set- But not limited to, the < / RTI >
  • each of the customer user terminals 102 can communicate with the AI service server 106 via the communication network 104, that is, send and receive necessary information.
  • each of the customer user terminals 102 may receive customer user input in the form of voice and / or text from the outside, and may communicate with the AI service server 106 via the communication network 104. [ (E.g., providing a specific conversation response and / or performing a specific task) corresponding to the above customer user input obtained through communication with the customer user terminal 102 (and / or processing in the customer user terminal 102) .
  • the communication network 104 may comprise any wired or wireless communication network, e.g., a TCP / IP communication network.
  • the communication network 104 may include, for example, a Wi-Fi network, a LAN network, a WAN network, an Internet network, and the like, and the present disclosure is not limited thereto.
  • the communication network 104 may be any of a variety of wired or wireless, including, but not limited to, Ethernet, GSM, EDGE, CDMA, TDMA, OFDM, Bluetooth, VoIP, Wi- May be implemented using a communication protocol.
  • the conversation comprehension AI service server 106 may communicate with the customer user terminal 102 via the communication network 104.
  • the conversation understanding AI service server 106 receives customer user natural language input in the form of speech and / or text, for example, from the customer user terminal 102 via the communication network 104, The received natural language input may be processed based on the knowledge base model to determine the intent of the customer user.
  • the conversation understanding AI service server 106 may have a predetermined goal.
  • the conversation comprehension AI service server 106 may be a consultation center for the sale of certain products and / or services, It can be said that the target is achieved when the purchaser 102 purchases the corresponding product and / or service.
  • the conversation comprehension AI service server 106 includes a respective customer user terminal 102 that accesses the conversation comprehension AI service server 106 as a consultation center for inducing subscription or subscription, If you join or subscribe to this membership, you can assume that your goal is achieved.
  • the conversation understanding AI service server 106 may communicate with one or more agent terminals (not shown), not shown, in a wired or wireless manner.
  • voice and / or textual customer user natural language input from the customer user terminal 102 received on the conversation understanding AI service server 106 may be delivered to the agent terminal.
  • the conversation comprehension AI service server 106 may receive from the agent (e.g., a human consultant) via the agent terminal a natural language response of voice and / or text in response to the aforementioned customer user natural language input And may transmit the received natural language response to the customer user terminal 102 via the communication network 104.
  • the agent e.g., a human consultant
  • the conversation understanding AI service server 106 may generate operation results in accordance with the user intent and communicate it to the customer user terminal 102 without communication with the agent terminal. According to one embodiment of the present disclosure, the conversation understanding AI service server 106 can perform an operation corresponding to the determined user intent based on a prepared conversation flow management model. According to one embodiment of the present disclosure, each action performed by the AI service server 106 may be an interaction response and / or task performance, e.g., corresponding to an intent of each user.
  • the conversation understanding AI service server 106 may accumulate a plurality of conversation records sent and received between each of the customer user terminals 102 and the conversation understanding AI service server 106.
  • each conversation record is associated with a target of the conversation comprehension AI service server 106 on one communication session established between the customer user terminal 102 and the conversation comprehension AI service server 106 (E.g., natural language inputs from the customer user terminals 102a-10n), responses from the agent terminal, or system responses by the conversation comprehension AI service server 106 Lt; / RTI >
  • the conversation comprehension AI service server 106 determines whether the conversation comprehension AI service server 106 has the same / similar domain as the AI service server 106, Multiple conversation records can be accumulated on other systems.
  • the conversation comprehension AI service server 106 receives each input / response (e.g., a customer user terminal 102a-10n ), A response from the agent terminal, or a system response by the conversation understanding AI service server 106).
  • the conversation comprehension AI service server 106 may have a predetermined goal, and each conversation record, that is, a customer user input from an associated customer user terminal 102a-10n that is transmitted and received on one communication session And a corresponding series of responses of the agent's terminal or system responses by the conversation comprehension AI service server 106 may each have a result of whether or not the goal of the conversation comprehension AI service server 106 has been achieved .
  • the conversation comprehension AI service server 106 may generate a plurality of conversation conversations with a predetermined number of conversation patterns (each conversation pattern is a predetermined pattern representing the flow of intents, ), Respectively.
  • the conversation comprehension AI service server 106 may record the number of times the goal was achieved and the number of times the goal was not achieved for each conversation pattern, .
  • the conversation understanding AI service server 106 associates the above-described conversation patterns with a goal achievement probability (or success and failure times) for each conversation pattern, And a template of conversation patterns for the conversation comprehension AI service server 106, including both the goal achievement probabilities.
  • one of the customer user terminals 102 accesses the conversation comprehension AI service server 106 to establish a communication session over the communication network 104, It is possible to determine an optimum conversation pattern after the specific point in time to improve the target achievement probability at each point in the course of conversation.
  • the conversation understanding AI service server 106 can also determine the optimal conversation pattern at each point in the conversation progression as described above, and at the same time, the conversation comprehension AI service server 106 ) Can be determined.
  • the conversation comprehension AI service server 106 determines whether or not a specific input at a specific point in time (e.g., at a point in time when a specific input has occurred in an ongoing conversation, , A series of intents that have occurred between the customer user terminal 102 and the conversation AI service server 106 until reaching that point in time (intents corresponding to the input / responses) ), And based on the template of the conversation patterns generated in the above, it is possible to grasp the conversation patterns that can be developed in the future, that is, conversation patterns that can be generated in the future.
  • the conversation understanding AI service server 106 recognizes the conversation patterns that can be generated in the future and then determines the target achieving probability (the success rate determined by the number of successes of the target achievement and the number of failures of the target achievement of each conversation pattern) . According to one embodiment of the present disclosure, the conversation understanding AI service server 106 compares the target achievement probabilities of the possible conversation patterns after the specific point in time, As shown in FIG. According to one embodiment of the present disclosure, the conversation comprehension AI service server 106 may also determine, based on the number of successes and failures of the goal achievement for all of the future possible conversation patterns, , It is possible to determine the target achievement prediction probability at the specific time point.
  • FIG. 2 is a functional block diagram that schematically illustrates the functional configuration of the customer user terminal 102 shown in FIG. 1, according to one embodiment of the present disclosure.
  • the customer user terminal 102 includes a user input receiving module 202, a sensor module 204, a program memory module 206, a processing module 208, a communication module 210, (212).
  • the user input receiving module 202 is configured to receive various types of input from a user, such as natural language input (such as voice input and / or text input, and additionally other types of input Can be received.
  • the user input receiving module 202 includes, for example, a microphone and an audio circuit, and can acquire a user voice input signal through a microphone and convert the obtained signal into audio data.
  • the user input receiving module 202 may include various types of input devices such as various pointing devices such as a mouse, joystick, trackball, keyboard, touch panel, touch screen, stylus, , And can acquire a text input and / or a touch input signal inputted from a user through these input devices.
  • the user input received at the user input receiving module 202 may be associated with performing certain tasks, such as performing certain applications or retrieving certain information, It is not. According to another embodiment of the present disclosure, the user input received at the user input receiving module 202 may require only a simple conversation response, regardless of any application execution or retrieval of information. According to another embodiment of the present disclosure, the user input received at the user input receiving module 202 may relate to a simple statement for unilateral communication.
  • the sensor module 204 comprises one or more different types of sensors, and through these sensors, status information of the customer user terminal 102, such as the physical Status, software and / or hardware status, or information regarding the environmental conditions of the customer user terminal 102, and the like.
  • the sensor module 204 may include an optical sensor, for example, and may sense the ambient light condition of the customer user terminal 102 via the optical sensor.
  • the sensor module 204 may include, for example, a movement sensor and may sense movement of the corresponding customer user terminal 102 via the movement sensor.
  • the sensor module 204 includes, for example, a velocity sensor and a GPS sensor, and through these sensors, the position and / or orientation of the corresponding customer user terminal 102 may be sensed. It should be noted that, according to another embodiment of the present disclosure, the sensor module 204 may include other various types of sensors, including temperature sensors, image sensors, pressure sensors, touch sensors, and the like.
  • the program memory module 206 may be any storage medium that stores various programs that may be executed on the customer user terminal 102, such as various application programs and associated data, and the like.
  • program memory module 206 may include one or more applications, such as a telephone dialer application, an email application, an instant messaging application, a camera application, a music playback application, a video playback application, an image management application, , And data related to the execution of these programs.
  • program memory module 206 may be configured to include volatile or nonvolatile memory of various types such as DRAM, SRAM, DDR RAM, ROM, magnetic disk, optical disk, flash memory, .
  • the processing module 208 may communicate with each component module of the customer user terminal 102 and perform various operations on the customer user terminal 102. According to one embodiment of the present disclosure, the processing module 208 can drive and execute various application programs on the program memory module 206. [ According to one embodiment of the present disclosure, the processing module 208 may receive signals obtained from the user input receiving module 202 and the sensor module 204, if necessary, and perform appropriate processing on these signals have. According to one embodiment of the present disclosure, the processing module 208 may, if necessary, perform appropriate processing on signals received from the outside via the communication module 210.
  • the communication module 210 enables the customer user terminal 102 to communicate with the conversation understanding AI service server 106 via the communication network 104 of FIG.
  • the communication module 210 may be configured to communicate with a user terminal such as, for example, a user input receiving module 202 and a sensor module 204 via a communication network 104, To be transmitted to the server 106.
  • the communication module 210 may provide a response including a natural language response in the form of various signals, e.g., voice and / or text, received from the conversation understanding AI service server 106 via, for example, Signals, various control signals, and the like, and can perform appropriate processing according to a predetermined protocol.
  • the response output module 212 may output a response corresponding to a user input in various forms, such as time, audible and / or tactile.
  • the response output module 212 includes various display devices, such as a touch screen based on technology such as LCD, LED, OLED, QLED, etc., Such as text, symbols, video, images, hyperlinks, animations, various notices, etc., to the user.
  • the response output module 212 includes a speaker or a headset, for example, and provides an audible response, e.g., voice and / or acoustic response, can do.
  • the response output module 212 includes a motion / haptic feedback generator, through which a tactile response, e.g., motion / haptic feedback, can be provided to the user. It should be appreciated that, in accordance with one embodiment of the present disclosure, the response output module 212 may concurrently provide any combination of two or more of a text response, a voice response and a motion / haptic feedback corresponding to a user input.
  • FIG. 3 is a functional block diagram that schematically illustrates the functional configuration of the AI service server 106 of FIG. 1 in accordance with one embodiment of the present disclosure.
  • the conversation understanding AI service server 106 includes a communication module 302, a dialog / task processing section 304, a conversation record accumulation section 306, and a dialog template creation / storage section 308 .
  • the communication module 302 is configured to communicate with the AI service server 106 via the communication network 104, in accordance with any wired or wireless communication protocol, To communicate with a terminal (not shown).
  • the communication module 302 is capable of receiving, via the communication network 104, voice input and / or text input, etc., received from the customer user terminal 102, have.
  • the communication module 302 may communicate with the customer user terminal 102 via the communication network 104 with or without voice input and / or text input from the user, The status information of the customer user terminal 102 transmitted from the customer user terminal 102 can be received.
  • the state information may include various state information (e.g., the physical state of the customer user terminal 102) associated with the customer user terminal 102 at the time of speech input from the user and / Software and / or hardware status of the customer user terminal 102, environmental status information around the customer user terminal 102, etc.).
  • the communication module 302 may also include an interaction response (e.g., a natural-language interaction response in the form of voice and / or text) generated in response to the received customer user input and / May perform the appropriate actions necessary to communicate the signal, via the communication network 104, to the customer user terminal 102.
  • the dialog / task processing unit 304 receives user natural language input from the customer user terminal 102 via the communication module 302, and based on predetermined knowledge base models prepared in advance The intent of the user corresponding to the user natural language input can be determined by processing this. According to one embodiment of the present disclosure, the dialog / task processing unit 304 may also provide an action consistent with the determined user ' s tent, e.g., appropriate dialog response and / or task performance.
  • the conversation / task processing unit 304 acquires the conversation history up to now and the conversation understanding AI service server 106 By referring to the template, it is possible to grasp the dialog patterns that can be generated in the future, and to determine the target achievement probability in each of the dialog patterns. According to one embodiment of the present disclosure, the dialog / task processing unit 304 compares the determined target achievement probabilities for each of the possible dialog patterns after the specific point in time, Can be determined by the dialog pattern of FIG.
  • the conversation / task processing unit 304 also calculates a target achievement prediction probability at the corresponding point in time based on the number of times of success and the number of failures of the goal achievement with respect to all of the conversation patterns that can be generated in the future Can be determined.
  • the dialog / task processing unit 304 can provide a response according to the determined optimal dialog pattern as a response corresponding to the above-described user natural language input, for example, as a natural language in voice or text form have.
  • the dialog / task processing unit 304 provides a response to the consultant terminal (not shown) according to the determined optimal dialog pattern as a response corresponding to the user natural language input described above, Counselors on the counselor's terminal can refer to them.
  • the conversation record accumulation unit 306 includes a conversation comprehension AI service server 106 and a customer user terminal 102, which are obtained on the conversation comprehension AI service server 106 in Fig. 3 (E.g., each conversation record is made up of inputs from customer user terminals 102a-10n and responses from an agent terminal or system responses by conversation comprehension AI service server 106) And may include a series of conversation flow records).
  • the conversation template creation / storage unit 308 analyzes each conversation record on the conversation record accumulation unit 306 and stores each input / response (e.g., (E.g., input from an agent terminal 102a-10n, response from an agent terminal, or system response by a conversation understanding AI service server 106) to one of predetermined predetermined intents.
  • the conversation template creation / storage unit 308 performs keyword analysis on each input / response of each conversation record on the conversation record storage unit 306, for example, May be classified into one of the predetermined intents.
  • the conversation understanding AI service server 106 determines the intent of each input / response on the conversation record for each conversation record on the conversation record storage unit 306, as described above And thereby change to a sequence of predetermined intents corresponding to the respective conversation record.
  • the conversation template creation / storage unit 308 stores the conversation records accumulated on the conversation record storage unit 306 in a predetermined number of dialog patterns (predetermined Pattern), respectively.
  • each conversation record may have its own outcome as to the predetermined goal of the conversation comprehension AI service server 106, i. E.
  • the dialog template generating / storing unit 308 can record the number of times the target is achieved and the number of times that the target is not achieved for each conversation pattern, and acquires and records the probability that the target task of the conversation pattern is achieved arithmetically can do.
  • the conversation template creation / storage unit 308 associates each of the generated conversation patterns with the goal achievement probability (or success and failure times) for each conversation pattern, And generate and store a template for the conversation comprehension AI service server 106, which includes both conversation patterns and goal fulfillment probabilities.
  • the conversation template creation / storage unit 308 generates a conversation template having a plurality of conversation patterns, each of which includes conversation patterns whose occurrence count exceeds a predetermined reference value, And generate and store a template of dialog patterns for the service server 106.
  • the dialog template generating / storing unit 308 may include a predetermined display device, visualizes a template of the generated dialog patterns, , The disclosure of which is not so limited.
  • FIG. 4 is a functional block diagram schematically illustrating the functional configuration of the dialog / task processing unit 304 of FIG. 3, according to one embodiment of the present disclosure.
  • Task processing unit 304 includes a Speech-To-Text (STT) module 402, a Natural Language Understanding (NLU) module 404, a user database 406 A dialogue understanding knowledge base 408, a dialogue management module 410, a dialogue generation module 412, and a speech-to-speech (TTS) module 414.
  • STT Speech-To-Text
  • NLU Natural Language Understanding
  • TTS speech-to-speech
  • the STT module 402 is capable of receiving speech input during user input received via communication module 302 and converting the received speech input into text data based on pattern matching, have.
  • the STT module 402 may extract a feature from a user's speech input to generate a feature vector sequence.
  • the STT module 402 may be implemented using a DTW (Dynamic Time Warping) method, an HMM model (Hidden Markov Model), a GMM model (Gaussian-Mixture Mode), a deep neural network model, For example, a sequence of words, based on various statistical models of the speech recognition results.
  • the STT module 402 may refer to each user characteristic data of the user database 406, described below, when converting the received voice input into text data based on pattern matching .
  • the NLU module 404 may receive text input from the communication module 302 or the STT module 402. According to one embodiment of the present disclosure, the textual input received at the NLU module 404 may be transmitted to the user user terminal 102 via the user text input or communication module (e.g., 302 may be a text recognition result, e.g., a sequence of words, generated by the STT module 402 from the user speech input received at. According to one embodiment of the present disclosure, the NLU module 404 may be configured to receive status information associated with the user input, such as with or after receipt of the text input, such as the status of the customer user terminal 102 Information and the like can be received.
  • the NLU module 404 may be configured to receive status information associated with the user input, such as with or after receipt of the text input, such as the status of the customer user terminal 102 Information and the like can be received.
  • the status information may include various status information (e.g., the physical (physical) information of the customer user terminal 102) related to the customer user terminal 102 at the time of user input and / State of the software, and / or hardware status, environmental condition information around the customer user terminal 102, etc.).
  • various status information e.g., the physical (physical) information of the customer user terminal 102 related to the customer user terminal 102 at the time of user input and / State of the software, and / or hardware status, environmental condition information around the customer user terminal 102, etc.
  • the NLU module 404 may map the received text input to one or more user-defined intents based on the dialog understanding knowledge base 408. Where the user intent may be associated with a series of operations (s) that can be understood and performed by the AI service server 106 of the conversation understanding according to the user's tent. According to one embodiment of the present disclosure, the NLU module 404 may refer to the status information described above in mapping the received textual input to one or more user intents. According to one embodiment of the present disclosure, the NLU module 404 may refer to each user characteristic data of the user database 406, described below, in mapping the received text input to one or more user intents.
  • the user database 406 may be a database that stores and manages characteristic data for each user.
  • the user database 406 may include, for example, previous conversation history of the user for each user, pronunciation feature information of the user, user lexical preference, location of the user, And may include various user-specific information.
  • the STT module 402 may determine each user characteristic data of the user database 406, e.g., each user-specific pronunciation characteristic, , More accurate text data can be obtained.
  • the NLU module 404 may determine a more accurate user tent determination by referring to each user characteristic data of the user database 406, e.g., characteristics or contexts for each user, can do.
  • a user database 406 for storing and managing characteristic data for each user is shown as being placed in the conversation understanding AI service server 106, but this disclosure is not limited thereto.
  • a user database that stores and manages characteristic data for each user may be present at, for example, the customer user terminal 102 and may include a customer user terminal 102 and a conversation comprehension AI service server 106. [ As shown in FIG.
  • the conversation understanding knowledge base 408 may include, for example, a predefined ontology model.
  • an ontology model can be represented, for example, in a hierarchical structure between nodes, each node having an "intent” node corresponding to the user's intent or a &Quot; Attributes “ node that is linked directly to an " Attributes “node or a " Attributes” node of an "Attributes”
  • the " intent "node and the" attribute "nodes directly or indirectly linked to the" intent "node can constitute one domain and the ontology comprises a set of such domains .
  • the conversation understanding knowledge base 308 includes, for example, domains corresponding to all intents that can be understood by the conversation understanding AI service server 106 and perform corresponding actions .
  • the ontology model can be dynamically changed by addition or deletion of nodes, or modification of relations between nodes.
  • the intent nodes and attribute nodes of each domain in the ontology model may be associated with words and / or phrases associated with the corresponding user's tent or attributes, respectively.
  • the conversation understanding knowledge base 408 includes an ontology model 408, which may include an ontology model, for example, in a lexical dictionary form (specifically, , And the NLU module 404 may determine the user intent based on the ontology model implemented in the lexical dictionary form.
  • the NLU module 404 upon receipt of a textual input or sequence of words, can determine which nodes in a domain within each of the words in the sequence are associated with which nodes in the ontology model, Based on such a determination, it is possible to determine the corresponding domain, i. E. The user tent.
  • the conversation management module 410 may generate a corresponding series of operational flows in accordance with the user ' s tent determined by the NLU module 404.
  • the conversation management module 410 may be configured to perform any action (e.g., based on the user's intent received from the NLU module 404) based on a predetermined conversation flow management model E.g., what dialog response and / or task execution should be performed, and generate a corresponding detailed action flow.
  • the dialog management module 410 when the user intent is determined, refers to the previous conversation history and the template for the conversation understanding AI service server 106 described above, It is possible to grasp the conversation patterns, and to determine and provide the target achievement prediction probability at that point in time. According to one embodiment of the present disclosure, when the user intent is determined, the dialog management module 410 refers to the previous conversation history and the template for the conversation understanding AI service server 106 described above, It is possible to grasp the conversation patterns and to determine the target achieving probability in each of the conversation patterns. According to one embodiment of the present disclosure, the dialogue management module 410 compares the determined goal achievement probabilities for each of the possible dialog patterns that occur after the specific point in time, It is possible to determine the optimal dialog pattern in FIG.
  • the conversation management module 410 determines whether to perform an action flow (e.g., any conversation response and / or task performance) as to which action to perform based on the determined optimal conversation pattern A flow relating to whether or not to do so).
  • an action flow e.g., any conversation response and / or task performance
  • the dialog generation module 412 may generate the necessary dialog response based on the operation flow generated by the dialogue management module 410.
  • the dialog generation module 412 is configured to generate user interaction data (e.g., user's previous conversation history, user's pronunciation feature information, Lexical preference, user's location, set language, contact / friend list, previous user conversation history for each user, etc.).
  • the TTS module 414 may receive an interactive response that is generated by the dialog generation module 412 to be transmitted to the customer user terminal 102.
  • the conversation response received at the TTS module 414 may be a natural word or a sequence of words having a textual form.
  • the TTS module 414 may convert the input of the received textual form into speech form, according to various types of algorithms.
  • FIG. 5 is an exemplary operational flow diagram performed by the dialog template creation / storage 306 of FIG. 3, in accordance with one embodiment of the present disclosure.
  • the conversation template creation / storage unit 308 creates a conversation template for each of the conversation records collected in any of various ways (specifically, for each entry of each conversation record, e.g., for each sentence or phrase of each intent unit) Records) can be analyzed.
  • the dialog template generating / storing unit 308 analyzes each input record on each conversation record according to a predetermined criterion and classifies it into one of predetermined intent groups.
  • the above input may be obtained, for example, from each conversation record sent and received between the conversation comprehension AI service server 106 and the customer user terminal 102, respectively, According to one embodiment of the present disclosure, the above input may be obtained from conversation records collected by any other method.
  • the dialog template creation / storage unit 308 creates, based on the analysis result at step 502, a series of predetermined intents corresponding to each conversation record, for example, It is possible to generate a predetermined dialog pattern.
  • the conversation template creation / storage unit 308 groups the conversation records corresponding to the same conversation pattern, and for each conversation record belonging to the group in the same group, It is possible to determine the number of the goal achievement success conversation records and the number of the goal attainment failure conversation records depending on the result about the goal of the server 106, that is, success or failure.
  • step 508 the conversation template creation / storage unit 308 associates the number of goal achievement / failure conversation records (or the goal achievement probability) for each of the generated conversation patterns with each other, And a number of goals achievement / failure conversation records (or goal achievement probabilities) associated with each conversation pattern.
  • step 510 the conversation template creation / storage unit 308 visualizes the number of conversation patterns stored in step 508 and the number of success / failure conversation records for each conversation pattern, and displays And this disclosure is not so limited.
  • FIG. 6 is a diagram conceptually showing an example of a template 600 for the conversation understanding AI service server 106. As shown in FIG.
  • the patterns of conversation patterns that is, the sequence of intent flows that can be performed on the conversation comprehension AI service server 106, included in the template 600, can be classified into nine categories.
  • Each of the rows of the dialog pattern column represents the intent of the intent
  • each row of the dialog pattern column represents the intent of the intent, as shown in the rows of the dialog pattern column.
  • each conversation pattern is also associated with a number of successes and failures, and a corresponding success rate. For example, in the case of the first row, the first row has a pattern of A-> B-> C-> D- > E among the conversation patterns, , So the success rate is indicated as 0.7.
  • the template can be configured to include only the dialog patterns whose occurrence count exceeds a predetermined reference value (for example, 30), and in this case, A-> D-> It should be noted that the pattern C-> K-> G can be excluded from the template.
  • FIG. 6 is merely a conceptual illustration of an extremely simplified dialog pattern to aid understanding of the embodiments of the present disclosure, and is not intended to limit the present disclosure. It should be noted that according to another embodiment of the present disclosure, various types of dialog patterns may appear in various forms.
  • FIG. 7 is an exemplary operational flow diagram performed by the dialog / task processing unit 304 of FIG. 3, in accordance with one embodiment of the present disclosure.
  • the dialog / task processing unit 304 may, at step 702, receive a user natural language input from the customer user terminal 102 of FIG. Then, at step 704, the user natural language input received above may be processed based on predetermined knowledge base models previously prepared to determine the intent of the user corresponding to the user natural language input.
  • the dialog / task processing unit 304 refers to the previous conversation history and a template (for example, the template 600 of FIG. 6) for the conversation understanding AI service server 106 So that future dialog patterns that can be generated can be obtained.
  • a template for example, the template 600 of FIG. 6
  • future dialog patterns that can be generated can be obtained.
  • the intent determined at step 704 is B and the previous conversation history is a pattern of A- > B
  • the previous conversation history is a pattern of A- > B
  • the dialog / task processing unit 304 may determine the target achievement probability of each of the dialog patterns obtained in step 706 (i.e., future dialog patterns).
  • the target achievement probability of each conversation pattern may be a success rate determined based on the number of successes of goal achievement and the number of failure of goal achievement with respect to the conversation pattern.
  • the procedure proceeds to step 710, and the dialog / task processing unit 304 compares the determined target achievement probability with respect to each of the possible dialog patterns to be generated in the future, It is possible to determine the optimum dialog pattern at the time.
  • the conversation / task processing unit 304 determines that the conversation history up to now is a pattern of A- > B, and that conversation patterns that can be generated in the future are 1, 2, 5, It is possible to determine that the two lines having the highest success rate among these are the optimal dialog pattern at the current point of time.
  • the dialog / task processing unit 304 determines whether the goal attainment of the entire conversation patterns (i.e., future possible dialog patterns)
  • the target achievement prediction probability at the time point can be determined based on the number of successes and the number of failures. According to one embodiment of the present disclosure, if 1, 2, 5, and 6 rows, respectively, were obtained as possible dialog patterns in the future, in step 706, the total number of successes in these rows was 242, Is 117 times, and the predicted probability of achieving the target at that point of time can be about 0.67.
  • a computer program according to an embodiment of the present disclosure may be stored in a storage medium readable by a computer processor or the like, for example, a non-volatile memory such as an EPROM, EEPROM, or flash memory device, a magnetic disk such as an internal hard disk and a removable disk, CDROM disks, and the like. Also, the program code (s) may be implemented in assembly language or machine language. All such modifications and variations that fall within the true spirit and scope of this disclosure are intended to be embraced by the following claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Machine Translation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

