WO2018117791A1 - Method for pre-processing the image of a signature using artificial vision - Google Patents
Method for pre-processing the image of a signature using artificial vision Download PDFInfo
- Publication number
- WO2018117791A1 WO2018117791A1 PCT/MX2016/000177 MX2016000177W WO2018117791A1 WO 2018117791 A1 WO2018117791 A1 WO 2018117791A1 MX 2016000177 W MX2016000177 W MX 2016000177W WO 2018117791 A1 WO2018117791 A1 WO 2018117791A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signature
- image
- black
- white
- limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
Definitions
- the present invention has its preponderant field of application in the field of banking security, more specifically in the process of pre-processing the image of a signature in an official document in preparation for the verification of authenticity.
- the pre-processing stage in a signature verification system can consist of a wide variety of operations that depend, in some cases, on the way in which the information has been captured, that is the signature. These operations include the elimination of noise derived from the scanning process or the medium where the signature was captured, the amplification of the captured signal to make it easier to process, data filtering, image conditioning, signal truncation, normalization , coding of the signature or signed address, detection of the beginning and end of the signature, detection of strokes up or down, segmentation of the signature into components, among others.
- pre-processing activities depend on the type of verification system, for example, in dynamic systems (online verification), where the signature information is captured by electronic devices with sensors, it is possible to identify the direction and speed of the strokes, to detect strokes made downwards, upwards, pressure exerted by the signer, etc. which are captured regularly as signals that can be subject to algorithms of filtering, amplification, conditioning, etc. other than those that can be applied in static processes (offline verification).
- offline verification processes pre-processing usually includes binarization, noise elimination, orientation, reduction or segmentation, normalization, among others.
- segmentation One of the crucial parts of a firm's preprocessing is segmentation.
- segmentation is usually done through the use of algorithms that detect the contour of a signature or the use of vertical or horizontal histograms. For its part, the elimination of noise is usually done by applying a media filter.
- US8320674B2 shows a procedure to recognize a text from an image or a video, accurately locating the position of the text. If the localized text is of low resolution it can be extracted, improved and binarized. Finally, OCR technology can be applied to binarized text for recognition.
- Patent No. US20060262352 describes a mixed media reality system (MMR) and associated techniques.
- MMR mixed media reality system
- the MMR system provides mechanisms to form a mixed media document that includes media of at least two types (printed paper and digital content).
- the MMR system provides a match-processing of images in a document to compare with data in a database.
- US7869634 a signature authentication system of a user electronically introduced into the system by a mouse or other manual input device is provided that provides an output indicative of its location when manipulated by the user.
- the system serves to extract angle and distance data that relate different parts of the user's signature entered into the system and to store corresponding angle and distance data relative to a reference signature previously entered into the system during a training procedure.
- the extracted data is then compared by the system with the reference data stored by the system and, when appropriate, an indicative output of an appropriate match between the entered signature and the reference signature is provided depending on the result of the comparison.
- This system provides a dynamic online biometric verification system that can be customized for multiple Internet-based applications that require secure authentication.
- the system does not require specialized equipment at the point of use, which allows access from any computer capable of the Internet with a mouse and browser compatible with Java, for example.
- Patent No. US20060050962 claims a system, process and software for recognizing manuscript characters, where character data is obtained that includes information indicative of at least one manuscript character.
- the data from Characters include a set of segmentation points for the manuscript character.
- a score for each particular character of a previously stored character set can then be provided, based on a comparison between the character data and the particular character previously stored.
- Patent No. US20060002593 details in its invention an information processing apparatus that detects the sampling rate of a coordinate input device (digitizer) and normalizes the writing data that is entered from the base coordinate input device at the sampling rate detected. Standardized writing data is also used for signature verification or for the recognition of handwritten characters.
- the invention CN 103593673 is based on the online handwritten signature authentication method for dynamic threshold, pertaining to the field of information security, the method of the present invention is used to coordinate the online information model of signature, pressure, Integrated speed and consider several factors to improve the accuracy of a firm.
- the method of the present invention uses a signature segment discrimination policy, and in accordance with the signature and writing habits, two strategy options are presented for the automatic segmentation of the segment method that can improve the signing process.
- the threshold signature method of the present invention is determined in the test procedure to help reflect the bias characteristics of each signature, taking into account the stability characteristics of each person's signature.
