[go: up one dir, main page]

WO2019045091A1 - Information processing device, counter system, counting method, and program storage medium - Google Patents

Information processing device, counter system, counting method, and program storage medium Download PDF

Info

Publication number
WO2019045091A1
WO2019045091A1 PCT/JP2018/032538 JP2018032538W WO2019045091A1 WO 2019045091 A1 WO2019045091 A1 WO 2019045091A1 JP 2018032538 W JP2018032538 W JP 2018032538W WO 2019045091 A1 WO2019045091 A1 WO 2019045091A1
Authority
WO
WIPO (PCT)
Prior art keywords
objects
measured
learning model
fish
feature amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/032538
Other languages
French (fr)
Japanese (ja)
Inventor
丈晴 北川
君 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2019539698A priority Critical patent/JP6849081B2/en
Publication of WO2019045091A1 publication Critical patent/WO2019045091A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M11/00Counting of objects distributed at random, e.g. on a surface
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a technique for measuring the number of objects using an imaging device.
  • Patent Document 1 discloses a configuration for measuring the number of fish. That is, in the configuration in Patent Document 1, the camera captures the fish in the ginger from the side of the ginger, and the information processing apparatus tracks the fish by analyzing the captured image taken, and the tracking result is obtained. Use to count fish in ginger.
  • the camera captures the fish in the room from the upper side of the room containing the fish
  • the computer detects the fish shadow from the captured image captured, and detects it as a fish shadow in the captured image
  • a configuration is shown to determine the presence and number of fish shadows based on the area of the selected area.
  • Patent Document 1 by analyzing a captured image, a fish is detected and the fish in the ginger is counted using a result of tracking the fish.
  • a fish shadow is detected from a captured image, and the number of fish shadows is determined based on the area of a region detected as a fish shadow in the captured image.
  • a fish is detected and the number of fish is measured using the detection result.
  • the present invention has been devised to solve the above problems. That is, the main object of the present invention is to suppress the increase in time required for the process of measuring the number of objects even if the number of objects to be measured is large when the number of objects is measured using a captured image by the imaging device In addition, it is to provide the technology which raises measurement accuracy.
  • an information processing apparatus includes: An extraction unit that extracts a predetermined feature amount that changes according to the number of objects to be measured from a captured image in which the object to be measured is captured; A counting unit that detects the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model that is relationship data between the feature amount and the number of objects by machine learning; Equipped with
  • One aspect of the counting system is A photographing device for photographing a photographing space in which an object to be measured exists; An information processing apparatus configured to measure the number of objects to be measured in the imaging space based on an image captured by the imaging apparatus;
  • the information processing apparatus is An extraction unit that extracts a predetermined feature amount that changes according to the number of objects to be measured from a captured image in which the object to be measured is captured;
  • a counting unit that detects the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model that is relationship data between the feature amount and the number of objects by machine learning; Equipped with
  • One aspect of the counting method according to the present invention is And extracting a predetermined feature amount that changes according to the number of objects to be measured from the captured image in which the object to be measured is captured,
  • the number of objects to be measured is detected from the learning model by collating the extracted feature amount with a learning model which is relationship data between the feature amount and the number of objects by machine learning.
  • One aspect of a program storage medium is A process of extracting, from a photographed image in which an object to be measured is photographed, a predetermined feature amount that changes according to the number of objects to be measured; Processing for detecting the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model which is relationship data between the feature amount and the number of objects by machine learning; Stores computer programs to be executed by a computer.
  • the present invention when measuring the number of objects using a captured image by the imaging device, it is possible to suppress an increase in time required for measurement processing of the number of objects even if the number of objects to be measured is large. , Measurement accuracy can be improved.
  • FIG. 1 is a block diagram showing a simplified configuration of a counting system according to a first embodiment of the present invention.
  • the counting system 10 in the first embodiment is a system that measures the number of fish in a ginger that is an object to be measured.
  • the counting system 10 includes a camera 11 which is a photographing device and an information processing device 12.
  • the camera 11 has a waterproof function, and as shown in FIG. 2, the camera 11 is disposed in the ginger 25 in which the fish 26 are cultured.
  • the camera 11 is disposed at the center of the bottom of the water (including the position near the bottom) in the production bowl 25. The orientation of the lens of the camera 11 disposed at such a position is directed to the water surface (upward).
  • the camera 11 has a shooting range (field of view) as shown in FIG. That is, the shooting range of the camera 11 is a range in which the side (peripheral edge) of the ginger 25 can be photographed in consideration of the size of the ginger 25, and the camera 11 photographs the water in the ginger 25 as a photographing space .
  • each of the cameras 11 is supported and fixed on the metal plate 20 as a supporting member as shown in FIG. 4 so that the direction of the lens is upward (the direction facing the upper side of the substrate surface of the metal plate 20). Be done.
  • the metal plate 20 on which the camera 11 is supported and fixed is connected to the buoy 22 which is a floating body by a plurality of (four) ropes 21 which are wire members. Further, the opposite end side of the buoy 22 in each rope 21 is connected to the weight 23.
  • the buoy 22 floats to the water surface, and the weight 23 sinks to the water bottom side, whereby the metal plate 20 is a rope 21 is suspended in water. Further, the weight 23 prevents the arrangement position of the metal plate 20 (in other words, the camera 11) from being largely changed.
  • the method of arranging the camera 11 in water by the metal plate 20, the rope 21, the buoy 22, and the weight 23 has a simple structure and is easy to be compact and lightweight. From this, it becomes easy to move the camera 11 to another ginger 25.
  • the camera 11 thus disposed in the water shoots the fish 26 in the ginger 25 from the ventral side.
  • the fish 26 in the image captured by the camera 11 is an image as shown in FIGS. 5A to 5C.
  • the camera 11 is a photographing device having a function of photographing a moving image
  • a photographing device that intermittently photographs, for example, a still image at each setting time interval without adopting a moving image photographing function is adopted as the camera 11
  • the calibration of the camera 11 is performed by an appropriate calibration method in consideration of the environment of the ginger 25, the type of fish to be measured, and the like.
  • the description of the calibration method is omitted.
  • a method of starting photographing by the camera 11 and a method of stopping photographing an appropriate method taking into consideration the performance of the camera 11, the environment of the production 25, and the like is adopted.
  • a fish observer (operator) manually starts shooting before the camera 11 enters the ginger 25 and stops shooting manually after the camera 11 is withdrawn from the ginger 25.
  • the camera 11 has the function of wireless communication or wired communication
  • the camera 11 is communicably connected to an operating device capable of transmitting information for controlling the start and stop of shooting. Then, the photographing start and the photographing stop of the camera 11 in the water may be controlled by the operation of the operation device by the observer.
  • the captured image captured by the camera 11 as described above may be captured by the information processing apparatus 12 by wired communication or wireless communication, or may be stored in the portable storage medium and then stored in the portable storage medium to process the information processing apparatus from the portable storage medium It may be incorporated into T.12.
  • the information processing apparatus 12 generally includes a control device 13 and a storage device 14 as shown in FIG.
  • the information processing apparatus 12 is connected to an input device (for example, a keyboard or a mouse) 16 which inputs information to the information processing apparatus 12 by an operation of an observer, for example, and a display device 17 which displays information.
  • the information processing device 12 may be connected to an external storage device 15 separate from the information processing device 12.
  • the storage device 14 has a function of storing various data and a computer program (hereinafter also referred to as a program), and is realized by a storage medium such as a hard disk device or a semiconductor memory, for example.
  • the storage device 14 included in the information processing device 12 is not limited to one, and multiple types of storage devices may be included in the information processing device 12. In this case, a plurality of storage devices are collectively referred to. It is referred to as a storage device 14.
  • the storage device 15 also has a function of storing various data and computer programs as the storage device 14 and is realized by a storage medium such as a hard disk device or a semiconductor memory, for example.
  • the information processing apparatus 12 appropriately executes the process of writing and reading information in the storage device 15, but in the following description, the description of the storage device 15 is omitted.
  • the storage device 14 stores the image captured by the camera 11 in association with information identifying the captured camera, shooting date and time, information related to the shooting condition such as weather information, etc. Be done.
  • the control device 13 is configured by, for example, a processor such as a CPU (Central Processing Unit).
  • the control device 13 can have the following functions, for example, by the CPU executing a computer program stored in the storage device 14. That is, the control device 13 includes an extraction unit 30, a counting unit 31, and a display control unit 32 as functional units.
  • the display control unit 32 has a function of controlling the display operation of the display device 17. For example, when the display control unit 32 receives a request to reproduce a photographed image of the camera 11 from the input device 16, the display control unit 32 reads the photographed image of the camera 11 according to the request from the storage device 14 and displays the photographed image. Display on
  • the extraction unit 30 determines a predetermined feature amount from the photographed image Have the ability to extract
  • the feature amount is a feature amount used in a learning model for number detection stored in the storage device 14.
  • the learning model for detecting the number is a model used in the process of detecting (counting) the number of fish in the ginger 25 from the photographed image taken by the camera 11 disposed as shown in FIG. It is the related data of quantity and the number of fish.
  • the learning model for detecting the number is generated by machine learning using teacher images (teacher images) as a large number of photographed images obtained by photographing the fish in the ginger 25 by the camera 11 in a state where the number of fish is known.
  • teacher images teacher images
  • 5A-5C an example of a captured image in the ginger 25 by the camera 11 is represented in association with the number of fish in the ginger 25.
  • FIG. As shown in FIGS. 5A to 5C, the brightness of the photographed image, the number of fish shadows, and the like change according to the number of fish. Thus, an element that changes according to the number of fish is set as the feature amount.
  • the learning model for number detection may be, for example, an aspect as shown in FIG. 6A or an aspect as shown in FIG. 7, and a method for generating the learning model as described above. It is set appropriately along with the setting of.
  • the learning model in FIG. 6A is a model in which the number of fish (the number of fish) changes continuously according to the change in the feature value extracted from the teacher data. This model is obtained, for example, by regression analysis using measurement points P representing the relationship between a large number of feature amounts and the number as shown in FIG. 6B obtained from teacher data.
  • a combination of a plurality of different feature amounts M and N extracted from the teacher image is grouped according to the number of fish in the production 25 in the teacher image in which the combination of the feature amounts M and N is extracted ( It is a model classified into classes.
  • the extraction unit 30 extracts feature amounts used in the above-described learning model for number detection from the captured image.
  • a deep learning framework used for generating a learning model is used as an extractor.
  • the counting unit 31 collates the feature quantity extracted from the photographed image by the extracting unit 30 with the learning model for detecting the number of fish in the storage unit 14, and the number of fish corresponding to the extracted feature quantity from the learning model for detecting the fish quantity It has a function to count as the number of fish to be measured.
  • the counting unit 31 externally receives information (environmental information) of the photographing environment such as the season and the weather. Then, the counting unit 31 has a function of correcting the number of fish detected from the learning model according to the imaging environment, using the received information of the imaging environment and the data for correction stored in advance in the storage device 14 May be provided.
  • a learning model may be generated for each shooting environment, and a learning model associated with information on the shooting environment may be stored in the storage device 14. In this case, the counting unit 31 detects the number of fish using a learning model corresponding to the received information of the imaging environment.
  • the counting unit 31 may detect the number of fish using a learning model according to information of fish age (fish size) and ginger size received from the outside.
  • the counting system 10 of the first embodiment is configured as described above. Next, an example of the counting process of the information processing apparatus 12 in the first embodiment will be described based on the flowchart of FIG.
  • the extractor 30 of the information processing device 12 detects that a request to count fish to be measured has been input by the operation of the input device 16 by the observer (step S101), the image captured by the camera 11 is stored. Acquired from the device 14. Then, the extraction unit 30 extracts a feature amount set in advance from the acquired image captured by the camera 11 (step S102).