소정의 목표를 달성하기 위해, 복수의 사용자 단말 각각을 위한 자연어 대화를 처리하도록 구성된 대화 이해 AI 서비스 서버 상에서, 복수의 사용자 단말 중 하나의 사용자 단말과 대화 이해 AI 서비스 서버 사이의 대화 세션 진행 중 특정 시점에서 목표 달성 예측 확률을 결정하는 방법이 제공된다. 본 개시의 방법은, 특정 시점에서 사용자 단말로부터 자연어 입력을 수신하는 단계; 수신된 자연어 입력에 대응하는 인텐트를 결정하는 단계; 특정 시점에서의 대화 이력- 대화 이력은, 대화 세션 상에서 특정 시점까지 발생한 사용자 단말과 대화 이해 AI 서비스 서버 사이에 발생한 인텐트들의 흐름을 나타내며, 인텐트들의 흐름의 마지막에 결정된 인텐트가 포함됨 -을 결정하는 단계; 대화 이력과, 대화 이해 AI 서비스 서버를 위하여 미리 준비된 템플릿- 템플릿은, 각 대응하는 인텐트들의 흐름을 나타내는 대화 패턴을 복수 개 포함하고, 각 대화 패턴마다 목표 달성 성공 횟수 및 목표 달성 실패 횟수를 가짐 -에 기초하여, 대화 패턴들 중에서 대화 이력을 포함하는 하나 이상의 대화 패턴을 결정하는 단계; 및 결정된 하나 이상의 대화 패턴의 각 대응하는 목표 달성 성공 횟수 및 목표 달성 실패 횟수에 기초하여 특정 시점에서의 목표 달성 예측 확률을 결정하는 단계를 포함한다.

