WO2019049260A1 - Image processing device - Google Patents
Image processing device Download PDFInfo
- Publication number
- WO2019049260A1 WO2019049260A1 PCT/JP2017/032274 JP2017032274W WO2019049260A1 WO 2019049260 A1 WO2019049260 A1 WO 2019049260A1 JP 2017032274 W JP2017032274 W JP 2017032274W WO 2019049260 A1 WO2019049260 A1 WO 2019049260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- processing apparatus
- image processing
- distortion
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/153—Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/22—Optical, image processing or photographic arrangements associated with the tube
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
Definitions
- the present invention relates to a measuring device, and more particularly to an image processing technique of a device using a charged particle beam.
- Charged particle beam equipment is a generic name for devices that use charged particles, that is, devices that control the movement of particles using an external force applied from an electric field or a magnetic field to electrons or ions, and is typically a transmitted electron.
- a microscope, a scanning electron microscope, a focused ion beam device and the like can be mentioned.
- the orbit is controlled by a lens using an electromagnetic field and a deflector using an electromagnetic field, and the sample to be observed is observed by irradiating the sample.
- the polarity of the electric field to be used varies depending on the charge of the particles to be used, the common part among them is large, and in the following description, an example in a transmission electron microscope will be described as a representative example.
- a transmission electron microscope (hereinafter referred to as TEM) irradiates an electron beam accelerated by a high voltage to a substance to be observed, forms an electron beam transmitted through the substance by an electromagnetic lens, and magnifies the fine structure of the substance. It is a device that performs observation and uses a lens electromagnetic field that acts on electrons. Then, in the optical system formed by this lens electromagnetic field, distortion is added to the obtained observation image in some cases due to the imperfection of the lens that forms an image, which will be described later with reference to the drawings. It is known to be observed in a form different from the sample structure.
- Patent Document 1 proposes a method of obtaining an image in which the influence of distortion is reduced.
- Patent Document 1 assuming that the electron beam diffraction pattern from a sample whose sample structure can be regarded as known has regularity, the irregularity of the pattern is used to measure the deformation given to the pattern by the optical system to correct the distortion.
- a technique is disclosed for determining the parameters to do so.
- strain can be measured by using a sample whose structure is known with high accuracy, for example, a crystalline sample or a sample prepared or processed with high accuracy, but on the other hand, under conditions in which the use of an appropriate sample is difficult. It is difficult to apply.
- Patent Document 2 proposes a method of performing measurement using a sample whose structure is not known.
- distortion can be measured without using a known sample, but since the matching processing of the local region used for the measurement is necessarily performed on the image including the distortion, the distortion is In the case where the direction and size of the image change in the image, the results of different distortions applied to the same structure are compared, and the accuracy of the position detected by the matching may be reduced due to the influence of the distortion. In addition, since the accuracy of matching is affected by the pattern used for evaluation, the distortion measurement accuracy may be reduced as a result in an area having a structure unsuitable for matching, such as an area with a small change in contrast in the sample. There is a possibility of getting different measurement results.
- An object of the present invention is an image processing apparatus that performs measurement with little influence of distortion itself when measuring image distortion caused by an optical system, in order to solve the above problems, and realizes image distortion measurement using the result To provide.
- an image processing apparatus which comprises a first image of a sample or a part thereof taken by a charged particle beam device and a first distortion function.
- An image processing apparatus configured to generate a predicted image and compare the generated first predicted image with a second image of a sample or a part of the image captured after movement of the field of view by the charged particle beam device I will provide a.
- FIG. 8 is a diagram showing an example of the result of distortion applied to an image in an optical system.
- FIG. 7 is a diagram showing an example of a ray diagram in the case where no distortion occurs and an example of a ray diagram in the case where distortion occurs in the optical system.
- FIG. 6 is a diagram showing an example of a distortion function applied to an image in an optical system.
- FIG. 7 is a diagram showing an example of means for changing the field of view of an image according to the first and second embodiments.
- FIG. 7 is a view showing an example of an image change when an observation field of view is changed in an optical system having distortion according to the first embodiment.
- FIG. 7 is a diagram showing an example of the relationship between an apparent deformation function and a distortion function generated by a change in visual field according to the first embodiment.
- FIG. 7 is a diagram showing an example in which an image is deformed by a plurality of different deformation functions according to the first embodiment. It is a figure which shows an example of the result of calculating
- FIG. FIG. 7 is a diagram showing an example of change in correlation value when comparison with acquired images is performed on a plurality of images deformed by a plurality of different deformation functions according to the first embodiment.
- FIG. 17 is a diagram showing a detailed flow of most likely distortion function evaluation based on a distortion function according to a third embodiment.
- FIG. 16 is a diagram showing a detailed flow of most probable distortion function evaluation based on a plurality of distortion functions according to a fourth embodiment.
- FIG. 18 is a diagram showing an extraction region when extracting only a part of the acquired image and evaluating distortion characteristics in one direction according to a fifth embodiment;
- FIG. 18 is a diagram showing an extraction region when extracting only a part of the acquired image and evaluating local distortion characteristics according to a sixth embodiment.
- FIG. 21 is a diagram showing an example of a change in brightness distribution of an image as an influence caused by image distortion according to an eighth embodiment.
- FIG. 1 is a view schematically showing an optical system at the time of image observation of a TEM.
- the irradiation system lenses 2 and 3 disposed below the electron source 1 form lens electromagnetic fields 21 and 22 that act on electrons, and further below the apertures 7 and 10 that block part of the electron beam, electrons
- a recording device 11 for observing and recording an image formed by the electron beam.
- the electron beam emitted from the electron source 1 passes through the irradiation system lenses 2 and 3 and then irradiates the sample 14.
- the electron beam transmitted through the sample 14 further passes through the imaging system lenses 5 and 6, and an image of the sample is formed on the imaging device 11.
- the intensity, size, and the like of the image formed at this time are changed by appropriately controlling the irradiation system lenses 2 and 3, the objective lens 4 and the imaging system lenses 5 and 6 from the control device 13.
- the image formed on the recording device 11 is directly observed or recorded by the recording device controller 12 and observed.
- the observation image data recorded by the recording device control device 12 is subjected to image processing by a central processing unit (CPU) such as a personal computer (PC) connected to the recording device control device 12 or to the recording device control device 12. Ru.
- CPU central processing unit
- PC personal computer
- Ru the recording device control device 12, the control device 13, and further the CPU are collectively referred to as a control unit.
- the transmission electron microscope image observes the structure contained in the sample 14 in an enlarged manner on the recording device 11 under the control of the control unit, and the structure on the sample has its two-dimensional position It is projected onto 11 with the relationship maintained approximately.
- the image formation is mainly performed by an optical system constituted by the objective lens 4 and the imaging system lenses 5 and 6. Then, in some cases, distortion is added to the observation image in some cases due to the imperfection of the lens that forms an image as described above, and the image is observed as a form different from the original sample structure.
- FIG. 2 is a diagram showing an example of how image distortion occurs.
- (1) of the figure shows an example of the structure of the sample to be observed.
- An example of observing a sample having such a structure with a distorted optical system is shown in FIG. 2 (2).
- the image distortion caused by the optical system is often small at the central portion and large at the outer side.
- the structure appears to move further outward than the original position as the outside of the field of view, and the degree changes continuously from the center of the distortion to the outside,
- the image is an image stretched outward.
- Such image distortion is mainly caused by the aberration of the lens, and the principle thereof is schematically shown in FIG. (1) of the same figure is the figure which showed the image formation by the ideal lens without aberration.
- Electron trajectories 36 emitted from a point separated by a distance r 1 from the optical axis 30 on the sample reach a point separated by a distance R 1 from the optical axis 30 on the image plane 15.
- the ratio of r 1 to R 1 at this time is the imaging magnification of the optical system.
- the electron orbit 37 emitted from the point on the sample separated by r2 from the optical axis 30 reaches the point on the image plane 15 separated by R2 from the optical axis 30.
- the ratio of r2 to R2 is equal to the ratio of r1 to R1, and an image is formed on the image plane 15 at the same magnification.
- an aberration in particular, a spherical aberration exists as a large component, and an example of image formation at that time is shown in FIG.
- the electron orbit 36 incident on the lens 26 from the point decentered from the optical axis 30 by r 1 passes the orbit as shown by 35 due to the influence of the aberration. Since this orbit receives stronger convergence than the orbit 33 which passes without aberration, it passes an orbit such as 34 and forms an image on the image plane 15 at a position separated by D1 outside the optical axis than the orbit 33 .
- the trajectories pass a point further away from the optical axis 30 at the lens 26 than the electron trajectories 36 In that case, because it receives a stronger convergence than the trajectory 32 which passes without aberration, it passes a trajectory such as 34, and on the image plane 15, it is an image at a position separated by D2 outside the optical axis than the trajectory 32. Connect At this time, the ratio of R1 + D1 to r1 and the ratio of R2 + D2 to r2 are different values. This means that the electron trajectories from different points on the sample on the image plane 15 are connected at different magnifications. It will be an image. This appears as the contraction of the observation image on the image plane, which causes the image distortion as shown in FIG.
- the characteristic can be expressed as a function of distortion according to the distance from the center.
- Figure 4 shows some examples of such distortion functions, where the horizontal axis is the distance from the center and the vertical axis shows the amount of displacement due to distortion from the position where it is imaged in the absence of distortion. If the vertical axis is a positive value, the trajectory corresponds to the outside, and if it is a negative value, the trajectory corresponds to the inward displacement. In the example of FIG. 4 (1), as the trajectory goes to the outside, it represents a distortion that is further shifted to the outside than the original position, and a distortion generally called pincushion distortion occurs.
- the orbit goes to the outside, it represents a distortion that is shifted inward from the original position, and a distortion generally called barrel distortion occurs.
- the example of (3) is an example of distortion that occurs in an optical system in which a plurality of lenses are combined, but the distortion takes both positive and negative values according to the distance from the center, and the image is drawn to the outside inside the image. There is a distortion that shrinks the image to the inside outside the image.
- an example is shown in which an asymmetric distortion occurs due to the influence of the axis deviation between lenses or the like.
- Equation 1 is a polynomial function that includes a fourth-order term or less for variables X and Y.
- the distortion function often has a rotationally symmetric shape, among the coefficients in Equation 1, A 1 to A 3 , B 1 to B 3 , E, etc. can be regarded as zero.
- the lens imperfection causing such distortion is difficult to solve as long as an electromagnetic field is used as the lens, and the image recorded by the recording apparatus is corrected on the computer to reduce the influence of distortion.
- the method of obtaining has been proposed, there is a possibility that the measurement accuracy of the distortion may be lowered or the measurement result different from the actual distortion may be obtained.
- Example 1 is an image processing apparatus, which creates and generates a first predicted image from a first image of a sample or a part thereof taken by a charged particle beam device and a first distortion function.
- This is an embodiment of an image processing apparatus configured to compare the first predicted image with a second image of a sample or a part of the image captured after movement of the field of view by the charged particle beam device.
- This image processing apparatus can be configured by program processing or the like in the control unit such as the recording apparatus controller 12 of the charged particle beam apparatus or a PC.
- (1) of FIG. 5 is a diagram showing an example of the apparatus configuration according to the first embodiment.
- the electron orbit 37 emitted from the sample 14 passes through the objective lens electromagnetic field 23 disposed thereunder and the lens electromagnetic fields 24 and 25 of the imaging system to form an image on the recording device 11, and the image is a first image Are recorded by the recording device controller 12 as After that, when the sample 14 is moved by m 1 by the movement mechanism of the sample table, the electron beam emitted from the same place on the sample passes a trajectory as shown by 36 and a trajectory like 36 on the recording device 11 As a result, the sample 14 is imaged at a position moved by M1 from the imaging position of the trajectory 37 before the sample 14 is moved. That is, the charged particle beam device of the configuration of the present embodiment includes a moving mechanism for moving the sample, and moves the sample by the moving mechanism while capturing the first image and the second image.
- FIG. 6 shows an example of the change in the observation image due to the movement of the visual field.
