WO2019095572A1 - Procédé d'évaluation de risque d'investissement d'entreprise, dispositif et support de mémoire - Google Patents
Procédé d'évaluation de risque d'investissement d'entreprise, dispositif et support de mémoire Download PDFInfo
- Publication number
- WO2019095572A1 WO2019095572A1 PCT/CN2018/076169 CN2018076169W WO2019095572A1 WO 2019095572 A1 WO2019095572 A1 WO 2019095572A1 CN 2018076169 W CN2018076169 W CN 2018076169W WO 2019095572 A1 WO2019095572 A1 WO 2019095572A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- enterprise
- entity
- entities
- feature vector
- enterprise entity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0635—Risk analysis of enterprise or organisation activities
Definitions
- the present application relates to the field of computer technology, and in particular, to an enterprise investment risk assessment method, an electronic device, and a computer readable storage medium.
- Every news site has thousands of news every day, and the news is updated in real time.
- the big data associated with the investment target enterprise from a large amount of news corpus, such as the internal state of the enterprise: operation, finance, executives, recruitment, website update frequency, etc.
- the external status of the enterprise such as the status of the affiliated company, as above.
- the customer, the rating agency's rating of the company, news media related reports and other information will form this information into a network of relationships, analyze and evaluate the risk factor of the investment target enterprise, so that the investor can consider whether the risk can be accepted and decided according to the risk factor. Whether to invest in the company. Therefore, how to extract the information related to the investment target enterprise from the news corpus and use the information to conduct risk assessment is an urgent problem to be solved.
- the application provides an enterprise investment risk assessment method, an electronic device and a computer readable storage medium, the main purpose of which is to evaluate the risk of the investment target enterprise by analyzing the information disclosed in the news corpus.
- the present application provides an electronic device including: a memory, a processor, and a memory investment evaluation program run on the processor, the program being used by the processor The following steps are implemented during execution:
- A1. Crawling news corpus related to the business entity to be assessed, preprocessing the news corpus, and extracting other entities associated with the business entity from the pre-processed news corpus;
- the name is a node
- the relationship between the enterprise entity and other entities is an edge
- a network of relationships between the enterprise entity and other entities is constructed
- A3. Calculate a vector representation of the enterprise entity according to the relationship network, and generate a first feature vector of the enterprise entity;
- A6 Input the first feature vector, the second feature vector, and the third feature vector into a predetermined enterprise risk assessment model, and output a risk tag corresponding to the enterprise entity.
- the present application further provides a method for evaluating enterprise investment risk, which includes:
- S1 crawling the news corpus related to the enterprise entity to be assessed for risk, pre-processing the news corpus, and extracting other entities associated with the business entity from the pre-processed news corpus;
- the present application further provides a computer readable storage medium storing a business investment risk assessment program, which is executed by a processor to implement enterprise investment risk assessment as described above. Any step of the method.
- the present application further provides an enterprise investment risk assessment, the program comprising: an extraction module, a construction module, a first calculation module, a second calculation module, a third calculation module, and an evaluation module, the program is processed Any step of implementing the enterprise investment risk assessment method described above when executed.
- the enterprise investment risk assessment method, the electronic device and the computer readable storage medium proposed by the application obtain the relationship between the enterprise entity and its associated entity, the internal information of the enterprise entity and the external information from the news corpus, respectively, and obtain the enterprise entity respectively.
- the first feature vector, the second feature vector, and the third feature vector use the risk assessment model and the first feature vector, the second feature vector, and the third feature vector to perform risk assessment on the investment entity, so that the investor can capture Market investment opportunities to predict investment risks in advance.
- FIG. 1 is a schematic diagram of an application environment of a preferred embodiment of an enterprise investment risk assessment method according to the present application
- FIG. 2 is a network diagram of the relationship between the enterprise entity A and other associated entities
- Figure 3 is a vector representation of the business entity A
- Figure 4 is a block diagram of the enterprise investment risk assessment procedure of Figure 1;
- FIG. 5 is a flow chart of a preferred embodiment of an enterprise investment risk assessment method of the present application.
- the present application provides a method for evaluating enterprise investment risk, which is applied to an electronic device 1.
- the electronic device 1 may be a PC (Personal Computer), or may be a terminal device such as a smart phone, a tablet computer, an e-book reader, or a portable computer.
- the electronic device 1 includes a memory 11, a processor 12, a communication bus 13, and a network interface 14.
- the memory 11 includes at least one type of readable storage medium including a flash memory, a hard disk, a multimedia card, a card type memory (for example, an SD or DX memory, etc.), a magnetic memory, a magnetic disk, an optical disk, and the like.
- the memory 11 may be an internal storage unit of the electronic device 1, such as a hard disk of the electronic device 1, in some embodiments.
- the memory 11 may also be an external storage device of the electronic device 1 in other embodiments, such as a plug-in hard disk equipped on the electronic device 1, a smart memory card (SMC), and a secure digital (Secure Digital) , SD) card, flash card (Flash Card), etc.
- the memory 11 may also include both an internal storage unit of the electronic device 1 and an external storage device.
- the memory 11 can be used not only for storing application software and various types of data installed in the electronic device 1, such as the enterprise investment risk assessment program 10, but also for temporarily storing data that has been output or will be output.
- the processor 12 may be a Central Processing Unit (CPU), controller, microcontroller, microprocessor or other data processing chip for running program code or processing stored in the memory 11. Data, such as the corporate investment risk assessment process10.
- CPU Central Processing Unit
- controller microcontroller
- microprocessor or other data processing chip for running program code or processing stored in the memory 11.
- Data such as the corporate investment risk assessment process10.
- Communication bus 13 is used to implement connection communication between these components.
- the network interface 14 can optionally include a standard wired interface, a wireless interface (such as a WI-FI interface), and is typically used to establish a communication connection between the device and other electronic devices.
- a standard wired interface such as a WI-FI interface
- Figure 1 shows only the electronic device 1 with components 11-14, but it should be understood that not all illustrated components may be implemented, and more or fewer components may be implemented instead.
- the electronic device 1 may further include a user interface
- the user interface may include a display, an input unit such as a keyboard, and the optional user interface may further include a standard wired interface and a wireless interface.
- the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode) touch sensor, or the like.
- the display may also be referred to as a display screen or display unit for displaying information processed in the electronic device 1 and a user interface for displaying visualizations.