Description

대화 이해 AI 서비스 시스템과 연관된 대화 세션 중의 특정 시점에서 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법, 목표 달성 예측 확률을 결정하는 방법, 및 컴퓨터 판독가능 기록 매체
본 개시는, 대화 이해 AI 서비스 시스템에 의한 대화 응답의 결정에 관한 것이며, 보다 구체적으로는 소정의 목표 작업을 갖는 특정 도메인의 대화 이해 AI 서비스 시스템 상에서 고객들과의 사이에 발생하는 대화의 진행 경과에 따라 각 시점에서 위 목표의 달성을 위한 최적의 대화 응답을 결정하는 방법 등에 관한 것이다.
근래, 인공지능 분야, 특히 자연어 이해 분야의 기술 발전에 따라, 사용자에 의한 음성 및/또는 텍스트 형태의 자연어 입력을 수신 및 이해하고, 그에 따라 필요한 동작을 수행할 수 있는 대화 이해 AI 서비스 시스템의 개발 및 활용이 점차 늘어나고 있다. 한편, 최근에는, 각 기업이나 기관 등은 대부분 고객 응답 센터를 운영하는데, 이러한 고객 응답 센터를 위하여 대화 이해 AI 서비스 시스템이 구축되는 경우가 늘어나고 있다. 이들 고객 응답 센터는 저마다 대응하는 소정의 목표 작업을 갖는 경우가 많다(예컨대, 소정의 제품 및/또는 서비스 판매 센터의 경우 고객이 해당 제품이나 서비스를 구매하는 것 등). 고객이 고객 응답 센터에 액세스하여 해당 고객 응답 센터의 목표 작업에 도달하는 비율(즉, 목표 달성 확률)을 이른바 전환율(conversion rate)이라 하는데, 고객 응답 센터의 운영자는, 당연히, 이 전환율을 높이기를 희망하며, 이를 위한 다양한 방법을 모색한다. 고객 응답 센터의 상담원(사람 상담원 또는 대화 이해 AI 서비스 시스템 상담원)은 그 고객 응답 센터에 액세스 해 온 고객과 대화를 주고받으면서 해당 고객이 그 고객 응답 센터의 목표 작업에 도달하도록 유도를 할 것이다.
따라서, 고객과 상담원(사람 상담원 또는 대화 이해 AI 서비스 시스템 상담원) 간의 대화 기록들을 분석하여 그로부터 고객 응답 센터의 전환율 등을 높일 수 있는 대화 패턴을 찾아낼 필요가 있다.
본 개시의 일 특징에 의하면, 복수의 사용자 단말 각각을 위한 자연어 대화를 처리하도록 구성된 대화 이해 AI 서비스 서버 상에서, 복수의 사용자 단말 중 하나의 사용자 단말과 대화 이해 AI 서비스 서버 사이의 대화 세션 진행 중 특정 시점에서, 소정의 목표 달성을 위한 목표 달성 예측 확률을 결정하는 방법이 제공된다. 본 개시의 방법은, 특정 시점에서 사용자 단말로부터 자연어 입력을 수신하는 단계; 수신된 자연어 입력에 대응하는 인텐트를 결정하는 단계; 특정 시점에서의 대화 이력- 대화 이력은, 대화 세션 상에서 특정 시점까지 발생한 사용자 단말과 대화 이해 AI 서비스 서버 사이에 발생한 인텐트들의 흐름을 나타내며, 인텐트들의 흐름의 마지막에 결정된 인텐트가 포함됨 -을 결정하는 단계; 대화 이력과, 대화 이해 AI 서비스 서버를 위하여 미리 준비된 템플릿- 템플릿은, 각 대응하는 인텐트들의 흐름을 나타내는 대화 패턴을 복수 개 포함하고, 각 대화 패턴마다 목표 달성 성공 횟수 및 목표 달성 실패 횟수를 가짐 -에 기초하여, 대화 패턴들 중에서 대화 이력을 포함하는 하나 이상의 대화 패턴을 결정하는 단계; 및 결정된 하나 이상의 대화 패턴의 각 대응하는 목표 달성 성공 횟수 및 목표 달성 실패 횟수에 기초하여 특정 시점에서의 목표 달성 예측 확률을 결정하는 단계를 포함한다.
본 개시의 일 실시예에 의하면, 특정 시점에서의 목표 달성 예측 확률은, 결정된 하나 이상의 대화 패턴의 각 대응하는 목표 달성 성공 횟수 및 목표 달성 실패 횟수의 총 합에 대한 목표 달성 성공 횟수의 총 합의 비율에 대응할 수 있다.
본 개시의 일 실시예에 의하면, 템플릿은, 복수 개의 대화 패턴 각각마다, 각 대화 패턴의 목표 달성 성공 횟수 및 목표 달성 실패 횟수에 기초하여 결정된 성공률을 가질 수 있다.
본 개시의 다른 특징에 의하면, 복수의 사용자 단말 각각을 위한 자연어 대화를 처리하도록 구성된 대화 이해 AI 서비스 서버 상에서, 복수의 사용자 단말 중 하나의 사용자 단말과 대화 이해 AI 서비스 서버 사이의 대화 세션 진행 중 특정 시점에서 소정의 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법이 제공된다. 본 개시의 방법은, 특정 시점에서 사용자 단말로부터 자연어 입력을 수신하는 단계; 수신된 자연어 입력에 대응하는 인텐트를 결정하는 단계; 특정 시점에서의 대화 이력- 대화 이력은, 대화 세션 상에서 특정 시점까지 발생한 사용자 단말과 대화 이해 AI 서비스 서버 사이에 발생한 인텐트들의 흐름을 나타내며, 인텐트들의 흐름의 마지막에 결정된 인텐트가 포함됨 -을 결정하는 단계; 대화 이력과, 대화 이해 AI 서비스 서버를 위하여 미리 준비된 템플릿- 템플릿은, 각 대응하는 인텐트들의 흐름을 나타내는 대화 패턴을 복수 개 포함하고, 각 대화 패턴마다 목표 달성 성공 횟수 및 목표 달성 실패 횟수를 가짐 -에 기초하여, 대화 패턴들 중에서 대화 이력을 포함하는 하나 이상의 대화 패턴을 결정하는 단계; 결정된 하나 이상의 대화 패턴 각각에 대해, 각 대화 패턴의 목표 달성 성공 횟수 및 목표 달성 실패 횟수에 기초하여 결정된 목표 달성 확률을 판정하는 단계; 및 결정된 하나 이상의 대화 패턴 중 가장 높은 목표 달성 확률을 갖는 대화 패턴을, 최적의 대화 패턴으로 결정하는 단계를 포함한다.
본 개시의 일 실시예에 의하면, 결정된 최적의 대화 패턴으로부터 대화 세션 상에서의 다음 대화 응답을 선택하는 단계를 더 포함할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버는, 소정의 디스플레이 장치를 포함하고, 디스플레이 장치를 통하여 결정된 최적의 대화 패턴 또는 최적의 대화 패턴 상에서 선택된 다음 대화 응답이 제시될 수 있다.
본 개시의 일 실시예에 의하면, 목표는, 소정의 제품 및/또는 서비스 판매, 회원 가입, 및 구독 신청 중 적어도 하나와 연관될 수 있다.
본 개시의 일 실시예에 의하면, 복수의 대화 기록을 수집하는 단계- 각 대화 기록은, 목표와 연관되며, 하나의 통신 세션을 통해 발생하는 일련의 서로 연관된 자연어 입력들 및 응답들을 포함하고, 목표의 달성 여부의 결과를 가짐 -; 각 대화 기록마다, 대화 기록의 자연어 입력들 및 응답들 각각에 대응하는 각 인텐트를 결정하고, 대응하는 일련의 인텐트들의 흐름을 생성하는 단계; 각 대화 기록을, 대화 기록에 대응하여 생성된 인텐트들의 흐름에 따라, 소정의 대화 패턴들 중 하나의 대화 패턴에 대응시키는 단계 - 대화 패턴은, 대화 패턴에 대응되는 대화 기록들에 관한, 목표의 달성 여부의 결과들에 따라, 대화 패턴에 대응한 목표의 달성 확률을 가짐 -; 및 복수의 대화 기록을 대화 패턴들 중 하나의 대화 패턴에 대응시킨 결과에 기초하여, 대화 템플릿을 생성하는 단계를 더 포함할 수 있다.
본 개시의 다른 특징에 의하면, 하나 이상의 명령어가 수록된 컴퓨터 판독가능 기록매체로서, 하나 이상의 명령어는 컴퓨터에 의해 실행되는 경우, 컴퓨터로 하여금 전술한 방법들 중 어느 하나의 방법을 수행하도록 하는, 컴퓨터 판독가능 기록 매체가 제공된다.
본 개시의 실시예에 의하면, 고객과 상담원 간에 기 발생한 대화 기록들을 분석하여 그로부터 고객 응답 센터에서 발생할 수 있는 각종 대화 패턴과 각 대화 패턴마다의 목표 달성 확률을 결정할 수 있다. 본 개시의 실시예에 의하면, 고객과 상담원 간의 대화 진행 경과 중의 각 시점에서 목표 달성 예측 확률을 제시할 수 있고, 목표 달성 확률을 향상시키기 위한 이후 최적의 대화 패턴을 결정할 수 있다. 따라서, 본 개시의 실시예에 의하면, 궁극적으로, 고객 응답 센터의 전환율을 향상시킬 수 있다.
도 1은, 본 개시의 일 실시예에 따라 구현될 수 있는, 고객 응답 센터 시스템 환경(100)을 개략적으로 도시한 도면이다.
도 2는, 본 개시의 일 실시예에 따른, 도 1의 고객 사용자 단말(102)의 기능적 구성을 개략적으로 도시한 기능 블록도이다.
도 3은, 본 개시의 일 실시예에 따른, 도 1의 대화 이해 AI 서비스 서버(106)의 기능적 구성을 개략적으로 도시한 기능 블록도이다.
도 4는, 본 개시의 일 실시예에 따른, 도 3의 대화/태스크 처리부(304)의 기능적 구성을 개략적으로 도시한 기능 블록도이다.
도 5는, 본 개시의 일 실시예에 따라, 도 3의 대화 템플릿 생성/저장부(308)에 의해 수행되는 예시적 동작 흐름도이다.
도 6은, 대화 이해 AI 서비스 서버(106)를 위한 템플릿(600)의 일 예를 개념적으로 도시한 도면이다.
도 7은, 본 개시의 일 실시예에 따라, 도 3의 대화/태스크 처리부(304)에 의해 수행되는 예시적 동작 흐름도이다.
이하, 첨부 도면을 참조하여 본 개시의 실시예에 관하여 상세히 설명한다. 이하에서는, 본 개시의 요지를 불필요하게 흐릴 우려가 있다고 판단되는 경우, 이미 공지된 기능 및 구성에 관한 구체적인 설명을 생략한다. 또한, 이하에서 설명하는 내용은 어디까지나 본 개시의 일 실시예에 관한 것일 뿐 본 개시가 이로써 제한되는 것은 아님을 알아야 한다.
본 개시에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용되는 것으로 본 개시를 한정하려는 의도에서 사용된 것이 아니다. 예를 들면, 단수로 표현된 구성요소는 문맥상 명백하게 단수만을 의미하지 않는다면 복수의 구성요소를 포함하는 개념으로 이해되어야 한다. 본 개시에서 사용되는 "및/또는"이라는 용어는, 열거되는 항목들 중 하나 이상의 항목에 의한 임의의 가능한 모든 조합들을 포괄하는 것임이 이해되어야 한다. 본 개시에서 사용되는 '포함하다' 또는 '가지다' 등의 용어는 본 개시 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것일 뿐이고, 이러한 용어의 사용에 의해 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하려는 것은 아니다.
본 개시의 실시예에 있어서 '모듈' 또는 '부'는 적어도 하나의 기능이나 동작을 수행하는 기능적 부분을 의미하며, 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다. 또한, 복수의 '모듈' 또는 '부'는, 특정한 하드웨어로 구현될 필요가 있는 '모듈' 또는 '부'를 제외하고는, 적어도 하나의 소프트웨어 모듈로 일체화되어 적어도 하나의 프로세서에 의해 구현될 수 있다.
본 개시의 실시예에 있어서 '대화 이해 AI 서비스 시스템'은, 사용자로부터 음성 형태의 자연어를 매개로 한 대화형 인터랙션을 통해, 사용자로부터 입력되는 자연어 입력(예컨대, 자연어로 된 사용자로부터의 명령, 진술, 요청, 질문 등)을 수신 및 해석하여 사용자의 인텐트(intent)를 알아내고, 그 알아낸 사용자의 인텐트에 기초하여 필요한 동작, 예컨대 적절한 대화 응답 및/또는 소정의 태스크 수행 등을 제공할 수 있는 임의의 정보 처리 시스템을 지칭할 수 있으며, 특정 형태로 제한되는 것은 아니다.
본 개시의 실시예에 있어서, '대화 이해 AI 서비스 시스템'에 의해 제공되는 대화 응답은 시각, 청각 및/또는 촉각 형태(예컨대, 음성, 음향, 텍스트, 비디오, 이미지, 기호, 이모티콘, 하이퍼링크, 애니메이션, 각종 노티스, 모션, 햅틱 피드백 등을 포함할 수 있으며, 이로써 제한되는 것은 아님) 등 다양한 형태로써 제공될 수 있음을 알아야 한다. 본 개시의 실시예에 있어서 '대화 이해 AI 서비스 시스템'에 의해 수행되는 태스크는, 예컨대 정보의 검색 및 제공, 결재의 진행, 회원 가입, 기타 소정 형태의 태스크(다만, 예시일 뿐이며 이로써 제한되는 것은 아님)를 포함할 수 있다.
본 개시의 실시예에 의하면, '대화 템플릿'은 고객 응답 센터 시스템 상에서 발생할 수 있는 고객과 상담원 간의 모든 유형의 대화 패턴(인텐트들의 흐름)을 포함하는 템플릿일 수 있다. 본 개시의 실시예에 의하면, '대화 템플릿'은 전술한 대화 패턴들 각각마다 고객 응답 센터 시스템의 목표, 즉 해당 고객 응답 센터 시스템이 고객과의 대화에 의해 달성하려는 목표(예컨대, 소정의 제품 및/또는 서비스의 판매, 회원 가입, 및 구독 신청 등을 포함할 수 있으나, 이로써 제한되지는 않으며, 특정 목적이 있고 그 달성 여부가 명시적으로 파악될 수 있는 다양한 목표들일 수 있음)의 달성 확률을 포함할 수 있다.
덧붙여, 달리 정의되지 않는 한 기술적 또는 과학적인 용어를 포함하여, 본 개시에서 사용되는 모든 용어들은 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의된 용어들은, 관련 기술의 문맥상 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 개시에서 명백하게 달리 정의하지 않는 한 과도하게 제한 또는 확장하여 해석되지 않는다는 점을 알아야 한다.
이하, 첨부된 도면을 참조하여, 본 개시의 실시예에 대해 구체적으로 설명하기로 한다.
도 1은, 본 개시의 일 실시예에 따라 구현될 수 있는, 고객 응답 센터 시스템 환경(100)을 개략적으로 도시한 도면이다. 도시된 바에 의하면, 시스템 환경(100)은, 복수의 고객 사용자 단말(102), 통신망(104), 및 대화 이해 AI 서비스 서버(106)를 포함한다.
본 개시의 일 실시예에 의하면, 복수의 고객 사용자 단말(102) 각각은 유선 또는 무선 통신 기능을 구비한 임의의 사용자 전자 장치일 수 있다. 고객 사용자 단말(102) 각각은, 예컨대 스마트 폰, 태블릿 PC, 뮤직 플레이어, 스마트 스피커, 데스크탑, 랩탑, PDA, 게임 콘솔, 디지털 TV, 셋탑박스 등을 포함한 다양한 유선 또는 무선 통신 단말일 수 있으며, 특정 형태로 제한되지 않음을 알아야 한다. 본 개시의 일 실시예에 의하면, 고객 사용자 단말(102) 각각은, 통신망(104)을 통해서, 대화 이해 AI 서비스 서버(106)와 통신, 즉 필요한 정보를 송수신할 수 있다. 본 개시의 일 실시예에 의하면, 고객 사용자 단말(102) 각각은, 외부로부터 음성 및/또는 텍스트 형태의 고객 사용자 입력을 수신할 수 있고, 통신망(104)을 통한 대화 이해 AI 서비스 서버(106)와의 통신(및/또는 고객 사용자 단말(102) 내 처리)을 통해 얻어진, 위 고객 사용자 입력에 대응한 동작 결과(예컨대, 특정 대화 응답의 제공 및/또는 특정 태스크의 수행 등)를 대응하는 고객 사용자에게 제공할 수 있다.