  • the counting unit 31 collates the extracted feature quantity with the learning model for detecting the number, and detects (counts) the number of fish corresponding to the extracted feature quantity from the learning model as the number of fish to be measured ( Step S103). Then, the counting unit 31 causes the display control unit 32 to display the measured number of fish, for example.
  • the information processing apparatus 12 can measure the number of fish to be measured from the captured image and output the measured number of fish by such processing.
  • the extraction unit 30 and the counting unit 31 of the information processing device 12 detect the number of fish to be measured from the photographed image by using a learning model for detecting the number by machine learning. Since the learning model by machine learning can improve the detection accuracy using the model by increasing the number of teacher data, the information processing apparatus 12 can use the learning model by machine learning to obtain an object. The accuracy of counting can be easily enhanced. In addition, since the information processing apparatus 12 extracts the feature amount of the captured image and detects the number of objects (fish) to be measured based on the feature amount, the number of fish in the captured image is measured one by one. In comparison, even if the number of fish increases, it is possible to suppress an increase in the time required for measurement processing.
  • the information processing apparatus 12 measures the number of fish based on the feature quantity extracted from the photographed image instead of measuring the number of fish one by one, the photographing is caused due to the overlapping of the fish and the turbidity of the water. Even if there are fish that can not be detected in the image, the number of fish can be detected (counted) with high accuracy.
  • the camera 11 is disposed at the bottom of the water (a position near the bottom of the water).
  • a camera 35 disposed as shown in FIG. 9 may be used. That is, as shown in FIG. 9, the camera 35 is fixed to the metal plate 20 in the horizontal orientation such that the lens orientation is parallel to the substrate surface of the metal plate 20 as the support member. In other words, the camera 35 is disposed sideways so as to be parallel to the water surface in a state of being introduced into the water (raw water 25).
  • FIG. 10 is a diagram illustrating an example of the relationship between the shooting range of the horizontally oriented camera 35 and the ginger 25 when the ginger 25 is viewed from the upper side. As shown in FIG.
  • the horizontally oriented camera 35 is disposed at the periphery of the ginger 25 and photographs the fish in the ginger 25 from the periphery (side surface) of the ginger 25.
  • the camera 35 has a field of view in which almost the entire production area 25 can be photographed.
  • the depth position (height position) of the horizontally oriented camera 35 in water is the middle position between the bottom of the water and the water surface, and in this case, the depth position tends to be crowded depending on the type of fish. It is a depth position etc. which are easy to be crowded, and it is considered as a depth position suitable for the number of fish (number of fish) detection.
  • FIGS. 11A to 11C examples of captured images including fish captured by the horizontally oriented camera 35 are shown for each number of fish.
  • a learning model for detecting the number is generated by using a photographed image taken by the camera 35 disposed similarly as teacher data.
  • the extraction unit 30 extracts, from the image captured by the horizontally oriented camera 35, the feature amount used in the learning model for number detection generated as such.
  • the counting unit 31 detects the number of fish by collating the feature quantity extracted by the extraction unit 30 with a learning model for detecting the number of fishes based on a photographed image by the horizontally oriented camera 35.
  • the counting system 10 can obtain the same effect as the effect described above.
  • FIG. 12 is a block diagram schematically showing the configuration of the counting system of the second embodiment.
  • the counting system 10 of the second embodiment is provided with a camera 35 in addition to the configuration of the first embodiment. That is, the counting system 10 of the second embodiment uses the plurality of cameras 11 and 35.
  • one camera 11 is disposed upward (toward the water surface) at the center of the bottom of the bottom of the production line 25, and another camera 35 is disposed at the bottom of the production line 25. It is disposed laterally on the periphery.
  • the depth position of the horizontally oriented camera 35 is, for example, a position at an intermediate portion between the bottom of the water and the water surface, or a depth position where it is easy to swarm depending on the type of fish. Yes, and the appropriate depth position for number detection.
  • the cameras 11 and 35 are disposed in water using the rope 21 and the buoy 22 as in the first embodiment, but the rope 21 and the buoy 22 are not illustrated in FIG. There is.
  • Each of the cameras 11 and 35 has a field of view capable of capturing the entire production 25 and captures the inside of the production 25 from different directions.
  • the cameras 11 and 35 are imaging devices each having a function to capture a fish by a moving image, but as described in the first embodiment, for example, a time interval for setting a still image is not provided without having a moving image capturing function.
  • An imaging device that captures images intermittently may be adopted as the cameras 11 and 35 each time.
  • the information processing apparatus 12 detects the number of fish using the captured images of the cameras 11 and 35 captured at the same time. Taking this into consideration, in order to make it easy to obtain an image taken by the camera 11 taken at the same time and an image taken by the camera 35, it is also possible It is preferable to take a picture. For example, light that is emitted for a short time by automatic control or manually by the observer (worker) may be used as a mark used for time alignment, and the cameras 11 and 35 may capture the light. Accordingly, based on the light captured in the captured image by the cameras 11 and 35, it becomes easy to perform time alignment (synchronization) of the captured image by the camera 11 and the captured image by the camera 35.
  • the display control unit 32 of the control device 13 in the information processing device 12 has a function of controlling the display device 17 such that the display images of the cameras 11 and 35 are displayed side by side in two-screen display. Equipped with, the display control unit 32 has a function that allows the observer to adjust the reproduction frame of each photographed image by the cameras 11 and 35 by using the time alignment mark as described above simultaneously photographed by the cameras 11 and 35. Equipped with Furthermore, the display control unit 32 may have a function of switching between one-screen display for displaying one of the captured images by the cameras 11 and 35 and dual-screen display for displaying both the captured images by the cameras 11 and 35. .
  • the display control unit 32 further has a function of causing the display device 17 to display a display for receiving an instruction for switching by the observer.
  • the display for receiving the switching instruction may be, for example, in the form of an icon, may be characters, or may be in the form of a radio button. Aspects are employed.
  • a learning model for detecting the number is generated by machine learning using both captured images of the cameras 11 and 35 captured simultaneously. That is, a learning model for detecting the number is generated by machine learning using teacher images (teacher images) as a large number of captured images simultaneously captured by the cameras 11 and 35 in a state in which the number of fish in the ginger 25 is known. .
  • a learning model for detecting the number of fish is relationship data between the feature quantity extracted from the photographed image and the number of fish, and is stored in the storage device 14.
  • the extraction unit 30 has a function of extracting a feature value used in a number detection learning model from both an image captured by the camera 11 and an image captured by the camera 35 captured simultaneously.
  • the counting unit 31 collates the feature quantity extracted by the extracting unit 30 from the images captured simultaneously with the cameras 11 and 35 with the learning model for detecting the number of fish in the storage device 14 and extracts the feature quantity extracted from the learning model. It has a function to detect the number of fish corresponding to as the number of fish to be measured.
  • the remaining configuration of the counting system 10 according to the second embodiment is similar to that of the counting system 10 according to the first embodiment.
  • the counting system 10 according to the second embodiment can increase the amount of information used when detecting the number of fish in the ginger 25 by using the images taken by the plurality of cameras 11 and 35, so the number of fish can be increased. Detection accuracy can be further improved.
  • the counting system 10 may have the following configuration. That is, the counting system 10 detects the number of fish in the ginger 25 using mode 1 in which the number of fish in the ginger 25 is detected using the image photographed by the camera 11 at the bottom of the water and the image photographed by the cameras 11 and 35 It may have a configuration to switch between mode 2 and That is, the storage device 14 stores a learning model for number detection (learning model for mode 1) generated by machine learning using an image captured by the camera 11 at the bottom of the water.
  • learning model for number detection learning model for mode 1
  • the storage device 14 stores a learning model for detecting the number of rays (learning model for mode 2) generated by machine learning using images captured by the camera 11 at the bottom of the water and the camera 35 at the periphery of the ginger.
  • the control device 13 includes a switching unit 34 represented by a dotted line in FIG. 12 as a functional unit.
  • the switching unit 34 switches the number detection mode from mode 1 to mode 2 or vice versa in response to the request.
  • the extracting unit 30 and the counting unit 31 operate in mode 1 or mode 2 in accordance with an instruction from the switching unit 34. That is, in mode 1, the extraction unit 30 and the counting unit 31 function in the same manner as the functions described in the first embodiment. In the case of mode 2, the extraction unit 30 and the counting unit 31 function in the same manner as the functions described in the second embodiment.
  • the counting system 10 has a configuration capable of switching between mode 1 and mode 2, for example, the observer detects the number of fish if the photographed image of the camera 35 is defective for the fish number detection due to some problem. Mode is switched from mode 2 to mode 1. Thereby, even when the photographed image of the camera 35 is not good for the number detection, the counting system 10 can detect the number of fish in the ginger 25.
  • the counting system 10 may have the following configuration. That is, the counting system 10 may be configured to operate in a mode which is alternatively selected from the following three modes 1-1, 1-2, and 2.
  • the mode 1-1 is a mode in which the number of fish in the ginger 25 is detected using an image captured by the camera 11 at the bottom of the water.
  • Mode 1-2 is a mode in which the number of fish in the ginger 25 is detected using an image captured by the camera 35 at the periphery of the ginger.
  • Mode 2 is a mode for detecting the number of fish in the ginger 25 using images taken by the camera 11 at the bottom of the water and the camera 35 at the periphery of the ginger.
  • the storage device 14 includes a learning model for mode 1-1 and a learning model for mode 1-2.
  • a learning model for mode 2 is stored.
  • the learning model for mode 1-1 is a learning model for number detection generated by machine learning using an image captured by the camera 11 at the bottom of the water.
  • the learning model for mode 1-2 is a learning model for number detection generated by machine learning using an image captured by the camera 35 at the periphery of ginger.
  • the learning model for mode 2 is a learning model for number detection generated by machine learning using images captured by the camera 11 at the bottom of the water and the camera 35 at the periphery of the ginger.
  • the control device 13 is provided with a switching unit 34.
  • the switching unit 34 switches the number detection mode to a mode based on the received information, for example, when the information representing the mode after switching is received by the operation of the input device 16 by the observer.
  • a function of instructing the counting unit 31 is provided.
  • the extraction unit 30 and the counting unit 31 function to detect the number of fish in the raw fish 25 using a learning model corresponding to the mode instructed by the switching unit 34.
  • the counting system 10 can detect the number of fish in the production 25. Thereby, the counting system 10 can improve the convenience.
  • the present invention is not limited to the first embodiment, and various embodiments can be adopted.
  • the calculated value according to is output as it is as the number of objects to be measured (finalized value).
  • the counting unit 31 measures the number of fish (the number of objects to be measured) calculated based on one photographed image (a plurality of photographed images in the second embodiment) as a measurement value of the number of fish
  • a storage device 14 may be provided.
  • the counting unit 31 further reads a predetermined number of measured values (for example, a plurality of measured values based on a plurality of (multiple sets of) captured images within the set imaging time) from the storage device 14
  • a function may be provided to calculate, for example, the average value of the measurement values as the determined value of the number of fish.
  • FIG. 14 shows a simplified configuration of the information processing apparatus according to another embodiment of the present invention.
  • the information processing apparatus 40 in FIG. 14 includes an extraction unit 41 and a counting unit 42 as functional units.
  • the information processing device 40 constitutes a counting system 50 together with the photographing device 51 as shown in FIG.
  • the photographing device 51 has a configuration for photographing a photographing space in which an object to be measured exists.
  • the extraction unit 41 of the information processing apparatus 40 has a function of extracting a predetermined feature amount that changes in accordance with the number of objects to be measured from a photographed image in which the object to be measured is photographed.
  • the counting unit 42 has a function of detecting the number of objects to be measured from the learning model by collating the extracted feature amounts with a learning model which is relationship data between the feature amount by machine learning and the number of objects. ing.
  • the number of objects to be measured is at most the number of objects. It is possible to suppress an increase in the time required for measurement processing of Moreover, the information processing device 40 and the counting system 50 measure the number of objects to be measured based on the feature amount extracted from the captured image. Therefore, the information processing apparatus 40 and the counting system 50 can accurately detect (count) the number of objects to be measured even if there is an object to be measured that can not be detected in the captured image due to overlapping of objects or the like.
  • Reference Signs List 10 50 counting system 11, 35 camera 12, 40 information processing device 30, 41 extraction unit 31, 42 counting unit 51 imaging device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