- the enterprise investment risk assessment program 10 is stored in the memory 11; when the processor 12 executes the enterprise investment risk assessment program 10 stored in the memory 11, the following steps are implemented:
- A1. Crawling news corpus related to the business entity to be assessed, preprocessing the news corpus, and extracting other entities associated with the business entity from the pre-processed news corpus;
- the name is a node
- the relationship between the enterprise entity and other entities is an edge
- a network of relationships between the enterprise entity and other entities is constructed
- A3. Calculate a vector representation of the enterprise entity according to the relationship network, and generate a first feature vector of the enterprise entity;
- A6 Input the first feature vector, the second feature vector, and the third feature vector into a predetermined enterprise risk assessment model, and output a risk tag corresponding to the enterprise entity.
- the corpus refers to a plurality of different fields.
- This embodiment uses a news corpus as an example to describe a specific solution of the present application, but is not limited to the field of news.
- the web crawler When the investor needs to know the current news to obtain the internal data and external data associated with the investment target enterprise, use the web crawler to crawl the online news from the Internet, for example, crawling online news of Sina, Baidu, Tencent, etc. through crawlers. . Understandably, each company operates differently in different time periods. Therefore, in order to enable investors to more accurately understand the information of the investment target company, the crawled network news is filtered in the time dimension. Set the preset time interval and only crawl the online news of the time period, for example, only crawling online news for nearly half a year.
- the source of news corpus is diverse, there are many types of corpus in the corpus.
- the news corpus needs to be preprocessed, and the news corpus text data is obtained to form a news corpus text set.
- the pre-processing may unify the format of the news corpus into a text format, remove advertising noise from the news corpus and filter one or more of dirty words and sensitive words.
- the format of the news corpus is unified into a text format, the content that cannot be converted into a text format by the current technology can be filtered out.
- all the enterprise names are extracted from the pre-processed news corpus, and then the associated enterprise data of the enterprise entity (ie, the investment target enterprise) according to the risk to be assessed is used. , filter out other entities associated with the business entity to be assessed, and build the enterprise entity and other entities into a network of relationships.
- the associated enterprise data can be obtained through third party data. It can be understood that it may be many to extract other entities associated with the enterprise entity from the news corpus. To construct all the related entities in the relational network is unreasonable, therefore, before extracting the relational network, the extracted and the enterprise entity Other related entities are filtered and filtered.
- other entities associated with the enterprise entity retained by the filtering and screening step include: a shareholder company of the business entity, other entities that have money with the business entity, suppliers, Customer, credit rating structure, etc.
- B1 is The rating agency that gives the enterprise entity A a credit rating can learn from the historical rating data that B1 gives the enterprise entity A a credit rating of BBB
- B2 is a supplier that supplies the enterprise entity A with raw materials or goods
- the amount owed is 300,000
- B3 is the customer of enterprise entity A
- enterprise entity A has defaulted to B3 twice.
- the enterprise entity A, B1, B2, and B3 are used as nodes, and the relationship between B1, B2, and B3 and A is used as the edge, and a network diagram of the relationship between the enterprise entity and other entities as shown in FIG. 2 is constructed.
- the vector representation of the enterprise entity A is calculated.
- This embodiment adopts the Skip-Gram method because the vector representation of the enterprise entity A in the relational network represents the vector representation of the entities B1, B2, B3 associated with it. There is a management relationship between them.
- the Skip-Gram method uses the current enterprise entity to predict surrounding entities, as shown in Figure 3. An1, An2, An3, and An4 in Fig. 3 are unordered and are represented as adjacent entities of the enterprise entity A.
- a fixed prediction length L is set to predict L neighboring entities around the enterprise entity A. If the real neighboring entity is less than L, the output is NULL.
- the vector representation embedding (E1), embedding (E2), ... of the enterprise entity A can be obtained, and the vector is represented as the first feature vector of the enterprise entity A.
- each reference factor in the internal information of the enterprise is converted into a number to be quantified.
- the value in the financial information can be converted into a characteristic value.
- the net profit is 300,000 yuan
- 30 is a corresponding feature.
- the value, the frequency of website updates, and the number of hiring people in the most recent year are also numerical values, and can also be based on preset conversion rules. In other embodiments, it is also possible to convert 300,000 yuan into other values according to a preset conversion ratio. After each reference factor in the internal information of the enterprise entity A is quantized, a second feature vector of the enterprise entity A is generated.
- the external information includes the upstream and downstream relationship of the enterprise entity A. For example, suppliers, customers, whether the company has defaulted or owed money to other entities in the upstream and downstream relationship, if any, the number of defaults and the period of arrears.
- the external information of the enterprise entity A also includes the rating agency's rating on the business entity A (rating level 3A, 2A is good, A is good, BBB is general, etc.), the news media positive/negative reports on the business entity A, etc. .
- each reference factor in the internal information of the enterprise is converted into a number for quantization.
- the number of defaults can be quantized into three values, no default-0, mild default-1, and severe default- 2; arrears can be quantified into 2 values, no arrears-0, with arrears-1; ratings can be quantified into multiple values, rating level 3A-6, rating level 2A-5, rating level A-4, rating Level BBB-3, rating level BB-2, rating level B-1.
- the external information is quantified, the number of defaults -1, the arrears -1, the rating -3, and the third feature vector of the enterprise entity A is generated according to the quantized information.
- the risk enterprise A can be assessed next.
- the name of the enterprise entity A and the first feature vector, the second feature vector and the third feature vector of the enterprise entity A are input into a predetermined risk assessment model for risk assessment, and the risk assessment result is output.
- the training step of the predetermined risk assessment model includes: acquiring the first feature vector, the second feature vector, and the third feature vector of the plurality of enterprise entities by using the foregoing steps A1-A5, and the specific implementation manner is consistent with the foregoing steps , no longer repeat them here.
- the second feature vector, the third feature vector, and the corresponding risk tag are used as sample data. Extracting, from the sample data, the first feature vector, the second feature vector, the third feature vector of the first proportion (for example, 60%) of the enterprise entity, and the risk tag corresponding to the first entity (for example, 60%) of the enterprise entity As a training set, the first feature vector, the second feature vector, the third feature vector, and the second ratio (eg, 50%) of the second entity (eg, 50%) of the business entity are randomly extracted from the remaining sample set.