본 개시의 일 실시예에 의하면, 통신망(104)은, 임의의 유선 또는 무선 통신망, 예컨대 TCP/IP 통신망을 포함할 수 있다. 본 개시의 일 실시예에 의하면, 통신망(104)은, 예컨대 Wi-Fi망, LAN망, WAN망, 인터넷망 등을 포함할 수 있으며, 본 개시가 이로써 제한되는 것은 아니다. 본 개시의 일 실시예에 의하면, 통신망(104)은, 예컨대 이더넷, GSM, EDGE(Enhanced Data GSM Environment), CDMA, TDMA, OFDM, 블루투스, VoIP, Wi-MAX, Wibro 기타 임의의 다양한 유선 또는 무선 통신 프로토콜을 이용하여 구현될 수 있다.
본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 통신망(104)을 통해 고객 사용자 단말(102)과 통신할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 예컨대 통신망(104)을 통해 고객 사용자 단말(102)로부터 음성 및/또는 텍스트 형태의 고객 사용자 자연어 입력을 수신하고, 미리 준비된 지식베이스 모델에 기초해서 그 수신된 자연어 입력을 처리하여 고객 사용자의 인텐트(intent)를 결정할 수 있다.
본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 소정의 목표를 가질 수 있다. 예컨대, 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 소정의 제품 및/또는 서비스 판매를 위한 상담 센터로서 해당 대화 이해 AI 서비스 서버(106)에 액세스한 각 고객 사용자 단말(102)이 대응 제품 및/또는 서비스를 구매하는 경우를 목표가 달성된 것으로 할 수 있다. 본 개시의 다른 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 회원 가입 또는 구독 신청을 유도하기 위한 상담 센터로서 해당 대화 이해 AI 서비스 서버(106)에 액세스한 각 고객 사용자 단말(102)이 회원 가입 또는 구독 신청을 하는 경우를 목표가 달성된 것으로 할 수 있다.
본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 도시되지 않은 하나 이상의 상담원 단말(도시되지 않음)과 유선 또는 무선 방식으로 통신할 수 있다. 예컨대, 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106) 상에서 수신된 고객 사용자 단말(102)로부터의 음성 및/또는 텍스트 형태의 고객 사용자 자연어 입력이 상담원 단말로 전달될 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 상담원 단말을 통해 상담원(예컨대, 사람 상담 직원)으로부터, 전술한 고객 사용자 자연어 입력에 대한 음성 및/또는 텍스트 형태의 자연어 응답을 수신하고, 그 수신된 자연어 응답을 통신망(104)을 통해 고객 사용자 단말(102)로 전송할 수 있다.
본 개시의 다른 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 상담원 단말과의 통신 없이 스스로 사용자 인텐트에 부합하는 동작 결과를 생성하고 이를 고객 사용자 단말(102)로 제공할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 미리 준비된 대화 흐름 관리 모델에 기초해서 위 결정된 사용자 인텐트에 대응하는 동작을 수행할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)에 의해 수행되는 각각의 동작은, 예컨대 각 사용자의 인텐트에 대응하여 이루어지는 대화 응답 및/또는 태스크 수행일 수 있다.
본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 고객 사용자 단말(102) 각각과 대화 이해 AI 서비스 서버(106) 사이에 송수신된 각 대화 기록을 복수 개 축적할 수 있다. 본 개시의 일 실시예에 의하면, 각 대화 기록은, 고객 사용자 단말(102)과 대화 이해 AI 서비스 서버(106) 사이에 수립된 하나의 통신 세션 상에서, 대화 이해 AI 서비스 서버(106)의 목표와 관련하여 이루어지는 일련의 서로 연관된 자연어 입력들 및 응답들(예컨대, 고객 사용자 단말(102a-10n)로부터의 자연어 입력들과, 상담원 단말로부터의 응답들 또는 대화 이해 AI 서비스 서버(106)에 의한 시스템 응답들)을 포함할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 해당 대화 이해 AI 서비스 서버(106)에 의해 생성되지 않은, 그러나 해당 대화 이해 AI 서비스 서버(106)와 동일/유사한 도메인의 다른 시스템 상에서 발생한 대화 기록들을 복수 개 축적할 수 있다.
본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는 축적된 각 대화 기록(즉, 각 일련의 대화 흐름 기록)에 속한 각각의 입력/응답(예컨대, 고객 사용자 단말(102a-10n)로부터의 입력, 상담원 단말로부터의 응답 또는 대화 이해 AI 서비스 서버(106)에 의한 시스템 응답)에 대해 키워드 분석을 수행할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 전술한 바와 같이 키워드 분석을 통해 각 입력/응답을 미리 정해진 인텐트들 중 하나로 분류하고, 이를 통해 각각의 대화 기록을 일련의 인텐트들의 순차적 흐름으로 변경할 수 있다.
전술한 바와 같이, 대화 이해 AI 서비스 서버(106)는 소정의 목표를 가질 수 있는데, 각각의 대화 기록, 즉 하나의 통신 세션 상에서 송수신되는 서로 관련된 고객 사용자 단말(102a-10n)로부터의 고객 사용자 입력들과 그에 대응한 상담원 단말의 응답들 또는 대화 이해 AI 서비스 서버(106)에 의한 시스템 응답들의 일련의 흐름 각각은, 제각기 대화 이해 AI 서비스 서버(106)의 목표가 달성되었는지 여부의 결과를 가질 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 복수 개의 축적된 대화 기록들을 소정 수의 대화 패턴(각 대화 패턴은, 각각의, 인텐트들의 흐름을 나타내는 소정의 패턴임)들 중 하나로 각각 분류할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 각 대화 패턴마다, 목표가 달성된 횟수와 목표가 달성되지 못한 횟수를 기록할 수 있고, 해당 대화 패턴과 연관된 목표 달성 확률을 산술적으로 획득할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 전술한 대화 패턴들과, 각 대화 패턴마다의 목표 달성 확률(또는 성공 및 실패 횟수들)을 연관시키고, 이들 대화 패턴들 및 목표 달성 확률들을 모두 포함하는, 대화 이해 AI 서비스 서버(106)를 위한 대화 패턴들의 템플릿을 생성 및 저장할 수 있다. 본 개시의 다른 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 대화 패턴들 중 발생 횟수가 소정의 기준값을 넘는 대화 패턴들과 그에 대응하는 각 목표 달성 확률들을 포함하는, 대화 이해 AI 서비스 서버(106)를 위한 대화 패턴들의 템플릿을 생성 및 저장할 수 있다.
본 개시의 일 실시예에 의하면, 고객 사용자 단말(102) 중 하나가 대화 이해 AI 서비스 서버(106)에 액세스하여 통신망(104)을 통한 통신 세션을 수립한 후, 대화 이해 AI 서비스 서버(106)와 대화를 진행하는 중에 각 시점에서 목표 달성 확률을 향상시키기 위한 해당 특정 시점 이후의 최적의 대화 패턴을 결정할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는 또한 전술한 바와 같이 대화 진행 중의 각 시점에서 최적의 대화 패턴을 결정할 수 있을 뿐 아니라, 해당 시점에서 대화 이해 AI 서비스 서버(106)의 목표 달성 예측 확률을 결정할 수 있다.
구체적으로, 대화 이해 AI 서비스 서버(106)는, 대화의 특정 시점(예컨대, 대화가 시작된 이후 아직 대화가 종결되지 않아서 목표 달성 여부 역시 결정되지는 않은, 진행 중에 있는 대화에 있어서 특정 입력이 발생한 시점)에서 파악된 대화 이력, 즉 그 특정 시점에 도달하기까지 해당 고객 사용자 단말(102)과 대화 이해 AI 서비스 서버(106) 사이에서 발생한 일련의 인텐트들(입력/응답들에 대응하는 인텐트들)의 순차적 흐름을 이용하고, 앞서 생성된 대화 패턴들의 템플릿에 기초해서, 해당 대화의 진행이 향후 전개될 수 있는, 즉 향후 발생 가능한 대화 패턴들을 파악할 수 있다. 대화 이해 AI 서비스 서버(106)는, 향후 발생 가능한 대화 패턴들을 파악한 후, 그 대화 패턴들 각각에 있어서의 목표 달성 확률(각 대화 패턴의 목표 달성 성공 횟수 및 목표 달성 실패 횟수에 의해 결정된 성공률)을 판정할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 그 특정 시점 이후의 발생 가능한 대화 패턴들 각각의 목표 달성 확률을 비교하여, 목표 달성 확률이 가장 큰 대화 패턴을 그 시점에서의 최적의 대화 패턴으로 결정할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 또한, 전술한 템플릿을 기초로 파악된, 향후 발생 가능한 대화 패턴들 전체에 대한 목표 달성의 성공 횟수 및 실패 횟수에 기초하여, 해당 특정 시점에서의 목표 달성 예측 확률을 결정할 수 있다.
도 2는, 본 개시의 일 실시예에 따른, 도 1에 도시된 고객 사용자 단말(102)의 기능적 구성을 개략적으로 도시한 기능 블록도이다. 도시된 바에 의하면, 고객 사용자 단말(102)은, 사용자 입력 수신 모듈(202), 센서 모듈(204), 프로그램 메모리 모듈(206), 프로세싱 모듈(208), 통신 모듈(210), 및 응답 출력 모듈(212)을 포함한다.
본 개시의 일 실시예에 의하면, 사용자 입력 수신 모듈(202)은, 사용자로부터 다양한 형태의 입력, 예컨대 음성 입력 및/또는 텍스트 입력 등의 자연어 입력(및 부가적으로 터치 입력 등의 다른 형태의 입력)을 수신할 수 있다. 본 개시의 일 실시예에 의하면, 사용자 입력 수신 모듈(202)은, 예컨대 마이크로폰 및 오디오 회로를 포함하며, 마이크로폰을 통해 사용자 음성 입력 신호를 획득하고 획득된 신호를 오디오 데이터로 변환할 수 있다. 본 개시의 일 실시예에 의하면, 사용자 입력 수신 모듈(202)은, 예컨대 마우스, 조이스틱, 트랙볼 등의 각종 포인팅 장치, 키보드, 터치패널, 터치스크린, 스타일러스 등 다양한 형태의 입력 장치를 포함할 수 있고, 이들 입력 장치를 통해 사용자로부터 입력된 텍스트 입력 및/또는 터치 입력 신호를 획득할 수 있다. 본 개시의 일 실시예에 의하면, 사용자 입력 수신 모듈(202)에서 수신되는 사용자 입력은, 소정의 태스크 수행, 예컨대 소정의 애플리케이션 실행이나 소정 정보의 검색 등과 연관될 수 있으나, 본 개시가 이로써 제한되는 것은 아니다. 본 개시의 다른 실시예에 의하면, 사용자 입력 수신 모듈(202)에서 수신되는 사용자 입력은, 소정의 애플리케이션 실행이나 정보의 검색 등과는 무관하게 단순한 대화 응답 만을 필요로 하는 것일 수도 있다. 본 개시의 다른 실시예에 의하면, 사용자 입력 수신 모듈(202)에서 수신되는 사용자 입력은, 일방적 의사 전달을 위한 단순 진술에 관한 것일 수도 있다.
본 개시의 일 실시예에 의하면, 센서 모듈(204)은 하나 이상의 서로 다른 유형의 센서를 포함하고, 이들 센서를 통해 고객 사용자 단말(102)의 상태 정보, 예컨대 해당 고객 사용자 단말(102)의 물리적 상태, 소프트웨어 및/또는 하드웨어 상태, 또는 고객 사용자 단말(102)의 주위 환경 상태에 관한 정보 등을 획득할 수 있다. 본 개시의 일 실시예에 의하면, 센서 모듈(204)은, 예컨대 광 센서를 포함하고, 광 센서를 통해 해당 고객 사용자 단말(102)의 주변 광 상태를 감지할 수 있다. 본 개시의 일 실시예에 의하면, 센서 모듈(204)은, 예컨대 이동 센서를 포함하고, 이동 센서를 통해 해당 고객 사용자 단말(102)의 이동 상태 여부를 감지할 수 있다. 본 개시의 일 실시예에 의하면, 센서 모듈(204)은, 예컨대 속도 센서 및 GPS 센서를 포함하고, 이들 센서를 통해 해당 고객 사용자 단말(102)의 위치 및/또는 배향 상태를 감지할 수 있다. 본 개시의 다른 실시예에 의하면, 센서 모듈(204)은 온도 센서, 이미지 센서, 압력 센서, 접촉 센서 등을 비롯한 다른 다양한 형태의 센서를 포함할 수 있음을 알아야 한다.
본 개시의 일 실시예에 의하면, 프로그램 메모리 모듈(206)은, 고객 사용자 단말(102) 상에서 실행될 수 있는 각종 프로그램, 예컨대 각종 애플리케이션 프로그램 및 관련 데이터 등이 저장된 임의의 저장 매체일 수 있다. 본 개시의 일 실시예에 의하면, 프로그램 메모리 모듈(206)에는, 예컨대 전화 걸기 애플리케이션, 이메일 애플리케이션, 인스턴트 메시징 애플리케이션, 카메라 애플리케이션, 음악 재생 애플리케이션, 비디오 재생 애플리케이션, 이미지 관리 애플리케이션, 지도 애플리케이션, 브라우저 애플리케이션 등을 비롯한 다양한 애플리케이션 프로그램들과 이들 프로그램의 실행과 관련된 데이터들이 저장될 수 있다. 본 개시의 일 실시예에 의하면, 프로그램 메모리 모듈(206)은, DRAM, SRAM, DDR RAM, ROM, 자기 디스크, 광 디스크, 플래시 메모리 등 다양한 형태의 휘발성 또는 비휘발성 메모리를 포함하도록 구성될 수 있다.