計測対象の物体の数が多くとも物体の数の計測処理に要する時間の増加を抑制できる技術を提供するために、情報処理装置40は、抽出部41と、計数部42とを備える。抽出部41は、計測対象の物体が撮影されている撮影画像から、計測対象の物体の数に応じて変化する予め定められた特徴量を抽出する。計数部42は、機械学習による特徴量と物体の数との関係データである学習モデルに、抽出された特徴量を照合することにより、学習モデルから計測対象の物体の数を検知する。The information processing apparatus 40 includes an extraction unit 41 and a counting unit 42 in order to provide a technique capable of suppressing an increase in time required for measurement processing of the number of objects even if the number of objects to be measured is large. The extraction unit 41 extracts a predetermined feature amount that changes in accordance with the number of objects to be measured from the captured image in which the object to be measured is captured. The counting unit 42 detects the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model which is relationship data between the feature amount by machine learning and the number of objects.

Description

情報処理装置、計数システム、計数方法およびプログラム記憶媒体Information processing apparatus, counting system, counting method and program storage medium

 本発明は、撮影装置を利用して物体の数を計測する技術に関する。 The present invention relates to a technique for measuring the number of objects using an imaging device.

 魚の養殖技術の向上のために、養殖している魚の成長を観測することが行われている。特許文献1には魚の数を計測する構成が開示されている。すなわち、特許文献1における構成では、生簀の側面側からカメラが生簀内の魚を撮影し、情報処理装置が、その撮影された撮影画像を解析することにより魚を追尾し、当該追尾の結果を利用して生簀内の魚を計数する。 In order to improve fish farming techniques, it is practiced to monitor the growth of fish in culture. Patent Document 1 discloses a configuration for measuring the number of fish. That is, in the configuration in Patent Document 1, the camera captures the fish in the ginger from the side of the ginger, and the information processing apparatus tracks the fish by analyzing the captured image taken, and the tracking result is obtained. Use to count fish in ginger.

 また、特許文献2には、魚を収容する部屋の上方側からカメラが部屋内の魚を撮影し、コンピュータが、その撮影された撮影画像から魚影を検知し、撮影画像において魚影として検知された領域の面積に基づいて魚影の有無および数を判定する構成が示されている。 Further, according to Patent Document 2, the camera captures the fish in the room from the upper side of the room containing the fish, the computer detects the fish shadow from the captured image captured, and detects it as a fish shadow in the captured image A configuration is shown to determine the presence and number of fish shadows based on the area of the selected area.

特開2016-110381号公報JP, 2016-110381, A 特開2008-171196号公報JP, 2008-171196, A

 特許文献1の構成では、撮影画像を解析することにより、魚が検知され当該魚を追尾した結果を利用して生簀内の魚が計数される。特許文献2の構成では、撮影画像から魚影が検知され、撮影画像において魚影として検知された領域の面積に基づいて魚影の数が判定される。このように、特許文献1の構成も特許文献2の構成も、魚が検知され当該検知結果を利用して魚の数が計測される。 In the configuration of Patent Document 1, by analyzing a captured image, a fish is detected and the fish in the ginger is counted using a result of tracking the fish. In the configuration of Patent Document 2, a fish shadow is detected from a captured image, and the number of fish shadows is determined based on the area of a region detected as a fish shadow in the captured image. Thus, in both the configuration of Patent Document 1 and the configuration of Patent Document 2, a fish is detected and the number of fish is measured using the detection result.

 ところで、撮影画像において、魚の重なりに因って映らない魚が有ることがある。また、水の濁り等に因って、カメラから離れている魚は映らない、あるいは、不鮮明な像になることがある。このために、撮影画像から検知されない魚があり、これにより、魚の数を精度良く計測できないという問題が生じる虞がある。また、非常に多くの魚の数を計測する場合に、魚を検知し当該検知した魚を計測する手法では、処理時間が多く掛かることが懸念される。 By the way, in the photographed image, there may be fish which do not appear due to overlapping of fish. Also, due to the turbidity of water, fish away from the camera may not appear or may become unclear. For this reason, there is a fish which is not detected from a photography picture, and there is a possibility that the problem that the number of fish can not be measured precisely may arise. Moreover, when measuring the number of very many fish, it is feared that processing time will take much with the method of detecting a fish and measuring the said detected fish.

 本発明は上記課題を解決するために考え出された。すなわち、本発明の主な目的は、撮影装置による撮影画像を利用して物体の数を計測する場合に、計測対象の物体の数が多くとも物体の数の計測処理に要する時間の増加を抑制でき、その上、計測精度を高める技術を提供することにある。 The present invention has been devised to solve the above problems. That is, the main object of the present invention is to suppress the increase in time required for the process of measuring the number of objects even if the number of objects to be measured is large when the number of objects is measured using a captured image by the imaging device In addition, it is to provide the technology which raises measurement accuracy.

 上記目的を達成するために、本発明に係る情報処理装置の一態様は、
 計測対象の物体が撮影されている撮影画像から、前記計測対象の物体の数に応じて変化する予め定められた特徴量を抽出する抽出部と、
 機械学習による前記特徴量と前記物体の数との関係データである学習モデルに、前記抽出された特徴量を照合することにより、前記学習モデルから前記計測対象の物体の数を検知する計数部と
を備える。
In order to achieve the above object, one aspect of an information processing apparatus according to the present invention is:
An extraction unit that extracts a predetermined feature amount that changes according to the number of objects to be measured from a captured image in which the object to be measured is captured;
A counting unit that detects the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model that is relationship data between the feature amount and the number of objects by machine learning; Equipped with

 本発明に係る計数システムの一態様は、
 計測対象の物体が存在している撮影空間を撮影する撮影装置と、
 前記撮影装置による撮影画像に基づいて、前記撮影空間内における前記計測対象の物体の数を計測する情報処理装置と
を備え、
 前記情報処理装置は、
 計測対象の物体が撮影されている撮影画像から、前記計測対象の物体の数に応じて変化する予め定められた特徴量を抽出する抽出部と、
 機械学習による前記特徴量と前記物体の数との関係データである学習モデルに、前記抽出された特徴量を照合することにより、前記学習モデルから前記計測対象の物体の数を検知する計数部と
を備える。
One aspect of the counting system according to the present invention is
A photographing device for photographing a photographing space in which an object to be measured exists;
An information processing apparatus configured to measure the number of objects to be measured in the imaging space based on an image captured by the imaging apparatus;
The information processing apparatus is
An extraction unit that extracts a predetermined feature amount that changes according to the number of objects to be measured from a captured image in which the object to be measured is captured;
A counting unit that detects the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model that is relationship data between the feature amount and the number of objects by machine learning; Equipped with

 本発明に係る計数方法の一態様は、
 計測対象の物体が撮影されている撮影画像から、前記計測対象の物体の数に応じて変化する予め定められた特徴量を抽出し、
 機械学習による前記特徴量と前記物体の数との関係データである学習モデルに、前記抽出された特徴量を照合することにより、前記学習モデルから前記計測対象の物体の数を検知する。
One aspect of the counting method according to the present invention is
And extracting a predetermined feature amount that changes according to the number of objects to be measured from the captured image in which the object to be measured is captured,
The number of objects to be measured is detected from the learning model by collating the extracted feature amount with a learning model which is relationship data between the feature amount and the number of objects by machine learning.

 本発明に係るプログラム記憶媒体の一態様は、
 計測対象の物体が撮影されている撮影画像から、前記計測対象の物体の数に応じて変化する予め定められた特徴量を抽出する処理と、
 機械学習による前記特徴量と前記物体の数との関係データである学習モデルに、前記抽出された特徴量を照合することにより、前記学習モデルから前記計測対象の物体の数を検知する処理と
をコンピュータに実行させるコンピュータプログラムを記憶する。
One aspect of a program storage medium according to the present invention is
A process of extracting, from a photographed image in which an object to be measured is photographed, a predetermined feature amount that changes according to the number of objects to be measured;
Processing for detecting the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model which is relationship data between the feature amount and the number of objects by machine learning; Stores computer programs to be executed by a computer.

 本発明によれば、撮影装置による撮影画像を利用して物体の数を計測する場合に、計測対象の物体の数が多くとも物体の数の計測処理に要する時間の増加を抑制でき、その上、計測精度を高めることができる。 According to the present invention, when measuring the number of objects using a captured image by the imaging device, it is possible to suppress an increase in time required for measurement processing of the number of objects even if the number of objects to be measured is large. , Measurement accuracy can be improved.

本発明に係る第1実施形態の計数システムの構成を簡略化して表すブロック図である。It is a block diagram simplifying and showing composition of a counting system of a 1st embodiment concerning the present invention. 第1実施形態における撮影装置であるカメラを生簀に投入した状態の一例を説明する図である。It is a figure explaining an example of the state where the camera which is an imaging device in a 1st embodiment is put into production. 第1実施形態におけるカメラの撮影範囲の一例を表す図である。It is a figure showing an example of the photography range of the camera in a 1st embodiment. 第1実施形態におけるカメラの配設形態を説明する図である。It is a figure explaining the arrangement | positioning form of the camera in 1st Embodiment. 水底に配設されたカメラによる撮影画像の例を生簀内の魚の数に関連付けて表す図である。It is a figure showing the example of the photography picture by the camera arranged at the sea bottom in relation to the number of fish in a ginger. さらに、カメラによる撮影画像の例を生簀内の魚の数に関連付けて表す図である。Furthermore, it is a figure showing the example of the photography picture by a camera in relation to the number of fish in a ginger. さらに、カメラによる撮影画像の例を生簀内の魚の数に関連付けて表す図である。Furthermore, it is a figure showing the example of the photography picture by a camera in relation to the number of fish in a ginger. 尾数検知用の学習モデルの一例を説明する図である。It is a figure explaining an example of a learning model for number detection. 尾数検知用の学習モデルの生成手法を説明する図である。It is a figure explaining the generation method of the learning model for number detection. 尾数検知用の学習モデルの別の一例を説明する図である。It is a figure explaining another example of the learning model for number detection. 第1実施形態における情報処理装置の計数処理を説明するフローチャートである。It is a flowchart explaining the counting process of the information processing apparatus in 1st Embodiment. カメラのその他の配設形態を説明する図である。It is a figure explaining other arrangement forms of a camera. カメラの撮影範囲のその他の例を表す図である。It is a figure showing the other example of the imaging | photography range of a camera. 生簀周縁に配設されたカメラによる撮影画像の例を生簀内の魚の数に関連付けて表す図である。It is a figure relating the example of the photography picture by the camera arranged at the ginger rim to the number of fish in ginger. さらに、カメラによる撮影画像の例を生簀内の魚の数に関連付けて表す図である。Furthermore, it is a figure showing the example of the photography picture by a camera in relation to the number of fish in a ginger. さらに、カメラによる撮影画像の例を生簀内の魚の数に関連付けて表す図である。Furthermore, it is a figure showing the example of the photography picture by a camera in relation to the number of fish in a ginger. 本発明に係る第2実施形態の計数システムの構成を簡略化して表すブロック図である。It is a block diagram which simplifies and represents the structure of the counting system of 2nd Embodiment which concerns on this invention. 第2実施形態におけるカメラの配設形態を説明する図である。It is a figure explaining the arrangement | positioning form of the camera in 2nd Embodiment. 本発明に係るその他の実施形態の情報処理装置の構成を簡略化して表すブロック図である。It is a block diagram simplifying and showing composition of an information processor of other embodiments concerning the present invention. 本発明に係るその他の実施形態の計数システムの構成を簡略化して表すブロック図である。It is a block diagram which simplifies and represents the structure of the counting system of other embodiment which concerns on this invention.

 以下に、本発明に係る実施形態を図面を参照しながら説明する。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.

 <第1実施形態>
 図1は、本発明に係る第1実施形態の計数システムの構成を簡略化して表すブロック図である。第1実施形態における計数システム10は、計測対象の物体である生簀内の魚の数を計測するシステムである。この計数システム10は、撮影装置であるカメラ11と、情報処理装置12とを備えている。
First Embodiment
FIG. 1 is a block diagram showing a simplified configuration of a counting system according to a first embodiment of the present invention. The counting system 10 in the first embodiment is a system that measures the number of fish in a ginger that is an object to be measured. The counting system 10 includes a camera 11 which is a photographing device and an information processing device 12.