- the risk label corresponding to the enterprise entity is used as a verification set, that is, 20% of the sample data of the sample data is extracted as a verification set; the support vector machine is trained by using the 50% sample data, and the model parameters of the risk assessment model are determined.
- the model output result is 0, it indicates that the investment enterprise entity A is substantially risk-free, and if the model output result is 1 , it means that the investment enterprise entity A has a greater risk.
- the electronic device 1 proposed by the foregoing embodiment obtains the first feature vector, the second feature vector, and the third feature vector of the enterprise entity by understanding the relationship between the enterprise entity and its associated entity, the internal information of the enterprise entity, and the external information.
- the risk assessment model and the first feature vector, the second feature vector and the third feature vector are used to perform risk assessment on the investment entity, so that the investor can capture market investment opportunities.
- the enterprise investment risk assessment program 10 may also be divided into one or more modules, one or more modules being stored in the memory 11 and being processed by one or more processors (this Embodiments are executed by processor 12) to accomplish the present application, and a module referred to herein refers to a series of computer program instructions that are capable of performing a particular function.
- FIG. 4 it is a schematic diagram of a module of the enterprise investment risk assessment program 10 in FIG. 1.
- the program may be divided into an extraction module 110, a construction module 120, a first calculation module 130, and a second.
- the calculation module 140, the third calculation module 150, and the evaluation module 160, the functions or operation steps implemented by the modules 110-160 are similar to the above, and are not described in detail herein, for example, where:
- the extracting module 110 is configured to crawl the news corpus related to the enterprise entity to be evaluated for risk, pre-process the news corpus, and extract other entities associated with the business entity from the pre-processed news corpus;
- the building module 120 is configured to construct a relationship network between the enterprise entity and other entities by using the name as a node, the relationship between the enterprise entity and other entities as an edge;
- the first calculating module 130 is configured to calculate a vector representation of the enterprise entity according to the relationship network, and generate a first feature vector of the enterprise entity;
- the second calculating module 140 is configured to quantize the internal information of the enterprise entity according to the first preset rule to generate a second feature vector
- the third calculating module 150 is configured to extract external information of the enterprise entity from the news corpus, and quantize the external information of the enterprise entity according to the second preset rule to generate a third feature vector of the enterprise entity;
- the evaluation module 160 is configured to input the first feature vector, the second feature vector, and the third feature vector into a predetermined enterprise risk assessment model, and output a risk tag corresponding to the enterprise entity.
- the application also provides a method for assessing enterprise investment risk.
- FIG. 5 it is a flowchart of a preferred embodiment of the enterprise investment risk assessment method of the present application. The method can be performed by a device that can be implemented by software and/or hardware.
- the enterprise investment risk assessment method includes:
- S1 crawling the news corpus related to the enterprise entity to be assessed for risk, pre-processing the news corpus, and extracting other entities associated with the business entity from the pre-processed news corpus;
- the corpus refers to a plurality of different fields.
- This embodiment uses a news corpus as an example to describe a specific solution of the present application, but is not limited to the field of news.
- the web crawler When the investor needs to know the current news to obtain the internal data and external data associated with the investment target enterprise, use the web crawler to crawl the online news from the Internet, for example, crawling online news of Sina, Baidu, Tencent, etc. through crawlers. . Understandably, each company operates differently in different time periods. Therefore, in order to enable investors to more accurately understand the information of the investment target company, the crawled network news is filtered in the time dimension. Set the preset time interval and only crawl the online news of the time period, for example, only crawling online news for nearly half a year.
- the sources of news corpus are diverse, there are many types of corpus in the corpus.
- the news corpus needs to be preprocessed, and the news corpus text data is obtained to form a news corpus text set.
- the pre-processing may unify the format of the news corpus into a text format, remove advertising noise from the news corpus and filter one or more of dirty words and sensitive words.
- the format of the news corpus is unified into a text format, the content that cannot be converted into a text format by the current technology can be filtered out.
- all the enterprise names are extracted from the pre-processed news corpus, and then the associated enterprise data of the enterprise entity (ie, the investment target enterprise) according to the risk to be assessed is used. , filter out other entities associated with the business entity to be assessed, and build the enterprise entity and other entities into a network of relationships.
- the associated enterprise data can be obtained through third party data. It can be understood that it may be many to extract other entities associated with the enterprise entity from the news corpus. To construct all the related entities in the relational network is unreasonable, therefore, before extracting the relational network, the extracted and the enterprise entity Other related entities are filtered and filtered.
- other entities associated with the enterprise entity retained by the filtering and screening step include: a shareholder company of the business entity, other entities that have money with the business entity, suppliers, Customer, credit rating structure, etc.
- B1 is The rating agency that gives the enterprise entity A a credit rating can learn from the historical rating data that B1 gives the enterprise entity A a credit rating of BBB
- B2 is a supplier that supplies the enterprise entity A with raw materials or goods
- the amount owed is 300,000
- B3 is the customer of enterprise entity A
- enterprise entity A has defaulted to B3 twice.
- the enterprise entity A, B1, B2, and B3 are used as nodes, and the relationship between B1, B2, and B3 and A is used as the edge, and a network diagram of the relationship between the enterprise entity and other entities as shown in FIG. 2 is constructed.
- the vector representation of the enterprise entity A is calculated.
- This embodiment adopts the Skip-Gram method because the vector representation of the enterprise entity A in the relational network represents the vector representation of the entities B1, B2, B3 associated with it. There is a management relationship between them.
- the Skip-Gram method uses the current enterprise entity to predict surrounding entities, as shown in Figure 3. An1, An2, An3, and An4 in Fig. 3 are unordered and are represented as adjacent entities of the enterprise entity A.
- a fixed prediction length L is set to predict L neighboring entities around the enterprise entity A. If the real neighboring entity is less than L, the output is NULL.
- the vector representation embedding (E1), embedding (E2), ... of the enterprise entity A can be obtained, and the vector is represented as the first feature vector of the enterprise entity A.
- each reference factor in the internal information of the enterprise is converted into a number to be quantified.
- the value in the financial information can be converted into a characteristic value.
- the net profit is 300,000 yuan
- 30 is a corresponding feature.
- the value, the frequency of website updates, and the number of hiring people in the most recent year are also numerical values, and can also be based on preset conversion rules. In other embodiments, it is also possible to convert 300,000 yuan into other values according to a preset conversion ratio. After each reference factor in the internal information of the enterprise entity A is quantized, a second feature vector of the enterprise entity A is generated.