본 개시의 일 실시예에 의하면, 프로세싱 모듈(208)은, 고객 사용자 단말(102)의 각 컴포넌트 모듈과 통신하고 고객 사용자 단말(102) 상에서 각종 연산을 수행할 수 있다. 본 개시의 일 실시예에 의하면, 프로세싱 모듈(208)은, 프로그램 메모리 모듈(206) 상의 각종 애플리케이션 프로그램을 구동 및 실행시킬 수 있다. 본 개시의 일 실시예에 의하면, 프로세싱 모듈(208)은, 필요한 경우, 사용자 입력 수신 모듈(202) 및 센서 모듈(204)에서 획득된 신호를 수신하고, 이들 신호에 관한 적절한 처리를 수행할 수 있다. 본 개시의 일 실시예에 의하면, 프로세싱 모듈(208)은, 필요한 경우, 통신 모듈(210)을 통해 외부로부터 수신되는 신호에 대해 적절한 처리를 수행할 수 있다.
본 개시의 일 실시예에 의하면, 통신 모듈(210)은, 고객 사용자 단말(102)이 도 1의 통신망(104)을 통하여, 대화 이해 AI 서비스 서버(106)와 통신할 수 있게 한다. 본 개시의 일 실시예에 의하면, 통신 모듈(210)은, 예컨대 사용자 입력 수신 모듈(202) 및 센서 모듈(204) 상에서 획득된 신호가 소정의 프로토콜에 따라 통신망(104)을 통하여 대화 이해 AI 서비스 서버(106)로 전송되도록 할 수 있다. 본 개시의 일 실시예에 의하면, 통신 모듈(210)은, 예컨대 통신망(104)을 통하여 대화 이해 AI 서비스 서버(106)로부터 수신된 각종 신호, 예컨대 음성 및/또는 텍스트 형태의 자연어 응답을 포함한 응답 신호 또는 각종 제어 신호 등을 수신하고, 소정의 프로토콜에 따라 적절한 처리를 수행할 수 있다.
본 개시의 일 실시예에 의하면, 응답 출력 모듈(212)은, 사용자 입력에 대응하는 응답을 시각, 청각 및/또는 촉각 등 다양한 형태로써 출력할 수 있다. 본 개시의 일 실시예에 의하면, 응답 출력 모듈(212)은, 예컨대 LCD, LED, OLED, QLED 등의 기술에 기초한 터치 스크린 등의 각종 디스플레이 장치를 포함하고, 이들 디스플레이 장치를 통해 사용자 입력에 대응하는 시각적 응답, 예컨대 텍스트, 기호, 비디오, 이미지, 하이퍼링크, 애니메이션, 각종 노티스 등을 사용자에게 제시할 수 있다. 본 개시의 일 실시예에 의하면, 응답 출력 모듈(212)은, 예컨대 스피커 또는 헤드셋을 포함하고, 사용자 입력에 대응하는 청각적 응답, 예컨대 음성 및/또는 음향 응답을 스피커 또는 헤드셋을 통해 사용자에게 제공할 수 있다. 본 개시의 일 실시예에 의하면, 응답 출력 모듈(212)는 모션/햅틱 피드백 생성부를 포함하고, 이를 통해 촉각적 응답, 예컨대 모션/햅틱 피드백을 사용자에게 제공할 수 있다. 본 개시의 일 실시예에 의하면, 응답 출력 모듈(212)은, 사용자 입력에 대응하는 텍스트 응답, 음성 응답 및 모션/햅틱 피드백 중 임의의 두 개이상의 조합을 동시에 제공할 수 있음을 알아야 한다.
도 3은, 본 개시의 일 실시예에 따른, 도 1의 대화 이해 AI 서비스 서버(106)의 기능적 구성을 개략적으로 도시한 기능 블록도이다. 도시된 바에 의하면, 대화 이해 AI 서비스 서버(106)는, 통신 모듈(302), 대화/태스크 처리부(304), 대화 기록 축적부(306), 및 대화 템플릿 생성/저장부(308)를 포함한다.
본 개시의 일 실시예에 의하면, 통신 모듈(302)은, 소정의 유선 또는 무선 통신 프로토콜에 따라, 통신망(104)을 통하여, 대화 이해 AI 서비스 서버(106)가 고객 사용자 단말(102) 또는 상담원 단말(도시되지 않음)과 통신할 수 있게 한다. 본 개시의 일 실시예에 의하면, 통신 모듈(302)은, 통신망(104)을 통해, 고객 사용자 단말(102)로부터 전송되어 온, 고객 사용자로부터의 음성 입력 및/또는 텍스트 입력 등을 수신할 수 있다. 본 개시의 일 실시예에 의하면, 통신 모듈(302)은, 고객 사용자 단말(102)로부터 전송되어 온 사용자로부터의 음성 입력 및/또는 텍스트 입력과 함께 또는 그와 별도로, 통신망(104)을 통해, 고객 사용자 단말(102)로부터 전송되어온, 고객 사용자 단말(102)의 상태 정보를 수신할 수 있다. 본 개시의 일 실시예에 의하면, 상태 정보는, 예컨대 사용자로부터의 음성 입력 및/또는 텍스트 입력 당시의 해당 고객 사용자 단말(102)에 관련된 여러가지 상태 정보(예컨대, 고객 사용자 단말(102)의 물리적 상태, 고객 사용자 단말(102)의 소프트웨어 및/또는 하드웨어 상태, 고객 사용자 단말(102) 주위의 환경 상태 정보 등)일 수 있다. 본 개시의 일 실시예에 의하면, 통신 모듈(302)은, 또한, 위 수신된 고객 사용자 입력에 대응하여 생성된 대화 응답(예컨대, 음성 및/또는 텍스트 형태의 자연어 대화 응답 등) 및/또는 제어 신호를, 통신망(104)을 통해, 고객 사용자 단말(102)로 전달하기 위해 필요한 적절한 조치를 수행할 수 있다.
본 개시의 일 실시예에 의하면, 대화/태스크 처리부(304)는, 통신 모듈(302)을 통하여 고객 사용자 단말(102)로부터의 사용자 자연어 입력을 수신하고, 미리 준비된 소정의 지식베이스 모델들을 기초로 이를 처리하여, 사용자 자연어 입력에 대응한 사용자의 인텐트(intent)를 결정할 수 있다. 본 개시의 일 실시예에 의하면, 대화/태스크 처리부(304)는 또한 결정된 사용자 인텐트에 부합하는 동작, 예컨대 적절한 대화 응답 및/또는 태스크 수행을 제공할 수 있다.
본 개시의 일 실시예에 의하면, 대화/태스크 처리부(304)는, 대화 진행 중에 고객 사용자로부터의 사용자 인텐트가 결정된 경우, 지금까지의 대화 이력 및 후술하는 대화 이해 AI 서비스 서버(106)를 위한 템플릿을 참조하여, 향후 발생 가능한 대화 패턴들을 파악하고, 그 대화 패턴들 각각에 있어서의 목표 달성 확률을 판정할 수 있다. 본 개시의 일 실시예에 의하면, 대화/태스크 처리부(304)는, 그 특정 시점 이후의 발생 가능한 대화 패턴들 각각에 대해 판정된 목표 달성 확률을 비교하여, 목표 달성 확률이 가장 큰 대화 패턴을 최적의 대화 패턴으로 결정할 수 있다. 본 개시의 일 실시예에 의하면, 대화/태스크 처리부(304)는, 또한, 그 향후 발생 가능한 대화 패턴들 전체에 대한 목표 달성의 성공 횟수 및 실패 횟수에 기초하여, 해당 시점에서의 목표 달성 예측 확률을 결정할 수 있다. . 본 개시의 일 실시예에 의하면, 대화/태스크 처리부(304)는, 전술한 사용자 자연어 입력에 대응한 응답으로서 위 결정된 최적의 대화 패턴에 따른 응답을, 예컨대 음성 또는 텍스트 형태의 자연어로써 제공할 수 있다. 본 개시의 다른 실시예에 의하면, 대화/태스크 처리부(304)는, 전술한 사용자 자연어 입력에 대응한 응답으로서 위 결정된 최적의 대화 패턴에 따른 응답을, 상담자 단말(도시되지 않음)에 제공하여, 상담자 단말 상의 상담 직원이 참조하도록 할 수 있다.
본 개시의 일 실시예에 의하면, 대화 기록 축적부(306)는, 도 3의 대화 이해 AI 서비스 서버(106) 상에서 획득되는, 해당 대화 이해 AI 서비스 서버(106)와 고객 사용자 단말(102) 각각 사이에 송수신된 각 대화 기록(예컨대, 각 대화 기록은 고객 사용자 단말(102a-10n)로부터의 입력들과, 상담원 단말로부터의 응답들 또는 대화 이해 AI 서비스 서버(106)에 의한 시스템 응답들로 구성된 일련의 대화 흐름 기록을 포함할 수 있음)을 복수 개 축적할 수 있다. 본 개시의 일 실시예에 의하면, 대화 기록 축적부(106)는, 임의의 다양한 방식에 의해, 해당 대화 이해 AI 서비스 서버(106)에 의해서 생성되지 않은, 그러나 해당 대화 이해 AI 서비스 서버(106)와 유사한 도메인의 다른 시스템 상에서 발생한 대화 기록들을 복수 개 축적할 수 있다.
본 개시의 일 실시예에 의하면, 대화 템플릿 생성/저장부(308)는, 대화 기록 축적부(306) 상의 각 대화 기록들을 분석하여, 각 대화 기록에 속한 각 입력/응답(예컨대, 고객 사용자 단말(102a-10n)로부터의 입력, 상담원 단말로부터의 응답 또는 대화 이해 AI 서비스 서버(106)에 의한 시스템 응답 중 하나)의 인텐트를, 미리 정해진 소정의 인텐트들 중 하나로 분류할 수 있다. 본 개시의 일 실시예에 의하면, 대화 템플릿 생성/저장부(308)는, 예컨대 대화 기록 축적부(306) 상의 각 대화 기록의 각 입력/응답에 대해 키워드 분석을 수행하고, 그로부터 각 입력/응답을 소정의 인텐트들 중 하나로 분류할 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 AI 서비스 서버(106)는, 전술한 바와 같이, 대화 기록 축적부(306) 상의 각 대화 기록마다, 해당 대화 기록 상의 각 입력/응답의 인텐트를 결정 및 분류하고, 이로써 그 각 대화 기록에 대응하는 소정의 인텐트들의 일련의 흐름으로 변경할 수 있다. 따라서, 본 개시의 일 실시예에 의하면, 대화 템플릿 생성/저장부(308)는, 대화 기록 축적부(306) 상에 축적된 대화 기록들을 소정 수의 대화 패턴(인텐트들의 흐름을 나타내는 소정의 패턴)들 중 하나로 각각 분류할 수 있다.
전술한 바와 같이, 각 대화 기록은 저마다 대화 이해 AI 서비스 서버(106)의 소정의 목표에 관한 결과, 즉 달성 성공 또는 실패의 여부의 결과를 가질 수 있다. 따라서, 대화 템플릿 생성/저장부(308)는, 각 대화 패턴마다, 목표가 달성된 횟수와 목표가 달성되지 못한 횟수를 기록할 수 있고, 해당 대화 패턴의 목표 작업이 달성되는 확률을 산술적으로 획득 및 기록할 수 있다. 본 개시의 일 실시예에 의하면, 대화 템플릿 생성/저장부(308)는, 위 생성된 각 대화 패턴들과, 각 대화 패턴마다의 목표 달성 확률(또는 성공 및 실패 횟수들)을 연관시키고, 이들 대화 패턴들 및 목표 달성 확률들을 모두 포함하는, 대화 이해 AI 서비스 서버(106)를 위한 템플릿을 생성 및 저장할 수 있다. 본 개시의 다른 실시예에 의하면, 대화 템플릿 생성/저장부(308)는, 대화 패턴들 중 발생 횟수가 소정의 기준값을 넘는 대화 패턴들과 그에 대응하는 각 목표 달성 확률들을 포함하는, 대화 이해 AI 서비스 서버(106)를 위한 대화 패턴들의 템플릿을 생성 및 저장할 수 있다.
구체적으로 도시되지는 않았으나, 본 개시의 일 실시예에 의하면, 대화 템플릿 생성/저장부(308)는, 소정의 디스플레이 장치를 포함할 수 있고, 위 생성된 대화 패턴들의 템플릿을 시각화하여 해당 디스플레이 장치를 통해 제시할 수 있으며, 다만 본 개시가 이로써 제한되는 것은 아니다.
도 4는, 본 개시의 일 실시예에 따른, 도 3의 대화/태스크 처리부(304)의 기능적 구성을 개략적으로 도시한 기능 블록도이다. 도시된 바에 의하면, 대화/태스크 처리부(304)는, 음성-텍스트 변환(Speech-To-Text; STT) 모듈(402), 자연어 이해(Natural Language Understanding; NLU) 모듈(404), 사용자 데이터베이스(406), 대화 이해 지식베이스(408), 대화 관리 모듈(410), 대화 생성 모듈(412), 및 음성 합성(Text-To-Speech; TTS) 모듈(414)을 포함한다.
본 개시의 일 실시예에 의하면, STT 모듈(402)은, 통신 모듈(302)을 통해 수신된 사용자 입력 중 음성 입력을 수신하고, 수신된 음성 입력을 패턴 매칭 등에 기초하여 텍스트 데이터로 변환할 수 있다. 본 개시의 일 실시예에 의하면, STT 모듈(402)은, 사용자의 음성 입력으로부터 특징을 추출하여 특징 벡터열을 생성할 수 있다. 본 개시의 일 실시예에 의하면, STT 모듈(402)은, DTW(Dynamic Time Warping) 방식이나 HMM 모델(Hidden Markov Model), GMM 모델(Gaussian-Mixture Mode), 딥 신경망 모델, n-gram 모델 등의 다양한 통계적 모델에 기초하여, 텍스트 인식 결과, 예컨대 단어들의 시퀀스를 생성할 수 있다. 본 개시의 일 실시예에 의하면, STT 모듈(402)은, 수신된 음성 입력을 패턴 매칭에 기초하여 텍스트 데이터로 변환할 때, 후술하는 사용자 데이터베이스(406)의 각 사용자 특징적 데이터를 참조할 수 있다.
본 개시의 일 실시예에 의하면, NLU 모듈(404)은, 통신 모듈(302) 또는 STT 모듈(402)로부터 텍스트 입력을 수신할 수 있다. 본 개시의 일 실시예에 의하면, NLU 모듈(404)에서 수신되는 텍스트 입력은, 예컨대 통신 모듈(302)에서 통신망(104)을 통하여 고객 사용자 단말(102)로부터 수신되었던 사용자 텍스트 입력 또는 통신 모듈(302)에서 수신된 사용자 음성 입력으로부터 STT 모듈(402)에서 생성된 텍스트 인식 결과, 예컨대 단어들의 시퀀스일 수 있다. 본 개시의 일 실시예에 의하면, NLU 모듈(404)은, 텍스트 입력을 수신하는 것과 함께 또는 그 이후에, 해당 사용자 입력과 연관된 상태 정보, 예컨대 해당 사용자 입력 당시의 고객 사용자 단말(102)의 상태 정보 등을 수신할 수 있다. 전술한 바와 같이, 상태 정보는, 예컨대 고객 사용자 단말(102)에서 사용자 음성 입력 및/또는 텍스트 입력 당시의 해당 고객 사용자 단말(102)에 관련된 여러가지 상태 정보(예컨대, 고객 사용자 단말(102)의 물리적 상태, 소프트웨어 및/또는 하드웨어 상태, 고객 사용자 단말(102) 주위의 환경 상태 정보 등)일 수 있다.
본 개시의 일 실시예에 의하면, NLU 모듈(404)은, 대화 이해 지식베이스(408)에 기초하여, 위 수신된 텍스트 입력을 하나 이상의 사용자 인텐트(intent)에 대응시킬 수 있다. 여기서 사용자 인텐트는, 그 사용자 인텐트에 따라 대화 이해 AI 서비스 서버(106)에 의해 이해되고 수행될 수 있는 일련의 동작(들)과 연관될 수 있다. 본 개시의 일 실시예에 의하면, NLU 모듈(404)은, 수신된 텍스트 입력을 하나 이상의 사용자 인텐트에 대응시킴에 있어서 전술한 상태 정보를 참조할 수 있다. 본 개시의 일 실시예에 의하면, NLU 모듈(404)은, 수신된 텍스트 입력을 하나 이상의 사용자 인텐트에 대응시킴에 있어서 후술하는 사용자 데이터베이스(406)의 각 사용자 특징적 데이터를 참조할 수 있다.
본 개시의 일 실시예에 의하면, 사용자 데이터베이스(406)는, 각 사용자별 특징적 데이터를 저장 및 관리하는 데이터베이스일 수 있다. 본 개시의 일 실시예에 의하면, 사용자 데이터베이스(406)는, 예컨대 각 사용자별로 해당 사용자의 이전 대화 기록, 사용자의 발음 특징 정보, 사용자 어휘 선호도, 사용자의 소재지, 설정 언어, 연락처/친구 목록, 기타 다양한 사용자 특징적 정보를 포함할 수 있다.
