WO2018212286A1 - 測定装置、測定方法およびプログラム - Google Patents
測定装置、測定方法およびプログラム Download PDFInfo
- Publication number
- WO2018212286A1 WO2018212286A1 PCT/JP2018/019145 JP2018019145W WO2018212286A1 WO 2018212286 A1 WO2018212286 A1 WO 2018212286A1 JP 2018019145 W JP2018019145 W JP 2018019145W WO 2018212286 A1 WO2018212286 A1 WO 2018212286A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- white line
- road surface
- unit
- broken
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a technique for estimating the position of a moving body based on the position of a feature.
- Patent Document 1 describes an example of a method for estimating a vehicle position using a feature position detected using LiDAR and a feature position of map information.
- Patent Document 2 discloses a technique for transmitting an electromagnetic wave to a road surface and detecting a white line based on the reflectance.
- the number of data that can be measured by LiDAR varies depending on the type of white line (continuous line, broken line, etc.) and paint deterioration. For this reason, when the vehicle position is estimated using the white line, the detection accuracy of the white line changes depending on whether the number of LiDAR data used to detect the white line is small or large, and as a result, the accuracy of the vehicle position estimation changes. Come.
- An object of the present invention is to appropriately adjust the range in which a white line is detected according to the situation, and to prevent a decrease in accuracy of the vehicle position estimation.
- the invention according to claim 1 is a measuring device, an acquisition unit that acquires output data from a sensor unit for detecting surrounding road lines, a self-position, and position information on a broken-line road line A determination unit that determines a predetermined range based on an interval between solid line portions of the dashed road surface line, and an extraction unit that extracts data corresponding to a detection result of the predetermined range from the output data. And a processing unit that performs predetermined processing based on the data.
- the invention according to claim 9 is a measurement method executed by the measurement device, wherein an acquisition step of acquiring output data from a sensor unit for detecting a surrounding road surface line, a self-position, and a broken line type A determination step of determining a predetermined range based on the position information of the road surface line and the interval between the solid line portions of the broken-line road surface line, and extracting data corresponding to the detection result of the predetermined range from the output data An extraction step and a processing step for performing a predetermined process based on the extracted data are provided.
- the invention according to claim 10 is a program executed by a measuring device including a computer, an acquisition unit for acquiring output data from a sensor unit for detecting a surrounding road surface line, a self-position, and a broken line type A determination unit that determines a predetermined range based on position information of the road surface line and a solid line portion of the broken-line road surface, and an extraction that extracts data corresponding to the detection result of the predetermined range from the output data A processing unit that performs predetermined processing based on the extracted data,
- the computer is operated as follows.
- the measurement device includes an acquisition unit that acquires output data from a sensor unit for detecting a surrounding road surface line, a self-position, and position information on a dashed road surface line.
- a determination unit that determines a predetermined range based on an interval between solid line portions of the dashed road surface line, and an extraction unit that extracts data corresponding to a detection result of the predetermined range from the output data.
- a processing unit that performs a predetermined process based on the data.
- the measuring device acquires output data from a sensor unit for detecting a surrounding road surface line, and the self-position, the position information of the broken road surface line, and the interval between the solid line parts of the broken road line
- the predetermined range is determined based on the above. Then, data corresponding to the detection result in the predetermined range is extracted from the output data, and predetermined processing is performed based on the extracted data. Desired data can be appropriately extracted by determining the predetermined range in consideration of the interval between the solid line portions of the broken-line road surface line.
- the “road line” in the present specification is a marking line such as a white line or a yellow line to be measured, and a linear road marking such as a stop line or a pedestrian crossing.
- the determination unit may determine the plurality of predetermined ranges such that at least one of the plurality of predetermined ranges overlaps with a solid line portion of the dashed road surface line in at least a part of the predetermined range. decide.
- data can be appropriately extracted in at least a part of the predetermined range.
- the determination unit determines the plurality of predetermined positions based on position information of the self-position and the dashed road surface line, and determines all of the determined predetermined ranges. Is moved to at least one position of the plurality of predetermined ranges. In this aspect, appropriate data can be extracted by moving within a predetermined range.
- the determination unit determines the plurality of predetermined positions based on the position information of the self-position and the dashed road surface line, and determines all of the determined plurality of predetermined positions. Is equal to the space portion of the dashed road surface line, the length of at least one of the plurality of predetermined ranges is increased. In this aspect, it is possible to extract appropriate data by increasing the length of the predetermined range.
- the determination unit makes the length of the predetermined range longer than the length of the space part of the broken road surface line. Thereby, a predetermined range can be made to overlap with the continuous line part of a broken-line road surface line.
- the determination unit changes the length of the predetermined range according to the type of road.
- the predetermined range can be set to an appropriate length according to the type of road.
- the measurement device is mounted on a moving body, and the extraction unit sets the predetermined range at four locations on the right front, right rear, left front, and left rear on the basis of the position of the moving body.
- the said process part performs the process which detects the position of the said road line, and estimates the position of the said measuring apparatus based on the position of the said road line.
- the measurement method executed by the measurement apparatus includes an acquisition step of acquiring output data from a sensor unit for detecting a surrounding road surface line, a self-position, and a broken line type A determination step of determining a predetermined range based on the position information of the road surface line and the interval between the solid line portions of the broken-line road surface line, and extracting data corresponding to the detection result of the predetermined range from the output data An extraction step and a processing step for performing a predetermined process based on the extracted data are provided. Desired data can be appropriately extracted by determining the predetermined range in consideration of the interval between the solid line portions of the broken-line road surface line.
- a program executed by a measurement apparatus including a computer includes an acquisition unit that acquires output data from a sensor unit for detecting a surrounding road surface line, a self-position, and a broken line type A determination unit that determines a predetermined range based on position information of the road surface line and a solid line portion of the broken-line road surface, and an extraction that extracts data corresponding to the detection result of the predetermined range from the output data
- the computer is caused to function as a processing unit that performs predetermined processing based on the extracted data.
- the above measurement apparatus can be realized by executing this program on a computer. This program can be stored and handled in a storage medium.
- FIG. 1 is a diagram illustrating a white line extraction method.
- White line extraction refers to detecting a white line painted on a road surface and calculating a predetermined position, for example, a center position.
- the vehicle 5 exists in the map coordinate system (X m , Y m ), and the vehicle coordinate system (X v , Y v ) is defined based on the position of the vehicle 5. Specifically, the traveling direction of the vehicle 5 and X v-axis of the vehicle coordinate system, a direction perpendicular to it and Y v axis of the vehicle coordinate system.
- white lines that are lane boundary lines on the left and right sides of the vehicle 5.
- the position of the white line in the map coordinate system that is, the white line map position is included in the advanced map managed by the server or the like, and is acquired from the server or the like.
- white line data is stored in the advanced map as a coordinate point sequence.
- the LiDAR mounted on the vehicle 5 measures scan data along the scan line 2.
- the scan line 2 indicates a trajectory of scanning by LiDAR.
- the coordinates of the points constituting the white line WL1 on the left side of the vehicle 5, that is, the white line map position WLMP1 is (mx m1 , my m1 ), and the coordinates of the points constituting the white line WL2 on the right side of the vehicle 5, ie, the white line.
- the map position WLMP2 is (mx m2 , my m2 ).
- the predicted host vehicle position PVP in the map coordinate system is given by (x ′ m , y ′ m ), and the predicted host vehicle azimuth angle in the map coordinate system is given by ⁇ ′ m .
- the white line predicted position WLPP (l′ x v , l′ y v ) indicating the predicted position of the white line is the white line map position WLMP (mx m , my m ) and the predicted host vehicle position PVP (x ′ m , y).