- (1) shows an example of a first image which is an observation image
- (2) shows an example of a second image which is an observation image after movement. That is, since distortion occurs regardless of the observation position on the sample, corresponding to the position in the observation field 51, when the observation area on the sample is changed by moving the sample, etc., an image is formed in the field of view
- the sample structure 52 at the same place on the sample to be measured is observed with different distortion depending on the position in the observation field 51 of observation.
- the parameters of the distortion function to be assumed are variously changed using the control unit such as the recording apparatus controller 12 or the PC, and the predicted image obtained by each distortion function and the image after the change of the field of view actually obtained
- the parameters of the temporary distortion function so as to reduce the difference of, it is possible to indirectly evaluate the distortion function actually included in the image.
- FIG. 7 is a view showing an example of the relationship between an apparent deformation function and a distortion function generated by the movement of the visual field. That is, the characteristics of the coordinate transformation which is finally added to the image by a series of processes of the correction of the image distortion, the movement of the visual field and the application of the image distortion in the control unit described above are represented as one function.
- the horizontal axis indicates the coordinate X before moving the field of view, and the vertical axis indicates the coordinate X 'at which the same region is arranged in the image after conversion.
- This function can be defined if the coefficient defining the shape of the distortion function, the shift amount of the image at the time of movement of the field of view, and the coordinates of the distortion center are determined.
- FIG. 8A shows deformation functions 60, 61 and 62 determined for a plurality of distortion parameters
- FIG. 8B shows a sample structure 53 imaged in the observation field of view 51.
- An example of the first image in the observation field of view 53 obtained by observing a certain field of view on the sample is shown in (b) (1).
- An example to which 62 is applied is shown in (4).
- the generation of the predicted image is a process of deforming an image such as the first image in the coordinate space, and the deformation process also includes movement.
- FIG. 9 shows an example of the result of comparison of each of these predicted images with the second image which is an image obtained by actually moving the field of view in the charged particle beam device by the control unit.
- the some 2nd image which varied the movement amount of visual field movement is image
- the expected image is compared with a plurality of second images having different amounts of movement of the visual field by the charged particle beam device.
- comparison there are various methods for comparison, but here, for example, the difference between the intensities of two images is taken for each pixel, and the distribution of the result obtained by squaring is shown.
- any one or more of simple difference amount, sum, kan, quotient, correlation value of two images, histogram of two images, Fourier transformation result, and feature point of image are calculated.
- processing and any of them can be realized by program execution of the control unit.
- Fig. 9 (1) is an example of the result of comparison of images obtained using a distortion function that is significantly different from the actual distortion function, and (2) in the figure is more actual than the example of (1) Is an example of the result of comparison of images obtained using functions close to the distortion function of.
- (1) and (2) are compared, since the difference between the two images compared is larger in (1), there are many white areas where the square of the difference has a value I understand.
- Such an evaluation index is known as a sum of squared difference (SSD) value.
- the SSD value of the second image which is the observation result obtained by actually moving the field of view with respect to the plurality of results obtained by the plurality of deformation functions obtained by changing the parameters of the distortion function in FIG.
- the distortion parameter is 40, the difference between the predicted image obtained from the assumed distortion function and the second image obtained by actually moving the field of view is the smallest.
- it can be said that it is the one closest to the actual distortion function.
- it is possible to improve the accuracy of the distortion function evaluation by finely changing the distortion parameter near the condition where the SSD value is minimum and searching for the condition where the SSD value is further reduced.
- the comparison result may not necessarily correspond to the validity of the distortion function used in the evaluation when the two images to be compared each include information on different regions in the sample. .
- the comparison is performed only in the part corresponding to the common area expected from the movement amount of the visual field, the evaluation is performed in only a partial area such as the center of the visual field, and the weighting is changed according to the position in the image.
- Using a method such as comparison is also effective in enhancing the accuracy of distortion function evaluation.
- the common area means, for example, two images before and after movement of the visual field, that is, an area commonly included in the first image and the second image.
- the configuration of the present embodiment it is possible to accurately measure distortion or aberration of the optical system of the device using the observation image obtained by the charged particle beam device.
- (2) of FIG. 5 is a view showing an example of an apparatus configuration different from the configuration in which the sample itself is moved by the moving mechanism described in the first embodiment with respect to the movement of the visual field performed in performing measurement.
- the trajectory of the electron beam is changed using the deflector 9 disposed below the sample 14 so that the sample The same effect as moving it is obtained.
- the optical system of the charged particle beam apparatus of the present embodiment includes a deflector that changes the trajectory of the charged particle beam to be irradiated to the sample, and the deflector makes it possible to capture the first image and the second image. The trajectory of the charged particle beam is changed.
- the shift m 2 of the trajectory of the electron beam generated by the deflector 9 passes through the objective lens electromagnetic field 23 and the imaging system lens electromagnetic fields 24 and 25 disposed below, and finally as a second image on the recording device 11 Connect the image.
- the shift amount m 2 of trajectory given by the deflector 9 is a shift quantity M 2 on the recording apparatus, which can be considered to be equivalent to the case of moving the sample by m 2.
- the deflector 9 is disposed below the sample in the example of (2) of FIG. 5, in addition, it may be disposed between the objective lens 23 and the imaging system lens 24 or between the imaging system lenses 24 and 25 It may be arranged at different places.
- the configuration of the present embodiment makes it possible to evaluate the distortion component of the optical system substantially sufficiently included in the image.
- This embodiment is an embodiment showing a detailed flow of the flow of distortion function evaluation of the image processing apparatus described in the first embodiment.
- FIG. 11 shows an example of a detailed flow showing the flow of distortion function evaluation of this embodiment.
- the main processing unit of this flow is the control unit 13 of the charged particle beam apparatus such as the TEM described above, the recording apparatus control apparatus 12, and a control unit such as a PC connected thereto.
- an image A is acquired as a first image from a certain position on the sample (S1101), and then the observation field of view is changed (S1102), and an image B is acquired as a second image. (S1103).
- the initial value F 1 of the distortion function is created, but in that case the initial value may be set based on a typical distortion value, or for the obtained image A, image B or part thereof.
- the initial value may be set based on a typical distortion value, or for the obtained image A, image B or part thereof.
- the flow is finally ended by using the comparison result of the image A and the image B as the supplementary information as the comparison result of the image B and the image B exp. It is possible to reduce the number of steps required to Further, the similarity C determined by comparing the image B and the image B exp in S1108 corresponds to the fact that the higher the value is, the more similar the two images are in this example, but the evaluation value is determined depending on the comparison standard used. It is also conceivable that the smaller the is, the higher the similarity, in which case the evaluation of the similarity C is evaluated depending on whether it is lower than the reference value.
- the distortion function can be appropriately measured without depending on the type of image used for evaluation.
- This embodiment is an embodiment showing a detailed flow of distortion function evaluation using a plurality of distortion functions of the image processing apparatus described in the first embodiment.
- FIG. 12 shows an example of a flow in the case of evaluating a plurality of distortion functions simultaneously. That is, in the present embodiment, a plurality of first predicted images or second predicted images are created using a plurality of distortion functions.
- the processing entity of this flow chart is the control unit 13 of the TEM, the recording apparatus control unit 12, and a control unit such as a PC connected thereto.
- an image A which is a first image is acquired from a certain position on a sample (S1201), and then the observation visual field is changed (S1202), an image which is a second image B is acquired (S1203).
- a plurality of distortion function candidates F 1 to F N determined by assuming a plurality of values for the parameters constituting the distortion function are created, in which case distortion values roughly estimated in the optical system are used as a basis.
- the initial value may be set in the image A, the distribution of the correlation value or the difference value is measured with respect to the obtained image A, the image B or a part of them, and supplemental information is acquired (SD 1204). It is also possible to create a reasonable initial value of the distortion function by.
- a plurality of deformation function candidates FD 1 to FD N to be added to the image when the field of view is shifted from those distortion function candidates are created (S1206).
- the image B exp1 ⁇ B expN is obtained (S1207).
- the image B exp1 to B expN is compared with the image B actually obtained to determine the similarity to each of the predicted images (S1208), and the predicted image having the highest similarity among the images B exp1 to B expN Is determined as the expected image B exp_best (S1209).
- the distortion function F best used when generating the predicted image B exp_best may be determined as the final one as it is, and it is judged whether the similarity obtained for B exp_best is a reference value or more.
- the fifth embodiment is an image processing apparatus, which creates a first predicted image from a part of a first image of a sample taken by a charged particle beam device and a first distortion function. It is an embodiment of an image processing apparatus configured to compare a first expected image with a part of a second image of a moved sample taken by a charged particle beam device.
- FIG. 13 is a diagram showing an example in which a long region is cut out in one direction as a part of each acquired image and the distortion function is evaluated with respect to them.
- a strip or line long in one direction as a part of the image in each visual field 51 By cutting out the area 54, an image as shown in (3) and (4) of the same figure is obtained.
- Region 54 includes a portion of sample structure 53. It is possible to measure distortion as described in each of the above-described embodiments. In the case of the present embodiment, it is possible to evaluate the shape of the distortion function in one direction after reducing the number of variables used to represent the distortion function and simplifying them.
- the distortion function for variables based on coordinates in the image is a function for one variable based on coordinates in the image. Since distortion often takes a shape symmetrical with respect to a specific direction, in the configuration of the present embodiment, for example, with the center of distortion as an origin, distortion in one dimension in several directions such as two directions orthogonal to each other It is possible to measure the functions and evaluate the two-dimensional distortion function contained in the image based on the results.
- a sixth embodiment is an image processing apparatus, which creates and generates a first predicted image from a part of a first image of a sample taken by a charged particle beam device and a first distortion function. It is an Example of the image processing apparatus of the other structure which compares with a part of 2nd image of the sample after movement which image
- FIG. 14 is a diagram showing another embodiment in the case where a partial region is cut out from each of the acquired images and the distortion function is evaluated for them.
- Region 54 includes a portion of sample structure 53. It is possible to measure distortion as described in each of the above-mentioned embodiments. Since distortion applied to an image changes continuously, it can be regarded as simple deformation such as stretching in one direction mainly from a local view.
- a local deformation function represented by a combination of enlargement, reduction, or shear, rotation, translation, etc. with respect to each coordinate axis which composes an image, with respect to two local images cut out.
- the measurement of the affine transformation matrix using feature points included in the image of each area 54, the comparison after applying the coordinate transformation such as Log-Polar transformation and Hough transformation, the measurement of the correlation value of the image, etc. can be used Can be mentioned as an example of The measurement of such a local deformation function is performed on a plurality of places in the acquired image, and fitting and interpolation processing are performed on those results, so that the configuration of the present embodiment allows two-dimensional inclusion in the acquired image. It is possible to evaluate the information of dynamic distortion function.
- control unit of the above-described embodiment evaluates the amount of error with respect to the distance from the strain center with respect to the temporary distortion function, and generates a new distortion function based on the amount of error. It is an example of the structure which corrects with respect to an appropriate parameter.
- (1) of FIG. 15 shows an example of the result of finding the square of the difference of the intensity value at each coordinate with respect to the images A and B having different amounts of distortion, and the portions shown in white are It corresponds to a portion with strength. Since the degree of monotonically changing image distortion often increases with distance from the distortion center, the difference between the distortion center and the distortion center is small when comparing two results in which different amounts of distortion are added to the same structure. The difference is likely to increase as you move away from. Therefore, also in the result shown in (1) representing the size of the difference, the intensity is low at the center of the image, and the intensity tends to occur as it goes to the outside of the image.
- the sum of intensity values possessed by pixels of equal distances is calculated with reference to the image center of (1), normalized with the area of the corresponding pixel, and calculated with respect to the distance from the center. It is shown as a distribution. In this example, although the fluctuation of the intensity caused by the pattern is also included, it is understood that the sum of the intensities increases as the distance from the center increases.
- the provisional distortion used for evaluation is obtained by performing such comparison between the predicted image obtained from the temporary distortion function and the image actually obtained. The amount of error over distance from the strain center can be evaluated for the function.