본 개시의 일 실시예에 의하면, 전술한 바와 같이, STT 모듈(402)은, 음성 입력을 텍스트 데이터로 변환할 때 사용자 데이터베이스(406)의 각 사용자 특징적 데이터, 예컨대 각 사용자별 발음 특징을 참조함으로써, 보다 정확한 텍스트 데이터를 얻을 수 있다. 본 개시의 일 실시예에 의하면, NLU 모듈(404)은, 사용자 인텐트를 결정할 때 사용자 데이터베이스(406)의 각 사용자 특징적 데이터, 예컨대 각 사용자별 특징이나 맥락을 참조함으로써, 보다 정확한 사용자 인텐트 결정을 할 수 있다.
본 도면에서는, 각 사용자별 특징적 데이터를 저장 및 관리하는 사용자 데이터베이스(406)가 대화 이해 AI 서비스 서버(106)에 배치되는 것으로 도시되어 있으나, 본 개시가 이로써 제한되는 것은 아니다. 본 개시의 다른 실시예에 의하면, 각 사용자별 특징적 데이터를 저장 및 관리하는 사용자 데이터베이스는, 예컨대 고객 사용자 단말(102)에 존재할 수도 있고, 고객 사용자 단말(102) 및 대화 이해 AI 서비스 서버(106)에 분산되어 배치될 수도 있음을 알아야 한다.
본 개시의 일 실시예에 의하면, 대화 이해 지식베이스(408)는, 예컨대 미리 정의된 온톨로지 모델을 포함할 수 있다. 본 개시의 일 실시예에 의하면, 온톨로지 모델은, 예컨대 노드들 간의 계층 구조로 표현될 수 있는데, 각 노드는 사용자의 인텐트에 대응한 "인텐트" 노드 또는 "인텐트" 노드에 링크된 하위 "속성" 노드("인텐트" 노드에 직접 링크되거나 "인텐트" 노드의 "속성" 노드에 다시 링크된 하위 "속성" 노드) 중 하나일 수 있다. 본 개시의 일 실시예에 의하면, "인텐트" 노드와 그 "인텐트" 노드에 직접 또는 간접 링크된 "속성" 노드들은 하나의 도메인을 구성할 수 있고, 온톨로지는 이러한 도메인들의 집합으로 구성될 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 지식베이스(308)는, 예컨대 대화 이해 AI 서비스 서버(106)가 이해하고 그에 대응한 동작을 수행할 수 있는 모든 인텐트들에 각각 대응하는 도메인들을 포함하도록 구성될 수 있다. 본 개시의 일 실시예에 의하면, 온톨로지 모델은, 노드의 추가나 삭제, 또는 노드 간의 관계의 수정 등에 의해 동적으로 변경될 수 있음을 알아야 한다.
본 개시의 일 실시예에 의하면, 온톨로지 모델 내의 각 도메인의 인텐트 노드 및 속성 노드들은, 그에 대응하는 사용자 인텐트 또는 속성들에 관련된 단어들 및/또는 구절들과 각각 연관될 수 있다. 본 개시의 일 실시예에 의하면, 대화 이해 지식베이스(408)는, 온톨로지 모델을, 계층 구조의 노드들과, 각 노드 별로 연관된 단어들 및/또는 구절들의 집합으로 구성된, 예컨대 어휘 사전 형태(구체적으로 도시되지 않음)로 구현할 수 있고, NLU 모듈(404)은 이와 같이 어휘 사전 형태로 구현된 온톨로지 모델에 기초하여 사용자 인텐트를 결정할 수 있다. 예컨대, 본 개시의 일 실시예에 의하면, NLU 모듈(404)은, 텍스트 입력 또는 단어들의 시퀀스를 수신하면, 그 시퀀스 내의 각 단어들이 온톨로지 모델 내의 어떤 도메인의 어떤 노드들에 연관되는지 결정할 수 있고, 그러한 결정에 기초하여 대응하는 도메인, 즉 사용자 인텐트를 결정할 수 있다.
본 개시의 일 실시예에 의하면, 대화 관리 모듈(410)은, NLU 모듈(404)에 의해 결정된 사용자 인텐트에 따라, 그에 대응하는 일련의 동작 흐름을 생성할 수 있다. 본 개시의 일 실시예에 의하면, 대화 관리 모듈(410)은, 소정의 대화 흐름 관리 모델(별도로 도시되지는 않음)에 기초하여, NLU 모듈(404)로부터 수신된 사용자 인텐트에 대응하여 어떠한 동작, 예컨대 어떠한 대화 응답 및/또는 태스크 수행을 행하여야 할지를 결정하고, 그에 따른 세부 동작 흐름을 생성할 수 있다.
본 개시의 일 실시예에 의하면, 대화 관리 모듈(410)은, 사용자 인텐트가 결정된 경우, 지금까지의 대화 이력 및 전술한 대화 이해 AI 서비스 서버(106)를 위한 템플릿을 참조하여, 향후 발생 가능한 대화 패턴들을 파악하고, 그로부터 해당 시점의 목표 달성 예측 확률을 결정 및 제공할 수 있다. 본 개시의 일 실시예에 의하면, 대화 관리 모듈(410)은, 사용자 인텐트가 결정된 경우, 지금까지의 대화 이력 및 전술한 대화 이해 AI 서비스 서버(106)를 위한 템플릿을 참조하여, 향후 진행될 수 있는 대화 패턴들을 파악하고, 그 대화 패턴들 각각에 있어서의 목표 달성 확률을 판정할 수 있다. 본 개시의 일 실시예에 의하면, 대화 관리 모듈(410)은, 그 특정 시점 이후의 발생 가능한 대화 패턴들 각각에 대해 판정된 목표 달성 확률을 비교하여, 목표 달성 확률이 가장 큰 대화 패턴을 그 단계에서의 최적의 대화 패턴으로 결정할 수 있다. 본 개시의 일 실시예에 의하면, 대화 관리 모듈(410)은, 위 결정된 최적의 대화 패턴에 기초하여, 어떠한 동작을 수행할지에 관한 동작 흐름(예컨대, 어떠한 대화 응답 및/또는 태스크 수행을 행하여야 할지에 관한 흐름)을 생성할 수 있다.
본 개시의 일 실시예에 의하면, 대화 생성 모듈(412)은, 대화 관리 모듈(410)에 의해 생성된 동작 흐름에 기초하여 필요한 대화 응답을 생성할 수 있다. 본 개시의 일 실시예에 의하면, 대화 생성 모듈(412)은, 대화 응답 생성시, 예컨대 전술한 사용자 데이터베이스(406)의 사용자 특징적 데이터(예컨대, 사용자의 이전 대화 기록, 사용자의 발음 특징 정보, 사용자 어휘 선호도, 사용자의 소재지, 설정 언어, 연락처/친구 목록, 각 사용자별로 해당 사용자의 이전 대화 기록 등)를 참조할 수 있다.
본 개시의 일 실시예에 의하면, TTS 모듈(414)은, 대화 생성 모듈(412)에 의해 고객 사용자 단말(102)로 전송되도록 생성된 대화 응답을 수신할 수 있다. TTS 모듈(414)에서 수신되는 대화 응답은 텍스트 형태를 갖는 자연어 또는 단어들의 시퀀스일 수 있다. 본 개시의 일 실시예에 의하면, TTS 모듈(414)은, 다양한 형태의 알고리즘에 따라, 위 수신된 텍스트 형태의 입력을 음성 형태로 변환할 수 있다.
도 1 내지 4를 참조하여 전술한 본 개시의 실시예에서는, 편의상 특정 모듈이 소정의 동작들을 수행하는 것처럼 설명되었으나, 본 개시가 이로써 제한되는 것은 아니다. 본 개시의 다른 실시예에 의하면, 위 설명에서 어느 특정 모듈에 의해 수행되는 것과 같이 설명된 동작들이, 그와 다른 별개의 모듈에 의해 각각 수행될 수 있음을 알아야 한다.
도 5는, 본 개시의 일 실시예에 따라, 도 3의 대화 템플릿 생성/저장부(306)에 의해 수행되는 예시적 동작 흐름도이다.
단계(502)에서, 대화 템플릿 생성/저장부(308)는, 임의의 다양한 방식으로 수집된 대화 기록들 각각(구체적으로, 각 대화 기록의 각 입력, 예컨대 각 인텐트 단위의 각 문장 또는 문구의 기록)을 분석할 수 있다. 본 개시의 일 실시예에 의하면, 대화 템플릿 생성/저장부(308)는, 소정의 기준에 따라, 각 대화 기록 상의 각 입력 기록을 분석하고 미리 정해진 인텐트 그룹들 중 하나로 분류할 수 있다. 위 입력은, 예컨대 도 3의 대화 이해 AI 서비스 서버(106)와 고객 사용자 단말(102) 각각 사이에 송수신된 각 대화 기록으로부터 획득된 것일 수 있다. 본 개시의 일 실시예에 의하면, 위 입력은, 임의의 다른 방식에 의해 수집된 대화 기록으로부터 획득된 것일 수 있다.
그런 다음, 단계(504)에서, 대화 템플릿 생성/저장부(308)는, 단계(502)에서의 분석 결과에 기초하여, 각 대화 기록마다, 그에 대응하는 소정의 인텐트들의 일련의 흐름, 예컨대 소정의 대화 패턴을 생성할 수 있다. 그런 다음, 단계(506)에서, 대화 템플릿 생성/저장부(308)는, 동일한 대화 패턴에 대응하는 대화 기록들을 그룹핑하고, 동일한 그룹 내에서 해당 그룹에 속한 대화 기록들에 관하여, 대화 이해 AI 서비스 서버(106)의 목표에 관한 결과, 즉 성공 또는 실패 여부에 따라, 목표 달성 성공 대화 기록의 수 및 목표 달성 실패 대화 기록의 수를 판정할 수 있다.
단계(508)에서, 대화 템플릿 생성/저장부(308)는, 위 생성된 대화 패턴들 각각마다의 목표 달성 성공/실패 대화 기록의 수(또는 목표 달성 확률)를 연관시키고, 이로써 이들 대화 패턴들 및 각 대화 패턴에 연관된 목표 달성 성공/실패 대화 기록의 수(또는 목표 달성 확률)을 포함하는, 대화 이해 AI 서비스 서버(106)를 위한 템플릿을 생성 및 저장할 수 있다. 단계(510)에서, 대화 템플릿 생성/저장부(308)는, 단계(508)에서 저장된 대화 패턴들 및 각 대화 패턴마다의 성공/실패 대화 기록의 수를 각각 시각화하고 소정의 디스플레이 장치를 통해 제시할 수 있으며, 본 개시가 이로써 제한되는 것은 아니다.
도 6은, 대화 이해 AI 서비스 서버(106)를 위한 템플릿(600)의 일 예를 개념적으로 도시한 도면이다.
도시된 바에 의하면, 템플릿(600)에 포함된, 대화 이해 AI 서비스 서버(106) 상에서 수행될 수 있는 대화 패턴, 즉 인텐트들의 순차적 흐름의 패턴은 9가지로 분류될 수 있다. 도시된 바에 의하면, 대화 패턴 열의 행들에 나타난 A, B, C, D, E, F, G, H, I, J 및 K 각각은 각 인텐트를 나타내는 것이며, 대화 패턴 열의 각 행은, 인텐트들의 임의의 조합 및 그들 간의 순차적 흐름을 보여주는 것이다. 도시된 바에 의하면, 각 대화 패턴은 또한 각 성공 횟수 및 실패 횟수, 그리고 그에 따른 성공률과 연관되어 있다. 예컨대, 제1행의 경우, 제1행은 대화 패턴들 중에서 A->B->C->D->E의 패턴을 가지며, 이러한 패턴은 목표 성공 횟수가 70회, 실패 횟수가 30회이며, 따라서 성공률은 0.7로 표시되어 있다. 도시된 바에 의하면, 마지막 제9행의 대화 패턴, 즉 A->D->C->K->G의 경우 성공 횟수가 1번이고 실패 횟수가 0번으로 성공률이 1로 나타나 있다. 본 개시의 일 실시예에 의하면, 예컨대 템플릿이 발생 횟수가 소정의 기준값(예컨대, 30)을 넘는 대화 패턴들만을 포함하도록 구성할 수 있으며, 이러한 경우 전술한 제9행의 A->D->C->K->G의 패턴은 템플릿에서 제외될 수 있음을 알아야 한다.
도 6에 도시된 사항은, 본 개시의 실시예의 이해를 돕기 위하여 극도로 단순화된 대화 패턴을 개념적으로 표시한 것일 뿐, 본 개시를 제한하려는 것이 아님을 알아야 한다. 본 개시의 다른 실시예에 의하면, 다양한 형태의 대화 패턴들이 다양한 형태로 나타날 수 있음을 알아야 한다.
도 7은, 본 개시의 일 실시예에 따라, 도 3의 대화/태스크 처리부(304)에 의해 수행되는 예시적 동작 흐름도이다.
본 개시의 일 실시예에 의하면, 대화/태스크 처리부(304)는, 단계(702)에서, 도 1의 고객 사용자 단말(102)로부터의 사용자 자연어 입력을 수신할 수 있다. 그런 다음, 단계(704)에서, 미리 준비된 소정의 지식베이스 모델들을 기초로 위 수신된 사용자 자연어 입력을 처리하여, 그 사용자 자연어 입력에 대응한 사용자의 인텐트(intent)를 결정할 수 있다.
그런 다음, 단계(706)에서, 대화/태스크 처리부(304)는, 지금까지의 대화 이력 및 후술하는 대화 이해 AI 서비스 서버(106)를 위한 템플릿(예컨대, 도 6의 템플릿(600))을 참조하여, 향후 발생 가능한 대화 패턴들을 획득할 수 있다. 본 개시의 일 실시예에 의하면, 예컨대 단계(704)에서 결정된 인텐트가 B이고, 지금까지의 대화 이력이 A->B의 패턴이라고 가정할 경우, 단계(706)에서는 템플릿(600) 상에서 향후 발생 가능한 대화 패턴으로서, 각각 1, 2, 5, 및 6행이 획득될 수 있다.
그런 다음, 단계(708)에서, 대화/태스크 처리부(304)는, 단계(706)에서 획득된 대화 패턴들(즉, 향후 발생 가능한 대화 패턴들) 각각의 목표 달성 확률을 판정할 수 있다. 예컨대, 각 대화 패턴의 목표 달성 확률은, 해당 대화 패턴에 관한 목표 달성 성공 횟수 및 목표 달성 실패 횟수에 기초하여 결정되는 성공률일 수 있다. 그런 다음, 절차는 단계(710)로 진행하고, 대화/태스크 처리부(304)는, 향후 발생 가능한 대화 패턴들 각각에 대해 판정된 목표 달성 확률을 비교하여, 목표 달성 확률이 가장 큰 대화 패턴을 그 시점에서의 최적의 대화 패턴으로 결정할 수 있다. 본 개시의 일 실시예에 의하면, 예컨대 대화/태스크 처리부(304)가, 지금까지의 대화 이력이 A->B의 패턴이고, 향후 발생 가능한 대화 패턴으로서, 각각 1, 2, 5, 및 6행이라고 판정한 경우, 이들 중 성공률이 가장 높은 2행을 현재 시점에서의 최적의 대화 패턴이라고 결정할 수 있다.
단계(712)에서는, 본 개시의 일 실시예에 의하면, 대화/태스크 처리부(304)는, 단계(706)에서 획득된 대화 패턴들(즉, 향후 발생 가능한 대화 패턴들) 전체에 대한 목표 달성의 성공 횟수 및 실패 횟수에 기초하여, 해당 시점에서의 목표 달성 예측 확률을 결정할 수 있다. 본 개시의 일 실시예에 의하면, 단계(706)에서, 향후 발생 가능한 대화 패턴으로서 각각 1, 2, 5, 및 6행이 획득된 경우, 이들 행 전체에 있어서 총 성공 횟수는 242회이고 실패 횟수는 117회로서, 해당 시점에서의 목표 달성 예측 확률은 약 0.67이 될 수 있다.
당업자라면 알 수 있듯이, 본 개시가 본 명세서에 기술된 예시에 한정되는 것이 아니라 본 개시의 범주를 벗어나지 않는 범위 내에서 다양하게 변형, 재구성 및 대체될 수 있다. 본 명세서에 기술된 다양한 기술들은 하드웨어 또는 소프트웨어, 또는 하드웨어와 소프트웨어의 조합에 의해 구현될 수 있음을 알아야 한다.
본 개시의 일 실시예에 따른 컴퓨터 프로그램은, 컴퓨터 프로세서 등에 의해 판독 가능한 저장 매체, 예컨대 EPROM, EEPROM, 플래시 메모리장치와 같은 비휘발성 메모리, 내장형 하드 디스크와 착탈식 디스크 같은 자기 디스크, 광자기 디스크, 및 CDROM 디스크 등을 포함한 다양한 유형의 저장 매체에 저장된 형태로 구현될 수 있다. 또한, 프로그램 코드(들)는 어셈블리어나 기계어로 구현될 수 있다. 본 개시의 진정한 사상 및 범주에 속하는 모든 변형 및 변경을 이하의 특허청구범위에 의해 모두 포괄하고자 한다.

