WO2018122803A1 - Procédé de détection d'anomalie de trafic routier intelligent - Google Patents
Procédé de détection d'anomalie de trafic routier intelligent Download PDFInfo
- Publication number
- WO2018122803A1 WO2018122803A1 PCT/IB2017/058533 IB2017058533W WO2018122803A1 WO 2018122803 A1 WO2018122803 A1 WO 2018122803A1 IB 2017058533 W IB2017058533 W IB 2017058533W WO 2018122803 A1 WO2018122803 A1 WO 2018122803A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- data
- traffic
- sub
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0112—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0133—Traffic data processing for classifying traffic situation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0137—Measuring and analyzing of parameters relative to traffic conditions for specific applications
- G08G1/0141—Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
Definitions
- the invention belongs to the technical field of traffic detection.
- the present invention relates to a method for real-time detection of urban road traffic anomalies.
- the on-board GNSS positioning device of the floating car Through the on-board GNSS positioning device of the floating car, the spatial position information of different time can be obtained.
- the RN model is trained based on the historical data of the specific speed and time of the journey; the predicted value and real time according to the RNN model The difference between the actual values of the journey speed can effectively identify urban road traffic anomalies.
- Background technique
- Traffic anomaly detection is an important part of urban traffic management and one of the core functions of intelligent transportation systems. Traffic anomalies mainly include traffic accidents, vehicle dumping, falling objects, damage or malfunction of road traffic facilities, and other special events that cause traffic flow disturbances. Such incidents are prone to traffic congestion, reduced road capacity, and severely affect the normal operation of the entire road traffic system. Through traffic anomaly detection, traffic managers can timely understand traffic anomaly information and take appropriate inducement and control measures to reduce the adverse effects of traffic anomalies.
- Traffic anomaly detection can be divided into manual mode and automatic mode.
- Manual methods include patrol cars, emergency telephone reporting, and video surveillance. Due to the human and material resources and poor real-time performance, traffic management needs cannot be met.
- the automatic method relies on the automatic event detection (AID, Automated Incidence Detection) algorithm.
- AID Automated Incidence Detection
- the basic principle is to identify traffic anomalies by detecting changes in road traffic at different locations.
- AID algorithms include pattern recognition algorithms (such as Califorma algorithm, Monica algorithm), statistical prediction algorithms (such as exponential smoothing, Kalman filtering), traffic flow model algorithms (such as McMaster algorithm), and intelligent recognition algorithms. (such as artificial neural networks, fuzzy logic algorithms).
- the invention utilizes the trajectory data returned by the taxi and the bus GNSS positioning device to establish a historical traffic state database and a real-time traffic state database, and analyzes the traffic anomaly events by analyzing the difference of the traffic flow characteristics reflected by the two.
- the method has the characteristics of good real-time performance, parallel processing, high recognition rate and low requirements for detection facilities, and is suitable for detecting urban road traffic anomalies in a data environment with real-time floating vehicle positioning data.
- a US patent application, US 20160148512 discloses a composition principle and implementation method of a traffic anomaly detection and reporting system.
- the system consists of a sensor, a communication module, a mobile processing module, and a user interaction module.
- the sensor is used to collect relevant data around the vehicle;
- the communication module is used for transmitting the vehicle data and receiving data of the surrounding vehicle;
- the mobile processing module is for processing and analyzing the data of the relevant vehicle in a certain area and generating a traffic event report; user interaction
- the module is able to provide traffic incident reports like a user.
- the scheme is a traffic anomaly detection technology based on the vehicle and vehicle communication network, which can use various types of information collected by sensors to identify abnormal events.
- the sensor and the communication unit need to be separately installed and debugged, the implementation is difficult; the processing capacity of the mobile processing unit is limited; and the mobile and fixed message receiving end is required, and the system itself has a failure probability and the reliability is not good.
- a Chinese patent application, CN 104809878 A discloses a method for detecting abnormal state of urban road traffic using bus GPS data.
- the scheme obtains the link delay time index according to the GPS historical data, obtains the instantaneous speed, the cycle average speed, the weighted moving average speed and the multi-vehicle average speed according to the current GPS data, and uses the gauge variable analysis algorithm to detect the abnormality.
- This program does not need new Increase inspection facilities and facilitate implementation.
- the characterization of the traffic situation is too simplistic, and it is impossible to analyze the characteristics and causes of traffic anomalies. There is no basis for the division of traffic scenarios, and the influence of weather and other factors on traffic situation changes cannot be considered. Summary of the invention
- Floating car Also known as the probe car. Refers to buses and taxis that have on-board positioning devices and are driving on city roads.
- GNSS Global Navigation Satellite System. Including GPS, GLONASS, GALILEO and Beidou satellite navigation systems.
- Space-time sub-zone A zone divided by two dimensions, time and space, reflected in a certain space within a certain period of time. Divide a day into several time segments, such as 0:00-0: 10, 0: 10-0:20..., called the time sub-region; divide the implementation area of urban road traffic anomaly detection into several spatial segments, for example Longitude 121.58° E-121.59 0 E, latitude 31.16° N-31.17° N, that is, the spatial sub-region; the space-time segment formed by the intersection of any one time sub-region and any one spatial sub-region, called the spatiotemporal sub-region For example, the longitude of 121.58° E-121.59 0 E, latitude 31.16° N-31.17 0 N is a time-space segment of 0:00-0:10.
- Historical trajectory data is trajectory data accumulated over a long period of time and stored in a database. Historical trajectory data is dynamically changing data that needs to be updated in a timely manner and periodically reprocessed and analyzed to ensure the accuracy of historical traffic feature extraction. The data for each time-space sub-area can be processed in parallel to increase efficiency. In the present invention, it may be simply referred to as historical data.
- Real-time trajectory data is a trajectory data set within a time zone that is closest to the current time. In the present invention, it may be simply referred to as real-time data.
- Traffic situation A general term for the comprehensive situation of traffic operations within a certain period of time and within a certain space.
- Traffic anomalies traffic flow disturbances caused by traffic accidents, vehicle dumping, truck falling, road traffic facilities damage or malfunctions.
- Abnormal traffic severity The severity of traffic flow disorder is the difference in traffic flow characteristics after traffic flow and traffic anomalies in normal conditions.
- Traffic Anomaly Index A measure of the severity of traffic. The range is 0 ⁇ 10. The larger the value, the more serious the traffic anomaly.
- Traffic environment The sum of all external influences and forces acting on road traffic participants. This includes road conditions, transportation facilities, landforms, meteorological conditions, and traffic activities of other transportation participants.
- Map Matching The process of associating geographic coordinates with a city road network.
- Peak hourly traffic The maximum hourly traffic flow in a city's road section.
- Response variable A variable that changes according to an independent variable, also called a dependent variable.
- RNN Recurrent Neural Network is an artificial neural network with nodes connected in a loop. The internal state of this network can show dynamic timing behavior. It can use its internal memory to process input sequences of arbitrary timing. .
- Elman-RNN An RNN network structure, see A RNN that learns to count) ⁇
- Training process The process of optimizing neural network parameters through iterative calculations to reduce the model error of the neural network on the training data set.
- the object of the present invention is to establish a scheme based on a floating vehicle trajectory recording system, using historical GNSS positioning data and real-time GNSS positioning data, combined with traffic environment information to identify road traffic anomalies.
- the present invention provides the following technical solutions:
- the premise of the implementation of the present invention is: a floating car (taxis, bus, etc.) equipped with a GNSS track recorder; with large-scale storage, A data center that computes, real-time task processing capabilities.
- the scope of application of the present invention is: Urban roads (including ground roads and elevated roads) through which the above-mentioned floating vehicles pass.
- the implementation steps of the present invention include:
- the time range can be set to all day, that is, 0:00-24:00; it can also be set to a specific time period. For example, to detect the traffic abnormal time during the period from 17:00 to 20:00, the time will be detected.
- the range is set from 17:00 to 20:00.
- the spatial scope can be set as a certain city area according to the administrative division, such as Beijing, Shanghai, Huangpu District, etc. It can also be set as a certain urban functional area according to the urban spatial structure, such as a central business district and industrial area of a certain city.
- the establishment of the spatiotemporal sub-area refers to dividing the detected time range into a number of smaller time segments, and dividing the detected spatial range, that is, the implementation area of the urban road traffic anomaly detection, into a plurality of smaller spatial segments.
- a variety of empirical division methods can be used, including equidistant space-time division method and non-equidistant space-time division method.
- GNSS Global Navigation Satellite System Positioning System
- GPS Global Positioning System
- GLONASS Global Navigation Satellite System
- GALILEO Global Navigation Satellite System
- Beidou satellite navigation system It also includes QZSS in Japan and IRNSS in India.
- QZSS Global Positioning System
- IRNSS International Radio Network Service Set
- Such as regional navigation and positioning systems, as well as satellite positioning enhancement systems such as WASS in the United States and MSAS in Japan.
- GNSS positioning equipment such as taxis, buses, freight cars, private cars, etc.
- urban taxis are often used as floating vehicles as data sources for traffic anomaly detection systems.
- the collected GNSS positioning information contains some unreasonable information.
- anomalies include: data that falls outside the time and space of detection, and spatial position jumps that are clearly out of reasonable range.
- space position jump beyond the reasonable range is illustrated by the following example. If the positioning point uploaded by a floating vehicle positioning device is recorded as A at 10:30:00 on a certain day, the positioning point uploaded by the floating vehicle positioning device at time 10:30:30 is recorded as B, the distance between position A and position B. It is 1500 meters, then the speed of the floating car is calculated to be at least 180km/h, which is beyond the common sense, so it is an abnormal spatial position jump, which should be eliminated in data processing.
- GNSS positioning data After pre-processed GNSS positioning data, it is necessary to combine the urban road network data, map the GNSS positioning points to the city map through the map matching algorithm, establish the matching relationship between the positioning points and the road segments, and correct the error caused by the positioning drift.
- the electronic maps of various geographical regions are relatively detailed.