- the external information includes the upstream and downstream relationship of the enterprise entity A. For example, suppliers, customers, whether the company has defaulted or owed money to other entities in the upstream and downstream relationship, if any, the number of defaults and the period of arrears.
- the external information of the enterprise entity A also includes the rating agency's rating on the business entity A (rating level 3A, 2A is good, A is good, BBB is general, etc.), the news media positive/negative reports on the business entity A, etc. .
- each reference factor in the internal information of the enterprise is converted into a number for quantization.
- the number of defaults can be quantized into three values, no default-0, mild default-1, and severe default- 2; arrears can be quantified into 2 values, no arrears-0, with arrears-1; ratings can be quantified into multiple values, rating level 3A-6, rating level 2A-5, rating level A-4, rating Level BBB-3, rating level BB-2, rating level B-1.
- the external information is quantified, the number of defaults -1, the arrears -1, the rating -3, and the third feature vector of the enterprise entity A is generated according to the quantized information.
- the risk enterprise A can be assessed next.
- the name of the enterprise entity A and the first feature vector, the second feature vector and the third feature vector of the enterprise entity A are input into a predetermined risk assessment model for risk assessment, and the risk assessment result is output.
- the training step of the predetermined risk assessment model includes: acquiring the first feature vector, the second feature vector, and the third feature vector of the plurality of enterprise entities by using the foregoing steps S1-S5, and the specific implementation manner is consistent with the foregoing steps , no longer repeat them here.
- the second feature vector, the third feature vector, and the corresponding risk tag are used as sample data. Extracting, from the sample data, the first feature vector, the second feature vector, the third feature vector of the first proportion (for example, 60%) of the enterprise entity, and the risk tag corresponding to the first entity (for example, 60%) of the enterprise entity As a training set, the first feature vector, the second feature vector, the third feature vector, and the second ratio (eg, 50%) of the second entity (eg, 50%) of the business entity are randomly extracted from the remaining sample set.
- the risk label corresponding to the enterprise entity is used as a verification set, that is, 20% of the sample data of the sample data is extracted as a verification set; the support vector machine is trained by using the 50% sample data, and the model parameters of the risk assessment model are determined.
- the model output result is 0, it indicates that the investment enterprise entity A is substantially risk-free, and if the model output result is 1 , it means that the investment enterprise entity A has a greater risk.
- the enterprise investment risk assessment method proposed by the above embodiment obtains the first feature vector, the second feature vector and the third of the enterprise entity by understanding the relationship between the enterprise entity and its associated entity, the internal information of the enterprise entity and the external information.
- the feature vector utilizes the risk assessment model and the first feature vector, the second feature vector, and the third feature vector to perform risk assessment on the investment enterprise entity, so that the investor can capture market investment opportunities.
- the embodiment of the present application further provides a computer readable storage medium, where the enterprise investment risk assessment program is stored, and the enterprise investment risk assessment program is executed by the processor to:
- A1. Crawling news corpus related to the business entity to be assessed, preprocessing the news corpus, and extracting other entities associated with the business entity from the pre-processed news corpus;
- the name is a node
- the relationship between the enterprise entity and other entities is an edge
- a network of relationships between the enterprise entity and other entities is constructed