Claims (10)

  1. 복수의 사용자 단말 각각을 위한 자연어 대화를 처리하도록 구성된 대화 이해 AI 서비스 서버 상에서, 상기 복수의 사용자 단말 중 하나의 사용자 단말과 상기 대화 이해 AI 서비스 서버 사이의 대화 세션 진행 중 특정 시점에서, 소정의 목표 달성을 위한 목표 달성 예측 확률을 결정하는 방법으로서,
    상기 특정 시점에서 상기 사용자 단말로부터 자연어 입력을 수신하는 단계;
    상기 수신된 자연어 입력에 대응하는 인텐트를 결정하는 단계;
    상기 특정 시점에서의 대화 이력- 상기 대화 이력은, 상기 대화 세션 상에서 상기 특정 시점까지 발생한 상기 사용자 단말과 상기 대화 이해 AI 서비스 서버 사이에 발생한 인텐트들의 흐름을 나타내며, 상기 인텐트들의 흐름의 마지막에 상기 결정된 인텐트가 포함됨 -을 결정하는 단계;
    상기 대화 이력과, 상기 대화 이해 AI 서비스 서버를 위하여 미리 준비된 템플릿- 상기 템플릿은, 각 대응하는 인텐트들의 흐름을 나타내는 대화 패턴을 복수 개 포함하고, 상기 각 대화 패턴마다 목표 달성 성공 횟수 및 목표 달성 실패 횟수를 가짐 -에 기초하여, 상기 대화 패턴들 중에서 상기 대화 이력을 포함하는 하나 이상의 대화 패턴을 결정하는 단계; 및
    상기 결정된 하나 이상의 대화 패턴의 각 대응하는 상기 목표 달성 성공 횟수 및 상기 목표 달성 실패 횟수에 기초하여 상기 특정 시점에서의 상기 목표 달성 예측 확률을 결정하는 단계
    를 포함하는, 목표 달성 예측 확률 결정 방법.
  2. 제1항에 있어서,
    상기 특정 시점에서의 상기 목표 달성 예측 확률은, 상기 결정된 하나 이상의 대화 패턴의 각 대응하는 상기 목표 달성 성공 횟수 및 상기 목표 달성 실패 횟수의 총 합에 대한 상기 목표 달성 성공 횟수의 총 합의 비율에 대응하는, 목표 달성 예측 확률 결정 방법.
  3. 제1항에 있어서,
    상기 템플릿은, 상기 복수 개의 대화 패턴 각각마다, 상기 각 대화 패턴의 상기 목표 달성 성공 횟수 및 상기 목표 달성 실패 횟수에 기초하여 결정된 성공률을 가지는, 목표 달성 예측 확률 결정 방법.
  4. 제1항에 있어서,
    상기 목표는, 소정의 제품 및/또는 서비스 판매, 회원 가입, 및 구독 신청 중 적어도 하나와 연관되는, 목표 달성 예측 확률 결정 방법.
  5. 복수의 사용자 단말 각각을 위한 자연어 대화를 처리하도록 구성된 대화 이해 AI 서비스 서버 상에서, 상기 복수의 사용자 단말 중 하나의 사용자 단말과 상기 대화 이해 AI 서비스 서버 사이의 대화 세션 진행 중 특정 시점에서 소정의 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법으로서,
    상기 특정 시점에서 상기 사용자 단말로부터 자연어 입력을 수신하는 단계;
    상기 수신된 자연어 입력에 대응하는 인텐트를 결정하는 단계;
    상기 특정 시점에서의 대화 이력- 상기 대화 이력은, 상기 대화 세션 상에서 상기 특정 시점까지 발생한 상기 사용자 단말과 상기 대화 이해 AI 서비스 서버 사이에 발생한 인텐트들의 흐름을 나타내며, 상기 인텐트들의 흐름의 마지막에 상기 결정된 인텐트가 포함됨 -을 결정하는 단계;
    상기 대화 이력과, 상기 대화 이해 AI 서비스 서버를 위하여 미리 준비된 템플릿- 상기 템플릿은, 각 대응하는 인텐트들의 흐름을 나타내는 대화 패턴을 복수 개 포함하고, 상기 각 대화 패턴마다 목표 달성 성공 횟수 및 목표 달성 실패 횟수를 가짐 -에 기초하여, 상기 대화 패턴들 중에서 상기 대화 이력을 포함하는 하나 이상의 대화 패턴을 결정하는 단계;
    상기 결정된 하나 이상의 대화 패턴 각각에 대해, 상기 각 대화 패턴의 상기 목표 달성 성공 횟수 및 상기 목표 달성 실패 횟수에 기초하여 결정된 목표 달성 확률을 판정하는 단계; 및
    상기 결정된 하나 이상의 대화 패턴 중 가장 높은 목표 달성 확률을 갖는 대화 패턴을, 최적의 대화 패턴으로 결정하는 단계
    를 포함하는, 최적의 대화 패턴 결정 방법.
  6. 제5항에 있어서,
    상기 결정된 최적의 대화 패턴으로부터 상기 대화 세션 상에서의 다음 대화 응답을 선택하는 단계를 더 포함하는, 목표 달성 예측 확률 결정 방법.
  7. 제6항에 있어서,
    상기 대화 이해 AI 서비스 서버는, 소정의 디스플레이 장치를 포함하고, 상기 디스플레이 장치를 통하여 상기 결정된 상기 최적의 대화 패턴 또는 상기 최적의 대화 패턴 상에서 선택된 상기 다음 대화 응답이 제시되는, 최적의 대화 패턴 결정 방법.
  8. 제1항에 있어서,
    상기 목표는, 소정의 제품 및/또는 서비스 판매, 회원 가입, 및 구독 신청 중 적어도 하나와 연관되는, 목표 달성 예측 확률 결정 방법.
  9. 제1항에 있어서,
    복수의 대화 기록을 수집하는 단계- 상기 각 대화 기록은, 상기 목표와 연관되며, 하나의 통신 세션을 통해 발생하는 일련의 서로 연관된 자연어 입력들 및 응답들을 포함하고, 상기 목표의 달성 여부의 결과를 가짐 -;
    상기 각 대화 기록마다, 상기 대화 기록의 상기 자연어 입력들 및 응답들 각각에 대응하는 각 인텐트를 결정하고, 대응하는 일련의 인텐트들의 흐름을 생성하는 단계;
    상기 각 대화 기록을, 상기 대화 기록에 대응하여 상기 생성된 인텐트들의 흐름에 따라, 소정의 대화 패턴들 중 하나의 대화 패턴에 대응시키는 단계 - 상기 대화 패턴은, 상기 대화 패턴에 대응되는 대화 기록들에 관한, 상기 목표의 달성 여부의 결과들에 따라, 상기 대화 패턴에 대응한 상기 목표의 달성 확률을 가짐 -; 및
    상기 복수의 대화 기록을 상기 대화 패턴들 중 하나의 대화 패턴에 대응시킨 결과에 기초하여, 대화 템플릿을 생성하는 단계를 더 포함하는, 목표 달성 예측 확률 결정 방법.
  10. 하나 이상의 명령어가 수록된 컴퓨터 판독가능 기록매체로서, 상기 하나 이상의 명령어는 컴퓨터에 의해 실행되는 경우, 상기 컴퓨터로 하여금 제1항 내지 제9항 중 어느 한 항의 방법을 수행하도록 하는, 컴퓨터 판독가능 기록 매체.
PCT/KR2019/001015 2018-01-26 2019-01-24 대화 이해 ai 서비스 시스템과 연관된 대화 세션 중의 특정 시점에서 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법, 목표 달성 예측 확률을 결정하는 방법, 및 컴퓨터 판독가능 기록 매체 Ceased WO2019147039A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180009678A KR101945983B1 (ko) 2018-01-26 2018-01-26 대화 이해 ai 서비스 시스템과 연관된 대화 세션 중의 특정 시점에서 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법, 목표 달성 예측 확률을 결정하는 방법, 및 컴퓨터 판독가능 기록 매체
KR10-2018-0009678 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019147039A1 true WO2019147039A1 (ko) 2019-08-01