- the eighth embodiment is an embodiment of a configuration for processing the intensity distribution in the observation image captured by the charged particle beam device using the distortion function obtained by the control unit of the above-described embodiment.
- FIG. 16 is a diagram for explaining how the intensity distribution in the observation image changes due to the occurrence of image distortion.
- the reference value of the observation image intensity is one in the entire visual field. It can often be regarded as However, if distortion occurs in the image, the image to be imaged with a uniform intensity will be locally contracted in the field of view, and the density of intensity in the field of view will change according to the distortion. May cause a bias in intensity.
- (1) in the same figure is an example showing a reference intensity distribution in the case where an image is formed by an optical system having no distortion in a state where the beam is irradiated to the sample with uniform intensity.
- (2) is an example showing a reference intensity distribution in the case of performing imaging with a distorted optical system in a state in which the beam is irradiated to the sample with uniform intensity, and the image is outside the field of view Furthermore, it is stretched to the outside, resulting in a decrease in density of the beam and a decrease in the reference intensity, so that the brightness looks dark. Since the deviation of brightness due to such distortion can be obtained from the distortion function, observation taken by a charged particle beam apparatus such as a TEM using the distortion function measured by the method described in the first embodiment etc. It is possible to correct for brightness non-uniformities in the image.
- the distortion function is D (x, y) as an example, the following relationship holds between the brightness distribution I (x, y) in the field of view and the distortion function.
- the image distortion applied when observing the structure of the sample is described, but in addition, when the sample is irradiated with an electron beam, based on the periodicity of the sample structure.
- the configuration of each embodiment for the purpose of measuring the distortion caused by the optical system. is there.
- the tenth embodiment is an embodiment of a configuration for controlling the scanning of the charged particle beam of the charged particle beam device based on the obtained distortion function.
- the present invention is not limited to the embodiments described above, but includes various modifications.
- the embodiments described above have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations of the description.
- part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- control unit may be realized by hardware. That is, all or part of the functions of the control unit may be realized by an integrated circuit such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA) instead of the program.
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- ⁇ List 1> An image processing method by the control unit, The control unit Creating a first expected image from the first image of the sample or a portion thereof taken by the charged particle beam device and the first distortion function; Comparing the generated first expected image with a second image of the sample or a portion of the image taken after movement of the field of view by the charged particle beam device; An image processing method characterized in that.
- ⁇ List 2> It is an image processing method described in List 1, and A second predicted image is created from a second distortion function obtained by correcting the first distortion function and the first image or a part thereof based on the result of the comparison; Compare the second expected image with the second image or a portion thereof An image processing method characterized in that.
- ⁇ List 3> It is an image processing method described in List 1, and The creation of the first predicted image or the second predicted image is a process of deforming the first image or a part thereof in a coordinate space. An image processing method characterized in that.
- a charged particle beam device An optical system for irradiating a charged particle beam to a sample; A recording device for recording a secondary charged particle beam obtained from the sample by irradiating the sample with the charged particle beam; A control unit that controls the optical system and the recording device; The control unit Creating a first expected image from the first image of the sample or a portion thereof recorded by the recording device and the first distortion function; Comparing the generated first expected image with a second image of the sample or a portion of the image taken after movement of the field of view; Charged particle beam device characterized in that.
- ⁇ List 5> The charged particle beam device according to the fourth aspect, wherein The control unit A second predicted image is created from a second distortion function obtained by correcting the first distortion function and the first image or a part thereof based on the result of the comparison; Compare the second expected image with the second image or a portion thereof Charged particle beam device characterized in that.
- the charged particle beam device according to the fourth aspect, wherein The creation of the first predicted image or the second predicted image is a process of deforming the first image or a part thereof in a coordinate space. Charged particle beam device characterized in that.
- ⁇ List 7> The charged particle beam device according to the fourth aspect, wherein It further comprises a moving mechanism for moving the sample, or a deflector for changing the trajectory of the charged particle beam irradiated to the sample,
- the control unit moves the sample by the moving mechanism while changing the trajectory of the charged particle beam by the deflector while taking the first image and the second image, and moves the field of view.
- Control to do Charged particle beam device characterized in that.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は計測装置に係り、特に荷電粒子線を用いた装置の画像処理技術に関する。 The present invention relates to a measuring device, and more particularly to an image processing technique of a device using a charged particle beam.
荷電粒子線装置は電荷を持った粒子、すなわち電子やイオンに対して電場もしくは磁場から加わる外力を用いて粒子の動きを制御し、利用する装置の総称であり、代表的なものとしては透過電子顕微鏡、走査電子顕微鏡、収束イオンビーム装置などが挙げられる。 Charged particle beam equipment is a generic name for devices that use charged particles, that is, devices that control the movement of particles using an external force applied from an electric field or a magnetic field to electrons or ions, and is typically a transmitted electron. A microscope, a scanning electron microscope, a focused ion beam device and the like can be mentioned.
これらは真空環境において電子やイオンを電場によって加速させたのち、電磁場を用いたレンズと電磁場を用いた偏向器によってその軌道を制御し、対象となる試料へ照射することで試料の観察、および加工を行う。利用する粒子の電荷に応じて利用する電場の極性などは変わるものの、それらの間には共通する部分が大きく、以下本明細書においては代表的な例として透過電子顕微鏡における例について述べる。 In these, after accelerating electrons and ions by an electric field in a vacuum environment, the orbit is controlled by a lens using an electromagnetic field and a deflector using an electromagnetic field, and the sample to be observed is observed by irradiating the sample. I do. Although the polarity of the electric field to be used varies depending on the charge of the particles to be used, the common part among them is large, and in the following description, an example in a transmission electron microscope will be described as a representative example.
透過電子顕微鏡(Transmission Electron Microscope、以下TEM)は高電圧で加速された電子線を観察対象物質に照射し、物質を透過した電子線を電磁レンズによって結像、拡大することで物質の微細構造の観察を行う装置であり、電子に対して作用を行うレンズ電磁場を利用する。そして、このレンズ電磁場で形成される光学系にあっては、後で図面を用いて説明する結像を行うレンズの持つ不完全性により、場合によっては得られる観察像に歪みが加わり、本来の試料構造とは異なるかたちとして観察されることが知られている。 A transmission electron microscope (hereinafter referred to as TEM) irradiates an electron beam accelerated by a high voltage to a substance to be observed, forms an electron beam transmitted through the substance by an electromagnetic lens, and magnifies the fine structure of the substance. It is a device that performs observation and uses a lens electromagnetic field that acts on electrons. Then, in the optical system formed by this lens electromagnetic field, distortion is added to the obtained observation image in some cases due to the imperfection of the lens that forms an image, which will be described later with reference to the drawings. It is known to be observed in a form different from the sample structure.
このような歪みを生じるレンズの不完全性は電磁場をレンズとして用いる以上解決が難しく、一般的には歪みが大きくなりにくい視野の中心部分のみを用いての観察、および歪みが生じにくいレンズの条件において観察を行うことにより対処されている。しかしこのような対処方法は一方で観察できる視野の広さや使用できるレンズの条件を制限することになるため、別途の対処方法として記録装置によって記録された像に対して計算機上で補正処理を行い、歪みの影響を低減した像を得る手法が特許文献1に提案されている。
The imperfection of the lens causing such distortion is difficult to solve as far as using an electromagnetic field as a lens, and in general, observation using only the central part of the visual field where distortion does not easily increase and conditions of the lens difficult to generate distortion Is addressed by making observations in However, such a countermeasure will limit the size of the field of view that can be observed and the conditions of the lenses that can be used. Therefore, as a separate countermeasure, the computer performs correction processing on the image recorded by the recording apparatus.
特許文献1の例では試料構造が既知とみなせる試料からの電子線回折パターンが規則性を持つと仮定し、パターンの不規則性を用いて光学系がパターンに与える変形を測定し、歪みを補正するためのパラメータを求める手法が開示されている。この場合、構造が高い精度で既知となる試料、たとえば結晶性試料や高い精度で作成、もしくは加工された試料を用いれば歪みの測定ができるが、一方で適切な試料の使用が難しい条件においては適用が難しい。そうした場合における歪みの測定を行うため、構造が既知でない試料を用いて測定を行う方法が特許文献2に提案されている。
In the example of
特許文献2の例では試料上で、領域の一部が共通する二つの視野の像を取得する。一方の像内の特定領域を切り出し、その領域と同一な構造が含まれる箇所を他方の像内においてマッチング処理によって検出する。このような評価を像内の複数の特定領域に対して行うことで、像に含まれる歪みの情報を測定する。
In the example of
上述した特許文献2の手法では既知の試料を用いずに歪みを測定することができるが、その測定に用いる局所領域のマッチング処理は必然的に歪みを含んだ像に対して行われるため、歪みの方向、大きさが像内において変化している場合、同じ構造に対して異なる歪みが加わった結果を比較することになり、マッチングにより検出される位置の精度は歪みの影響により低下しうる。また、マッチングの精度は評価に用いるパターンによっても影響を受けるため、試料内においてコントラストの変化が少ない領域など、マッチングに不向きな構造をもつ領域においては結果として歪みの測定精度の低下、実際の歪みとは異なる測定結果を得てしまう可能性がある。
According to the method of
本発明の目的は、上記の課題を解決するため、光学系によって生じる像歪みを測定する上で、歪みそのものの影響の少ない測定を行い、その結果を用いた像歪み測定を実現する画像処理装置を提供することにある。 An object of the present invention is an image processing apparatus that performs measurement with little influence of distortion itself when measuring image distortion caused by an optical system, in order to solve the above problems, and realizes image distortion measurement using the result To provide.
上記の目的を達成するため、本発明においては、画像処理装置であって、荷電粒子線装置によって撮影された試料の第1の画像またはその一部と、第1の歪み関数とから第1の予想画像を作成し、作成された第1の予想画像と、荷電粒子線装置によって視野移動後に撮影された、試料の第2の画像またはその画像の一部との比較を行う構成の画像処理装置を提供する。 In order to achieve the above object, according to the present invention, an image processing apparatus is provided which comprises a first image of a sample or a part thereof taken by a charged particle beam device and a first distortion function. An image processing apparatus configured to generate a predicted image and compare the generated first predicted image with a second image of a sample or a part of the image captured after movement of the field of view by the charged particle beam device I will provide a.
本発明により、荷電粒子線装置の光学系の持つ歪み、もしくは収差を精度よく測定することが可能となる。 According to the present invention, it is possible to accurately measure distortion or aberration of the optical system of the charged particle beam device.
以下、本発明の実施の形態を図面に従い順次説明するが、それに先立ち本発明の内容の理解を深めるため、上述した本発明の課題を図1-図4を用いて説明する。なお、本明細書における図面中の数番は、同一の数番は同一物を示している。 Hereinafter, embodiments of the present invention will be sequentially described with reference to the drawings. However, in order to deepen understanding of the contents of the present invention, the problems of the present invention described above will be described with reference to FIGS. In the drawings of the present specification, the same numbers indicate the same items.