- A3. Calculate a vector representation of the enterprise entity according to the relationship network, and generate a first feature vector of the enterprise entity;
- A6 Input the first feature vector, the second feature vector, and the third feature vector into a predetermined enterprise risk assessment model, and output a risk tag corresponding to the enterprise entity.
- the technical solution of the present application which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM as described above). , a disk, an optical disk, including a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in the various embodiments of the present application.
- a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Marketing (AREA)
- Educational Administration (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
La présente invention concerne un procédé d'évaluation de risque d'investissement d'entreprise. Le procédé consiste : à explorer des corpus d'actualités associés à une entité d'entreprise cible d'investissement et à extraire d'autres entités associées à l'entité d'entreprise ; à construire un réseau de relations en utilisant des noms en tant que nœuds et des relations d'association entre l'entité d'entreprise et d'autres entités en tant que bords ; à calculer la représentation vectorielle de l'entité d'entreprise et à générer un premier vecteur propre de l'entité d'entreprise ; à quantifier des informations internes de l'entité d'entreprise selon une première règle préétablie et à générer un deuxième vecteur propre ; à quantifier des informations externes de l'entité d'entreprise selon une seconde règle préétablie et à générer un troisième vecteur propre ; à entrer le premier vecteur propre, le deuxième vecteur propre et le troisième vecteur propre dans un modèle d'évaluation de risque d'entreprise, à obtenir et à émettre une étiquette de risque correspondant à l'entité d'entreprise. La présente invention concerne également un appareil électronique et un support de mémoire lisible par ordinateur. Au moyen de la présente invention, par analyse des informations révélées dans des corpus d'actualités, des risques d'investissement dans des entreprises cibles peuvent être évalués.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711141730.3A CN107909274B (zh) | 2017-11-17 | 2017-11-17 | 企业投资风险评估方法、装置及存储介质 |
| CN201711141730.3 | 2017-11-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019095572A1 true WO2019095572A1 (fr) | 2019-05-23 |
Family
ID=61845968
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2018/076169 Ceased WO2019095572A1 (fr) | 2017-11-17 | 2018-02-10 | Procédé d'évaluation de risque d'investissement d'entreprise, dispositif et support de mémoire |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN107909274B (fr) |
| WO (1) | WO2019095572A1 (fr) |
Cited By (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110414806A (zh) * | 2019-07-10 | 2019-11-05 | 平安科技(深圳)有限公司 | 员工风险预警方法及相关装置 |
| CN110443459A (zh) * | 2019-07-05 | 2019-11-12 | 深圳壹账通智能科技有限公司 | 预警信息推送方法、装置、计算机设备和存储介质 |
| CN110532357A (zh) * | 2019-09-04 | 2019-12-03 | 深圳前海微众银行股份有限公司 | Esg评分体系的生成方法、装置、设备及可读存储介质 |
| CN111951079A (zh) * | 2020-08-14 | 2020-11-17 | 国网电子商务有限公司 | 一种基于知识图谱的信用评级方法、装置及电子设备 |
| CN112365194A (zh) * | 2020-12-01 | 2021-02-12 | 未鲲(上海)科技服务有限公司 | 企业数据处理方法、装置、设备及计算机存储介质 |
| CN112418320A (zh) * | 2020-11-24 | 2021-02-26 | 杭州未名信科科技有限公司 | 一种企业关联关系识别方法、装置及存储介质 |
| CN112579773A (zh) * | 2020-12-16 | 2021-03-30 | 中国建设银行股份有限公司 | 风险事件分级方法及装置 |
| CN112598302A (zh) * | 2020-12-25 | 2021-04-02 | 北京知因智慧科技有限公司 | 企业数据的评估方法、装置及服务器 |
| CN112598496A (zh) * | 2020-12-15 | 2021-04-02 | 深圳前海微众银行股份有限公司 | 风控黑名单设置方法、装置、终端设备及可读存储介质 |
| CN112613762A (zh) * | 2020-12-25 | 2021-04-06 | 北京知因智慧科技有限公司 | 基于知识图谱的集团评级方法、装置和电子设备 |
| CN113283806A (zh) * | 2021-06-22 | 2021-08-20 | 中国平安财产保险股份有限公司 | 企业信息评估方法、装置、计算机设备及存储介质 |
| CN113506173A (zh) * | 2021-08-06 | 2021-10-15 | 国网电子商务有限公司 | 一种信用风险评估方法及其相关设备 |
| CN113643035A (zh) * | 2020-05-11 | 2021-11-12 | 阿里巴巴集团控股有限公司 | 信息处理方法、信息展示方法、装置、设备及存储介质 |
| CN113673870A (zh) * | 2021-08-23 | 2021-11-19 | 杭州安恒信息技术股份有限公司 | 一种企业数据分析方法及相关组件 |
| CN113689288A (zh) * | 2021-08-25 | 2021-11-23 | 深圳前海微众银行股份有限公司 | 基于实体列表的风险识别方法、装置、设备及存储介质 |
| CN113743111A (zh) * | 2020-08-25 | 2021-12-03 | 国家计算机网络与信息安全管理中心 | 基于文本预训练和多任务学习的金融风险预测方法及装置 |
| CN113837517A (zh) * | 2020-12-01 | 2021-12-24 | 北京沃东天骏信息技术有限公司 | 事件的触发方法及装置、介质及电子设备 |
| CN113837527A (zh) * | 2021-08-02 | 2021-12-24 | 深圳前海微众银行股份有限公司 | 企业评级方法、装置、设备以及存储介质 |
| CN113919957A (zh) * | 2021-10-29 | 2022-01-11 | 深圳壹账通智能科技有限公司 | 一种循环投资比例计算及路径表示方法、装置、电子设备和介质 |
| CN113962568A (zh) * | 2021-10-26 | 2022-01-21 | 天元大数据信用管理有限公司 | 基于支持向量机的模型标签标注方法、设备及介质 |
| CN114118816A (zh) * | 2021-11-30 | 2022-03-01 | 建信金融科技有限责任公司 | 一种风险评估方法、装置、设备及计算机存储介质 |
| CN114493838A (zh) * | 2022-01-24 | 2022-05-13 | 浙江惠瀜网络科技有限公司 | 家装公司风险识别方法、装置、终端及存储介质 |
| CN114693127A (zh) * | 2022-03-31 | 2022-07-01 | 中国建设银行股份有限公司 | 评价信息确定方法、装置、设备及计算机存储介质 |
| CN115049252A (zh) * | 2022-06-13 | 2022-09-13 | 苏州大数据有限公司 | 一种企业安全风险评估系统 |
| CN115481891A (zh) * | 2022-09-16 | 2022-12-16 | 中诚信征信有限公司 | 一种风险评估方法、装置及电子设备 |
| CN117829586A (zh) * | 2023-12-08 | 2024-04-05 | 深圳市南弯数字科技有限公司 | 企业风险评估系统的控制方法、设备及存储介质 |
| CN118469281A (zh) * | 2024-05-06 | 2024-08-09 | 宁波诺丁汉大学 | 一种企业风险评估模型构建方法及评估方法、装置 |
| CN118887063A (zh) * | 2024-07-09 | 2024-11-01 | 浙江云智迪科技有限公司 | 一种基于大模型技术的社区治理风险研判预警系统 |
| CN120069518A (zh) * | 2025-01-03 | 2025-05-30 | 北京大学 | 基于元路径去噪与胶囊网络建模的企业违约预测方法及系统 |
Families Citing this family (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109087163B (zh) * | 2018-07-06 | 2021-07-09 | 创新先进技术有限公司 | 信用评估的方法及装置 |
| CN108985638B (zh) * | 2018-07-25 | 2020-07-24 | 腾讯科技(深圳)有限公司 | 一种用户投资风险评估方法和装置以及存储介质 |
| CN109345089A (zh) * | 2018-09-13 | 2019-02-15 | 杭州索骥数据科技有限公司 | 基于大数据的企业发展状态评估方法及系统 |
| CN109299362B (zh) * | 2018-09-21 | 2023-04-14 | 平安科技(深圳)有限公司 | 相似企业推荐方法、装置、计算机设备及存储介质 |
| CN109597894B (zh) * | 2018-09-30 | 2023-10-03 | 创新先进技术有限公司 | 一种关联模型生成方法及装置、一种数据关联方法及装置 |
| CN109214904B (zh) * | 2018-10-11 | 2024-07-02 | 平安科技(深圳)有限公司 | 财务造假线索的获取方法、装置、计算机设备和存储介质 |
| CN109523117A (zh) * | 2018-10-11 | 2019-03-26 | 平安科技(深圳)有限公司 | 风险预测方法、装置、计算机设备和存储介质 |
| CN109472485A (zh) * | 2018-11-01 | 2019-03-15 | 成都数联铭品科技有限公司 | 企业失信风险传播查询系统及方法 |
| CN109523153A (zh) * | 2018-11-12 | 2019-03-26 | 平安科技(深圳)有限公司 | 非法集资企业的获取方法、装置、计算机设备和存储介质 |
| CN109543985A (zh) * | 2018-11-15 | 2019-03-29 | 李志东 | 企业风险评估方法、系统及介质 |
| CN109657917B (zh) * | 2018-11-19 | 2022-04-29 | 平安科技(深圳)有限公司 | 评估对象的风险预警方法、装置、计算机设备和存储介质 |
| CN109558592A (zh) * | 2018-11-29 | 2019-04-02 | 上海点融信息科技有限责任公司 | 基于人工智能获取客户信用风险评估信息的方法及设备 |
| CN109670837A (zh) * | 2018-11-30 | 2019-04-23 | 平安科技(深圳)有限公司 | 债券违约风险的识别方法、装置、计算机设备和存储介质 |
| CN109740865A (zh) * | 2018-12-13 | 2019-05-10 | 平安科技(深圳)有限公司 | 风险评估方法、系统、设备及存储介质 |
| CN109359901A (zh) * | 2018-12-13 | 2019-02-19 | 泰康保险集团股份有限公司 | 基于区块链的企业风险确定方法及装置、介质和电子设备 |
| KR102202139B1 (ko) * | 2018-12-17 | 2021-01-12 | 지속가능발전소 주식회사 | 협력업체 공급망 리스크 분석 방법, 이를 수행하기 위한 기록매체 |
| CN109800976A (zh) * | 2019-01-07 | 2019-05-24 | 平安科技(深圳)有限公司 | 项目投资决策方法、装置、计算机设备和存储介质 |
| CN109829640A (zh) * | 2019-01-23 | 2019-05-31 | 平安科技(深圳)有限公司 | 企业违约风险的识别方法、装置、计算机设备和存储介质 |
| CN111626887B (zh) * | 2019-02-27 | 2024-12-27 | 北京奇虎科技有限公司 | 一种社交关系评估方法及装置 |
| CN110033120A (zh) * | 2019-03-06 | 2019-07-19 | 阿里巴巴集团控股有限公司 | 用于为商户提供风险预测赋能服务的方法及装置 |
| CN110009229A (zh) * | 2019-04-04 | 2019-07-12 | 泰康保险集团股份有限公司 | 基于区块链的供应链管理方法、装置、存储介质与设备 |
| CN110188980A (zh) * | 2019-04-15 | 2019-08-30 | 深圳壹账通智能科技有限公司 | 企业风险评分方法、装置、计算机设备及存储介质 |
| CN112053021B (zh) * | 2019-06-05 | 2025-01-21 | 国网信息通信产业集团有限公司 | 一种用于企业经营管理风险识别的特征编码方法及装置 |
| CN110533528A (zh) * | 2019-08-30 | 2019-12-03 | 北京市天元网络技术股份有限公司 | 评估企业信用的方法及设备 |
| CN111104442A (zh) * | 2019-11-06 | 2020-05-05 | 杭州绿程网络科技有限公司 | 一种企业综合数据的预处理方法 |
| CN111291932A (zh) * | 2020-02-12 | 2020-06-16 | 徐佳慧 | 面向投融资关系网络链路预测的方法、装置和设备 |
| CN111340246A (zh) * | 2020-02-26 | 2020-06-26 | 未来地图(深圳)智能科技有限公司 | 用于企业智能决策分析的处理方法、装置和计算机设备 |
| CN111311105A (zh) * | 2020-02-28 | 2020-06-19 | 深圳前海微众银行股份有限公司 | 组合产品评分方法、装置、设备及可读存储介质 |
| CN111459961A (zh) * | 2020-03-31 | 2020-07-28 | 深圳前海微众银行股份有限公司 | 业务数据的更新方法、装置、设备及存储介质 |
| CN113592519A (zh) * | 2020-04-30 | 2021-11-02 | 景德镇陶瓷大学 | 一种利于企业发展的市场营销数据分析评估系统 |
| CN111353728A (zh) * | 2020-05-06 | 2020-06-30 | 支付宝(杭州)信息技术有限公司 | 一种风险分析方法和系统 |
| CN112016850A (zh) * | 2020-09-14 | 2020-12-01 | 支付宝(杭州)信息技术有限公司 | 业务评估方法以及装置 |
| CN112732804B (zh) * | 2020-12-23 | 2024-04-26 | 北京金堤征信服务有限公司 | 合作数据评估方法及装置、电子设备和可读存储介质 |
| CN112884496B (zh) * | 2021-05-06 | 2021-08-20 | 达而观数据(成都)有限公司 | 计算企业信用因子分数的方法、装置及计算机存储介质 |
| CN114168757B (zh) * | 2022-02-11 | 2022-04-29 | 子长科技(北京)有限公司 | 公司事件风险预测方法、装置、存储介质及电子设备 |