- Such electronic maps can be derived from the city's geographic information system, and of course can also be derived from other methods and routes.
- These electronic maps detail the urban road information, and several sections can be obtained by dividing.
- the anchor points to the road segments By means of distance, angle, etc., the positioning information is matched to the actual geographical environment. 4)
- the path of the vehicle may not be unique given a set of starting and ending points.
- the complex urban traffic network consists of several sections, which are numbered, for example, Ll, L2, etc. Roads may have two different directions of travel. In this case, two different directions of travel should be represented as two different sections, given different sections.
- the intersection of the road segments in the urban road network can usually be used. Knowing the path of a floating car, it is now necessary to select the same path as the floating car path from the path information that has been sent by other floating cars, so as to obtain the same path group between the starting point and the ending point.
- the positioning data of the floating car includes information such as position coordinates, instantaneous vehicle speed, and recording time.
- data sampling refers to screening part of the data from all floating car data for subsequent analysis and processing, and the screening is based on the computing power of the data center and Pre-proposed accuracy requirements were made. Different data sampling methods can be used based on different calculation capabilities and accuracy requirements.
- the computing power of the data center when the computing power of the data center is strong and the accuracy of the detection is high, all the floating vehicle positioning data can be treated as a processing object, and comprehensive processing analysis is performed; and when the computing power of the data center is limited, it is assumed
- the current data center can process 500 data for each spatial sub-area within 1 minute, but the actual situation is that in 2000, each floating sub-area can generate 2000 floating-vehicle positioning data, so it can be from 2000 data. Randomly extract 500 data for analysis, so as to obtain processing results with limited accuracy within the computing power of the data center.
- the urban road traffic anomaly detection method based on floating car data proposed in this patent uses the travel speed as the basis for urban road traffic anomaly detection. Therefore, data sampling refers to sampling the speed of the journey.
- the so-called historical trajectory data refers to the floating vehicle trajectory data accumulated in long-term urban road traffic operations.
- an urban road traffic feature model can be established to reflect the general characteristics of urban traffic operations.
- the urban road traffic feature model mentioned here can refer to certain specific indicators, such as average speed, weighted average speed, etc.; it can also refer to various statistical models, such as the probability distribution of travel speed.
- a single indicator was used to indicate the traffic characteristics of a certain section or area (such as the historical average speed).
- this patent proposes to train the RNN model with the variation of traffic characteristic variables for each spatiotemporal sub-region.
- the R N model can give the predicted value of the traffic characteristic variable at the next moment when the real value of the traffic characteristic variable is given for some time period.
- the traffic characteristic variables that can be collected include the travel speed and travel time. This patent uses the travel speed to reflect the traffic characteristics. Therefore, the traffic characteristic variable refers to the travel speed.
- the so-called real-time trajectory data refers to the trajectory data of the floating car in traffic operation in a period of time not far from the current time.
- real-time floating car trajectory data you can grasp the dynamics of traffic characteristics and reflect the current characteristics of current traffic operations.
- This patent uses the travel speed of the current space-time sub-zone to describe the current traffic characteristics.
- Dennngng system state anomaly detection
- the idea of system state anomaly detection was first proposed by Dennngng, that is, by monitoring the abnormality of the system used in the system audit record, it is possible to detect an event that violates security and may cause a system abnormality.
- Dennrng's model is independent of any particular system, application environment, system vulnerability, and fault type, and is therefore a general anomaly detection model.
- the model consists of five parts: subject, object, audit record, outline, exception record and activity rule.
- a contour is a body that is represented by a metric and a statistical model relative to the object. Normal behavior.
- Dennrng's model defines three metrics, namely event counter, interval timer, resource measurer, and proposes five statistical models, namely, operational model, mean and standard deviation models, multivariate models, Markov process models, and Time series model.
- the model proposed by Denning establishes the statistically-based normal behavioral feature profile of the system subject through the analysis of the system audit data. When the detection, the audit data in the system is compared with the normal behavioral feature profile of the established subject. Exceeding a certain threshold is considered an abnormal event.
- This model lays the foundation for anomaly detection, and many anomaly detection methods and systems developed in the future are developed on the basis of it.
- user behavior data is divided into two categories according to certain statistical criteria: abnormal behavior and normal behavior.
- the statistical-based method has certain difficulties in extracting and abstracting the audit instance, it may cause large errors, and must rely on some probability distribution hypotheses.
- the artificial neural network is introduced. Clustering method.
- the artificial neural network has the self-learning self-adaptive ability to train the neural network with sample points representing the normal user behavior. Through repeated learning, the neural network can extract the normal user or system activity patterns from the data and encode them into the network structure.
- the audit data can be judged whether the system is normal by learning a good neural network. Because the anomaly evaluation criterion has certain ambiguity, the fuzzy evidence theory is introduced into the anomaly. For example, an intrusion detection framework model based on fuzzy expert system is established, which can better reduce the false alarm rate and false alarm rate.
- This patent proposes an anomaly detection scheme based on cyclic neural network.
- it is an anomaly detection scheme using RNN (Circular Neural Network).
- RNN Chemical Neural Network
- the real-time trajectory data is input into the RN model based on historical data, and the predicted values are obtained, and then compared. The difference between the predicted value and the true value.
- the program uses a deep learning method that automatically updates the model over time and has strong adaptive capabilities.
- the severity of traffic anomalies should be released to the public in a clear and concise manner to avoid possible congested areas and improve the efficiency of urban traffic.
- the severity of the abnormal condition is characterized by the traffic anomaly index, ranging from 0-10, where 0 means no anomaly and 10 means a height anomaly.
- the location of the anomaly is projected onto the electronic map and published publicly through the smart mobile device APP or the like.
- the evaluation of system performance refers to the evaluation of the accuracy of traffic abnormal state detection, and its evaluation indicators include false positive rate and false negative rate. The lower the false positive rate and the false negative rate, the better the performance of the system.
- the division of the spatiotemporal sub-area may specifically adopt the following method:
- the segment size of the time dimension is determined.
- the time segment span is a fixed value, usually 30 mm is taken as a time segment;
- the segment size of the spatial dimension is determined, and the spatial segment span is a fixed value, and a spatial grid of 200 m ⁇ 200 m is usually taken as a spatial segment.
- Non-equidistant space-time division method For urban central areas where the road network density is greater than 2km/km 2 or the peak hour flow is greater than 1000 vehicles/hour, take 30min time segments and 200m X 200m space segments. For road network density less than 2km/km 2 or peak hour traffic is less than 1000 sub-urban suburbs, taking 30min time segments and 400mX 400m space segments.
- the step 3) specifically includes the following steps:
- each grid area contains several road segments, and the set of these road segments is represented as R S , and each road segment in the set of the road segments is represented as ij, and each road segment is given Numbering;
- the matching scheme includes:
- the step 5 may adopt one of the following methods:
- the total travel speed data of each sub-floating vehicle in a time and space sub-region constitutes the whole.
- the distance between the first and second GNSS anchor points, ..., the distance between the -1 and the GNSS anchor points, ... t n is the space-time sub-region 1 , ..., the first time stamp of the GNSS anchor point; the data in each spatiotemporal sub-region is not filtered to form a set ⁇ for subsequent processing.
- Time-smooth sampling plan for speed information Specify the length of the time segment and the upper limit of the number of segments of the same time; search for the velocity data in each time segment in a time-space sub-region. If the number of velocity data in the time segment exceeds the upper limit, the data of the upper limit is randomly added to the data to be processed. sample.
- the distance between the GNSS positioning points is the first time in the space-time sub-region, ..., the time stamp of the first GNSS positioning point; the specified time segment length t p , the upper limit of the number of segments of the same time; ⁇ ⁇ ; speed data within a search area at the time of each temporal sub-time segment, the time segments if the data rate exceeds the upper limit number of pieces; ⁇ «, randomly; ⁇ ⁇ was added and ⁇ of data for subsequent processing.
- the step 6) specifically includes the following steps:
- Input layer According to the characteristics of the neural network, the input layer is each instance of the historical data to be trained, since the input data here is a one-dimensional data stream, that is, the travel speed data in the space sub-area is formed in the time dimension. Time series data, therefore, the number of input layer neurons and the number of output layer neurons are set to 1.
- Implicit layer In the design of neural network, the number of hidden layers has not been determined. Generally, a large number of experiments are needed to determine the number of hidden neurons in the network model. The recommended value is 5 ⁇ 8.
- Output layer The purpose of establishing a neural network is to output a predicted value, that is, to predict the value of the next moment by the values of the first two moments.
- the output layer output value is the predicted value, so the number of output layers is set to 1.
- Context layer In Elman-Network, the context layer is used to store the output of the hidden layer at the previous moment, so the number of context layer neurons is the same as the number of hidden layers.
- Offset node The input layer and output layer each contain an offset node, and the initial value is set to 0.
- the Elman network structure contains two parameters, namely the number of hidden layer neurons and the number of layers of the context layer. The number of neurons in the hidden layer The better results are selected through multiple experiments.
- the recommended setting is 5 ⁇ 8. Since a context layer saves the hidden layer output value at the previous time, it is recommended to set it to 1.
- the parameter learning rate needs to be set when training the model using the back propagation algorithm.
- the size of the learning rate determines the degree of change of the weight in the iterative process of the neural network.
- the large learning rate can make the algorithm converge quickly, but it may fall into the local solution.
- the small learning rate makes the convergence of the algorithm slower, but it can guarantee convergence. To the global minimum, therefore, the value of the learning rate should generally be chosen to ensure the performance and stability of the model.
- the recommended setting is 0.01 to 0.8.
- the initial temperature, the termination temperature, and the number of iterations of each temperature value need to be set.
- the value of the initial temperature has an important influence on the performance of the algorithm. The larger the initial temperature, the more iterations of the algorithm, the greater the possibility of convergence to the minimum, but the greater the time cost. Similarly, when the initial temperature is low, the performance of the algorithm will be affected, but the time spent will be less. In practical applications, the initial temperature setting needs to be selected by repeated trial and error.