図1はTEMの像観察時の光学系を模式的に示した図である。電子源1の下方に配置された照射系レンズ2,3は電子に対して作用を行うレンズ電磁場21,22を形成し、そのさらに下方には電子線の一部を遮る絞り7,10、電子線に偏向作用を与える偏向器8,9、対物レンズ4とそれによって形成される対物レンズ電磁場23、試料14、さらにその下方に配置は結像系レンズ5,6によって形成されるレンズ電磁場24,25、および電子線が形成する像を観察、記録する記録装置11が配置されている。
FIG. 1 is a view schematically showing an optical system at the time of image observation of a TEM. The
電子源1から出た電子線は照射系レンズ2,3を通過したのち試料14に対して照射される。試料14を透過した電子線はさらに結像系レンズ5,6を通過し、撮像装置11上に試料の像が形成される。この際に形成される像は照射系レンズ2,3および対物レンズ4および結像系レンズ5,6を制御装置13から適切に制御することによりその強度、大きさなどが変化する。観察においては記録装置11上に形成された像を直接観察、もしくは記録装置制御装置12によって記録された上で観察される。この記録装置制御装置12によって記録された観察像のデータは、記録装置制御装置12内、あるいは記録装置制御装置12に接続されるパーソナルコンピュータ(PC)などの中央処理部(CPU)により画像処理される。本明細書において、記録装置制御装置12、制御装置13、更にはCPUを含め制御部と総称する。
The electron beam emitted from the
透過電子顕微鏡像はこのような構成により、制御部の制御の下、試料14内に含まれる構造を記録装置11上に拡大して観察しており、試料上の構造はその2次元的な位置関係をおおよそ保った状態で11上に投影される。その像形成は主に対物レンズ4および結像系レンズ5,6によって構成される光学系によってなされる。そして、上述したように結像を行うレンズの持つ不完全性により、場合によっては観察像にひずみが加わり、本来の試料構造とは異なるかたちとして観察される。
With such a configuration, the transmission electron microscope image observes the structure contained in the
図2は像歪みの生じ方の例を示した図である。同図の(1)は観察される試料の構造の例を示したものである。このような構造をもつ試料を、歪みを持つ光学系によって観察した例を図2の(2)に示す。光学系に起因する像歪みは中心部分では小さく、外側において大きくなる特性となることが多い。図2の(2)の例では視野の外側ほど、構造が本来の位置よりもさらに外側に移動した形で映っており、その度合いは歪みの中心から外につれて連続的に変化しているため、像が外側に引き伸ばされた像となっている。 FIG. 2 is a diagram showing an example of how image distortion occurs. (1) of the figure shows an example of the structure of the sample to be observed. An example of observing a sample having such a structure with a distorted optical system is shown in FIG. 2 (2). The image distortion caused by the optical system is often small at the central portion and large at the outer side. In the example of FIG. 2 (2), the structure appears to move further outward than the original position as the outside of the field of view, and the degree changes continuously from the center of the distortion to the outside, The image is an image stretched outward.
このような像歪みはおもにレンズが持つ収差によって生じており、その原理を模式的に示したものを図3に示す。同図の(1)は収差の無い理想的なレンズによる結像を示した図である。試料上において、光軸30から距離r1だけ離れた地点から出た電子軌道36は像面15上において、光軸30からR1だけ離れた地点に到達する。このときのr1とR1の比が光学系の結像倍率となる。さらに試料上において光軸30からr2だけ離れた地点から出た電子軌道37は像面15上において光軸30からR2だけ離れた地点に到達する。その際のr2とR2の比はr1とR1の比と等しく、像面15上において等しい倍率で像が結像される。
Such image distortion is mainly caused by the aberration of the lens, and the principle thereof is schematically shown in FIG. (1) of the same figure is the figure which showed the image formation by the ideal lens without aberration.
これに対し、現実の電磁場レンズでは収差、特に球面収差が大きな成分として存在しており、その際の結像の例を図3の(2)に示す。(1)の場合と同様に光軸30からr1だけ離軸した地点からレンズ26に対して入射した電子軌道36は、収差の影響により35に示すような軌道を通る。この軌道は収差のない場合に通る軌道33よりも強い収束を受けるため、34のような軌道を通り、像面15上では軌道33よりも光軸から外側にD1だけ離れた位置に像を結ぶ。次に、試料上でさらに光軸よりも離れた、R2の距離の地点から出た電子軌道37について考えると、この軌道はレンズ26において電子軌道36よりもさらに光軸30から離れた地点を通り、その際には収差のない場合に通る軌道32よりも強い収束を受けるため、34のような軌道を通り、像面15上では軌道32よりも光軸から外側にD2だけ離れた位置に像を結ぶ。この時、r1に対するR1+D1の比と、r2に対するR2+D2の比は異なる値となっており、このことは像面15上において試料上の異なる地点から出た電子軌道が異なる倍率で結像されていることとなる。これは像面上において観察像の収縮として表れるため、図2に示したような像歪みが生じる原因となる。
On the other hand, in an actual electromagnetic field lens, an aberration, in particular, a spherical aberration exists as a large component, and an example of image formation at that time is shown in FIG. As in the case of (1), the
こうしたレンズが持つ収差に起因する像歪みは歪み中心からの距離に応じて変化するため、その特性を中心からの距離に応じた歪みの関数として表すことができる。図4はそのような歪み関数のいくつかの例を示したものであり、横軸は中心からの距離、縦軸は歪みがない場合に結像される位置から、歪みによってずれる量を示しており、縦軸が正の値であれば軌道が外側に、負の値であれば軌道が内側にずれることに対応する。図4の(1)の例では軌道が外側に行くにつれ、本来の位置よりもさらに外側にずれる歪みを表しており、一般に糸巻き型歪みと呼ばれる歪みを生じる。(2)の例では軌道が外側に行くにつれ、本来の位置よりも内側にずれる歪みを表しており、一般に樽型歪みと呼ばれる歪みを生じる。(3)の例は複数のレンズを組み合わせた光学系において生じる歪みの一例であるが、中心からの距離に応じて歪みは正負両方の値を取り、像の内側では外側に像が引き伸びる歪みを、像の外側では内側に像が縮まる歪みが生じる。(4)の例ではさらにレンズ間の軸がずれるなどの影響により、非対称な歪みが生じた場合の例を示している。 Since the image distortion caused by the aberration of such a lens changes according to the distance from the center of distortion, the characteristic can be expressed as a function of distortion according to the distance from the center. Figure 4 shows some examples of such distortion functions, where the horizontal axis is the distance from the center and the vertical axis shows the amount of displacement due to distortion from the position where it is imaged in the absence of distortion. If the vertical axis is a positive value, the trajectory corresponds to the outside, and if it is a negative value, the trajectory corresponds to the inward displacement. In the example of FIG. 4 (1), as the trajectory goes to the outside, it represents a distortion that is further shifted to the outside than the original position, and a distortion generally called pincushion distortion occurs. In the example of (2), as the orbit goes to the outside, it represents a distortion that is shifted inward from the original position, and a distortion generally called barrel distortion occurs. The example of (3) is an example of distortion that occurs in an optical system in which a plurality of lenses are combined, but the distortion takes both positive and negative values according to the distance from the center, and the image is drawn to the outside inside the image. There is a distortion that shrinks the image to the inside outside the image. In the example of (4), an example is shown in which an asymmetric distortion occurs due to the influence of the axis deviation between lenses or the like.
こうした歪み関数は、取得した画像を2次元x,y座標空間における強度分布I(x,y)として表した場合、歪み中心の座標をx0,y0として歪み中心からの相対的な座標をX = x -x0,Y = y -y0とすると例として以下のような関数D(X,Y)として表すことができる。 When the acquired image is expressed as an intensity distribution I (x, y) in a two-dimensional x, y coordinate space, such distortion function is defined as coordinates of the distortion center as x 0 , y 0 and relative coordinates from the distortion center X = x -x 0, Y = y -y 0 to the the following examples function D (X, Y) can be expressed as.
上記の式1内の各係数A1~A3,B1~B3,C1~C4,E、およびx0,y0を変化させることで、様々な形状の歪み関数を表すことが可能である。式1の歪み関数は変数X,Yに対する4次以下の項を含む多項式関数である。多くの場合においては歪み関数は回転対称な形状を持つことが多いため、式1内の係数のうち、A1~A3,B1~B3,Eなどは0とみなすこともできる。
By changing each of the coefficients A 1 to A 3 , B 1 to B 3 , C 1 to C 4 , E, and x 0 , y 0 in the equation 1 , it is possible to represent distortion functions of various shapes. It is possible. The distortion function of
そして、このような歪みを生じるレンズの不完全性は電磁場をレンズとして用いる以上解決が難しく、記録装置によって記録された像に対して計算機上で補正処理を行い、ひずみの影響を低減した像を得る手法が提案されてきているが、歪みの測定精度の低下や、実際の歪みとは異なる測定結果得てしまう可能性があった。 Then, the lens imperfection causing such distortion is difficult to solve as long as an electromagnetic field is used as the lens, and the image recorded by the recording apparatus is corrected on the computer to reduce the influence of distortion. Although the method of obtaining has been proposed, there is a possibility that the measurement accuracy of the distortion may be lowered or the measurement result different from the actual distortion may be obtained.
以下、このような課題を解決するための本発明の各種の実施形態を図面に従い順次説明する。 Hereinafter, various embodiments of the present invention for solving such problems will be sequentially described according to the drawings.
実施例1は、画像処理装置であって、荷電粒子線装置によって撮影された試料の第1の画像またはその一部と、第1の歪み関数とから第1の予想画像を作成し、作成された第1の予想画像と、荷電粒子線装置によって視野移動後に撮影された、試料の第2の画像またはその画像の一部との比較を行う構成の画像処理装置の実施例である。この画像処理装置は、荷電粒子線装置の記録装置制御装置12やPCなどの制御部におけるプログラ処理等により構成することができる。
Example 1 is an image processing apparatus, which creates and generates a first predicted image from a first image of a sample or a part thereof taken by a charged particle beam device and a first distortion function. This is an embodiment of an image processing apparatus configured to compare the first predicted image with a second image of a sample or a part of the image captured after movement of the field of view by the charged particle beam device. This image processing apparatus can be configured by program processing or the like in the control unit such as the
図5の(1)は実施例1に係る装置構成の一例を示した図である。試料14から出た電子軌道37はその下方に配置された対物レンズ電磁場23、結像系のレンズ電磁場24,25を通過し、記録装置11上に像を形成し、その像は第1の画像として記録装置制御装置12により記録される。その後、試料台の移動機構で試料14をm1だけ移動させると、試料上の同一箇所から出た電子線は36に示すような軌道を通り、記録装置11上において、36のような軌道を通り、試料14を移動させる前の軌道37の結像位置からM1だけ移動した位置に結像する。すなわち、本実施例の構成の荷電粒子線装置は、試料を移動させる移動機構を備え、第1の画像と第2の画像を撮影する間に、移動機構により前記試料を移動させる。
(1) of FIG. 5 is a diagram showing an example of the apparatus configuration according to the first embodiment. The
これにより、試料上でm1だけ移動した位置の像が記録装置11上に形成され、その像は第2の画像として記録装置制御装置12で記録される。この場合、歪みを生じる、レンズ23,24,25によって構成される光学系に対する試料の位置を変化させているため、視野の移動に対して、像に加わる歪みは移動せず、結果として試料上の異なる視野に対して同様の歪みが加わった像が観察されることとなる。
As a result, an image at a position moved by m 1 on the sample is formed on the
図6に、こうした視野移動による観察像の変化の例を示す。同図の(1)は観察像である第1の画像、(2)は移動後の観察像である第2の画像の例をそれぞれ表す。すなわち、歪みは試料上の観察位置によらず、観察視野51内の位置に対応して生じるため、試料を移動等することにより、試料上の観察領域を変化させた場合、視野内に結像される試料上の同一箇所の試料構造52が、観察視野51内のどの位置で観察するかによって異なった歪み方をして観察される。これは、試料が持つ構造上の座標を基準として考えた場合、視野を変えることで、異なる位置に対して例えば式1に示したような、画像内の座標に基づく変数に対する関数である歪み関数D(X,Y)を適用して観察を行っているとみなすことができる。
FIG. 6 shows an example of the change in the observation image due to the movement of the visual field. In the figure, (1) shows an example of a first image which is an observation image, and (2) shows an example of a second image which is an observation image after movement. That is, since distortion occurs regardless of the observation position on the sample, corresponding to the position in the
ここで仮に、像に対して加わっている歪み関数の情報が既知であったとすると、歪んだ像に対して歪みの補正を行うことも、歪んでいない像に対して歪みを加えることも可能となる。さらに歪んだ像に対して歪みの補正を行い、さらに像全体を平行移動させ、再び歪みを加えた場合、これによって得られる結果は、歪んだ光学系において、視野を移動させる前後で得られる2枚の画像の関係と同等のものとなる。そのため、荷電粒子線装置の記録装置制御装置12やPCなどの制御部で、得られた観察像に対して、仮の歪み関数と視野移動を計算的に加えて作成した視野移動後の予想画像と、実際に視野を移動させて得られた像の二枚の類似性を比較することにより、仮定した歪み関数が実際の歪み特性に近いものであるかを評価することができる。すなわち、記録装置制御装置12やPCなどの制御部を使って、仮定する歪み関数のパラメータを様々に変化させ、それぞれの歪み関数によって得られた予想像と実際に得られた視野異動後の像の差が小さくなるように仮の歪み関数のパラメータを調整することにより、実際に像に含まれている歪み関数を間接的に評価することが可能となる。
Here, assuming that the information on the distortion function applied to the image is known, it is possible to either correct the distortion on the distorted image or add distortion to the undistorted image. Become. Furthermore, if distortion correction is performed on the distorted image, the entire image is further translated, and distortion is applied again, the result obtained is the result obtained before and after moving the field of view in the distorted optical system. It is equivalent to the relationship between the images. Therefore, a predicted image after movement of the visual field created by adding a temporary distortion function and visual field movement to the observation image obtained by the control unit such as the
図7は視野移動で生じる見かけ上の変形関数と歪み関数の関係の一例を示した図である。すなわち、上述の制御部における像歪みの補正、視野移動、像歪みの適用という一連の処理により最終的に像に加わる座標変換の特性を一つの関数として表したものである。横軸が視野移動前の座標X、縦軸が変換後の像において同じ領域が配置される座標X’を示している。この関数は歪み関数の形状を定義する係数と、視野移動時の像のシフト量、歪み中心の座標が定まれば定義することができる。 FIG. 7 is a view showing an example of the relationship between an apparent deformation function and a distortion function generated by the movement of the visual field. That is, the characteristics of the coordinate transformation which is finally added to the image by a series of processes of the correction of the image distortion, the movement of the visual field and the application of the image distortion in the control unit described above are represented as one function. The horizontal axis indicates the coordinate X before moving the field of view, and the vertical axis indicates the coordinate X 'at which the same region is arranged in the image after conversion. This function can be defined if the coefficient defining the shape of the distortion function, the shift amount of the image at the time of movement of the field of view, and the coordinates of the distortion center are determined.