 カメラ11は、防水機能を持ち、図2に表されるように、魚26が養殖されている生簀25内に配設される。第1実施形態では、カメラ11は、生簀25内における水底(水底に近い位置も含む)の中央部に配設されている。このような位置に配置されるカメラ11のレンズの向きは、水面を向く向き(上向き)となっている。また、カメラ11は、図3に表されるような撮影範囲(視野)を持っている。つまり、カメラ11の撮影範囲は、生簀25の大きさを考慮し、生簀25の側面側(周縁)も撮影できる範囲となっており、カメラ11は、生簀25内の水中を撮影空間として撮影する。 The camera 11 has a waterproof function, and as shown in FIG. 2, the camera 11 is disposed in the ginger 25 in which the fish 26 are cultured. In the first embodiment, the camera 11 is disposed at the center of the bottom of the water (including the position near the bottom) in the production bowl 25. The orientation of the lens of the camera 11 disposed at such a position is directed to the water surface (upward). Also, the camera 11 has a shooting range (field of view) as shown in FIG. That is, the shooting range of the camera 11 is a range in which the side (peripheral edge) of the ginger 25 can be photographed in consideration of the size of the ginger 25, and the camera 11 photographs the water in the ginger 25 as a photographing space .

 カメラ11を水中に配設する手法は特に限定されないが、その一例を次に述べる。すなわち、カメラ11は、それぞれ、図4に表されるような支持部材である金属板20に、レンズの向きが上向き(金属板20の基板面の上方側を向く向き)となるように支持固定される。カメラ11が支持固定される金属板20は、線条材である複数(4本)のロープ21により浮体であるブイ22に接続されている。また、各ロープ21におけるブイ22の反対側の端部側は錘23に接続されている。 Although the method in particular of arrange | positioning the camera 11 in water is not limited, the example is described next. That is, each of the cameras 11 is supported and fixed on the metal plate 20 as a supporting member as shown in FIG. 4 so that the direction of the lens is upward (the direction facing the upper side of the substrate surface of the metal plate 20). Be done. The metal plate 20 on which the camera 11 is supported and fixed is connected to the buoy 22 which is a floating body by a plurality of (four) ropes 21 which are wire members. Further, the opposite end side of the buoy 22 in each rope 21 is connected to the weight 23.

 このような構成を持つカメラ11の配設構造体が水中(生簀25)に投入されることにより、ブイ22は水面に浮き、錘23は水底側に沈み、これにより、金属板20は、ロープ21によって水中に吊下げられている形態となる。また、錘23が金属板20(換言すればカメラ11)の配設位置が大きく変動してしまうことを防止する。このように、金属板20とロープ21とブイ22と錘23によってカメラ11を水中に配設する手法は、構造が簡易であり、また、コンパクト化および軽量化が容易である。このことから、カメラ11を別の生簀25に移動させることが容易となる。 When the arrangement structure of the camera 11 having such a configuration is introduced into the water (raw water 25), the buoy 22 floats to the water surface, and the weight 23 sinks to the water bottom side, whereby the metal plate 20 is a rope 21 is suspended in water. Further, the weight 23 prevents the arrangement position of the metal plate 20 (in other words, the camera 11) from being largely changed. As described above, the method of arranging the camera 11 in water by the metal plate 20, the rope 21, the buoy 22, and the weight 23 has a simple structure and is easy to be compact and lightweight. From this, it becomes easy to move the camera 11 to another ginger 25.

 このように水中に配設されるカメラ11は、生簀25内の魚26を腹側から撮影することになる。例えば、カメラ11による撮影画像中の魚26は、図5A~図5Cに表されるような像となる。 The camera 11 thus disposed in the water shoots the fish 26 in the ginger 25 from the ventral side. For example, the fish 26 in the image captured by the camera 11 is an image as shown in FIGS. 5A to 5C.

 なお、カメラ11は、動画を撮影する機能を備えている撮影装置であるが、動画撮影機能を持たずに例えば静止画を設定の時間間隔毎に断続的に撮影する撮影装置をカメラ11として採用してもよい。また、カメラ11のキャリブレーションは、生簀25の環境や計測対象の魚の種類等を考慮した適宜なキャリブレーション手法によって行われる。ここでは、そのキャリブレーション手法の説明は省略する。 Although the camera 11 is a photographing device having a function of photographing a moving image, a photographing device that intermittently photographs, for example, a still image at each setting time interval without adopting a moving image photographing function is adopted as the camera 11 You may Further, the calibration of the camera 11 is performed by an appropriate calibration method in consideration of the environment of the ginger 25, the type of fish to be measured, and the like. Here, the description of the calibration method is omitted.

 さらに、カメラ11による撮影を開始する手法および撮影を停止する手法は、カメラ11の性能や生簀25の環境などを考慮した適宜な手法が採用される。例えば、魚の観測者(作業者)が、カメラ11を生簀25に進入させる前に手動により撮影を開始させ、また、カメラ11を生簀25から退出させた後に手動により撮影を停止させる。また、カメラ11が無線通信あるいは有線通信の機能を備えている場合には、撮影開始と撮影停止を制御する情報を送信できる操作装置と、カメラ11とを通信接続する。そして、観測者による操作装置の操作により、水中のカメラ11の撮影開始と撮影停止が制御されてもよい。 Further, as a method of starting photographing by the camera 11 and a method of stopping photographing, an appropriate method taking into consideration the performance of the camera 11, the environment of the production 25, and the like is adopted. For example, a fish observer (operator) manually starts shooting before the camera 11 enters the ginger 25 and stops shooting manually after the camera 11 is withdrawn from the ginger 25. When the camera 11 has the function of wireless communication or wired communication, the camera 11 is communicably connected to an operating device capable of transmitting information for controlling the start and stop of shooting. Then, the photographing start and the photographing stop of the camera 11 in the water may be controlled by the operation of the operation device by the observer.

 上述したようなカメラ11により撮影された撮影画像は、有線通信あるいは無線通信によって情報処理装置12に取り込まれてもよいし、可搬型記憶媒体に格納された後に当該可搬型記憶媒体から情報処理装置12に取り込まれてもよい。 The captured image captured by the camera 11 as described above may be captured by the information processing apparatus 12 by wired communication or wireless communication, or may be stored in the portable storage medium and then stored in the portable storage medium to process the information processing apparatus from the portable storage medium It may be incorporated into T.12.

 情報処理装置12は、図1に表されるように、概略すると、制御装置13と、記憶装置14とを備えている。また、情報処理装置12は、例えば観測者の操作により情報を情報処理装置12に入力する入力装置(例えば、キーボードやマウス)16と、情報を表示する表示装置17に接続されている。さらに、情報処理装置12は、当該情報処理装置12とは別体の外付けの記憶装置15に接続されていてもよい。 The information processing apparatus 12 generally includes a control device 13 and a storage device 14 as shown in FIG. The information processing apparatus 12 is connected to an input device (for example, a keyboard or a mouse) 16 which inputs information to the information processing apparatus 12 by an operation of an observer, for example, and a display device 17 which displays information. Furthermore, the information processing device 12 may be connected to an external storage device 15 separate from the information processing device 12.

 記憶装置14は、各種データやコンピュータプログラム(以下、プログラムとも記す)を記憶する機能を有し、例えば、ハードディスク装置や半導体メモリ等の記憶媒体により実現される。情報処理装置12に備えられる記憶装置14は一つには限定されず、複数種の記憶装置が情報処理装置12に備えられていてもよく、この場合には、複数の記憶装置を総称して記憶装置14と記す。また、記憶装置15も、記憶装置14と同様に、各種データやコンピュータプログラムを記憶する機能を有し、例えば、ハードディスク装置や半導体メモリ等の記憶媒体により実現される。なお、情報処理装置12が記憶装置15に接続されている場合には、記憶装置15には適宜な情報が格納される。また、この場合には、情報処理装置12は、適宜、記憶装置15に情報を書き込む処理および読み出す処理を実行するが、以下の説明では、記憶装置15に関する説明を省略する。 The storage device 14 has a function of storing various data and a computer program (hereinafter also referred to as a program), and is realized by a storage medium such as a hard disk device or a semiconductor memory, for example. The storage device 14 included in the information processing device 12 is not limited to one, and multiple types of storage devices may be included in the information processing device 12. In this case, a plurality of storage devices are collectively referred to. It is referred to as a storage device 14. The storage device 15 also has a function of storing various data and computer programs as the storage device 14 and is realized by a storage medium such as a hard disk device or a semiconductor memory, for example. When the information processing device 12 is connected to the storage device 15, appropriate information is stored in the storage device 15. Further, in this case, the information processing apparatus 12 appropriately executes the process of writing and reading information in the storage device 15, but in the following description, the description of the storage device 15 is omitted.

 第1実施形態では、記憶装置14には、カメラ11による撮影画像が、撮影したカメラを識別する情報や、撮影日時、天候の情報というような撮影条件に関わる情報などと関連付けられた状態で格納される。 In the first embodiment, the storage device 14 stores the image captured by the camera 11 in association with information identifying the captured camera, shooting date and time, information related to the shooting condition such as weather information, etc. Be done.

 制御装置13は、例えば、CPU(Central Processing Unit)等のプロセッサにより構成される。制御装置13は、例えばCPUが記憶装置14に格納されているコンピュータプログラムを実行することにより、次のような機能を有することができる。すなわち、制御装置13は、機能部として、抽出部30と、計数部31と、表示制御部32とを備えている。 The control device 13 is configured by, for example, a processor such as a CPU (Central Processing Unit). The control device 13 can have the following functions, for example, by the CPU executing a computer program stored in the storage device 14. That is, the control device 13 includes an extraction unit 30, a counting unit 31, and a display control unit 32 as functional units.

 表示制御部32は、表示装置17の表示動作を制御する機能を備えている。例えば、表示制御部32は、入力装置16から、カメラ11の撮影画像を再生する要求を受け取った場合に、要求に応じたカメラ11の撮影画像を記憶装置14から読み出し当該撮影画像を表示装置17に表示する。 The display control unit 32 has a function of controlling the display operation of the display device 17. For example, when the display control unit 32 receives a request to reproduce a photographed image of the camera 11 from the input device 16, the display control unit 32 reads the photographed image of the camera 11 according to the request from the storage device 14 and displays the photographed image. Display on

 抽出部30は、例えば、カメラ11による撮影画像の再生中に、観測者による入力装置16の操作によって魚の数を計測する要求が入力されたことを検知すると、撮影画像から予め定められた特徴量を抽出する機能を備えている。ここでの特徴量とは、記憶装置14に格納されている尾数検知用の学習モデルに使用されている特徴量である。尾数検知用の学習モデルは、図2のように配設されたカメラ11によって撮影された撮影画像から生簀25内の魚の数を検知(計数)する処理で使用されるモデルであり、画像の特徴量と魚の数との関係データである。当該尾数検知用の学習モデルは、魚の数が分かっている状態でカメラ11によって生簀25内の魚を撮影した多数の撮影画像を教師データ(教師画像)とした機械学習により生成される。図5A~図5Cは、カメラ11による生簀25内の撮影画像の例が生簀25内の魚の数に関連付けられて表されている。図5A~図5Cに表されるように、魚の数に応じて撮影画像の明るさや魚影の数などが変化している。このように魚の数に応じて変化する要素が特徴量として設定されている。 For example, when detecting that the request for measuring the number of fish has been input by the operation of the input device 16 by the observer during the reproduction of the photographed image by the camera 11, the extraction unit 30 determines a predetermined feature amount from the photographed image Have the ability to extract Here, the feature amount is a feature amount used in a learning model for number detection stored in the storage device 14. The learning model for detecting the number is a model used in the process of detecting (counting) the number of fish in the ginger 25 from the photographed image taken by the camera 11 disposed as shown in FIG. It is the related data of quantity and the number of fish. The learning model for detecting the number is generated by machine learning using teacher images (teacher images) as a large number of photographed images obtained by photographing the fish in the ginger 25 by the camera 11 in a state where the number of fish is known. 5A-5C, an example of a captured image in the ginger 25 by the camera 11 is represented in association with the number of fish in the ginger 25. FIG. As shown in FIGS. 5A to 5C, the brightness of the photographed image, the number of fish shadows, and the like change according to the number of fish. Thus, an element that changes according to the number of fish is set as the feature amount.