| CN117194932A (zh) * | 2022-05-26 | 2023-12-08 | 腾讯科技(深圳)有限公司 | 实体的评价方法、装置、计算机可读介质及电子设备 |
| CN116433022A (zh) * | 2023-04-07 | 2023-07-14 | 重庆文诗奇源科技有限公司 | 一种基于信息网络嵌入的中小型企业风险评估方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150149247A1 (en) * | 2013-05-02 | 2015-05-28 | The Dun & Bradstreet Corporation | System and method using multi-dimensional rating to determine an entity's future commercical viability |
| CN105740335A (zh) * | 2016-01-22 | 2016-07-06 | 山东合天智汇信息技术有限公司 | 一种基于titan的企业信息分析平台及其构建方法 |
| CN106203808A (zh) * | 2016-07-01 | 2016-12-07 | 中国民生银行股份有限公司 | 企业信用风险评估方法和装置 |
| CN107229756A (zh) * | 2017-06-30 | 2017-10-03 | 山东合天智汇信息技术有限公司 | 一种直观展现企业关系图谱的设计方法及系统 |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040215551A1 (en) * | 2001-11-28 | 2004-10-28 | Eder Jeff S. | Value and risk management system for multi-enterprise organization |
| EP1479024A4 (fr) * | 2002-01-31 | 2007-01-03 | Seabury Analytic Llc | Procede et modele d'evaluation de risque dans une entreprise |
| US20070208600A1 (en) * | 2006-03-01 | 2007-09-06 | Babus Steven A | Method and apparatus for pre-emptive operational risk management and risk discovery |
| JP6009864B2 (ja) * | 2011-09-21 | 2016-10-19 | 典秀 野田 | 企業評価システム、企業評価方法及び企業評価プログラム |
| US9087088B1 (en) * | 2012-11-13 | 2015-07-21 | American Express Travel Related Services Company, Inc. | Systems and methods for dynamic construction of entity graphs |
| EP2973282A4 (fr) * | 2013-03-13 | 2016-11-16 | Guardian Analytics Inc | Détection et analyse de fraude |
| CN103942718A (zh) * | 2014-04-14 | 2014-07-23 | 中国人民银行征信中心 | 企业信贷信息采集整合方法 |
| CN105528465A (zh) * | 2016-02-03 | 2016-04-27 | 天弘基金管理有限公司 | 信用状况评估方法及装置 |
| CN105975491A (zh) * | 2016-04-26 | 2016-09-28 | 重庆誉存企业信用管理有限公司 | 企业新闻分析方法及系统 |
| CN105913195A (zh) * | 2016-04-29 | 2016-08-31 | 浙江汇信科技有限公司 | 基于全行业数据的企业金融风险评分方法 |
| CN106447066A (zh) * | 2016-06-01 | 2017-02-22 | 上海坤士合生信息科技有限公司 | 一种大数据的特征提取方法和装置 |
| CN106445988A (zh) * | 2016-06-01 | 2017-02-22 | 上海坤士合生信息科技有限公司 | 一种大数据的智能处理方法和系统 |
| CN106126614A (zh) * | 2016-06-21 | 2016-11-16 | 山东合天智汇信息技术有限公司 | 一种追溯两个企业多层级关联路径的方法及系统 |
| CN106934712A (zh) * | 2017-03-16 | 2017-07-07 | 深圳微众税银信息服务有限公司 | 一种企业画像数据处理方法及系统 |
| CN107133732A (zh) * | 2017-04-27 | 2017-09-05 | 青岛格兰德信用管理咨询有限公司 | 基于大数据分析的关系圈挖掘方法及其应用 |
| CN107239882A (zh) * | 2017-05-10 | 2017-10-10 | 平安科技(深圳)有限公司 | 风险评估方法、装置、计算机设备及存储介质 |
| CN107301493A (zh) * | 2017-05-19 | 2017-10-27 | 四川新网银行股份有限公司 | 一种基于深度神经网络的互金企业评级模型 |
| CN107220237A (zh) * | 2017-05-24 | 2017-09-29 | 南京大学 | 一种基于卷积神经网络的企业实体关系抽取的方法 |
-
2017
- 2017-11-17 CN CN201711141730.3A patent/CN107909274B/zh active Active
-
2018
- 2018-02-10 WO PCT/CN2018/076169 patent/WO2019095572A1/fr not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150149247A1 (en) * | 2013-05-02 | 2015-05-28 | The Dun & Bradstreet Corporation | System and method using multi-dimensional rating to determine an entity's future commercical viability |
| CN105740335A (zh) * | 2016-01-22 | 2016-07-06 | 山东合天智汇信息技术有限公司 | 一种基于titan的企业信息分析平台及其构建方法 |
| CN106203808A (zh) * | 2016-07-01 | 2016-12-07 | 中国民生银行股份有限公司 | 企业信用风险评估方法和装置 |
| CN107229756A (zh) * | 2017-06-30 | 2017-10-03 | 山东合天智汇信息技术有限公司 | 一种直观展现企业关系图谱的设计方法及系统 |
Cited By (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110443459A (zh) * | 2019-07-05 | 2019-11-12 | 深圳壹账通智能科技有限公司 | 预警信息推送方法、装置、计算机设备和存储介质 |
| CN110414806B (zh) * | 2019-07-10 | 2024-05-14 | 平安科技(深圳)有限公司 | 员工风险预警方法及相关装置 |
| CN110414806A (zh) * | 2019-07-10 | 2019-11-05 | 平安科技(深圳)有限公司 | 员工风险预警方法及相关装置 |
| CN110532357A (zh) * | 2019-09-04 | 2019-12-03 | 深圳前海微众银行股份有限公司 | Esg评分体系的生成方法、装置、设备及可读存储介质 |
| CN110532357B (zh) * | 2019-09-04 | 2024-03-12 | 深圳前海微众银行股份有限公司 | Esg评分体系的生成方法、装置、设备及可读存储介质 |
| CN113643035A (zh) * | 2020-05-11 | 2021-11-12 | 阿里巴巴集团控股有限公司 | 信息处理方法、信息展示方法、装置、设备及存储介质 |
| CN111951079A (zh) * | 2020-08-14 | 2020-11-17 | 国网电子商务有限公司 | 一种基于知识图谱的信用评级方法、装置及电子设备 |
| CN111951079B (zh) * | 2020-08-14 | 2024-04-02 | 国网数字科技控股有限公司 | 一种基于知识图谱的信用评级方法、装置及电子设备 |
| CN113743111A (zh) * | 2020-08-25 | 2021-12-03 | 国家计算机网络与信息安全管理中心 | 基于文本预训练和多任务学习的金融风险预测方法及装置 |
| CN113743111B (zh) * | 2020-08-25 | 2024-06-04 | 国家计算机网络与信息安全管理中心 | 基于文本预训练和多任务学习的金融风险预测方法及装置 |
| CN112418320B (zh) * | 2020-11-24 | 2024-01-19 | 杭州未名信科科技有限公司 | 一种企业关联关系识别方法、装置及存储介质 |