- US Pat. No.4710822 describes a method for image processing in which a figure is divided into a plurality of blocks.
- Each block comprises a variety of image elements that are classified into a first group consisting of image elements of densities not less than a reference density and a second group consisting of image elements of densities lower than the reference density.
- a representative density of image elements of the first group and the second group in each block is obtained.
- An image discrimination is made in accordance with representative densities and then a determination of a Threshold value according to representative densities and the result of image discrimination.
- Image discrimination and determination of threshold values are carried out using histograms made from the representative density of image elements of the first group in each block and the representative density of image elements of the second group in each block.
- the image information is then converted into binary signals according to the threshold value.
- a character recognition identifier is developed based on the function and the level of confidence that are determined for an unknown symbol. If the level of trust is within an intermediate range, the feature-based identification is confirmed by matching the unknown character with a reference template corresponding to the feature-based identification. If the confidence level is below the intermediate range, template matching character recognition is replaced instead of feature-based identification. If template match recognition identifies more than one symbol, corresponding templates from a second set of templates that have thicker character strokes are used to resolve ambiguity.
- a binary method used in an OCR system to determine the pixels of a text is presented, checking for each pixel the difference between its value and the values of a plurality of pixels located at a predetermined distance thereof is greater than a relative threshold corresponding to the difference in intensities between the text and the background of the image.
- the image is subsampled at a corresponding rate of at least two pixels to detect text cores and then binarize the image pixels only in multi-sided mosaics of the stroke containing text cores, using in each frame an absolute threshold estimated in said picture.
- the determination of pixels in a text includes, for each pixel analyzed, the verification that any of the differences between the value of the analyzed pixel and the value of the two pixels located at each intersection of a circle with each of the row line , column line and both lines at the angle of 45 degrees, is greater than the relative threshold at which said circle is centered on the position of the analyzed pixel and has a radius equal to the width of the stroke.
- a method of interpreting visual information with alphanumeric characters is presented in WO2011080361 A1.
- the method begins with a digital image, converted to grayscale, segmented so that a black and white image formed by a plurality of particles is obtained; filtering said plurality of particles removes particles that do not contain information associated with a character of the original image; a dilated image is obtained to select segments, trying that each segment corresponds to a character of the original image. Finally, the information of these segments is interpreted by means of a character recognition algorithm.
- the invention US20100303356 provides a method for an Optical Character Recognition (OCR) system that provides recognition of characters that are partially hidden by outputs due to, for example, a stamp print, handwritten signatures, etc.
- OCR Optical Character Recognition
- the method establishes a set of template images recognized from the image of the text that is being processed by the OCR system, in which the effect of the crossed out section is modeled on the template images before comparing these images with the image of a visually impaired crossed out character.
- the modeled template image that has the highest similarity with the crossed out character with visual impairments is the correct identification for the instance of the visually impaired character.
- Figure 1 shows the signature location window
- Figure 2 shows an example of deletion of check template information important features in a signature
- FIG. 3 shows the activities of the pre-processing stage
- Figure 4 shows the resulting image at the end of the preprocessing process
- Figure 1 shows the result of applying the Signature Extraction software to an official document, in this case a check.
- the first element is Signature Window Manager is responsible for identifying a window in the check that corresponds to the area where the signature is expected, as well as making adjustments to that window according to user interaction.
- the Signature Window Cleaner class is responsible for deleting the check template information found in the signature area, so that it can be processed later.
- the user is shown an image of the check with a box that marks the window where the signature is expected, and is asked to confirm that the box encloses the signature in its entirety.
- Figure 2 shows the next step in the process: once the signature area is extracted, the same template area is extracted of the check, to identify the existing elements in the template and eliminate them from the signature area. It identifies the places where it is expected to have lines, or texts, and seeks to eliminate such information. However, it is important to indicate that the removal of all existing information in the template could also remove information from the firm (See figure 2b). To reduce the risk of loss of such information, a simple algorithm has been applied that verifies adjacent pixels in search of information from the firm, so that the result resembles that shown in ( Figure 2 c).
- Figure 3 exemplifies the process of removing lines belonging to the template.
- FIG 3 a the section corresponding to the template is shown, indicating the line to be deleted;
- Figure 3 b) shows the section of the signature from which you want to delete template information, and
- Figure 3 c) shows the result once the template information has been deleted.