図8の(a)に、複数の歪みパラメータに対して定まる変形関数60,61,62を示し、(b)に観察視野51内に結像される試料構造53を示す。試料上のある視野を観察して得られる観察視野53内の第1の像の例を(b)の(1)に示す。(b)の(1)の像に対して、(a)の変形関数60を適用した結果の予想画像の例を(2)に、変形関数61を適用した例を(3)に、変形関数62を適用した例を(4)にそれぞれ示す。変形関数を作成する際に用いる歪みパラメータを変えることにより、図8の(b)に示すような、異なる歪み条件における複数の予想画像を得ることができる。なお、この予想画像の作成は、第1の像などの画像を座標空間内において変形させる処理であり、この変形処理には移動も含まれる。
FIG. 8A shows deformation functions 60, 61 and 62 determined for a plurality of distortion parameters, and FIG. 8B shows a
図9に、これらそれぞれの予想画像に対して、実際に荷電粒子線装置において視野を移動させて得られた像である第2の画像との比較を制御部で行った結果の一例を示す。なお、図9では第2の画像として一枚の画像を使う場合を例示しているが、視野移動の移動量を異ならせた複数の第2の画像を撮影し、予想画像と比較を行っても良い。この場合は、予想画像と、荷電粒子線装置による視野移動量の異なる複数の第2の画像とを比較することになる。 FIG. 9 shows an example of the result of comparison of each of these predicted images with the second image which is an image obtained by actually moving the field of view in the charged particle beam device by the control unit. In addition, although the case where one sheet of image is used as a 2nd image is illustrated in FIG. 9, the some 2nd image which varied the movement amount of visual field movement is image | photographed, and it compares with an estimated image. Also good. In this case, the expected image is compared with a plurality of second images having different amounts of movement of the visual field by the charged particle beam device.
比較を行う方法には様々なものがあるが、ここでは例として、二枚の画像の強度に対して画素ごとに差分を取り、二乗した結果の分布を示している。そのほか比較を行う手法としては、単純な差分量、和、関、商、二枚の画像の相関値、二枚の画像のヒストグラムやフーリエ変換結果、画像の特徴点のいずれか一つ以上を求める処理があり、いずれも制御部のプログラム実行で実現することができる。 There are various methods for comparison, but here, for example, the difference between the intensities of two images is taken for each pixel, and the distribution of the result obtained by squaring is shown. In addition, as a method of performing comparison, any one or more of simple difference amount, sum, kan, quotient, correlation value of two images, histogram of two images, Fourier transformation result, and feature point of image are calculated. There is processing, and any of them can be realized by program execution of the control unit.
図9の(1)は実際の歪み関数とは大きく異なる歪み関数を用いて得られた像に対して比較を行った結果の例、同図の(2)は(1)の例よりも実際の歪み関数に近い関数を用いて得られた像に対して比較を行った結果の例である。(1)と(2)を比較した場合、(1)の方が比較を行った二枚の画像間の差異が大きいため、差の二乗が値を持つ白い領域が多く存在していることが分かる。このようにして得られた比較結果に対して、例としてその強度をすべての画素に対して総和を取ることによって画像の類似性の評価を行うことができる。このような評価指標はSSD(Sum of Squared Difference)値として知られている。 Fig. 9 (1) is an example of the result of comparison of images obtained using a distortion function that is significantly different from the actual distortion function, and (2) in the figure is more actual than the example of (1) Is an example of the result of comparison of images obtained using functions close to the distortion function of. When (1) and (2) are compared, since the difference between the two images compared is larger in (1), there are many white areas where the square of the difference has a value I understand. For the comparison results obtained in this way, it is possible to evaluate the similarity of the image, for example, by summing the intensities for all pixels. Such an evaluation index is known as a sum of squared difference (SSD) value.
図10に歪み関数のパラメータを変化させて得られる複数の変形関数によって得られた複数の結果に対して、実際に視野を移動させて得られた観察結果である第2の画像とのSSD値の関係を表す一例を示す。歪み関数の形状を定義する歪みパラメータ(Distortion parameter)の値を例として20から60まで変化させた場合、SSD値は歪みパラメータが40となる条件において最小となっていることが分かる。これは歪みパラメータを40とした場合に、仮定した歪み関数から得られる予想画像と、実際に視野を移動させて得られた第2の画像の差異が最も小さくなっていることを示しており、評価した条件の中では最も実際の歪み関数に近いものと言える。更にSSD値が最小となる条件近傍にて歪みパラメータを細かく変化させ、よりSSD値が小さくなる条件を探ることにより、歪み関数評価の精度を高めることが可能である。 The SSD value of the second image which is the observation result obtained by actually moving the field of view with respect to the plurality of results obtained by the plurality of deformation functions obtained by changing the parameters of the distortion function in FIG. An example showing the relation of When the value of the distortion parameter (Distortion parameter) defining the shape of the distortion function is changed from 20 to 60 as an example, it is understood that the SSD value is minimum under the condition that the distortion parameter is 40. This shows that, when the distortion parameter is 40, the difference between the predicted image obtained from the assumed distortion function and the second image obtained by actually moving the field of view is the smallest. Among the evaluated conditions, it can be said that it is the one closest to the actual distortion function. Further, it is possible to improve the accuracy of the distortion function evaluation by finely changing the distortion parameter near the condition where the SSD value is minimum and searching for the condition where the SSD value is further reduced.
また、変形関数を適用した場合、比較を行う二つの像がそれぞれ試料内の異なる領域の情報まで含んでいた場合、比較結果が必ずしも評価に用いた歪み関数の妥当性に対応しない可能性がある。そのような場合は視野の移動量から予想される共通領域に相当する部分のみで比較を行う、視野の中心など一部領域のみで評価を行う、画像内の位置に応じて重みづけを変えて比較を行うなどの手法を用いることも、歪み関数評価の精度を高めるうえで有効である。なお、本明細書において共通領域とは、例えば視野移動前後の二つの画像、すなわち第1の画像と第2の画像に共通して含まれている領域を意味する。 When a deformation function is applied, the comparison result may not necessarily correspond to the validity of the distortion function used in the evaluation when the two images to be compared each include information on different regions in the sample. . In such a case, the comparison is performed only in the part corresponding to the common area expected from the movement amount of the visual field, the evaluation is performed in only a partial area such as the center of the visual field, and the weighting is changed according to the position in the image. Using a method such as comparison is also effective in enhancing the accuracy of distortion function evaluation. In the present specification, the common area means, for example, two images before and after movement of the visual field, that is, an area commonly included in the first image and the second image.
本実施例の構成により、荷電粒子線装置で得られた観察像を使って、装置の光学系の持つ歪み、もしくは収差を精度よく測定することが可能となる。 According to the configuration of the present embodiment, it is possible to accurately measure distortion or aberration of the optical system of the device using the observation image obtained by the charged particle beam device.
図5の(2)は測定を行う上で行う視野移動について、実施例1で述べた移動機構により試料自体を移動させる構成とは異なる装置構成の一例を示した図である。本実施例の構成では、観察像の視野を変更するために試料14を移動させるのではなく、試料14よりも下方に配置された偏向器9を用いて電子線の軌道を変化させ、試料が移動した場合と同等の効果を得るものである。すなわち、本実施例の荷電粒子線装置の光学系は、試料に照射する荷電粒子線の軌道を変化させる偏向器を備え、第1の画像と第2の画像を撮影する間に、偏向器により前記荷電粒子線の軌道を変化させる。
(2) of FIG. 5 is a view showing an example of an apparatus configuration different from the configuration in which the sample itself is moved by the moving mechanism described in the first embodiment with respect to the movement of the visual field performed in performing measurement. In the configuration of the present embodiment, instead of moving the
偏向器9によって生じた電子線の軌道のシフトm2は下方に配置された対物レンズ電磁場23、結像系レンズ電磁場24,25を通過し、最終的に記録装置11上に第2の画像として像を結ぶ。その際、偏向器9によって与えられた軌道のシフト量m2は記録装置上でシフト量M2となるが、これは試料をm2だけ移動させた場合と同等であるとみなすことができる。また、図5の(2)の例では偏向器9は試料の下方に配置されているが、その他、対物レンズ23と結像系レンズ24の間や結像系レンズ24と25の間など、異なる場所に配置されていてもよい。試料14と偏向器9の間にレンズが存在する場合、歪みを測定できるのは偏向器9と記録装置11の間の光学系に対してのみとなるが、一般に拡大を行う光学系においては試料に近いレンズによる像歪みへの影響は小さくなるため、本実施例の構成によって、実質的には十分に像に含まれる光学系の歪みの成分を評価することができる。
The shift m 2 of the trajectory of the electron beam generated by the
本実施例は、実施例1で述べた画像処理装置の歪み関数評価の流れの詳細フローを示す実施例である。図11は本実施例の歪み関数評価の流れを示した詳細フローの一例を示す。なお、このフローの処理主体は上述したTEMなどの荷電粒子線装置の制御装置13、記録装置制御装置12や、それに接続されるPC等の制御部である。歪み関数評価を行う条件において、試料上のある位置から第1の画像として画像Aを取得し(S1101)、その後観察視野を変化させた後に(S1102)、第2の画像として画像Bを取得する(S1103)。その後は歪み関数の初期値F1を作成するが、その際は典型的な歪み値を基に初期値を設定してもよいほか、得られた画像A、画像Bもしくはそれらの一部分に対して相関値や差分値の分布を測定して補足情報を取得し(S1104)、その結果をもとにより妥当な歪み関数の初期値F1を作成することも可能である。
This embodiment is an embodiment showing a detailed flow of the flow of distortion function evaluation of the image processing apparatus described in the first embodiment. FIG. 11 shows an example of a detailed flow showing the flow of distortion function evaluation of this embodiment. The main processing unit of this flow is the
歪み関数の初期値F1を作成(S1105)した後、その歪み関数から視野移動をした際に像に加わる変形関数FD1を作成する(S1106)。この変形関数FD1を画像Aに対して作用させることにより、画像Bの予想画像である画像Bexpが作成される(S1107)。続いて、予想画像Bexpと実際に得られた第2の画像である画像Bの比較を行い両者の類似度Cを求める(S1108)。そして類似度Cが基準値以上か否かを判定し(S1109)、類似度Cが基準値よりも高い場合(Yes)、その時点での歪み関数を測定結果として測定を終了する(S1111)。類似度Cが基準値よりも低い場合(No)、それまでの評価履歴、および直前の相関値評価をもとに、新たな歪み関数F2を作成した後(S1110)、再度前述の評価を繰り返し(S1106~S1110)、類似度Cが高くなるように歪み関数のパラメータを変化させる。ステップS1109で類似度Cが基準値以上となったらその時点での歪み関数を測定値としてフローを終了する(S1111)。 After the initial value F 1 of distortion function created (S1105), creating a deformation function FD 1 applied to the image upon the scrolling from the distortion function (S1106). By acting on the deformation function FD 1 for the image A, image B exp is created the expected image of the image B (S1107). Subsequently, the predicted image B exp and the image B, which is the second image actually obtained, are compared to determine the similarity C between them (S 1108). Then, it is determined whether the similarity C is equal to or more than a reference value (S1109). If the similarity C is higher than the reference value (Yes), measurement is terminated with the distortion function at that time as a measurement result (S1111). If the similarity C is lower than the reference value (No), after creating a new distortion function F 2 based on the evaluation history up to that point and the correlation value evaluation immediately before (S1110), repeat the above evaluation Repeatingly (S1106 to S1110), the parameters of the distortion function are changed so that the similarity C is high. When the similarity C becomes equal to or higher than the reference value in step S1109, the flow is ended using the distortion function at that time as the measured value (S1111).