- the termination temperature is the lower limit temperature set by the termination algorithm during the temperature drop. The more iterations of each temperature value, the more the number of possible solutions, and the greater the likelihood of convergence to the global minimum. It is recommended to set the initial temperature to 10 5 and the termination temperature to 10 - 2 to set the number of iterations per temperature. Is 100.
- the steps for model training are as follows:
- Greedy Strategy If the training error rate does not improve, the recovery weight and error rate are the last values.
- Hybrid strategy If the error rate of the model does not decrease after this training, or if the magnitude of the decline is less than the set minimum, then the simulated annealing algorithm is used for training.
- a training of the simulated annealing algorithm the general steps are as follows: First calculate the error score of the current model, then add a random number " ⁇ « to the ownership value and offset value of the current model, get new weights and offset values, where:
- Random is a random number
- startTemp is the initial temperature
- temp is the current temperature.
- the updated model error score is calculated. If the new error score is smaller than the current error score, indicating that the new weight improves the performance of the model, save the new one. Weight, otherwise discard; multiply the current temperature by a fixed ratio ratio to lower the temperature:
- stopTemp is the termination temperature and cycles is the number of iterations of a training session. Repeat the above process cycles.
- step 7) Stop condition judgment: If the degree of improvement to the model is less than the minimum value is greater than the set threshold, the algorithm terminates. Repeat steps 63), 64), 65;) until the algorithm terminates, and the trained R N model is obtained. See Figure 6 for the training process.
- the step 7) may specifically adopt one of the following methods:
- the step 8) specifically includes the following steps:
- the step 9) specifically includes the following steps:
- the step 10) specifically includes the following steps:
- the total number of missed events per unit time is the total number of false positive events per unit time.
- the total number of abnormal times that actually occurred during the unit time is the total number of missed events per unit time.
- GNSS trajectory data detect historical traffic state changes through historical traffic feature extraction and real-time traffic situation analysis, and realize real-time, low-cost, intelligent urban road traffic anomaly events Detection
- the urban road traffic anomaly detection technology based on floating car data proposed by the present invention can realize the detection of abnormal events with high accuracy, the detection rate exceeds 90%, and the false negative rate is less than 15%.
- the false alarm rate is lower than 20%, and it has achieved good detection results, and can be applied to urban traffic intelligent management and service.
- FIG. 1 shows a schematic diagram of the components and basic principles of the present invention
- Figure 2 is a schematic view showing the overall flow of the present invention in the implementation process
- FIG. 3 is a schematic diagram showing an implementation manner of a fast map matching algorithm of the present invention.
- FIG. 4 is a block diagram showing the structure of an RNN in the present invention.
- FIG. 5 is a view showing the detailed structure of the RNN in the present invention.
- Figure 6 shows a schematic flow chart of performing R N training
- Fig. 7 is a flow chart showing the abnormality detection of the present invention by comparing the RNN model with real data.
- the overall system architecture of the present invention includes: an onboard GNSS track recorder mounted on a floating vehicle, a data center, a GNSS satellite, and a communication system.
- the GNSS here includes GPS, GLONASS, GALILEO, Beidou, IRNSS, QZSS and any similar navigation satellite positioning system.
- GNSS track recorders equipped with floating cars, buses, etc. record the position information of the vehicle at various points in time at a certain sampling frequency / (general requirements of 0.1 Hz), and pass the GPRS mobile communication network (also can be used) Wireless network communication technologies such as WCDMA and TD-LTE, but the cost will be increased accordingly)
- the location information will be sent to the data center in real time.
- the data center establishes a historical road traffic characteristic database through data preprocessing, data fusion, and through a specific algorithm; establishes a real-time traffic feature database for the recently received real-time data; and determines whether the current traffic feature is abnormal through the mapping relationship between the historical database and the real-time database And visualize the display through the processing terminal and generate a traffic anomaly event report.
- the overall process of the scheme is shown in Figure 2, including the acquisition and storage of GNSS trajectory data, the establishment of spatiotemporal sub-areas, historical traffic feature extraction, real-time traffic feature extraction, and anomaly identification.
- Collecting and storing GNSS trajectory data is the data foundation of the whole scheme. Due to the huge amount of data, a distributed storage scheme should be adopted.
- the basic assumption of the establishment of a spatio-temporal sub-area is that it has the same traffic characteristics in a particular area and a specific time period. This assumption is generally applicable after long-term observation.
- Historical traffic feature extraction the principle is to use the GNSS trajectory data to calculate the travel speed, use a large number of historical travel speed data in the same space-time sub-area, train the Elman-RNN model, and use the neural network model to characterize the change of traffic characteristics.
- Real-time traffic feature extraction the principle is to process and analyze the travel speed data in the current time period, and obtain the traffic characteristic statistics.
- the anomaly identification is to compare the real value of the predicted range obtained by the Elman-RNN model of the historical trip speed training to determine whether a traffic anomaly event occurs.
- Embodiment 1 According to the combination of the embodiments of the invention, the implementation is given below. Embodiment 1
- Step 11 Determine the segment size of the time dimension by using the equidistant space-time division method.
- the time segment span is a fixed value, usually 30 mm.
- the spatial segment span is a fixed value, usually takes a spatial grid of 200mX200m as a spatial segment.
- Step 12 Perform data preprocessing to perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.
- Step 13 Divide the space area to be processed into a grid of a certain size, and the range of each grid area can be expressed as
- ⁇ complete the match; if it does not satisfy
- the projection line equation is: Solve the projected coordinates P as:
- the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.
- Step 14 The total vehicle speed data of each sub-floating vehicle in a time and space sub-region constitutes the whole. Calculate each time space sub-region
- Step 15 Establish an Elman-RNN neural network consisting of an input layer, an implicit layer, an output layer, a context layer, and a bias node.
- the number of neurons in the input layer is set to 1, and the number of neurons in the hidden layer is set to 5.
- the number of neurons in the output layer is set to 1, the number of neurons in the context layer is the same as the number of hidden layers, and is also set to 5, and the initial value of the offset node is set to 0; the initial parameters of each component are set, where
- the learning rate is set to 0.1
- the initial temperature in the simulated annealing module is set to 10 5
- the termination temperature is set to 10 - 2
- the number of iterations per temperature is set to 100.
- Step 17 sorting the time series data subscripts to be processed by the abnormal point detection in ascending order
- Step 18 Normalize the difference in velocity distribution of each spatiotemporal sub-region to a normalized value of 0 to 1 ⁇ ⁇ :
- Step 21 Using the equidistant space-time division method, determining the segment scale of the time dimension, the time segment span is a fixed value, usually taking 30 mm as a time segment; determining the segment scale of the spatial dimension, the spatial segment span is a fixed value, usually taking 200m ⁇ 200m
- the spatial grid acts as a spatial fragment.
- Step 22 Perform data preprocessing to perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.
- the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.
- Step 24 Calculate the travel speed of each vehicle in the space-time sub-region: where 2 ... 4-1, « is the distance between the first and second GNSS positioning points in the space-time sub-zone, . , the distance between the -1 and the nth GNSS anchor point, ⁇ ... is the first time in the space-time sub-region, ..., the time stamp of the GNSS anchor point; the specified time
- the length of the segment length is the upper limit of the number of segments of the segment; ⁇ «; Search for the velocity data in the time segment of the time-space sub-region. If the number of velocity data in the time segment exceeds the upper limit p, randomly f data is added to ⁇ . .
- Step 25 Establish an Elman-RNN neural network consisting of an input layer, an implicit layer, an output layer, a context layer, and a bias node.
- the number of neurons in the input layer is set to 1, and the number of neurons in the hidden layer is set to 5.
- the number of neurons in the output layer is set to 1, the context layer neurons The number is the same as the number of hidden layers, and is also set to 5, the initial value of the offset node is set to 0; the initial parameters of each component are set, wherein the learning rate is set to 0.1, and the initial temperature in the simulated annealing module is set to 105, the end temperature is set to 10-2, the number of iterations for each temperature is set to 100; ⁇ as the input data, the training of the neural network, trained RN model finally obtained.
- Step 27 sorting the time series data subscripts to be processed by the abnormal point detection in ascending order
- Step 28 Normalize the difference in velocity distribution of each space-time sub-region to a normalized value of 0 ⁇ 1:
- Step 31 Using a non-equidistant space-time division method, for a central area of the city where the road network density is greater than 2 km/km 2 or the peak hour flow is greater than 1000 vehicles/hour, a 30 min time segment and a 200 m ⁇ 200 m spatial segment are taken, and the road network density is less than 2km/km 2 or a suburb of a city with a peak hour flow of less than 1000 vehicles/hour, take a 30-minute time segment and a 400mX400m space segment.
- Step 32 Perform data preprocessing, perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.
- Step 33 Divide the space area to be processed into a grid of a certain size, and the range of each grid area can be expressed as
- the point P(t A -t 0 ), Pfc+io) adjacent to A in time is defined as 1-adjacent point of A, P(t A -2t 0 ), ⁇ 04+23 ⁇ 4) is defined as the 2-adjacent point of A, and so on, then ⁇ 4-/3 ⁇ 4;), defined as the /- neighbor of ⁇ .
- the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.
- the distance between the first and second GNSS anchor points in the zone ..., the distance between the -1 and the nth GNSS anchor point, ⁇ ... is the space-time sub-zone 1 , ..., the first time stamp of a GNSS anchor point; specify the maximum length of the clip data at the same time segment length; ⁇ «; search for the speed data in the time segment of the time and space sub-region If the number of speed data in the time segment exceeds the upper limit p, randomly f data is added to ⁇ . .
- Step 35 Establish an Elman-RNN neural network consisting of an input layer, an implicit layer, an output layer, a context layer, and a bias node.
- the number of neurons in the input layer is set to 1, and the number of neurons in the hidden layer is set to 5.