 尾数検知用の学習モデルを生成する機械学習には様々な手法が有り、要求する学習モデルの態様や魚の計測精度などを考慮した適宜な機械学習の手法が尾数検知用の学習モデルの生成手法として採用される。 There are various methods for machine learning that generates a learning model for detecting the number of fish, and an appropriate method of machine learning that takes into consideration the aspect of the required learning model and the measurement accuracy of fish etc. is a method for generating a learning model for detecting the number of fish Will be adopted.

 尾数検知用の学習モデルは、例えば、図6Aに表されるような態様であってもよいし、図7に表されるような態様であってもよく、上記のような学習モデルの生成手法の設定と併せて適宜に設定される。図6Aの学習モデルは、教師データから抽出された特徴量の変化に応じて魚の数(尾数)が連続的に変化するモデルである。このモデルは、例えば、教師データから得られる図6Bに表されるような多数の特徴量と尾数の関係を表す測定点Pを利用した回帰分析によって得られる。 The learning model for number detection may be, for example, an aspect as shown in FIG. 6A or an aspect as shown in FIG. 7, and a method for generating the learning model as described above. It is set appropriately along with the setting of. The learning model in FIG. 6A is a model in which the number of fish (the number of fish) changes continuously according to the change in the feature value extracted from the teacher data. This model is obtained, for example, by regression analysis using measurement points P representing the relationship between a large number of feature amounts and the number as shown in FIG. 6B obtained from teacher data.

 図7の学習モデルは、教師画像から抽出した互いに異なる複数の特徴量M,Nの組み合わせが、当該特徴量M,Nの組み合わせを抽出した教師画像における生簀25内の魚の数ごとにグループ分け(クラス分け)されているモデルである。 In the learning model of FIG. 7, a combination of a plurality of different feature amounts M and N extracted from the teacher image is grouped according to the number of fish in the production 25 in the teacher image in which the combination of the feature amounts M and N is extracted ( It is a model classified into classes.

 抽出部30は、上記のような尾数検知用の学習モデルで使用されている特徴量を撮影画像から抽出する。この特徴量の抽出には、例えば、学習モデルの生成に利用されるディープラーニングのフレームワークが抽出器として利用される。 The extraction unit 30 extracts feature amounts used in the above-described learning model for number detection from the captured image. For extraction of this feature quantity, for example, a deep learning framework used for generating a learning model is used as an extractor.

 計数部31は、抽出部30により撮影画像から抽出された特徴量を記憶装置14における尾数検知用の学習モデルに照合し、抽出された特徴量に対応する魚の数を尾数検知用の学習モデルから計測対象の魚の数として計数する機能を備えている。 The counting unit 31 collates the feature quantity extracted from the photographed image by the extracting unit 30 with the learning model for detecting the number of fish in the storage unit 14, and the number of fish corresponding to the extracted feature quantity from the learning model for detecting the fish quantity It has a function to count as the number of fish to be measured.

 ところで、水の透明度や撮影画像の輝度は季節や天候等の撮影環境によって変化する。このことを考慮し、計数部31は、季節や天候などの撮影環境の情報(環境情報)を外部から受け付ける。そして、計数部31は、受け付けた撮影環境の情報と、記憶装置14に予め格納されている補正用のデータとを利用して、学習モデルから検知した魚の数を撮影環境に応じて補正する機能を備えていてもよい。あるいは、撮影環境ごとに学習モデルが生成され、撮影環境の情報が関連付けられた学習モデルが記憶装置14に格納されていてもよい。この場合には、計数部31は、受け付けた撮影環境の情報に応じた学習モデルを利用して、魚の数を検知する。 By the way, the transparency of water and the brightness of the photographed image change depending on the photographing environment such as the season and the weather. In consideration of this, the counting unit 31 externally receives information (environmental information) of the photographing environment such as the season and the weather. Then, the counting unit 31 has a function of correcting the number of fish detected from the learning model according to the imaging environment, using the received information of the imaging environment and the data for correction stored in advance in the storage device 14 May be provided. Alternatively, a learning model may be generated for each shooting environment, and a learning model associated with information on the shooting environment may be stored in the storage device 14. In this case, the counting unit 31 detects the number of fish using a learning model corresponding to the received information of the imaging environment.

 さらに、魚の養殖においては、例えば、魚は年齢別に分けられ、年齢に合った大きさ(生簀の径と深さ)の生簀25で養殖される。このような場合には、魚の年齢(魚の大きさ)と生簀の大きさに関連付けられた互いに異なる複数の学習モデルが生成される。計数部31は、外部から受け付けた魚の年齢(魚の大きさ)と生簀の大きさの情報に応じた学習モデルを利用して、魚の数を検知してもよい。 Furthermore, in fish farming, for example, fish are divided according to their age, and are farmed in ginger 25 of size (diameter and depth of ginger) according to age. In such a case, a plurality of different learning models associated with the age of the fish (fish size) and the size of the ginger are generated. The counting unit 31 may detect the number of fish using a learning model according to information of fish age (fish size) and ginger size received from the outside.

 第1実施形態の計数システム10は上記のように構成されている。次に、第1実施形態における情報処理装置12の計数処理の一例を図8のフローチャートに基づいて説明する。 The counting system 10 of the first embodiment is configured as described above. Next, an example of the counting process of the information processing apparatus 12 in the first embodiment will be described based on the flowchart of FIG.

 例えば、情報処理装置12の抽出部30は、観測者による入力装置16の操作により、計測対象の魚を計数する要求が入力されたことを検知すると(ステップS101)、カメラ11による撮影画像を記憶装置14から取得する。そして、抽出部30は、取得したカメラ11による撮影画像から予め設定された特徴量を抽出する(ステップS102)。 For example, when the extractor 30 of the information processing device 12 detects that a request to count fish to be measured has been input by the operation of the input device 16 by the observer (step S101), the image captured by the camera 11 is stored. Acquired from the device 14. Then, the extraction unit 30 extracts a feature amount set in advance from the acquired image captured by the camera 11 (step S102).

 その後、計数部31が、抽出された特徴量を尾数検知用の学習モデルに照合し、当該学習モデルから、抽出された特徴量に対応する尾数を測定対象の魚の数として検知(計数)する(ステップS103)。そして、計数部31は、例えば、計測した魚の数を表示制御部32によって表示装置17に表示させる。情報処理装置12は、このような処理により、撮影画像から計測対象の魚の数を計測し、計測した魚の数を出力することができる。 Thereafter, the counting unit 31 collates the extracted feature quantity with the learning model for detecting the number, and detects (counts) the number of fish corresponding to the extracted feature quantity from the learning model as the number of fish to be measured ( Step S103). Then, the counting unit 31 causes the display control unit 32 to display the measured number of fish, for example. The information processing apparatus 12 can measure the number of fish to be measured from the captured image and output the measured number of fish by such processing.

 第1実施形態の計数システム10は、情報処理装置12の抽出部30および計数部31により、機械学習による尾数検知用の学習モデルを利用して、撮影画像から計測対象の魚の数を検知する。機械学習による学習モデルは、教師データの数を増加することにより、当該モデルを利用した検知精度を向上させることができることから、情報処理装置12は、機械学習による学習モデルを利用することにより、物体の計数の精度を容易に高めることができる。また、情報処理装置12は、撮影画像の特徴量を抽出し、当該特徴量に基づいて計測対象の物体(魚)の数を検知するので、撮影画像における魚の数を一尾ずつ計測する場合に比べて、魚の数が多くなっても計測処理に要する時間の増加を抑制できる。その上、情報処理装置12は、魚の数を一尾ずつ計測するのではなく、撮影画像から抽出される特徴量に基づいて魚の数を計測するので、魚の重なりや水の濁りに起因して撮影画像において検知できない魚があっても、魚の数を精度良く検知(計数)できる。 In the counting system 10 according to the first embodiment, the extraction unit 30 and the counting unit 31 of the information processing device 12 detect the number of fish to be measured from the photographed image by using a learning model for detecting the number by machine learning. Since the learning model by machine learning can improve the detection accuracy using the model by increasing the number of teacher data, the information processing apparatus 12 can use the learning model by machine learning to obtain an object. The accuracy of counting can be easily enhanced. In addition, since the information processing apparatus 12 extracts the feature amount of the captured image and detects the number of objects (fish) to be measured based on the feature amount, the number of fish in the captured image is measured one by one. In comparison, even if the number of fish increases, it is possible to suppress an increase in the time required for measurement processing. Moreover, since the information processing apparatus 12 measures the number of fish based on the feature quantity extracted from the photographed image instead of measuring the number of fish one by one, the photographing is caused due to the overlapping of the fish and the turbidity of the water. Even if there are fish that can not be detected in the image, the number of fish can be detected (counted) with high accuracy.

 < 変形例 >
 なお、上述した構成では、カメラ11は、水底(水底に近い位置)に配設されている。これに代えて、例えば、図9のように配設されるカメラ35が用いられてもよい。すなわち、カメラ35は、図9のように、レンズの向きが支持部材である金属板20の基板面に平行となるような横向きで金属板20に固定される。換言すれば、カメラ35は、水中(生簀25)に投入された状態で、水面に平行となるような横向きで配設される。図10は、生簀25を上方側から見た場合における横向きのカメラ35の撮影範囲と生簀25との関係例を表す図である。図10に表されているように、横向きのカメラ35は、生簀25の周縁部に配置され、生簀25の周縁部(側面側)から生簀25内の魚を撮影する。このカメラ35は、生簀25のほぼ全体を撮影可能な視野を持つものとする。また、水中における横向きのカメラ35の深さ位置(高さ位置)は、水底と水面との間の中間部となる位置や、魚の種類によっては群れやすい深さ位置があることからこの場合には群れやすい深さ位置等であり、尾数(魚の数)検知に適切な深さ位置とする。
<Modification example>
In the configuration described above, the camera 11 is disposed at the bottom of the water (a position near the bottom of the water). Instead of this, for example, a camera 35 disposed as shown in FIG. 9 may be used. That is, as shown in FIG. 9, the camera 35 is fixed to the metal plate 20 in the horizontal orientation such that the lens orientation is parallel to the substrate surface of the metal plate 20 as the support member. In other words, the camera 35 is disposed sideways so as to be parallel to the water surface in a state of being introduced into the water (raw water 25). FIG. 10 is a diagram illustrating an example of the relationship between the shooting range of the horizontally oriented camera 35 and the ginger 25 when the ginger 25 is viewed from the upper side. As shown in FIG. 10, the horizontally oriented camera 35 is disposed at the periphery of the ginger 25 and photographs the fish in the ginger 25 from the periphery (side surface) of the ginger 25. The camera 35 has a field of view in which almost the entire production area 25 can be photographed. In addition, the depth position (height position) of the horizontally oriented camera 35 in water is the middle position between the bottom of the water and the water surface, and in this case, the depth position tends to be crowded depending on the type of fish. It is a depth position etc. which are easy to be crowded, and it is considered as a depth position suitable for the number of fish (number of fish) detection.

 このようにカメラ35を配設する場合には、カメラ35は、生簀25内の魚を横側から撮影することになる。図11A~図11Cには、横向きのカメラ35により撮影された魚を含む撮影画像の例が魚の数毎に表されている。このようにカメラ35を横向きに配設する場合には、同様に配設されたカメラ35により撮影された撮影画像を教師データとして尾数検知用の学習モデルが生成される。また、抽出部30は、横向きのカメラ35による撮影画像から、そのように生成された尾数検知用の学習モデルに使用されている特徴量を抽出する。さらに、計数部31は、抽出部30により抽出された特徴量を、横向きのカメラ35による撮影画像に基づいた尾数検知用の学習モデルに照合することにより、魚の数を検知する。 When the camera 35 is disposed as described above, the camera 35 shoots the fish in the ginger 25 from the side. In FIGS. 11A to 11C, examples of captured images including fish captured by the horizontally oriented camera 35 are shown for each number of fish. As described above, when the camera 35 is disposed sideways, a learning model for detecting the number is generated by using a photographed image taken by the camera 35 disposed similarly as teacher data. Further, the extraction unit 30 extracts, from the image captured by the horizontally oriented camera 35, the feature amount used in the learning model for number detection generated as such. Furthermore, the counting unit 31 detects the number of fish by collating the feature quantity extracted by the extraction unit 30 with a learning model for detecting the number of fishes based on a photographed image by the horizontally oriented camera 35.