Family

ID=65369574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001015 Ceased WO2019147039A1 (ko) 2018-01-26 2019-01-24 대화 이해 ai 서비스 시스템과 연관된 대화 세션 중의 특정 시점에서 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법, 목표 달성 예측 확률을 결정하는 방법, 및 컴퓨터 판독가능 기록 매체

Country Status (2)

Country Link
KR (1) KR101945983B1 (ko)
WO (1) WO2019147039A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532366A (zh) * 2019-09-03 2019-12-03 出门问问(武汉)信息科技有限公司 一种模板规则管理方法、语言生成方法、装置及存储设备
CN111651582A (zh) * 2020-06-24 2020-09-11 支付宝(杭州)信息技术有限公司 一种模拟用户发言的方法和系统
CN115840802A (zh) * 2022-11-28 2023-03-24 蚂蚁财富(上海)金融信息服务有限公司 服务处理方法及装置
CN116016780A (zh) * 2022-12-08 2023-04-25 众安在线财产保险股份有限公司 基于多种nlp的会话服务配置方法、装置、设备和介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111782775B (zh) * 2019-04-04 2023-09-01 百度在线网络技术(北京)有限公司 对话方法、装置、设备和介质
CN112700775B (zh) * 2020-12-29 2024-07-26 维沃移动通信有限公司 语音接收周期的更新方法、装置和电子设备
CN113065850B (zh) * 2021-04-02 2024-06-18 京东科技信息技术有限公司 用于智能外呼机器人的话术测试方法及装置
CN118312601B (zh) * 2024-06-05 2024-08-09 广东君略科技咨询有限公司 一种基于ai自然语言理解的智能ai会话方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110072847A (ko) * 2009-12-23 2011-06-29 삼성전자주식회사 열려진 사용자 의도 처리를 위한 대화관리 시스템 및 방법
KR20140062656A (ko) * 2012-11-14 2014-05-26 한국전자통신연구원 계층적 대화 태스크 라이브러리를 이용한 이중 대화관리 기반 음성대화시스템
JP2015125198A (ja) * 2013-12-25 2015-07-06 Kddi株式会社 対話シナリオに対する動的対話ノードの挿入行動を制御する対話プログラム、サーバ及び方法
KR101677859B1 (ko) * 2015-09-07 2016-11-18 포항공과대학교 산학협력단 지식 베이스를 이용하는 시스템 응답 생성 방법 및 이를 수행하는 장치
KR20170001550A (ko) * 2015-06-25 2017-01-04 바이두 온라인 네트웍 테크놀러지 (베이징) 캄파니 리미티드 인공 지능에 기초한 인간-컴퓨터 지능형 채팅 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110072847A (ko) * 2009-12-23 2011-06-29 삼성전자주식회사 열려진 사용자 의도 처리를 위한 대화관리 시스템 및 방법
KR20140062656A (ko) * 2012-11-14 2014-05-26 한국전자통신연구원 계층적 대화 태스크 라이브러리를 이용한 이중 대화관리 기반 음성대화시스템
JP2015125198A (ja) * 2013-12-25 2015-07-06 Kddi株式会社 対話シナリオに対する動的対話ノードの挿入行動を制御する対話プログラム、サーバ及び方法
KR20170001550A (ko) * 2015-06-25 2017-01-04 바이두 온라인 네트웍 테크놀러지 (베이징) 캄파니 리미티드 인공 지능에 기초한 인간-컴퓨터 지능형 채팅 방법 및 장치
KR101677859B1 (ko) * 2015-09-07 2016-11-18 포항공과대학교 산학협력단 지식 베이스를 이용하는 시스템 응답 생성 방법 및 이를 수행하는 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532366A (zh) * 2019-09-03 2019-12-03 出门问问(武汉)信息科技有限公司 一种模板规则管理方法、语言生成方法、装置及存储设备
CN111651582A (zh) * 2020-06-24 2020-09-11 支付宝(杭州)信息技术有限公司 一种模拟用户发言的方法和系统
CN111651582B (zh) * 2020-06-24 2023-06-23 支付宝(杭州)信息技术有限公司 一种模拟用户发言的方法和系统
CN115840802A (zh) * 2022-11-28 2023-03-24 蚂蚁财富(上海)金融信息服务有限公司 服务处理方法及装置
CN116016780A (zh) * 2022-12-08 2023-04-25 众安在线财产保险股份有限公司 基于多种nlp的会话服务配置方法、装置、设备和介质

Also Published As

Publication number Publication date
KR101945983B1 (ko) 2019-02-11

Similar Documents

Publication Publication Date Title
WO2019147039A1 (ko) 대화 이해 ai 서비스 시스템과 연관된 대화 세션 중의 특정 시점에서 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법, 목표 달성 예측 확률을 결정하는 방법, 및 컴퓨터 판독가능 기록 매체
WO2019124647A1 (ko) 대화형 ai 에이전트 시스템을 위한 계층적 대화 흐름 관리 모델을 자동으로 구축 또는 갱신하는 방법, 컴퓨터 장치 및 컴퓨터 판독가능 기록 매체
KR102120751B1 (ko) 대화 이해 ai 시스템에 의하여, 머신러닝을 대화 관리 기술에 적용한 하이브리드 계층적 대화 흐름 모델을 기초로 답변을 제공하는 방법 및 컴퓨터 판독가능 기록 매체
WO2019088384A1 (ko) 답변을 변형하여 풍부한 표현의 자연어 대화를 제공하는 방법, 컴퓨터 장치 및 컴퓨터 판독가능 기록 매체
WO2019088638A1 (ko) 적시에 실질적 답변을 제공함으로써 자연어 대화를 제공하는 방법, 컴퓨터 장치 및 컴퓨터 판독가능 기록 매체
KR101950387B1 (ko) 학습 데이터 중 식별 가능하지만 학습 가능성이 없는 데이터의 레이블화를 통한, 대화형 ai 에이전트 시스템을 위한 지식베이스 모델의 구축 또는 갱신 방법, 컴퓨터 장치, 및 컴퓨터 판독 가능 기록 매체
WO2019132135A1 (ko) 사용자간 대화 세션에 대한 능동적 모니터링 및 개입을 제공하는 대화형 ai 에이전트 시스템, 방법 및 컴퓨터 판독가능 기록 매체
KR101959292B1 (ko) 문맥 기반으로 음성 인식의 성능을 향상하기 위한 방법, 컴퓨터 장치 및 컴퓨터 판독가능 기록 매체
KR101891498B1 (ko) 대화형 ai 에이전트 시스템에서 멀티 도메인 인텐트의 혼재성을 해소하는 멀티 도메인 서비스를 제공하는 방법, 컴퓨터 장치 및 컴퓨터 판독가능 기록 매체
WO2019088383A1 (ko) 적시에 간투사 답변을 제공함으로써 자연어 대화를 제공하는 방법, 컴퓨터 장치 및 컴퓨터 판독가능 기록 매체
KR20190094087A (ko) 머신러닝 기반의 대화형 ai 에이전트 시스템과 연관된, 사용자 맞춤형 학습 모델을 포함하는 사용자 단말 및 사용자 맞춤형 학습 모델이 기록된 컴퓨터 판독가능 기록 매체
WO2019103569A1 (ko) 문맥 기반으로 음성 인식의 성능을 향상하기 위한 방법, 컴퓨터 장치 및 컴퓨터 판독가능 기록 매체
WO2019143170A1 (ko) 소정의 목표를 갖는 대화 이해 ai 서비스 시스템을 위한 대화 템플릿의 생성 방법 및 컴퓨터 판독가능 기록 매체
WO2019168235A1 (ko) 복수 개의 같은 유형의 엔티티 정보의 분석에 기초한 인텐트 결정을 제공하는 방법 및 대화형 ai 에이전트 시스템, 및 컴퓨터 판독가능 기록 매체
KR20190103951A (ko) 학습 데이터 중 식별 가능하지만 학습 가능성이 없는 데이터의 레이블화를 통한, 대화형 ai 에이전트 시스템을 위한 지식베이스 모델의 구축 또는 갱신 방법, 컴퓨터 장치, 및 컴퓨터 판독 가능 기록 매체
WO2019142976A1 (ko) 사용자 발화 입력에 대한 대화 응답 후보를 표시하도록 하는 디스플레이 제어 방법, 컴퓨터 판독가능 기록 매체 및 컴퓨터 장치
WO2019156537A1 (ko) 보안 등과 관련된 서비스를, 사용자간 대화 세션에 대한 모니터링에 기초하고 대화 세션 또는 별도의 세션을 통해, 능동적으로 제공하는 대화형 ai 에이전트 시스템, 방법 및 컴퓨터 판독가능 기록 매체
Gonge et al. Voice recognition system for desktop assistant
WO2022131954A1 (ru) Способ управления диалогом и система понимания естественного языка в платформе виртуальных ассистентов
KR20190091224A (ko) 대화 이해 ai 서비스 시스템과 연관된 대화 세션 중의 특정 시점에서 목표 달성을 위한 최적의 대화 패턴을 결정하는 방법, 목표 달성 예측 확률을 결정하는 방법, 및 컴퓨터 판독가능 기록 매체
WO2019066132A1 (ko) 보안성을 강화한 사용자 문맥 기반 인증 방법, 대화형 ai 에이전트 시스템 및 컴퓨터 판독가능 기록 매체
KR20190094081A (ko) 대화형 ai 에이전트 시스템을 위한 지식베이스의 시각화 방법 및 컴퓨터 판독가능 기록 매체
KR20210045702A (ko) 키워드 기반 북마크 검색 서비스 제공을 위하여 북마크 정보를 저장하는 방법 및 컴퓨터 판독가능 기록 매체
KR20210045699A (ko) 계층적으로 저장되어 있는 북마크에 대한 문맥기반 검색 서비스를 제공하는 방법 및 컴퓨터 판독가능 기록 매체
WO2019098638A1 (ko) 보안성을 강화한 의미-무관 사용자 성문 인증을 제공하는 방법, 대화형 ai 에이전트 시스템 및 컴퓨터 판독가능 기록 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743500

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19743500

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19743500

Country of ref document: EP

Kind code of ref document: A1