- Figure 4 shows the 4 stages of the pre-processing process of the firm: binarization, thinning, orientation and edge removal. Once the edge removal process is applied, the resulting image is like the one shown in Figure 5.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Character Input (AREA)
Abstract
Description
MÉTODO PARA EL PRE-PROCESAM I ENTO DE LA IMAGEN DE UNA FIRMA METHOD FOR PRE-PROCESSAM I AM ON THE IMAGE OF A SIGNATURE
UTILIZANDO VISIÓN ARTIFICIAL. USING ARTIFICIAL VISION.
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención tiene su campo de aplicación preponderante en el ámbito de la seguridad bancaria, más específicamente en el proceso de pre-procesamiento de la imagen de una firma en un documento oficial como preparación para la verificación de la autenticidad. The present invention has its preponderant field of application in the field of banking security, more specifically in the process of pre-processing the image of a signature in an official document in preparation for the verification of authenticity.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La etapa de pre-procesamiento en un sistema de verificación de firma puede consistir en una amplia variedad de operaciones que dependen, en algunos casos, de la forma en que se haya capturado la información, es decir la firma. Estas operaciones incluyen la eliminación de ruido derivado del proceso de digitalización o del medio donde la firma fue plasmada, la amplificación de la señal capturada para hacerla más fácil de procesar, filtrado de los datos, acondicionamiento de la imagen, truncado de la señal, normalización, codificación de la dirección de la firma o el firmado, detección del inicio y final de la firma, detección de trazos hacia arriba o abajo, segmentación de la firma en componentes, entre otros. Algunas de las actividades de pre-procesamiento dependen del tipo de sistema de verificación, por ejemplo, en sistemas dinámicos (verificación en línea), donde la información de la firma se captura mediante dispositivos electrónicos con sensores, es posible identificar la dirección y velocidad de los trazos, para detectar trazos realizados hacia abajo, hacia arriba, presión ejercida por el firmante, etc. que son capturados regularmente como señales que pueden ser sujetas a algoritmos de filtrado, amplificación, acondicionamiento, etc. distintos a aquellos que pueden ser aplicados en procesos estáticos (verificación fuera de línea). En los procesos de verificación fuera de linea, el pre-procesamiento suele incluir la binarización, eliminación de ruido, orientación, reducción o segmentación, normalización, entre otros. Una de las partes cruciales del pre-procesamiento de una firma es la segmentación. En el caso de la verificación fuera de línea, la segmentación se suele realizar mediante el uso mediante algoritmos que detecten el contorno de una firma o el uso de histogramas verticales u horizontales. Por su parte, la eliminación de ruido suele realizarse mediante la aplicación de un filtro demedias. A continuación, se presentan algunas patentes relacionadas con la preparación de una firma para su análisis: The pre-processing stage in a signature verification system can consist of a wide variety of operations that depend, in some cases, on the way in which the information has been captured, that is the signature. These operations include the elimination of noise derived from the scanning process or the medium where the signature was captured, the amplification of the captured signal to make it easier to process, data filtering, image conditioning, signal truncation, normalization , coding of the signature or signed address, detection of the beginning and end of the signature, detection of strokes up or down, segmentation of the signature into components, among others. Some of the pre-processing activities depend on the type of verification system, for example, in dynamic systems (online verification), where the signature information is captured by electronic devices with sensors, it is possible to identify the direction and speed of the strokes, to detect strokes made downwards, upwards, pressure exerted by the signer, etc. which are captured regularly as signals that can be subject to algorithms of filtering, amplification, conditioning, etc. other than those that can be applied in static processes (offline verification). In off-line verification processes, pre-processing usually includes binarization, noise elimination, orientation, reduction or segmentation, normalization, among others. One of the crucial parts of a firm's preprocessing is segmentation. In the case of off-line verification, segmentation is usually done through the use of algorithms that detect the contour of a signature or the use of vertical or horizontal histograms. For its part, the elimination of noise is usually done by applying a media filter. Below are some patents related to the preparation of a signature for analysis:
En la patente US8320674B2 se muestra un procedimiento para reconocer un texto a partir de una imagen o un vídeo, localizando con precisión la posición del texto. Si el texto localizado es de baja resolución se puede extraer, mejorar y binarizar. Finalmente, la tecnología OCR se puede aplicar al texto binarizado para su reconocimiento. US8320674B2 shows a procedure to recognize a text from an image or a video, accurately locating the position of the text. If the localized text is of low resolution it can be extracted, improved and binarized. Finally, OCR technology can be applied to binarized text for recognition.