この比較の結果に基づくS1110での新たな歪み関数の生成においては、画像Bと画像Bexpの比較結果、画像Aと画像Bの比較結果を補足情報として用いることにより、最終的にフローを終了するまでの工程数を短縮することが可能となる。また、S1108で画像Bと画像Bexpの比較により求める類似度Cは、本例においては値が高いほど二つの像が類似していることに対応するが、用いる比較の基準によっては求まる評価値が小さいほど類似性が高くなる場合も考えられ、その場合は類似度Cの評価は基準値よりも低いかどうかによって評価される。そのほか、基準値Cに対して明確な基準値を定めず、変化させるパラメータに対する変化の大きさや傾きを用いてフローの終了を判断することも可能である。以上説明した本実施例の手法を用いた場合、評価に用いる像の種類に依存せず、適切に歪み関数を測定することが可能となる。 In the generation of a new distortion function in S1110 based on the comparison result, the flow is finally ended by using the comparison result of the image A and the image B as the supplementary information as the comparison result of the image B and the image B exp. It is possible to reduce the number of steps required to Further, the similarity C determined by comparing the image B and the image B exp in S1108 corresponds to the fact that the higher the value is, the more similar the two images are in this example, but the evaluation value is determined depending on the comparison standard used. It is also conceivable that the smaller the is, the higher the similarity, in which case the evaluation of the similarity C is evaluated depending on whether it is lower than the reference value. In addition, it is also possible to determine the end of the flow using the magnitude and slope of the change with respect to the parameter to be changed without setting a clear reference value for the reference value C. When the method of the present embodiment described above is used, the distortion function can be appropriately measured without depending on the type of image used for evaluation.
本実施例は、実施例1で述べた画像処理装置の複数の歪み関数を使った歪み関数評価の詳細フローを示す実施例である。図12は複数の歪み関数を同時に仮定し、評価を行う場合のフローの一例を示す。すなわち、本実施例では、複数の歪み関数を用いて、第1の予想画像あるいは第2の予想画像を複数作成する。本フロー図の処理主体も実施例3の図11のフロー図同様、TEMの制御装置13、記録装置制御装置12や、それに接続されるPC等の制御部である。
This embodiment is an embodiment showing a detailed flow of distortion function evaluation using a plurality of distortion functions of the image processing apparatus described in the first embodiment. FIG. 12 shows an example of a flow in the case of evaluating a plurality of distortion functions simultaneously. That is, in the present embodiment, a plurality of first predicted images or second predicted images are created using a plurality of distortion functions. Similar to the flow chart of FIG. 11 of the third embodiment, the processing entity of this flow chart is the
同図において、評価を行う条件において、試料上のある位置から第1の画像である画像Aを取得し(S1201)、その後観察視野を変化させた後に(S1202)、第2の画像である画像Bを取得する(S1203)。その後は歪み関数を構成するパラメータに対して複数の値を仮定することで定まる複数の歪み関数候補F1~FNを作成するが、その際は当該光学系においておおよそ予想される歪み値を基に初期値を設定してもよいほか、得られた画像A、画像Bもしくはそれらの一部分に対して相関値や差分値の分布を測定して補足情報を取得し(SD1204)、その結果をもとにより妥当な歪み関数の初期値を作成することも可能である。歪み関数候補F1~FNを作成した後(S1205)、それら歪み関数候補から視野移動をした際に像に加わる複数の変形関数候補FD1~FDNを作成する(S1206)。 In the figure, under the condition to be evaluated, an image A which is a first image is acquired from a certain position on a sample (S1201), and then the observation visual field is changed (S1202), an image which is a second image B is acquired (S1203). After that, a plurality of distortion function candidates F 1 to F N determined by assuming a plurality of values for the parameters constituting the distortion function are created, in which case distortion values roughly estimated in the optical system are used as a basis. The initial value may be set in the image A, the distribution of the correlation value or the difference value is measured with respect to the obtained image A, the image B or a part of them, and supplemental information is acquired (SD 1204). It is also possible to create a reasonable initial value of the distortion function by. After distortion function candidates F 1 to F N are created (S 1205), a plurality of deformation function candidates FD 1 to FD N to be added to the image when the field of view is shifted from those distortion function candidates are created (S1206).
そして、画像Aに対して変形関数候補FD1~FDNを作用させることにより、複数の画像Bの予想像、画像Bexp1~BexpNが得られる(S1207)。画像Bexp1~BexpNと実際に得られた画像Bの比較を行いそれぞれの予想像に対して類似度を求め(S1208)、画像Bexp1~BexpNの中で最も類似度が高くなる予想像を予想画像Bexp_bestとして定める(S1209)。その後、その予想画像Bexp_bestを生成する際に使用した歪み関数Fbestをそのまま最終的のものと定めても良い他、Bexp_bestに対して求めた類似度が基準値以上か否かを判断し(S1210)、類似度が基準値以上であれば(Yes)、予想画像Bexp_bestを生成する際に使用した歪み関数Fbestを測定結果としてフローを終了する(S1212)。S1210の判断の結果、類似度が基準値以下である場合は(No)、歪み関数候補を作成する際に使用したパラメータの範囲を変更した上で(S1211)、再度歪み関数候補を作成し、上述の評価(S1205~S1210)を繰り返してもよい。以上説明した本実施例の処理フローを用いた場合、複数の歪み関数を用いることにより、適切に歪み関数を測定することが可能となる。 Then, by the action of deformation function candidate FD 1 ~ FD N for the image A, predicted images of a plurality of images B, the image B exp1 ~ B expN is obtained (S1207). The image B exp1 to B expN is compared with the image B actually obtained to determine the similarity to each of the predicted images (S1208), and the predicted image having the highest similarity among the images B exp1 to B expN Is determined as the expected image B exp_best (S1209). After that, the distortion function F best used when generating the predicted image B exp_best may be determined as the final one as it is, and it is judged whether the similarity obtained for B exp_best is a reference value or more. (S1210) If the similarity is equal to or higher than the reference value (Yes), the flow is ended with the distortion function F best used when generating the predicted image B exp_best as a measurement result (S1212). As a result of the determination in S1210, when the similarity is equal to or less than the reference value (No), after changing the range of parameters used in creating distortion function candidates (S1211), distortion function candidates are created again, The above-mentioned evaluation (S1205 to S1210) may be repeated. When the processing flow of the present embodiment described above is used, it is possible to appropriately measure the distortion function by using a plurality of distortion functions.
実施例5は、画像処理装置であって、荷電粒子線装置によって撮影された試料の第1の画像の一部と、第1の歪み関数とから第1の予想画像を作成し、作成された第1の予想画像と、荷電粒子線装置によって撮影された、移動後の試料の第2の画像の一部との比較を行う構成の画像処理装置の実施例である。 The fifth embodiment is an image processing apparatus, which creates a first predicted image from a part of a first image of a sample taken by a charged particle beam device and a first distortion function. It is an embodiment of an image processing apparatus configured to compare a first expected image with a part of a second image of a moved sample taken by a charged particle beam device.
図13は取得した画像それぞれからその一部として、一方向に長い領域を切り出し、それらに対して歪み関数の評価を行う場合の実施例を示した図である。本実施例において、取得した画像の一例として同図の(1),(2)を考えた場合、それぞれの視野51内において、その画像の一部として、一方向に対して長い帯状、あるいは線状の領域54を切り出すことで同図の(3),(4)に示すような像を得る。領域54には、試料構造53の一部が含まれている。これらに対して上述した各実施例に記載したような歪みの測定を行うことができる。本実施例の場合、歪み関数を表すために用いる変数の数を減らし、簡略化した上で1方向に対する歪み関数の形状を評価することが可能となる。すなわち、画像内の座標に基づく変数に対する歪み関数は、画像内の座標に基づく1つの変数に対する関数となる。歪みは特定の方向に対して対称な形状を取ることも多いため、本実施例の構成において、例えば歪みの中心を原点として、直行する二方向などいくつかの方向に対して1次元的な歪み関数の測定を行い、それらの結果を元に像に含まれる2次元的な歪み関数の評価を行うことが可能である。
FIG. 13 is a diagram showing an example in which a long region is cut out in one direction as a part of each acquired image and the distortion function is evaluated with respect to them. In the present embodiment, when (1) and (2) in the same figure are considered as an example of the acquired image, a strip or line long in one direction as a part of the image in each
実施例6は、画像処理装置であって、荷電粒子線装置によって撮影された試料の第1の画像の一部と、第1の歪み関数とから第1の予想画像を作成し、作成された第1の予想画像と、荷電粒子線装置によって撮影された、移動後の試料の第2の画像の一部との比較を行う他の構成の画像処理装置の実施例である。 A sixth embodiment is an image processing apparatus, which creates and generates a first predicted image from a part of a first image of a sample taken by a charged particle beam device and a first distortion function. It is an Example of the image processing apparatus of the other structure which compares with a part of 2nd image of the sample after movement which image | photographed the 1st estimated image and the charged particle beam apparatus.
図14は取得した画像それぞれからその一部の領域を切り出し、それらに対して歪み関数の評価を行う場合の他の実施例を示した図である。同図において、具体的に取得した画像として同図の(1),(2)を考えた場合、それぞれの視野51内において、その一部分に相当する領域54を新たな局所画像として切り出すことで、同図の(3),(4)に示すような像を得る。領域54には、試料構造53の一部が含まれている。これらに対して上述の各実施例の記載したような歪みの測定を行うことが可能である。像に加わる歪みは連続的に変化するため、局所的にみれば主に一方向への引き伸びなど、単純な変形とみなすことができる。
FIG. 14 is a diagram showing another embodiment in the case where a partial region is cut out from each of the acquired images and the distortion function is evaluated for them. In the figure, when (1) and (2) of the figure are considered as the specifically acquired image, by cutting out the
切り出した二枚の局所画像に対して像を構成するそれぞれの座標軸に対する拡大、縮小、あるいは剪断、回転、平行移動などの組み合わせによって表わされる局所変形関数を測定することが可能であり、その際には各領域54の画像中に含まれる特徴点を用いたアフィン変換行列の測定やLog-Polar変換やHough変換などの座標変換を適用した上での比較、画像の相関値の測定などが利用可能な手法の例として挙げられる。このような局所変形関数の測定を、取得した画像内の複数個所に対して行い、それらの結果に対するフィッティング、補間処理を行うことで、本実施例の構成により、取得画像内に含まれる2次元的な歪み関数の情報を評価することが可能である。
It is possible to measure a local deformation function represented by a combination of enlargement, reduction, or shear, rotation, translation, etc. with respect to each coordinate axis which composes an image, with respect to two local images cut out. The measurement of the affine transformation matrix using feature points included in the image of each
実施例7は、上述した実施例の制御部で、仮の歪み関数に関して歪み中心からの距離に対するエラー量を評価し、新たな歪み関数を生成する際、エラー量をもとに歪み関数内の適切なパラメータに対して修正をかける構成の実施例である。 In the seventh embodiment, the control unit of the above-described embodiment evaluates the amount of error with respect to the distance from the strain center with respect to the temporary distortion function, and generates a new distortion function based on the amount of error. It is an example of the structure which corrects with respect to an appropriate parameter.