 上記のように、横向きのカメラ35によって周縁部から生簀25内の魚を撮影する場合であっても、機械学習による学習モデルと、撮影画像から抽出される特徴量とを利用して計測対象の魚の数を検知することにより、計数システム10は、前述した効果と同様の効果を得ることができる。 As described above, even in the case where the fish in the ginger 25 are photographed from the peripheral portion by the horizontally oriented camera 35, the measurement target is obtained using the learning model by machine learning and the feature quantity extracted from the photographed image. By detecting the number of fish, the counting system 10 can obtain the same effect as the effect described above.

 <第2実施形態>
 以下に、本発明に係る第2実施形態を説明する。なお、第2実施形態の説明において、第1実施形態の計数システムを構成する構成部分と同一名称部分には同一符号を付し、その共通部分の重複説明は省略する。
Second Embodiment
The second embodiment according to the present invention will be described below. In the description of the second embodiment, the same reference numerals are given to the same name parts as the constituent parts constituting the counting system of the first embodiment, and the duplicate explanation of the common parts is omitted.

 図12は、第2実施形態の計数システムの構成を簡略化して表すブロック図である。第2実施形態の計数システム10は、第1実施形態の構成に加えて、カメラ35が備えられている。つまり、第2実施形態の計数システム10は、複数のカメラ11,35を利用する。例えば、図13に表されているように、1台のカメラ11は、生簀25における水底中央部に上向きに(水面に向けて)配設され、別の1台のカメラ35は、生簀25における周縁部に横向きに配設される。横向きのカメラ35の深さ位置は、例えば、水底と水面との間の中間部となる位置や、魚の種類によっては群れやすい深さ位置があることからこの場合には群れやすい深さ位置などであり、尾数検知に適切な深さ位置とする。なお、カメラ11,35は、第1実施形態で述べたと同様に、ロープ21やブイ22等を利用して水中に配設されるが、図13ではロープ21やブイ22の図示が省略されている。 FIG. 12 is a block diagram schematically showing the configuration of the counting system of the second embodiment. The counting system 10 of the second embodiment is provided with a camera 35 in addition to the configuration of the first embodiment. That is, the counting system 10 of the second embodiment uses the plurality of cameras 11 and 35. For example, as shown in FIG. 13, one camera 11 is disposed upward (toward the water surface) at the center of the bottom of the bottom of the production line 25, and another camera 35 is disposed at the bottom of the production line 25. It is disposed laterally on the periphery. The depth position of the horizontally oriented camera 35 is, for example, a position at an intermediate portion between the bottom of the water and the water surface, or a depth position where it is easy to swarm depending on the type of fish. Yes, and the appropriate depth position for number detection. The cameras 11 and 35 are disposed in water using the rope 21 and the buoy 22 as in the first embodiment, but the rope 21 and the buoy 22 are not illustrated in FIG. There is.

 カメラ11,35はそれぞれ生簀25全体を撮影可能な視野を持ち、互いに異なる方向から生簀25内を撮影する。また、カメラ11,35は、それぞれ、動画により魚を撮影する機能を持つ撮影装置であるが、第1実施形態で述べたと同様に、動画撮影機能を持たずに例えば静止画を設定の時間間隔毎に断続的に撮影する撮影装置をカメラ11,35として採用してもよい。 Each of the cameras 11 and 35 has a field of view capable of capturing the entire production 25 and captures the inside of the production 25 from different directions. The cameras 11 and 35 are imaging devices each having a function to capture a fish by a moving image, but as described in the first embodiment, for example, a time interval for setting a still image is not provided without having a moving image capturing function. An imaging device that captures images intermittently may be adopted as the cameras 11 and 35 each time.

 第2実施形態の計数システムでは、情報処理装置12は、同時刻に撮影されたカメラ11,35の撮影画像を用いて、魚の数を検知する。このことを考慮し、同時刻に撮影されたカメラ11による撮影画像とカメラ35による撮影画像とを得やすくするために、撮影中に、時間合わせに用いる目印となる変化をもカメラ11,35に撮影させることが好ましい。例えば、時間合わせに用いる目印として、自動制御あるいは観測者(作業者)の手動によって短時間発光する光を利用することとし、カメラ11,35がその光を撮影するようにしてもよい。これにより、カメラ11,35による撮影画像に撮影されたその光に基づき、カメラ11による撮影画像と、カメラ35による撮影画像との時間合わせ(同期)を行うことが容易となる。 In the counting system of the second embodiment, the information processing apparatus 12 detects the number of fish using the captured images of the cameras 11 and 35 captured at the same time. Taking this into consideration, in order to make it easy to obtain an image taken by the camera 11 taken at the same time and an image taken by the camera 35, it is also possible It is preferable to take a picture. For example, light that is emitted for a short time by automatic control or manually by the observer (worker) may be used as a mark used for time alignment, and the cameras 11 and 35 may capture the light. Accordingly, based on the light captured in the captured image by the cameras 11 and 35, it becomes easy to perform time alignment (synchronization) of the captured image by the camera 11 and the captured image by the camera 35.

 第2実施形態では、前述したように、同時刻に撮影されたカメラ11,35の撮影画像を利用する。このことを考慮し、情報処理装置12における制御装置13の表示制御部32は、表示装置17がカメラ11,35の撮影画像を二画面表示により並んで表示するように表示装置17を制御する機能を備える。また、表示制御部32は、カメラ11,35に同時撮影された前述したような時間合わせの目印を利用して、観測者がカメラ11,35によるそれぞれの撮影画像の再生コマを調整可能な機能を備える。さらに、表示制御部32は、カメラ11,35による撮影画像の一方を表示する一画面表示と、カメラ11,35による撮影画像の両方を表示する二画面表示とを切り換える機能を備えていてもよい。このような切り換え機能を備えている場合には、表示制御部32は、さらに、観測者による切り換えの指示を受け付ける表示を表示装置17に表示させる機能を備える。その切り換えの指示を受け付ける表示は、例えば、アイコンの態様であってもよいし、文字であってもよいし、ラジオボタンの態様であってもよいというように、様々な態様があり、適宜な態様が採用される。 In the second embodiment, as described above, the captured images of the cameras 11 and 35 captured at the same time are used. In consideration of this, the display control unit 32 of the control device 13 in the information processing device 12 has a function of controlling the display device 17 such that the display images of the cameras 11 and 35 are displayed side by side in two-screen display. Equipped with In addition, the display control unit 32 has a function that allows the observer to adjust the reproduction frame of each photographed image by the cameras 11 and 35 by using the time alignment mark as described above simultaneously photographed by the cameras 11 and 35. Equipped with Furthermore, the display control unit 32 may have a function of switching between one-screen display for displaying one of the captured images by the cameras 11 and 35 and dual-screen display for displaying both the captured images by the cameras 11 and 35. . When such a switching function is provided, the display control unit 32 further has a function of causing the display device 17 to display a display for receiving an instruction for switching by the observer. The display for receiving the switching instruction may be, for example, in the form of an icon, may be characters, or may be in the form of a radio button. Aspects are employed.

 第2実施形態では、同時撮影されたカメラ11,35の両方の撮影画像を利用して尾数検知用の学習モデルが機械学習により生成される。つまり、尾数検知用の学習モデルは、生簀25内の魚の数が分かっている状態でカメラ11,35により同時撮影された多数の撮影画像を教師データ(教師画像)とした機械学習により生成される。尾数検知用の学習モデルは、第1実施形態と同様に、撮影画像から抽出される特徴量と魚の数との関係データであり、記憶装置14に格納される。 In the second embodiment, a learning model for detecting the number is generated by machine learning using both captured images of the cameras 11 and 35 captured simultaneously. That is, a learning model for detecting the number is generated by machine learning using teacher images (teacher images) as a large number of captured images simultaneously captured by the cameras 11 and 35 in a state in which the number of fish in the ginger 25 is known. . As in the first embodiment, a learning model for detecting the number of fish is relationship data between the feature quantity extracted from the photographed image and the number of fish, and is stored in the storage device 14.

 抽出部30は、同時に撮影されたカメラ11による撮影画像とカメラ35による撮影画像との両方から、尾数検知用の学習モデルで使用されている特徴量を抽出する機能を備えている。 The extraction unit 30 has a function of extracting a feature value used in a number detection learning model from both an image captured by the camera 11 and an image captured by the camera 35 captured simultaneously.

 計数部31は、カメラ11,35による同時撮影の撮影画像から抽出部30によって抽出された特徴量を記憶装置14の尾数検知用の学習モデルに照合し、当該学習モデルから、抽出された特徴量に対応する尾数を測定対象の魚の数として検知する機能を備えている。 The counting unit 31 collates the feature quantity extracted by the extracting unit 30 from the images captured simultaneously with the cameras 11 and 35 with the learning model for detecting the number of fish in the storage device 14 and extracts the feature quantity extracted from the learning model. It has a function to detect the number of fish corresponding to as the number of fish to be measured.

 第2実施形態の計数システム10における上記以外の構成は、第1実施形態の計数システム10の構成と同様である。第2実施形態の計数システム10は、複数のカメラ11,35による撮影画像を利用することにより、生簀25内の魚の数を検知する際に利用する情報量をより増やすことができるので、魚の数の検知精度をより一層向上できる。 The remaining configuration of the counting system 10 according to the second embodiment is similar to that of the counting system 10 according to the first embodiment. The counting system 10 according to the second embodiment can increase the amount of information used when detecting the number of fish in the ginger 25 by using the images taken by the plurality of cameras 11 and 35, so the number of fish can be increased. Detection accuracy can be further improved.

 < 変形例 >
 なお、計数システム10は、上述したような第2実施形態の構成に加えて、次のような構成を備えていてもよい。すなわち、計数システム10は、水底のカメラ11による撮影画像を利用して生簀25内の魚の数を検知するモード1と、カメラ11,35による撮影画像を利用して生簀25内の魚の数を検知するモード2とを切り換える構成を備えていてもよい。つまり、記憶装置14には、水底のカメラ11による撮影画像を利用して機械学習により生成される尾数検知用の学習モデル(モード1用の学習モデル)が格納される。また、記憶装置14には、水底のカメラ11および生簀周縁のカメラ35による撮影画像を利用して機械学習により生成される尾数検知用の学習モデル(モード2用の学習モデル)が格納される。さらに、制御装置13は、機能部として、図12における点線で表される切り換え部34を備える。切り換え部34は、例えば観測者による入力装置16の操作によってモードを切り換える要求が発せられた場合には、その要求を受けて、尾数検知のモードをモード1からモード2に又はその逆に切り換えることを抽出部30と計数部31に指示する機能を備える。抽出部30と計数部31は、切り換え部34からの指示に応じて、モード1あるいはモード2で動作する。つまり、モード1の場合には、抽出部30と計数部31は、第1実施形態で述べた機能と同様に機能する。モード2の場合には、抽出部30と計数部31は、第2実施形態で述べた機能と同様に機能する。
<Modification example>
In addition to the configuration of the second embodiment as described above, the counting system 10 may have the following configuration. That is, the counting system 10 detects the number of fish in the ginger 25 using mode 1 in which the number of fish in the ginger 25 is detected using the image photographed by the camera 11 at the bottom of the water and the image photographed by the cameras 11 and 35 It may have a configuration to switch between mode 2 and That is, the storage device 14 stores a learning model for number detection (learning model for mode 1) generated by machine learning using an image captured by the camera 11 at the bottom of the water. In addition, the storage device 14 stores a learning model for detecting the number of rays (learning model for mode 2) generated by machine learning using images captured by the camera 11 at the bottom of the water and the camera 35 at the periphery of the ginger. Furthermore, the control device 13 includes a switching unit 34 represented by a dotted line in FIG. 12 as a functional unit. When a request to switch the mode is issued, for example, by the operation of the input device 16 by the observer, the switching unit 34 switches the number detection mode from mode 1 to mode 2 or vice versa in response to the request. Are provided to the extracting unit 30 and the counting unit 31. The extracting unit 30 and the counting unit 31 operate in mode 1 or mode 2 in accordance with an instruction from the switching unit 34. That is, in mode 1, the extraction unit 30 and the counting unit 31 function in the same manner as the functions described in the first embodiment. In the case of mode 2, the extraction unit 30 and the counting unit 31 function in the same manner as the functions described in the second embodiment.