- the number of neurons in the output layer is set to 1, the number of neurons in the context layer is the same as the number of hidden layers, and is also set to 5, and the initial value of the offset node is set to 0; the initial parameters of each component are set, where
- the learning rate is set to 0.05
- the initial temperature in the simulated annealing module is set to 10 5
- the termination temperature is set to 10 - 2
- the number of iterations per temperature is set to 200.
- Step 36 Using the rolling time domain mean method, using the travel speed data obtained by data sampling, calculating the current space sub-zone travel speed
- Step 37 The sequence V1 , v 2 , . . . , v of the points in which the time series data to be processed by the abnormal point detection is sorted in ascending order is known, and the model fitted according to the historical data is known to calculate the fitted model.
- Predictive value (V) Calculate the difference between the predicted value and the true value of the model"
- Step 38 Normalize the difference in velocity distribution of each spatiotemporal sub-region to a normalized value of 0 ⁇ 1:
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Traffic Control Systems (AREA)
Abstract
L'invention concerne un procédé de détection d'anomalie de trafic routier intelligent, comprenant les étapes suivantes : établir des sous-segments de temps/espace ; prétraiter des données de suivi passées ; analyser les données de suivi passées et entraîner un modèle de réseau de neurones récurrent ; détecter les anomalies ; indiquer le degré de gravité des anomalies ; et évaluer les performances du système. Dans le procédé, des informations de suivi de véhicule sont enregistrées au moyen de dispositifs de positionnement GNSS embarqués dans des véhicules flottants circulant sur des routes, et lesdites informations de suivi sont analysées et exploitées afin d'obtenir une détection intelligente d'anomalies et d'incidents de trafic sur des routes urbaines.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB1909407.7A GB201909407D0 (en) | 2016-12-30 | 2017-12-30 | Multimodal road traffic anomaly detection method |
| CN201780050719.8A CN110168520A (zh) | 2016-12-30 | 2017-12-30 | 一种智能化道路交通异常检测方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IBPCT/IB2016/058105 | 2016-12-30 | ||
| PCT/IB2016/058105 WO2018122585A1 (fr) | 2016-12-30 | 2016-12-30 | Procédé de détection d'incident de la circulation routière urbaine sur la base de données de véhicules flottants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018122803A1 true WO2018122803A1 (fr) | 2018-07-05 |
Family
ID=59713568
Family Applications (7)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2016/058105 Ceased WO2018122585A1 (fr) | 2016-12-30 | 2016-12-30 | Procédé de détection d'incident de la circulation routière urbaine sur la base de données de véhicules flottants |
| PCT/IB2017/058535 Ceased WO2018122805A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalies de trafic sur la base de la répartition dans le temps des trajets |
| PCT/IB2017/058533 Ceased WO2018122803A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalie de trafic routier intelligent |
| PCT/IB2017/058532 Ceased WO2018122802A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalie de trafic routier multimodal |
| PCT/IB2017/058531 Ceased WO2018122801A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalie de circulation d'une route urbaine |
| PCT/IB2017/058534 Ceased WO2018122804A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalies de trafic routier par division temps/espace non isométrique |
| PCT/IB2017/058536 Ceased WO2018122806A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalies de trafic multimodal à base de répartitions de temps de trajet |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2016/058105 Ceased WO2018122585A1 (fr) | 2016-12-30 | 2016-12-30 | Procédé de détection d'incident de la circulation routière urbaine sur la base de données de véhicules flottants |
| PCT/IB2017/058535 Ceased WO2018122805A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalies de trafic sur la base de la répartition dans le temps des trajets |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2017/058532 Ceased WO2018122802A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalie de trafic routier multimodal |
| PCT/IB2017/058531 Ceased WO2018122801A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalie de circulation d'une route urbaine |
| PCT/IB2017/058534 Ceased WO2018122804A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalies de trafic routier par division temps/espace non isométrique |
| PCT/IB2017/058536 Ceased WO2018122806A1 (fr) | 2016-12-30 | 2017-12-30 | Procédé de détection d'anomalies de trafic multimodal à base de répartitions de temps de trajet |
Country Status (3)
| Country | Link |
|---|---|
| CN (7) | CN109923595B (fr) |
| GB (11) | GB201711408D0 (fr) |
| WO (7) | WO2018122585A1 (fr) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020078899A1 (fr) * | 2018-10-15 | 2020-04-23 | Starship Technologies Oü | Procédé et système de fonctionnement d'un robot mobile |
| EP3940665A1 (fr) * | 2020-11-18 | 2022-01-19 | Baidu (China) Co., Ltd. | Procédé de détection d'anomalie d'événement de trafic, dispositif, programme et support |
| US11828860B2 (en) | 2021-08-27 | 2023-11-28 | International Business Machines Corporation | Low-sampling rate GPS trajectory learning |
| US12093045B2 (en) | 2018-10-15 | 2024-09-17 | Starship Technologies Oü | Method and system for operating a mobile robot |
Families Citing this family (150)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108388540B (zh) * | 2018-03-01 | 2022-09-23 | 兰州交通大学 | 基于模糊综合评价的道路网选取方法 |
| CN110766936A (zh) * | 2018-07-25 | 2020-02-07 | 高德软件有限公司 | 基于多源数据融合的交通运行状态感知方法和系统 |
| DE102018130457B4 (de) * | 2018-11-30 | 2021-03-25 | Bayerische Motoren Werke Aktiengesellschaft | System und Verfahren für Map Matching |
| US11100793B2 (en) * | 2019-01-15 | 2021-08-24 | Waycare Technologies Ltd. | System and method for detection and quantification of irregular traffic congestion |
| CN109871876B (zh) * | 2019-01-22 | 2023-08-08 | 东南大学 | 一种基于浮动车数据的高速公路路况识别与预测方法 |
| CN111613047B (zh) * | 2019-02-26 | 2022-07-08 | 阿里巴巴集团控股有限公司 | 一种信息处理方法及装置 |
| CN109948701B (zh) * | 2019-03-19 | 2022-08-16 | 太原科技大学 | 一种基于轨迹间时空关联性的数据聚类方法 |
| CN109918368A (zh) * | 2019-03-27 | 2019-06-21 | 成都市公安科学技术研究所 | 一种通过轨迹关联度识别车辆驾驶者的系统和方法 |