En la patente No. US20060262352 Se describe un sistema de realidad de medios mixtos (MMR) y técnicas asociadas. El sistema MMR proporciona mecanismos para formar un documento de medios mixtos que incluye medios de al menos dos tipos (papel impreso y contenido digital). El sistema MMR proporciona un procesamiento de coincidencia (Matching) de imágenes de un documento para comparar con datos de una base de datos. Patent No. US20060262352 describes a mixed media reality system (MMR) and associated techniques. The MMR system provides mechanisms to form a mixed media document that includes media of at least two types (printed paper and digital content). The MMR system provides a match-processing of images in a document to compare with data in a database.
En la invención US7869634 se proporciona un sistema de autenticación de la firma de un usuario introducida electrónicamente en el sistema por un ratón u otro dispositivo manual de entrada que proporciona una salida indicativa de su ubicación cuando es manipulada por el usuario. El sistema sirve para extraer datos de ángulo y distancia que relacionan diferentes partes de la firma del usuario introducidas en el sistema y para almacenar datos de ángulo y distancia correspondientes relativos a una firma de referencia introducida previamente en el sistema durante un procedimiento de entrenamiento. Los datos extraídos son luego comparados por el sistema con los datos de referencia almacenados por el sistema y, cuando es apropiado, se proporciona una salida indicativa de una coincidencia apropiada entre la firma introducida y la firma de referencia dependiendo del resultado de la comparación. Dicho sistema proporciona un sistema dinámico de verificación biométrica en línea que se puede personalizar para múltiples aplicaciones basadas en Internet que requieren autenticación segura. El sistema no requiere equipo especializado en el punto de uso, lo que permite el acceso desde cualquier computadora capaz de Internet con un ratón y navegador compatible con Java, por ejemplo. In the invention US7869634 a signature authentication system of a user electronically introduced into the system by a mouse or other manual input device is provided that provides an output indicative of its location when manipulated by the user. The system serves to extract angle and distance data that relate different parts of the user's signature entered into the system and to store corresponding angle and distance data relative to a reference signature previously entered into the system during a training procedure. The extracted data is then compared by the system with the reference data stored by the system and, when appropriate, an indicative output of an appropriate match between the entered signature and the reference signature is provided depending on the result of the comparison. This system provides a dynamic online biometric verification system that can be customized for multiple Internet-based applications that require secure authentication. The system does not require specialized equipment at the point of use, which allows access from any computer capable of the Internet with a mouse and browser compatible with Java, for example.
La patente No. US20060050962 reclama un sistema, proceso y software para reconocer caracteres manuscritos, en donde se obtienen datos de caracteres que incluyen información indicativa de al menos un carácter manuscrito. Los datos de caracteres incluyen un conjunto de puntos de segmentación para el carácter manuscrito. A continuación, se puede proporcionar una puntuación para cada carácter particular de un conjunto de caracteres almacenados previamente, basándose en una comparación entre los datos del carácter y el carácter particular previamente almacenado. Patent No. US20060050962 claims a system, process and software for recognizing manuscript characters, where character data is obtained that includes information indicative of at least one manuscript character. The data from Characters include a set of segmentation points for the manuscript character. A score for each particular character of a previously stored character set can then be provided, based on a comparison between the character data and the particular character previously stored.
La patente No. US20060002593, detalla en su invención un aparato de procesamiento de información que detecta la velocidad de muestreo de un dispositivo de entrada (digitalizador) de coordenadas y normaliza los datos de escritura que se introducen desde el dispositivo de entrada de coordenadas en base a la velocidad de muestreo detectada. Los datos estandarizados de escritura se utilizan además para la verificación de firma o para el reconocimiento de caracteres manuscritos. Patent No. US20060002593, details in its invention an information processing apparatus that detects the sampling rate of a coordinate input device (digitizer) and normalizes the writing data that is entered from the base coordinate input device at the sampling rate detected. Standardized writing data is also used for signature verification or for the recognition of handwritten characters.
