WO2019021438A1 - Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program - Google Patents
Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program Download PDFInfo
- Publication number
- WO2019021438A1 WO2019021438A1 PCT/JP2017/027317 JP2017027317W WO2019021438A1 WO 2019021438 A1 WO2019021438 A1 WO 2019021438A1 JP 2017027317 W JP2017027317 W JP 2017027317W WO 2019021438 A1 WO2019021438 A1 WO 2019021438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- amount
- predicted
- generation amount
- result
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/10—Devices for predicting weather conditions
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a photovoltaic power generation amount prediction device that predicts the power generation amount of a solar power generation system, a solar power generation amount prediction system, a prediction method, and a program.
- the electricity generated by the solar power generation system can be stored as energy by storing the electricity in a storage battery, storing heat using a heat pump water heater, or the like.
- the stored energy can be used at a different timing from power generation. For example, by storing hot water in the heat pump water heater using electricity generated by the solar power generation system during the day, it is possible to prepare for the hot water supply demand in the evening. In order to store heat just enough for hot water supply demand, it is necessary to accurately predict the power generation amount of the photovoltaic power generation system.
- the electricity generated by the solar power generation system can be sold to the distribution system.
- the photovoltaic power generation system can not control the amount of power generation and the power generation time, when a large amount of photovoltaic power generation systems are introduced, it becomes difficult to manage the distribution voltage. For this reason, power companies are considering reducing the output of photovoltaic power generation systems. The power company needs to accurately predict the power generation amount of the solar power generation system in order to determine whether the power reduction should be performed or to determine the suppression amount in the case of the suppression.
- Patent Document 1 defines the ratio of the actual amount of solar radiation in one day to the maximum value of the theoretical amount of solar radiation as the degree of clearness of the day, and based on the past weather information and the degree of past clearance, A solar radiation amount prediction method is disclosed that predicts the degree of clearness from the meteorological forecast data of and the solar radiation amount. Patent Document 1 also discloses a solar power generation output prediction method and a solar power generation output prediction system that predicts a power generation output generated by solar power generation based on the amount of solar radiation predicted by this method.
- the solar power generation amount predicting apparatus comprises: a power generation amount actual acquisition means, a power generation amount actual storage means, an extrasolar solar radiation amount calculation means, a weather forecast acquisition means, a power generation actual result classification means, a predicted power generation amount Calculating means.
- the power generation amount performance acquiring means acquires the power generation amount of the photovoltaic power generation system as a power generation amount performance together with an acquisition date and an acquisition time zone.
- the power generation result storage means stores the power generation results acquired by the power generation result acquisition means.
- the extra-atmospheric solar radiation amount calculation means calculates the extra-atmospheric solar radiation amount at the installation place of the solar power generation system.
- the weather forecast acquiring means acquires weather forecast information including the installation location of the solar power generation system in a target area.
- the generated power result classification means causes the extracorporeal solar radiation amount calculation means to calculate the extracorporeal solar radiation amount in the acquisition date and the acquisition time zone included in the generated power amount results accumulated by the generated power amount result storage means, and is included in the generated power amount results
- the power generation coefficient calculated based on the power generation amount and the calculated extrasolar radiation amount is classified into a power generation amount performance group associated with the meteorological attribute.
- the forecasted power generation amount calculation means the power generation actual result group corresponding to the weather attribute corresponding to the obtained weather forecast information and weather forecast information including the day and the time zone to be predicted acquired by the weather forecast acquiring means
- the predicted power generation amount is calculated on the basis of the extrasolar radiation amount in the day and the time zone to be predicted, which is calculated by the extrasolar radiation amount calculation means.
- the present invention by grouping power generation coefficients into groups and associating them with weather attributes, it is possible to predict the power generation amount of the solar power generation system without accumulating past weather data.
- Block diagram showing a functional configuration of the solar power generation amount predicting apparatus according to the first embodiment A diagram showing an example of a power generation amount result stored in the power generation amount result storage unit in the first embodiment Flow chart showing an example of processing of the power generation performance result classification unit according to the first embodiment Flowchart showing an example of processing of the predicted power generation amount calculation unit in the first embodiment The figure which shows an example of the limitation method of the period in the process which acquires a power generation amount coefficient from the power generation amount performance group of a predicted power generation amount calculation part in Embodiment 1.
- the figure which shows an example of the process of regression analysis of the amount of external solar radiation and the actual amount of power generation in Embodiment 1 The block diagram which shows the structural example which shares a solar power generation amount prediction apparatus with a server and a terminal based on Embodiment 1
- the block diagram which shows the structural example which shares a solar power generation amount prediction apparatus with a server and a terminal based on Embodiment 1 Block diagram showing a functional configuration of a solar power generation amount predicting apparatus according to a second embodiment
- a diagram showing an example of a power generation amount result stored in the power generation amount result storage unit in the second embodiment A diagram showing an example of predicted power generation amount accumulated in the predicted power generation amount storage unit in the second embodiment
- Flow chart showing an example of processing of the extraction unit in the second embodiment The figure which shows an example of the processing which extracts an exclusion candidate from a prediction deviation list in a 2nd embodiment.
- the solar power generation amount forecasting device 1 is a power generation amount actual acquisition unit 4 that acquires the power generation amount actual of the solar power generation system 2 from the power amount measurement device 3, a power generation actual result storage unit 5 that accumulates the power generation amount actual,
- the power generation amount performance classification unit 8 Based on the power generation amount coefficient to be described later is calculated, the power generation amount performance classification unit 8 that classifies the calculated power generation amount coefficient into a power generation amount result group associated with the meteorological attribute, and acquires weather forecast information from the weather information source 9
- the power generation result group corresponding to the weather attribute corresponding to the weather forecast information and the weather forecast acquisition unit 10 to be identified is specified, and the predicted power generation is performed based on the power generation coefficient and the extras
- the power amount measuring device 3 is a device that measures the amount of power generated by the photovoltaic power generation system 2 during a fixed time zone, and is, for example, a smart meter.
- the constant time zone is, for example, a time zone divided at regular time intervals such as 30 minutes, 1 hour, etc., starting from midnight. Note that a plurality of solar power generation systems 2 and corresponding power amount measurement devices 3 may exist for one solar power generation amount prediction device 1.
- the position information source 6 is an information source indicating a place where the solar power generation system 2 is installed, and includes information represented by latitude and longitude.
- the position information source 6 is, for example, a GPS (Global Positioning System) terminal provided in the photovoltaic power generation system 2.
- a storage device that stores the longitude and latitude obtained from the address of the installation place of the solar power generation system 2 may be used as the position information source 6.
- the position information source 6 may not be an information source that accurately indicates the installation location of the photovoltaic power generation system 2.
- a storage device that stores the latitude and longitude of a point representing a city or a town where the solar power generation system 2 is installed may be used as the position information source 6.
- the position information source 6 may be a storage device provided in the solar power generation amount predicting apparatus 1 and storing information indicating a place where the solar power generation system 2 is installed.
- the weather information source 9 is a source providing weather forecast information in the area where the solar power generation system 2 is installed, and is, for example, a weather information providing server of the Japan Meteorological Agency.
- the weather information source 9 may be an information source provided by a private weather information provision service, or may be a device for a weather forecaster to input weather data.
- the power generation result acquisition unit 4 acquires information indicating the power generation amount in each time zone of the measurement date from the power amount measuring device 3 as a power generation result, and stores the acquired power generation result in the power generation result storage unit 5.
- the power generation amount performance acquiring unit 4 acquires the power generation amount performance every predetermined time such as 0 minutes and 30 minutes every hour. Further, when there are a plurality of solar power generation systems 2 and corresponding power amount measuring devices 3, the power generation performance is acquired for each of the solar power generation systems 2.
- the power generation result storage unit 5 stores the power generation result acquired by the power generation result acquisition unit 4 in the power generation result table for each measurement date and for each measurement time zone.
- An example of the power generation amount result stored in the power generation amount result storage unit 5 will be described with reference to FIG.
- the power generation result table includes a date field 21, a time zone field 22, a solar power generation system ID field 23 and a power generation field 24. In this example, it is assumed that the time zone is divided every 30 minutes.
- the date field 21 stores information indicating the date when the power generation amount is obtained.
- the information indicating the date is, for example, a character string by concatenating numbers indicating the year, month, and day. For example, when the measurement date is July 1, 2017, the character string stored in the date field is "20170701".
- the time zone field 22 stores information indicating the time zone in which the amount of power generation has been measured.
- the information indicating the time zone is, for example, a character string by connecting numbers indicating the hour and minute of the end of the time zone. For example, if the measured time zone is more than 7 o'clock and 7:30 in the 24-hour notation, the character string stored in the time zone field is "0730".
- the method of expressing the time zone is not limited to this. Instead of the end, the time zone may be expressed by the start. In addition, "0" for more than 0:00 to 0:30, "1" for more than 0:30 to 1:00, ..., more than 23:30 to 24:00
- the time zone may be represented by a numerical value representing the order of "47" and so on. Any character string may be used as long as it can uniquely identify each time zone.
- the photovoltaic power generation system ID is stored in the photovoltaic power generation system ID field 23.
- the solar power generation system ID is represented by a numerical value, a character string, or the like, and is unique identification information provided for each solar power generation system 2.
- the solar power generation system ID may be sequentially numbered with respect to the solar power generation system 2 to be predicted by the solar power generation amount prediction apparatus 1 or may be a contract number of the power company. For example, when there are three solar power generation systems to be predicted by the solar power generation amount prediction apparatus, the solar power generation system ID corresponding thereto can be “0001”, “0002”, and “0003”. Further, in the case where power generation results are accumulated only for one solar power generation system 2, the solar power generation system ID field 23 may be omitted.
- the power generation amount field 24 stores information indicating the power generation amount in the time zone in which the power generation amount is measured. When the time to measure the amount of power deviates, for example, when the amount of power for 31 minutes is measured, the power generation amount corrected in 30 minutes is generated by performing proportional distribution with the power generation amount measured in the preceding and subsequent time zones. Store in the quantity field 24.
- the power amount measuring device 3 can measure the power generation amount only in a one-hour cycle, halve each of the measured power generation amounts as the power generation amount of each 30 minutes, the power generation amount of the time zone before and after
- the power generation amount obtained by, for example, calculating the power generation amount for 30 minutes by a data interpolation method such as Lagrange interpolation, or the like is stored in the power generation amount field 24.
- the extrasolar radiation calculation unit 7 calculates the month and day and the time zone to be calculated based on the latitude and longitude indicated by the position information source 6 and the date and time period for which the extrasolar radiation is calculated. In the above, the amount of extrasolar radiation at the place where the solar power generation system 2 is installed is calculated. The amount of extrasolar radiation is the energy per unit area received by a plane perpendicular to sunlight outside the atmosphere approximately 8 km above the measurement point. Since the amount of extrasolar radiation is a value outside the atmosphere, it does not depend on the weather, but depends only on the position and the date and time. In response to the acquisition request from the power generation actual result classification unit 8 or the predicted power generation calculation unit 11 described later, the outside air radiation calculation unit 7 outputs the calculated outside air radiation to these. The amount of extrasolar radiation is calculated by the calculation procedure described below.
- the latitude ⁇ 0 and the longitude ⁇ 0 of the installation location of the photovoltaic power generation system 2 indicated by the position information source 6 are both expressed by the frequency method.
- the latitude is expressed as positive on the north and negative on the south, and as positive on the longitude as east, and negative on the west.
- the latitude ⁇ 0 and the longitude ⁇ 0 expressed by the frequency method are converted to ⁇ and ⁇ expressed in radians.
- ⁇ [rad] ⁇ 0 [degree] ⁇ ⁇ / 180
- [rad] ⁇ 0 [degree] ⁇ ⁇ / 180
- the number of days elapsed from January 1 to the date to be calculated is DN.
- the intermediate variable ⁇ 0 can be introduced to obtain the sun declination ⁇ , the earth-centered sun distance r and the equalization time E q on the day to be calculated.
- the time representative of the time zone to be calculated is determined.
- the time representing the time zone is assumed to be HH hours and MM minutes.
- the notation of time is Japan Standard Time.
- An intermediate variable JST can be introduced to obtain the solar time angle h at HH, MM minutes.
- ⁇ [rad] arc sin ⁇ sin ( ⁇ ) sin ( ⁇ ) + cos ( ⁇ ) cos ( ⁇ ) cos (h) ⁇
- the extrasolar radiation calculation unit 7 may calculate and output the extrasolar radiation at every request from the actual power generation classification unit 8 or the predicted power generation calculation unit 11, or the extrasolar radiation may be output in advance. It is good also as what calculates and accumulates, and acquires and outputs the amount of extraterrestrial solar radiation accumulated when requested. In the latter case, a memory is provided in the extrasolar radiation calculation unit 7, and the extraneous radiation in each time zone is calculated for one year in advance when the position information source 6 is updated, and the calculated extraneous radiation is calculated. It can be realized by storing everything in memory. Further, the amount of extrasolar radiation may be acquired by connecting to an external device that calculates the amount of extra solar radiation according to the date and time and the input of position information. That is, the calculation of the amount of extrasolar radiation includes not only the sequential calculation of the amount of extra solar radiation but also the acquisition of the amount of extra solar radiation by some means.