- m the white line map position
- PVP the predicted host vehicle position
- the white line predicted position WLPP1 (l′ x v1 , l′ y v1 ) is obtained for the white line WL1 and the white line predicted position WLPP2 (l′ x v2 , l′ y v2 ) is obtained for the white line WL2 by Expression (1). It is done. Thus, for each of the white lines WL1 and WL2, a plurality of white line predicted positions WLPP1 and WLPP2 corresponding to the white lines WL1 and WL2 are obtained.
- the white line predicted range WLPR is determined based on the white line predicted position WLPP.
- the white line prediction range WLPR indicates a range in which a white line is considered to exist on the basis of the predicted vehicle position PVP.
- the white line prediction range WLPR is set at four locations on the vehicle 5 at the right front, right rear, left front, and left rear at the maximum.
- FIG. 2 shows a method for determining the white line prediction range WLPR.
- A set forward reference point to any position in front of the vehicle 5 (distance alpha v forward position) to ( ⁇ v, 0 v). Then, based on the front reference point ( ⁇ v , 0 v ) and the white line predicted position WLPP, the white line predicted position WLPP closest to the front reference point ( ⁇ v , 0 v ) is searched.
- the white line WL1 based on the forward reference point ( ⁇ v , 0 v ) and a plurality of white line predicted positions WLPP1 (l′ x v1 , l′ y v1 ) constituting the white line WL1, the following The distance D1 is calculated by the equation (2), and the white line predicted position WLPP1 at which the distance D1 is the minimum value is set as the prediction range reference point Pref1.
- the white line WL2 based on the forward reference point ( ⁇ v , 0 v ) and a plurality of white line predicted positions WLPP2 (l′ x v2 , l′ y v2 ) constituting the white line WL2, the following formula
- the distance D2 is calculated by (3), and the white line predicted position WLPP2 at which the distance D2 is the minimum value is set as the predicted range reference point Pref2.
- any range based on the expected range reference point Pref for example ⁇ [Delta] X from the expected range reference point Pref in X v-axis direction, a range of ⁇ [Delta] Y to Y v-axis direction
- the white line prediction range WLPR is set.
- white line prediction ranges WLPR1 and WLPR2 are set at the left and right positions in front of the vehicle 5.
- white line prediction ranges WLPR3 and WLPR4 are set at the left and right positions behind the vehicle 5 by setting the rear reference point behind the vehicle 5 and setting the prediction range reference point Pref.
- four white line prediction ranges WLPR1 to WLPR4 are set for the vehicle 5.
- FIG. 3 shows a method of calculating the white line center position WLCP.
- FIG. 3A shows a case where the white line WL1 is a solid line.
- the white line center position WLCP1 is calculated by the average value of the position coordinates of the scan data constituting the white line.
- the white line scan data WLSD1 (wx ′ v , wy) existing in the white line prediction range WLPR1 among the scan data output from the LiDAR. ' v ) is extracted.
- the scan data obtained on the white line is data with high reflection intensity.
- scan data that exists within the white line prediction range WLPR1 and on the road surface and whose reflection intensity is greater than or equal to a predetermined value is extracted as white line scan data WLSD.
- the coordinates of the white line center position WLCP1 (sx v1 , sy v1 ) are obtained by the following equation (4).
- the white line center position WLCP2 is similarly calculated.
- the white line prediction range WLPR is determined based on the white line prediction position WLPP.
- this type of white line is also referred to as a “dashed white line”
- the white line WL is A situation not included in the white line prediction range WLPR may occur.
- FIG. 4A shows an example of a white line prediction range WLPR in the case of a broken line type white line.
- the broken-line white line WL is formed by alternately arranging solid line portions RP and space portions SP.
- the solid line portion RP is a portion where a white line is painted
- the space portion SP is a portion where the white line is not painted between the solid line portions RP.
- the solid line portion RP of the broken line white line is not included in the white line prediction ranges WLPR1 and WLPR4. In such a case, since a sufficient number of white line scan data WLSD cannot be obtained from the white line prediction range WLPR, the white line center position WLCP cannot be accurately calculated.
- the position of the white line prediction range WLPR is moved. Specifically, as shown in FIG. 4B, the left front white line prediction range WLPR1 of the vehicle 5 is moved forward, and the left rear white line prediction range WLPR4 is moved rearward. As a result, the white line prediction ranges WLPR1 and WLPR4 both overlap with the solid line portion RP of the broken line white line, and a sufficient number of white line scan data WLSD can be obtained from the white line prediction range WLPR.
- FIG. 5A shows a case where the white line prediction ranges WLPR1 and WLPR4 both coincide with the space part SP of the broken line type white line, as in FIG. 4A.
- the white line prediction range ahead of the vehicle sets the front reference point in front of the vehicle 5, and the white line prediction position WLPP closest to the front reference point is set as the prediction range reference point Pref.
- the predetermined range is determined from the prediction range reference point Pref. Therefore, the white line prediction range WLPR1 can be moved forward by moving the front reference point forward.
- the white line prediction range WLPR behind the vehicle sets a rear reference point behind the vehicle 5, sets the white line prediction position WLPP closest to the rear reference point as the prediction range reference point Pref, and is predetermined from the prediction range reference point Pref. Determined in distance range. Therefore, the white line prediction range WLPR4 can be moved backward by moving the backward reference point backward.
- the front reference point or rear reference point hereinafter, simply referred. To as "reference point" by increasing the distance alpha v to, move the front of the white line expected range WLPR1 vehicle ahead, the vehicle The white line prediction range WLPR4 behind can be moved backward.
- the length of the solid line portion RP of the broken-line white line is “Lw”, and the length of the space portion SP is “Ls”.
- the white line prediction ranges WLPR1 and WLPR4 both coincide with the space part SP of the broken line white line.
- ⁇ v > (Ls + Lw) / 2 (6) Be determined the distance alpha v to the reference point so that it is possible to prevent the both two white lines expected range WLPR1, WLP4 to both match the space portion SP. That is, at least one of the two white line prediction ranges WLPR1 and WLPR4 can overlap with the solid line portion RP of the broken line white line at least in part.
- the second correction method for avoiding a state where the solid line part RP of the broken line white line is not included in the white line prediction ranges WLPR1 and WLPR4 extends the white line prediction range WLPR, that is, the length Is to lengthen.
- the white line prediction ranges WLPR1 and WLPR4 are set as shown in FIG. You can extend it.
- the front white line prediction range WLPR1 is extended forward and the rear white line prediction range WLPR4 is extended rearward. Instead, the front white line prediction range WLPR1 is moved backward.
- the rear white line prediction range WLPR4 may be extended forward. Further, the two white line prediction ranges WLPR1 and WLPR4 may be extended back and forth. By making the length of the white line prediction range WLPR longer than the space portion SP of the broken line type white line, at least a part of the white line prediction range WLPR can overlap the solid line portion RP of the broken line type white line.
- the length of the white line prediction range WLPR is set to be longer than 12 m, and when the vehicle 5 is traveling on a general road, the length of the white line prediction range WLPR is set. It may be longer than 5 m. Thereby, since at least a part of the white line prediction range WLPR overlaps the solid line part RP of the broken line type white line, the detection accuracy of the white line center position can be increased. In addition, since it is not necessary to make the length of the white line prediction range WLPR longer than necessary on a general road, noise when detecting the white line scan data WLSD can be reduced.
- the length of the solid line portion and the space portion of the broken line white line As described above, when the first and second correction methods are performed, the length Lw of the solid line portion RP of the broken line white line and the space portion SP It is necessary to know the length Ls. Basically, the lengths of the solid line portion RP and the space portion SP of the broken-line white line are determined according to the road type as described above. Therefore, the lengths of the solid line part RP and the space part SP can be known by detecting the type of road on which the vehicle 5 is traveling.
- the attribute data of the road in the map data includes the lengths of the solid line part RP and the space part SP of the dashed white line, it can be referred to.