図15の(1)は異なる歪み量を持った画像A,Bに対して、各座標における強度値の差分の二乗を求めた結果の例を示したものであり、白く表されている部分が強度を持った部分に相当する。単調に変化する像歪みは歪み中心から離れるほどその程度が大きくなる場合が多いため、同じ構造に対して異なる歪み量が加わった二つの結果を比べると、歪み中心ではその差異が小さく、歪み中心から離れるほどその差異が大きくなりやすい。そのため、差分の大きさを表す(1)に示す結果においても、像の中心では強度が低く、像の外側に行くほど強度が生じる傾向をもっている。 (1) of FIG. 15 shows an example of the result of finding the square of the difference of the intensity value at each coordinate with respect to the images A and B having different amounts of distortion, and the portions shown in white are It corresponds to a portion with strength. Since the degree of monotonically changing image distortion often increases with distance from the distortion center, the difference between the distortion center and the distortion center is small when comparing two results in which different amounts of distortion are added to the same structure. The difference is likely to increase as you move away from. Therefore, also in the result shown in (1) representing the size of the difference, the intensity is low at the center of the image, and the intensity tends to occur as it goes to the outside of the image.
同図の(2)は(1)の像の中心を基準として、そこから等しい距離の画素が持つ強度の値の総和を求め、該当する画素の面積で規格化した上で中心からの距離に対する分布として示したものである。本例ではパターンに起因した強度の揺らぎも含むものの、中心からの距離が離れるほどその強度の総和も大きくなっていることが分かる。実施例1に示したような歪み測定を行う際、仮の歪み関数から求めた予想画像と、実際に得られた画像の間でこのような比較を行うことで、評価に用いた仮の歪み関数に関して歪み中心からの距離に対するエラー量を評価することができる。測定の中で新たな歪み関数を生成する際、この比較結果をもとに歪み関数内の適切なパラメータに対して修正をかけることにより、歪み関数の収束効率を高めることが可能となる。また、本実施例では半径からの距離に対する1次元的なエラー値評価を行っているが、差分を取った結果をそのまま用いて2次元的なエラー値評価を行うことも同様に可能である。また、このような評価においては差分を測定する2枚の像の位置関係を合わせることが重要となるため、評価前に像のずれを補正するべきであることは言うまでもない。 In (2) of the figure, the sum of intensity values possessed by pixels of equal distances is calculated with reference to the image center of (1), normalized with the area of the corresponding pixel, and calculated with respect to the distance from the center. It is shown as a distribution. In this example, although the fluctuation of the intensity caused by the pattern is also included, it is understood that the sum of the intensities increases as the distance from the center increases. When performing distortion measurement as shown in Example 1, the provisional distortion used for evaluation is obtained by performing such comparison between the predicted image obtained from the temporary distortion function and the image actually obtained. The amount of error over distance from the strain center can be evaluated for the function. When generating a new distortion function in the measurement, it is possible to improve the convergence efficiency of the distortion function by correcting the appropriate parameters in the distortion function based on the comparison result. In addition, although one-dimensional error value evaluation is performed with respect to the distance from the radius in the present embodiment, it is also possible to perform two-dimensional error value evaluation using the result of taking the difference as it is. In addition, since it is important to match the positional relationship between the two images whose differences are to be measured in such an evaluation, it is needless to say that the image shift should be corrected before the evaluation.
実施例8は、上述した実施例の制御部が得た歪み関数を用いて荷電粒子線装置によって撮影された観察像内の強度分布を処理する構成の実施例である。 The eighth embodiment is an embodiment of a configuration for processing the intensity distribution in the observation image captured by the charged particle beam device using the distortion function obtained by the control unit of the above-described embodiment.
図16は像歪みが生じることによる、観察像内の強度分布の変化の様子を説明するための図である。試料の透過像を得る場合、試料に対して一様な強度分布とみなせる2次元的なビームを照射し、観察を行うことが一般的であるため、観察像強度の基準値は視野全体において一様であるとみなせる場合が多い。しかし、像に歪みが生じた場合、本来一様な強度で結像されるべき像は視野内に置いて局所的に収縮するため、歪みに応じて視野内の強度の密度が変化することとなり、強度に偏りを生じる原因となりうる。 FIG. 16 is a diagram for explaining how the intensity distribution in the observation image changes due to the occurrence of image distortion. When obtaining a transmission image of a sample, it is general to irradiate the sample with a two-dimensional beam that can be regarded as a uniform intensity distribution and perform observation. Therefore, the reference value of the observation image intensity is one in the entire visual field. It can often be regarded as However, if distortion occurs in the image, the image to be imaged with a uniform intensity will be locally contracted in the field of view, and the density of intensity in the field of view will change according to the distortion. May cause a bias in intensity.
同図の(1)は試料に対して一様な強度でビームを照射した状態において、歪みを持たない光学系で結像を行った場合の基準強度分布を示した例である。(2)は試料に対して一様な強度でビームを照射した状態において、歪みを持った光学系で結像を行った場合の基準強度分布を示した例であり、視野の外側は像がさらに外側に対して引き延ばされ、結果としてビームの密度が低下し、基準となる強度が下がることによって明るさが暗くなったように見えている。このような歪みに起因した明るさの偏りは歪み関数から求めることができるため、実施例1に記載した手法などによって測定した歪み関数を用いて、TEMなどの荷電粒子線装置によって撮影された観察像内の明るさの不均一性を補正することが可能である。 (1) in the same figure is an example showing a reference intensity distribution in the case where an image is formed by an optical system having no distortion in a state where the beam is irradiated to the sample with uniform intensity. (2) is an example showing a reference intensity distribution in the case of performing imaging with a distorted optical system in a state in which the beam is irradiated to the sample with uniform intensity, and the image is outside the field of view Furthermore, it is stretched to the outside, resulting in a decrease in density of the beam and a decrease in the reference intensity, so that the brightness looks dark. Since the deviation of brightness due to such distortion can be obtained from the distortion function, observation taken by a charged particle beam apparatus such as a TEM using the distortion function measured by the method described in the first embodiment etc. It is possible to correct for brightness non-uniformities in the image.
この場合、一例として歪み関数をD(x,y)とすると視野内の明るさ分布I(x,y)と歪み関数の間には以下のような関係が成り立つ。 In this case, assuming that the distortion function is D (x, y) as an example, the following relationship holds between the brightness distribution I (x, y) in the field of view and the distortion function.
また、逆に像内の基準強度の偏りを測定し、その値を用いて歪み関数に関する評価を行うことも可能である。 Alternatively, it is also possible to measure the bias of the reference intensity in the image and use that value to make an evaluation regarding the distortion function.
以上説明した各実施例においては、試料の構造を観察する際に加わる像歪みを対象として説明しているが、そのほか試料に対して電子線を照射した際に、試料構造の周期性に基づいて生じる電子線回折パターンの観察、あるいは照射した電子線により形成される後方散乱電子回折パターンを観察する際に、光学系により生じる歪みを測定する目的でも各実施例の構成を適用することが可能である。 In each of the embodiments described above, the image distortion applied when observing the structure of the sample is described, but in addition, when the sample is irradiated with an electron beam, based on the periodicity of the sample structure. When observing the resulting electron beam diffraction pattern or observing the backscattered electron diffraction pattern formed by the irradiated electron beam, it is possible to apply the configuration of each embodiment for the purpose of measuring the distortion caused by the optical system. is there.
実施例10は、得られた歪み関数に基づき、荷電粒子線装置の荷電粒子線の走査を制御する構成の実施例である。 The tenth embodiment is an embodiment of a configuration for controlling the scanning of the charged particle beam of the charged particle beam device based on the obtained distortion function.
上述した各実施例においては荷電粒子線装置における透過した電子による像観察に対して生じる歪みの例について述べたが、そのほか試料上に収束した電子、イオンなどの荷電粒子線を走査し、試料から生じる二次電子や後方散乱電子を検出することによって像を得る走査電子顕微鏡や走査イオン顕微鏡などにおいて、試料近傍に配置されたレンズ、たとえば対物レンズの持つ収差によって生じる走査パターンの歪みを測定する目的でも適用することが可能である。この場合、測定された歪みの情報をもとに、荷電粒子線を走査する信号を変化させることによって実質的に試料上でひずみの影響の少ない走査パターンを形成することが可能となる。 In each of the above-described embodiments, although an example of distortion generated for image observation by transmitted electrons in the charged particle beam apparatus has been described, in addition, charged particle beams such as electrons and ions converged on the sample are scanned, and In a scanning electron microscope or scanning ion microscope that obtains an image by detecting secondary electrons or backscattered electrons that are generated, the purpose of measuring distortion of a scanning pattern caused by an aberration of a lens disposed in the vicinity of a sample, such as an objective lens. But it is possible to apply. In this case, based on the measured distortion information, it is possible to form a scanning pattern which is substantially less affected by distortion by changing the signal for scanning the charged particle beam.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations of the description. In addition, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
更に、上述した各構成、機能、制御部等は、それらの一部又は全部を実現するCPUのプログラムを作成する例を説明したが、それらの一部又は全部を例えば集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。すなわち、制御部の全部または一部の機能は、プログラムに代え、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの集積回路などにより実現してもよい。 Furthermore, although each configuration, function, control part, etc. mentioned above explained the example which creates a program of CPU which realizes a part or all of them, by designing a part or all of them with an integrated circuit etc. It goes without saying that it may be realized by hardware. That is, all or part of the functions of the control unit may be realized by an integrated circuit such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA) instead of the program.
なお、以上説明した明細書には、特許請求の範囲にきさいした請求項1-15に係る発明以外に、種々の発明が開示されている。それらの一部を以下に記す。 In the above-described specification, various inventions are disclosed in addition to the invention according to claims 1-15 as defined in the claims. Some of them are described below.
<列記1>
制御部による画像処理方法であって、
前記制御部は、
荷電粒子線装置によって撮影された試料の第1の画像またはその一部と、第1の歪み関数とから第1の予想画像を作成し、
作成された前記第1の予想画像と、前記荷電粒子線装置によって視野移動後に撮影された、前記試料の第2の画像またはその画像の一部との比較を行う、
ことを特徴とする画像処理方法。
<
An image processing method by the control unit,
The control unit
Creating a first expected image from the first image of the sample or a portion thereof taken by the charged particle beam device and the first distortion function;
Comparing the generated first expected image with a second image of the sample or a portion of the image taken after movement of the field of view by the charged particle beam device;
An image processing method characterized in that.
<列記2>
列記1に記載の画像処理方法であって、
前記比較の結果に基づき、前記第1の歪み関数を補正して得た第2の歪み関数と、前記第1の画像またはその一部とから第2の予想画像を作成し、
前記第2の予想画像と前記第2の画像またはその一部との比較を行う、
ことを特徴とする画像処理方法。
<
It is an image processing method described in
A second predicted image is created from a second distortion function obtained by correcting the first distortion function and the first image or a part thereof based on the result of the comparison;
Compare the second expected image with the second image or a portion thereof
An image processing method characterized in that.