| CN110197293A (zh) * | 2019-04-15 | 2019-09-03 | 同济大学 | 基于浮动车数据的分时租赁汽车出行需求预测方法和系统 |
| CN110322054B (zh) * | 2019-06-14 | 2023-04-28 | 中交第一公路勘察设计研究院有限公司 | 一种公路路段交通监测器的优化布设方法 |
| CN110298500B (zh) * | 2019-06-19 | 2022-11-08 | 大连理工大学 | 一种基于出租车数据和城市路网的城市交通轨迹数据集生成方法 |
| CN112135239B (zh) * | 2019-06-25 | 2023-03-17 | 杭州萤石软件有限公司 | 位置监测方法及装置 |
| US11587448B2 (en) | 2019-07-26 | 2023-02-21 | General Electric Company | Systems and methods for manifolds learning of airline network data |
| CN110634288B (zh) * | 2019-08-30 | 2022-06-21 | 上海电科智能系统股份有限公司 | 基于三元高斯混合模型的多维城市交通异常事件识别方法 |
| CN110533249B (zh) * | 2019-09-02 | 2021-09-14 | 合肥工业大学 | 一种基于集成长短期记忆网络的冶金企业能耗预测方法 |
| CN110716925B (zh) * | 2019-09-05 | 2023-08-04 | 中电科大数据研究院有限公司 | 一种基于轨迹分析的跨境行为识别方法 |
| CN110674858B (zh) * | 2019-09-16 | 2023-06-09 | 长沙理工大学 | 一种基于时空关联与大数据挖掘的交通舆情检测方法 |
| CN110795467B (zh) * | 2019-09-26 | 2024-02-27 | 腾讯大地通途(北京)科技有限公司 | 交通规则数据处理方法、装置、存储介质和计算机设备 |
| CN110895598B (zh) * | 2019-10-23 | 2021-09-14 | 山东九州信泰信息科技股份有限公司 | 基于多源预测的实时异常检测并行化方法 |
| JP7226248B2 (ja) * | 2019-10-31 | 2023-02-21 | トヨタ自動車株式会社 | 通信装置および異常判定装置 |
| US11587433B2 (en) | 2019-10-31 | 2023-02-21 | Here Global B.V. | Method, apparatus, and system for probe anomaly detection |
| CN110956803A (zh) * | 2019-11-14 | 2020-04-03 | 深圳尚桥信息技术有限公司 | 一种基于多模态的车辆检测方法及系统 |
| CN110941278B (zh) * | 2019-12-20 | 2023-05-23 | 交控科技股份有限公司 | 一种站内动态安全分析方法 |
| CN111192454B (zh) * | 2020-01-07 | 2021-06-01 | 中山大学 | 基于行程时间演化的交通异常识别方法、系统及存储介质 |
| CN111192456A (zh) * | 2020-01-14 | 2020-05-22 | 泉州市益典信息科技有限公司 | 一种道路交通运行态势多时间尺度预测方法 |
| CN111310833B (zh) * | 2020-02-19 | 2022-11-15 | 清华大学 | 一种基于贝叶斯神经网络的出行方式识别方法 |
| CN111311910B (zh) * | 2020-02-19 | 2020-12-22 | 中南大学 | 多层次道路级浮动车异常轨迹探测方法 |
| CN111210634B (zh) * | 2020-02-27 | 2020-11-17 | 深圳市智慧城市科技发展集团有限公司 | 智能交通信息处理方法、装置、智能交通系统及服务器 |
| CN111540194B (zh) * | 2020-03-23 | 2021-08-10 | 深圳奇迹智慧网络有限公司 | 车辆监测数据处理方法、装置、计算机设备和存储介质 |
| CN111353828B (zh) * | 2020-03-30 | 2023-09-12 | 中国工商银行股份有限公司 | 网点到店人数预测方法及装置 |
| CN111475774B (zh) * | 2020-03-31 | 2022-03-18 | 清华大学 | 一种光伏电站设备异常状态检测方法及装置 |
| CN111583642B (zh) * | 2020-05-06 | 2021-03-23 | 北京航空航天大学 | 交通轨迹流式大数据实时处理方法 |
| US12183067B2 (en) * | 2020-05-07 | 2024-12-31 | Hypergiant Industries, Inc. | Volumetric baseline image generation and object identification |
| CN111580500B (zh) * | 2020-05-11 | 2022-04-12 | 吉林大学 | 一种针对自动驾驶汽车安全性的评价方法 |
| CN111722252B (zh) * | 2020-05-14 | 2023-04-11 | 江苏北斗卫星应用产业研究院有限公司 | 一种高精准的基于轨迹数据的作业面识别方法 |
| CN111739289B (zh) * | 2020-06-02 | 2024-02-20 | 腾讯科技(深圳)有限公司 | 车辆预警信息的处理方法及装置 |
| CN111667015B (zh) * | 2020-06-11 | 2023-06-27 | 深圳市兴海物联科技有限公司 | 物联网设备状态检测方法、装置及检测设备 |
| CN111709378B (zh) * | 2020-06-18 | 2022-07-12 | 湖南大学 | 一种基于js散度和模糊证据理论的路况状态评估新方法 |
| CN111723997B (zh) * | 2020-06-23 | 2024-10-08 | 上海电科智能系统股份有限公司 | 一种基于gan的城市重大交通事故数据样本自动生成方法 |
| CN111932873B (zh) * | 2020-07-21 | 2022-10-04 | 重庆交通大学 | 一种山地城市热点区域实时交通预警管控方法及系统 |
| US11225259B1 (en) * | 2020-07-28 | 2022-01-18 | International Business Machines Corporation | Fair anomaly detection and localization |
| CN112085949B (zh) * | 2020-08-13 | 2023-06-27 | 浙江工业大学 | 一种基于交通运行状况异常的路网脆弱性识别、分析与应对方法 |
| CN112000653B (zh) * | 2020-08-21 | 2024-03-29 | 睿驰达新能源汽车科技(北京)有限公司 | 基于空间和时间的区域网格化驾驶行为数据预处理方法 |
| CN112053561B (zh) * | 2020-09-11 | 2021-11-23 | 深兰人工智能芯片研究院(江苏)有限公司 | 非监控路段判断与定位交通事故的方法、系统及装置 |
| CN111986487B (zh) * | 2020-09-11 | 2022-02-25 | 腾讯科技(深圳)有限公司 | 一种路况信息的管理方法以及相关装置 |
| CN112100243B (zh) * | 2020-09-15 | 2024-02-20 | 山东理工大学 | 一种基于海量时空数据分析的异常聚集检测方法 |
| CN112215261A (zh) * | 2020-09-18 | 2021-01-12 | 武汉理工大学 | 基于元学习的车辆od点聚类方法、系统、装置及存储介质 |
| CN112308116B (zh) * | 2020-09-28 | 2023-04-07 | 济南大学 | 一种助老陪护机器人的自调优多通道融合方法和系统 |
| WO2022081083A1 (fr) * | 2020-10-16 | 2022-04-21 | Grabtaxi Holdings Pte. Ltd. | Procédé, dispositif électronique et système de détection de vitesse excessive |
| CN112489419B (zh) * | 2020-10-28 | 2022-04-26 | 华为技术有限公司 | 道路容量的确定方法、装置及存储介质 |
| CN114519122A (zh) * | 2020-11-19 | 2022-05-20 | 上海汽车集团股份有限公司 | 基于车辆驾驶场景的音乐推荐方法 |
| CN114945959B (zh) * | 2020-11-23 | 2023-06-20 | 深圳元戎启行科技有限公司 | 行驶轨迹确定方法、装置、计算机设备和存储介质 |
| CN112652170B (zh) * | 2020-12-24 | 2022-04-08 | 航天科工智能运筹与信息安全研究院(武汉)有限公司 | 交通拥堵热点的定位方法和装置 |
| CN112927497B (zh) * | 2021-01-14 | 2023-01-17 | 阿里巴巴集团控股有限公司 | 一种浮动车识别方法、相关方法和装置 |
| CN112863185A (zh) * | 2021-01-15 | 2021-05-28 | 林安齐 | 一种道路交通设备智能管理系统及方法 |
| CN112907949B (zh) * | 2021-01-20 | 2022-11-22 | 北京百度网讯科技有限公司 | 交通异常的检测方法、模型的训练方法及装置 |
| CN112784963B (zh) * | 2021-01-22 | 2022-07-01 | 重庆邮电大学 | 基于模拟退火优化bp神经网络的室内外无缝定位方法 |
| CN113221677B (zh) * | 2021-04-26 | 2024-04-16 | 阿波罗智联(北京)科技有限公司 | 一种轨迹异常检测方法、装置、路侧设备和云控平台 |
| GB202106070D0 (en) * | 2021-04-28 | 2021-06-09 | Tomtom Navigation Bv | Methods and systems for determining estimated travel times through a navigable network |
| CN113240265B (zh) * | 2021-05-11 | 2023-10-27 | 西北工业大学 | 一种基于多模式交通数据的城市空间划分方法 |
| CN113470347B (zh) * | 2021-05-20 | 2022-07-26 | 上海天壤智能科技有限公司 | 结合卡口过车记录和浮动车gps数据的拥堵识别方法及系统 |
| CN113312722B (zh) * | 2021-05-28 | 2023-05-05 | 广西大学 | 一种城轨列车关键部件的可靠度预测优化方法 |
| CN113380028B (zh) * | 2021-06-01 | 2022-09-06 | 公安部交通管理科学研究所 | 一种智慧出行交通数据融合方法及装置 |
| CN113313317B (zh) * | 2021-06-11 | 2024-04-12 | 哈尔滨工业大学 | 一种基于inla算法的共享单车使用需求预测方法及预测系统 |
| CN113378301B (zh) * | 2021-06-22 | 2022-05-24 | 北京航空航天大学 | 一种基于重要度抽样的无人车超车场景关键测试案例生成方法 |
| CN113535510B (zh) * | 2021-06-24 | 2024-01-26 | 北京理工大学 | 一种大规模数据中心数据采集的自适应抽样模型优化方法 |
| CN113436433B (zh) * | 2021-06-24 | 2022-06-21 | 福建师范大学 | 一种高效的城市交通离群值检测方法 |
| CN113343905B (zh) * | 2021-06-28 | 2022-06-14 | 山东理工大学 | 道路异常智能识别模型训练、道路异常识别的方法及系统 |
| CN113554869B (zh) * | 2021-07-01 | 2022-04-05 | 华东师范大学 | 一种基于多特征融合的道路封闭检测方法 |
| CN113569759B (zh) * | 2021-07-29 | 2022-06-10 | 沭阳新辰公路仪器有限公司 | 一种基于人工智能的道路掉落物识别方法及系统 |
| CN113779169B (zh) * | 2021-08-31 | 2023-09-05 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 时空数据流模型自增强方法 |
| CN113963399B (zh) * | 2021-09-09 | 2025-06-27 | 武汉众智数字技术有限公司 | 基于多算法融合应用的人员轨迹检索方法及装置 |
| CN113920728B (zh) * | 2021-10-11 | 2022-08-12 | 南京微达电子科技有限公司 | 高速公路抛洒障碍物检测与预警方法及系统 |
| CN113920739B (zh) * | 2021-10-29 | 2023-05-23 | 复旦大学 | 基于信息物理融合系统的交通数据驱动框架及构建方法 |
| CN114093164B (zh) * | 2021-11-15 | 2022-08-19 | 上海市城乡建设和交通发展研究院 | 基于车辆轨迹的动态交通流识别校正方法、装置及设备 |
| CN114239929B (zh) * | 2021-11-30 | 2024-06-14 | 东南大学 | 一种基于随机森林的出租车交通需求特征预测方法 |
| CN114170580B (zh) * | 2021-12-01 | 2024-10-01 | 连云港杰瑞电子有限公司 | 一种面向高速公路的异常事件检测方法 |
| CN114372503B (zh) * | 2021-12-03 | 2025-10-28 | 同济大学 | 一种集群车辆运动轨迹预测方法 |
| CN113888877B (zh) * | 2021-12-08 | 2022-03-08 | 南方科技大学 | 交通状态检测方法、装置、设备和存储介质 |