- the length of the solid line part RP and the space part SP may be detected by using LiDAR scan data or analyzing a photographed image by a camera. Of course, these methods may be used in combination.
- both the two white line prediction ranges WLPR1 and WLPR4 are moved or extended. Instead, only one of the two white line prediction ranges WLPR1 and WLPR4 is moved or extended. It is good to do.
- the first or second correction method can be applied to the white line prediction range set on the right side of the vehicle 5.
- the amount of movement or extension of the white line prediction range WLPR may be determined according to the specification of each white line.
- FIG. 7 shows a schematic configuration of a host vehicle position estimation apparatus to which the measurement apparatus of the present invention is applied.
- the own vehicle position estimation device 10 is mounted on a vehicle and configured to be able to communicate with a server 7 such as a cloud server by wireless communication.
- the server 7 is connected to a database 8, and the database 8 stores an advanced map.
- the advanced map stored in the database 8 stores landmark map information for each landmark.
- white line map information including a white line map position WLMP indicating the coordinates of the point sequence constituting the white line is stored.
- the own vehicle position estimation device 10 communicates with the server 7 and downloads white line map information related to the white line around the own vehicle position of the vehicle.
- the white line map information includes information on the lengths of the solid line part and the broken line part of the broken line type white line
- the vehicle position estimation apparatus 10 also acquires the information.
- the own vehicle position estimation device 10 includes an inner world sensor 11, an outer world sensor 12, an own vehicle position prediction unit 13, a communication unit 14, a white line map information acquisition unit 15, a white line position prediction unit 16, and scan data extraction. Unit 17, white line center position calculation unit 18, and own vehicle position estimation unit 19.
- the vehicle position prediction unit 13, the white line map information acquisition unit 15, the white line position prediction unit 16, the scan data extraction unit 17, the white line center position calculation unit 18, and the vehicle position estimation unit 19 are actually a CPU or the like. This is realized by a computer executing a program prepared in advance.
- the inner world sensor 11 measures the position of the vehicle as a GNSS (Global Navigation Satellite System) / IMU (Inertia Measurement Unit) combined navigation system, and includes a satellite positioning sensor (GPS), a gyro sensor, a vehicle speed sensor, and the like. Including.
- the own vehicle position prediction unit 13 predicts the own vehicle position of the vehicle by GNSS / IMU combined navigation based on the output of the internal sensor 11 and supplies the predicted own vehicle position PVP to the white line position prediction unit 16.
- the external sensor 12 is a sensor that detects an object around the vehicle, and includes a stereo camera, LiDAR, and the like.
- the external sensor 12 supplies the scan data SD obtained by the measurement to the scan data extraction unit 17.
- the communication unit 14 is a communication unit for wirelessly communicating with the server 7.
- the white line map information acquisition unit 15 receives white line map information related to white lines existing around the vehicle from the server 7 via the communication unit 14 and supplies the white line map position WLMP included in the white line map information to the white line position prediction unit 16. To do.
- the white line position prediction unit 16 calculates the white line predicted position WLPP by the above-described equation (1) based on the white line map position WLMP and the predicted vehicle position PVP acquired from the vehicle position prediction unit 13. Further, the white line position prediction unit 16 determines the white line prediction range WLPR by the above-described equations (2) and (3) based on the white line prediction position WLPP. Note that the white line position prediction unit 16 performs correction to move or extend the white line prediction range WLPR when all the white line prediction ranges WLPR coincide with the space portion SP of the dashed white line as described above. Then, the white line position prediction unit 16 supplies the determined white line prediction range WLPR to the scan data extraction unit 17.
- the scan data extraction unit 17 extracts the white line scan data WLSD based on the white line prediction range WLPR supplied from the white line position prediction unit 16 and the scan data SD acquired from the external sensor 12. Specifically, the scan data extraction unit 17 extracts scan data included in the white line prediction range WLPR and having a reflection intensity equal to or higher than a predetermined value, as white line scan data WLSD, from the scan data SD.
- the white line center position calculation unit 18 is supplied.
- the white line center position calculation unit 18 calculates the white line center position WLCP from the white line scan data WLSD using the equation (4). Then, the white line center position calculation unit 18 supplies the calculated white line center position WLCP to the vehicle position estimation unit 19.
- the own vehicle position estimating unit 19 estimates the own vehicle position and the own vehicle azimuth angle based on the white line map position WLMP in the advanced map and the white line center position WLCP that is white line measurement data by the external sensor 12.
- Japanese Patent Laid-Open No. 2017-72422 discloses an example of a method for estimating the vehicle position by matching the landmark position information of the advanced map and the measured position information of the landmark by the external sensor.
- the external sensor 12 is an example of the sensor unit of the present invention
- the scan data extraction unit 17 is an example of the acquisition unit and the extraction unit of the present invention
- the white line position prediction unit 16 is the determination unit of the present invention.
- the vehicle position estimation unit 19 is an example, and is an example of a processing unit of the present invention.
- FIG. 8 is a flowchart of the vehicle position estimation process. This process is realized by a computer such as a CPU executing a program prepared in advance and functioning as each component shown in FIG.
- the host vehicle position prediction unit 13 acquires the predicted host vehicle position PVP based on the output from the internal sensor 11 (step S11).
- the white line map information acquisition part 15 connects to the server 7 through the communication part 14, and acquires white line map information from the advanced map memorize
- the white line map information acquisition unit 15 also acquires the information. Note that either step S11 or S12 may be performed first.
- the white line position prediction unit 16 calculates the white line predicted position WLPP based on the white line map position WLMP included in the white line position information obtained in step S12 and the predicted host vehicle position PVP obtained in step S11. (Step S13). Further, the white line position prediction unit 16 determines the white line prediction range WLPR based on the white line prediction position WLPP. At this time, the white line position prediction unit 16 performs correction to move or extend the white line prediction range WLPR when all the white line prediction ranges WLPR coincide with the space part SP of the broken line type white line as described above. . Then, the white line position prediction unit 16 supplies the white line prediction range WLPR to the scan data extraction unit 17 (step S14).
- the scan data extraction unit 17 converts the scan data SD obtained from the LiDAR as the external sensor 12 into the white line predicted range WLPR, the scan data on the road surface, and the reflection intensity is a predetermined value or more as a white line Extracted as scan data WLSD and supplied to the white line center position calculator 18 (step S15).
- the white line center position calculation unit 18 calculates the white line center position WLCP based on the white line prediction range WLPR and the white line scan data WLSD, and supplies the white line center position WLCP to the own vehicle position estimation unit 19 (step S16). And the own vehicle position estimation part 19 estimates the own vehicle position using the white line center position WLCP (step S17), and outputs the own vehicle position and the own vehicle azimuth (step S18). Thus, the own vehicle position estimation process ends.
- the white line that is the lane boundary indicating the lane is used, but the application of the present invention is not limited to this, and even if a linear road marking such as a pedestrian crossing or a stop line is used. Good. Further, a yellow line or the like may be used instead of the white line. These lane markings such as white lines and yellow lines, road markings, and the like are examples of road lines of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Image Analysis (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
測定装置は、周囲の路面線を検出するためのセンサ部からの出力データを取得し、自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔とに基づいて所定範囲を決定する。そして、前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出し、抽出されたデータに基づいて所定の処理を行う。
Description
本発明は、地物の位置に基づいて移動体の位置を推定する技術に関する。
自動運転車両では、LiDAR(Light Detection and Ranging)などのセンサで計測した地物位置と、自動運転用の地図情報の地物位置をマッチングして高精度に自車位置を推定する必要がある。ここで利用する地物としては、白線、標識、看板などが挙げられる。特許文献1は、LiDARを用いて検出した地物位置と、地図情報の地物位置とを用いて自車位置を推定する手法の一例を記載している。また、特許文献2は、道路面に電磁波を送信し、その反射率に基づいて白線を検出する技術を開示している。
白線を用いて自車位置を推定する場合、白線の種類(連続線、破線など)や塗装の劣化などによって、LiDARにより計測できるデータ数に差が生じる。このため、白線を用いて自車位置推定を行う際、白線の検出に使用するLiDARのデータ数が少ない場合と多い場合とでは白線の検出精度が変わり、その結果自車位置推定の精度が変わってくる。
本発明が解決しようとする課題としては、上記のものが例として挙げられる。本発明は、状況に応じて白線を検出する範囲を適切に調整し、自車位置推定の精度低下を防止することを目的とする。
請求項1に記載の発明は、測定装置であって、周囲の路面線を検出するためのセンサ部からの出力データを取得する取得部と、自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔とに基づいて所定範囲を決定する決定部と、前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出部と、抽出されたデータに基づいて所定の処理を行う処理部と、を備えることを特徴とする。
請求項9に記載の発明は、測定装置により実行される測定方法であって、周囲の路面線を検出するためのセンサ部からの出力データを取得する取得工程と、自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔とに基づいて所定範囲を決定する決定工程と、前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出工程と、抽出されたデータに基づいて所定の処理を行う処理工程と、を備えることを特徴とする。
請求項10に記載の発明は、コンピュータを備える測定装置により実行されるプログラムであって、周囲の路面線を検出するためのセンサ部からの出力データを取得する取得部、自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔に基づいて所定範囲を決定する決定部、前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出部、抽出されたデータに基づいて所定の処理を行う処理部、
として前記コンピュータを機能させることを特徴とする。
として前記コンピュータを機能させることを特徴とする。
本発明の1つの好適な実施形態では、測定装置は、周囲の路面線を検出するためのセンサ部からの出力データを取得する取得部と、自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔とに基づいて所定範囲を決定する決定部と、前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出部と、抽出されたデータに基づいて所定の処理を行う処理部と、を備える。
上記の測定装置は、周囲の路面線を検出するためのセンサ部からの出力データを取得し、自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔とに基づいて所定範囲を決定する。そして、前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出し、抽出されたデータに基づいて所定の処理を行う。破線型路面線の実線部の間隔を考慮して所定範囲を決定することにより、所望のデータを適切に抽出することが可能となる。なお、本明細書においての「路面線」とは、測定対象である白線や黄色線などの区画線、および停止線や横断歩道などの線状の道路標示等である。
上記の測定装置の一態様では、前記決定部は、複数の所定範囲の少なくとも1つが、当該所定範囲の少なくとも一部において前記破線型の路面線の実線部と重なるように前記複数の所定範囲を決定する。この態様では、所定範囲の少なくとも一部において適切にデータを抽出することができる。
上記の測定装置の他の一態様では、前記決定部は、前記自己位置と前記破線型の路面線の位置情報に基づいて前記複数の所定位置を決定し、決定された複数の所定範囲の全てが前記破線型の路面線のスペース部と一致する場合に、前記複数の所定範囲の少なくとも一つの位置を移動させる。この態様では、所定範囲を移動することにより適切なデータが抽出可能となる。
上記の測定装置の他の一態様では、前記決定部は、前記自己位置と前記破線型の路面線の位置情報に基づいて前記複数の所定位置を決定し、決定された複数の所定位置の全てが前記破線型の路面線のスペース部と一致する場合に、前記複数の所定範囲の少なくとも一つの長さを長くする。この態様では、所定範囲の長さを長くすることにより適切なデータが抽出可能となる。
上記の測定装置の他の一態様では、前記決定部は、前記所定範囲の長さを、前記破線型の路面線のスペース部の長さより長くする。これにより、所定範囲が破線型路面線の実線部と重なるようにすることができる。
上記の測定装置の他の一態様では、前記決定部は、道路の種別に応じて、前記所定範囲の長さを変える。この態様では、道路の種別に応じて所定範囲を適切な長さに設定することができる。
好適な例では、前記測定装置は、移動体に搭載され、前記抽出部は、前記移動体の位置を基準として右前方、右後方、左前方、左後方の4か所に前記所定範囲を設定する。また、好適な例では、前記処理部は、前記路面線の位置を検出し、当該路面線の位置に基づいて前記測定装置の位置を推定する処理を行う。
本発明の他の好適な実施形態では、測定装置により実行される測定方法は、周囲の路面線を検出するためのセンサ部からの出力データを取得する取得工程と、自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔とに基づいて所定範囲を決定する決定工程と、前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出工程と、抽出されたデータに基づいて所定の処理を行う処理工程と、を備えることを特徴とする。破線型路面線の実線部の間隔を考慮して所定範囲を決定することにより、所望のデータを適切に抽出することが可能となる。
本発明の他の好適な実施形態では、コンピュータを備える測定装置により実行されるプログラムは、周囲の路面線を検出するためのセンサ部からの出力データを取得する取得部、自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔に基づいて所定範囲を決定する決定部、前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出部、抽出されたデータに基づいて所定の処理を行う処理部、として前記コンピュータを機能させる。このプログラムをコンピュータで実行することにより、上記の測定装置を実現することができる。このプログラムは、記憶媒体に記憶して取り扱うことができる。
以下、図面を参照して本発明の好適な実施例について説明する。
[白線抽出方法]
図1は、白線抽出方法を説明する図である。白線抽出とは、道路面にペイントされた白線を検出し、その所定位置、例えば中心位置を算出することをいう。
[白線抽出方法]
図1は、白線抽出方法を説明する図である。白線抽出とは、道路面にペイントされた白線を検出し、その所定位置、例えば中心位置を算出することをいう。
(白線予測位置の算出)
図示のように、地図座標系(Xm,Ym)に車両5が存在し、車両5の位置を基準として車両座標系(Xv,Yv)が規定される。具体的に、車両5の進行方向を車両座標系のXv軸とし、それに垂直な方向を車両座標系のYv軸とする。
図示のように、地図座標系(Xm,Ym)に車両5が存在し、車両5の位置を基準として車両座標系(Xv,Yv)が規定される。具体的に、車両5の進行方向を車両座標系のXv軸とし、それに垂直な方向を車両座標系のYv軸とする。
車両5の左右の側方には車線境界線である白線が存在する。白線の地図座標系における位置、即ち、白線地図位置は、サーバなどにより管理される高度化地図に含まれており、サーバなどから取得される。本実施例では、白線のデータは座標点列として高度化地図内に記憶されているものとする。また、車両5に搭載されたLiDARはスキャンライン2に沿ってスキャンデータを計測する。なお、スキャンライン2は、LiDARによるスキャンの軌跡を示す。
図1では、車両5の左側の白線WL1を構成する点の座標、即ち白線地図位置WLMP1は(mxm1,mym1)であり、車両5の右側の白線WL2を構成する点の座標、即ち白線地図位置WLMP2は(mxm2,mym2)であるとする。また、地図座標系における予測自車位置PVPは(x’m,y’m)で与えられ、地図座標系における予測自車方位角はΨ’mで与えられる。
ここで、白線の予測位置を示す白線予測位置WLPP(l’xv,l’yv)は、白線地図位置WLMP(mxm,mym)と、予測自車位置PVP(x’m,y’m)と、予測自車方位角Ψ’mとを用いて、以下の式(1)により与えられる。
(白線予測範囲の決定)
次に、白線予測位置WLPPに基づいて、白線予測範囲WLPRが決定される。白線予測範囲WLPRは、予測自車位置PVPを基準として、白線が存在すると考えられる範囲を示す。白線予測範囲WLPRは、最大で車両5の右前方、右後方、左前方及び左後方の4か所に設定される。
次に、白線予測位置WLPPに基づいて、白線予測範囲WLPRが決定される。白線予測範囲WLPRは、予測自車位置PVPを基準として、白線が存在すると考えられる範囲を示す。白線予測範囲WLPRは、最大で車両5の右前方、右後方、左前方及び左後方の4か所に設定される。
図2は、白線予測範囲WLPRの決定方法を示す。図2(A)において、車両5の前方の任意の位置(距離αv前方の位置)に前方基準点(αv,0v)を設定する。そして、前方基準点(αv,0v)と、白線予測位置WLPPとに基づいて、前方基準点(αv,0v)から最も近い白線予測位置WLPPを探索する。具体的には、白線WL1については、前方基準点(αv,0v)と、白線WL1を構成する複数の白線予測位置WLPP1(l’xv1,l’yv1)とに基づいて、以下の式(2)により距離D1を算出し、距離D1が最小値となる白線予測位置WLPP1を予測範囲基準点Pref1とする。
同様に、白線WL2については、前方基準点(αv,0v)と、白線WL2を構成する複数の白線予測位置WLPP2(l’xv2,l’yv2)とに基づいて、以下の式(3)により距離D2を算出し、距離D2が最小値となる白線予測位置WLPP2を予測範囲基準点Pref2とする。
そして、図2(B)に示すように、予測範囲基準点Prefを基準とした任意の範囲、例えば予測範囲基準点PrefからXv軸方向に±ΔX、Yv軸方向に±ΔYの範囲を白線予測範囲WLPRと設定する。こうして、図1に示すように、車両5の前方の左右位置に白線予測範囲WLPR1とWLPR2が設定される。同様に、車両5の後方に後方基準点を設定して予測範囲基準点Prefを設定することにより、車両5の後方の左右位置に白線予測範囲WLPR3とWLPR4が設定される。こうして、車両5に対して4つの白線予測範囲WLPR1~4が設定される。
(白線中心位置の算出)
次に、白線予測位置WLPPを用いて白線中心位置WLCPを算出する。図3は白線中心位置WLCPの算出方法を示す。図3(A)は、白線WL1が実線である場合を示す。白線中心位置WLCP1は、白線を構成するスキャンデータの位置座標の平均値により算出される。いま、図3(A)に示すように、白線予測範囲WLPR1が設定されると、LiDARから出力されるスキャンデータのうち、白線予測範囲WLPR1内に存在する白線スキャンデータWLSD1(wx’v,wy’v)が抽出される。白線上は通常の道路上と比較して反射率が高いので、白線上で得られたスキャンデータは、反射強度の高いデータとなる。LiDARから出力されたスキャンデータのうち、白線予測範囲WLPR1内に存在し、路面上、かつ、反射強度が所定以上値であるスキャンデータが白線スキャンデータWLSDとして抽出される。そして、抽出された白線スキャンデータWLSDの数を「n」とすると、以下の式(4)により、白線中心位置WLCP1(sxv1,syv1)の座標が得られる。
次に、白線予測位置WLPPを用いて白線中心位置WLCPを算出する。図3は白線中心位置WLCPの算出方法を示す。図3(A)は、白線WL1が実線である場合を示す。白線中心位置WLCP1は、白線を構成するスキャンデータの位置座標の平均値により算出される。いま、図3(A)に示すように、白線予測範囲WLPR1が設定されると、LiDARから出力されるスキャンデータのうち、白線予測範囲WLPR1内に存在する白線スキャンデータWLSD1(wx’v,wy’v)が抽出される。白線上は通常の道路上と比較して反射率が高いので、白線上で得られたスキャンデータは、反射強度の高いデータとなる。LiDARから出力されたスキャンデータのうち、白線予測範囲WLPR1内に存在し、路面上、かつ、反射強度が所定以上値であるスキャンデータが白線スキャンデータWLSDとして抽出される。そして、抽出された白線スキャンデータWLSDの数を「n」とすると、以下の式(4)により、白線中心位置WLCP1(sxv1,syv1)の座標が得られる。
(白線が破線の場合の白線予測範囲の決定)
前述のように、白線予測範囲WLPRは、白線予測位置WLPPに基づいて決定されるが、白線が破線である場合(以下、この種の白線を「破線型白線」とも呼ぶ。)、白線WLが白線予測範囲WLPRに含まれない状況が生じうる。
前述のように、白線予測範囲WLPRは、白線予測位置WLPPに基づいて決定されるが、白線が破線である場合(以下、この種の白線を「破線型白線」とも呼ぶ。)、白線WLが白線予測範囲WLPRに含まれない状況が生じうる。
図4(A)は、破線型白線の場合の白線予測範囲WLPRの例を示す。破線型白線WLは、実線部RPとスペース部SPとが交互に配置されてなる。ここで、実線部RPは白線がペイントされている部分であり、スペース部SPは実線部RPの間にあって白線がペイントされていない部分である。いま、図4(A)に示すように前方基準点が規定され、白線予測範囲WLPRが決定された場合、2つの白線予測範囲WLPR1、WLPR4はいずれも破線型白線のスペース部SPに対応する位置となり、白線予測範囲WLPR1、WLPR4内に破線型白線の実線部RPが含まれていない状態となる。このような場合、白線予測範囲WLPRから十分な数の白線スキャンデータWLSDを得ることができないので、白線中心位置WLCPを精度良く算出することができなくなる。
(1)第1の補正方法
このような場合の対策として、第1の補正方法では、白線予測範囲WLPRの位置を移動させる。具体的には、図4(B)に示すように、車両5の左前方の白線予測範囲WLPR1を前方に移動し、左後方の白線予測範囲WLPR4を後方に移動する。これにより、白線予測範囲WLPR1、WLPR4はいずれも破線型白線の実線部RPと重なるようになり、白線予測範囲WLPRから十分な数の白線スキャンデータWLSDを得ることが可能となる。
このような場合の対策として、第1の補正方法では、白線予測範囲WLPRの位置を移動させる。具体的には、図4(B)に示すように、車両5の左前方の白線予測範囲WLPR1を前方に移動し、左後方の白線予測範囲WLPR4を後方に移動する。これにより、白線予測範囲WLPR1、WLPR4はいずれも破線型白線の実線部RPと重なるようになり、白線予測範囲WLPRから十分な数の白線スキャンデータWLSDを得ることが可能となる。
次に、白線予測範囲WLPRを移動させる場合の移動量について検討する。図5(A)は、図4(A)と同様に、白線予測範囲WLPR1とWLPR4がともに破線型白線のスペース部SPと一致してしまう場合を示す。図2を参照して説明したように、車両の前方の白線予測範囲は、車両5の前方に前方基準点を設定し、前方基準点と最も近い白線予測位置WLPPを予測範囲基準点Prefとし、予測範囲基準点Prefから所定距離の範囲に決定される。よって、前方基準点を前方に移動させることにより白線予測範囲WLPR1を前方に移動させることができる。同様に、車両の後方の白線予測範囲WLPRは、車両5の後方に後方基準点を設定し、後方基準点と最も近い白線予測位置WLPPを予測範囲基準点Prefとし、予測範囲基準点Prefから所定距離の範囲に決定される。よって、後方基準点を後方に移動させることにより白線予測範囲WLPR4を後方に移動させることができる。具体的には、前方基準点又は後方基準点(以下、単に「基準点」とも呼ぶ。)までの距離αvを大きくすることにより、車両の前方の白線予測範囲WLPR1を前方に移動し、車両の後方の白線予測範囲WLPR4を後方に移動することができる。
図5(A)において、破線型白線の実線部RPの長さを「Lw」とし、スペース部SPの長さを「Ls」とする。この場合、基準点までの距離αvが、
αv=(Ls+Lw)/2 (5)
を満たすとき、白線予測範囲WLPR1、WLPR4はともに破線型白線のスペース部SPと一致してしまう。そこで、破線型白線の実線部RPの長さLwとスペース部SPの長さLsに基づいて、
αv>(Ls+Lw)/2 (6)
となるように基準点までの距離αvを決定すれば、2つの白線予測範囲WLPR1、WLP4の両方がともにスペース部SPに一致することを防止できる。即ち、2つの白線予測範囲WLPR1、WLPR4の少なくとも一方が、少なくともその一部において、破線型白線の実線部RPと重なるようにすることができる。
αv=(Ls+Lw)/2 (5)
を満たすとき、白線予測範囲WLPR1、WLPR4はともに破線型白線のスペース部SPと一致してしまう。そこで、破線型白線の実線部RPの長さLwとスペース部SPの長さLsに基づいて、
αv>(Ls+Lw)/2 (6)
となるように基準点までの距離αvを決定すれば、2つの白線予測範囲WLPR1、WLP4の両方がともにスペース部SPに一致することを防止できる。即ち、2つの白線予測範囲WLPR1、WLPR4の少なくとも一方が、少なくともその一部において、破線型白線の実線部RPと重なるようにすることができる。
また、図5(B)に示すように、基準点までの距離αvを、
αv=(Ls+Lw) (7)
となるように設定すれば、白線予測範囲WLPRを破線型白線の実線部RPの長さ方向の中央付近に配置することが可能となる。
αv=(Ls+Lw) (7)
となるように設定すれば、白線予測範囲WLPRを破線型白線の実線部RPの長さ方向の中央付近に配置することが可能となる。
(2)第2の補正方法
白線予測範囲WLPR1、WLPR4内に破線型白線の実線部RPが含まれない状態を回避する第2の補正方法は、白線予測範囲WLPRを延長する、即ち、長さを長くすることである。図6(A)に示すように、白線予測範囲WLPR1、WLPR4の両方が破線型白線のスペース部SPと一致してしまう場合、図6(B)に示すように、白線予測範囲WLPR1、WLPR4を延長すればよい。なお、図6(B)の例では、前方の白線予測範囲WLPR1を前方に延長し、後方の白線予測範囲WLPR4を後方に延長しているが、その代わりに前方の白線予測範囲WLPR1を後方に延長し、後方の白線予測範囲WLPR4を前方に延長しても良い。また、2つの白線予測範囲WLPR1、WLPR4をいずれも前後に延長しても良い。白線予測範囲WLPRの長さが破線型白線のスペース部SPよりも長くなるようにすることにより、白線予測範囲WLPRの少なくとも一部が破線型白線の実線部RPと重なるようにすることができる。
白線予測範囲WLPR1、WLPR4内に破線型白線の実線部RPが含まれない状態を回避する第2の補正方法は、白線予測範囲WLPRを延長する、即ち、長さを長くすることである。図6(A)に示すように、白線予測範囲WLPR1、WLPR4の両方が破線型白線のスペース部SPと一致してしまう場合、図6(B)に示すように、白線予測範囲WLPR1、WLPR4を延長すればよい。なお、図6(B)の例では、前方の白線予測範囲WLPR1を前方に延長し、後方の白線予測範囲WLPR4を後方に延長しているが、その代わりに前方の白線予測範囲WLPR1を後方に延長し、後方の白線予測範囲WLPR4を前方に延長しても良い。また、2つの白線予測範囲WLPR1、WLPR4をいずれも前後に延長しても良い。白線予測範囲WLPRの長さが破線型白線のスペース部SPよりも長くなるようにすることにより、白線予測範囲WLPRの少なくとも一部が破線型白線の実線部RPと重なるようにすることができる。
破線型白線の実線部RPの長さLw及びスペース部の長さLsは、通常は道路の種別に応じて決まっている。例えば、高速道路においては実線部RPの長さLw=8m、スペース部SPの長さLs=12mであり、一般道路においては実線部RPの長さLw=5m、スペース部SPの長さLs=5mである。よって、車両5の走行している道路の種別に応じて、白線予測範囲WLPRの長さを変更するような制御を行っても良い。具体的には、車両5が高速道路を走行しているときは白線予測範囲WLPRの長さを12mより長くし、車両5が一般道路を走行しているときは白線予測範囲WLPRの長さを5mより長くするようにしてもよい。これにより、白線予測範囲WLPRの少なくとも一部は破線型白線の実線部RPに重なるため、白線中心位置の検出精度を上げることができる。また、一般道路では、白線予測範囲WLPRの長さを必要以上に長くしなくてすむので、白線スキャンデータWLSDを検出する際のノイズを低減することができる。
(3)破線型白線の実線部及びスペース部の長さ
上記のように、第1及び第2の補正方法を行う際には、破線型白線の実線部RPの長さLw及びスペース部SPの長さLsを知る必要がある。基本的には、破線型白線の実線部RP及びスペース部SPの長さは、上記のように道路種別に応じて決まっている。よって、車両5が走行している道路の種別を検出することにより、実線部RPとスペース部SPの長さを知ることができる。
上記のように、第1及び第2の補正方法を行う際には、破線型白線の実線部RPの長さLw及びスペース部SPの長さLsを知る必要がある。基本的には、破線型白線の実線部RP及びスペース部SPの長さは、上記のように道路種別に応じて決まっている。よって、車両5が走行している道路の種別を検出することにより、実線部RPとスペース部SPの長さを知ることができる。
別の方法として、地図データ中の道路の属性データなどに破線型白線の実線部RPとスペース部SPの長さが含まれている場合には、それを参照することができる。さらに他の方法としては、LiDARのスキャンデータを利用したり、カメラによる撮影画像を分析したりして、実線部RPとスペース部SPの長さを検出しても良い。もちろんこれらの手法を併用してもよい。
(4)応用例
上記の例では、2つの白線予測範囲WLPR1、WLPR4の両方を移動又は延長しているが、その代わりに、2つの白線予測範囲WLPR1、WLPR4のいずれか一方のみを移動又は延長することとしてもよい。また、図1に示すように、車両5の右側にも白線がある場合には、車両5の右側に設定する白線予測範囲にも第1又は第2の補正方法を適用することができる。その際、車両5の左側と右側とで白線の種別が異なる場合には、それぞれの白線の仕様に応じて、白線予測範囲WLPRを移動する量や延長する量を決定すればよい。
上記の例では、2つの白線予測範囲WLPR1、WLPR4の両方を移動又は延長しているが、その代わりに、2つの白線予測範囲WLPR1、WLPR4のいずれか一方のみを移動又は延長することとしてもよい。また、図1に示すように、車両5の右側にも白線がある場合には、車両5の右側に設定する白線予測範囲にも第1又は第2の補正方法を適用することができる。その際、車両5の左側と右側とで白線の種別が異なる場合には、それぞれの白線の仕様に応じて、白線予測範囲WLPRを移動する量や延長する量を決定すればよい。
[装置構成]
図7は、本発明の測定装置を適用した自車位置推定装置の概略構成を示す。自車位置推定装置10は、車両に搭載され、無線通信によりクラウドサーバなどのサーバ7と通信可能に構成されている。サーバ7はデータベース8に接続されており、データベース8は高度化地図を記憶している。データベース8に記憶された高度化地図は、ランドマーク毎にランドマーク地図情報を記憶している。また、白線については、白線を構成する点列の座標を示す白線地図位置WLMPを含む白線地図情報を記憶している。自車位置推定装置10は、サーバ7と通信し、車両の自車位置周辺の白線に関する白線地図情報をダウンロードする。なお、白線地図情報に破線型白線の実線部と破線部の長さの情報が含まれている場合には、自車位置推定装置10はその情報も取得する。
図7は、本発明の測定装置を適用した自車位置推定装置の概略構成を示す。自車位置推定装置10は、車両に搭載され、無線通信によりクラウドサーバなどのサーバ7と通信可能に構成されている。サーバ7はデータベース8に接続されており、データベース8は高度化地図を記憶している。データベース8に記憶された高度化地図は、ランドマーク毎にランドマーク地図情報を記憶している。また、白線については、白線を構成する点列の座標を示す白線地図位置WLMPを含む白線地図情報を記憶している。自車位置推定装置10は、サーバ7と通信し、車両の自車位置周辺の白線に関する白線地図情報をダウンロードする。なお、白線地図情報に破線型白線の実線部と破線部の長さの情報が含まれている場合には、自車位置推定装置10はその情報も取得する。
自車位置推定装置10は、内界センサ11と、外界センサ12と、自車位置予測部13と、通信部14と、白線地図情報取得部15と、白線位置予測部16と、スキャンデータ抽出部17と、白線中心位置算出部18と、自車位置推定部19とを備える。なお、自車位置予測部13、白線地図情報取得部15、白線位置予測部16、スキャンデータ抽出部17、白線中心位置算出部18及び自車位置推定部19は、実際には、CPUなどのコンピュータが予め用意されたプログラムを実行することにより実現される。
内界センサ11は、GNSS(Global Navigation Satellite System)/IMU(Inertia Measurement Unit)複合航法システムとして車両の自車位置を測位するものであり、衛星測位センサ(GPS)、ジャイロセンサ、車速センサなどを含む。自車位置予測部13は、内界センサ11の出力に基づいて、GNSS/IMU複合航法により車両の自車位置を予測し、予測自車位置PVPを白線位置予測部16に供給する。
外界センサ12は、車両の周辺の物体を検出するセンサであり、ステレオカメラ、LiDARなどを含む。外界センサ12は、計測により得られたスキャンデータSDをスキャンデータ抽出部17へ供給する。
通信部14は、サーバ7と無線通信するための通信ユニットである。白線地図情報取得部15は、車両の周辺に存在する白線に関する白線地図情報を通信部14を介してサーバ7から受信し、白線地図情報に含まれる白線地図位置WLMPを白線位置予測部16へ供給する。
白線位置予測部16は、白線地図位置WLMPと自車位置予測部13から取得した予測自車位置PVPとに基づいて、前述の式(1)により白線予測位置WLPPを算出する。また、白線位置予測部16は、白線予測位置WLPPに基づいて、前述の式(2)、(3)により白線予測範囲WLPRを決定する。なお、白線位置予測部16は、前述のように全ての白線予測範囲WLPRが破線型白線のスペース部SPと一致してしまう場合には、白線予測範囲WLPRを移動する又は延長する補正を行う。そして、白線位置予測部16は、決定した白線予測範囲WLPRをスキャンデータ抽出部17へ供給する。
スキャンデータ抽出部17は、白線位置予測部16から供給された白線予測範囲WLPRと、外界センサ12から取得したスキャンデータSDとに基づいて白線スキャンデータWLSDを抽出する。具体的には、スキャンデータ抽出部17は、スキャンデータSDのうち、白線予測範囲WLPRに含まれ、路面上、かつ、反射強度が所定値以上であるスキャンデータを、白線スキャンデータWLSDとして抽出し、白線中心位置算出部18へ供給する。
白線中心位置算出部18は、図3を参照して説明したように、式(4)により白線スキャンデータWLSDから白線中心位置WLCPを算出する。そして、白線中心位置算出部18は、算出された白線中心位置WLCPを自車位置推定部19へ供給する。
自車位置推定部19は、高度化地図における白線地図位置WLMPと、外界センサ12による白線の計測データである白線中心位置WLCPとに基づいて、車両の自車位置と自車方位角を推定する。なお、高度化地図のランドマーク位置情報と外界センサによるランドマークの計測位置情報をマッチングすることにより自車位置を推定する方法の一例が特開2017-72422に記載されている。
上記の構成において、外界センサ12は本発明のセンサ部の一例であり、スキャンデータ抽出部17は本発明の取得部及び抽出部の一例であり、白線位置予測部16は本発明の決定部の一例であり、自車位置推定部19は本発明の処理部の一例である。
[自車位置推定処理]
次に、自車位置推定装置10による自車位置推定処理について説明する。図8は、自車位置推定処理のフローチャートである。この処理は、CPUなどのコンピュータが予め用意されたプログラムを実行し、図7に示す各構成要素として機能することにより実現される。
次に、自車位置推定装置10による自車位置推定処理について説明する。図8は、自車位置推定処理のフローチャートである。この処理は、CPUなどのコンピュータが予め用意されたプログラムを実行し、図7に示す各構成要素として機能することにより実現される。
まず、自車位置予測部13は、内界センサ11からの出力に基づいて、予測自車位置PVPを取得する(ステップS11)。次に、白線地図情報取得部15は、通信部14を通じてサーバ7に接続し、データベース8に記憶された高度化地図から白線地図情報を取得する(ステップS12)。ここで、白線地図情報取得部15は、前述のように白線地図情報に破線型白線の実線部とスペース部の長さの情報が含まれている場合には、その情報も取得する。なお、ステップS11とS12はいずれが先でもよい。
次に、白線位置予測部16は、ステップS12で得られた白線位置情報に含まれる白線地図位置WLMPと、ステップS11で得られた予測自車位置PVPに基づいて、白線予測位置WLPPを算出する(ステップS13)。また、白線位置予測部16は、白線予測位置WLPPに基づいて白線予測範囲WLPRを決定する。この際、白線位置予測部16は、前述のように全ての白線予測範囲WLPRが破線型白線のスペース部SPと一致してしまう場合には、白線予測範囲WLPRを移動する又は延長する補正を行う。そして、白線位置予測部16は、白線予測範囲WLPRをスキャンデータ抽出部17へ供給する(ステップS14)。
次に、スキャンデータ抽出部17は、外界センサ12としてのLiDARから得たスキャンデータSDのうち、白線予測範囲WLPR内に属し、路面上、かつ、反射強度が所定値以上であるスキャンデータを白線スキャンデータWLSDとして抽出し、白線中心位置算出部18へ供給する(ステップS15)。
次に、白線中心位置算出部18は、白線予測範囲WLPRと白線スキャンデータWLSDに基づいて白線中心位置WLCPを算出し、自車位置推定部19へ供給する(ステップS16)。そして、自車位置推定部19は、白線中心位置WLCPを利用して自車位置推定を行い(ステップS17)、自車位置及び自車方位角を出力する(ステップS18)。こうして自車位置推定処理は終了する。
[変形例]
上記の実施例では、車線を示す車線境界線である白線を使用しているが、本発明の適用はこれには限られず、横断歩道、停止線などの線状の道路標示を利用してもよい。また、白線の代わりに、黄色線などを利用しても良い。これら、白線、黄色線などの区画線や、道路標示などは本発明の路面線の一例である。
上記の実施例では、車線を示す車線境界線である白線を使用しているが、本発明の適用はこれには限られず、横断歩道、停止線などの線状の道路標示を利用してもよい。また、白線の代わりに、黄色線などを利用しても良い。これら、白線、黄色線などの区画線や、道路標示などは本発明の路面線の一例である。
5 車両
7 サーバ
8 データベース
10 自車位置推定装置
11 内界センサ
12 外界センサ
13 自車位置予測部
14 通信部
15 白線地図情報取得部
16 白線位置予測部
17 スキャンデータ抽出部
18 白線中心位置算出部
19 自車位置推定部
7 サーバ
8 データベース
10 自車位置推定装置
11 内界センサ
12 外界センサ
13 自車位置予測部
14 通信部
15 白線地図情報取得部
16 白線位置予測部
17 スキャンデータ抽出部
18 白線中心位置算出部
19 自車位置推定部
Claims (11)
- 周囲の路面線を検出するためのセンサ部からの出力データを取得する取得部と、
自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔とに基づいて所定範囲を決定する決定部と、
前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出部と、
抽出されたデータに基づいて所定の処理を行う処理部と、
を備えることを特徴とする測定装置。 - 前記決定部は、複数の所定範囲の少なくとも1つが、当該所定範囲の少なくとも一部において前記破線型の路面線の実線部と重なるように前記複数の所定範囲を決定することを特徴とする請求項1に記載の測定装置。
- 前記決定部は、前記自己位置と前記破線型の路面線の位置情報に基づいて前記複数の所定位置を決定し、決定された複数の所定範囲の全てが前記破線型の路面線のスペース部と一致する場合に、前記複数の所定範囲の少なくとも一つの位置を移動させることを特徴とする請求項2に記載の測定装置。
- 前記決定部は、前記自己位置と前記破線型の路面線の位置情報に基づいて前記複数の所定位置を決定し、決定された複数の所定位置の全てが前記破線型の路面線のスペース部と一致する場合に、前記複数の所定範囲の少なくとも一つの長さを長くすることを特徴とする請求項2に記載の測定装置。
- 前記決定部は、前記所定範囲の長さを、前記破線型の路面線のスペース部の長さより長くすることを特徴とする請求項2に記載の測定装置。
- 前記決定部は、道路の種別に応じて、前記所定範囲の長さを変えることを特徴とする請求項5に記載の測定装置。
- 前記測定装置は、移動体に搭載され、
前記抽出部は、前記移動体の位置を基準として右前方、右後方、左前方、左後方の4か所に前記所定範囲を設定することを特徴とする請求項1乃至6のいずれか一項に記載の測定装置。 - 前記処理部は、前記路面線の位置を検出し、当該路面線の位置に基づいて前記測定装置の位置を推定する処理を行うことを特徴とする請求項1乃至7のいずれか一項に記載の測定装置。
- 測定装置により実行される測定方法であって、
周囲の路面線を検出するためのセンサ部からの出力データを取得する取得工程と、
自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔とに基づいて所定範囲を決定する決定工程と、
前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出工程と、
抽出されたデータに基づいて所定の処理を行う処理工程と、
を備えることを特徴とする測定方法。 - コンピュータを備える測定装置により実行されるプログラムであって、
周囲の路面線を検出するためのセンサ部からの出力データを取得する取得部、
自己位置と、破線型の路面線の位置情報と、前記破線型の路面線の実線部の間隔に基づいて所定範囲を決定する決定部、
前記出力データのうち、前記所定範囲の検出結果に相当するデータを抽出する抽出部、
抽出されたデータに基づいて所定の処理を行う処理部、
として前記コンピュータを機能させることを特徴とするプログラム。 - 請求項10に記載のプログラムを記憶した記憶媒体。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019518869A JPWO2018212286A1 (ja) | 2017-05-19 | 2018-05-17 | 測定装置、測定方法およびプログラム |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017100164 | 2017-05-19 | ||
| JP2017-100164 | 2017-05-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018212286A1 true WO2018212286A1 (ja) | 2018-11-22 |
Family
ID=64273942
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/019145 Ceased WO2018212286A1 (ja) | 2017-05-19 | 2018-05-17 | 測定装置、測定方法およびプログラム |
Country Status (2)
| Country | Link |
|---|---|
| JP (3) | JPWO2018212286A1 (ja) |
| WO (1) | WO2018212286A1 (ja) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220108117A1 (en) * | 2020-10-02 | 2022-04-07 | Magna Electronics Inc. | Vehicular lane marker determination system with lane marker estimation based in part on a lidar sensing system |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05265547A (ja) * | 1992-03-23 | 1993-10-15 | Fuji Heavy Ind Ltd | 車輌用車外監視装置 |
| JPH07225893A (ja) * | 1994-02-09 | 1995-08-22 | Fuji Heavy Ind Ltd | 車間距離制御装置 |
| JP2000105898A (ja) * | 1998-02-18 | 2000-04-11 | Equos Research Co Ltd | 車両制御装置、車両制御方法および車両制御方法をコンピュ―タに実行させるためのプログラムを記録したコンピュ―タ読み取り可能な媒体 |
| JP2001092970A (ja) * | 1999-09-22 | 2001-04-06 | Fuji Heavy Ind Ltd | 車線認識装置 |
| JP2011073529A (ja) * | 2009-09-30 | 2011-04-14 | Hitachi Automotive Systems Ltd | 車両制御装置 |
| JP2017016226A (ja) * | 2015-06-29 | 2017-01-19 | 日立オートモティブシステムズ株式会社 | 周辺環境認識システムおよびそれを搭載した車両制御システム |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3169483B2 (ja) * | 1993-06-25 | 2001-05-28 | 富士通株式会社 | 道路環境認識装置 |
| JPH10320559A (ja) * | 1997-05-20 | 1998-12-04 | Nissan Motor Co Ltd | 車両用走行路検出装置 |
-
2018
- 2018-05-17 JP JP2019518869A patent/JPWO2018212286A1/ja active Pending
- 2018-05-17 WO PCT/JP2018/019145 patent/WO2018212286A1/ja not_active Ceased
-
2021
- 2021-07-20 JP JP2021119427A patent/JP2021170029A/ja not_active Ceased
-
2024
- 2024-01-11 JP JP2024002247A patent/JP2024038322A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05265547A (ja) * | 1992-03-23 | 1993-10-15 | Fuji Heavy Ind Ltd | 車輌用車外監視装置 |
| JPH07225893A (ja) * | 1994-02-09 | 1995-08-22 | Fuji Heavy Ind Ltd | 車間距離制御装置 |
| JP2000105898A (ja) * | 1998-02-18 | 2000-04-11 | Equos Research Co Ltd | 車両制御装置、車両制御方法および車両制御方法をコンピュ―タに実行させるためのプログラムを記録したコンピュ―タ読み取り可能な媒体 |
| JP2001092970A (ja) * | 1999-09-22 | 2001-04-06 | Fuji Heavy Ind Ltd | 車線認識装置 |
| JP2011073529A (ja) * | 2009-09-30 | 2011-04-14 | Hitachi Automotive Systems Ltd | 車両制御装置 |
| JP2017016226A (ja) * | 2015-06-29 | 2017-01-19 | 日立オートモティブシステムズ株式会社 | 周辺環境認識システムおよびそれを搭載した車両制御システム |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220108117A1 (en) * | 2020-10-02 | 2022-04-07 | Magna Electronics Inc. | Vehicular lane marker determination system with lane marker estimation based in part on a lidar sensing system |
| US12106583B2 (en) * | 2020-10-02 | 2024-10-01 | Magna Electronics Inc. | Vehicular lane marker determination system with lane marker estimation based in part on a LIDAR sensing system |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2018212286A1 (ja) | 2020-03-19 |
| JP2021170029A (ja) | 2021-10-28 |
| JP2024038322A (ja) | 2024-03-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110945379A (zh) | 从地图数据、激光和相机确定偏航误差 | |
| KR20200042760A (ko) | 차량 위치 결정 방법 및 차량 위치 결정 장치 | |
| JP7155284B2 (ja) | 計測精度算出装置、自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
| JP6806891B2 (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 | |
| JP6740470B2 (ja) | 測定装置、測定方法およびプログラム | |
| CN109791408A (zh) | 自身位置推定方法及自身位置推定装置 | |
| JP2023164553A (ja) | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 | |
| US11215459B2 (en) | Object recognition device, object recognition method and program | |
| JP2017211307A (ja) | 測定装置、測定方法およびプログラム | |
| JP2025078713A (ja) | 測定装置、測定方法、プログラム、及び、記憶媒体 | |
| JP2024177451A (ja) | 測定装置、測定方法およびプログラム | |
| JP2024038322A (ja) | 測定装置、測定方法およびプログラム | |
| JP7526858B2 (ja) | 測定装置、測定方法およびプログラム | |
| JP2023068009A (ja) | 地図情報作成方法 | |
| WO2018212290A1 (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18803070 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019518869 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18803070 Country of ref document: EP Kind code of ref document: A1 |