| CN112418320A (zh) * | 2020-11-24 | 2021-02-26 | 杭州未名信科科技有限公司 | 一种企业关联关系识别方法、装置及存储介质 |
| CN112365194A (zh) * | 2020-12-01 | 2021-02-12 | 未鲲(上海)科技服务有限公司 | 企业数据处理方法、装置、设备及计算机存储介质 |
| CN113837517A (zh) * | 2020-12-01 | 2021-12-24 | 北京沃东天骏信息技术有限公司 | 事件的触发方法及装置、介质及电子设备 |
| CN112598496B (zh) * | 2020-12-15 | 2024-04-30 | 深圳前海微众银行股份有限公司 | 风控黑名单设置方法、装置、终端设备及可读存储介质 |
| CN112598496A (zh) * | 2020-12-15 | 2021-04-02 | 深圳前海微众银行股份有限公司 | 风控黑名单设置方法、装置、终端设备及可读存储介质 |
| CN112579773A (zh) * | 2020-12-16 | 2021-03-30 | 中国建设银行股份有限公司 | 风险事件分级方法及装置 |
| CN112598302B (zh) * | 2020-12-25 | 2024-03-26 | 北京知因智慧科技有限公司 | 企业数据的评估方法、装置及服务器 |
| CN112598302A (zh) * | 2020-12-25 | 2021-04-02 | 北京知因智慧科技有限公司 | 企业数据的评估方法、装置及服务器 |
| CN112613762A (zh) * | 2020-12-25 | 2021-04-06 | 北京知因智慧科技有限公司 | 基于知识图谱的集团评级方法、装置和电子设备 |
| CN112613762B (zh) * | 2020-12-25 | 2024-04-16 | 北京知因智慧科技有限公司 | 基于知识图谱的集团评级方法、装置和电子设备 |
| CN113283806A (zh) * | 2021-06-22 | 2021-08-20 | 中国平安财产保险股份有限公司 | 企业信息评估方法、装置、计算机设备及存储介质 |
| CN113837527A (zh) * | 2021-08-02 | 2021-12-24 | 深圳前海微众银行股份有限公司 | 企业评级方法、装置、设备以及存储介质 |
| CN113506173A (zh) * | 2021-08-06 | 2021-10-15 | 国网电子商务有限公司 | 一种信用风险评估方法及其相关设备 |
| CN113673870B (zh) * | 2021-08-23 | 2024-04-30 | 杭州安恒信息技术股份有限公司 | 一种企业数据分析方法及相关组件 |
| CN113673870A (zh) * | 2021-08-23 | 2021-11-19 | 杭州安恒信息技术股份有限公司 | 一种企业数据分析方法及相关组件 |
| CN113689288A (zh) * | 2021-08-25 | 2021-11-23 | 深圳前海微众银行股份有限公司 | 基于实体列表的风险识别方法、装置、设备及存储介质 |
| CN113689288B (zh) * | 2021-08-25 | 2024-05-14 | 深圳前海微众银行股份有限公司 | 基于实体列表的风险识别方法、装置、设备及存储介质 |
| CN113962568A (zh) * | 2021-10-26 | 2022-01-21 | 天元大数据信用管理有限公司 | 基于支持向量机的模型标签标注方法、设备及介质 |
| CN113919957A (zh) * | 2021-10-29 | 2022-01-11 | 深圳壹账通智能科技有限公司 | 一种循环投资比例计算及路径表示方法、装置、电子设备和介质 |
| CN114118816A (zh) * | 2021-11-30 | 2022-03-01 | 建信金融科技有限责任公司 | 一种风险评估方法、装置、设备及计算机存储介质 |
| CN114493838A (zh) * | 2022-01-24 | 2022-05-13 | 浙江惠瀜网络科技有限公司 | 家装公司风险识别方法、装置、终端及存储介质 |
| CN114693127A (zh) * | 2022-03-31 | 2022-07-01 | 中国建设银行股份有限公司 | 评价信息确定方法、装置、设备及计算机存储介质 |
| CN115049252A (zh) * | 2022-06-13 | 2022-09-13 | 苏州大数据有限公司 | 一种企业安全风险评估系统 |
| CN115481891A (zh) * | 2022-09-16 | 2022-12-16 | 中诚信征信有限公司 | 一种风险评估方法、装置及电子设备 |
| CN117829586A (zh) * | 2023-12-08 | 2024-04-05 | 深圳市南弯数字科技有限公司 | 企业风险评估系统的控制方法、设备及存储介质 |
| CN118469281A (zh) * | 2024-05-06 | 2024-08-09 | 宁波诺丁汉大学 | 一种企业风险评估模型构建方法及评估方法、装置 |
| CN118887063A (zh) * | 2024-07-09 | 2024-11-01 | 浙江云智迪科技有限公司 | 一种基于大模型技术的社区治理风险研判预警系统 |
| CN120069518A (zh) * | 2025-01-03 | 2025-05-30 | 北京大学 | 基于元路径去噪与胶囊网络建模的企业违约预测方法及系统 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107909274A (zh) | 2018-04-13 |
| CN107909274B (zh) | 2023-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2019095572A1 (fr) | Procédé d'évaluation de risque d'investissement d'entreprise, dispositif et support de mémoire | |
| US9411917B2 (en) | Methods and systems for modeling crowdsourcing platform | |
| CN107909178A (zh) | 电子装置、失联修复率预测方法和计算机可读存储介质 | |
| CN119721689B (zh) | 业务风险评估方法、装置、计算机设备及存储介质 | |
| CN115936895A (zh) | 基于人工智能的风险评估方法、装置、设备及存储介质 | |
| CN113360672B (zh) | 用于生成知识图谱的方法、装置、设备、介质和产品 | |
| CN114048330B (zh) | 风险传导概率知识图谱生成方法、装置、设备及存储介质 | |
| AU2023275277A1 (en) | Methods, systems and computer program products for determining models for predicting reoccurring transactions | |
| US9141686B2 (en) | Risk analysis using unstructured data | |
| CN107943788B (zh) | 企业简称生成方法、装置及存储介质 | |
| CN117273968A (zh) | 一种跨业务线产品的会计凭证生成方法及其相关设备 | |
| CN108809943A (zh) | 网站监控方法及其装置 | |
| US11875374B2 (en) | Automated auditing and recommendation systems and methods | |
| CN107945034A (zh) | 基于微博财经事件的金融分析方法、应用服务器及计算机可读存储介质 | |
| CN117033431B (zh) | 工单处理方法、装置、电子设备和介质 | |
| CN117853247A (zh) | 基于人工智能的产品推荐方法、装置、设备及存储介质 | |
| CN111179076B (zh) | It系统智能管理方法、装置及计算机可读存储介质 | |
| CN116934512A (zh) | 一种财务月结审核方法、装置、计算机设备及存储介质 | |
| CN114066473A (zh) | 用户还款意向预测方法、装置、计算机设备及存储介质 | |
| CN114819432B (zh) | 企业非法集资风险预测方法、装置、电子设备及存储介质 | |
| CN120316395A (zh) | 业务数据处理方法、装置、计算机设备及存储介质 | |
| CN119323474A (zh) | 信用报告摘要生成方法、装置、计算机设备及存储介质 | |
| CN119513802A (zh) | 数据欺诈检测方法、装置、计算机设备及存储介质 | |
| CN119577154A (zh) | 基于人工智能的风险分析方法、装置、计算机设备及介质 | |
| CN115827892A (zh) | 一种企业关系图谱创建方法、装置及电子设备 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18879239 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2020) |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18879239 Country of ref document: EP Kind code of ref document: A1 |