<列記3>
列記1に記載の画像処理方法であって、
前記第1の予想画像もしくは前記第2の予想画像の作成は、前記第1の画像またはその一部を座標空間内において変形させる処理である、
ことを特徴とする画像処理方法。
<
It is an image processing method described in
The creation of the first predicted image or the second predicted image is a process of deforming the first image or a part thereof in a coordinate space.
An image processing method characterized in that.
<列記4>
荷電粒子線装置であって、
荷電粒子線を試料に対して照射する光学系と、
前記試料に前記荷電粒子線を照射することにより、前記試料から得られる二次荷電粒子線を記録する記録装置と、
前記光学系と、前記記録装置とを制御する制御部と、
前記制御部は、
前記記録装置によって記録された前記試料の第1の画像またはその一部と、第1の歪み関数とから第1の予想画像を作成し、
作成された前記第1の予想画像と、視野移動後に撮影された、前記試料の第2の画像またはその画像の一部との比較を行う、
ことを特徴とする荷電粒子線装置。
<
A charged particle beam device,
An optical system for irradiating a charged particle beam to a sample;
A recording device for recording a secondary charged particle beam obtained from the sample by irradiating the sample with the charged particle beam;
A control unit that controls the optical system and the recording device;
The control unit
Creating a first expected image from the first image of the sample or a portion thereof recorded by the recording device and the first distortion function;
Comparing the generated first expected image with a second image of the sample or a portion of the image taken after movement of the field of view;
Charged particle beam device characterized in that.
<列記5>
列記4に記載の荷電粒子線装置であって、
前記制御部は、
前記比較の結果に基づき、前記第1の歪み関数を補正して得た第2の歪み関数と、前記第1の画像またはその一部とから第2の予想画像を作成し、
前記第2の予想画像と前記第2の画像またはその一部との比較を行う、
ことを特徴とする荷電粒子線装置。
<
The charged particle beam device according to the fourth aspect, wherein
The control unit
A second predicted image is created from a second distortion function obtained by correcting the first distortion function and the first image or a part thereof based on the result of the comparison;
Compare the second expected image with the second image or a portion thereof
Charged particle beam device characterized in that.
<列記6>
列記4に記載の荷電粒子線装置であって、
前記第1の予想画像もしくは前記第2の予想画像の作成は、前記第1の画像またはその一部を座標空間内において変形させる処理である、
ことを特徴とする荷電粒子線装置。
<
The charged particle beam device according to the fourth aspect, wherein
The creation of the first predicted image or the second predicted image is a process of deforming the first image or a part thereof in a coordinate space.
Charged particle beam device characterized in that.
<列記7>
列記4に記載の荷電粒子線装置であって、
前記試料を移動させる移動機構、あるいは前記試料に照射される荷電粒子線の軌道を変化させる偏向器を、更に備え、
前記制御部は、前記第1の画像と前記第2の画像を撮影する間に、前記移動機構により前記試料を移動、あるいは前記偏向器により前記荷電粒子線の軌道を変化させて前記視野移動を行うよう制御する、
ことを特徴とする荷電粒子線装置。
<List 7>
The charged particle beam device according to the fourth aspect, wherein
It further comprises a moving mechanism for moving the sample, or a deflector for changing the trajectory of the charged particle beam irradiated to the sample,
The control unit moves the sample by the moving mechanism while changing the trajectory of the charged particle beam by the deflector while taking the first image and the second image, and moves the field of view. Control to do,
Charged particle beam device characterized in that.
1 電子源
2、3 照射系レンズ
4 対物レンズ
5、6 結像系レンズ
7 絞り
8、9 偏向器
10 絞り
11 記録装置
12 記録装置制御装置
13 制御装置
14 試料
15 像面
21、22、24、25 レンズ電磁場
23 対物レンズ電磁場
30 光軸
31 電子軌道
32、33 収差がない場合の電子軌道
34、35 収差がない場合の電子軌道
36、37、38 試料上から出た電子軌道
50、51 観察視野
52、53、54 視野内に結像される試料構造
60、61、62 視野移動により生じる変形関数
REFERENCE SIGNS
Claims (15)
荷電粒子線装置によって撮影された試料の第1の画像またはその一部と、第1の歪み関数とから第1の予想画像を作成し、
作成された前記第1の予想画像と、前記荷電粒子線装置によって視野移動の後に撮影された、前記試料の第2の画像またはその一部との比較を行う、
ことを特徴とする画像処理装置。 An image processing apparatus,
Creating a first expected image from the first image of the sample or a portion thereof taken by the charged particle beam device and the first distortion function;
Comparing the generated first expected image with a second image of the sample, or a portion thereof, taken after movement of the field of view by the charged particle beam device;
An image processing apparatus characterized by
前記比較の結果に基づき、前記第1の歪み関数を補正して得た第2の歪み関数と、前記第1の画像またはその一部とから第2の予想画像を作成し、
前記第2の予想画像と前記第2の画像またはその一部との比較を行う、
ことを特徴とする画像処理装置。 The image processing apparatus according to claim 1, wherein
A second predicted image is created from a second distortion function obtained by correcting the first distortion function and the first image or a part thereof based on the result of the comparison;
Compare the second expected image with the second image or a portion thereof
An image processing apparatus characterized by
前記第1の予想画像の作成は、前記第1の画像またはその一部を座標空間内において変形させる処理である、
ことを特徴とする画像処理装置。 The image processing apparatus according to claim 1, wherein
The creation of the first predicted image is a process of deforming the first image or a part thereof in a coordinate space.
An image processing apparatus characterized by
前記荷電粒子線装置は、前記試料を移動させる移動機構、あるいは前記試料に照射される荷電粒子線の軌道を変化させる偏向器を備え、
前記第1の画像と前記第2の画像を撮影する間に、前記移動機構により前記試料を移動、あるいは前記偏向器により前記荷電粒子線の軌道を変化させて前記視野移動を行う、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 3, wherein
The charged particle beam apparatus includes a moving mechanism that moves the sample, or a deflector that changes a trajectory of a charged particle beam irradiated to the sample.
While taking the first image and the second image, the movement mechanism moves the sample or the deflector changes the trajectory of the charged particle beam to move the visual field.
An image processing apparatus characterized by
前記第1の画像と前記第2の画像は、少なくとも一部が共通する共通領域を有する、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 4, wherein
The first image and the second image have a common area at least partially in common,
An image processing apparatus characterized by
複数の前記第1の歪み関数を用いて、複数の前記第1の予想画像を作成する、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 5, wherein
Generating a plurality of the first predicted images using a plurality of the first distortion functions;
An image processing apparatus characterized by
前記第1の予想画像と、前記荷電粒子線装置による視野移動量の異なる複数の前記第2の画像またはその一部とを比較する、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 6, wherein
Comparing the first predicted image with a plurality of the second images or their parts having different amounts of movement of the visual field by the charged particle beam device;
An image processing apparatus characterized by
前記比較の結果に基づき、第3の歪み関数を生成する、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 7, wherein
Generating a third distortion function based on the result of the comparison;
An image processing apparatus characterized by
前記第1の画像もしくはその一部と、前記第2の画像もしくはその一部との比較を行い、その結果に基づいて歪み関数を生成することを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 8, wherein
An image processing apparatus characterized by comparing the first image or a part thereof with the second image or a part thereof and generating a distortion function based on the result.
前記比較は、画像の和、差、関、商、相関値、フーリエ変換結果、ヒストグラム、画像の特徴点のいずれか一つ以上を求める処理である、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 9, wherein
The comparison is a process of obtaining one or more of a sum, a difference, a quotient, a correlation value, a Fourier transform result, a histogram, and a feature point of the image.
An image processing apparatus characterized by
前記第1の歪み関数は画像内の座標に基づく変数に対する関数である、
ことを特徴とする画像処理装置。 An image processing apparatus according to any one of claims 1 to 10, wherein
The first distortion function is a function for a variable based on coordinates in the image,
An image processing apparatus characterized by
前記第1の歪み関数は画像内の座標に基づく1つの変数に対する関数である、
ことを特徴とする画像処理装置。 The image processing apparatus according to claim 11, wherein
The first distortion function is a function for one variable based on coordinates in the image,
An image processing apparatus characterized by
得られた歪み関数を用いて観察像を処理する、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 12, wherein
Processing the observation image using the obtained distortion function,
An image processing apparatus characterized by
得られた歪み関数を用いて前記荷電粒子線装置によって撮影された観察像内の強度分布を処理する、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 13, wherein
Processing the intensity distribution in the observation image captured by the charged particle beam device using the obtained distortion function;
An image processing apparatus characterized by
得られた歪み関数に基づき、前記荷電粒子線装置の荷電粒子線の走査を制御する、
ことを特徴とする画像処理装置。 The image processing apparatus according to any one of claims 1 to 13, wherein
Controlling scanning of the charged particle beam of the charged particle beam device based on the obtained distortion function,
An image processing apparatus characterized by
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/032274 WO2019049260A1 (en) | 2017-09-07 | 2017-09-07 | Image processing device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/032274 WO2019049260A1 (en) | 2017-09-07 | 2017-09-07 | Image processing device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019049260A1 true WO2019049260A1 (en) | 2019-03-14 |
Family
ID=65635277
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/032274 Ceased WO2019049260A1 (en) | 2017-09-07 | 2017-09-07 | Image processing device |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2019049260A1 (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010140899A (en) * | 2008-12-12 | 2010-06-24 | Fei Co | Method for determining distortions in particle-optical device |
-
2017
- 2017-09-07 WO PCT/JP2017/032274 patent/WO2019049260A1/en not_active Ceased
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010140899A (en) * | 2008-12-12 | 2010-06-24 | Fei Co | Method for determining distortions in particle-optical device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5164754B2 (en) | Scanning charged particle microscope apparatus and processing method of image acquired by scanning charged particle microscope apparatus | |
| US6538249B1 (en) | Image-formation apparatus using charged particle beams under various focus conditions | |
| JP5422673B2 (en) | Charged particle beam microscope and measuring method using the same | |
| US20100072365A1 (en) | Variable rate scanning in an electron microscope | |
| JP4790567B2 (en) | Aberration measurement method, aberration correction method and electron microscope using Ronchigram | |
| JP4801518B2 (en) | Charged particle beam microscopic method and charged particle beam apparatus | |
| JP4611755B2 (en) | Scanning electron microscope and imaging method thereof | |
| US10037866B2 (en) | Charged particle beam apparatus | |
| CN1979751B (en) | Method for determining the aberration coefficients of the aberration function of a particle-optical lens | |
| WO2011152303A1 (en) | Charged particle beam device provided with automatic aberration correction method | |
| TWI813618B (en) | Autofocusing method for scanning electron microscope | |
| US20120298865A1 (en) | Scanning electron microscope | |
| US12400383B2 (en) | Training method for learning apparatus, and image generation system | |
| JP4277334B2 (en) | Observation apparatus and adjustment method thereof | |
| US10446365B2 (en) | Method of verifying operation parameter of scanning electron microscope | |
| US20110284759A1 (en) | Method for adjusting optical axis of charged particle radiation and charged particle radiation device | |
| JP6770482B2 (en) | Charged particle beam device and scanning image distortion correction method | |
| US20240310167A1 (en) | Pattern shape measurement method, pattern shape measurement device, and manufacturing method of semiconductor device | |
| CN111095351A (en) | Charged particle microscope device and wide-angle image generation method | |
| WO2019049260A1 (en) | Image processing device | |
| JP7576592B2 (en) | Charged particle beam device and image acquisition method | |
| KR101497105B1 (en) | Electron microscope and method for processing image using the sem | |
| JP5373463B2 (en) | Automatic optimum focus adjustment device for transmission electron microscope | |
| WO2015037313A1 (en) | Scanning transmission electron microscope and aberration measurement method therefor | |
| JP4431624B2 (en) | Charged particle beam adjustment method and charged particle beam apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17924692 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17924692 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |