[go: up one dir, main page]

WO2018139144A1 - 状態監視方法および状態監視装置 - Google Patents

状態監視方法および状態監視装置 Download PDF

Info

Publication number
WO2018139144A1
WO2018139144A1 PCT/JP2017/046529 JP2017046529W WO2018139144A1 WO 2018139144 A1 WO2018139144 A1 WO 2018139144A1 JP 2017046529 W JP2017046529 W JP 2017046529W WO 2018139144 A1 WO2018139144 A1 WO 2018139144A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
abnormality
feature
feature quantity
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2017/046529
Other languages
English (en)
French (fr)
Inventor
正嗣 北井
英之 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017011149A external-priority patent/JP6791770B2/ja
Priority claimed from JP2017011150A external-priority patent/JP2018120407A/ja
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to CN201780084664.2A priority Critical patent/CN110226140B/zh
Priority to US16/480,999 priority patent/US10890507B2/en
Priority to EP17894199.3A priority patent/EP3575908B1/en
Publication of WO2018139144A1 publication Critical patent/WO2018139144A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a state monitoring method and a state monitoring device.
  • Patent Documents As a method of state monitoring, there is a method of determining an abnormality by creating a normal state model of a physical quantity and calculating how much the newly measured physical quantity is different from the normal state model (for example, Patent Documents). 1: Refer to Japanese Patent No. 543235). In addition, there is a method in which a value of a characteristic frequency peak generated due to bearing damage or shaft runout is stored in a state monitoring system, and an abnormality is identified by observing a change in the peak (for example, Patent Document 2: Japanese Patent No. 5780870). See the publication).
  • the physical quantity fluctuates even in a normal state.
  • the physical quantity indicating an abnormality may be buried in the normal state model, or depending on the normal state model created. There is a possibility that the normal state is misidentified as abnormal.
  • a state monitoring method is desired that can eliminate misjudgment as much as possible in a rotating machine that is affected by operating conditions and noise, and that can discriminate minute damage.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a state monitoring method and a state monitoring device with a reduced misclassification rate.
  • the present invention is a state monitoring method for obtaining a plurality of first measurement data having a first time length from a sensor installed on an object under test at different timings when the object under test is normal.
  • a plurality of first measurement data having a first time length are acquired at different timings from a sensor installed on the object under test.
  • a first step, a second step of acquiring a plurality of second measurement data of a first time length at a different timing when diagnosing the test object, and a plurality of learning data from the plurality of first measurement data A third step of randomly selecting, a fourth step of randomly selecting a plurality of test data from a plurality of second measurement data, and each of a plurality of learning data for each second time length shorter than the first time length
  • a first feature quantity vector including a plurality of feature quantities is created for each segment data after the division, and the first feature quantity vectors of a plurality of continuous segment data are collected.
  • the degree of abnormality, which is the distance from, is calculated, and for each of the plurality of test data, the number of the degree of abnormality of the fourth feature vector exceeding the abnormality determination threshold corresponds to the total number of fourth feature vectors.
  • a state monitoring method acquires a plurality of first measurement data having a first time length from sensors installed on a test object at different timings when the test object is normal.
  • a second feature amount is calculated by calculating an index value indicating variation for each component, determining a component having an index value less than the extraction threshold as a used component, and extracting the used component from the first feature amount vector.
  • a sixth step for creating a vector for each segment data, a classification boundary for classifying normal and abnormal from a plurality of second feature vectors created for each segment data for a plurality of learning data, and an abnormality determination threshold A seventh step of creating a value and each of the plurality of test data is divided into segment data for each second time length, and each of the plurality of feature amounts calculated for each segment data after the division is used as a component
  • the tenth step of calculating the abnormality rate which is a ratio of the exceeding number of the fourth feature quantity vectors, and the third to tenth steps are repeatedly executed a plurality of times, and the average value of the obtained abnormality rates is a predetermined value.
  • the index value is, for example, a coefficient of variation.
  • a state monitoring method acquires a plurality of first measurement data having a first time length from sensors installed on a test object at different timings when the test object is normal.
  • a third step of randomly selecting a plurality of test data a fourth step of randomly selecting a plurality of test data from a plurality of second measurement data, and a second time length shorter than the first time length of each of the plurality of learning data
  • a first feature vector is generated by dividing each segment data into components, and each of the plurality of feature values calculated for each segment data after the division is generated.
  • the index value is, for example, a coefficient of variation.
  • the present invention is a state monitoring apparatus that diagnoses an object to be tested using any one of the methods described above.
  • the state monitoring method of the present invention can determine an abnormality from measurement data earlier in a monitoring target apparatus affected by operating conditions and noise, and can improve the accuracy of the state monitoring system.
  • FIG. 3 is a conceptual diagram illustrating a relationship between measurement data and segment data according to Embodiment 1.
  • FIG. It is a figure for demonstrating a feature-value vector. It is a figure for demonstrating the basic concept of OC-SVM.
  • 3 is a flowchart for illustrating processing performed by a data acquisition unit according to the first embodiment.
  • 3 is a flowchart for illustrating processing performed by a learning unit according to the first embodiment.
  • 5 is a flowchart for explaining processing performed by an abnormality degree calculation unit according to the first embodiment.
  • FIG. 4 is a flowchart for explaining processing performed by a determination unit according to the first embodiment. It is a graph which shows the effect (abnormality rate) which calculates an abnormal rate average. It is a graph which shows the effect (abnormality rate average) which calculates an abnormal rate average. It is a conceptual diagram for demonstrating calculating
  • FIG. FIG. 10 is a conceptual diagram illustrating a relationship between measurement data and segment data according to the second embodiment. FIG. 10 is a diagram for explaining a relationship between an initial feature vector and a reconstructed feature vector according to the second embodiment. FIG. 10 is a diagram for explaining a reconstructed feature vector according to the second embodiment.
  • 10 is a flowchart for illustrating processing performed by a data acquisition unit according to the second embodiment.
  • 10 is a flowchart for illustrating a first stage of processing performed by a learning unit according to the second embodiment.
  • 10 is a flowchart for explaining a subsequent stage of processing performed by a learning unit according to the second embodiment.
  • 10 is a flowchart for illustrating processing performed by an abnormality degree calculation unit according to the second embodiment.
  • 10 is a flowchart for illustrating processing performed by a determination unit according to the second embodiment. It is a graph which shows the effect (abnormality rate) which calculates an abnormal rate average. It is a graph which shows the effect (abnormality rate average) which calculates an abnormal rate average.
  • FIG. 10 is a graph showing an abnormality determination result of Example 3. It is a graph which shows the abnormality discrimination
  • FIG. 1 is a block diagram showing the configuration of the state monitoring apparatus according to the present embodiment.
  • the state monitoring device 100 receives a signal from the vibration sensor 20 installed in the device under test 10, monitors the state of the device under test 10, and detects an abnormality.
  • the device under test 10 is a facility including rotating equipment installed in, for example, a factory or a power plant, and the vibration sensor 20 can detect abnormal vibration that occurs during rotation.
  • vibration is exemplified as an object to be monitored, but a detection signal other than a vibration sensor may be used as long as it is an output signal that can confirm the operation status of equipment.
  • a sensor that detects sound, temperature, load torque, motor power, and the like may be used instead of the vibration sensor 20.
  • the state monitoring device 100 includes an A / D converter 110, a data acquisition unit 120, a storage device 130, a data calculation unit 140, and a display unit 150.
  • the A / D converter 110 receives the output signal of the vibration sensor 20.
  • the data acquisition unit 120 receives the digital signal from the A / D converter 110, performs a filter process, and records measurement data in the storage device 130.
  • the data calculation unit 140 reads out the measurement data measured in the normal state from the storage device 130 and creates an abnormality determination threshold value for determining an abnormality, or a measurement measured during a test using the abnormality determination threshold value. Whether or not the device under test 10 is abnormal is determined from the data. When the data calculation unit 140 determines whether there is an abnormality, the data calculation unit 140 causes the display unit 150 to display the result.
  • FIG. 2 is a block diagram showing details of the data calculation unit.
  • Data operation unit 140 includes learning unit 142, threshold value storage unit 144, abnormality degree calculation unit 146, and determination unit 148.
  • the learning unit 142 includes a classification boundary that classifies normality and abnormality based on data (normal data) acquired when the device under test 10 is normal (such as an initial state) from the storage device 130, and classification An abnormality determination threshold value for determining the degree of abnormality corresponding to the distance from the boundary is generated and stored in the threshold value storage unit 144.
  • the degree-of-abnormality calculation unit 146 applies the classification boundary to the data (test data) acquired at the time of diagnosis of the device under test 10 from the storage device 130, calculates the degree of abnormality corresponding to the distance from the classification boundary, and sends it to the determination unit 148. send.
  • the discriminating unit 148 judges the abnormality of the device under test 10 based on the result of comparing the degree of abnormality and the abnormality discriminating threshold.
  • One characteristic of the state monitoring apparatus 100 according to the present embodiment is that the measurement data is not processed as a whole when processing the measurement data, but the entire measurement data is divided into a plurality of segments and processed for each segment. .
  • the segment will be described below.
  • FIG. 3 is a conceptual diagram showing the relationship between measurement data and segment data.
  • the measurement data is data of time length T1
  • the output signal from vibration sensor 20 is A / D converted by A / D converter 110 and filtered by data acquisition unit 120, This is data stored in the storage device 130.
  • the measurement data stored in the storage device 130 includes learning data and test data.
  • the learning data is measurement data acquired when it is known that the device under test 10 is normal (for example, in an initial state).
  • the test data is measurement data acquired when it is desired to determine whether the device under test 10 is normal or abnormal.
  • a classification boundary and an abnormality determination threshold which will be described later, are determined by the learning data. As a result of performing predetermined processing on the test data using the classification boundary and the abnormality determination threshold value, whether the device under test 10 is normal or abnormal is determined.
  • Measured data of time length T1 is divided into segments of time length T2 shorter than time length T1 as shown in FIG.
  • the time length T2 can be 0.2 seconds.
  • one measurement data is divided into 100 segment data.
  • the learning unit 142 and the degree of abnormality calculation unit 146 further create a feature vector for each segment.
  • FIG. 4 is a diagram for explaining the feature vector.
  • FIG. 4 shows an example in which the measurement data is divided into m segments and the feature quantity is n.
  • the feature value is effective value (OA), maximum value (Max), crest factor (Crest factor), kurtosis, skewness, and after signal processing (FFT processing, The value of (Kefrency processing) can be used.
  • the feature vector handles a plurality of feature values as a set of vectors. These feature vectors are used for abnormality determination. For each piece of measurement data, m feature vectors 1 to m are created.
  • measurement data is divided into segments, and feature amounts are extracted and feature amount vectors are calculated in units of segments. For example, when a rotating device is monitored by a vibration sensor, a temporary impact such as dropping a tool during measurement data acquisition may be detected by the vibration sensor as a sudden vibration. If feature values are extracted in segments, correct feature values can be extracted at times other than when a sudden abnormality occurs, and a segment corresponding to a sudden abnormality can be obtained by comparing the feature values for each segment. It is also possible to remove and evaluate.
  • ⁇ Abnormalities 1 to m are calculated based on classification boundaries for feature vectors 1 to m.
  • the classification boundary is an index for performing abnormality determination used in a known abnormality detection method (One Class Support Vector Machine: OC-SVM).
  • FIG. 5 is a diagram for explaining the basic concept of OC-SVM.
  • circles indicate learning data acquired for learning the normal state when the device under test 10 is known to be normal, and are indicated by square marks and triangle marks. Is test data to be diagnosed. Of the test data, square marks correspond to data indicating abnormality, and triangular marks correspond to data indicating normal.
  • a boundary line that can classify normal / abnormal cannot be drawn in the learning data and the test data.
  • an appropriate feature amount is selected.
  • a classification boundary surface capable of classifying normal / abnormal can be generated.
  • the degree of abnormality which is the distance from the classification boundary, can be calculated. The degree of abnormality is zero on the classification boundary, the degree of abnormality is negative ( ⁇ ) on the normal side of the classification boundary, and the degree of abnormality is positive (+) on the abnormal side.
  • Such a method is called machine learning by OC-SVM, and it is possible to evaluate by converting many feature values into one index (abnormality).
  • the learning unit 142 in FIG. 2 determines the above-described classification boundary and also determines an abnormality determination threshold value for determining the degree of abnormality of the test data. Also, the degree of abnormality calculation unit 146 in FIG. 2 calculates the degree of abnormality that is the distance from the classification boundary of each measurement data in the feature space. The discrimination unit 148 in FIG. 2 compares the degree of abnormality with the abnormality discrimination threshold, calculates the abnormality rate of each measurement data, and outputs the discrimination result.
  • FIG. 6 is a flowchart for explaining processing performed by the data acquisition unit of FIG.
  • the data acquisition unit 120 receives data obtained by digitally converting a signal including a vibration waveform from the vibration sensor 20, and in step S2, an abnormality to be observed among a low-pass filter, a band-pass filter, a high-pass filter, and the like.
  • Appropriate filter processing is performed on the phenomenon to remove basic noise, and the result is stored in the storage device 130 in step S3.
  • the data acquisition unit 120 wants to acquire learning data and perform diagnosis while the device under test 10 is in use when it is known that the device under test 10 operates normally such as in the initial state of the device under test 10 or when repair is completed. In this case, test data is automatically acquired at the time specified by a timer.
  • FIG. 7 is a flowchart for explaining processing performed by the learning unit in FIG.
  • the learning unit 142 first initializes the count variable j to 1 in step S11.
  • step S12 D1 learning data are randomly selected from the plurality of measurement data acquired in the normal state.
  • step S13 each learning data is divided into segments (step S13), and a feature vector is calculated for each segment (step S14).
  • step S15 the learning unit 142 calculates a classification boundary and an abnormality determination threshold using OC-SVM, using D1 ⁇ m feature quantity vectors included in the selected learning data. Further, when the jth classification boundary and the discrimination threshold are calculated in step S16, a count variable is assigned to them and stored.
  • step S17 the count variable j is incremented in step S18 while the count variable j is less than the repetition number K1 (NO in S16) so that the processes in S12 to S16 are repeated by the repetition number K1.
  • step S12 the already selected combination of measurement data is not used.
  • the count variable j reaches the number of repetitions K1 in step S17, the calculation of the K1 classification boundaries and the discrimination threshold is finished, and the process is finished in step S19.
  • FIG. 8 is a flowchart for explaining processing performed by the abnormality degree calculation unit in FIG.
  • the abnormality degree calculation unit 146 initializes the count variable j to 1 in step S21.
  • step S22 D2 test data are randomly selected from a plurality of measurement data acquired at the time of diagnosis. Subsequently, as described with reference to FIG. 3, each test data is divided into segments (step S23), and a feature vector is calculated for each segment (step S24).
  • step S25 the degree-of-abnormality calculation unit 146 uses the classification boundary of the j-th selected learning data generated by the learning unit 142 and held in the threshold value storage unit 144 to test data The degree of abnormality of each segment is calculated.
  • step S26 the count variable j is incremented in step S27 while the count variable j is less than the repeat count K1 (NO in S16) so that the processes in S22 to S25 are repeated by the repeat count K1.
  • step S22 the combination of measurement data already selected as test data is not used.
  • step S26 When the degree of abnormality of each segment with the number of repetitions K1 is calculated in step S26, the process ends in step S28.
  • FIG. 9 is a flowchart for explaining processing performed by the determination unit of FIG.
  • the determination unit 148 initializes both the count variables i and j to 1. Then, the test data (test data j) selected j-th is targeted (step S32), and the abnormality level of the i-th segment (segment i) of the test data is determined as the abnormality of the j-th selected learning data. An abnormality is determined by comparison with the determination threshold value (step S33).
  • the count variable i is counted in step S35 while the count variable i is less than the total segment number D2 ⁇ m in step S34 (NO in S34) so that the processes of S32 to S35 are repeated for the total number of segments D2 ⁇ m. Will be up.
  • the determination unit 148 calculates the abnormality rate of the test data j in step S36.
  • the abnormality rate is the total number of segments D2 ⁇ m, which is the number of abnormalities 1 to D2 ⁇ m of segments 1 to D2 ⁇ m that exceeds the abnormality determination threshold. Is obtained by dividing by.
  • step S37 the count variable j is incremented in step S38 while the count variable j is less than the repeat count K1 (NO in S37) so that the processes in S32 to S36 are repeated by the repeat count K1.
  • the determination unit 148 calculates the average abnormality rate by averaging the abnormality rates 1 to K1 in step S39, and in step S40. End the process.
  • Example 1 A verification experiment was performed on the state monitoring method of the first embodiment described above.
  • the device under test is assumed to be a bearing, and an example of a state monitoring of a bearing having an artificial damage on the raceway surface is shown.
  • the vibration acceleration was measured when an angular contact ball bearing with a small cylindrical hole and rectangular groove formed on the outer ring raceway was operated at a constant speed under radial and axial loads.
  • the discharge hole diameter and groove shape (hereinafter referred to as damage size) are the following five types.
  • the vibration acceleration was measured 11 times for each damage size.
  • the tester was disassembled and reassembled for each measurement. Operating conditions and measurement conditions are as follows.
  • Vibration acceleration data obtained in one measurement for 20 seconds is subjected to frequency filter processing (low pass: 20 to 1000 Hz, band pass: 1000 to 5000 Hz, high pass: 5000 to 20000 Hz), and then every 0.2 seconds (5 rotations of rotating shaft).
  • frequency filter processing low pass: 20 to 1000 Hz, band pass: 1000 to 5000 Hz, high pass: 5000 to 20000 Hz
  • 0.2 seconds 5 rotations of rotating shaft.
  • the feature amounts of the respective regions are collected to obtain a feature amount vector (FIG. 3).
  • a classification boundary is created from the feature vector of the learning data using OC-SVM (FIG. 5). Also, the degree of abnormality of all feature vectors of the learning data is calculated from the created classification boundary, and the abnormality determination threshold value is calculated by the following equation (1).
  • Abnormality determination threshold average value of abnormality degree + 5 ⁇ standard deviation of abnormality degree (1)
  • ⁇ Calculation of test data error rate> The degree of abnormality of each feature vector of the test data is calculated using the classification boundary, and the abnormality rate of the test data is calculated using the following equation (2) (FIG. 4).
  • Abnormality rate number of feature quantity vectors exceeding anomaly discrimination threshold / total number of feature quantity vectors (2) ⁇ Diagnosis> The above process is repeated 10 times, and the average abnormality rate for each damage size is calculated. If the average abnormality rate is 0.5 or more, the test data is regarded as abnormal.
  • FIG. 10A and 10B are graphs showing the effect of calculating the average abnormality rate.
  • FIG. 10A shows the relationship between the abnormality rate and the artificial defect size at the time of each calculation (10 times).
  • FIG. 10B shows a relationship between the abnormality rate average and the artificial defect size when the abnormality rate average is calculated.
  • the artificial defect size of 0be indicates a specimen without a defect
  • 2be, 4be, 6be, and 8be are ⁇ 0.34mm (cylindrical hole), ⁇ 0.68mm (cylindrical hole), and ⁇ 1.02mm (cylindrical hole), respectively.
  • Example 2 is the same as Example 1 in terms of operating conditions and measurement conditions.
  • the feature amount vector obtained in Example 1 is used as a new feature amount vector, which is a group of five segments (segment sets) that are continuous in time series.
  • FIG. 11 is a conceptual diagram for explaining that a feature vector is obtained for each segment set.
  • the time length T1 of the measurement data is 20 seconds
  • the time length T2 of the segment is 0.2 seconds.
  • the segment set time length T3 was set to 2 seconds.
  • the five feature amount vectors of the five consecutive segments in the first embodiment are combined into a segment set feature amount vector.
  • the processing was performed in the same procedure as in Example 1 using the feature vector of this segment set.
  • Comparative example In the comparative example, an effective value generally used for diagnosis is used as the feature amount.
  • the calculation method of the comparative example is shown below.
  • the abnormality determination threshold value is calculated from the effective value of the selected measurement data by the following equation (3).
  • Abnormal discrimination threshold average value of effective values + 5 ⁇ standard deviation of effective values (3)
  • Three of the measurement data obtained for normal (no damage) and for each damage size are selected as test data, and the abnormality rate is calculated by the following equation (4) using the effective value of the test data.
  • Abnormality rate number of effective values exceeding abnormality determination threshold / number of test data (4) The process up to the calculation of the abnormality rate is repeated, and the average abnormality rate for each damage size is calculated. If the average abnormality rate is 0.5 or more, the test data is regarded as abnormal.
  • FIG. 12 is a diagram showing an abnormality determination result in the first embodiment.
  • the learning data and the test data are changed, and the result of calculating the average abnormality rate five times is shown in FIG.
  • the average abnormal rate is 5 or more in 5 calculations, “A”, when it is 0.5 or more, “B”, when it does not exceed 0.5 once Is "C”.
  • both Examples 1 and 2 improved the abnormality determination accuracy.
  • the state monitoring method of the present invention can determine an abnormality earlier from measurement data in a rotating machine that is affected by operating conditions and noise, and can improve the accuracy of the state monitoring system.
  • the state monitoring method includes first to ninth steps.
  • the first step (S1) when the object to be tested is normal, a plurality of first measurement data having a first time length are acquired from the sensors installed on the object to be tested at different timings.
  • a plurality of second measurement data having a first time length are acquired at different timings.
  • a plurality of learning data are randomly selected from the plurality of first measurement data.
  • a plurality of test data are randomly selected from the plurality of second measurement data.
  • each of the plurality of learning data is divided into segment data for each second time length T2 that is shorter than the first time length T1, and a plurality of features are provided for each segment data after division.
  • a first feature quantity vector including the quantity is created.
  • a classification boundary for classifying normality and abnormality and an abnormality determination threshold value are created from the plurality of first feature vectors created for each segment data for the plurality of learning data.
  • each of the plurality of test data is divided into segment data for each second time length, and a second feature quantity vector including a plurality of feature quantities for each segment data after division.
  • the degree of abnormality which is the distance from the classification boundary, is calculated for the second feature quantity vector, and the abnormality of the second feature quantity vector is detected for each of the plurality of test data.
  • An abnormality rate is calculated in which the number of degrees exceeding the abnormality determination threshold is a ratio to the total number of second feature amount vectors.
  • the third to eighth steps are repeatedly executed a plurality of times, and when the average value of the obtained abnormality rates exceeds a predetermined value, the test object is determined to be abnormal.
  • a feature vector is calculated. By treating it as a feature amount set, temporal feature amount fluctuations can be evaluated.
  • the time length T2 is an integral multiple of the rotation period and the operation cycle.
  • feature quantities in the fifth step (S13, S14) and the seventh step (S23, S24) for example, raw measurement data, effective values, maximum values, wave heights in the time domain, frequency domain, and quefrency domain after band-pass filtering. Examples are rate, kurtosis, and skewness.
  • the third step (S12) it is possible to create a normal model that takes into account changes in machine characteristics by randomly selecting feature vectors from long-term output signals including setup and stop / restart. It becomes possible.
  • the fourth step (S22) takes into account changes in machine characteristics by randomly selecting feature vectors from long-term data including setup and stop / restart. Test data can be created.
  • the normal model and test data are changed, the abnormality rate is calculated multiple times, and averaging is performed, thereby making it possible to prevent erroneous evaluation in a machine in which the operating situation varies.
  • the output signal of the sensor used for state monitoring should just be an output signal which can confirm the operating condition of a rotary machine and an installation, and can illustrate vibration, sound, temperature, load torque, and motor electric power.
  • the learning unit 142 classifies normal and abnormal based on data (normal data) acquired from the storage device 130 when the device under test 10 is normal (such as an initial state).
  • Classification boundary that is a boundary
  • abnormality determination threshold value for determining the degree of abnormality corresponding to the distance from the classification boundary
  • use indicates the type of feature quantity (usage feature quantity) used to calculate the degree of abnormality Feature amount information is generated and stored in the threshold storage unit 144.
  • the degree-of-abnormality calculation unit 146 calculates the use feature amount indicated by the use feature amount information from the data (test data) acquired from the storage device 130 when diagnosing the device under test 10, and uses the calculated use feature amount as a component. A classification boundary is applied to a feature vector (reconstructed feature vector described later). The degree of abnormality calculation unit 146 calculates the degree of abnormality corresponding to the distance from the classification boundary and sends it to the determination unit 148.
  • the discriminating unit 148 discriminates the abnormality of the device under test 10 based on the result of comparing the degree of abnormality and the abnormality discrimination threshold value.
  • One characteristic of the state monitoring apparatus 100 according to the present embodiment is that the measurement data is not processed as a whole when processing the measurement data, but the entire measurement data is divided into a plurality of segments and processed for each segment. .
  • a reconstructed feature quantity vector created for each segment and using a used feature quantity as a component will be described.
  • FIG. 13 is a conceptual diagram showing the relationship between measurement data and segment data.
  • the measurement data is data of time length T1
  • the output signal from vibration sensor 20 is A / D converted by A / D converter 110 and filtered by data acquisition unit 120, This is data stored in the storage device 130.
  • the measurement data stored in the storage device 130 includes learning data and test data.
  • the learning data is measurement data acquired when it is known that the device under test 10 is normal (for example, in an initial state).
  • the test data is measurement data acquired when it is desired to determine whether the device under test 10 is normal or abnormal.
  • a classification boundary and an abnormality determination threshold which will be described later, are determined by the learning data. As a result of performing predetermined processing on the test data using the classification boundary and the abnormality determination threshold value, normality / abnormality of the device under test 10 is determined.
  • Measured data of time length T1 is divided into segments of time length T2 shorter than time length T1 as shown in FIG.
  • the time length T2 can be 0.2 seconds.
  • one measurement data is divided into 100 segment data.
  • the learning unit 142 and the degree of abnormality calculation unit 146 further calculate a plurality of feature amounts of a predetermined type for each segment, and an initial feature amount vector having each of the plurality of feature amounts as a component. Is created.
  • the feature value is effective value (OA), maximum value (Max), crest factor (Crest factor), kurtosis, skewness, and after signal processing (FFT processing,
  • the value of (Kefrency processing) can be used.
  • the initial feature vector handles a plurality of feature values as a set of vectors. For each piece of measurement data, initial feature vectors are created for the number of segment data divided from the measurement data.
  • the learning unit 142 is an index value indicating variation of each component in a plurality of initial feature vectors created from each of a plurality of randomly selected learning data (the number of segment data divided from the learning data). Is calculated.
  • the index value for example, a coefficient of variation (a value obtained by dividing the standard deviation by the arithmetic mean), variance, and the like can be used.
  • the learning unit 142 determines a component (feature amount) whose index value is equal to or less than a predetermined extraction threshold as a used component (used feature amount), and uses feature amount information indicating the type of the feature amount that is the used component Is stored in the threshold value storage unit 144.
  • the learning unit 142 and the degree-of-abnormality calculation unit 146 extract the used component indicated by the used feature amount information from the initial feature vector for each of the initial feature vector generated from the measurement data, and include only the extracted used component To be generated (hereinafter referred to as a reconstructed feature vector).
  • the learning unit 142 and the degree of abnormality calculation unit 146 generate a reconstructed feature vector for each initial feature vector. That is, for each piece of measurement data, initial feature quantity vectors are created for the number of segment data divided from the measurement data, and the same number of reconstructed feature quantity vectors as the initial feature quantity vectors are created.
  • FIG. 14 is a diagram for explaining an example of a procedure for creating a reconstructed feature vector from an initial feature vector.
  • FIG. 14 shows an example in which m initial feature vectors are generated for each of the K1 learning data.
  • Each initial feature vector includes an effective value “OA ch1 ”, a maximum value “Max ch1 ”, a crest factor “CF ch1 ”, and an effective value “OA ch2 ” and a maximum value “Max” in the frequency band ch2 in the frequency band ch1.
  • ch2 ", the crest factor” CF ch2 ", the effective value” OA ch3 ", the maximum value” Max ch3 ", and the crest factor” CF ch3 "in the frequency band ch3 are included as components (features).
  • the learning unit 142 calculates an index value (variation coefficient in FIG. 14) indicating variation for each component of the initial feature vector, and the component “OA whose index value is equal to or less than the extraction threshold (0.3 in FIG. 14).
  • “ ch1 ”, “ Maxch1 ”, “ Maxch2 ”, “ CFch2 ”, “ OAch3 ”, “ CFch3 ” are determined as use components. Therefore, the learning unit 142 and the abnormality degree calculation unit 146 are configured to use the used components “OA ch1 ”, “Max ch1 ”, “Max ch2 ”, “CF ch2 ”, “OA ch3 ”, “CF ch3 ” ,.
  • a configured vector is generated as a reconstructed feature vector. When the measurement data is divided into m segments, m reconstructed feature vectors are created for one measurement data.
  • FIG. 15 is a diagram for explaining the reconstructed feature vector.
  • FIG. 15 shows an example in which the measurement data is divided into m segments, and the number of used components (used feature amounts) whose index value indicating variation is equal to or less than the extraction threshold is n.
  • n the number of used components whose index value indicating variation is equal to or less than the extraction threshold.
  • a reconstructed feature vector consisting of n used components is created for each segment, and normality / abnormality of the device under test 10 is discriminated using the m reconstructed feature vectors. .
  • measurement data is divided into segments, and feature amounts are extracted and feature amount vectors are calculated in units of segments. For example, when a rotating device is monitored by a vibration sensor, a temporary impact such as dropping a tool during measurement data acquisition may be detected by the vibration sensor as a sudden vibration. If feature values are extracted in segments, correct feature values can be extracted at times other than when a sudden abnormality occurs, and a segment corresponding to a sudden abnormality can be obtained by comparing the feature values for each segment. It is also possible to remove and evaluate.
  • the initial feature quantity vector includes all of a plurality of predetermined feature quantities as components.
  • the components of the initial feature quantity vector include components that are easily influenced by the operating status of the device under test 10 (feature quantities) and components that are not easily affected (feature quantities).
  • feature quantities components that are easily influenced by the operating status of the device under test 10
  • feature quantities there are a feature quantity that includes sudden noise and easily fluctuates even under normal driving conditions, and a feature quantity that is less susceptible to noise.
  • the normality / abnormality of the device under test 10 is determined using the feature quantity including sudden noise, it is erroneously determined that the device under test 10 is normal but abnormal due to mere sudden noise, or a signal caused by an abnormal situation. May be buried in noise and misjudged to be normal although it is abnormal.
  • the normal / invalid state of the device under test 10 using a reconstructed feature vector composed only of components (features) whose index value (for example, variation coefficient) indicating variation is equal to or less than the extraction threshold value. Abnormality is determined. Thereby, the misclassification rate can be reduced.
  • the degree of abnormality 1 to m is calculated based on the classification boundary for the reconstructed feature quantity vectors 1 to m.
  • the classification boundary is an index for performing abnormality determination used in a known abnormality detection method (One Class Support Vector Machine: OC-SVM). Since the basic concept of OC-SVM has already been described with reference to FIG. 5, description thereof will not be repeated here.
  • FIG. 16 is a flowchart for explaining processing performed by the data acquisition unit of FIG. 1 in the second embodiment.
  • the data acquisition unit 120 receives data obtained by digitally converting a signal including a vibration waveform from the vibration sensor 20, and in step S102, an abnormality to be observed among a low-pass filter, a band-pass filter, a high-pass filter, and the like.
  • Appropriate filter processing is applied to the phenomenon to remove basic noise, and the result is stored in the storage device 130 in step S103.
  • the data acquisition unit 120 wants to acquire learning data and perform diagnosis while the device under test 10 is in use when it is known that the device under test 10 operates normally such as in the initial state of the device under test 10 or when repair is completed. In this case, test data is automatically acquired at the time specified by a timer.
  • FIG. 17 is a flowchart for explaining the first stage of processing performed by the learning unit in FIG. 2 in the second embodiment.
  • FIG. 18 is a flowchart for explaining the latter stage of the process performed by the learning unit in FIG. 2 in the second embodiment.
  • the learning unit 142 first initializes the count variable j to 1 in step S111.
  • step S112 one piece of learning data is randomly selected from a plurality of measurement data acquired during normal operation.
  • the learning data is divided into segments (step S113), and an initial feature vector is created for each segment (step S114).
  • step S116 The count variable j is counted up in step S116 while the count variable j is less than the selection number D1 in step S115 (NO in S115) so that the processes in S112 to S114 are repeated by the learning data selection number D1.
  • step S112 normal data other than normal data already selected as learning data is selected.
  • initial feature quantity vectors are created by the number obtained by multiplying the learning data selection number D1 by the segment division number m.
  • the learning unit 142 uses the D1 ⁇ m initial feature vector as a population, and calculates an index value indicating variation for each component (feature) of the initial feature vector.
  • a variation coefficient is calculated as the index value.
  • the learning unit 142 determines a component having a variation coefficient equal to or less than a predetermined extraction threshold as a used component (used feature amount), and uses the feature value information indicating the determined type of the used component as a threshold storage unit 144.
  • the feature quantity (usage feature quantity) used to determine normality / abnormality of the device under test 10 is determined.
  • step S118 the count variable j is initialized to 1.
  • step S119 D1 learning data are randomly selected from a plurality of measurement data acquired in the normal state. Subsequently, as described with reference to FIG. 13, each learning data is divided into segments (step S120), and a reconstructed feature vector composed of only the used components determined in step S117 is calculated for each segment (step S120). Step S121).
  • step S122 the learning unit 142 calculates a classification boundary and an abnormality determination threshold value using OC-SVM for D1 ⁇ m reconstructed feature quantity vectors. Further, when the jth classification boundary and the discrimination threshold are calculated in step S123, a count variable j is assigned to them and stored.
  • the count variable j is incremented in step S125 while the count variable j is less than the repeat count K1 in step S124 (NO in S124) so that the processes in S119 to S123 are repeated the repeat count K1.
  • step S119 the already selected combination of measurement data is not used.
  • the count variable j reaches the number of repetitions K1 in step S124, the calculation of K1 classification boundaries and the discrimination threshold is finished, and the processing is finished in step S126.
  • FIG. 19 is a flowchart for explaining processing performed by the abnormality degree calculation unit of FIG. 2 in the second embodiment.
  • the abnormality degree calculation unit 146 initializes the count variable j to 1 in step S131.
  • D2 test data are randomly selected from the plurality of measurement data acquired at the time of diagnosis.
  • each test data is divided into segments (step S133), and an initial feature vector including a plurality of predetermined types of feature values is calculated for each segment (step S134). ).
  • the degree-of-abnormality calculation unit 146 extracts a use component (use feature amount) indicated by use feature amount information stored in the threshold value storage unit 144 from the initial feature amount vector, thereby creating a reconstructed feature amount vector. (Step S135). That is, the reconstructed feature quantity vector is composed only of the used components indicated by the used feature quantity information.
  • step S136 the degree-of-abnormality calculation unit 146 generates the j-th generated by the learning unit 142 for the reconstructed feature quantity vector created in step S135 and held in the threshold storage unit 144.
  • the degree of abnormality is calculated using the classification boundary of the selected learning data. Since a reconstructed feature vector is created for each segment, the degree of abnormality is also calculated for each segment.
  • step S132 The count variable j is incremented in step S138 while the count variable j is less than the repeat count K1 in step S137 (NO in S137) so that the processes in S132 to S136 are repeated the repeat count K1.
  • step S132 the combination of measurement data already selected as test data is not used.
  • step S137 When the degree of abnormality of each segment having the number of repetitions K1 is calculated in step S137, the process ends in step S139.
  • FIG. 20 is a flowchart for explaining processing performed by the determination unit of FIG. 2 in the second embodiment.
  • the determination unit 148 initializes both the count variables i and j to 1.
  • the D2 test data (test data j) selected j-th is targeted (step S142), and the degree of abnormality of the i-th segment (segment i) of the D2 test data is selected j-th.
  • the abnormality determination is performed by comparing with the abnormality determination threshold value of the learned data (step S143).
  • step S134 the count variable i is counted in step S145 while the count variable i is less than the total segment number D2 ⁇ m (NO in S144) so that the processes in S142 to S145 are repeated for the total number of segments D2 ⁇ m. Will be up.
  • the determination unit 148 calculates the abnormality rate of the test data j in step S146.
  • the abnormality rate is the total number of segments D2 ⁇ m, which is the number of abnormalities 1 to D2 ⁇ m of segments 1 to D2 ⁇ m that exceeds the abnormality determination threshold. Is obtained by dividing by.
  • the count variable j is incremented in step S148 while the count variable j is less than the repeat count K1 in step S147 (NO in S147) so that the processes in S142 to S146 are repeated the repeat count K1.
  • the determination unit 148 calculates the average abnormality rate by averaging the abnormality rates 1 to K1 in step S149, and in step S150. End the process.
  • measurement data that could not be used as error data in the past can be used by dividing learning data and test data into segments and obtaining initial feature vectors. Become. Furthermore, by using a component with small variation as a used component and extracting the used component from the initial feature vector to create a reconstructed feature vector, it is possible to reduce erroneous normal / abnormal judgment due to the influence of noise. it can. In addition, by selecting and calculating randomly from a plurality of measurement data and calculating the average abnormality rate, the abnormality rate is converged and the determination result is stabilized.
  • Example 1 A verification experiment was performed on the state monitoring method of the second embodiment described above.
  • the device under test is assumed to be a bearing, and an example of a state monitoring of a bearing having an artificial damage on the raceway surface is shown.
  • the vibration acceleration was measured when an angular contact ball bearing with a small cylindrical hole and rectangular groove formed on the outer ring raceway was operated at a constant speed under radial and axial loads.
  • the discharge hole diameter and groove shape (hereinafter referred to as damage size) are the following five types.
  • the vibration acceleration was measured 11 times for each damage size.
  • the tester was disassembled and reassembled for each measurement.
  • the operating conditions and measurement conditions are the same as those in the first embodiment, and the initial feature vector is obtained in the second embodiment from these.
  • Vibration acceleration data obtained in one measurement for 20 seconds is subjected to frequency filter processing (low pass: 20 to 1000 Hz, band pass: 1000 to 5000 Hz, high pass: 5000 to 20000 Hz), and then every 0.2 seconds (5 rotations of rotating shaft).
  • frequency filter processing low pass: 20 to 1000 Hz, band pass: 1000 to 5000 Hz, high pass: 5000 to 20000 Hz
  • 0.2 seconds 5 rotations of rotating shaft.
  • the feature values of the respective regions are collected to obtain an initial feature value vector (FIG. 13).
  • ⁇ Select learning data> Of 11 measurement data obtained at normal time, 8 were randomly selected as learning data. All the initial feature vectors obtained from the selected measurement data are used together as learning data.
  • ⁇ Create reconstructed feature data> In all the initial feature vector included in the learning data, a variation coefficient indicating variation is calculated for each component of the initial feature vector, and a component having a variation coefficient of 0.3 or less is determined as a use component. A reconstructed feature vector was created by extracting only the used components determined from each of all the initial feature vectors included in the learning data and the test data.
  • a classification boundary is created from the reconstructed feature vector of the learning data using OC-SVM (FIG. 5). Further, the degree of abnormality of all the reconstruction feature quantity vectors of the learning data is calculated from the created classification boundary, and the abnormality determination threshold value is calculated by the following equation (11).
  • Abnormality determination threshold average value of abnormality degree + 5 ⁇ standard deviation of abnormality degree (11)
  • ⁇ Calculation of test data error rate> The degree of abnormality of each reconstructed feature vector of the test data is calculated using the classification boundary, and the abnormality rate of the test data is calculated using the following equation (12) (FIG. 15).
  • Abnormality rate number of feature quantity vectors exceeding anomaly discrimination threshold / total number of feature quantity vectors (12) ⁇ Diagnosis> The above process is repeated 10 times, and the average abnormality rate for each damage size is calculated. If the average abnormality rate is 0.5 or more, the test data is regarded as abnormal.
  • FIG. 21A and 21B are graphs showing the effect of calculating the average abnormality rate.
  • FIG. 21A shows the relationship between the abnormality rate and the artificial defect size at the time of each calculation (10 times).
  • FIG. 21B shows a relationship between the abnormality rate average and the artificial defect size when the abnormality rate average is calculated.
  • the artificial defect size of 0be indicates a specimen without a defect
  • 2be, 4be, 6be, and 8be are ⁇ 0.34mm (cylindrical hole), ⁇ 0.68mm (cylindrical hole), and ⁇ 1.02mm (cylindrical hole), respectively.
  • Example 2 is the same as Example 1 in terms of operating conditions and measurement conditions. However, the initial feature vector obtained in Example 1 was used as a new initial feature vector, which is a group of five segments (segment set) continuous in time series.
  • FIG. 22 is a conceptual diagram for explaining obtaining an initial feature vector for each segment set.
  • the time length T1 of the measurement data is 20 seconds
  • the time length T2 of the segment is 0.2 seconds.
  • the segment set time length T3 was set to 2 seconds.
  • the five initial feature vectors of five consecutive segments of the first embodiment are collected and used as the initial feature vector of the segment set.
  • a variation coefficient indicating variation is calculated, and a reconstructed feature vector composed of only used components having a calculated variation coefficient of 0.3 or less is created.
  • the treatment was performed in the same procedure as in 1.
  • Comparative Example 1 In Comparative Example 1, an effective value generally used for diagnosis is used as the feature amount. The calculation method of the comparative example is shown below.
  • the abnormality determination threshold value is calculated from the effective value of the selected measurement data by the following equation (13).
  • Abnormality determination threshold average value of effective values + 5 ⁇ standard deviation of effective values (13)
  • Three of the measurement data obtained for normal (no damage) and for each damage size are selected as test data, and the abnormality rate is calculated by the following equation (14) using the effective value of the test data.
  • Abnormality rate number of effective values exceeding abnormality determination threshold / number of test data (14) The process up to the calculation of the abnormality rate is repeated, and the average abnormality rate for each damage size is calculated. If the average abnormality rate is 0.5 or more, the test data is regarded as abnormal.
  • Comparative Example 2 is common to the first embodiment except that the initial feature vector is directly used as a reconstructed feature vector. That is, Comparative Example 2 is an example in which the used component extraction process based on the coefficient of variation is not performed.
  • Example 3 a reconstructed feature amount vector is created using a component having a coefficient of variation of 0.05 or less as a used component, and the rotational speed of the test machine operating condition is 2000 revolutions / minute. 2 and common.
  • Example 4 is the same as Example 2 except that the rotational speed of the operating conditions of the test machine is 2000 revolutions / minute.
  • Example 5 a reconstructed feature amount vector is created using a component having a coefficient of variation of 0.5 or less as a used component, and the rotational speed of the test machine operating condition is 2000 revolutions / min. 2 and common.
  • Comparative Example 3 is the same as Example 2 except that the initial feature vector is directly used as a reconstructed feature vector and the rotational speed of the test machine operating condition is 2000 rpm. That is, the comparative example 3 is an example in which the extraction process of the used component based on the variation coefficient is not performed.
  • FIG. 23 shows the results of average abnormality rates calculated in Examples 1 and 2 and Comparative Examples 1 and 2 of the second embodiment.
  • Comparative Example 1 even if there is a defect in a cylindrical hole with a diameter of 1.35 mm, the average abnormality rate is less than 0.1, and the accuracy of abnormality determination is very low.
  • Comparative Example 2 although the accuracy is higher than that in Comparative Example 1, even if there is a defect in a cylindrical hole with a diameter of 1.35 mm, the abnormality rate average is less than 0.5, and the accuracy of abnormality determination is low.
  • Example 1 the abnormality rate average exceeds 0.5 for the defect of the cylindrical hole having a diameter of 1.35 mm, and it can be seen that the accuracy of abnormality determination is improved as compared with Comparative Example 2.
  • Example 2 the average abnormality rate was 0.8 or more for a defect in a cylindrical hole having a diameter of 0.68 mm or more, and the abnormality determination accuracy was further improved.
  • a new initial feature vector is obtained by collecting the initial feature vectors obtained in the first embodiment in units of five segments (segment sets) that are continuous in time series. Therefore, the components of the initial feature vector of the second embodiment include a plurality of feature values that are the same type but have different measurement timings.
  • the variation coefficient of the feature amount increases due to the noise. Therefore, the feature amount is not used as a component of the reconstructed feature amount vector and is not used for calculating the degree of abnormality.
  • the feature amount for the feature amount, only the component corresponding to the timing at which the sudden noise occurs is excluded from the reconstructed feature amount vector, and the component corresponding to the timing at which the sudden noise does not occur is reproduced. It is included in the constituent feature vector. That is, a feature quantity at a timing other than the timing corresponding to noise is used as a component of the reconstructed feature quantity vector.
  • the entire feature amount including sudden noise is not used as a component of the reconstructed feature amount vector
  • the feature amount corresponds to the timing at which noise occurs. Only the part which performs is excluded, and the part corresponding to other timing is included in the reconstructed feature vector.
  • the types of feature values used for normal / abnormal determination increase, and normal / abnormal can be determined with higher accuracy.
  • FIG. 24A to 24D show the results of calculating the average abnormality rate five times by changing the learning data and the test data in Examples 3 to 5 and Comparative Example 3.
  • FIG. 1 the artificial defect size of 0be indicates a specimen without a defect
  • 2be, 4be, 6be, and 8be are ⁇ 0.34mm (cylindrical hole), ⁇ 0.68mm (cylindrical hole), and ⁇ 1.02mm (cylindrical hole), respectively.
  • ⁇ 1.35 mm (cylindrical hole)
  • RGe indicates a rectangular groove of 2 mm in the circumferential direction ⁇ 10 mm in the axial direction ⁇ 1 mm in depth.
  • Example 3 in which the feature amount is selected based on the coefficient of variation, the abnormality determination accuracy is improved for a defect having an artificial defect size larger than 4be. It was confirmed that In Example 3 using a component (feature value) having a coefficient of variation of 0.05 or less, the average abnormality rate tends to decrease in the artificial defect sizes 6be and 8be. This is considered to be because an effective feature amount was excluded.
  • Example 5 using a component with a coefficient of variation of 0.5 or less had substantially the same result as Example 4 using a component with a coefficient of variation of 0.3 or less. Compared with Example 4, it was slightly lower. Therefore, in Examples 3 to 5 described above, the extraction threshold value is most preferably 0.3. Thus, the extraction threshold value for selecting the used component (used feature amount) may be set as appropriate.
  • the state monitoring method of the present invention can determine an abnormality earlier from measurement data in a rotating machine that is affected by operating conditions and noise, and can improve the accuracy of the state monitoring system.
  • the state monitoring method includes first to eleventh steps.
  • the first step (S101) when the object to be tested is normal, a plurality of first measurement data having a first time length are acquired at different timings from a sensor installed on the object to be tested.
  • the second step (S101) acquires a plurality of second measurement data having a first time length at different timings when diagnosing the test object.
  • a plurality of learning data are randomly selected from the plurality of first measurement data.
  • a plurality of test data are randomly selected from the plurality of second measurement data.
  • each of the plurality of learning data is divided into segment data for each second time length T2 shorter than the first time length T1, and calculated for each segment data after division.
  • An initial feature quantity vector (first feature quantity vector) having each of a plurality of feature quantities as a component is created.
  • an index value indicating variation is calculated for each component of the initial feature vector, a component whose index value is smaller than the extraction threshold is determined as a use component, and the initial feature vector
  • the reconstructed feature vector (second feature vector) is created for each segment data by extracting the used component from the segment data.
  • a classification boundary for classifying normality and abnormality and an abnormality determination threshold value are created from a plurality of reconstructed feature quantity vectors created for each segment data for a plurality of learning data.
  • each of the plurality of test data is divided into segment data for each second time length, and an initial feature quantity including a plurality of feature quantities calculated for each segment data after division.
  • a vector (third feature vector) is created.
  • a reconstructed feature vector (fourth feature vector) is created for each segment data by extracting the used components from the initial feature vector (third feature vector).
  • the degree of abnormality which is the distance from the classification boundary, is calculated for the reconstructed feature quantity vector created in the ninth step, and reconstruction is performed for each of the plurality of test data.
  • An abnormality rate is calculated in which the number of abnormalities in the feature vector exceeds the abnormality determination threshold is a ratio to the total number of reconstructed feature vectors.
  • the third to eighth steps are repeatedly executed a plurality of times, and when the average value of the obtained abnormality rates exceeds a predetermined value, the object to be tested is determined to be abnormal.
  • step (S113, S114) and the eighth step (S133, S134) for example, data measured at a certain time length T1 is divided by a time length T2 such as a rotation period and a cycle, and an initial feature vector is calculated. As a result, it is possible to evaluate temporal variation of the feature amount by confirming the change of the initial feature amount vector.
  • the time length T2 is an integral multiple of the rotation period and the operation cycle.
  • feature quantities in the fifth step (S113, S114) and the eighth step (S133, S134) for example, raw measurement data, effective values, maximum values, wave heights in the time domain, frequency domain, and quefrency domain after band-pass filtering. Examples are rate, kurtosis, and skewness.
  • the third step (S112, S119) creates a normal model that takes into account changes in machine characteristics by randomly selecting initial feature vectors from long-term output signals including setup and stop / restart. It becomes possible to do.
  • the initial feature vector is randomly selected from long-term data including setup and stop / restart, thereby changing the machine characteristics. It is possible to create test data that takes into account.
  • the output signal of the sensor used for state monitoring should just be an output signal which can confirm the operating condition of a rotary machine and an installation, and can illustrate vibration, sound, temperature, load torque, and motor electric power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

誤判別率が低減した状態監視方法および状態監視装置を提供する。 状態監視装置(100)は、測定データを処理するときに全体として処理せず、測定データ全体を複数のセグメントに分割し、セグメントごとに処理する。また、測定データの中から異常検出手法(One Class Support Vector Machine:OC-SVM)を適用する学習データおよびテストデータをランダムに選択して繰り返し異常率を算出して平均を取ることにより判別結果が安定化する。

Description

状態監視方法および状態監視装置
 本発明は、状態監視方法および状態監視装置に関する。
 従来、回転機械や設備およびそれらを含むプラントでは、各種センサを用いて物理量を測定することによって状態を監視している。
 状態監視の方法としては、物理量の正常状態のモデルを作成し、新たに測定した物理量が正常状態のモデルからどの程度乖離しているかを算出することによって異常を判別する方法がある(例えば特許文献1:特許第5431235号公報を参照)。また、軸受の損傷や軸の振れにより発生する特性周波数ピークの値を状態監視システムに記憶させ、同ピークの変化を見ることによって異常を特定する方法もある(例えば特許文献2:特許第5780870号公報を参照)。
特許第5431235号公報 特許第5780870号公報
 しかし、運転状況やノイズの影響を受ける回転機械においては、正常な状態でも物理量が変動するため、異常を示す物理量が正常状態のモデルの中に埋もれる可能性や、作成した正常状態のモデルによっては、正常状態を異常と誤判別する可能性がある。
 運転状況やノイズの影響を受ける回転機械において、可能な限り誤判別をなくし、かつ微細な損傷を判別できる状態監視手法が望まれている。
 この発明は、上記の課題を解決するためになされたものであって、その目的は、誤判別率が低減した状態監視方法および状態監視装置を提供することである。
 この発明は、状態監視方法であって、被試験対象物が正常である時に、被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する第1工程と、被試験対象物の診断時に、第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する第2工程と、複数の第1の測定データから複数の学習データをランダムに選択する第3工程と、複数の第2の測定データから複数のテストデータをランダムに選択する第4工程と、複数の学習データの各々を第1時間長よりも短い第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第1の特徴量ベクトルを作成する第5工程と、複数の学習データについてセグメントデータ毎に作成された複数の第1の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する第6工程と、複数のテストデータの各々を第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第2の特徴量ベクトルを作成する第7工程と、第2の特徴量ベクトルに対して分類境界からの距離である異常度を算出し、複数のテストデータの各々に対して、第2の特徴量ベクトルの異常度が異常判別しきい値を超える数が第2の特徴量ベクトルの総数に対する割合である異常率を算出する第8工程と、第3~第8工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に被試験対象物を異常と判別する第9工程とを備える。
 この発明の他の局面における状態監視方法は、被試験対象物が正常である時に、被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する第1工程と、被試験対象物の診断時に、第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する第2工程と、複数の第1の測定データから複数の学習データをランダムに選択する第3工程と、複数の第2の測定データから複数のテストデータをランダムに選択する第4工程と、複数の学習データの各々を第1時間長よりも短い第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第1の特徴量ベクトルを作成し、連続する複数のセグメントデータの第1の特徴量ベクトルをまとめて、第3の特徴量ベクトルを作成する第5工程と、複数の学習データについて連続する複数のセグメントデータ毎に作成された複数の第3の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する第6工程と、複数のテストデータの各々を第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第2の特徴量ベクトルを作成し、連続する複数のセグメントデータの第2の特徴量ベクトルをまとめて第4の特徴量ベクトルを作成する第7工程と、第4の特徴量ベクトルに対して分類境界からの距離である異常度を算出し、複数のテストデータの各々に対して、第4の特徴量ベクトルの異常度が異常判別しきい値を超える数が第4の特徴量ベクトルの総数に対する割合である異常率を算出する第8工程と、第3~第8工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に被試験対象物を異常と判別する第9工程とを備える。
 この発明のさらに他の局面における状態監視方法は、被試験対象物が正常である時に、被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する第1工程と、被試験対象物の診断時に、第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する第2工程と、複数の第1の測定データから複数の学習データをランダムに選択する第3工程と、複数の第2の測定データから複数のテストデータをランダムに選択する第4工程と、複数の学習データの各々を第1時間長よりも短い第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された複数の特徴量の各々を成分とする第1の特徴量ベクトルを作成する第5工程と、第1の特徴量ベクトルの各成分に対してばらつきを示す指標値を算出し、指標値が抽出しきい値未満の成分を使用成分として決定し、第1の特徴量ベクトルから使用成分を抽出することにより第2の特徴量ベクトルをセグメントデータ毎に作成する第6工程と、複数の学習データについてセグメントデータ毎に作成された複数の第2の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する第7工程と、複数のテストデータの各々を第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された複数の特徴量の各々を成分とする第3の特徴量ベクトルを作成する第8工程と、第3の特徴量ベクトルから使用成分を抽出することにより第4の特徴量ベクトルをセグメントデータ毎に作成する第9工程と、第4の特徴量ベクトルに対して分類境界からの距離である異常度を算出し、複数のテストデータの各々に対して、第4の特徴量ベクトルの異常度が異常判別しきい値を超える数の第4の特徴量ベクトルの総数に対する割合である異常率を算出する第10工程と、第3~第10工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に被試験対象物を異常と判別する第11工程とを備える。指標値はたとえば変動係数である。
 この発明のさらに他の局面における状態監視方法は、被試験対象物が正常である時に、被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する第1工程と、被試験対象物の診断時に、第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する第2工程と、複数の第1の測定データから複数の学習データをランダムに選択する第3工程と、複数の第2の測定データから複数のテストデータをランダムに選択する第4工程と、複数の学習データの各々を第1時間長よりも短い第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された複数の特徴量の各々を成分とする第1の特徴量ベクトルを作成し、連続する複数のセグメントデータの第1の特徴量ベクトルをまとめた第2の特徴量ベクトルを作成する第5工程と、第2の特徴量ベクトルの各成分に対してばらつきを示す指標値を算出し、指標値が抽出しきい値未満の成分を使用成分として決定し、第2の特徴量ベクトルから使用成分を抽出することにより第3の特徴量ベクトルを連続する複数のセグメントデータ毎に作成する第6工程と、複数の学習データについて連続する複数のセグメントデータ毎に作成された複数の第3の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する第7工程と、複数のテストデータの各々を第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された複数の特徴量の各々を成分とする第4の特徴量ベクトルを作成し、連続する複数のセグメントデータの第4の特徴量ベクトルをまとめた第5の特徴量ベクトルを作成する第8工程と、第5の特徴量ベクトルから使用成分を抽出することにより第6の特徴量ベクトルを連続する複数のセグメントデータ毎に作成する第9工程と、第6の特徴量ベクトルに対して分類境界からの距離である異常度を算出し、複数のテストデータの各々に対して、第6の特徴量ベクトルの異常度が異常判別しきい値を超える数の第6の特徴量ベクトルの総数に対する割合である異常率を算出する第10工程と、第3~第10工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に被試験対象物を異常と判別する第11工程とを備える。指標値はたとえば変動係数である。
 この発明は、他の局面においては、上記のいずれかの方法を用いて、被試験対象物を診断する、状態監視装置である。
 本発明の状態監視方法は、運転状況やノイズの影響を受ける監視対象装置において、より早期に測定データから異常を判別でき、状態監視システムの精度を向上できる。
本実施の形態に係る状態監視装置の構成を示すブロック図である。 データ演算部の詳細を示すブロック図である。 実施の形態1の測定データとセグメントデータの関係を示す概念図である。 特徴量ベクトルについて説明するための図である。 OC-SVMの基本概念を説明するための図である。 実施の形態1のデータ取得部が行なう処理を説明するためのフローチャートである。 実施の形態1の学習部が行なう処理を説明するためのフローチャートである。 実施の形態1の異常度算出部が行なう処理を説明するためのフローチャートである。 実施の形態1の判別部が行なう処理を説明するためのフローチャートである。 異常率平均を算出する効果(異常率)を示すグラフである。 異常率平均を算出する効果(異常率平均)を示すグラフである。 セグメントセットごとに特徴量ベクトルを求めることを説明するための概念図である。 実施の形態1における異常判別結果を示す図である。 実施の形態2の測定データとセグメントデータの関係を示す概念図である。 実施の形態2の初期特徴量ベクトルと再構成特徴量ベクトルとの関係を説明するための図である。 実施の形態2の再構成特徴量ベクトルについて説明するための図である。 実施の形態2のデータ取得部が行なう処理を説明するためのフローチャートである。 実施の形態2の学習部が行なう処理の前段を説明するためのフローチャートである。 実施の形態2の学習部が行なう処理の後段を説明するためのフローチャートである。 実施の形態2の異常度算出部が行なう処理を説明するためのフローチャートである。 実施の形態2の判別部が行なう処理を説明するためのフローチャートである。 異常率平均を算出する効果(異常率)を示すグラフである。 異常率平均を算出する効果(異常率平均)を示すグラフである。 セグメントセットごとに特徴量ベクトルを求めることを説明するための概念図である。 実施例1,2,比較例1の異常率平均の結果を示す図である。 実施例3の異常判別結果を示すグラフである。 実施例4の異常判別結果を示すグラフである。 実施例5の異常判別結果を示すグラフである。 比較例2の異常判別結果を示すグラフである。
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 [状態監視装置の基本構成]
 図1は、本実施の形態に係る状態監視装置の構成を示すブロック図である。図1を参照して、状態監視装置100は、被試験装置10に設置された振動センサ20から信号を受けて、被試験装置10の状態を監視し、異常を検出する。被試験装置10は、例えば工場や発電所などに設置された回転機器を含む設備であり、振動センサ20は、回転時に生じる異常振動を検出することができる。なお、本実施の形態では、監視対象として振動を例示するが、設備の運転状況を確認できる出力信号であれば振動センサ以外の検出信号であっても良い。たとえば、音響、温度、負荷トルク、モータ電力等を検出するセンサを振動センサ20に代えて使用しても良い。
 状態監視装置100は、A/Dコンバータ110と、データ取得部120と、記憶装置130と、データ演算部140と、表示部150とを含む。
 A/Dコンバータ110は、振動センサ20の出力信号を受ける。データ取得部120は、A/Dコンバータ110からデジタル信号を受けてフィルタ処理を行ない、記憶装置130に測定データを記録する。データ演算部140は、記憶装置130から正常時に測定しておいた測定データを読み出して、異常を判別する異常判別しきい値を作成したり、異常判別しきい値を用いてテスト時に測定した測定データから被試験装置10の異常の有無を判断したりする。データ演算部140は、異常の有無を判断した場合、表示部150にその結果を表示させる。
 図2は、データ演算部の詳細を示すブロック図である。データ演算部140は、学習部142と、しきい値記憶部144と、異常度算出部146と、判別部148とを含む。
 学習部142は、記憶装置130から被試験装置10が正常時(初期状態など)に取得しておいたデータ(正常データ)に基づいて正常と異常とを分類する境界である分類境界と、分類境界からの距離に相当する異常度を判別するための異常判別しきい値とを生成し、しきい値記憶部144に記憶させる。
 異常度算出部146は、記憶装置130から被試験装置10の診断時に取得したデータ(テストデータ)に分類境界を適用し、分類境界からの距離に相当する異常度を算出し、判別部148に送る。
 判別部148は、異常度と異常判別しきい値とを比較した結果にもとづいて被試験装置10の異常判定を行なう。
 [実施の形態1]
 本実施の形態の状態監視装置100は、測定データを処理するときに全体をひとまとめにして処理せず、測定データ全体を複数のセグメントに分割し、セグメントごとに処理することが一つの特徴である。以下セグメントについて説明する。
 図3は、測定データとセグメントデータの関係を示す概念図である。図3を参照して、測定データは、時間長T1のデータであり、振動センサ20からの出力信号がA/Dコンバータ110でA/D変換され、データ取得部120でフィルタ処理された後に、記憶装置130に記憶されたデータである。
 記憶装置130に記憶されている測定データは、学習データとテストデータとを含む。学習データは、被試験装置10が正常であることが分かっている時(たとえば初期状態など)に取得した測定データである。テストデータは、被試験装置10の正常/異常を判別したいときに取得した測定データである。学習データによって、後述の分類境界や異常判別しきい値が定められる。この分類境界および異常判別しきい値を用いてテストデータに対して所定の処理が行なわれた結果、被試験装置10の正常/異常が判断される。
 時間長T1の測定データは、学習部142および異常度算出部146において処理される際に、図3に示すように時間長T1より短い時間長T2のセグメントに分割される。たとえば、時間長T1が20秒である場合に、時間長T2を0.2秒とすることができる。この場合、測定データ1個は、セグメントデータ100個に分割される。測定データの分割後、学習部142および異常度算出部146において、さらにセグメントごとに特徴量ベクトルが作成される。
 図4は、特徴量ベクトルについて説明するための図である。図4では、測定データがm個のセグメントに分割され、特徴量がn個である例を示している。
 特徴量は、たとえば、測定データが振動の場合には、実効値(OA)、最大値(Max)、波高率(Crest factor)、尖度、歪度、およびこれらの信号処理後(FFT処理、ケフレンシ処理)の値とすることができる。特徴量ベクトルは、複数の特徴量を一組のベクトルとして扱うものである。これらの特徴量ベクトルが異常判定に使用される。測定データ1個に対して、m個の特徴量ベクトル1~mが作成される。
 特徴量の抽出および特徴量ベクトルの作成を、測定データ全体をひとまとめにして処理すると、突発的な異常が生じたときに測定データ全体が診断に使用できなくなってしまう虞がある。したがって、本実施の形態では、測定データをセグメントに分割し、セグメントを単位として特徴量の抽出と特徴量ベクトルの算出を行なう。たとえば、回転機器を振動センサで監視している場合に、測定データ取得中に工具などを落としたなどの一時的な衝撃が突発的な振動として振動センサに検出される場合がある。セグメントに分けて特徴量を抽出していれば、このような場合でも突発異常時以外の時間では正しい特徴量が抽出できるとともに、特徴量をセグメントごとに比較することによって、突発異常に相当するセグメントを除去して評価することも可能となる。
 特徴量ベクトル1~mに対して分類境界に基づいて異常度1~mが演算される。分類境界は、既知の異常検出手法(One Class Support Vector Machine:OC-SVM)で使用される異常判別を行なうための指標である。
 図5は、OC-SVMの基本概念を説明するための図である。図5において、丸印で示されるのは、被試験装置10が正常であることが分かっている時に正常状態を学習するために取得された学習データであり、四角印および三角印で示されるのは、診断対象であるテストデータである。なおテストデータのうち、四角印は異常を示すデータ、三角印は正常を示すデータに対応する。
 たとえば、左の図5(a)に示すように、特徴量が2個の場合の二次元の散布図上では、学習データおよびテストデータには正常/異常を分類できる境界線が引けない場合を考える。診断対象および運転条件によって、有用な特徴量が異なるので、適切な特徴量を選択する。適切な特徴量を含む多次元の特徴空間に各学習データおよびテストデータを写像することによって、正常/異常を分類できる分類境界面が生成できるようになる。各学習データおよびテストデータに対しては、分類境界からの距離である異常度を算出することができる。分類境界上では異常度はゼロとなり、分類境界よりも正常側では異常度は負(-)の値となり、異常側では異常度は正(+)の値となる。
 このような手法はOC-SVMによる機械学習といわれ、多くの特徴量を1つの指標(異常度)に変換して評価することが可能となる。
 図2の学習部142は、上記の分類境界を定めるとともに、テストデータの異常度を判定するための異常判定しきい値を定める。また図2の異常度算出部146は、特徴空間における各測定データの分類境界からの距離である異常度を算出する。図2の判別部148は、異常度を異常判別しきい値と比較して、各測定データの異常率を算出し、判別結果を出力する。
 図6は、図1のデータ取得部が行なう処理を説明するためのフローチャートである。データ取得部120は、ステップS1において、振動センサ20からの振動波形を含む信号がデジタルに変換されたデータを受信し、ステップS2において、ローパスフィルタ、バンドパスフィルタ、ハイパスフィルタ等のうち観測したい異常現象に対して適切なフィルタ処理を施して基本的なノイズを除去した状態とし、ステップS3において記憶装置130に記憶する。
 なお、データ取得部120は、被試験装置10の初期状態、修理完了時などの正常動作することが分かっている場合に、学習データを取得し、被試験装置10の使用中に診断を行ないたい場合に、タイマーなどで指定された時間に自動的にテストデータを取得する。
 図7は、図2の学習部が行なう処理を説明するためのフローチャートである。学習部142は、まずステップS11において、カウント変数jを1に初期化する。そして、ステップS12において、正常時に取得した複数の測定データのうちから学習データをD1個ランダムに選択する。続いて、図3で説明したように、各学習データをセグメントに分割し(ステップS13)、セグメントごとに特徴量ベクトルを算出する(ステップS14)。
 続いて、ステップS15において、学習部142は、選択した学習データに含まれるD1×m個の特徴量ベクトルを用いて、OC-SVMを用いた分類境界と異常判別しきい値を算出する。さらに、ステップS16において第j回の分類境界と判別しきい値が算出されると、それらにカウント変数を付与して保存する。
 以上のS12~S16の処理を繰り返し回数K1だけ繰り返すように、ステップS17においてカウント変数jが繰り返し回数K1未満である間(S16でNO)、ステップS18でカウント変数jがカウントアップされる。なおステップS12では、すでに選択された測定データの組合せは使用しない。ステップS17においてカウント変数jが繰り返し回数K1になった場合、K1個の分類境界と判別しきい値の算出が終了し、ステップS19において処理が終了する。
 図8は、図2の異常度算出部が行なう処理を説明するためのフローチャートである。異常度算出部146は、まずステップS21において、カウント変数jを1に初期化する。そして、ステップS22において、診断時に取得した複数の測定データのうちからテストデータをD2個ランダムに選択する。続いて、図3で説明したように、各テストデータをセグメントに分割し(ステップS23)、セグメントごとに特徴量ベクトルを算出する(ステップS24)。
 続いて、ステップS25において、異常度算出部146は、学習部142が生成し、しきい値記憶部144に保持されていたj番目に選択された学習データの分類境界を使用して、テストデータの各セグメントの異常度を算出する。
 以上のS22~S25の処理を繰り返し回数K1だけ繰り返すように、ステップS26においてカウント変数jが繰り返し回数K1未満である間(S16でNO)、ステップS27でカウント変数jがカウントアップされる。なおステップS22では、すでにテストデータとして選択された測定データの組合せは使用しない。
 ステップS26において繰り返し回数K1回の各セグメントの異常度が算出されると、ステップS28において処理が終了する。
 図9は、図2の判別部が行なう処理を説明するためのフローチャートである。判別部148は、まずステップS31において、カウント変数i,jをともに1に初期化する。そして、j番目に選択されたテストデータ(テストデータj)を対象とし(ステップS32)、そのテストデータのi番目のセグメント(セグメントi)の異常度を、j番目に選択された学習データの異常判別しきい値と比較して異常判定を行なう(ステップS33)。以上のS32~S35の処理を総セグメント数D2×mだけ繰り返すように、ステップS34においてカウント変数iが総セグメント数D2×m未満である間(S34でNO)、ステップS35でカウント変数iがカウントアップされる。
 ステップS34においてテストデータjのセグメント1~D2×mについて、各セグメントの異常度が算出されると、判別部148は、ステップS36において、テストデータjの異常率を算出する。
 異常率は、図4にも記載されているように、セグメント1~D2×mの異常度1~D2×mのうち異常度が異常判別しきい値を超えた数を総セグメント数D2×mで除算することによって求められる。
 以上のS32~S36の処理を繰り返し回数K1だけ繰り返すように、ステップS37においてカウント変数jが繰り返し回数K1未満である間(S37でNO)、ステップS38でカウント変数jがカウントアップされる。
 ステップS37においてテストデータ1~K1について、各テストデータの異常率が算出されると、判別部148は、ステップS39において、異常率1~K1を平均して異常率平均を算出し、ステップS40において処理を終了する。
 以上説明したように、学習データおよびテストデータをセグメントに分割して特徴量ベクトルを求めることによって、従来であればエラーデータとして使用できなかった測定データも使用可能となる。加えて、複数の測定データからランダムに選択して演算を行ない、異常率平均を算出することを繰り返すことによって、異常率が収れんし、判別結果が安定する。
 (実施例1)
 以上説明した実施の形態1の状態監視方法について、検証実験をおこなった。被試験装置は軸受とし、軌道面に人工の損傷を設けた軸受の状態監視事例を示す。
 アンギュラ玉軸受の外輪軌道に放電加工で微細な円筒穴および矩形溝を設けた軸受を、ラジアル負荷およびアキシアル負荷のかかる状態で、一定速度で運転した時の振動加速度を測定した。放電穴直径および溝形(以下、損傷サイズ)は以下に示す5種類である。各損傷サイズで11回振動加速度を測定した。また、測定ごとに試験機の分解・再組み立てをした。運転条件および測定条件は次の通りである。
 <運転条件>
軸受:アンギュラ玉軸受(型番7216:内径80mm、外径140mm、幅26mm)
ラジアル負荷:1.3kN
アキシアル負荷:1.3kN
回転速度:1500回転/分
損傷サイズ:0.00mm(正常)、φ0.34mm(円筒穴)、φ0.68mm(円筒穴)、φ1.02mm(円筒穴)、φ1.35mm(円筒穴)、周方向2mm×軸方向10mm×深さ1mm(矩形溝)
 <測定条件>
測定データ:振動加速度
測定方向:鉛直方向、水平方向、軸方向
データ長さ:20秒
サンプリング速度:50kHz
測定回数:11回/損傷サイズ
上記で得た各損傷サイズにおける振動加速度データを用い実施例の有用性を評価した。
 <学習データ、テストデータの特徴量ベクトルの算出>
 1回の測定20秒で得られた振動加速度データを、周波数フィルタ処理(ローパス:20~1000Hz、バンドパス:1000~5000Hz、ハイパス:5000~20000Hz)後、0.2秒(回転軸5回転)毎に100セグメントに分割し、分割した測定データ(セグメントデータ)の時間領域、周波数領域、ケフレンシ領域での特徴量(ここでは実効値OA、最大値Max、波高率Crest factor、尖度、歪度)を算出し同時刻における各フィルタ処理後、各領域の特徴量をまとめて特徴量ベクトルを得る(図3)。
 <学習データの選択>
 正常時において、得た11個の測定データのうち、ランダムに8個を学習データとして選択した。選択した測定データから得られる全特徴量ベクトルをまとめて学習用のデータとして利用する。
 <テストデータの選択>
 各種損傷サイズに対して、得られた11個の特徴量セットのうち、ランダムに3個を選択した。なお、損傷なしのデータとしては、学習データとしてランダムに8個選択した残りの3個を使用した。選択した測定データから得られる全特徴量ベクトルをテスト用のデータとして使用する。
 <分類境界および異常判別しきい値の作成>
 学習データの特徴量ベクトルからOC-SVMを用いて分類境界を作成する(図5)。また作成した分類境界により、学習データの全特徴量ベクトルの異常度を算出し、異常判別しきい値を次式(1)で算出する。
異常判別しきい値=異常度の平均値+5×異常度の標準偏差…(1)
 <テストデータの異常率の算出>
 分類境界を用いてテストデータの各特徴量ベクトルの異常度を算出し、次式(2)を用いてテストデータの異常率を算出する(図4)。
異常率=異常判別しきい値を超えた特徴量ベクトルの数/特徴量ベクトルの総数…(2)
 <診断>
 以上の処理を10回繰り返し、各損傷サイズの異常率平均を算出する。異常率平均が0.5以上であればテストデータを異常とみなす。
 図10A、図10Bは、異常率平均を算出する効果を示すグラフである。図10Aには、各計算時(10回)における異常率と人工欠陥サイズとの関係が示されている。図10Bには、異常率平均を算出した場合の、異常率平均と人工欠陥サイズとの関係が示されている。なお、人工欠陥サイズが0beは、欠陥なしの試験体を示し、2be,4be,6be,8beは、それぞれφ0.34mm(円筒穴),φ0.68mm(円筒穴),φ1.02mm(円筒穴),φ1.35mm(円筒穴)を示し、RGeは、周方向2mm×軸方向10mm×深さ1mmの矩形溝を示す。図10A、図10Bを比較してわかるように、異常率平均を算出する場合の方が各欠陥サイズにおいてバラツキが小さくなるので、異常率平均を異常判別に用いたほうが、判別結果が安定しやすいことが分かる。
 (実施例2)
 実施例2は、運転条件および測定条件については、実施例1と共通である。実施例1において求めた特徴量ベクトルを時系列で連続するセグメント5個(セグメントセット)単位でまとめたものを新たな特徴量ベクトルとして使用した。
 図11は、セグメントセットごとに特徴量ベクトルを求めることを説明するための概念図である。測定データの時間長T1を20秒とすると、セグメントの時間長T2を0.2秒とした。そしてセグメントセットの時間長T3を2秒とした。実施例2では実施例1の5つの連続するセグメントの5つの特徴量ベクトルをまとめて、セグメントセットの特徴量ベクトルとした。
 このセグメントセットの特徴量ベクトルを使用して実施例1と同様な手順で処理を行なった。
 (比較例)
 比較例では、特徴量として一般に診断に用いられる実効値を用いた。比較例の算出方法を以下に示す。
 正常時(損傷なし)および各損傷サイズにおける鉛直方向の実効値を算出する。実効値は測定データ全体から1つの値を求める。
 正常時において得られた11個の測定データのうちランダムに8個を学習データとして選択し、選択した測定データの実効値から異常判別しきい値を次式(3)で算出する。
異常判別しきい値=実効値の平均値+5×実効値の標準偏差…(3)
 正常時(損傷なし)および各損傷サイズに対して得られた測定データのうち3個をテストデータとして選択し、テストデータの実効値を用いて次式(4)で異常率を算出する。正常時については異常判別しきい値を作成したデータとは別の測定データを使用する。
異常率=異常判定閾値を超えた実効値の数/テストデータの数…(4)
 異常率の算出までの処理を繰り返し、各損傷サイズの異常率平均を算出する。異常率平均が0.5以上であればテストデータを異常とみなす。
 (評価)
 図12は、実施の形態1における異常判別結果を示す図である。実施例1、2および比較例において、学習データ、テストデータを変更して、異常率平均を5回算出した結果が図12に示される。5回の計算で異常率平均がすべて0.5以上となった場合は“A”、1度でも0.5以上となった場合は“B”、1度も0.5を超えなかった場合は“C”とした。比較例に比べ、実施例1,2はいずれも異常判別精度が向上した。
 以上説明したように、本発明の状態監視方法は、運転状況やノイズの影響を受ける回転機械において、測定データからより早期に異常を判別でき、状態監視システムの精度を向上できる。
 (作用・効果)
 本発明では運転状況やノイズの影響を受ける回転機械において、従来は判別できない微細な損傷の判別を可能とした。
 本実施の形態に係る状態監視方法は、第1~第9工程を備える。第1工程(S1)は、被試験対象物が正常である時に、被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する。
 第2工程(S1)は、被試験対象物の診断時に、第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する。
 第3工程(S12)は、複数の第1の測定データから複数の学習データをランダムに選択する。第4工程(S22)は、複数の第2の測定データから複数のテストデータをランダムに選択する。第5工程(S13,S14)は、複数の学習データの各々を第1時間長T1よりも短い第2時間長T2毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第1の特徴量ベクトルを作成する。第6工程(S15)は、複数の学習データについてセグメントデータ毎に作成された複数の第1の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する。第7工程(S23,S24)は、複数のテストデータの各々を第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第2の特徴量ベクトルを作成する。第8工程(S25,S36)は、第2の特徴量ベクトルに対して分類境界からの距離である異常度を算出し、複数のテストデータの各々に対して、第2の特徴量ベクトルの異常度が異常判別しきい値を超える数が第2の特徴量ベクトルの総数に対する割合である異常率を算出する。第9工程(S37~S39)は、第3~第8工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に被試験対象物を異常と判別する。
 第5工程(S13,S14),第7工程(S23,S24)は、例えば一定の時間長T1で測定したデータを、回転周期、サイクルなどの時間長T2で分割し特徴量ベクトルを算出した後、特徴量セットとして扱うことで、時間的な特徴量の変動を評価することが可能になる。
 時間長T2は、回転周期や運転サイクルの整数倍とすることが望ましい。
 第5工程(S13,S14),第7工程(S23,S24)における特徴量として、例えば生の測定データまたはバンドパスフィルタ後の時間領域、周波数領域、ケフレンシ領域における、実効値、最大値、波高率、尖度、歪度を例示できる。
 第3工程(S12)は、段取や、停止・再開を含めた長期間の出力信号から、ランダムに特徴量ベクトル選択することで、機械の特性の変化を考慮した正常モデルを作成することが可能になる。
 第4工程(S22)は、第3工程(S12)同様、段取や、停止・再開を含めた長期間のデータからランダムに特徴量ベクトルを選択することで、機械の特性の変化を考慮したテストデータを作成することが可能になる。
 正常モデルの学習と異常判別指標、異常判別しきい値の作成に使用する手法として、SVM以外にも、ランダムフォレスト、ロジスティック回帰、決定木、ニューラルネットワークを例示できる。
 第9工程(S37~S39)は正常モデル、テストデータを変更して複数回異常率を算出し、平均化することにより運転状況が変動する機械において、誤評価を防ぐことが可能になる。
 なお、状態監視に用いるセンサの出力信号は、回転機械、設備の運転状況を確認できる出力信号であれば良く、振動、音響、温度、負荷トルク、モータ電力を例示できる。
 [実施の形態2]
 実施の形態2では、図1、図2に示した状態監視装置の基本的構成については、実施の形態1と共通である。
 ただし、実施の形態2では、学習部142は、記憶装置130から被試験装置10が正常時(初期状態など)に取得しておいたデータ(正常データ)に基づいて正常と異常とを分類する境界である分類境界と、分類境界からの距離に相当する異常度を判別するための異常判別しきい値と、異常度を算出するために使用する特徴量(使用特徴量)の種別を示す使用特徴量情報とを生成し、しきい値記憶部144に記憶させる。
 異常度算出部146は、記憶装置130から被試験装置10の診断時に取得したデータ(テストデータ)から、使用特徴量情報により示される使用特徴量を算出し、算出した使用特徴量を成分とする特徴量ベクトル(後述する再構成特徴量ベクトル)に分類境界を適用する。異常度算出部146は、分類境界からの距離に相当する異常度を算出し、判別部148に送る。
 判別部148は、異常度と異常判別しきい値とを比較した結果にもとづいて被試験装置10の異常判別を行なう。
 (特徴量ベクトルの作成)
 本実施の形態の状態監視装置100は、測定データを処理するときに全体をひとまとめにして処理せず、測定データ全体を複数のセグメントに分割し、セグメントごとに処理することが一つの特徴である。実施の形態2では、さらに、測定データから算出される複数の特徴量の中からばらつきの小さい特徴量を使用特徴量として用いて正常/異常を判別することも別の特徴である。以下、セグメントごとに作成される、使用特徴量を成分とする再構成特徴量ベクトルについて説明する。
 図13は、測定データとセグメントデータとの関係を示す概念図である。図13を参照して、測定データは、時間長T1のデータであり、振動センサ20からの出力信号がA/Dコンバータ110でA/D変換され、データ取得部120でフィルタ処理された後に、記憶装置130に記憶されたデータである。
 記憶装置130に記憶されている測定データは、学習データとテストデータとを含む。学習データは、被試験装置10が正常であることが分かっている時(たとえば初期状態など)に取得した測定データである。テストデータは、被試験装置10の正常/異常を判別したいときに取得した測定データである。学習データによって、後述の分類境界や異常判別しきい値が定められる。この分類境界および異常判別しきい値を用いてテストデータに対して所定の処理が行なわれた結果、被試験装置10の正常/異常が判別される。
 時間長T1の測定データは、学習部142および異常度算出部146において処理される際に、図3に示すように時間長T1より短い時間長T2のセグメントに分割される。たとえば、時間長T1が20秒である場合に、時間長T2を0.2秒とすることができる。この場合、測定データ1個は、セグメントデータ100個に分割される。測定データの分割後、学習部142および異常度算出部146において、さらにセグメントごとに予め定められた種類の複数の特徴量が算出され、当該複数の特徴量の各々を成分とする初期特徴量ベクトルが作成される。
 特徴量は、たとえば、測定データが振動の場合には、実効値(OA)、最大値(Max)、波高率(Crest factor)、尖度、歪度、およびこれらの信号処理後(FFT処理、ケフレンシ処理)の値とすることができる。初期特徴量ベクトルは、複数の特徴量を一組のベクトルとして扱うものである。測定データ1個に対して、当該測定データから分割されたセグメントデータの個数分だけ初期特徴量ベクトルが作成される。
 学習部142は、ランダムに選択された複数個の学習データの各々から作成された複数個(学習データから分割されたセグメントデータの個数)の初期特徴量ベクトルにおける、各成分のばらつきを示す指標値を算出する。指標値としては、たとえば、変動係数(標準偏差を算術平均で割った値)、分散などを用いることができる。学習部142は、指標値が予め定められた抽出しきい値以下である成分(特徴量)を使用成分(使用特徴量)として決定し、使用成分である特徴量の種別を示す使用特徴量情報をしきい値記憶部144に記憶させる。
 学習部142および異常度算出部146は、測定データから生成した初期特徴量ベクトルの各々について、当該初期特徴量ベクトルから使用特徴量情報で示される使用成分を抽出し、抽出した使用成分のみから構成される特徴量ベクトル(以下、再構成特徴量ベクトルという)を作成する。
 学習部142および異常度算出部146は、初期特徴量ベクトルごとに再構成特徴量ベクトルを生成する。すなわち、測定データ1個に対して、当該測定データから分割されたセグメントデータの個数分だけ初期特徴量ベクトルが作成され、当該初期特徴量ベクトルと同数の再構成特徴量ベクトルが作成される。
 図14は、初期特徴量ベクトルから再構成特徴量ベクトルを作成する手順の一例を説明するための図である。図14では、K1個の学習データの各々に対してm個の初期特徴量ベクトルが生成される例を示している。各初期特徴量ベクトルは、周波数帯域ch1における、実効値「OAch1」、最大値「Maxch1」、波高率「CFch1」と、周波数帯域ch2における、実効値「OAch2」、最大値「Maxch2」、波高率「CFch2」と、周波数帯域ch3における、実効値「OAch3」、最大値「Maxch3」、波高率「CFch3」とを成分(特徴量)として含む。
 学習部142は、初期特徴量ベクトルの各成分についてばらつきを示す指標値(図14では変動係数)を算出し、当該指標値が抽出しきい値(図14では0.3)以下の成分「OAch1」,「Maxch1」,「Maxch2」,「CFch2」,「OAch3」,「CFch3」を使用成分として決定する。そのため、学習部142および異常度算出部146は、当該使用成分「OAch1」,「Maxch1」,「Maxch2」,「CFch2」,「OAch3」,「CFch3」,・・・から構成されるベクトルを再構成特徴量ベクトルとして生成する。測定データがm個のセグメントに分割される場合、測定データ1個に対して、m個の再構成特徴量ベクトルが作成される。
 図15は、再構成特徴量ベクトルについて説明するための図である。図15では、測定データがm個のセグメントに分割され、ばらつきを示す指標値が抽出しきい値以下である使用成分(使用特徴量)がn個である例を示している。図15に示されるように、セグメントごとにn個の使用成分からなる再構成特徴量ベクトルが作成され、m個の再構成特徴量ベクトルを用いて被試験装置10の正常/異常が判別される。
 特徴量の抽出および特徴量ベクトルの作成を、測定データ全体をひとまとめにして処理すると、突発的な異常が生じたときに測定データ全体が診断に使用できなくなってしまう虞がある。したがって、本実施の形態では、測定データをセグメントに分割し、セグメントを単位として特徴量の抽出と特徴量ベクトルの算出を行なう。たとえば、回転機器を振動センサで監視している場合に、測定データ取得中に工具などを落としたなどの一時的な衝撃が突発的な振動として振動センサに検出される場合がある。セグメントに分けて特徴量を抽出していれば、このような場合でも突発異常時以外の時間では正しい特徴量が抽出できるとともに、特徴量をセグメントごとに比較することによって、突発異常に相当するセグメントを除去して評価することも可能となる。
 初期特徴量ベクトルは、予め定められた複数の特徴量の全てを成分として含む。そのため、初期特徴量ベクトルの成分の中には、被試験装置10の運転状況に影響を受けやすい成分(特徴量)と、影響を受けにくい成分(特徴量)とが含まれる。たとえば、正常な運転状況であっても突発的なノイズを含み変動しやすい特徴量と、ノイズの影響を受けにくい特徴量とが存在する。突発的なノイズを含む特徴量を用いて被試験装置10の正常/異常を判別すると、単なる突発的なノイズによって正常であるのに異常であると誤判別したり、異常な状況に起因する信号がノイズに埋もれてしまい、異常であるのに正常であると誤判別したりする虞がある。したがって、本実施の形態では、ばらつきを示す指標値(たとえば変動係数)が抽出しきい値以下の成分(特徴量)のみから構成された再構成特徴量ベクトルを用いて被試験装置10の正常/異常が判別される。これにより、誤判別率を低減することができる。
 (異常度の演算方法)
 図15に示されるように、再構成特徴量ベクトル1~mに対して分類境界に基づいて異常度1~mが演算される。分類境界は、既知の異常検出手法(One Class Support Vector Machine:OC-SVM)で使用される異常判別を行なうための指標である。OC-SVMの基本概念については図5で説明済であるので、ここでは説明を繰り返さない。
 (データ取得部の処理)
 図16は、実施の形態2において図1のデータ取得部が行なう処理を説明するためのフローチャートである。データ取得部120は、ステップS101において、振動センサ20からの振動波形を含む信号がデジタルに変換されたデータを受信し、ステップS102において、ローパスフィルタ、バンドパスフィルタ、ハイパスフィルタ等のうち観測したい異常現象に対して適切なフィルタ処理を施して基本的なノイズを除去した状態とし、ステップS103において記憶装置130に記憶する。
 なお、データ取得部120は、被試験装置10の初期状態、修理完了時などの正常動作することが分かっている場合に、学習データを取得し、被試験装置10の使用中に診断を行ないたい場合に、タイマーなどで指定された時間に自動的にテストデータを取得する。
 (学習部の処理)
 図17は、実施の形態2において図2の学習部が行なう処理の前段を説明するためのフローチャートである。図18は、実施の形態2において図2の学習部が行なう処理の後段を説明するためのフローチャートである。学習部142は、まずステップS111において、カウント変数jを1に初期化する。そして、ステップS112において、正常時に取得した複数の測定データのうちから学習データを1つランダムに選択する。続いて、図13で説明したように、学習データをセグメントに分割し(ステップS113)、セグメントごとに初期特徴量ベクトルを作成する(ステップS114)。以上のS112~S114の処理を学習データ選択数D1だけ繰り返すように、ステップS115においてカウント変数jが選択数D1未満である間(S115でNO)、ステップS116でカウント変数jがカウントアップされる。なおステップS112では、すでに学習データとして選択された正常データ以外の正常データが選択される。
 S112~S114の処理が学習データ選択数D1だけ繰り返されると、学習データ選択数D1にセグメントの分割数mを乗じた個数分だけ初期特徴量ベクトルが作成される。ステップS117において、学習部142は、D1×m個の初期特徴量ベクトルを母集団とし、初期特徴量ベクトルの各成分(特徴量)について、ばらつきを示す指標値を算出する。ここでは、指標値として変動係数が算出されるものとする。学習部142は、変動係数が予め定められた抽出しきい値以下の成分を使用成分(使用特徴量)として決定し、決定した使用成分の種別を示す使用特徴量情報をしきい値記憶部144に記憶させる。このようにして、被試験装置10の正常/異常を判別するために使用する特徴量(使用特徴量)が決定される。
 続いてステップS118(図18参照)において、カウント変数jを1に初期化する。そして、ステップS119において、正常時に取得した複数の測定データのうちから学習データをD1個ランダムに選択する。続いて、図13で説明したように、各学習データをセグメントに分割し(ステップS120)、セグメントごとに、ステップS117において決定された使用成分のみから構成された再構成特徴量ベクトルを算出する(ステップS121)。
 続いて、ステップS122において、学習部142は、D1×m個の再構成特徴量ベクトルに対して、OC-SVMを用いた分類境界と異常判別しきい値を算出する。さらに、ステップS123において第j回の分類境界と判別しきい値が算出されると、それらにカウント変数jを付与して保存する。
 以上のS119~S123の処理を繰り返し回数K1だけ繰り返すように、ステップS124においてカウント変数jが繰り返し回数K1未満である間(S124でNO)、ステップS125でカウント変数jがカウントアップされる。なおステップS119では、すでに選択された測定データの組合せは使用しない。ステップS124においてカウント変数jが繰り返し回数K1になった場合、K1個の分類境界と判別しきい値の算出が終了し、ステップS126において処理が終了する。
 (異常度算出部の処理)
 図19は、実施の形態2において図2の異常度算出部が行なう処理を説明するためのフローチャートである。異常度算出部146は、まずステップS131において、カウント変数jを1に初期化する。そして、ステップS132において、診断時に取得した複数の測定データのうちからテストデータをD2個ランダムに選択する。続いて、図13で説明したように、各テストデータをセグメントに分割し(ステップS133)、セグメントごとに、予め定められた種類の複数の特徴量を含む初期特徴量ベクトルを算出する(ステップS134)。異常度算出部146は、初期特徴量ベクトルからしきい値記憶部144に記憶された使用特徴量情報によって示される使用成分(使用特徴量)を抽出することにより、再構成特徴量ベクトルを作成する(ステップS135)。すなわち、再構成特徴量ベクトルは、使用特徴量情報によって示される使用成分のみから構成される。
 続いて、ステップS136において、異常度算出部146は、ステップS135で作成された再構成特徴量ベクトルに対して、学習部142が生成し、しきい値記憶部144に保持されていたj番目に選択された学習データの分類境界を使用して、異常度を算出する。再構成特徴量ベクトルがセグメントごとに作成されるため、異常度もセグメントごとに算出される。
 以上のS132~S136の処理を繰り返し回数K1だけ繰り返すように、ステップS137においてカウント変数jが繰り返し回数K1未満である間(S137でNO)、ステップS138でカウント変数jがカウントアップされる。なおステップS132では、すでにテストデータとして選択された測定データの組合せは使用しない。
 ステップS137において繰り返し回数K1回の各セグメントの異常度が算出されると、ステップS139において処理が終了する。
 (判別部の処理)
 図20は、実施の形態2において図2の判別部が行なう処理を説明するためのフローチャートである。判別部148は、まずステップS141において、カウント変数i,jをともに1に初期化する。そして、j番目に選択されたD2個のテストデータ(テストデータj)を対象とし(ステップS142)、D2個のテストデータのi番目のセグメント(セグメントi)の異常度を、j番目に選択された学習データの異常判別しきい値と比較して異常判別を行なう(ステップS143)。以上のS142~S145の処理を総セグメント数D2×mだけ繰り返すように、ステップS134においてカウント変数iが総セグメント数D2×m未満である間(S144でNO)、ステップS145でカウント変数iがカウントアップされる。
 ステップS144においてテストデータjのセグメント1~D2×mについて、各セグメントの異常度が算出されると、判別部148は、ステップS146において、テストデータjの異常率を算出する。
 異常率は、図15にも記載されているように、セグメント1~D2×mの異常度1~D2×mのうち異常度が異常判別しきい値を超えた数を総セグメント数D2×mで除算することによって求められる。
 以上のS142~S146の処理を繰り返し回数K1だけ繰り返すように、ステップS147においてカウント変数jが繰り返し回数K1未満である間(S147でNO)、ステップS148でカウント変数jがカウントアップされる。
 ステップS147においてテストデータ1~K1について、各テストデータの異常率が算出されると、判別部148は、ステップS149において、異常率1~K1を平均して異常率平均を算出し、ステップS150において処理を終了する。
 以上説明したように、実施の形態2においても、学習データおよびテストデータをセグメントに分割して初期特徴量ベクトルを求めることによって、従来であればエラーデータとして使用できなかった測定データも使用可能となる。さらに、ばらつきの小さい成分を使用成分とし、初期特徴量ベクトルから使用成分を抽出することにより再構成特徴量ベクトルを作成することによって、ノイズの影響による誤った正常/異常の判断を低減することができる。加えて、複数の測定データからランダムに選択して演算を行ない、異常率平均を算出することを繰り返すことによって、異常率が収れんし、判別結果が安定する。
 (実施例1)
 以上説明した実施の形態2の状態監視方法について、検証実験を行なった。被試験装置は軸受とし、軌道面に人工の損傷を設けた軸受の状態監視事例を示す。
 アンギュラ玉軸受の外輪軌道に放電加工で微細な円筒穴および矩形溝を設けた軸受を、ラジアル負荷およびアキシアル負荷のかかる状態で、一定速度で運転した時の振動加速度を測定した。放電穴直径および溝形(以下、損傷サイズ)は以下に示す5種類である。各損傷サイズで11回振動加速度を測定した。また、測定ごとに試験機の分解・再組み立てをした。運転条件および測定条件は次の通り実施の形態1と同じとし、これらから実施の形態2では初期特徴量ベクトルを得る。
 <運転条件>
軸受:アンギュラ玉軸受(型番7216:内径80mm、外径140mm、幅26mm)
ラジアル負荷:1.3kN
アキシアル負荷:1.3kN
回転速度:1500回転/分
損傷サイズ:0.00mm(正常)、φ0.34mm(円筒穴)、φ0.68mm(円筒穴)、
φ1.02mm(円筒穴)、φ1.35mm(円筒穴)、周方向2mm×軸方向10mm×深さ1mm(矩形溝)
 <測定条件>
測定データ:振動加速度
測定方向:鉛直方向、水平方向、軸方向
データ長さ:20秒
サンプリング速度:50kHz
測定回数:11回/損傷サイズ
上記で得た各損傷サイズにおける振動加速度データを用い実施例の有用性を評価した。
 <学習データ、テストデータの初期特徴量ベクトルの算出>
 1回の測定20秒で得られた振動加速度データを、周波数フィルタ処理(ローパス:20~1000Hz、バンドパス:1000~5000Hz、ハイパス:5000~20000Hz)後、0.2秒(回転軸5回転)毎に100セグメントに分割し、分割した測定データ(セグメントデータ)の時間領域、周波数領域、ケフレンシ領域での特徴量(ここでは実効値OA、最大値Max、波高率Crest factor、尖度、歪度)を算出し同時刻における各フィルタ処理後、各領域の特徴量をまとめて初期特徴量ベクトルを得る(図13)。
 <学習データの選択>
 正常時において得た11個の測定データのうち、ランダムに8個を学習データとして選択した。選択した測定データから得られる全ての初期特徴量ベクトルをまとめて学習用のデータとして利用する。
 <テストデータの選択>
 各種損傷サイズに対して、得られた11個の測定データのうち、ランダムに3個を選択した。なお、損傷なしのデータとしては、学習データとしてランダムに8個選択した残りの3個を使用した。選択した測定データから得られる全ての初期特徴量ベクトルをテスト用のデータとして使用する。
 <再構成特徴量データの作成>
 学習用のデータに含まれる全ての初期特徴量ベクトルにおいて、初期特徴量ベクトルの成分毎にばらつきを示す変動係数を算出し、変動係数が0.3以下の成分を使用成分として決定した。学習用のデータおよびテスト用のデータに含まれる全ての初期特徴量ベクトルの各々から決定した使用成分のみを抽出することにより再構成特徴量ベクトルを作成した。
 <分類境界および異常判別しきい値の作成>
 学習データの再構成特徴量ベクトルからOC-SVMを用いて分類境界を作成する(図5)。また作成した分類境界により、学習データの全ての再構成特徴量ベクトルの異常度を算出し、異常判別しきい値を次式(11)で算出する。
異常判別しきい値=異常度の平均値+5×異常度の標準偏差…(11)
 <テストデータの異常率の算出>
 分類境界を用いてテストデータの各再構成特徴量ベクトルの異常度を算出し、次式(12)を用いてテストデータの異常率を算出する(図15)。
異常率=異常判別しきい値を超えた特徴量ベクトルの数/特徴量ベクトルの総数…(12)
 <診断>
 以上の処理を10回繰り返し、各損傷サイズの異常率平均を算出する。異常率平均が0.5以上であればテストデータを異常とみなす。
 図21A、図21Bは、異常率平均を算出する効果を示すグラフである。図21Aには、各計算時(10回)における異常率と人工欠陥サイズとの関係が示されている。図21Bには、異常率平均を算出した場合の、異常率平均と人工欠陥サイズとの関係が示されている。なお、人工欠陥サイズが0beは、欠陥なしの試験体を示し、2be,4be,6be,8beは、それぞれφ0.34mm(円筒穴),φ0.68mm(円筒穴),φ1.02mm(円筒穴),φ1.35mm(円筒穴)を示し、RGeは、周方向2mm×軸方向10mm×深さ1mmの矩形溝を示す。図21A、図21Bを比較してわかるように、異常率平均を算出する場合の方が各欠陥サイズにおいてバラツキが小さくなるので、異常率平均を異常判別に用いたほうが、判別結果が安定しやすいことが分かる。
 (実施例2)
 実施例2は、運転条件および測定条件については、実施例1と共通である。ただし、実施例1において求めた初期特徴量ベクトルを時系列で連続するセグメント5個(セグメントセット)単位でまとめたものを新たな初期特徴量ベクトルとして使用した。
 図22は、セグメントセットごとに初期特徴量ベクトルを求めることを説明するための概念図である。測定データの時間長T1を20秒とすると、セグメントの時間長T2を0.2秒とした。そしてセグメントセットの時間長T3を2秒とした。実施例2では実施例1の5つの連続するセグメントの5つの初期特徴量ベクトルをまとめて、セグメントセットの初期特徴量ベクトルとした。
 このセグメントセットの初期特徴量ベクトルの各成分について、ばらつきを示す変動係数を算出し、算出した変動係数が0.3以下の使用成分のみから構成された再構成特徴量ベクトルを作成し、実施例1と同様な手順で処理を行なった。
 (比較例1)
 比較例1では、特徴量として一般に診断に用いられる実効値を用いた。比較例の算出方法を以下に示す。
 正常時(損傷なし)および各損傷サイズにおける鉛直方向の実効値を算出する。実効値は測定データ全体から1つの値を求める。
 正常時において得られた11個の測定データのうちランダムに8個を学習データとして選択し、選択した測定データの実効値から異常判別しきい値を次式(13)で算出する。
異常判別しきい値=実効値の平均値+5×実効値の標準偏差…(13)
 正常時(損傷なし)および各損傷サイズに対して得られた測定データのうち3個をテストデータとして選択し、テストデータの実効値を用いて次式(14)で異常率を算出する。正常時については異常判別しきい値を作成したデータとは別の測定データを使用する。
異常率=異常判定閾値を超えた実効値の数/テストデータの数…(14)
 異常率の算出までの処理を繰り返し、各損傷サイズの異常率平均を算出する。異常率平均が0.5以上であればテストデータを異常とみなす。
 (比較例2)
 比較例2は、初期特徴量ベクトルをそのまま再構成特徴量ベクトルとする点を除いて、実施例1と共通である。すなわち、比較例2は、変動係数による使用成分の抽出処理を行なわない例である。
 (実施例3)
 実施例3は、変動係数が0.05以下の成分を使用成分として再構成特徴量ベクトルを作成するとともに、試験機の運転条件の回転速度を2000回転/分とした点を除いて、実施例2と共通である。
 (実施例4)
 実施例4は、試験機の運転条件の回転速度を2000回転/分とした点を除いて、実施例2と共通である。
 (実施例5)
 実施例5は、変動係数が0.5以下の成分を使用成分として再構成特徴量ベクトルを作成するとともに、試験機の運転条件の回転速度を2000回転/分とした点を除いて、実施例2と共通である。
 (比較例3)
 比較例3は、初期特徴量ベクトルをそのまま再構成特徴量ベクトルとするとともに、試験機の運転条件の回転速度を2000回転/分とした点を除いて、実施例2と共通である。すなわち、比較例3は、変動係数による使用成分の抽出処理を行なわない例である。
 (評価)
 図23は、実施の形態2の実施例1、2および比較例1、2において算出された異常率平均の結果を示す。図23を参照して、比較例1では、直径1.35mmの円筒穴の欠陥があっても異常率平均が0.1未満であり、異常判別の精度が非常に低い。また、比較例2では、比較例1よりは精度が上がるものの、直径1.35mmの円筒穴の欠陥があっても異常率平均が0.5未満であり、異常判別の精度が低い。これに対し、実施例1では、直径1.35mmの円筒穴の欠陥について異常率平均が0.5を超え、異常判別の精度が比較例2に比べ向上していることがわかる。実施例2では、直径0.68mm以上の円筒穴の欠陥について異常率平均が0.8以上となり、さらに異常判別精度が向上した。
 実施例2では、実施例1において求めた初期特徴量ベクトルを時系列で連続する5個のセグメント(セグメントセット)単位でまとめたものを新たな初期特徴量ベクトルとしている。そのため、実施例2の初期特徴量ベクトルの成分には、同種であるが測定タイミングが異なる複数の特徴量が含まれる。
 ある特徴量に突発的なノイズが含まれる場合、実施例1では当該特徴量の変動係数がノイズによって大きくなる。そのため、当該特徴量は、再構成特徴量ベクトルの成分として使用されず、異常度の算出に用いられない。しかしながら、実施例2では、当該特徴量について、突発的なノイズが生じたタイミングに対応する成分のみが再構成特徴量ベクトルから除外され、突発的なノイズが生じていないタイミングに対応する成分は再構成特徴量ベクトルに含まれる。すなわち、ノイズに対応するタイミング以外のタイミングの特徴量が再構成特徴量ベクトルの成分として使用される。このように、実施例1では突発的なノイズを含む特徴量の全体が再構成特徴量ベクトルの成分として使用されないのに対し、実施例2では、当該特徴量について、ノイズが生じたタイミングに対応する一部のみが除外され、他のタイミングに対応する部分は再構成特徴量ベクトルに含まれる。その結果、図14に示されるように、実施例2では、正常/異常の判別に用いる特徴量の種類が増え、より精度良く正常/異常を判別することができる。
 図24A~図24Dは、実施例3~5と比較例3とにおいて、学習データ、テストデータを変更して、異常率平均を5回算出した結果を示す。なお、人工欠陥サイズが0beは、欠陥なしの試験体を示し、2be,4be,6be,8beは、それぞれφ0.34mm(円筒穴),φ0.68mm(円筒穴),φ1.02mm(円筒穴),φ1.35mm(円筒穴)を示し、RGeは、周方向2mm×軸方向10mm×深さ1mmの矩形溝を示す。
 図24Dに示されるように、変動係数による特徴量の選別を行なわない比較例3では、人工欠陥サイズRGe以外の損傷について異常判別できないことがわかった。これは、一部の特徴量において、人工欠陥サイズに対する変化よりも軸受の組み替えに対する変化が大きいために、異常判別精度が低下したためであると考えられる。
 これに対し、図24A~図24Cに示されるように、変動係数による特徴量の選別を行なった実施例3~5では、人工欠陥サイズが4beより大きい欠陥に対して、異常判別精度が向上していることが確認された。なお、変動係数が0.05以下の成分(特徴量)を用いた実施例3では、人工欠陥サイズ6be,8beにおいて異常率平均が低下する傾向にある。これは、有効な特徴量まで除外されたためであると考えられる。変動係数が0.5以下の成分を用いた実施例5は、変動係数が0.3以下の成分を用いた実施例4と略同じ結果であったが、人工欠陥サイズ4beの異常率平均が実施例4と比べてわずかに低かった。そのため、上記の実施例3~5の場合、抽出しきい値としては0.3が最も好ましい。このように、使用成分(使用特徴量)を選別するための抽出しきい値は、適宜設定すればよい。
 以上説明したように、本発明の状態監視方法は、運転状況やノイズの影響を受ける回転機械において、測定データからより早期に異常を判別でき、状態監視システムの精度を向上できる。
 (作用・効果)
 本発明では運転状況やノイズの影響を受ける回転機械において、従来は判別できない微細な損傷の判別を可能とした。
 本実施の形態に係る状態監視方法は、第1~第11工程を備える。第1工程(S101)は、被試験対象物が正常である時に、被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する。
 第2工程(S101)は、被試験対象物の診断時に、第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する。
 第3工程(S112,S119)は、複数の第1の測定データから複数の学習データをランダムに選択する。第4工程(S132)は、複数の第2の測定データから複数のテストデータをランダムに選択する。第5工程(S113,S114)は、複数の学習データの各々を第1時間長T1よりも短い第2時間長T2毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された複数の特徴量の各々を成分とする初期特徴量ベクトル(第1の特徴量ベクトル)を作成する。第6工程(S117,S121)は、初期特徴量ベクトルの各成分に対してばらつきを示す指標値を算出し、指標値が抽出しきい値より小さい成分を使用成分として決定し、初期特徴量ベクトルから使用成分を抽出することにより再構成特徴量ベクトル(第2の特徴量ベクトル)をセグメントデータ毎に作成する。第7工程(S122)は、複数の学習データについてセグメントデータ毎に作成された複数の再構成特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する。
 第8工程(S133,S134)は、複数のテストデータの各々を第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された複数の特徴量を含む初期特徴量ベクトル(第3の特徴量ベクトル)を作成する。第9工程(S135)は、初期特徴量ベクトル(第3の特徴量ベクトル)から使用成分を抽出することにより再構成特徴量ベクトル(第4の特徴量ベクトル)をセグメントデータ毎に作成する。第10工程(S136,S146)は、第9工程で作成された再構成特徴量ベクトルに対して分類境界からの距離である異常度を算出し、複数のテストデータの各々に対して、再構成特徴量ベクトルの異常度が異常判別しきい値を超える数が再構成特徴量ベクトルの総数に対する割合である異常率を算出する。第11工程(S147~S149)は、第3~第8工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に被試験対象物を異常と判別する。
 第5工程(S113,S114),第8工程(S133,S134)は、例えば一定の時間長T1で測定したデータを、回転周期、サイクルなどの時間長T2で分割し初期特徴量ベクトルを算出することにより、初期特徴量ベクトルの変化を確認することで、時間的な特徴量の変動を評価することが可能になる。
 時間長T2は、回転周期や運転サイクルの整数倍とすることが望ましい。
 第5工程(S113,S114),第8工程(S133,S134)における特徴量として、例えば生の測定データまたはバンドパスフィルタ後の時間領域、周波数領域、ケフレンシ領域における、実効値、最大値、波高率、尖度、歪度を例示できる。
 第3工程(S112,S119)は、段取や、停止・再開を含めた長期間の出力信号から、ランダムに初期特徴量ベクトル選択することで、機械の特性の変化を考慮した正常モデルを作成することが可能になる。
 第4工程(S132)は、第3工程(S112,S119)同様、段取や、停止・再開を含めた長期間のデータからランダムに初期特徴量ベクトルを選択することで、機械の特性の変化を考慮したテストデータを作成することが可能になる。
 正常モデルの学習と異常判別指標、異常判別しきい値の作成に使用する手法として、SVM以外にも、ランダムフォレスト、ロジスティック回帰、決定木、ニューラルネットワークを例示できる。
 第11工程(S147~S149)は正常モデル、テストデータを変更して複数回異常率を算出し、平均化することにより運転状況が変動する機械において、誤判別を防ぐことが可能になる。
 なお、状態監視に用いるセンサの出力信号は、回転機械、設備の運転状況を確認できる出力信号であれば良く、振動、音響、温度、負荷トルク、モータ電力を例示できる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 被試験装置、20 振動センサ、100 状態監視装置、110 A/Dコンバータ、120 データ取得部、130 記憶装置、140 データ演算部、142 学習部、144 しきい値記憶部、146 異常度算出部、148 判別部、150 表示部。

Claims (6)

  1.  被試験対象物が正常である時に、前記被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する第1工程と、
     前記被試験対象物の診断時に、前記第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する第2工程と、
     前記複数の第1の測定データから複数の学習データをランダムに選択する第3工程と、
     前記複数の第2の測定データから複数のテストデータをランダムに選択する第4工程と、
     前記複数の学習データの各々を前記第1時間長よりも短い第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第1の特徴量ベクトルを作成する第5工程と、
     前記複数の学習データについてセグメントデータ毎に作成された複数の第1の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する第6工程と、
     前記複数のテストデータの各々を前記第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第2の特徴量ベクトルを作成する第7工程と、
     前記第2の特徴量ベクトルに対して前記分類境界からの距離である異常度を算出し、前記複数のテストデータの各々に対して、前記第2の特徴量ベクトルの異常度が前記異常判別しきい値を超える数が前記第2の特徴量ベクトルの総数に対する割合である異常率を算出する第8工程と、
     前記第3~第8工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に前記被試験対象物を異常と判別する第9工程とを備える、状態監視方法。
  2.  被試験対象物が正常である時に、前記被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する第1工程と、
     前記被試験対象物の診断時に、前記第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する第2工程と、
     前記複数の第1の測定データから複数の学習データをランダムに選択する第3工程と、
     前記複数の第2の測定データから複数のテストデータをランダムに選択する第4工程と、
     前記複数の学習データの各々を前記第1時間長よりも短い第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第1の特徴量ベクトルを作成し、連続する複数のセグメントデータの第1の特徴量ベクトルをまとめて、第3の特徴量ベクトルを作成する第5工程と、
     前記複数の学習データについて前記連続する複数のセグメントデータ毎に作成された複数の第3の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する第6工程と、
     前記複数のテストデータの各々を前記第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して複数の特徴量を含む第2の特徴量ベクトルを作成し、連続する複数のセグメントデータの第2の特徴量ベクトルをまとめて第4の特徴量ベクトルを作成する第7工程と、
     前記第4の特徴量ベクトルに対して前記分類境界からの距離である異常度を算出し、前記複数のテストデータの各々に対して、前記第4の特徴量ベクトルの異常度が前記異常判別しきい値を超える数が前記第4の特徴量ベクトルの総数に対する割合である異常率を算出する第8工程と、
     前記第3~第8工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に前記被試験対象物を異常と判別する第9工程とを備える、状態監視方法。
  3.  被試験対象物が正常である時に、前記被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する第1工程と、
     前記被試験対象物の診断時に、前記第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する第2工程と、
     前記複数の第1の測定データから複数の学習データをランダムに選択する第3工程と、
     前記複数の第2の測定データから複数のテストデータをランダムに選択する第4工程と、
     前記複数の学習データの各々を前記第1時間長よりも短い第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された複数の特徴量の各々を成分とする第1の特徴量ベクトルを作成する第5工程と、
     前記第1の特徴量ベクトルの各成分に対してばらつきを示す指標値を算出し、前記指標値が抽出しきい値より小さい成分を使用成分として決定し、前記第1の特徴量ベクトルから前記使用成分を抽出することにより第2の特徴量ベクトルをセグメントデータ毎に作成する第6工程と、
     前記複数の学習データについてセグメントデータ毎に作成された複数の第2の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する第7工程と、
     前記複数のテストデータの各々を前記第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された前記複数の特徴量の各々を成分とする第3の特徴量ベクトルを作成する第8工程と、
     前記第3の特徴量ベクトルから前記使用成分を抽出することにより第4の特徴量ベクトルをセグメントデータ毎に作成する第9工程と、
     前記第4の特徴量ベクトルに対して前記分類境界からの距離である異常度を算出し、前記複数のテストデータの各々に対して、前記第4の特徴量ベクトルの異常度が前記異常判別しきい値を超える数の前記第4の特徴量ベクトルの総数に対する割合である異常率を算出する第10工程と、
     前記第3~第10工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に前記被試験対象物を異常と判別する第11工程とを備える、状態監視方法。
  4.  被試験対象物が正常である時に、前記被試験対象物に設置したセンサから第1時間長の複数の第1の測定データを互いに異なるタイミングで取得する第1工程と、
     前記被試験対象物の診断時に、前記第1時間長の複数の第2の測定データを互いに異なるタイミングで取得する第2工程と、
     前記複数の第1の測定データから複数の学習データをランダムに選択する第3工程と、
     前記複数の第2の測定データから複数のテストデータをランダムに選択する第4工程と、
     前記複数の学習データの各々を前記第1時間長よりも短い第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された複数の特徴量の各々を成分とする第1の特徴量ベクトルを作成し、連続する複数のセグメントデータの前記第1の特徴量ベクトルをまとめた第2の特徴量ベクトルを作成する第5工程と、
     前記第2の特徴量ベクトルの各成分に対してばらつきを示す指標値を算出し、前記指標値が抽出しきい値未満の成分を使用成分として決定し、前記第2の特徴量ベクトルから前記使用成分を抽出することにより第3の特徴量ベクトルを前記連続する複数のセグメントデータ毎に作成する第6工程と、
     前記複数の学習データについて前記連続する複数のセグメントデータ毎に作成された複数の前記第3の特徴量ベクトルから、正常と異常とを分類する分類境界、および異常判別しきい値を作成する第7工程と、
     前記複数のテストデータの各々を前記第2時間長毎のセグメントデータに分割し、分割後の各セグメントデータに対して算出された前記複数の特徴量の各々を成分とする第4の特徴量ベクトルを作成し、連続する複数のセグメントデータの前記第4の特徴量ベクトルをまとめた第5の特徴量ベクトルを作成する第8工程と、
     前記第5の特徴量ベクトルから前記使用成分を抽出することにより第6の特徴量ベクトルを前記連続する複数のセグメントデータ毎に作成する第9工程と、
     前記第6の特徴量ベクトルに対して前記分類境界からの距離である異常度を算出し、前記複数のテストデータの各々に対して、前記第6の特徴量ベクトルの異常度が前記異常判別しきい値を超える数の前記第6の特徴量ベクトルの総数に対する割合である異常率を算出する第10工程と、
     前記第3~第10工程を繰り返し複数回実行し、得られた異常率の平均値が所定の値を超えた場合に前記被試験対象物を異常と判別する第11工程とを備える、状態監視方法。
  5.  前記指標値は変動係数である、請求項3または4に記載の状態監視方法。
  6.  請求項1から5のいずれか1項に記載の方法を用いて、前記被試験対象物を診断する、状態監視装置。
PCT/JP2017/046529 2017-01-25 2017-12-26 状態監視方法および状態監視装置 Ceased WO2018139144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780084664.2A CN110226140B (zh) 2017-01-25 2017-12-26 状态监视方法及状态监视装置
US16/480,999 US10890507B2 (en) 2017-01-25 2017-12-26 State monitoring method and state monitoring apparatus
EP17894199.3A EP3575908B1 (en) 2017-01-25 2017-12-26 State monitoring method and state monitoring apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017011149A JP6791770B2 (ja) 2017-01-25 2017-01-25 状態監視方法および状態監視装置
JP2017-011149 2017-01-25
JP2017-011150 2017-01-25
JP2017011150A JP2018120407A (ja) 2017-01-25 2017-01-25 状態監視方法および状態監視装置

Publications (1)

Publication Number Publication Date
WO2018139144A1 true WO2018139144A1 (ja) 2018-08-02

Family

ID=62977964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046529 Ceased WO2018139144A1 (ja) 2017-01-25 2017-12-26 状態監視方法および状態監視装置

Country Status (4)

Country Link
US (1) US10890507B2 (ja)
EP (1) EP3575908B1 (ja)
CN (1) CN110226140B (ja)
WO (1) WO2018139144A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085575A (ja) * 2018-11-21 2020-06-04 株式会社日立製作所 分析支援装置、分析支援方法、および分析支援プログラム
WO2021065843A1 (ja) * 2019-09-30 2021-04-08 株式会社アドバンテスト 保守装置、保守方法、および、保守プログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327419B1 (en) * 2016-11-29 2020-09-09 STS Intellimon Limited Engine health diagnostic apparatus and method
JP6858798B2 (ja) * 2017-02-02 2021-04-14 日本電信電話株式会社 特徴量生成装置、特徴量生成方法及びプログラム
WO2019138655A1 (ja) * 2018-01-09 2019-07-18 日本電信電話株式会社 モデル学習装置、モデル学習方法、及びプログラム
US11288567B2 (en) * 2018-09-04 2022-03-29 Nec Corporation Method for training deep neural network (DNN) using auxiliary regression targets
JP7453875B2 (ja) * 2020-07-31 2024-03-21 三菱重工業株式会社 回転機械の診断装置、診断方法及び診断プログラム
DE102021210106A1 (de) 2021-09-14 2023-03-16 Zf Friedrichshafen Ag Computerimplementierte Verfahren und System zur Anomalieerkennung und Verfahren zur Anomalieerkennung in einer akustischen Endprüfung eines Getriebes
CN117033914A (zh) * 2023-05-16 2023-11-10 中国航发沈阳发动机研究所 一种航空发动机的稳态数据提取方法
CN116341993B (zh) * 2023-05-29 2023-07-25 无锡兴达泡塑新材料股份有限公司 一种用于聚苯乙烯生产过程中状态监测方法及系统
IT202300017628A1 (it) * 2023-08-28 2025-02-28 St Microelectronics Int Nv Dispositivo sensore per la rilevazione di anomalie mediante apprendimento automatico e relativo metodo di comando
JP2025137094A (ja) * 2024-03-08 2025-09-19 株式会社東芝 訓練データ生成装置、方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431235B2 (ja) 1973-03-29 1979-10-05
JP2008197007A (ja) * 2007-02-14 2008-08-28 Takayoshi Yamamoto 対象設備の診断方法、コンピュータプログラム、及び、対象設備を診断するための装置
JP5780870B2 (ja) 2011-07-28 2015-09-16 株式会社東芝 回転機器の健全性診断装置、方法およびプログラム
JP2016062258A (ja) * 2014-09-17 2016-04-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 検出装置、検出方法、およびプログラム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200332B2 (ja) * 2006-08-29 2008-12-24 パナソニック電工株式会社 異常監視装置、異常監視方法
JP5301310B2 (ja) * 2009-02-17 2013-09-25 株式会社日立製作所 異常検知方法及び異常検知システム
JP5431235B2 (ja) 2009-08-28 2014-03-05 株式会社日立製作所 設備状態監視方法およびその装置
JP5740459B2 (ja) * 2009-08-28 2015-06-24 株式会社日立製作所 設備状態監視方法
JP5793299B2 (ja) * 2010-12-28 2015-10-14 株式会社東芝 プロセス監視診断装置
DE102011076780B4 (de) * 2011-05-31 2021-12-09 Airbus Operations Gmbh Verfahren und Vorrichtung zur Zustandsüberwachung, Computerprogrammprodukt
US20130173322A1 (en) * 2011-12-30 2013-07-04 Schneider Electric USA, Inc. Energy Management with Correspondence Based Data Auditing Signoff
US9075713B2 (en) * 2012-05-24 2015-07-07 Mitsubishi Electric Research Laboratories, Inc. Method for detecting anomalies in multivariate time series data
KR20150056612A (ko) * 2012-10-25 2015-05-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 플랜트 감시장치, 플랜트 감시프로그램 및 플랜트 감시방법
JP5996384B2 (ja) * 2012-11-09 2016-09-21 株式会社東芝 プロセス監視診断装置、プロセス監視診断プログラム
JP6475906B2 (ja) * 2012-11-29 2019-02-27 株式会社サタケ 籾摺機のモニタリング装置
CN103499700B (zh) * 2013-09-30 2014-12-10 深圳理邦实验生物电子有限公司 一种应用于细胞分析仪的信号有效性分析方法及其装置
JP2015076058A (ja) * 2013-10-11 2015-04-20 株式会社日立製作所 設備の監視診断装置
JP6216242B2 (ja) * 2013-12-13 2017-10-18 株式会社日立ハイテクノロジーズ 異常検知方法およびその装置
CN103955714A (zh) * 2014-04-09 2014-07-30 中国科学院信息工程研究所 基于水军检测模型构建方法和系统及水军检测方法
US9984334B2 (en) * 2014-06-16 2018-05-29 Mitsubishi Electric Research Laboratories, Inc. Method for anomaly detection in time series data based on spectral partitioning
CN104111109B (zh) * 2014-07-21 2015-09-02 石家庄铁道大学 一种基于不同阶次统计量及支持向量机的机械振动状态识别方法
CN104091035B (zh) * 2014-07-30 2017-02-08 中国科学院空间应用工程与技术中心 一种基于数据驱动算法的空间站有效载荷健康监测方法
CN104317681B (zh) * 2014-09-02 2017-09-08 上海交通大学 针对计算机系统的行为异常自动检测方法及检测系统
US20160154802A1 (en) * 2014-12-02 2016-06-02 Nec Laboratories America, Inc. Quality control engine for complex physical systems
CN104459637B (zh) * 2014-12-18 2017-02-08 湖南纳雷科技有限公司 微波对射雷达信号处理方法和系统
US20160195409A1 (en) * 2015-01-02 2016-07-07 Xeros Limited Monitoring system
US10169719B2 (en) * 2015-10-20 2019-01-01 International Business Machines Corporation User configurable message anomaly scoring to identify unusual activity in information technology systems
CN105550659A (zh) * 2015-12-25 2016-05-04 四川大学 基于随机投影的实时心电分类方法
CN105631596B (zh) * 2015-12-29 2020-12-29 山东鲁能软件技术有限公司 一种基于多维分段拟合的设备故障诊断方法
CN105629958B (zh) * 2016-02-06 2018-03-16 北京工业大学 一种基于子时段mpca‑svm的间歇过程故障诊断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431235B2 (ja) 1973-03-29 1979-10-05
JP2008197007A (ja) * 2007-02-14 2008-08-28 Takayoshi Yamamoto 対象設備の診断方法、コンピュータプログラム、及び、対象設備を診断するための装置
JP5780870B2 (ja) 2011-07-28 2015-09-16 株式会社東芝 回転機器の健全性診断装置、方法およびプログラム
JP2016062258A (ja) * 2014-09-17 2016-04-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 検出装置、検出方法、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3575908A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085575A (ja) * 2018-11-21 2020-06-04 株式会社日立製作所 分析支援装置、分析支援方法、および分析支援プログラム
JP7134845B2 (ja) 2018-11-21 2022-09-12 株式会社日立製作所 分析支援装置、分析支援方法、および分析支援プログラム
WO2021065843A1 (ja) * 2019-09-30 2021-04-08 株式会社アドバンテスト 保守装置、保守方法、および、保守プログラム
WO2021065086A1 (ja) * 2019-09-30 2021-04-08 株式会社アドバンテスト 保守装置、保守方法、および、保守プログラム
JPWO2021065843A1 (ja) * 2019-09-30 2021-04-08
JP7245924B2 (ja) 2019-09-30 2023-03-24 株式会社アドバンテスト 保守装置、保守方法、および、保守プログラム
US12014335B2 (en) 2019-09-30 2024-06-18 Advantest Corporation Maintenance apparatus, maintenance method, and recording medium having recorded thereon maintenance program
TWI883054B (zh) * 2019-09-30 2025-05-11 日商愛德萬測試股份有限公司 維護裝置、維護方法及記錄有維護程式之記錄媒體

Also Published As

Publication number Publication date
US20190391038A1 (en) 2019-12-26
CN110226140A (zh) 2019-09-10
US10890507B2 (en) 2021-01-12
EP3575908A1 (en) 2019-12-04
EP3575908A4 (en) 2020-07-08
EP3575908B1 (en) 2021-08-04
CN110226140B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2018139144A1 (ja) 状態監視方法および状態監視装置
JP2018120407A (ja) 状態監視方法および状態監視装置
CN108731923B (zh) 一种旋转机械设备的故障检测方法及装置
CN107003663B (zh) 具有活动部分的装置的监视
EP3431952B1 (en) Condition monitoring system and wind turbine generation apparatus
TW388787B (en) Bearing condition evaluation
CN107976304B (zh) 基于对信号的周期性信息进行分析的机器故障预测
JP6820771B2 (ja) 状態監視システムおよび風力発電装置
CN108181105B (zh) 基于逻辑回归和j散度的滚动轴承故障预诊方法及系统
JP7083293B2 (ja) 状態監視方法および状態監視装置
DK2166422T3 (en) Procedure for alarm mask generation and condition monitoring of wind turbines
CN108153211A (zh) 报警参数的趋势分析和自动调谐的方法
KR102545672B1 (ko) 기계고장 진단 방법 및 장치
US11002641B2 (en) System for separating periodic amplitude peaks from non-periodic amplitude peaks in machine vibration data
CN110823576A (zh) 基于生成对抗网络的机械异常检测方法
KR20190081933A (ko) 제조 설비의 이상 감지 및 진단 방법
CN111581762A (zh) 早期故障诊断方法及系统
CN114330569A (zh) 一种检测风机组部件故障的方法、设备及存储介质
Senanayaka et al. Towards online bearing fault detection using envelope analysis of vibration signal and decision tree classification algorithm
JP6791770B2 (ja) 状態監視方法および状態監視装置
JP7211861B2 (ja) 状態監視システムおよび状態監視方法
CN108982106A (zh) 一种快速检测复杂系统动力学突变的有效方法
WO2019044729A1 (ja) 状態監視方法および状態監視装置
Zhao et al. Health indicator selection and health assessment of rolling element bearing
Manhertz et al. Managing measured vibration data for malfunction detection of an assembled mechanical coupling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894199

Country of ref document: EP

Effective date: 20190826