| CN114923512A (zh) * | 2021-12-22 | 2022-08-19 | 安徽理工大学 | 一种基于共享单车和出租车移动轨迹的城市污染物监测优化方法 |
| CN114445577B (zh) * | 2021-12-29 | 2025-04-29 | 武汉中海庭数据技术有限公司 | 一种基于图网络的预计达到时间计算方法和系统 |
| CN114492955A (zh) * | 2022-01-07 | 2022-05-13 | 重庆市地矿测绘院有限公司 | 基于三维实景建模与cim的数字孪生时空大数据平台 |
| CN114495498B (zh) * | 2022-01-20 | 2023-01-10 | 青岛海信网络科技股份有限公司 | 一种交通数据分布有效性判别方法及装置 |
| CN114626682A (zh) * | 2022-02-17 | 2022-06-14 | 华录智达科技股份有限公司 | 一种考虑聚集区域的城市公交线网规划方法 |
| CN114217333A (zh) * | 2022-02-21 | 2022-03-22 | 北京交研智慧科技有限公司 | 路网拓扑异常位置定位方法、装置及相关设备 |
| CN114822066B (zh) * | 2022-04-14 | 2023-06-13 | 北京百度网讯科技有限公司 | 车辆定位方法、装置、电子设备和存储介质 |
| CN114492544B (zh) * | 2022-04-15 | 2022-07-26 | 腾讯科技(深圳)有限公司 | 模型训练方法及装置、交通事件发生概率评估方法及装置 |
| CN115086910B (zh) * | 2022-04-27 | 2024-05-31 | 同济大学 | 一种v2x环境下基于动静态特征的实时路段划分方法 |
| CN114866986A (zh) * | 2022-05-20 | 2022-08-05 | 深圳市威宇智通科技有限公司 | 基于车联网的道路交通数据获取系统 |
| CN115019507B (zh) * | 2022-06-06 | 2023-12-01 | 上海旷途科技有限公司 | 城市路网行程时间可靠性实时估计方法 |
| CN114996251A (zh) * | 2022-06-07 | 2022-09-02 | 武汉众智数字技术有限公司 | 一种基于电台gps轨迹数据的安全勤务管理方法及系统 |
| CN115171372B (zh) * | 2022-06-20 | 2023-10-24 | 青岛海信网络科技股份有限公司 | 一种交通异常检测方法、设备及装置 |
| CN115311846B (zh) * | 2022-06-24 | 2023-08-11 | 华东师范大学 | 一种结合货车任务状态的厂区道路拥堵预测方法及预测系统 |
| CN114863685B (zh) * | 2022-07-06 | 2022-09-27 | 北京理工大学 | 一种基于风险接受程度的交通参与者轨迹预测方法及系统 |
| CN115185780B (zh) * | 2022-07-21 | 2023-10-24 | 北京国联视讯信息技术股份有限公司 | 基于工业互联网的数据采集方法及系统 |
| CN115440044B (zh) * | 2022-07-29 | 2023-10-13 | 深圳高速公路集团股份有限公司 | 一种公路多源事件数据融合方法、装置、存储介质及终端 |
| CN115691111B (zh) * | 2022-09-22 | 2024-01-23 | 连云港杰瑞电子有限公司 | 适用于交通流数据采集的网联车最小渗透率计算方法 |
| CN115661672B (zh) * | 2022-10-24 | 2023-03-14 | 中国人民解放军海军工程大学 | 基于GMM的PolSAR图像CFAR检测方法及系统 |
| CN116071917B (zh) * | 2022-10-27 | 2025-04-29 | 广州市交通规划研究院有限公司 | 一种基于省域多源空间数据的出行特征分析方法 |
| CN115798198B (zh) * | 2022-11-03 | 2024-04-05 | 公安部交通管理科学研究所 | 一种基于数据融合的城市路网行程时间分布估计方法 |
| CN116363546A (zh) * | 2022-11-04 | 2023-06-30 | 中国人民公安大学 | 一种基于时序的动态稀疏轨迹补全方法 |
| CN115985088B (zh) * | 2022-11-30 | 2024-01-26 | 东南大学 | 基于车辆碰撞时间反馈的交通流稳定性提升方法 |
| CN115938116B (zh) * | 2022-12-06 | 2025-07-29 | 广西新发展交通集团有限公司 | 基于空间自相关的特殊路段异常状态多发点位鉴别方法 |
| CN115979669B (zh) * | 2022-12-30 | 2025-10-28 | 长安大学 | 一种无人车故障检测方法及系统 |
| CN116504052B (zh) * | 2022-12-30 | 2024-10-15 | 华设设计集团股份有限公司 | 基于shockwave交通流模型的感知数据补全方法 |
| CN116029736B (zh) * | 2023-01-05 | 2023-09-29 | 浙江警察学院 | 一种网约车异常轨迹实时检测和安全预警方法、系统 |
| CN116165274B (zh) * | 2023-02-17 | 2023-11-14 | 哈尔滨工业大学 | 基于贝叶斯全局稀疏概率主成分分析的城市轨道损伤识别方法 |
| CN116245282A (zh) * | 2023-02-21 | 2023-06-09 | 华南理工大学 | 面向单中心交通等时线生成的路网不均匀离散方法 |
| CN115984077B (zh) * | 2023-02-24 | 2023-06-13 | 南方科技大学 | 一种交通异常流量因果检测方法及设备 |
| CN116245362B (zh) * | 2023-03-07 | 2023-12-12 | 北京磁浮有限公司 | 城轨接触网风险评估方法及相关装置 |
| CN117115759B (zh) * | 2023-04-12 | 2024-04-09 | 盐城工学院 | 一种基于类别引导的路侧交通目标检测系统及方法 |
| CN116541745B (zh) * | 2023-04-21 | 2025-07-04 | 浙江工业大学 | 基于图卷积网络特征融合的交通模式识别方法和系统 |
| CN116703004B (zh) * | 2023-07-19 | 2023-09-29 | 共享数据(福建)科技有限公司 | 一种基于预训练模型的水系流域智慧巡护方法和装置 |
| CN116955453B (zh) * | 2023-07-19 | 2025-07-15 | 重庆大学 | 一种基于行程时间特性的重点监测车辆判别方法 |
| CN116777120B (zh) * | 2023-08-16 | 2023-10-27 | 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) | 一种基于路网od对的城市道路移动源碳排放计算方法 |
| CN116820014B (zh) * | 2023-08-24 | 2023-11-14 | 山西交通科学研究院集团有限公司 | 一种交通机电设备智能化监控预警方法及系统 |
| CN116860840B (zh) * | 2023-09-05 | 2023-11-07 | 陕西交通电子工程科技有限公司 | 用于高速公路路面信息快速检索方法 |
| CN117252008B (zh) * | 2023-09-19 | 2024-08-16 | 中国城市规划设计研究院 | 基于多维指标的国家城市道路网可靠性监测平台及方法 |
| CN117419732B (zh) * | 2023-10-10 | 2024-06-21 | 中国船舶集团有限公司第七〇九研究所 | 一种基于路网的感知目标定位纠偏方法、设备及存储介质 |
| CN118115427B (zh) * | 2023-11-15 | 2024-10-18 | 北京科技大学 | 一种基于多源数据的路表状态检测方法和系统 |
| CN117372969B (zh) * | 2023-12-08 | 2024-05-10 | 暗物智能科技(广州)有限公司 | 一种面向监控场景的异常事件检测方法 |
| CN117456482B (zh) * | 2023-12-25 | 2024-05-10 | 暗物智能科技(广州)有限公司 | 一种面向交通监控场景的异常事件识别方法及系统 |
| CN117517596B (zh) * | 2024-01-08 | 2024-03-15 | 辽宁中消安全设备有限公司 | 基于物联网的可燃及有毒有害气体实时监测方法及系统 |
| CN117572470B (zh) * | 2024-01-15 | 2024-04-19 | 广东邦盛北斗科技股份公司 | 应用于人工智能的北斗系统定位更新方法及系统 |
| CN117575546B (zh) * | 2024-01-17 | 2024-04-05 | 北京白龙马云行科技有限公司 | 一种网约车平台用后台管理系统 |
| CN118522140B (zh) * | 2024-02-02 | 2024-11-05 | 淮阴工学院 | 基于智慧交通的安全监控系统 |
| CN117706478B (zh) * | 2024-02-02 | 2024-05-03 | 腾讯科技(深圳)有限公司 | 定位漂移的识别方法、装置、设备及存储介质 |
| CN117688505B (zh) * | 2024-02-04 | 2024-04-19 | 河海大学 | 一种植被大范围区域化负异常的预测方法及系统 |
| CN117894181B (zh) * | 2024-03-14 | 2024-05-07 | 北京动视元科技有限公司 | 一种全域通行异常状况集成监测方法及系统 |
| CN118025266B (zh) * | 2024-03-29 | 2024-09-06 | 扬州斯托派智能科技有限公司 | 基于调度协调优化的一轨多车控制系统 |
| CN118351717B (zh) * | 2024-04-12 | 2025-02-07 | 中汽研汽车试验场股份有限公司 | 一种自适应剪枝智能网联车辆轨迹控制方法和系统 |
| CN118070683B (zh) * | 2024-04-22 | 2024-07-23 | 山东师范大学 | 基于数字孪生的物流运输大数据采集方法及系统 |
| CN118278841B (zh) * | 2024-05-31 | 2024-10-08 | 湖南省交通科学研究院有限公司 | 基于行驶轨迹的大件运输监管及预警方法、系统及装置 |
| CN118397843B (zh) * | 2024-06-24 | 2024-09-20 | 中交第一公路勘察设计研究院有限公司 | 一种公路交通阻断状态的分级和预测方法、系统 |
| CN118445335B (zh) * | 2024-07-08 | 2024-09-20 | 山东惠通科技有限公司 | 一种智能物联网平台用的数据管理方法及系统 |
| CN118967555B (zh) * | 2024-07-09 | 2025-03-14 | 盐城工学院 | 带噪声标签的分割模型的金属表面缺陷检测方法及系统 |
| CN118468205B (zh) * | 2024-07-12 | 2024-10-15 | 青岛有屋科技有限公司 | 基于人工智能的集中式家居设备状态故障检测方法 |
| CN118587894B (zh) * | 2024-08-05 | 2024-10-15 | 浙江数智交院科技股份有限公司 | 一种预判紧急停车带内车辆驶出和预警的方法 |
| CN118628943B (zh) * | 2024-08-09 | 2024-11-22 | 广东森沛建设工程有限公司 | 道路施工现场的无人机巡检数据采集方法及系统 |
| CN118800073B (zh) * | 2024-09-13 | 2024-12-24 | 湖南高速信息科技有限公司 | 基于交通流量的交通异常区段识别方法 |
| CN119516765B (zh) * | 2024-09-29 | 2025-07-22 | 中国铁塔股份有限公司揭阳市分公司 | 一种基于视频图像分析的道路状态监测系统 |
| CN119152697B (zh) * | 2024-11-18 | 2025-02-11 | 成都赛力斯科技有限公司 | 一种数据处理方法及系统、云端服务器及车辆 |
| CN119167315B (zh) * | 2024-11-21 | 2025-03-07 | 江苏开博科技有限公司 | 一种it运维大数据的多源数据整合方法 |
| CN119296045A (zh) * | 2024-12-11 | 2025-01-10 | 浙江安防职业技术学院 | 安防监控方法及设备 |
| CN119370002B (zh) * | 2024-12-27 | 2025-03-28 | 长春光华学院 | 一种汽车座椅按摩功能的调节控制方法及系统 |
| CN120183191A (zh) * | 2025-03-24 | 2025-06-20 | 中交第二公路勘察设计研究院有限公司 | 一种基于多源异构数据融合的公路交通时空服务平台及方法 |
| CN120452596B (zh) * | 2025-07-07 | 2025-09-02 | 中科干细胞再生医学(辽宁)有限公司 | 一种中药原料品质监测分析方法 |
| CN120724865B (zh) * | 2025-08-28 | 2025-11-14 | 华润新能源(北票)风能有限公司 | 风电叶片变工况动载荷平衡非线性约束仿真系统及方法 |
| CN120766227B (zh) * | 2025-09-09 | 2025-11-11 | 江西省公路科研设计院有限公司 | 一种基于多源感知的公路立体智能巡检系统及方法 |
| CN120808298B (zh) * | 2025-09-11 | 2025-11-14 | 山东大学 | 超长海底隧道路段车辆定位及交通状态提示方法及系统 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003228788A (ja) * | 2001-11-27 | 2003-08-15 | Fuji Xerox Co Ltd | 移動情報分類装置、移動情報分類方法、及び移動情報分類プログラム |
| CN201927174U (zh) * | 2011-01-13 | 2011-08-10 | 西安邮电学院 | 一种高速公路交通异常事件预警系统 |
| CN201946111U (zh) * | 2011-01-13 | 2011-08-24 | 西安邮电学院 | 高速公路交通异常事件预警系统用数据采集及发布节点 |
| CN104408924A (zh) * | 2014-12-04 | 2015-03-11 | 深圳北航新兴产业技术研究院 | 一种基于耦合隐马尔可夫模型的城市道路异常交通流检测方法 |
| CN104504901A (zh) * | 2014-12-29 | 2015-04-08 | 浙江银江研究院有限公司 | 一种基于多维数据的交通异常点检测方法 |
Family Cites Families (66)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05250598A (ja) * | 1992-03-06 | 1993-09-28 | Matsushita Electric Ind Co Ltd | 交通情報提供装置 |
| JPH07220193A (ja) * | 1994-01-28 | 1995-08-18 | Nagoya Denki Kogyo Kk | 交通状況判別装置 |
| US7187800B2 (en) * | 2002-08-02 | 2007-03-06 | Computerized Medical Systems, Inc. | Method and apparatus for image segmentation using Jensen-Shannon divergence and Jensen-Renyi divergence |
| DE102005002760B4 (de) * | 2004-01-20 | 2018-05-24 | Volkswagen Ag | Vorrichtung und Verfahren zur Unfallvermeidung bei Kraftfahrzeugen |
| US7522995B2 (en) * | 2004-02-05 | 2009-04-21 | Nortrup Edward H | Method and system for providing travel time information |
| CN101438335B (zh) * | 2006-03-03 | 2011-09-21 | 因瑞克斯有限公司 | 使用来自移动数据源的数据估算道路交通状况 |
| US7460948B2 (en) * | 2006-03-10 | 2008-12-02 | Gm Global Technology Operations, Inc. | Traffic notification system for reporting traffic anomalies based on historical probe vehicle data |
| JP4591395B2 (ja) * | 2006-03-31 | 2010-12-01 | アイシン・エィ・ダブリュ株式会社 | ナビゲーションシステム |
| CN100492434C (zh) * | 2006-11-30 | 2009-05-27 | 上海交通大学 | 交通流状态分析所需的探测车采样量的获取方法 |
| JP4539666B2 (ja) * | 2007-03-19 | 2010-09-08 | アイシン・エィ・ダブリュ株式会社 | 渋滞状況演算システム |
| CN101373559B (zh) * | 2007-08-24 | 2010-08-18 | 同济大学 | 基于浮动车数据评估城市路网交通状态的方法 |
| DE102007050154A1 (de) * | 2007-10-19 | 2009-04-23 | Siemens Ag | Prognosesystem zum Vorhersagen von Fahrzeiten, fahrzeuggestütztes Routenplanungssystem, Verkehrsinformationssystem und -verfahren |
| CN101286269A (zh) * | 2008-05-26 | 2008-10-15 | 北京捷讯畅达科技发展有限公司 | 兼有动态实时交通数据的交通流量预测系统 |
| CN101620781B (zh) * | 2008-06-30 | 2012-08-29 | 株式会社查纳位资讯情报 | 预测乘客信息的系统和搜索乘客信息的系统及其方法 |
| CN201262784Y (zh) * | 2008-09-28 | 2009-06-24 | 华南理工大学 | 基于数据特征的城市信号控制路口交通状态检测和评价系统 |
| CN101727747A (zh) * | 2009-12-16 | 2010-06-09 | 南京信息工程大学 | 基于流量检测的道路非正常拥堵报警方法 |
| CN101794510A (zh) * | 2009-12-30 | 2010-08-04 | 北京世纪高通科技有限公司 | 一种浮动车数据处理的方法和装置 |
| CN101950477B (zh) * | 2010-08-23 | 2012-05-23 | 北京世纪高通科技有限公司 | 一种交通信息处理方法及装置 |
| CN101976505A (zh) * | 2010-10-25 | 2011-02-16 | 中国科学院深圳先进技术研究院 | 交通评价方法及系统 |
| JP5716935B2 (ja) * | 2011-04-20 | 2015-05-13 | 日本電気株式会社 | 交通状況監視システム、方法、およびプログラム |
| CN202075864U (zh) * | 2011-04-28 | 2011-12-14 | 北京市劳动保护科学研究所 | 异常交通状态自动检测系统 |
| CN102231235B (zh) * | 2011-04-29 | 2016-02-24 | 陈伟 | 一种交通流异常点检测定位方法 |
| US8775059B2 (en) * | 2011-10-26 | 2014-07-08 | Right There Ware LLC | Method and system for fleet navigation, dispatching and multi-vehicle, multi-destination routing |
| US20130166188A1 (en) * | 2011-12-21 | 2013-06-27 | Microsoft Corporation | Determine Spatiotemporal Causal Interactions In Data |
| CN102637357B (zh) * | 2012-03-27 | 2013-11-06 | 山东大学 | 一种区域交通状态评价方法 |
| US9141874B2 (en) * | 2012-07-19 | 2015-09-22 | Qualcomm Incorporated | Feature extraction and use with a probability density function (PDF) divergence metric |
| CN102855638B (zh) * | 2012-08-13 | 2015-02-11 | 苏州大学 | 基于谱聚类的车辆异常行为检测方法 |
| CN103050005B (zh) * | 2012-11-16 | 2015-06-03 | 北京交通大学 | 城市道路交通状态时空分析方法与系统 |
| CN103065466B (zh) * | 2012-11-19 | 2015-01-21 | 北京世纪高通科技有限公司 | 一种交通异常状况的检测方法和装置 |
| CN103065468A (zh) * | 2012-12-14 | 2013-04-24 | 中国航天系统工程有限公司 | 交通信息的评估方法和装置 |
| CN103903433B (zh) * | 2012-12-27 | 2016-09-14 | 南京中兴新软件有限责任公司 | 一种道路交通状态的实时动态判别方法及装置 |
| CN103903436A (zh) * | 2012-12-28 | 2014-07-02 | 上海优途信息科技有限公司 | 一种基于浮动车的高速公路交通拥堵检测方法和系统 |
| CN103258427B (zh) * | 2013-04-24 | 2015-03-11 | 北京工业大学 | 基于信息物理网络的城市快速路交通实时监控方法 |
| CN103247177B (zh) * | 2013-05-21 | 2016-01-20 | 清华大学 | 大规模路网交通流实时动态预测系统 |
| CN103309964A (zh) * | 2013-06-03 | 2013-09-18 | 广州市香港科大霍英东研究院 | 一种针对大规模交通数据的高效可视监测分析系统 |
| CN103354030B (zh) * | 2013-07-29 | 2015-06-24 | 吉林大学 | 利用浮动公交车can总线信息判别道路交通状况的方法 |
| CN103514743B (zh) * | 2013-09-28 | 2016-01-06 | 上海电科智能系统股份有限公司 | 一种实时指数匹配记忆区间的异常交通状态特征识别方法 |
| US9582999B2 (en) * | 2013-10-31 | 2017-02-28 | Here Global B.V. | Traffic volume estimation |
| CN103632546B (zh) * | 2013-11-27 | 2016-01-20 | 中国航天系统工程有限公司 | 一种基于浮动车数据的城市道路交通事故影响预测方法 |
| US9240123B2 (en) * | 2013-12-13 | 2016-01-19 | Here Global B.V. | Systems and methods for detecting road congestion and incidents in real time |
| CN103971521B (zh) * | 2014-05-19 | 2016-06-29 | 清华大学 | 道路交通异常事件实时检测方法及装置 |
| KR101598343B1 (ko) * | 2014-09-23 | 2016-02-29 | 목원대학교 산학협력단 | 정체 시공간 패턴 자동인식 시스템 및 그 방법 |
| CN104282151A (zh) * | 2014-09-30 | 2015-01-14 | 北京交通发展研究中心 | 基于高频卫星定位数据的实时浮动车路径匹配方法 |
| CN104408958B (zh) * | 2014-11-11 | 2016-09-28 | 河海大学 | 一种城市动态路径行程时间预测方法 |
| US9349285B1 (en) * | 2014-12-01 | 2016-05-24 | Here Global B.V. | Traffic classification based on spatial neighbor model |
| CN104537833B (zh) * | 2014-12-19 | 2017-03-29 | 深圳大学 | 一种交通异常检测方法及系统 |
| CN104778834B (zh) * | 2015-01-23 | 2017-02-22 | 哈尔滨工业大学 | 一种基于车辆gps数据的城市道路交通拥堵判别方法 |
| CN104657746B (zh) * | 2015-01-29 | 2017-09-12 | 电子科技大学 | 一种基于车辆轨迹相似性的异常检测方法 |
| CN104573116B (zh) * | 2015-02-05 | 2017-11-03 | 哈尔滨工业大学 | 基于出租车gps数据挖掘的交通异常识别方法 |
| KR101728219B1 (ko) * | 2015-02-23 | 2017-04-19 | 전북대학교산학협력단 | 양방향 통신을 이용한 시공간 교통량 분산 제어 방법 및 시스템 |
| US11482100B2 (en) * | 2015-03-28 | 2022-10-25 | Intel Corporation | Technologies for detection of anomalies in vehicle traffic patterns |
| CN104778837B (zh) * | 2015-04-14 | 2017-12-05 | 吉林大学 | 一种道路交通运行态势多时间尺度预测方法 |
| CN104809787B (zh) * | 2015-04-23 | 2017-11-17 | 中电科安(北京)科技股份有限公司 | 一种基于摄像头的智能客流量统计装置 |
| US9576481B2 (en) * | 2015-04-30 | 2017-02-21 | Here Global B.V. | Method and system for intelligent traffic jam detection |
| CN104809878B (zh) * | 2015-05-14 | 2017-03-22 | 重庆大学 | 利用公交车gps数据检测城市道路交通异常状态的方法 |
| CN105005760B (zh) * | 2015-06-11 | 2018-04-24 | 华中科技大学 | 一种基于有限混合模型的行人再识别方法 |
| CN105261212B (zh) * | 2015-09-06 | 2018-06-19 | 中山大学 | 一种基于出租车gps数据地图匹配的出行时空分析方法 |
| CN105404890B (zh) * | 2015-10-13 | 2018-10-16 | 广西师范学院 | 一种顾及轨迹时空语义的犯罪团伙判别方法 |
| CN105513350A (zh) * | 2015-11-30 | 2016-04-20 | 华南理工大学 | 基于时空特性的分时段多参数短时交通流预测方法 |
| CN105489008B (zh) * | 2015-12-28 | 2018-10-19 | 北京握奇智能科技有限公司 | 基于浮动车卫星定位数据的城市道路拥堵计算方法及系统 |
| CN105608895B (zh) * | 2016-03-04 | 2017-11-10 | 大连理工大学 | 一种基于局部异常因子的城市交通拥堵路段检测方法 |
| CN105761488B (zh) * | 2016-03-30 | 2018-11-23 | 湖南大学 | 基于融合的实时极限学习机短时交通流预测方法 |
| CN106067248B (zh) * | 2016-05-30 | 2018-08-24 | 重庆大学 | 一种考虑速度离散特性的高速公路交通状态估计方法 |
| CN106023592A (zh) * | 2016-07-11 | 2016-10-12 | 南京邮电大学 | 一种基于gps数据的交通拥堵检测方法 |
| CN106228808B (zh) * | 2016-08-05 | 2019-04-30 | 北京航空航天大学 | 基于浮动车时空网格数据的城市快速路旅行时间预测方法 |
| CN106781468B (zh) * | 2016-12-09 | 2018-06-15 | 大连理工大学 | 基于建成环境和低频浮动车数据的路段行程时间估计方法 |
-
2016
- 2016-12-30 WO PCT/IB2016/058105 patent/WO2018122585A1/fr not_active Ceased
- 2016-12-30 GB GBGB1711408.3A patent/GB201711408D0/en not_active Ceased
- 2016-12-30 CN CN201680088595.8A patent/CN109923595B/zh active Active
-
2017
- 2017-12-30 WO PCT/IB2017/058535 patent/WO2018122805A1/fr not_active Ceased
- 2017-12-30 GB GBGB1909406.9A patent/GB201909406D0/en not_active Ceased
- 2017-12-30 CN CN201780050719.8A patent/CN110168520A/zh active Pending
- 2017-12-30 CN CN201780050907.0A patent/CN109791729B/zh active Active
- 2017-12-30 WO PCT/IB2017/058533 patent/WO2018122803A1/fr not_active Ceased
- 2017-12-30 WO PCT/IB2017/058532 patent/WO2018122802A1/fr not_active Ceased
- 2017-12-30 CN CN201780050765.8A patent/CN109844832B/zh active Active
- 2017-12-30 GB GBGB1909408.5A patent/GB201909408D0/en not_active Ceased
- 2017-12-30 GB GBGB1909409.3A patent/GB201909409D0/en not_active Ceased
- 2017-12-30 GB GB1905907.0A patent/GB2569924B/en not_active Expired - Fee Related
- 2017-12-30 WO PCT/IB2017/058531 patent/WO2018122801A1/fr not_active Ceased
- 2017-12-30 GB GB2100341.3A patent/GB2587588B/en not_active Expired - Fee Related
- 2017-12-30 WO PCT/IB2017/058534 patent/WO2018122804A1/fr not_active Ceased
- 2017-12-30 CN CN201780050754.XA patent/CN109997179A/zh active Pending
- 2017-12-30 GB GB2009833.1A patent/GB2582531B/en not_active Expired - Fee Related
- 2017-12-30 WO PCT/IB2017/058536 patent/WO2018122806A1/fr not_active Ceased
- 2017-12-30 GB GB2009834.9A patent/GB2582532B/en not_active Expired - Fee Related
- 2017-12-30 GB GBGB1909407.7A patent/GB201909407D0/en not_active Ceased
- 2017-12-30 CN CN201780050906.6A patent/CN109716414B/zh active Active
- 2017-12-30 GB GB2100340.5A patent/GB2588556B/en not_active Expired - Fee Related
- 2017-12-30 CN CN201780050755.4A patent/CN109643485B/zh active Active
- 2017-12-30 GB GB1909405.1A patent/GB2572717B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003228788A (ja) * | 2001-11-27 | 2003-08-15 | Fuji Xerox Co Ltd | 移動情報分類装置、移動情報分類方法、及び移動情報分類プログラム |
| CN201927174U (zh) * | 2011-01-13 | 2011-08-10 | 西安邮电学院 | 一种高速公路交通异常事件预警系统 |
| CN201946111U (zh) * | 2011-01-13 | 2011-08-24 | 西安邮电学院 | 高速公路交通异常事件预警系统用数据采集及发布节点 |
| CN104408924A (zh) * | 2014-12-04 | 2015-03-11 | 深圳北航新兴产业技术研究院 | 一种基于耦合隐马尔可夫模型的城市道路异常交通流检测方法 |
| CN104504901A (zh) * | 2014-12-29 | 2015-04-08 | 浙江银江研究院有限公司 | 一种基于多维数据的交通异常点检测方法 |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020078899A1 (fr) * | 2018-10-15 | 2020-04-23 | Starship Technologies Oü | Procédé et système de fonctionnement d'un robot mobile |
| US20210380119A1 (en) * | 2018-10-15 | 2021-12-09 | Starship Technologies Oü | Method and system for operating a mobile robot |
| US12093045B2 (en) | 2018-10-15 | 2024-09-17 | Starship Technologies Oü | Method and system for operating a mobile robot |
| EP3940665A1 (fr) * | 2020-11-18 | 2022-01-19 | Baidu (China) Co., Ltd. | Procédé de détection d'anomalie d'événement de trafic, dispositif, programme et support |
| US11828860B2 (en) | 2021-08-27 | 2023-11-28 | International Business Machines Corporation | Low-sampling rate GPS trajectory learning |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2018122803A1 (fr) | Procédé de détection d'anomalie de trafic routier intelligent | |
| Zhao et al. | Traffic speed prediction under non-recurrent congestion: Based on LSTM method and BeiDou navigation satellite system data | |
| Fang et al. | FTPG: A fine-grained traffic prediction method with graph attention network using big trace data | |
| Jindal et al. | A unified neural network approach for estimating travel time and distance for a taxi trip | |
| Yao et al. | Sampled trajectory data-driven method of cycle-based volume estimation for signalized intersections by hybridizing shockwave theory and probability distribution | |
| Xing et al. | Traffic volume estimation in multimodal urban networks using cell phone location data | |
| Kianfar et al. | Placement of roadside equipment in connected vehicle environment for travel time estimation | |
| Habtie et al. | Artificial neural network based real-time urban road traffic state estimation framework | |
| Elleuch et al. | Towards an efficient traffic congestion prediction method based on neural networks and big GPS data | |
| Montero et al. | Case study on cooperative car data for estimating traffic states in an urban network | |
| Gong et al. | Estimating link travel time with sparse GPS data on highway corridors | |
| Xu et al. | Identifying and tracking network-wide traffic congestion based on mapping-to-cells vehicle trajectory data | |
| CN119068659A (zh) | 一种基于北斗定位的车辆异常行为检测方法 | |
| Nigam et al. | Macroscopic traffic stream variable prediction with weather impact using recurrent learning approach | |
| Zhang et al. | Vehicle trajectory reconstruction from global position system data with long short-term memory neural network | |
| Hosseini et al. | Deep Neural Networks for Identifying Modes of Transport Using GPS Data | |
| Chen et al. | Estimation of Vessel Link-Level Sailing Time Distribution under a Connected Network | |
| Hao et al. | Evaluating environmental impact of traffic congestion in real time based on sparse mobile crowd-sourced data | |
| Zahin et al. | A Comparative Analysis of a Multi-Headed Self-Attention Mechanism-Based Transformer Model for Bus Travel Time Prediction Using Heterogeneous Datasets Across Multiple Bus Routes | |
| Jielun | Analysis of Large Scale Urban Transportation Network Using Urban Traffic Data | |
| Tange et al. | An analysis model of queue length fluctuation at signals using vehicle trajectories | |
| CN120877500A (zh) | 交通区域的路况分析方法、装置和存储介质及电子设备 | |
| CN121011093A (zh) | 基于人工智能的交通拥堵预测管理方法、系统及介质 | |
| Li | Improving Estimation Accuracy of GPS-based Arterial Travel Time using k-Nearest Neighbors Algorithm by Zheng Li | |
| Wang et al. | Dynamic Traffic Flow Estimation Using Intermittent UAV Cruise Data: Addressing Data Discontinuity for Improved Accuracy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17885513 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.08.2019) |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17885513 Country of ref document: EP Kind code of ref document: A1 |