 上述したように、計数システム10がモード1とモード2を切り換え可能な構成を備える場合には、何らかの不具合によってカメラ35の撮影画像が尾数検知にとっては不良である場合に、例えば観測者が尾数検知のモードをモード2からモード1に切り換える。これにより、カメラ35の撮影画像が尾数検知にとっては不良な場合でも、計数システム10は、生簀25内の魚の数を検知できる。 As described above, when the counting system 10 has a configuration capable of switching between mode 1 and mode 2, for example, the observer detects the number of fish if the photographed image of the camera 35 is defective for the fish number detection due to some problem. Mode is switched from mode 2 to mode 1. Thereby, even when the photographed image of the camera 35 is not good for the number detection, the counting system 10 can detect the number of fish in the ginger 25.

 さらにまた、計数システム10は、次のような構成を備えていてもよい。すなわち、計数システム10は、次のような3つのモード1-1,1-2,2の中から択一的に選択されたモードで動作する構成を備えていてもよい。モード1-1とは、水底のカメラ11による撮影画像を利用して生簀25内の魚の数を検知するモードである。モード1-2とは、生簀周縁のカメラ35による撮影画像を利用して生簀25内の魚の数を検知するモードである。モード2とは、水底のカメラ11および生簀周縁のカメラ35による撮影画像を利用して生簀25内の魚の数を検知するモードである。 Furthermore, the counting system 10 may have the following configuration. That is, the counting system 10 may be configured to operate in a mode which is alternatively selected from the following three modes 1-1, 1-2, and 2. The mode 1-1 is a mode in which the number of fish in the ginger 25 is detected using an image captured by the camera 11 at the bottom of the water. Mode 1-2 is a mode in which the number of fish in the ginger 25 is detected using an image captured by the camera 35 at the periphery of the ginger. Mode 2 is a mode for detecting the number of fish in the ginger 25 using images taken by the camera 11 at the bottom of the water and the camera 35 at the periphery of the ginger.

 計数システム10が3つのモード1-1,1-2,2で動作可能な場合には、記憶装置14には、モード1-1用の学習モデルと、モード1-2用の学習モデルと、モード2用の学習モデルが格納される。モード1-1用の学習モデルは、水底のカメラ11による撮影画像を利用して機械学習により生成される尾数検知用の学習モデルである。モード1-2用の学習モデルは、生簀周縁のカメラ35による撮影画像を利用して機械学習により生成される尾数検知用の学習モデルである。モード2用の学習モデルは、水底のカメラ11および生簀周縁のカメラ35による撮影画像を利用して機械学習により生成される尾数検知用の学習モデルである。 When the counting system 10 can operate in three modes 1-1, 1-2, 2, the storage device 14 includes a learning model for mode 1-1 and a learning model for mode 1-2. A learning model for mode 2 is stored. The learning model for mode 1-1 is a learning model for number detection generated by machine learning using an image captured by the camera 11 at the bottom of the water. The learning model for mode 1-2 is a learning model for number detection generated by machine learning using an image captured by the camera 35 at the periphery of ginger. The learning model for mode 2 is a learning model for number detection generated by machine learning using images captured by the camera 11 at the bottom of the water and the camera 35 at the periphery of the ginger.

 制御装置13には切り換え部34が備えられる。切り換え部34は、例えば観測者による入力装置16の操作によって切り換え後のモードを表す情報を受け取った場合には、尾数検知のモードを、受け取った情報に基づいたモードに切り換えることを抽出部30と計数部31に指示する機能を備える。抽出部30と計数部31は、切り換え部34により指示されたモードに応じた学習モデルを利用して生簀25内の魚の数を検知すべく機能する。 The control device 13 is provided with a switching unit 34. The switching unit 34 switches the number detection mode to a mode based on the received information, for example, when the information representing the mode after switching is received by the operation of the input device 16 by the observer. A function of instructing the counting unit 31 is provided. The extraction unit 30 and the counting unit 31 function to detect the number of fish in the raw fish 25 using a learning model corresponding to the mode instructed by the switching unit 34.

 このようにモード1-1,1-2,2で動作可能な構成を備えることにより、カメラ11,35の一方から撮影画像を取得できない場合や、カメラ11,35の一方の撮影画像が尾数検知に不適切である場合であっても、計数システム10は生簀25の魚の数を検知できる。これにより、計数システム10は利便性を高めることができる。 As described above, by providing the configuration capable of operating in the modes 1-1, 1-2, 2, it is possible to acquire a captured image from one of the cameras 11 and 35, or to detect the number of captured images of one of the cameras 11 and 35. Even if it is inappropriate, the counting system 10 can detect the number of fish in the production 25. Thereby, the counting system 10 can improve the convenience.

 <その他の実施形態>
 なお、本発明は第1実施形態に限定されることなく、様々な実施の形態を採り得る。例えば、第1と第2の実施形態の計数システム10において、1枚の撮影画像(第2実施形態ではカメラ11,35による一組の撮影画像)に基づいた抽出部30と計数部31の機能による算出値をそのまま計測対象の物体の数(確定値)として出力している。これに代えて、例えば、計数部31は、1枚の撮影画像(第2実施形態では複数組の撮影画像)に基づいて算出した魚の数(計測対象の物体の数)を魚の数の計測値として記憶装置14に格納する機能を備えていてもよい。そして、計数部31は、さらに、予め設定された個数の計測値(例えば設定の撮影時間内の複数(複数組)の撮影画像に基づいた複数の計測値)を記憶装置14から読み出し当該複数の計測値の例えば平均値を魚の数の確定値として算出する機能を備えていてもよい。このような機能を計数部31が備えることにより、計数システム10は、計測対象の物体の計測精度の向上を図ることができる。
<Other Embodiments>
The present invention is not limited to the first embodiment, and various embodiments can be adopted. For example, in the counting system 10 according to the first and second embodiments, the functions of the extracting unit 30 and the counting unit 31 based on one shot image (a pair of shot images by the cameras 11 and 35 in the second embodiment) The calculated value according to is output as it is as the number of objects to be measured (finalized value). Instead of this, for example, the counting unit 31 measures the number of fish (the number of objects to be measured) calculated based on one photographed image (a plurality of photographed images in the second embodiment) as a measurement value of the number of fish As a storage device 14 may be provided. Then, the counting unit 31 further reads a predetermined number of measured values (for example, a plurality of measured values based on a plurality of (multiple sets of) captured images within the set imaging time) from the storage device 14 A function may be provided to calculate, for example, the average value of the measurement values as the determined value of the number of fish. By providing the counting unit 31 with such a function, the counting system 10 can improve the measurement accuracy of the object to be measured.

 図14には、本発明に係るその他の実施形態の情報処理装置の構成が簡略化して表されている。図14における情報処理装置40は、機能部として、抽出部41と、計数部42とを備えている。この情報処理装置40は、図15に表されるように、撮影装置51と共に、計数システム50を構成する。撮影装置51は、計測対象の物体が存在している撮影空間を撮影する構成を備えている。 FIG. 14 shows a simplified configuration of the information processing apparatus according to another embodiment of the present invention. The information processing apparatus 40 in FIG. 14 includes an extraction unit 41 and a counting unit 42 as functional units. The information processing device 40 constitutes a counting system 50 together with the photographing device 51 as shown in FIG. The photographing device 51 has a configuration for photographing a photographing space in which an object to be measured exists.

 情報処理装置40の抽出部41は、計測対象の物体が撮影されている撮影画像から、計測対象の物体の数に応じて変化する予め定められた特徴量を抽出する機能を備えている。計数部42は、機械学習による特徴量と物体の数との関係データである学習モデルに、抽出された特徴量を照合することにより、学習モデルから計測対象の物体の数を検知する機能を備えている。 The extraction unit 41 of the information processing apparatus 40 has a function of extracting a predetermined feature amount that changes in accordance with the number of objects to be measured from a photographed image in which the object to be measured is photographed. The counting unit 42 has a function of detecting the number of objects to be measured from the learning model by collating the extracted feature amounts with a learning model which is relationship data between the feature amount by machine learning and the number of objects. ing.

 情報処理装置40および計数システム50は、上記のような構成を備えることにより、撮影装置による撮影画像を利用して物体の数を計測する場合に、計測対象の物体の数が多くとも物体の数の計測処理に要する時間の増加を抑制できる。その上、情報処理装置40および計数システム50は、撮影画像から抽出される特徴量に基づいて計測対象の物体の数を計測する。このため、情報処理装置40および計数システム50は、物体の重なり等に起因して撮影画像において検知できない計測対象の物体があっても、計測対象の物体の数を精度良く検知(計数)できる。 When the information processing apparatus 40 and the counting system 50 have the above-described configuration and measure the number of objects using a captured image by the imaging apparatus, the number of objects to be measured is at most the number of objects. It is possible to suppress an increase in the time required for measurement processing of Moreover, the information processing device 40 and the counting system 50 measure the number of objects to be measured based on the feature amount extracted from the captured image. Therefore, the information processing apparatus 40 and the counting system 50 can accurately detect (count) the number of objects to be measured even if there is an object to be measured that can not be detected in the captured image due to overlapping of objects or the like.

以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above by taking the above-described embodiment as an exemplary example. However, the present invention is not limited to the embodiments described above. That is, the present invention can apply various aspects that can be understood by those skilled in the art within the scope of the present invention.

 この出願は、2017年9月4日に出願された日本出願特願2017-169793および2017年11月22日に出願された日本出願特願2017-224834を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-169793 filed on Sep. 4, 2017 and Japanese Patent Application No. 2017-224834 filed on November 22, 2017, The entire disclosure is incorporated herein.

 10,50 計数システム
 11,35 カメラ
 12,40 情報処理装置
 30,41 抽出部
 31,42 計数部
 51 撮影装置
Reference Signs List 10, 50 counting system 11, 35 camera 12, 40 information processing device 30, 41 extraction unit 31, 42 counting unit 51 imaging device

Claims (9)

 計測対象の物体が撮影されている撮影画像から、前記計測対象の物体の数に応じて変化する予め定められた特徴量を抽出する抽出手段と、
 機械学習による前記特徴量と前記物体の数との関係データである学習モデルに、抽出された前記特徴量を照合することにより、前記学習モデルから前記計測対象の物体の数を検知する計数手段と
を備える情報処理装置。
An extraction unit that extracts a predetermined feature amount that changes in accordance with the number of objects to be measured from a photographed image in which the object to be measured is photographed;
Counting means for detecting the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model which is relationship data between the feature amount and the number of objects by machine learning; An information processing apparatus comprising:
 前記抽出手段は、前記計測対象の物体が互いに異なる方向からそれぞれ撮影されている複数の撮影画像から前記特徴量を抽出し、
 前記計数手段は、前記互いに異なる方向からそれぞれ撮影された撮影画像を利用した機械学習による前記学習モデルに基づいて、前記計測対象の物体の数を検知する請求項1に記載の情報処理装置。
The extraction unit extracts the feature amount from a plurality of photographed images in which objects to be measured are respectively photographed from different directions.
The information processing apparatus according to claim 1, wherein the counting unit detects the number of objects to be measured based on the learning model by machine learning using captured images respectively captured from the different directions.
 前記学習モデルには、撮影環境の情報が関連付けられており、
 前記計数手段は、前記撮影画像の撮影環境に応じた前記撮影環境の情報に関連付けられている前記学習モデルから前記計測対象の物体の数を検知する請求項1又は請求項2に記載の情報処理装置。
Information on shooting environment is associated with the learning model,
The information processing according to claim 1 or 2, wherein the counting unit detects the number of objects to be measured from the learning model associated with the information of the photographing environment according to the photographing environment of the photographed image. apparatus.
 前記計数手段は、前記撮影画像の撮影の環境情報を外部から受け付け、前記撮影画像の撮影環境に応じて、前記学習モデルから検知した前記計測対象の物体の数を補正する請求項1又は請求項2に記載の情報処理装置。 The counting means receives environment information of the shooting of the photographed image from the outside, and corrects the number of objects of the measurement object detected from the learning model according to the shooting environment of the photographed image. The information processing apparatus according to 2.  前記学習モデルは、前記特徴量の変化に応じて前記物体の数が変化するモデルである請求項1乃至請求項4の何れか一つに記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 4, wherein the learning model is a model in which the number of objects changes in accordance with a change in the feature value.  前記学習モデルは、前記特徴量のグループに前記物体の数が関連付けられているモデルである請求項1乃至請求項4の何れか一つに記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 4, wherein the learning model is a model in which the number of objects is associated with the group of feature amounts.  計測対象の物体が存在している撮影空間を撮影する撮影装置と、
 前記撮影装置により撮影された撮影画像を利用する請求項1乃至請求項6の何れか一つに記載の情報処理装置と
を備える計数システム。
A photographing device for photographing a photographing space in which an object to be measured exists;
The counting system comprising: the information processing apparatus according to any one of claims 1 to 6, wherein a photographed image photographed by the photographing apparatus is used.
 計測対象の物体が撮影されている撮影画像から、前記計測対象の物体の数に応じて変化する予め定められた特徴量を抽出し、
 機械学習による前記特徴量と前記物体の数との関係データである学習モデルに、抽出された前記特徴量を照合することにより、前記学習モデルから前記計測対象の物体の数を検知する計数方法。
And extracting a predetermined feature amount that changes according to the number of objects to be measured from the captured image in which the object to be measured is captured,
A counting method for detecting the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model which is relationship data between the feature amount and the number of objects by machine learning.
 計測対象の物体が撮影されている撮影画像から、前記計測対象の物体の数に応じて変化する予め定められた特徴量を抽出する処理と、
 機械学習による前記特徴量と前記物体の数との関係データである学習モデルに、抽出された前記特徴量を照合することにより、前記学習モデルから前記計測対象の物体の数を検知する処理とをコンピュータに実行させるコンピュータプログラムを記憶するプログラム記憶媒体。
A process of extracting, from a photographed image in which an object to be measured is photographed, a predetermined feature amount that changes according to the number of objects to be measured;
A process of detecting the number of objects to be measured from the learning model by collating the extracted feature amount with a learning model which is relationship data between the feature amount and the number of objects by machine learning; A program storage medium storing a computer program to be executed by a computer.
PCT/JP2018/032538 2017-09-04 2018-09-03 Information processing device, counter system, counting method, and program storage medium Ceased WO2019045091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539698A JP6849081B2 (en) 2017-09-04 2018-09-03 Information processing equipment, counting system, counting method and computer program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-169793 2017-09-04
JP2017169793 2017-09-04
JP2017-224834 2017-11-22
JP2017224834 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019045091A1 true WO2019045091A1 (en) 2019-03-07

Family

ID=65525587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032538 Ceased WO2019045091A1 (en) 2017-09-04 2018-09-03 Information processing device, counter system, counting method, and program storage medium

Country Status (2)

Country Link
JP (1) JP6849081B2 (en)
WO (1) WO2019045091A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110288623A (en) * 2019-06-18 2019-09-27 大连海洋大学 Data compression method for inspection images of unmanned aerial vehicle cage culture in sea
WO2020183837A1 (en) * 2019-03-08 2020-09-17 三菱電機株式会社 Counting system, counting device, machine learning device, counting method, component arrangement method, and program
JP2021152782A (en) * 2020-03-24 2021-09-30 国立大学法人愛媛大学 Individual detection system, photography unit, individual detection method, and computer program
JP2021190040A (en) * 2020-06-05 2021-12-13 株式会社日立製作所 Learning device for underwater target detection and underwater target detector
CN113812370A (en) * 2021-11-02 2021-12-21 广东科贸职业学院 Shrimp larvae counting device and method based on visual identification technology
JP7004375B1 (en) * 2020-09-16 2022-01-21 Fsx株式会社 Mobile terminal and hand towel management system
WO2022059404A1 (en) * 2020-09-16 2022-03-24 Fsx株式会社 Mobile terminal and wet hand towel management system
WO2022065020A1 (en) 2020-09-28 2022-03-31 ソフトバンク株式会社 Information processing method, program, and information processing device
JPWO2022080407A1 (en) * 2020-10-14 2022-04-21
WO2024105963A1 (en) 2022-11-17 2024-05-23 ソフトバンク株式会社 Imaging system
WO2024142701A1 (en) 2022-12-27 2024-07-04 ソフトバンク株式会社 Information processing program, information processing device, and information processing method
US12382936B2 (en) 2022-07-28 2025-08-12 Softbank Corp. Information processing apparatus and information processing method
US12514236B2 (en) 2021-10-28 2026-01-06 Softbank Corp. Information processing method, non-transitory computer-readable recording medium, and information processor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121970A (en) * 2008-11-17 2010-06-03 Chugoku Electric Power Co Inc:The Moving body recognition system and moving body recognition method
WO2015122161A1 (en) * 2014-02-14 2015-08-20 日本電気株式会社 Video analysis system
WO2015146113A1 (en) * 2014-03-28 2015-10-01 日本電気株式会社 Identification dictionary learning system, identification dictionary learning method, and recording medium
WO2016136214A1 (en) * 2015-02-27 2016-09-01 日本電気株式会社 Identifier learning device, remaining object detection system, identifier learning method, remaining object detection method, and program recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875917B2 (en) * 2012-03-26 2016-03-02 一般財団法人電力中央研究所 Moving body image discrimination apparatus and moving body image discrimination method
JP6343874B2 (en) * 2013-05-10 2018-06-20 株式会社ニコン Observation apparatus, observation method, observation system, program thereof, and cell manufacturing method
JP2017051162A (en) * 2015-09-11 2017-03-16 国立研究開発法人農業・食品産業技術総合研究機構 Method and apparatus for estimating the number of viable bacteria on the specimen surface, and program installed in the apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121970A (en) * 2008-11-17 2010-06-03 Chugoku Electric Power Co Inc:The Moving body recognition system and moving body recognition method
WO2015122161A1 (en) * 2014-02-14 2015-08-20 日本電気株式会社 Video analysis system
WO2015146113A1 (en) * 2014-03-28 2015-10-01 日本電気株式会社 Identification dictionary learning system, identification dictionary learning method, and recording medium
WO2016136214A1 (en) * 2015-02-27 2016-09-01 日本電気株式会社 Identifier learning device, remaining object detection system, identifier learning method, remaining object detection method, and program recording medium

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7134331B2 (en) 2019-03-08 2022-09-09 三菱電機株式会社 Counting system, counting device, machine learning device, counting method, parts arrangement method, and program
WO2020183837A1 (en) * 2019-03-08 2020-09-17 三菱電機株式会社 Counting system, counting device, machine learning device, counting method, component arrangement method, and program
CN113518998B (en) * 2019-03-08 2024-04-16 三菱电机株式会社 Counting system, counting device, machine learning device, counting method, component arrangement method, and recording medium
CN113518998A (en) * 2019-03-08 2021-10-19 三菱电机株式会社 Counting system, counting device, machine learning device, counting method, parts arrangement method, and program
JPWO2020183837A1 (en) * 2019-03-08 2021-10-28 三菱電機株式会社 Counting system, counting device, machine learning device, counting method, component placement method, and program
CN110288623B (en) * 2019-06-18 2023-05-23 大连海洋大学 Data compression method for inspection images of unmanned aerial vehicle cage culture in sea
CN110288623A (en) * 2019-06-18 2019-09-27 大连海洋大学 Data compression method for inspection images of unmanned aerial vehicle cage culture in sea
JP2021152782A (en) * 2020-03-24 2021-09-30 国立大学法人愛媛大学 Individual detection system, photography unit, individual detection method, and computer program
JP7480984B2 (en) 2020-03-24 2024-05-10 国立大学法人愛媛大学 INDIVIDUAL DETECTION SYSTEM, IMAGING UNIT, INDIVIDUAL DETECTION METHOD, AND COMPUTER PROGRAM
JP2021190040A (en) * 2020-06-05 2021-12-13 株式会社日立製作所 Learning device for underwater target detection and underwater target detector
JP7579068B2 (en) 2020-06-05 2024-11-07 株式会社日立製作所 Learning device for detecting underwater targets and device for detecting underwater targets
JP7004375B1 (en) * 2020-09-16 2022-01-21 Fsx株式会社 Mobile terminal and hand towel management system
WO2022059404A1 (en) * 2020-09-16 2022-03-24 Fsx株式会社 Mobile terminal and wet hand towel management system
US11854250B2 (en) 2020-09-16 2023-12-26 Fsx, Inc. Portable terminal and oshibori management system
WO2022065020A1 (en) 2020-09-28 2022-03-31 ソフトバンク株式会社 Information processing method, program, and information processing device
JPWO2022080407A1 (en) * 2020-10-14 2022-04-21
JP7287734B2 (en) 2020-10-14 2023-06-06 国立研究開発法人海洋研究開発機構 Fish number calculation method, fish number calculation program, and fish number calculation device
US12514236B2 (en) 2021-10-28 2026-01-06 Softbank Corp. Information processing method, non-transitory computer-readable recording medium, and information processor
CN113812370A (en) * 2021-11-02 2021-12-21 广东科贸职业学院 Shrimp larvae counting device and method based on visual identification technology
US12382936B2 (en) 2022-07-28 2025-08-12 Softbank Corp. Information processing apparatus and information processing method
JP7556926B2 (en) 2022-11-17 2024-09-26 ソフトバンク株式会社 Shooting System
JP2024073313A (en) * 2022-11-17 2024-05-29 ソフトバンク株式会社 Shooting System
WO2024105963A1 (en) 2022-11-17 2024-05-23 ソフトバンク株式会社 Imaging system
WO2024142701A1 (en) 2022-12-27 2024-07-04 ソフトバンク株式会社 Information processing program, information processing device, and information processing method

Also Published As

Publication number Publication date
JPWO2019045091A1 (en) 2020-09-17
JP6849081B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2019045091A1 (en) Information processing device, counter system, counting method, and program storage medium
EP3248374B1 (en) Method and apparatus for multiple technology depth map acquisition and fusion
US10225445B2 (en) Methods and apparatus for providing a camera lens or viewing point indicator
US10191356B2 (en) Methods and apparatus relating to detection and/or indicating a dirty lens condition
TWI527448B (en) Imaging apparatus, image processing method, and recording medium for recording program thereon
JP2021060421A (en) Fish body length measurement system, fish body length measurement method, and fish body length measurement program
US20140300779A1 (en) Methods and apparatuses for providing guide information for a camera
US11328439B2 (en) Information processing device, object measurement system, object measurement method, and program storage medium
JP2016114668A (en) Imaging apparatus, and control method and program
JP6096298B2 (en) Backlight correction method, apparatus and terminal
CN102550015A (en) Multi-viewpoint imaging control device, multi-viewpoint imaging control method and multi-viewpoint imaging control program
CN107295252A (en) Focusing area display methods, device and terminal device
JP6981531B2 (en) Object identification device, object identification system, object identification method and computer program
US20170118394A1 (en) Autofocusing a macro object by an imaging device
US20160353021A1 (en) Control apparatus, display control method and non-transitory computer readable medium
US20200077059A1 (en) Display apparatus, display system, and method for controlling display apparatus
JP2017192114A5 (en)
JP6583565B2 (en) Counting system and counting method
JP7007280B2 (en) Information processing equipment, counting system, counting method and computer program
US9955130B2 (en) Image display control device, image display system, and image display control method
JP2017072945A (en) Image processing apparatus and image processing method
JP6956894B2 (en) Image sensor, image sensor, image data processing method, and program
CN102843512A (en) Imaging device, imaging method
JP2008252304A (en) Moving image processing apparatus and method
JP2014241160A (en) Light irradiation device and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852495

Country of ref document: EP

Kind code of ref document: A1