- the power generation amount performance classification unit 8 acquires the amount of extrasolar radiation from the atmospheric radiation calculation unit 7. When the weather is fine, the power generation coefficient is large because sunlight does not attenuate much in the atmosphere.
- the power generation amount P is the rating of the solar power generation system 2 for the power generation amount performance of one solar power generation system 2.
- the normalized power generation coefficient may be determined by dividing by the output. The regression analysis described later can be performed collectively on the plurality of photovoltaic power generation systems 2 by the normalized power generation amount coefficient.
- the power generation amount performance classification unit 8 associates the power generation amount coefficient calculated for each measurement day and for each measurement time zone with the measured date and time period, according to the magnitude of the power generation amount coefficient It is classified into the power generation result group.
- a plurality of power generation result groups exist, and weather attributes corresponding to the magnitude of the power generation coefficient are associated.
- the number of groups to be classified is, for example, the same as the number of weather attributes obtained by weather forecasting.
- the weather attribute is an attribute related to the weather, such as "fine”, “cloudy”, “rain”, etc., which is correlated with the magnitude of the power generation coefficient.
- the power generation coefficient is classified into a power generation result group according to the magnitude of the power generation coefficient by a clustering method such as the k-means method or the k-means ++ method.
- the power generation coefficient is classified into, for example, three groups, a large power generation coefficient group, a medium power group, and a small power generation coefficient.
- weather attributes such as "fine”, “cloudy”, and “rain”
- the number of weather attributes and the number of power generation result groups corresponding to them may not be three.
- the weather attributes may be four of "fine”, “slightly cloudy”, “cloudy”, and “rain”, and the number of corresponding power generation result groups may be four.
- the generated power result classification unit 8 may execute classification once a day, for example, at 23 o'clock, or may execute classification at the timing when the predicted generated power calculation unit 11 described later starts prediction of the generated power. .
- the classification is performed, for example, all existing data classified into the power generation result group are erased before the classification is performed.
- the weather forecast acquiring unit 10 acquires, from the weather information source 9, weather forecast information related to an area including the installation location of the solar power generation system 2 indicated by the position information source 6.
- the weather forecast information is, for example, information indicating a weather forecast in each time zone from now to 24 hours ahead.
- the weather forecast acquiring unit 10 may acquire the weather forecast information at the timing when the information indicated by the weather information source 9 is updated, and the weather information may be acquired each time an acquisition request from the predicted power generation calculator 11 described later comes.
- the latest weather forecast information may be obtained from the source 9.
- the timing at which the weather information source 9 is updated is, for example, when the weather information providing server of the Japan Meteorological Agency distributes new weather forecast information.
- the predicted power generation amount calculation unit 11 first obtains, from the weather forecast acquisition unit 10, weather forecast information on each time zone of the forecast target day, and specifies a power generation result group associated with the weather attribute related to the weather forecast information. Do. For example, when the weather forecast information in a certain time zone is "fine”, the power generation amount performance group associated with the "fine” weather attribute is specified. In addition, when the weather forecast information is information showing the transition of the weather such as “finely cloudy”, “cloudy and fine”, “finely cloudy” and “pokyly cloudy” by replacing with the prevailing weather attribute. "Sunny” may be considered “cloudy”.
- the update interval of the weather forecast is every three hours, and the time slot to be the target of the power generation amount prediction is every thirty minutes.
- three hours corresponding to the weather forecast update interval are divided into six time zones every 30 minutes, and weather attributes are assigned to each time zone.
- the weather attributes for the six time zones are assigned to “smoothly”, “sunnyly”, “cloudy”, “sunnyly”, “sunnyly”, “cloudy” in order, for example.
- the weather indicated by the weather forecast information is “cloudy then fine”, for example, “cloudy”, “cloudy”, “cloudy”, “fine”, “fine”, “fine” are assigned in order.
- the predicted power generation amount calculation unit 11 calculates a predicted power generation amount by calculating a regression coefficient by regression analysis described later, and multiplying the calculated regression coefficient and the extrasolar radiation amount for the day and time zone of the prediction target. calculate.
- the predicted power generation amount calculation unit 11 acquires the extra-atmospheric radiation amount from the extra-atmospheric radiation amount calculation unit 7.
- the predicted power generation amount calculation unit 11 may predict the power generation amount of each time zone of the next day, for example, once a day, for example, at 23:00, or each time of the next day at the timing when the weather forecast acquisition unit 10 acquires weather forecast information. You may forecast the amount of power generation of the band. Since the predicted power generation amount can be calculated by multiplying the regression coefficient by the extrasolar radiation amount, it can be said that the regression coefficient is a predicted power generation coefficient.
- the regression coefficient is determined by regression analysis of the amount of extrasolar radiation and the amount of power generation calculated from the power generation coefficient. As shown in FIG. 6, the amount of extrasolar radiation stored in the array IV and the amount of generated power stored in the array DV are subjected to regression analysis, and a straight line passing through the origin is defined as a regression line. The slope of this regression line is the regression coefficient.
- the amount of power generation may be calculated by the product of the power generation amount coefficient and the amount of extrasolar radiation. Further, the regression coefficient may more easily adopt the average value of the power generation coefficient belonging to the power generation result group. Further, as a regression curve, a straight line not passing through the origin, a logistic curve, or the like may be adopted to perform regression analysis.
- the functions of the array IV and the array DV are realized, for example, by providing the storage device to the predicted power generation amount calculation unit 11.
- weighted least squares may be used. For example, it is conceivable to use a weighted least squares method in which the weight is increased as the day difference from the prediction target day is smaller, or as the prediction target day and the month and day are closer, or as the weather situation such as temperature is closer. For example, when the accumulation period of the power generation results is long, it is conceivable that a high building is constructed near the photovoltaic system 2 at a certain point in the accumulation period. In that case, a large difference occurs in the amount of solar radiation with respect to the photovoltaic system 2 before and after the building is built.
- the functional configuration of the solar power generation amount predicting apparatus 1 has been described above.
- the generated power result acquiring unit 4 functions as the generated power result acquiring means described in the claims.
- the power generation result storage unit 5 functions as a power generation result storage unit described in the claims.
- the extrasolar radiation calculating unit 7 functions as an extraneous radiation calculating unit described in the claims.
- the weather forecast acquisition unit 10 functions as a weather forecast acquisition unit described in the claims.
- the generated power result classification unit 8 functions as a generated power result classification unit described in the claims.
- the predicted power generation amount calculation unit 11 functions as a predicted power generation amount calculation unit described in the claims.
- the solar power generation amount predicting apparatus 1 includes a processor 1001 that executes processing, a memory 1002 that stores information, and an interface 1003 that transmits and receives information.
- the memory 1002 is, for example, a storage device such as a dynamic random access memory (DRAM), a flash memory, or a magnetic disk drive.
- the memory 1002 implements the function of the power generation result storage unit 5.
- the processor 1001 is, for example, a CPU (Central Processing Unit) that executes a program stored in the memory 1002.
- the processor 1001 realizes the respective functions of the power generation actual performance acquiring unit 4, the extrasolar radiation calculating unit 7, the power generation actual performance classifying unit 8, the weather forecast acquiring unit 10, and the predicted power generation calculating unit 11.
- the interface 1003 is, for example, various I / O (Input / Output) ports.
- the power generation result acquiring unit 4 can acquire the power generation result
- the weather forecast acquiring unit 10 can acquire the weather forecast information.
- processor 1001 Although only one processor 1001 is shown in FIG. 14, a plurality of processors may cooperate to realize the above function. Also, although only one memory 1002 is similarly illustrated in FIG. 14, a plurality of memories may cooperate to realize the above function.
- the first processor realizes the functions of the power generation actual result acquiring unit 4 and the power generation actual result classifying unit 8, and the second processor calculates the extrasolar solar radiation amount calculating unit 7, the weather forecast acquiring unit 10, and the predicted power generation amount calculation It may be configured to realize the function of the unit 11.
- the first processor and the second processor may not be mounted on one device.
- the server on the cloud may include the first processor, and the client terminal connected to the server via the network may include the second processor.
- the server comprises the first memory, and the client terminal comprises the second memory.
- the central part for realizing the functions of the solar power generation amount predicting apparatus 1 can be realized by using a normal computer system, not by a dedicated system.
- a dedicated program for realizing the above functions is stored and distributed in a computer readable recording medium. Then, by installing a dedicated program on a computer and executing it, the above function can be realized by a normal computer system.
- part of the above functions may be shared by an operating system (OS), and the above functions may be realized by cooperation of the OS and a dedicated program. In this case, only the dedicated program may be stored in the recording medium.
- OS operating system
- FIG. 14 is an example, and the solar power generation amount predicting apparatus 1 can be configured by other than the above hardware configuration.
- the function of the solar power generation amount predicting apparatus 1 may be realized by a dedicated signal processing circuit without using a normal computer system.
- the operation of the solar power generation amount prediction apparatus 1 is roughly classified into the classification of the power generation amount coefficient by the power generation amount actual classification unit 8 and the prediction of the power generation amount by the predicted power generation amount calculation unit 11.
- the power generation result acquisition unit 4 acquires the power generation result at regular intervals, and the power generation result storage unit 5 stores the acquired power result.
- the power generation actual result classification unit 8 acquires the power generation actual result from the power generation actual result storage unit 5 (step S101).
- the power generation performance to be acquired may be all of the power generation performance stored in the power generation performance storage unit 5 or may be a power generation performance for a predetermined period such as the last 15 days.
- the amount of power generation may be a target for a certain period of time such as 9-16 o'clock, or the amount of power generation may be a certain number of data such as the latest 500 pieces.
- N be the number of data of the actual power generation amount acquired in step S101.
- the power generation actual result classification unit 8 calculates a power generation amount coefficient by loop processing for all the acquired N power generation actual results (steps S102 to S105).
- the extrasolar radiation amount corresponding to the measured day and time zone, which is included in the i-th power generation amount result is acquired from the extrasolar radiation amount calculating unit 7 (step S103).
- the power generation amount coefficient is calculated by dividing the power generation amount included in the i-th power generation amount result by the acquired extrasolar radiation amount (step S104).
- the power generation amount performance classification unit 8 classifies the calculated power generation amount coefficient into a power generation amount performance group associated with the meteorological attribute (step S106).
- the weather attribute corresponding to the power generation coefficient can be estimated by classifying the power generation coefficient into the power generation actual result group associated with the weather attribute. Therefore, it is not necessary to store past weather information, and the amount of data to be stored can be reduced.
- the predicted power generation amount calculation unit 11 predicts the power generation amount of each time zone by loop processing for all time zones to be predicted (steps S201 to S212). In the operation shown in FIG. 4, it is assumed that one day is divided into 48 time zones. Hereinafter, in the process from step S202 to S211, it demonstrates as what predicts the electric power generation amount prediction with respect to the T-th time slot
- T is a natural number from 0 to 47, and counts from the 0th. Also, the T-th time zone is simply described as a time zone T.
- the predicted power generation amount calculation unit 11 acquires weather forecast information corresponding to the time zone T from the weather forecast acquisition unit 10 (step S202). Next, the predicted power generation amount calculation unit 11 specifies a power generation amount performance group associated with the weather attribute corresponding to the acquired weather forecast information (step S203). The predicted power generation amount calculation unit 11 acquires a power generation amount coefficient for the same time zone T among the power generation amount coefficients belonging to the specified power generation amount actual group (step S204). The number of acquired power generation amount coefficients is M.
- the predicted power generation amount calculation unit 11 creates data for the above-described regression analysis by loop processing on all of the acquired M power generation amount coefficients (steps S205 to S208).
- the predicted power generation amount calculation unit 11 acquires the extrasolar radiation corresponding to the power generation coefficient to be processed from the extrasolar radiation calculation unit 7, and adds it to the array IV for storing the extrasolar radiation (step) S206).
- the predicted power generation amount calculation unit 11 acquires a power generation result corresponding to the power generation coefficient to be processed from the power generation result storage unit 5, and adds it to the array DV for storing the power generation result (step S207). Note that the power generation result may be acquired by multiplying the power generation amount coefficient by the extrasolar radiation amount.
- the predicted power generation amount calculation unit 11 performs regression analysis of the extrasolar radiation amount stored in the array IV and the power generation amount stored in the array DV to obtain a regression coefficient (step S209). As mentioned above, it can be said that the regression coefficient is a predicted power generation coefficient.
- the predicted power generation amount calculation unit 11 acquires the outside air radiation amount corresponding to the time zone T from the outside air radiation amount calculation unit 7 (step S210).
- the predicted power generation amount calculation unit 11 calculates a predicted power generation amount corresponding to the time zone T by multiplying the calculated regression coefficient and the extrasolar radiation amount (step S211).
- the power generation amount coefficient acquired in step S204 only one for a certain period may be acquired. For example, as shown in FIG. 5, it is conceivable to acquire the power generation amount coefficient limited to data within the last 15 days, and within the same month and day of the past year and 15 days before and after that.
- the photovoltaic power generation amount prediction apparatus 1 classifies the power generation amount coefficient into the power generation amount performance group based on the weather information, and specifies the power generation amount performance group to be referred to in the power generation amount prediction based on the weather information.
- Weather information is only used for classification and identification, and no weather information is stored. Therefore, according to the photovoltaic power generation amount forecasting device 1, without storing the weather information in the past, the installation position information of the photovoltaic power generation system 2, the past power generation amount performance, the extrasolar radiation amount, and the forecasted date
- the predicted power generation amount of each time zone on the prediction target day can be calculated on the basis of the weather forecast information in. Since there is no need to accumulate past weather information, the required data storage capacity can be reduced.
- Each function of the solar power generation amount predicting apparatus 1 may be realized by a server on a network to calculate predicted power generation amounts of a plurality of solar power generation systems 2 connected to the network.
- each function of the solar power generation amount predicting apparatus 1 can be realized by a terminal installed for each of the solar power generation systems 2, and the predicted power generation amount of the solar power generation system 2 can be calculated.
- each function of the photovoltaic power generation amount prediction apparatus 1 is realized by a server on a network, it may be configured by one server, or may be distributed to a plurality of servers. Furthermore, one function may be distributed to a plurality of servers. When all functions of the photovoltaic power generation prediction device 1 are realized by one server or one terminal, they are also the photovoltaic power generation prediction device 1.
- the function of the solar power generation amount predicting apparatus 1 may be shared by the server and the terminal.
- symbol is attached
- the solar power generation amount prediction apparatus 1A shown in FIG. 7 includes a server 71A and a terminal 72A.
- the terminal 72A acquires the power generation result from the atmospheric radiation acquisition unit 10, the weather forecast acquiring unit 10, the power amount measuring device 3, and transmits the power generation result communication unit 73A to the server 71A, and the server 71A.
- a generated power result acquisition unit 4A that acquires a generated power result from the generated power result storage unit 5A, a generated power result classification unit 8, and a predicted generated power calculation unit 11.
- the server 71A includes a power generation result receiving unit 74A that receives the power generation result from the terminal 72A, and a power generation result storage unit 5A that stores the power generation result received by the power generation result receiving unit 74A.
- the terminal 72A is, for example, a HEMS (Home Energy Management System) terminal that manages energy in the home.
- a plurality of terminals 72A may be connected to one server 71A. According to this configuration, it is possible to reduce the data storage capacity required for the terminal 72A while accumulating a large amount of power generation results in the server 71A.
- the solar power generation amount prediction device 1B illustrated in FIG. 8 includes a server 71B and a terminal 72B.
- the terminal 72B receives the actual power generation result from the extraneous solar radiation amount calculation unit 7, the power amount measurement device 3, and outputs the generated power result communication unit 73B to the generated power coefficient calculation unit 84B, and the generated power result communication unit 73B.
- a power generation amount coefficient calculation unit 84B that calculates the power generation amount coefficient based on the acquired power generation amount results and the extrasolar radiation amount obtained from the extrasolar radiation amount calculation unit 7 and sends it to the server 71B, and the predicted power generation amount from the server 71B
- the power generation coefficient acquisition unit 89B acquires the coefficient and outputs it to the predicted power generation calculation unit 11B, the predicted power generation coefficient acquired from the power generation coefficient acquisition unit 89B, and the extrasolar radiation amount acquired from the extrasolar radiation calculation unit 7 And a predicted power generation amount calculation unit 11B that calculates a predicted power generation amount by multiplying
- the server 71B includes the weather forecast acquisition unit 10, a power generation coefficient reception unit 85B that receives the power generation coefficient from the terminal 72B, and a power generation coefficient storage unit 86B that stores the power generation coefficient received by the power generation coefficient reception unit 85B.
- the power generation factor classifying unit 87B that acquires the power generation factor from the power generation factor storage unit 86B and classifies it into the power generation factor group associated with the meteorological attribute. Then, the power generation coefficient group is selected, regression analysis is performed on the power generation coefficient belonging to the selected power generation coefficient group, and the predicted power generation coefficient in each time zone of the prediction target date is calculated and transmitted to the terminal 72B And a power generation amount coefficient calculation unit 88B.
- the server 71B is responsible for a part of the processing necessary for the power generation amount prediction. Therefore, in addition to being able to reduce the data storage capacity necessary for the terminal 72B, the processing amount of the terminal 72B can also be reduced.
- the functional configuration of the solar power generation amount prediction device 1C will be described with reference to FIG.
- the solar power generation amount prediction apparatus 1C is used for the extraneous solar radiation amount calculation unit 7, the weather forecast acquisition unit 10, the power generation amount actual acquisition unit 4, the predicted power generation amount calculation unit 11, and the power generation amount prediction Of the power generation results stored in the power generation result storage unit 5C and the power generation result storage unit 5C, the values of which are updated by the power generation result updating unit 94C.
- the power generation actual result classification unit 8C that classifies only the value including the value indicating use for the amount prediction into the power generation amount actual performance group, and the predicted power generation amount calculated by the predicted power generation amount calculation unit 11 together with the predicted day and time Accuracy of power generation prediction based on the comparison result of predicted actual storage unit 92C accumulated as actual results, power generation actual stored in generated power actual results storage 5C, and predicted actuals stored in predicted actual storage 92C Amount of power generation that causes An extraction unit 93C that extracts results, and a power generation result update unit 94C that updates the power generation result storage unit 5C to make the power generation result extracted by the extraction unit 93C unusable for prediction of the power generation. Prepare.
- the power generation result table storing the power generation results stored in the power generation result storage unit 5C is, as shown in FIG. 10, a date field 21, a time zone field 22, a solar power generation system ID field 23, and a power generation amount.
- a prediction use flag field 101C is included.
- the predicted use flag field 101C stores a value indicating whether the power generation actual value is used for power generation prediction. Although the initial value of the value stored in the predicted usage flag field 101C is "used", it is updated by the power generation actual result updating unit 94C.
- the classification of the power generation amount coefficient by the power generation amount performance classification unit 8C is substantially the same as in the first embodiment, but only for the power generation amount results for which the value stored in the predicted use flag field 101C is "use". Calculation of the power generation coefficient and classification of the power generation coefficient are performed.
- the predicted power generation amount calculation unit 11 uses these power generation results by not performing calculation and classification of the power generation coefficient with respect to the power generation results for which the value stored in the predicted use flag field 101C is “do not use”. It will not be.
- the prediction result storage unit 92C associates the predicted power generation amount calculated by the predicted power generation amount calculation unit 11 with the predicted date and time zone, and stores it as a predicted result in the prediction result table.
- the forecasted performance table includes a date field 111C, a time zone field 112C, a photovoltaic system ID field 113C, and a predicted power generation field 114C.
- the extraction unit 93C acquires the power generation result from the power generation result storage unit 5C, and acquires the prediction result from the prediction result storage unit 92C.
- the extraction unit 93C compares the acquired predicted actual results with the acquired actual power generation results, and determines the accuracy of the generated power prediction based on the difference between the predicted generated power and the measured generated power in the same time zone on the same day. Extract the amount of power generation that is the cause of lowering.
- the operation of the extraction unit 93C will be described later.
- the operation of the extraction unit 93C is performed, for example, at a timing at which the predicted power generation amount calculation unit 11 tries to predict a specific day as a prediction target day.
- the power generation result updating unit 94C changes the value of the predicted use flag field 101C corresponding to the power generation result extracted by the extracting unit 93C to "do not use”. Make updates.
- the configuration of the solar power generation amount prediction device 1C has been described above.
- the prediction result storage unit 92C functions as a prediction result storage unit described in the claims.
- the extraction unit 93C functions as an extraction unit described in the claims.
- the power generation result updating unit 94C functions as a power generation result updating unit described in the claims.
- the operation of the extraction unit 93C will be described with reference to FIGS. 5, 12 and 13 while giving a specific example.
- the forecast target date is July 1, 2017, and the forecast time zone is a time zone represented by “0800”.
- the extraction unit 93C acquires the power generation result to be used for power generation prediction from the power generation result storage unit 5C (step S301).
- the power generation results used for power generation prediction are data within the last 15 days, and within the same month of the past 3 years and around 15 days thereafter.
- the extraction unit 93C creates a prediction deviation list by loop processing on each of the acquired power generation amount results (steps S302 to S306).
- the extraction unit 93C extracts the measured day and time zone included in the power generation amount record to be subjected to the loop processing.
- the prediction result including the same prediction date and prediction time zone as the extracted date and time zone is acquired from the prediction history storage unit 92C (step S303).
- the extraction unit 93C determines whether there is a certain difference or more between the amount of power generation included in the actual amount of power generation and the predicted amount of power generation included in the predicted actual result (step S304).
- the predetermined difference or more is, for example, the case where the difference between the power generation amount and the predicted power generation amount is 20% or more of the power generation amount. In this example, it is assumed that there is a predetermined difference on June 17, 2017, on the same day, on the same day, on the same day, on the same day, on the same day, on the same day, on the same day, on the same day, on the same day, on the same day.
- step S304: Yes If there is a difference of a certain level or more (step S304: Yes), a set of the prediction date and the prediction time zone is added to the prediction deviation list 131C (step S305), and the process proceeds to step S306. If there is no difference greater than or equal to a predetermined amount (step S304: No), the process proceeds to step S306 without adding to the prediction deviation list 131C.
- step S304: No If there is no difference greater than or equal to a predetermined amount, the process proceeds to step S306 without adding to the prediction deviation list 131C.
- “0800” time zones of June 17, 2017, 20, 28, and 30 of 2017 are added to the misprediction list 131C.
- the extraction unit 93C extracts the power generation actual value used when the power generation amount prediction for each prediction date and the prediction time slot in the prediction deviation list 131C is performed as the exclusion candidate.
- the actual power generation amount in the “0800” time zone of the day indicated by the thick line in FIG. 13 is extracted as the exclusion candidate.
- the excluded candidates extracted a predetermined number of times or more are extracted as a power generation amount performance which causes the accuracy of the power generation amount prediction to be lowered (step S307).
- the predetermined number of times or more is, for example, three or more times.
- the number of days of 10% or more of the total number of days of the power generation actual value used for the power generation prediction may be used.
- the power generation performance in the “0800” time zone of each day from June 13, 2017 to the same year, January 19, 2017 is extracted three or more times as an exclusion candidate. Therefore, these power generation results are extracted as power generation results that cause the accuracy of the power generation prediction to be lowered.
- the generated power result updating unit 94C compares the value of the predicted use flag field 101C corresponding to the power generation result with respect to the power generation result that is the cause of lowering the accuracy of power generation prediction extracted by the operation of the extracting unit 93C. Update to "do not use”.
- the value of the predicted use flag field 101C is “use” or “do not use”, but may be represented by a numerical value of reliability instead of these two values.
- the difference between the power generation amount and the predicted power generation amount is made into a point, and the weight of the power generation amount performance is calculated based on the point total for each exclusion candidate as a weight when performing regression analysis by the weighted least squares method. You may use. Alternatively, a weighted least squares regression analysis may be performed, using the number of times of extraction as an exclusion candidate as a weight.
- the solar power generation amount prediction apparatus 1C can perform prediction by excluding the power generation amount performance causing the misprediction, the prediction accuracy is improved.
- the present invention is suitable for prediction of the amount of power generation in a solar power generation system.
Landscapes
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は太陽光発電システムの発電量を予測する太陽光発電量予測装置、太陽光発電量予測システム、予測方法およびプログラムに関する。 The present invention relates to a photovoltaic power generation amount prediction device that predicts the power generation amount of a solar power generation system, a solar power generation amount prediction system, a prediction method, and a program.
太陽光発電システムにより生じた電気を、蓄電池に蓄電すること、ヒートポンプ給湯機を利用して蓄熱すること、などによりエネルギーとして蓄えることができる。蓄えたエネルギーを発電とは別のタイミングで利用することができる。例えば、太陽光発電システムが日中に発電した電気を利用してヒートポンプ給湯機に温水を蓄えることにより、夕方の給湯需要に備えることができる。給湯需要に対して過不足なく蓄熱するには、太陽光発電システムの発電量を精度良く予測する必要がある。 The electricity generated by the solar power generation system can be stored as energy by storing the electricity in a storage battery, storing heat using a heat pump water heater, or the like. The stored energy can be used at a different timing from power generation. For example, by storing hot water in the heat pump water heater using electricity generated by the solar power generation system during the day, it is possible to prepare for the hot water supply demand in the evening. In order to store heat just enough for hot water supply demand, it is necessary to accurately predict the power generation amount of the photovoltaic power generation system.
また、太陽光発電システムにより生じた電気を、配電系統に売電することができる。しかし、太陽光発電システムでは発電量及び発電時間の制御ができないため、太陽光発電システムが大量に導入されると配電電圧の管理が困難となる。そのため電力会社では太陽光発電システムの出力抑制が検討されている。電力会社は、出力抑制をすべきか決定するために、また、抑制する場合の抑制量を決定するために、太陽光発電システムの発電量を精度良く予測する必要がある。 In addition, the electricity generated by the solar power generation system can be sold to the distribution system. However, since the photovoltaic power generation system can not control the amount of power generation and the power generation time, when a large amount of photovoltaic power generation systems are introduced, it becomes difficult to manage the distribution voltage. For this reason, power companies are considering reducing the output of photovoltaic power generation systems. The power company needs to accurately predict the power generation amount of the solar power generation system in order to determine whether the power reduction should be performed or to determine the suppression amount in the case of the suppression.
特許文献1には、ある一日における実際の日射量と理論上の日射量の最大値との比をその日の快晴度と定義し、過去の気象情報と過去の快晴度とに基づいて、現在の気象予測データから快晴度を予測して日射量を予測する日射量予測方法が開示されている。また特許文献1には、この方法により予測した日射量に基づいて、太陽光発電により生じる発電出力を予測する太陽光発電出力予測方法及び太陽光発電出力予測システムも開示されている。
特許文献1に開示された太陽光発電出力予測システムでは、気象予測データから快晴度を予測するために、過去の気象情報及び過去の快晴度を蓄積する必要がある。そのため、予測精度を向上させるために蓄積する期間を長くすると記憶すべきデータ量が増大する。
In the photovoltaic power generation output prediction system disclosed in
本発明の目的は上記事情に鑑み、過去の気象データを蓄積することなく太陽光発電システムの発電量を予測することが可能な太陽光発電量予測装置、太陽光発電量予測システム、予測方法及びプログラムを提供することにある。 In view of the above circumstances, it is an object of the present invention to provide a solar power generation amount prediction apparatus, a solar power generation amount prediction system, and a prediction method capable of predicting the power generation amount of a solar power generation system without accumulating past weather data. To provide the program.
本発明に係る太陽光発電量予測装置は、発電量実績取得手段と、発電量実績記憶手段と、大気外日射量算出手段と、気象予報取得手段と、発電量実績分類手段と、予測発電量算出手段と、を備える。発電量実績取得手段は、太陽光発電システムの発電量を、取得日及び取得時間帯とともに発電量実績として取得する。発電量実績記憶手段は、発電量実績取得手段が取得した発電量実績を蓄積する。大気外日射量算出手段は、太陽光発電システムの設置場所における大気外日射量を算出する。気象予報取得手段は、太陽光発電システムの設置場所を対象地域に含む気象予報情報を取得する。発電量実績分類手段は、大気外日射量算出手段に、発電量実績記憶手段が蓄積する発電量実績に含まれる取得日及び取得時間帯における大気外日射量を算出させ、発電量実績に含まれる発電量と算出した大気外日射量とに基づいて算出される発電量係数を、気象属性と対応付けられた発電量実績グループに分類する。予測発電量算出手段、気象予報取得手段が取得した、予測対象となる日及び時間帯を対象に含む気象予報情報と、取得した気象予報情報に応じた気象属性と対応付けられた発電量実績グループと、大気外日射量算出手段が算出した、予測対象となる日及び時間帯における大気外日射量と、に基づいて予測発電量を算出する。 The solar power generation amount predicting apparatus according to the present invention comprises: a power generation amount actual acquisition means, a power generation amount actual storage means, an extrasolar solar radiation amount calculation means, a weather forecast acquisition means, a power generation actual result classification means, a predicted power generation amount Calculating means. The power generation amount performance acquiring means acquires the power generation amount of the photovoltaic power generation system as a power generation amount performance together with an acquisition date and an acquisition time zone. The power generation result storage means stores the power generation results acquired by the power generation result acquisition means. The extra-atmospheric solar radiation amount calculation means calculates the extra-atmospheric solar radiation amount at the installation place of the solar power generation system. The weather forecast acquiring means acquires weather forecast information including the installation location of the solar power generation system in a target area. The generated power result classification means causes the extracorporeal solar radiation amount calculation means to calculate the extracorporeal solar radiation amount in the acquisition date and the acquisition time zone included in the generated power amount results accumulated by the generated power amount result storage means, and is included in the generated power amount results The power generation coefficient calculated based on the power generation amount and the calculated extrasolar radiation amount is classified into a power generation amount performance group associated with the meteorological attribute. The forecasted power generation amount calculation means, the power generation actual result group corresponding to the weather attribute corresponding to the obtained weather forecast information and weather forecast information including the day and the time zone to be predicted acquired by the weather forecast acquiring means The predicted power generation amount is calculated on the basis of the extrasolar radiation amount in the day and the time zone to be predicted, which is calculated by the extrasolar radiation amount calculation means.
本発明によれば、発電量係数をグループ分けして気象属性と対応付けることにより、過去の気象データを蓄積することなく太陽光発電システムの発電量を予測することができる。 According to the present invention, by grouping power generation coefficients into groups and associating them with weather attributes, it is possible to predict the power generation amount of the solar power generation system without accumulating past weather data.
以下、本発明を実施するための形態に係る太陽光発電量予測装置を、図面を参照しながら説明する。 Hereinafter, a solar power generation amount predicting apparatus according to a mode for carrying out the present invention will be described with reference to the drawings.
(実施の形態1)
図1を参照しながら太陽光発電量予測装置1の機能的構成を説明する。太陽光発電量予測装置1は、太陽光発電システム2の発電量実績を電力量計測装置3から取得する発電量実績取得部4と、発電量実績を蓄積する発電量実績記憶部5と、太陽光発電システム2の設置場所を示す位置情報源6から大気外日射量を算出する大気外日射量算出部7と、発電量実績記憶部5に蓄積された発電量実績と大気外日射量とに基づいて後述の発電量係数を算出し、算出した発電量係数を、気象属性と対応付けられた発電量実績グループに分類する発電量実績分類部8と、気象情報源9から気象予報情報を取得する気象予報取得部10と、気象予報情報に対応する気象属性に対応付けられた発電量実績グループを特定し、当該発電量実績グループに属する発電量係数と大気外日射量とに基づいて予測発電量を算出する予測発電量算出部11と、を備える。
The functional configuration of the solar power generation
電力量計測装置3は、太陽光発電システム2が一定の時間帯の間に発電した電力量を計測する装置であり、例えばスマートメーターである。一定の時間帯とは、例えば午前0時から起算して30分、1時間などの一定時間ごとに区切られた時間帯である。なお、太陽光発電システム2及び対応する電力量計測装置3は1つの太陽光発電量予測装置1に対して複数存在してもよい。
The power
位置情報源6は、太陽光発電システム2が設置されている場所を示す情報源であり、緯度及び経度により表される情報を含む。位置情報源6は、例えば、太陽光発電システム2に設けられたGPS(全地球測位システム: Global Positioning System)端末である。また、太陽光発電システム2の設置場所の住所から求めた経度及び緯度を記憶する記憶装置を位置情報源6としてもよい。また、位置情報源6は太陽光発電システム2の設置場所を正確に示す情報源でなくてもよい。例えば、太陽光発電システム2が設置されている市区町村を代表する地点の緯度及び経度を記憶する記憶装置を位置情報源6としてもよい。また、位置情報源6は、太陽光発電量予測装置1が備え、太陽光発電システム2が設置されている場所を示す情報を記憶する記憶装置であってもよい。
The
気象情報源9は、太陽光発電システム2が設置されている地域における気象予報情報を提供する情報源であり、例えば気象庁の気象情報提供サーバである。また、気象情報源9は、民間の気象情報提供サービスにより提供される情報源であってもよいし、気象予報士が気象データを入力する装置であってもよい。
The
発電量実績取得部4は、計測日の各時間帯における発電量を示す情報を発電量実績として電力量計測装置3から取得し、取得した発電量実績を発電量実績記憶部5に記憶させる。発電量実績取得部4は、毎時0分、30分などの一定時間ごとに発電量実績を取得する。また、太陽光発電システム2及び対応する電力量計測装置3が複数存在する場合、太陽光発電システム2ごとに発電量実績を取得する。
The power generation result acquisition unit 4 acquires information indicating the power generation amount in each time zone of the measurement date from the power
発電量実績記憶部5は、発電量実績取得部4が取得した発電量実績を、計測日ごとに、かつ計測時間帯ごとに発電量実績テーブルに格納する。図2を参照しながら、発電量実績記憶部5に蓄積される発電量実績の一例を説明する。発電量実績テーブルは、年月日フィールド21、時間帯フィールド22、太陽光発電システムIDフィールド23及び発電量フィールド24を含む。なお、この一例において、時間帯は30分ごとに区切られていると仮定する。
The power generation result storage unit 5 stores the power generation result acquired by the power generation result acquisition unit 4 in the power generation result table for each measurement date and for each measurement time zone. An example of the power generation amount result stored in the power generation amount result storage unit 5 will be described with reference to FIG. The power generation result table includes a
年月日フィールド21には発電量を取得した年月日を示す情報が格納される。年月日を示す情報とは例えば、年、月、日を示す数字を連結して文字列としたものである。例えば計測日が2017年7月1日の場合、年月日フィールドに格納される文字列は「20170701」となる。
The
時間帯フィールド22には発電量を計測した時間帯を示す情報が格納される。時間帯を示す情報とは例えば、時間帯の終期の時、分を示す数字を連結して文字列としたものである。例えば計測した時間帯が24時制による表記で7時を超え7時30分までである場合、時間帯フィールドに格納される文字列は「0730」となる。なお、時間帯を表現する方法はこれに限られない。終期に代えて始期により時間帯を表現してもよい。また、0時0分を超え0時30分までを「0」、0時30分を超え1時0分までを「1」、・・・、23時30分を超え24時0分までを「47」、と連続した順序を表す数値により時間帯を表現してもよい。各時間帯を識別できる固有のものであれば、任意の文字列で表してもよい。
The
太陽光発電システムIDフィールド23には太陽光発電システムIDが格納される。太陽光発電システムIDは、数値、文字列などにより表現され、太陽光発電システム2ごとに付与される固有の識別情報である。太陽光発電システムIDは、太陽光発電量予測装置1の予測対象となる太陽光発電システム2に対して順番に採番したものでもよいし、電力会社の契約番号を流用したものでもよい。例えば太陽光発電量予測装置の予測対象となる太陽光発電システムが3つ存在する場合、それらに対する太陽光発電システムIDは「0001」「0002」「0003」とすることができる。また、1つの太陽光発電システム2についてのみ発電量実績を蓄積する場合、太陽光発電システムIDフィールド23はなくてもよい。
The photovoltaic power generation system ID is stored in the photovoltaic power generation
発電量フィールド24には、発電量を計測した時間帯における発電量を示す情報が格納される。電力量を計測するタイミングがずれて、例えば31分間の電力量を計測した場合、前後の時間帯で計測された発電量との比例配分を行って、30分間の発電量として補正したものを発電量フィールド24に格納する。また、例えば、電力量計測装置3が1時間周期でしか発電量を計測できない場合、計測された発電量の1/2ずつを各30分間の発電量とすること、前後の時間帯の発電量の移動平均を30分間の発電量とすること、ラグランジュ補間などのデータ補間手法によって30分間の発電量を算出すること、などにより取得した発電量を発電量フィールド24に格納する。
The power
発電量実績記憶部5内に蓄積される発電量実績が一定数に達したのち、新たに発電量実績を蓄積するときには、最も古い発電量実績を削除することにより、データ記憶容量の削減を図ってもよい。 In order to reduce the data storage capacity by deleting the oldest power generation record when the power generation record is newly accumulated after the power generation record accumulated in the power generation record storage 5 reaches a certain number. May be
大気外日射量算出部7は、位置情報源6が示す緯度及び経度と、大気外日射量を算出する対象となる月日及び時間帯と、に基づいて、算出対象となる月日及び時間帯における、太陽光発電システム2が設置されている場所での大気外日射量を算出する。大気外日射量とは、測定地点の上空約8kmの大気圏外において太陽光と垂直な平面が受ける、単位面積あたりのエネルギーである。大気外日射量は大気圏外における値であるため、天候に左右されず、位置及び日時にのみ依存する値である。大気外日射量算出部7は、後述の発電量実績分類部8または予測発電量算出部11からの取得要求に応じて、算出した大気外日射量をこれらに出力する。大気外日射量は以下に述べる算出手順により算出される。
The extrasolar
位置情報源6が示す、太陽光発電システム2の設置場所の緯度φ0及び経度λ0はともに度数法により表現されている。また、緯度の正負については北緯を正、南緯を負とし、経度の正負については東経を正、西経を負として表現されている。まず、度数法により表現されている緯度φ0及び経度λ0を、ラジアンで表現されるφ及びλに変換する。
φ[rad]=φ0[度]×π/180
λ[rad]=λ0[度]×π/180
The latitude φ 0 and the longitude λ 0 of the installation location of the photovoltaic power generation system 2 indicated by the
φ [rad] = φ 0 [degree] × π / 180
λ [rad] = λ 0 [degree] × π / 180
次に、算出対象となる月日について、1月1日から算出対象の月日までの経過日数をDNとする。中間変数θ0を導入して、算出対象となる日における太陽赤緯δ、地心太陽距離r及び均時差Eqを求めることができる。
θ0[rad]=2π(DN[日]-1)/365
δ[rad]=0.006918-0.399912cos(θ0)+0.070257sin(θ0)-0.006758cos(2θ0)+0.000907sin(2θ0)-0.002697(3θ0)+0.001480sin(3θ0)
r[天文単位]=1/{1.000110+0.034221cos(θ0)+0.001280sin(θ0)+0.000719cos(2θ0)+0.000077sin(2θ0)}0.5
Eq[rad]=0.000075+0.001868cos(θ0)-0.032077sin(θ0)-0.014615cos(2θ0)-0.040849sin(2θ0)
Next, for the date to be calculated, the number of days elapsed from January 1 to the date to be calculated is DN. The intermediate variable θ 0 can be introduced to obtain the sun declination δ, the earth-centered sun distance r and the equalization time E q on the day to be calculated.
θ 0 [rad] = 2π (DN [day] -1) / 365
δ [rad] = 0.006918-0.399912cos (θ 0) + 0.070257sin (θ 0) -0.006758cos (2θ 0) + 0.000907sin (2θ 0) -0.002697 (3θ 0) + 0.001480sin ( 3θ 0 )
r [astronomical unit] = 1 / {1.000110 + 0.034221 cos (θ 0 ) + 0.001280 sin (θ 0 ) + 0.000719 cos (2θ 0 ) + 0.000077 sin (2θ 0 )} 0.5
E q [rad] = 0.000075 + 0.001868 cos (θ 0 ) −0.032077 sin (θ 0 ) −0.014615 cos (2θ 0 ) −0.040849 sin (2θ 0 )
次に、算出対象となる時間帯を代表する時刻を定める。時間帯を代表する時刻としては、時間帯の始期、終期、始期と終期との中間の時刻、などが採用可能である。時間帯を代表する時刻をHH時MM分とする。なお、時刻の表記は日本標準時である。中間変数JSTを導入して、HH時MM分のときの太陽の時角hを求めることができる。
JST[時]=HH[時]+MM[分]/60
h[rad]=(JST-12)π/12+(λ-135π/180)+Eq
Next, the time representative of the time zone to be calculated is determined. As the time representing the time zone, the beginning, the end, or an intermediate time between the beginning and the end of the time zone can be adopted. The time representing the time zone is assumed to be HH hours and MM minutes. The notation of time is Japan Standard Time. An intermediate variable JST can be introduced to obtain the solar time angle h at HH, MM minutes.
JST [hour] = HH [hour] + MM [minute] / 60
h [rad] = (JST-12) π / 12 + (λ-135π / 180) + E q
緯度φ、太陽赤緯δ及び時角hが求まったので、算出対象となる日時における太陽の仰角αを求めることができる。
α[rad]=arcsin{sin(φ)sin(δ)+cos(φ)cos(δ)cos(h)}
Since the latitude φ, the sun declination δ, and the time angle h are determined, the sun elevation angle α at the date and time to be calculated can be determined.
α [rad] = arc sin {sin (φ) sin (δ) + cos (φ) cos (δ) cos (h)}
そして、地心太陽距離r及び仰角αから、算出対象となる日時における大気外日射量Qを算出することができる。
Q[W/m2]=1367[W/m2]×(1/r)2×sin(α)
Then, from the geocentric sun distance r and the elevation angle α, it is possible to calculate the amount of extraterrestrial solar radiation Q at the date and time to be calculated.
Q [W / m 2 ] = 1367 [W / m 2 ] × (1 / r) 2 × sin (α)
大気外日射量算出部7は、発電量実績分類部8または予測発電量算出部11からの要求が来る度に大気外日射量を算出して出力してもよいし、予め大気外日射量を算出して蓄積し、要求があったときに蓄積しておいた大気外日射量を取得して出力するものとしてもよい。後者の場合、大気外日射量算出部7にメモリを設け、位置情報源6が更新されるタイミングで各時間帯における大気外日射量を1年分予め算出して、算出した大気外日射量を全てメモリに蓄積することにより実現できる。また、日時及び位置情報の入力に応じて大気外日射量を算出する外部装置と接続することにより大気外日射量を取得してもよい。つまり、大気外日射量の算出とは、単に大気外日射量を逐次算出することのみではなく、何らかの手段により大気外日射量を取得することも含む。
The extrasolar
なお、算出対象となる月日が2月29日だった場合、2月28日もしくは3月1日として扱えばよい。また、2月28日における大気外日射量と3月1日における大気外日射量との平均を2月29日における大気外日射量としてもよい。 When the date to be calculated is February 29, it may be treated as February 28 or March 1. Further, the average of the amount of extrasolar radiation on February 28 and the amount of extrasolar radiation on March 1 may be taken as the amount of extrasolar radiation on February 29.
発電量実績分類部8は、まず、発電量実績記憶部5に蓄積された発電量実績に対して、計測日ごとに、かつ計測時間帯ごとに、以下に示す発電量係数を算出する。発電量実績が示す発電量をP、Pに対応する計測した日及び時間帯における大気外日射量をQとすると、発電量係数Kは、以下の計算式により算出できる。
K=P/Q
発電量実績分類部8は、大気外日射量を大気外日射量算出部7から取得する。天気が快晴に近い場合、太陽光が大気中であまり減衰しないため、発電量係数は大きくなる。また、太陽光発電量予測装置1が複数の太陽光発電システム2の発電量を予測する場合、1つの太陽光発電システム2に関する発電量実績について、発電量Pを当該太陽光発電システム2の定格出力で除することにより、正規化された発電量係数を求めてもよい。正規化された発電量係数により、複数の太陽光発電システム2に対して、まとめて後述の回帰分析を行うことができる。
The power generation actual
K = P / Q
The power generation amount
発電量実績分類部8は、次に、計測日ごとに、かつ計測時間帯ごとに算出した発電量係数を、計測した日及び時間帯と紐付けた状態で、発電量係数の大小に応じて発電量実績グループに分類する。発電量実績グループは複数存在し、発電量係数の大小に応じた気象属性が対応付けられている。分類するグループの数は、例えば、気象予報で得られる気象属性の数と同じ数とする。気象属性とは、「晴れ」「曇り」「雨」など発電量係数の大小と相関関係のある、気象に関する属性である。発電量係数は、k-means法、k-means++法などのクラスタリング手法により、発電量係数の大小に応じた発電量実績グループに分類される。発電量係数は例えば、発電量係数が大きいグループ、中ぐらいのグループ、小さいグループの3つに分類される。そしてこれらのグループをそれぞれ「晴れ」「曇り」「雨」などの気象属性と対応付けることにより、発電量係数の大小関係と気象属性とを対応付けることができる。なお、気象属性の数及びそれらに対応する発電量実績グループの数は3つでなくてもよい。例えば、気象属性を「晴れ」「薄曇り」「曇り」「雨」の4つとし、対応する発電量実績グループの数を4つとしてもよい。
Next, the power generation amount
発電量実績分類部8は、1日1回、例えば23時に分類を実行してもよいし、後述の予測発電量算出部11が発電量の予測を開始するタイミングで分類を実行してもよい。分類を実行するときは、例えば、発電量実績グループ内に分類された既存のデータは全て消去してから分類を実行する。
The generated power
気象予報取得部10は、位置情報源6が示す、太陽光発電システム2の設置場所を含む地域に関する気象予報情報を気象情報源9から取得する。気象予報情報は例えば、現在時から24時間先までの各時間帯における気象予報を示す情報である。気象予報取得部10は、気象情報源9が示す情報が更新されるタイミングで気象予報情報を取得してもよいし、後述の予測発電量算出部11からの取得要求が来る度に、気象情報源9から最新の気象予報情報を取得してもよい。気象情報源9が更新されるタイミングとは例えば、気象庁の気象情報提供サーバが新たな気象予報情報を配信するときである。
The weather
予測発電量算出部11は、まず、予測対象日の各時間帯に関する気象予報情報を気象予報取得部10から取得し、気象予報情報に関連する気象属性と対応付けられた発電量実績グループを特定する。例えば、ある時間帯の気象予報情報が「晴れ」である場合、「晴れ」の気象属性と対応付けられた発電量実績グループを特定する。なお、気象予報情報が、「晴れときどき曇り」、「曇りのち晴れ」など天気の推移を示す情報の場合、優勢な気象属性で置き換えることにより、「晴れときどき曇り」を「晴れ」、「曇りのち晴れ」を「曇り」としてもよい。ここで、例えば、気象予報の更新間隔が3時間ごとであり、発電量予測の対象となる時間帯が30分ごとである場合を考える。この場合、気象予報の更新間隔に対応する3時間を30分ごとに6つの時間帯に区切り、各時間帯に対して気象属性を割り当てる。例えば、気象予報情報が示す天気が「晴れときどき曇り」である場合、6つの時間帯に対する気象属性を、例えば順に「晴れ」「晴れ」「曇り」「晴れ」「晴れ」「曇り」と割り当てる。同様に、気象予報情報が示す天気が「曇りのち晴れ」である場合、例えば順に「曇り」「曇り」「曇り」「晴れ」「晴れ」「晴れ」と割り当てる。
The predicted power generation
予測発電量算出部11は、次に、後述の回帰分析により回帰係数を求め、求めた回帰係数と、予測対象の日及び時間帯についての大気外日射量と、を乗じることにより予測発電量を算出する。予測発電量算出部11は、大気外日射量を大気外日射量算出部7から取得する。予測発電量算出部11は、1日1回、例えば23時に翌日の各時間帯の発電量を予測してもよいし、気象予報取得部10が気象予報情報を取得したタイミングで翌日の各時間帯の発電量を予測してもよい。回帰係数と大気外日射量とを乗じることにより予測発電量を算出することができるので、回帰係数は予測発電量係数である、ともいえる。
Next, the predicted power generation
回帰係数は、大気外日射量と、発電量係数から算出した発電量と、を回帰分析することにより求める。図6に示すとおり、配列IVに格納された大気外日射量と、配列DVに格納された発電量と、を回帰分析し、原点を通る直線を回帰直線とする。この回帰直線の傾きが回帰係数となる。なお、発電量は発電量係数と大気外日射量との積により算出すればよい。また、回帰係数は、より簡単に、当該発電量実績グループに属する発電量係数の平均値を採用してもよい。また、回帰曲線として、原点を通らない直線、ロジスティック曲線などを採用して、回帰分析を行ってもよい。なお、配列IV及び配列DVの機能は、例えば予測発電量算出部11が記憶装置を備えることにより実現する。
The regression coefficient is determined by regression analysis of the amount of extrasolar radiation and the amount of power generation calculated from the power generation coefficient. As shown in FIG. 6, the amount of extrasolar radiation stored in the array IV and the amount of generated power stored in the array DV are subjected to regression analysis, and a straight line passing through the origin is defined as a regression line. The slope of this regression line is the regression coefficient. The amount of power generation may be calculated by the product of the power generation amount coefficient and the amount of extrasolar radiation. Further, the regression coefficient may more easily adopt the average value of the power generation coefficient belonging to the power generation result group. Further, as a regression curve, a straight line not passing through the origin, a logistic curve, or the like may be adopted to perform regression analysis. The functions of the array IV and the array DV are realized, for example, by providing the storage device to the predicted power generation
回帰分析の手法としては、重みづけ最小二乗法を用いてもよい。例えば、予測対象日との日数差が小さいほど、あるいは予測対象日と月日が近いほど、あるいは気温などの気象状況が近いほど、重みを大きくした重みづけ最小二乗法を用いることが考えられる。例えば、発電量実績の蓄積期間が長い場合、蓄積期間内のある時点で太陽光発電システム2の近くに高い建物が建つことが考えられる。その場合、建物が建った時点の前後で太陽光発電システム2に対する日射量に大きな差が生じる。そこで、予測対象日との日数差が小さいほど重みを大きくした重みづけ最小二乗法を用いて回帰分析を行うことで、高い建物が建つ前の発電量実績が予測に与える影響を小さくすることができ、時系列的な変化に対応した発電量予測が可能になる。 As a method of regression analysis, weighted least squares may be used. For example, it is conceivable to use a weighted least squares method in which the weight is increased as the day difference from the prediction target day is smaller, or as the prediction target day and the month and day are closer, or as the weather situation such as temperature is closer. For example, when the accumulation period of the power generation results is long, it is conceivable that a high building is constructed near the photovoltaic system 2 at a certain point in the accumulation period. In that case, a large difference occurs in the amount of solar radiation with respect to the photovoltaic system 2 before and after the building is built. Therefore, by performing regression analysis using a weighted least squares method in which the weight is increased as the day difference from the forecasted date decreases, the influence of the actual amount of power generation before a high building is built can be reduced. It becomes possible, and it becomes possible to predict the amount of power generation corresponding to the time series change.
以上、太陽光発電量予測装置1の機能的構成を説明した。発電量実績取得部4は請求の範囲に記載の発電量実績取得手段として機能する。発電量実績記憶部5は請求の範囲に記載の発電量実績記憶手段として機能する。大気外日射量算出部7は請求の範囲に記載の大気外日射量算出手段として機能する。気象予報取得部10は請求の範囲に記載の気象予報取得手段として機能する。発電量実績分類部8は請求の範囲に記載の発電量実績分類手段として機能する。予測発電量算出部11は請求の範囲に記載の予測発電量算出手段として機能する。
The functional configuration of the solar power generation
次に、太陽光発電量予測装置1のハードウェア構成例を、図14を参照しながら説明する。太陽光発電量予測装置1は、処理を実行するプロセッサ1001と、情報を記憶するメモリ1002と、情報の送受信を行うインタフェース1003とを備える。
Next, a hardware configuration example of the solar power generation
メモリ1002は、例えば、DRAM(Dynamic Random Access Memory)、フラッシュメモリ、磁気ディスク装置などの記憶装置である。メモリ1002により、発電量実績記憶部5の機能が実現される。
The
プロセッサ1001は、例えば、メモリ1002に格納されるプログラムを実行するCPU(Central Processing Unit)である。プロセッサ1001により、発電量実績取得部4、大気外日射量算出部7、発電量実績分類部8、気象予報取得部10、および予測発電量算出部11の各機能が実現される。
The
インタフェース1003は、例えば各種I/O(Input/Output)ポートである。インタフェース1003が電力量計測装置3及び気象情報源9と接続されることにより、発電量実績取得部4が発電量実績を、気象予報取得部10が気象予報情報を、それぞれ取得可能となる。
The
図14ではプロセッサ1001は1つのみ図示されているが、複数のプロセッサが協働して上記機能を実現してもよい。また、メモリ1002も同様に図14には1つのみ図示されているが、複数のメモリが協働して上記機能を実現してもよい。
Although only one
例えば、第1のプロセッサが発電量実績取得部4及び発電量実績分類部8の機能を実現し、第2のプロセッサが大気外日射量算出部7、気象予報取得部10、及び予測発電量算出部11の機能を実現する構成であってもよい。このとき第1のプロセッサと第2のプロセッサは1つの装置に搭載されていなくてもよい。例えば、クラウド上のサーバが第1のプロセッサを備え、ネットワークを介してサーバと接続されたクライアント端末が第2のプロセッサを備える構成であってもよい。この場合、サーバが第1のメモリを備え、クライアント端末が第2のメモリを備える構成となる。
For example, the first processor realizes the functions of the power generation actual result acquiring unit 4 and the power generation actual
太陽光発電量予測装置1の機能を実現する中心となる部分は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、上記機能を実現するための専用プログラムを、コンピュータが読み取り可能な記録媒体に格納して配布する。そして、専用プログラムをコンピュータにインストールして実行させることにより、通常のコンピュータシステムにより上記機能を実現できる。また、上記機能の一部をOS(Operating System)に分担させ、OSと専用プログラムとの協働により上記機能を実現してもよい。この場合、専用プログラムのみを記録媒体に格納してもよい。
The central part for realizing the functions of the solar power generation
なお、図14は一例であり、上記のハードウェア構成以外によっても太陽光発電量予測装置1を構成可能である。例えば、通常のコンピュータシステムによらず、太陽光発電量予測装置1の機能を専用の信号処理回路により実現してもよい。
FIG. 14 is an example, and the solar power generation
次に、太陽光発電量予測装置1の動作について図面を参照しながら説明する。太陽光発電量予測装置1の動作は、発電量実績分類部8による発電量係数の分類と、予測発電量算出部11による発電量の予測と、に大別される。なお、前述のとおり、発電量実績取得部4が、一定時間ごとに発電量実績を取得し、発電量実績記憶部5が、取得した発電量実績を記憶する。
Next, the operation of the solar power generation
まず、図3を参照しながら、発電量係数の分類について説明する。発電量実績分類部8は、発電量実績記憶部5から発電量実績を取得する(ステップS101)。取得する発電量実績は、発電量実績記憶部5に格納されているすべての発電量実績でもよいし、直近15日間などの一定の期間内を対象とした発電量実績でもよい。また、9-16時などの一定の時間帯を対象とした発電量実績でもよいし、直近500個などの一定のデータ数の発電量実績でもよい。ただし、夜間など大気外日射量が0または非常に小さい時間帯は、気象属性による発電量の差が表れない、あるいは表れにくいのでこれらの時間帯を対象とした発電量実績は取得しない。ステップS101で取得した発電量実績のデータ数をN個とする。
First, the classification of the power generation coefficient will be described with reference to FIG. The power generation actual
発電量実績分類部8は、取得したN個の発電量実績全てに対するループ処理により発電量係数を算出する(ステップS102-S105)。ループ内では、i番目の発電量実績に含まれる、計測した日及び時間帯に対応する大気外日射量を、大気外日射量算出部7から取得し(ステップS103)。i番目の発電量実績に含まれる発電量を、取得した大気外日射量で除することにより発電量係数を算出する(ステップS104)。発電量実績分類部8は、ループ処理が終了したら、算出した発電量係数を、気象属性と対応付けられた発電量実績グループに分類する(ステップS106)。
The power generation actual
発電量係数を、気象属性と対応付けられた発電量実績グループに分類することにより、発電量係数に対応する気象属性を推定することができる。そのため、過去の気象情報を記憶しておく必要がなく、記憶すべきデータ量を削減することができる。 The weather attribute corresponding to the power generation coefficient can be estimated by classifying the power generation coefficient into the power generation actual result group associated with the weather attribute. Therefore, it is not necessary to store past weather information, and the amount of data to be stored can be reduced.
次に、図4を参照しながら、発電量の予測について説明する。予測発電量算出部11は、予測対象となる時間帯全てに対するループ処理により各時間帯の発電量を予測する(ステップS201-S212)。図4に示す動作では、1日を48個の時間帯に分けたものと仮定している。以下、ステップS202からS211までの処理では、T番目の時間帯に対する発電量予測を予測するものとして説明する。ただし、Tは0から47までの自然数であり、0番目からカウントする。また、T番目の時間帯を単に時間帯Tと記載する。
Next, the prediction of the power generation amount will be described with reference to FIG. The predicted power generation
予測発電量算出部11は、時間帯Tに対応する気象予報情報を気象予報取得部10から取得する(ステップS202)。次に、予測発電量算出部11は、取得した気象予報情報に対応する気象属性と対応付けられた発電量実績グループを特定する(ステップS203)。予測発電量算出部11は、特定した発電量実績グループに属する発電量係数のうち、同じ時間帯Tについての発電量係数を取得する(ステップS204)。取得した発電量係数の個数をM個とする。
The predicted power generation
予測発電量算出部11は、取得したM個の発電量係数すべてに対するループ処理により、上述の回帰分析のためのデータ作成を行う(ステップS205-S208)。予測発電量算出部11は、処理対象の発電量係数に対応する大気外日射量を大気外日射量算出部7から取得して、大気外日射量を格納するための配列IVに追加する(ステップS206)。予測発電量算出部11は、処理対象の発電量係数に対応する発電量実績を発電量実績記憶部5から取得して、発電量実績を格納するための配列DVに追加する(ステップS207)。なお、発電量係数と大気外日射量とを乗じることにより発電量実績を取得してもよい。
The predicted power generation
予測発電量算出部11は、配列IVに格納された大気外日射量と、配列DVに格納された発電量と、を回帰分析して回帰係数を求める(ステップS209)。前述のとおり、回帰係数は予測発電量係数である、ともいえる。予測発電量算出部11は、時間帯Tに対応する大気外日射量を大気外日射量算出部7から取得する(ステップS210)。予測発電量算出部11は、求めた回帰係数と大気外日射量とを乗じることにより、時間帯Tに対応する予測発電量を算出する(ステップS211)。
The predicted power generation
なお、ステップS203で取得した発電量実績グループに、予測対象日の月日と隔たりの大きい月日のデータが含まれている場合、予測対象日と発電傾向が異なる可能性が高いため予測精度が悪くなる。そのため、ステップS204で取得する発電量係数については、一定の期間に関するもののみを取得してもよい。例えば、図5に示すとおり、直近15日以内と、過去年の同月日とその前後15日以内のデータに限定して発電量係数を取得することが考えられる。 Note that if the power generation result group acquired in step S203 includes data of a large date that is different from the date of the forecasted date, the forecasting date is likely to differ from the power generation tendency, and therefore the forecasting accuracy is Deteriorate. Therefore, as for the power generation amount coefficient acquired in step S204, only one for a certain period may be acquired. For example, as shown in FIG. 5, it is conceivable to acquire the power generation amount coefficient limited to data within the last 15 days, and within the same month and day of the past year and 15 days before and after that.
以上、太陽光発電量予測装置1の構成及び動作について説明をした。太陽光発電量予測装置1は、気象情報に基づいて発電量係数を発電量実績グループに分類し、気象情報に基づいて発電量予測の際に参照する発電量実績グループを特定する。気象情報は分類及び特定のために使用されるのみであり、気象情報は蓄積されない。よって、太陽光発電量予測装置1によれば、過去の気象情報を蓄積することなく、太陽光発電システム2の設置位置情報と、過去の発電量実績と、大気外日射量と、予測対象日における気象予報情報と、に基づいて、予測対象日における各時間帯の予測発電量を算出することができる。過去の気象情報を蓄積する必要がないため、必要なデータ記憶容量を削減することができる。
The configuration and operation of the solar power generation
太陽光発電量予測装置1の各機能を、ネットワーク上のサーバで実現して、ネットワークに接続される複数の太陽光発電システム2の予測発電量を算出する構成とすることもできる。あるいは、太陽光発電量予測装置1の各機能を、太陽光発電システム2ごとに設置される端末で実現して、その太陽光発電システム2の予測発電量を算出する構成とすることもできる。ネットワーク上のサーバにより太陽光発電量予測装置1の各機能を実現する場合、1つのサーバによる構成としてもよいし、各機能を複数のサーバに分散させる構成としてもよい。さらに、1つの機能を複数のサーバに分散させてもよい。太陽光発電量予測装置1の全機能が、1つのサーバまたは1つの端末で実現される場合、それらはいずれも太陽光発電量予測装置1でもある。
Each function of the solar power generation
太陽光発電量予測装置1の機能を、サーバと端末とで分担する構成とすることもできる。以下、太陽光発電量予測装置1の構成と共通する構成要素については同一の符号を付して説明を省略する。図7に示す太陽光発電量予測装置1Aは、サーバ71Aと端末72Aとを備える。
The function of the solar power generation
端末72Aは、大気外日射量算出部7と、気象予報取得部10と、電力量計測装置3から発電量実績を取得してサーバ71Aに送信する発電量実績通信部73Aと、サーバ71A内の発電量実績記憶部5Aから発電量実績を取得する発電量実績取得部4Aと、発電量実績分類部8と、予測発電量算出部11とを備える。
The terminal 72A acquires the power generation result from the atmospheric
サーバ71Aは、端末72Aから発電量実績を受信する発電量実績受信部74Aと、発電量実績受信部74Aが受信した発電量実績を格納する発電量実績記憶部5Aと、を備える。
The
端末72Aは、例えば、家庭内のエネルギーを管理するHEMS(Home Energy Management System)端末である。1つのサーバ71Aに対して、複数の端末72Aを接続してもよい。この構成により、サーバ71Aに大量の発電量実績を蓄積させつつも、端末72Aにおいて必要なデータ記憶容量を削減することができる。
The terminal 72A is, for example, a HEMS (Home Energy Management System) terminal that manages energy in the home. A plurality of
また、図8に示すとおり、太陽光発電量予測装置1の機能分担を図7とは異なる構成とすることもできる。図8に示す太陽光発電量予測装置1Bはサーバ71Bと端末72Bとを備える。
Moreover, as shown in FIG. 8, the function sharing of the solar power generation
端末72Bは、大気外日射量算出部7と、電力量計測装置3から発電量実績を取得して発電量係数算出部84Bに出力する発電量実績通信部73Bと、発電量実績通信部73Bから取得した発電量実績と大気外日射量算出部7から取得した大気外日射量とに基づいて発電量係数を算出してサーバ71Bに送信する発電量係数算出部84Bと、サーバ71Bから予測発電量係数を取得して予測発電量算出部11Bに出力する発電量係数取得部89Bと、発電量係数取得部89Bから取得した予測発電量係数と大気外日射量算出部7から取得した大気外日射量とを乗ずることにより予測発電量を算出する予測発電量算出部11Bと、を備える。
The terminal 72B receives the actual power generation result from the extraneous solar radiation
サーバ71Bは、気象予報取得部10と、端末72Bから発電量係数を受信する発電量係数受信部85Bと、発電量係数受信部85Bが受信した発電量係数を格納する発電量係数記憶部86Bと、発電量係数記憶部86Bから発電量係数を取得して気象属性と対応付けられた発電量係数グループに分類する発電量係数分類部87Bと、気象予報取得部10から取得した気象予報情報に基づいて発電量係数グループを選択し、選択した発電量係数グループに属する発電量係数に対して回帰分析を行って予測対象日の各時間帯における予測発電量係数を算出して端末72Bに送信する予測発電量係数算出部88Bと、を備える。
The
この構成により、発電量予測に必要な処理の一部をサーバ71Bが担うことになるので、端末72Bにおいて必要なデータ記憶容量を削減できることに加え、端末72Bの処理量も削減することができる。
With this configuration, the
(実施の形態2)
図9を参照しながら、太陽光発電量予測装置1Cの機能的構成を説明する。太陽光発電量予測装置1Cは、大気外日射量算出部7と、気象予報取得部10と、発電量実績取得部4と、予測発電量算出部11と、発電量予測に利用するか否かを示す値を含む発電量実績を蓄積し、その値が発電量実績更新部94Cにより更新される発電量実績記憶部5Cと、発電量実績記憶部5Cに蓄積される発電量実績のうち、発電量予測に利用することを示す値を含むもののみを発電量実績グループに分類する発電量実績分類部8Cと、予測発電量算出部11が算出した予測発電量を予測した日及び時間帯とともに予測実績として蓄積する予測実績記憶部92Cと、発電量実績記憶部5Cに蓄積された発電量実績と、予測実績記憶部92Cに蓄積された予測実績と、の比較結果に基づいて発電量予測の精度を下げる原因となる発電量実績を抽出する抽出部93Cと、抽出部93Cが抽出した発電量実績を、発電量の予測に利用できないものとするために発電量実績記憶部5Cを更新する発電量実績更新部94Cと、を備える。
Second Embodiment
The functional configuration of the solar power generation amount prediction device 1C will be described with reference to FIG. The solar power generation amount prediction apparatus 1C is used for the extraneous solar radiation
発電量実績記憶部5Cに蓄積される発電量実績を格納する発電量実績テーブルは、図10に示すように、年月日フィールド21、時間帯フィールド22、太陽光発電システムIDフィールド23及び発電量フィールド24に加えて、予測利用フラグフィールド101Cを含む。予測利用フラグフィールド101Cには、当該発電量実績を発電量予測に利用するか否かを表す値が格納される。予測利用フラグフィールド101Cに格納される値の初期値は「利用する」だが、発電量実績更新部94Cにより更新される。
The power generation result table storing the power generation results stored in the power generation
発電量実績分類部8Cによる発電量係数の分類は、ほぼ実施の形態1と同様だが、予測利用フラグフィールド101Cに格納される値が「利用する」となっている発電量実績に対してのみ、発電量係数の算出及び発電量係数の分類が行われる。予測利用フラグフィールド101Cに格納される値が「利用しない」となっている発電量実績に対する発電量係数の算出及び分類を行わないことにより、予測発電量算出部11がこれらの発電量実績を利用しないものとなる。
The classification of the power generation amount coefficient by the power generation amount
予測実績記憶部92Cは、予測発電量算出部11が算出した予測発電量を、予測した日及び時間帯と紐付けて予測実績として予測実績テーブルに格納する。図11に示すとおり、予測実績テーブルは、年月日フィールド111Cと、時間帯フィールド112Cと、太陽光発電システムIDフィールド113Cと、予測発電量フィールド114Cと、を含む。
The prediction
抽出部93Cは、発電量実績を発電量実績記憶部5Cから取得し、予測実績を予測実績記憶部92Cから取得する。抽出部93Cは、取得した予測実績と、取得した発電量実績とを比較して、同日同時間帯における予測発電量と計測した発電量との差の大小に基づいて、発電量予測の精度を下げる原因となる発電量実績を抽出する。抽出部93Cの動作については後述する。抽出部93Cの動作は、例えば予測発電量算出部11が特定の日を予測対象日として予測しようとするタイミングで実行される。
The
発電量実績更新部94Cは、発電量実績記憶部5Cに蓄積される発電量実績のうち、抽出部93Cが抽出した発電量実績に対応する予測利用フラグフィールド101Cの値を「利用しない」に変更する更新を行う。
Of the power generation results stored in the power generation
以上、太陽光発電量予測装置1Cの構成を説明した。予測実績記憶部92Cは請求の範囲に記載の予測実績記憶手段として機能する。抽出部93Cは請求の範囲に記載の抽出手段として機能する。発電量実績更新部94Cは請求の範囲に記載の発電量実績更新手段として機能する。
The configuration of the solar power generation amount prediction device 1C has been described above. The prediction
次に、図5、図12及び図13を参照しながら、抽出部93Cの動作について具体例を挙げつつ説明する。例として、予測対象日を2017年7月1日とし、予測時間帯を「0800」で表現される時間帯とする。
Next, the operation of the
まず、抽出部93Cは、発電量予測に利用する発電量実績を発電量実績記憶部5Cから取得する(ステップS301)。発電量予測に利用する発電量実績とは、例えば図5に示すとおり、直近15日以内と、過去3年の同月日とその前後15日以内のデータである。
First, the
次に、抽出部93Cは、取得した各発電量実績に対するループ処理により、予測外れリストを作成する(ステップS302-S306)。まず、抽出部93Cは、ループ処理の対象となる発電量実績に含まれる、計測した日及び時間帯を抽出する。抽出した日及び時間帯と同一の予測日及び予測時間帯を含む予測実績を予測実績記憶部92Cから取得する(ステップS303)。本例では直近15日以内と、過去3年の同月日とその前後15日以内の、「0800」時間帯に対する予測実績である。次に、抽出部93Cは、発電量実績に含まれる発電量と、予測実績に含まれる予測発電量と、の間に一定以上の差があるかを判断する(ステップS304)。一定以上の差とは、例えば発電量と予測発電量との差が発電量の20%以上ある場合である。本例では、2017年6月17日、同年月20日、同年月28日及び同年月30日に一定以上の差があるとする。一定以上の差がある場合(ステップS304:Yes)、当該予測日及び予測時間帯の組を予測外れリスト131Cに追加し(ステップS305)、ステップS306に進む。一定以上の差がない場合(ステップS304:No)、予測外れリスト131Cに追加することなくステップS306に進む。本例では、図13に示すとおり、2017年6月17日、同年月20日、同年月28日及び同年月30日の各「0800」時間帯が予測外れリスト131Cに追加される。
Next, the
そして抽出部93Cは、予測外れリスト131C内の各予測日及び予測時間帯に対する発電量予測を行ったときに利用した発電量実績を除外候補として抽出する。本例では、図13の太線で示される日の「0800」時間帯における発電量実績が除外候補として抽出される。そして、一定の回数以上抽出された除外候補を発電量予測の精度を下げる原因となる発電量実績として抽出する(ステップS307)。一定の回数以上とは、例えば3回以上である。また、例えば、発電量予測に利用した発電量実績の合計日数の1割以上の回数としてもよい。本例では、図13に示すとおり、2017年6月13日から同年月19日までの各日の「0800」時間帯における発電量実績が、除外候補として3回以上抽出されている。よってこれらの発電量実績が、発電量予測の精度を下げる原因となる発電量実績として抽出される。
Then, the
この抽出部93Cの動作により抽出された、発電量予測の精度を下げる原因となる発電量実績に対して、発電量実績更新部94Cが当該発電量実績に対応する予測利用フラグフィールド101Cの値を「利用しない」に更新する。
The generated power
なお、上記の説明では予測利用フラグフィールド101Cの値を「利用する」、「利用しない」の2つとしたが、これらの2値に代えて信頼度の数値で表してもよい。例えば、発電量と予測発電量との差をポイント化して、除外候補ごとのポイント合計に基づいて、当該発電量実績の重みを算出し、重みづけ最小二乗法による回帰分析を行う際の重みとして用いてもよい。また、除外候補として抽出された回数を重みとして、重みづけ最小二乗法による回帰分析をおこなってもよい。
In the above description, the value of the predicted
太陽光発電量予測装置1Cにより、予測外れの原因となる発電量実績を除外して予測を行うことができるので、予測精度が向上する。 Since the solar power generation amount prediction apparatus 1C can perform prediction by excluding the power generation amount performance causing the misprediction, the prediction accuracy is improved.
本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope. In addition, the embodiment described above is for describing the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiments but by the claims. And, various modifications applied within the scope of the claims and the meaning of the invention are considered to be within the scope of the present invention.
本発明は太陽光発電システムにおける発電量の予測に好適である。 The present invention is suitable for prediction of the amount of power generation in a solar power generation system.
1、1A、1B、1C 太陽光発電量予測装置、2 太陽光発電システム、3 電力量計測装置、4、4A 発電量実績取得部、5、5A、5C 発電量実績記憶部、6 位置情報源、7 大気外日射量算出部、8、8C 発電量実績分類部、9 気象情報源、10 気象予報取得部、11、11B 予測発電量算出部、21 年月日フィールド、22 時間帯フィールド、23 太陽光発電システムIDフィールド、24 発電量フィールド、71A、71B サーバ、72A、72B 端末、73A、73B 発電量実績通信部、74A 発電量実績受信部、84B 発電量係数算出部、85B 発電量係数受信部、86B 発電量係数記憶部、87B 発電量係数分類部、88B 予測発電量係数算出部、89B 発電量係数取得部、92C 予測実績記憶部、93C 抽出部、94C 発電量実績更新部、101C 予測利用フラグフィールド、111C 年月日フィールド、112C 時間帯フィールド、113C 太陽光発電システムIDフィールド、114C 予測発電量フィールド、131C 予測外れリスト、 1001 プロセッサ、 1002 メモリ、 1003 インタフェース。
DESCRIPTION OF
Claims (10)
前記発電量実績取得手段が取得した発電量実績を蓄積する発電量実績記憶手段と、
前記太陽光発電システムの設置場所における大気外日射量を算出する大気外日射量算出手段と、
前記太陽光発電システムの設置場所を対象地域に含む気象予報情報を取得する気象予報取得手段と、
前記大気外日射量算出手段に、前記発電量実績記憶手段が蓄積する発電量実績に含まれる取得日及び取得時間帯における大気外日射量を算出させ、前記発電量実績に含まれる発電量と前記算出した大気外日射量とに基づいて算出される発電量係数を、気象属性と対応付けられた発電量実績グループに分類する発電量実績分類手段と、
前記気象予報取得手段が取得した、予測対象となる日及び時間帯を対象に含む気象予報情報と、前記取得した気象予報情報に応じた気象属性と対応付けられた前記発電量実績グループと、前記大気外日射量算出手段が算出した、前記予測対象となる日及び時間帯における大気外日射量と、に基づいて予測発電量を算出する予測発電量算出手段と、
を備える太陽光発電量予測装置。 Power generation actual result acquisition means for acquiring the amount of power generation of the photovoltaic power generation system as a power generation actual with the acquisition date and the acquisition time zone,
Power generation result storage means for storing the power generation results acquired by the power generation result acquisition means;
Extra-atmosphere solar radiation amount calculating means for calculating the amount of extra solar radiation at the installation place of the solar power generation system;
Weather forecast acquiring means for acquiring weather forecast information including in a target area the installation location of the solar power generation system;
The outside air irradiance calculation means is made to calculate the outside air irradiance in the acquisition date and the acquisition time zone included in the power generation result accumulated by the power generation result storage means, and the power generation amount included in the power generation result and the Power generation actual result classification means for classifying the power generation amount coefficient calculated based on the calculated amount of extraterrestrial solar radiation into the power generation amount actual result group associated with the meteorological attribute;
Weather forecast information including the day and time zone to be predicted acquired by the weather forecast acquiring means, the power generation amount performance group associated with the weather attribute according to the acquired weather forecast information, and Predicted power generation amount calculating means for calculating a predicted power generation amount on the basis of the extraneous solar radiation amount in the day and the time zone to be predicted, which is calculated by the external air radiation amount calculating means;
Photovoltaic power generation forecasting device provided with
請求項1に記載の太陽光発電量予測装置。 The power generation actual result classification means classifies the power generation coefficient according to the magnitude of the power generation coefficient.
The solar power generation amount prediction apparatus according to claim 1.
請求項1または2に記載の太陽光発電量予測装置。 The predicted power generation amount calculating means calculates the predicted power generation amount based on the predicted power generation coefficient which is an average value of the power generation amount coefficient belonging to the power generation amount actual group and the extrasolar radiation amount in the day and time zone to be predicted. calculate,
The solar power generation amount prediction apparatus according to claim 1.
請求項1または2に記載の太陽光発電量予測装置。 The predicted power generation amount calculating means calculates the power generation amount included in the power generation amount result corresponding to the power generation amount coefficient belonging to the power generation amount result group and the extraneous solar radiation amount in the acquisition date and the acquisition time zone included in the power generation amount result. The predicted power generation amount is calculated based on the predicted power generation amount coefficient obtained by regression analysis, and the extrasolar radiation amount in the day and time zone to be predicted.
The solar power generation amount prediction apparatus according to claim 1.
前記発電量実績記憶手段が蓄積する発電量実績と前記予測実績記憶手段が蓄積する予測実績とを比較し、前記発電量実績に含まれる発電量と前記予測実績に含まれる予測発電量との間に一定以上の差がある日及び時間帯における予測実績を取得し、取得した予測実績に係る発電量予測において一定以上用いられた発電量実績を抽出する抽出手段と、
前記抽出手段が抽出した発電量実績を発電量予測に利用できなくするために、前記発電量実績記憶手段が蓄積する発電量実績を更新する発電量実績更新手段と、
をさらに備える請求項1から4のいずれか1項に記載の太陽光発電量予測装置。 Predicted performance storage means for storing the predicted power generation amount calculated by the predicted power generation amount calculation means as a predicted performance together with a predicted date and a predicted time zone;
The amount of power generation actual accumulated by the power generation actual result storage means is compared with the predicted actual result accumulated by the predicted actual result storage means, and between the amount of power generation included in the power generation actual and the predicted amount of power included in the predicted actual result Extracting means for acquiring predicted actual results on a day and a time zone in which there is a difference of at least a predetermined level, and extracting the actual amount of generated power used at least in the predicted amount of generated power concerning the acquired predicted actual results;
Power generation actual result updating means for updating the power generation actual results accumulated by the power generation actual result storage means so that the power generation actual results extracted by the extraction means can not be used for power generation amount prediction;
The solar power generation amount prediction device according to any one of claims 1 to 4, further comprising:
前記発電量実績記憶手段が蓄積する発電量実績と前記予測実績記憶手段が蓄積する予測実績とを比較し、比較した予測実績に係る発電量予測において用いられた発電量実績を、比較した発電量実績に係る発電量と比較した予測実績に係る予測発電量との差を重みとして紐付けた上で抽出する抽出手段と、
前記発電量実績記憶手段が蓄積する発電量実績を更新し、前記抽出手段が抽出した発電量実績を前記重みと紐付けて前記発電量実績記憶手段に記憶させる発電量実績更新手段と、
をさらに備え、
前記予測発電量算出手段は、前記重みを用いた重みづけ最小二乗法により予測発電量を算出する、
請求項1から4のいずれか1項に記載の太陽光発電量予測装置。 Predicted performance storage means for storing the predicted power generation amount calculated by the predicted power generation amount calculation means as a predicted performance together with a predicted date and a predicted time zone;
The amount of power generation obtained by comparing the amount of power generation performance used in the power generation amount prediction according to the predicted performance obtained by comparing the power generation amount performance stored in the power generation amount performance storage means with the predicted performance stored in the predicted performance storage means An extraction unit that extracts a string after linking the difference between the power generation amount of the actual result and the predicted power generation amount of the predicted actual result as a weight,
Power generation record updating means for updating the power generation record stored in the power generation record storage means, associating the power generation record extracted by the extraction means with the weight, and storing the power generation record in the power generation record storage means;
And further
The predicted power generation amount calculating means calculates a predicted power generation amount by a weighted least squares method using the weight.
The photovoltaic power generation amount prediction device according to any one of claims 1 to 4.
前記太陽光発電システムの設置場所における大気外日射量を算出する大気外日射量算出手段と、
前記発電量実績に含まれる発電量と前記算出した大気外日射量とに基づいて算出され、気象属性と対応付けられた発電量実績グループに分類された発電量係数のうち、予測対象となる日及び時間帯を対象に含む気象予報情報に応じた気象属性と対応付けられた発電量実績グループに分類された発電量係数と、前記大気外日射量算出手段が算出した、前記予測対象となる日及び時間帯における大気外日射量と、に基づいて予測発電量を算出する予測発電量算出手段と、
を備える太陽光発電量予測装置。 Power generation actual result acquisition means for acquiring the amount of power generation of the photovoltaic power generation system as a power generation actual with the acquisition date and the acquisition time zone,
Extra-atmosphere solar radiation amount calculating means for calculating the amount of extra solar radiation at the installation place of the solar power generation system;
Of the power generation coefficients calculated based on the power generation amount included in the power generation amount actual result and the calculated extrasolar radiation amount and classified into the power generation amount result group associated with the meteorological attribute, the day to be a forecast target And a power generation amount coefficient classified into a power generation amount performance group associated with a weather attribute corresponding to weather forecast information including a time zone, and the day to be predicted, calculated by the external solar radiation amount calculation means And predicted power generation amount calculating means for calculating the predicted power generation amount based on the external solar radiation amount in the time zone, and
Photovoltaic power generation forecasting device provided with
請求項1から7のいずれか1項に記載の太陽光発電量予測装置と、
を備え、
前記発電量実績取得手段は前記太陽光発電システムから発電量を取得する、
太陽光発電量予測システム。 Solar power system,
The photovoltaic power generation amount prediction device according to any one of claims 1 to 7,
Equipped with
The power generation result acquiring means acquires a power generation amount from the solar power generation system.
Solar power forecasting system.
気象予報情報を取得する気象予報取得ステップと、
前記発電量実績に含まれる発電量と前記発電量を取得した日及び時間帯における大気外日射量とに基づいて算出される発電量係数を、気象属性と対応付けられた発電量実績グループに分類する発電量実績分類ステップと、
前記気象予報取得ステップで取得した、予測対象となる日及び時間帯を対象に含む気象予報情報と、前記取得した気象予報情報に応じた気象属性と対応付けられた前記発電量実績グループと、前記予測対象となる日及び時間帯における大気外日射量と、に基づいて予測発電量を算出する予測発電量算出ステップと、
を有する予測方法。 A power generation result storage step of accumulating the results of the power generation amount of the photovoltaic power generation system as the power generation amount results,
A weather forecast acquisition step for acquiring weather forecast information;
The power generation coefficient calculated based on the power generation amount included in the power generation amount results and the extrasolar radiation amount in the day and time zone when the power generation amount was acquired is classified into a power generation amount result group associated with the meteorological attribute Power generation actual result classification step,
Weather forecast information including the day and time zone to be predicted, acquired in the weather forecast acquiring step, the power generation result group associated with the weather attribute according to the acquired weather forecast information, and A predicted power generation amount calculation step of calculating a predicted power generation amount based on the extrasolar radiation amount in the day and the time zone to be predicted;
Forecasting method.
太陽光発電システムの発電量の実績を発電量実績として蓄積する発電量実績記憶ステップと、
気象予報情報を取得する気象予報取得ステップと、
前記発電量実績に含まれる発電量と前記発電量を取得した日及び時間帯における大気外日射量とに基づいて算出される発電量係数を、気象属性と対応付けられた発電量実績グループに分類する発電量実績分類ステップと、
前記気象予報取得ステップで取得した、予測対象となる日及び時間帯を対象に含む気象予報情報と、前記取得した気象予報情報に応じた気象属性と対応付けられた前記発電量実績グループと、前記予測対象となる日及び時間帯における大気外日射量と、に基づいて予測発電量を算出する予測発電量算出ステップと、
を実行させるプログラム。 On the computer
A power generation result storage step of accumulating the results of the power generation amount of the photovoltaic power generation system as the power generation amount results,
A weather forecast acquisition step for acquiring weather forecast information;
The power generation coefficient calculated based on the power generation amount included in the power generation amount results and the extrasolar radiation amount in the day and time zone when the power generation amount was acquired is classified into a power generation amount result group associated with the meteorological attribute Power generation actual result classification step,
Weather forecast information including the day and time zone to be predicted, acquired in the weather forecast acquiring step, the power generation result group associated with the weather attribute according to the acquired weather forecast information, and A predicted power generation amount calculation step of calculating a predicted power generation amount based on the extrasolar radiation amount in the day and the time zone to be predicted;
A program that runs
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019532306A JP6785971B2 (en) | 2017-07-27 | 2017-07-27 | Photovoltaic power generation forecasting device, photovoltaic power generation forecasting system, forecasting method and program |
| PCT/JP2017/027317 WO2019021438A1 (en) | 2017-07-27 | 2017-07-27 | Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/027317 WO2019021438A1 (en) | 2017-07-27 | 2017-07-27 | Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019021438A1 true WO2019021438A1 (en) | 2019-01-31 |
Family
ID=65040027
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/027317 Ceased WO2019021438A1 (en) | 2017-07-27 | 2017-07-27 | Solar power generation amount prediction device, solar power generation amount prediction system, prediction method, and program |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP6785971B2 (en) |
| WO (1) | WO2019021438A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020228568A1 (en) * | 2019-05-14 | 2020-11-19 | 京东方科技集团股份有限公司 | Method for training power generation amount prediction model of photovoltaic power station, power generation amount prediction method and device of photovoltaic power station, training system, prediction system and storage medium |
| JP6833303B1 (en) * | 2019-12-10 | 2021-02-24 | 東芝三菱電機産業システム株式会社 | Power generation forecaster |
| KR102232315B1 (en) * | 2020-08-24 | 2021-03-25 | (주)신호엔지니어링 | Independent Solar power system based on environmental information |
| KR20210045698A (en) * | 2019-10-17 | 2021-04-27 | 유병천 | Power generation forecasting system of solar power plant using weather information and forecasting method of power generation using it |
| JP2021189154A (en) * | 2020-06-05 | 2021-12-13 | 三菱電機株式会社 | Photovoltaic power generation amount prediction device |
| WO2022113441A1 (en) * | 2020-11-26 | 2022-06-02 | 住友電気工業株式会社 | Power generation status determination device, power generation status determination method, and determination program |
| WO2023287359A3 (en) * | 2021-07-15 | 2023-04-27 | Envision Digital International Pte. Ltd. | Method, device, and system for forecasting generated power of photovoltaic power station |
| US11988549B2 (en) * | 2018-09-20 | 2024-05-21 | Hook Mountain Software Develoment, Inc. | Apparatus, methodologies and software applications for determining a level of direct sunlight |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006033908A (en) * | 2004-07-12 | 2006-02-02 | Nippon Telegr & Teleph Corp <Ntt> | Method, apparatus, and program for predicting power generation amount of solar power generation system |
| WO2016210102A1 (en) * | 2015-06-23 | 2016-12-29 | Qatar Foundation For Education, Science And Community Development | Method of forecasting for solar-based power systems |
| WO2017026010A1 (en) * | 2015-08-07 | 2017-02-16 | 三菱電機株式会社 | Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation |
-
2017
- 2017-07-27 WO PCT/JP2017/027317 patent/WO2019021438A1/en not_active Ceased
- 2017-07-27 JP JP2019532306A patent/JP6785971B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006033908A (en) * | 2004-07-12 | 2006-02-02 | Nippon Telegr & Teleph Corp <Ntt> | Method, apparatus, and program for predicting power generation amount of solar power generation system |
| WO2016210102A1 (en) * | 2015-06-23 | 2016-12-29 | Qatar Foundation For Education, Science And Community Development | Method of forecasting for solar-based power systems |
| WO2017026010A1 (en) * | 2015-08-07 | 2017-02-16 | 三菱電機株式会社 | Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11988549B2 (en) * | 2018-09-20 | 2024-05-21 | Hook Mountain Software Develoment, Inc. | Apparatus, methodologies and software applications for determining a level of direct sunlight |
| WO2020228568A1 (en) * | 2019-05-14 | 2020-11-19 | 京东方科技集团股份有限公司 | Method for training power generation amount prediction model of photovoltaic power station, power generation amount prediction method and device of photovoltaic power station, training system, prediction system and storage medium |
| KR20210045698A (en) * | 2019-10-17 | 2021-04-27 | 유병천 | Power generation forecasting system of solar power plant using weather information and forecasting method of power generation using it |
| KR102284253B1 (en) * | 2019-10-17 | 2021-08-03 | 유병천 | Power generation forecasting system of solar power plant using weather information and forecasting method of power generation using it |
| JP6833303B1 (en) * | 2019-12-10 | 2021-02-24 | 東芝三菱電機産業システム株式会社 | Power generation forecaster |
| WO2021117127A1 (en) * | 2019-12-10 | 2021-06-17 | 東芝三菱電機産業システム株式会社 | Power generation amount estimation device |
| JP2021189154A (en) * | 2020-06-05 | 2021-12-13 | 三菱電機株式会社 | Photovoltaic power generation amount prediction device |
| KR102232315B1 (en) * | 2020-08-24 | 2021-03-25 | (주)신호엔지니어링 | Independent Solar power system based on environmental information |
| WO2022113441A1 (en) * | 2020-11-26 | 2022-06-02 | 住友電気工業株式会社 | Power generation status determination device, power generation status determination method, and determination program |
| WO2023287359A3 (en) * | 2021-07-15 | 2023-04-27 | Envision Digital International Pte. Ltd. | Method, device, and system for forecasting generated power of photovoltaic power station |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6785971B2 (en) | 2020-11-18 |
| JPWO2019021438A1 (en) | 2020-04-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10963602B2 (en) | Device for predicting amount of photovoltaic power generation, and method for predicting amount of photovoltaic power generation | |
| JP6785971B2 (en) | Photovoltaic power generation forecasting device, photovoltaic power generation forecasting system, forecasting method and program | |
| JP5940922B2 (en) | Renewable energy prediction device | |
| JP3984604B2 (en) | Method, apparatus, and program for predicting power generation amount of solar power generation system | |
| JP6193008B2 (en) | Prediction system, prediction device, and prediction method | |
| JP5547999B2 (en) | Photovoltaic power generation prediction device | |
| US20210334914A1 (en) | System and method for determining power production in an electrical power grid | |
| US10819116B2 (en) | Forecasting solar power generation using real-time power data | |
| CN118100157B (en) | Building power load prediction method, device and system applied to VPP scene | |
| Renner | Solar harvest prediction supported by cloud cover forecasts | |
| US9019122B2 (en) | Information retrieval for boundary reading processing | |
| JP5447295B2 (en) | Power generation amount estimation system | |
| JP7734634B2 (en) | Solar power generation estimation device | |
| JP6452854B2 (en) | Power generation amount calculation device, power generation amount calculation system, power generation amount calculation method, and program | |
| KR20200057942A (en) | System and method for estimating net load fluctuation reflecting renewable energy supply expansion | |
| JP2016127622A (en) | Power demand prediction system | |
| Raman et al. | Demand baseline estimation using similarity‐based technique for tropical and wet climates | |
| CN115293461B (en) | Building heating carbon emission prediction method and system | |
| JP6605342B2 (en) | Power demand forecasting device, power demand forecasting method, and power demand forecasting program | |
| US9635441B2 (en) | Information retrieval for service point channels | |
| Siuta et al. | Benefits of a multimodel ensemble for hub‐height wind prediction in mountainous terrain | |
| Nakano et al. | Autoregressive Transformer for Predicting and Synthesizing Residential Load | |
| CN119312994A (en) | Solar radiation time downscaling method and device based on clear sky factor | |
| WO2023248484A1 (en) | Global solar radiation estimation device, global solar radiation learning device, global solar radiation estimation method, and global solar radiation estimation program | |
| Sharma | Predicting Domestic Energy Consumption Using Inferencing at the Edge |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17918913 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019532306 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17918913 Country of ref document: EP Kind code of ref document: A1 |