La invención CN 103593673 se basa en el método de autenticación de firma manuscrita en línea para umbral dinámico, perteneciente al campo de seguridad de información, el método de la presente invención se utiliza para para coordinar el modelo de información en línea de firma, presión, velocidad integrada y considerar varios factores para mejorar la exactitud de una firma. El método de la presente invención utiliza una política de discriminación de segmentos de firma, y de acuerdo con la firma y hábitos de escritura, se presentan dos opciones de estrategias para la segmentación automática del método de segmento que puede mejorar el proceso de firma. El método de firma de umbral de la presente invención se determina en el procedimiento de prueba para ayuda a reflejar las características de sesgo de cada firma, teniendo en cuenta las características de estabilidad de la firma de cada persona. The invention CN 103593673 is based on the online handwritten signature authentication method for dynamic threshold, pertaining to the field of information security, the method of the present invention is used to coordinate the online information model of signature, pressure, Integrated speed and consider several factors to improve the accuracy of a firm. The method of the present invention uses a signature segment discrimination policy, and in accordance with the signature and writing habits, two strategy options are presented for the automatic segmentation of the segment method that can improve the signing process. The threshold signature method of the present invention is determined in the test procedure to help reflect the bias characteristics of each signature, taking into account the stability characteristics of each person's signature.
En la invención U.S. Pat. No.4710822 se describe un método para el procesamiento de imágenes en el que una figura se divide en una pluralidad de bloques. Cada bloque comprende una diversidad de elementos de la imagen que se clasifican en un primer grupo consistente en elementos de imagen de densidades no inferiores a una densidad de referencia y un segundo grupo consistente en elementos de imagen de densidades inferiores a la densidad de referencia. Se obtiene una densidad representativa de elementos de imagen del primer grupo y del segundo grupo en cada bloque. Una discriminación de imagen se efectúa de acuerdo con las densidades representativas y, a continuación, se efectúa una determinación de un valor umbral de acuerdo con las densidades representativas y el resultado de la discriminación de imagen. La discriminación de imagen y la determinación de valores de umbral se llevan a cabo usando histogramas hechos a partir de la densidad representativa de elementos de imagen del primer grupo en cada bloque y la densidad representativa de elementos de imagen del segundo grupo en cada bloque. La información de la imagen se convierte entonces en señales binarias de acuerdo con el valor de umbral. In the invention US Pat. No.4710822 describes a method for image processing in which a figure is divided into a plurality of blocks. Each block comprises a variety of image elements that are classified into a first group consisting of image elements of densities not less than a reference density and a second group consisting of image elements of densities lower than the reference density. A representative density of image elements of the first group and the second group in each block is obtained. An image discrimination is made in accordance with representative densities and then a determination of a Threshold value according to representative densities and the result of image discrimination. Image discrimination and determination of threshold values are carried out using histograms made from the representative density of image elements of the first group in each block and the representative density of image elements of the second group in each block. The image information is then converted into binary signals according to the threshold value.
En la patente US 5077805A se desarrolla un identificador de reconocimiento de caracteres basado en la función y el nivel de confianza que se determinan para un símbolo desconocido. Si el nivel de confianza está dentro de un rango intermedio, la identificación basada en características se confirma haciendo coincidir el carácter desconocido con una plantilla de referencia correspondiente a la identificación basada en características. Si el nivel de confianza está por debajo del rango intermedio, el reconocimiento de caracteres de coincidencia de plantillas se sustituye en lugar de la identificación basada en características. Si el reconocimiento de coincidencia de plantilla identifica más de un símbolo, se emplean plantillas correspondientes de un segundo conjunto de plantillas que tienen trazos de caracteres más gruesos para resolver la ambigüedad. In US patent 5077805A a character recognition identifier is developed based on the function and the level of confidence that are determined for an unknown symbol. If the level of trust is within an intermediate range, the feature-based identification is confirmed by matching the unknown character with a reference template corresponding to the feature-based identification. If the confidence level is below the intermediate range, template matching character recognition is replaced instead of feature-based identification. If template match recognition identifies more than one symbol, corresponding templates from a second set of templates that have thicker character strokes are used to resolve ambiguity.
En la patente US4594732A se describe un método y un aparato para determinar el paso de un carácter de un grupo alineado de imágenes sobre la superficie de un papel, donde el grupo contiene varios caracteres que se tocan o se fusionan entre sí. Los bloques de letras separables se extraen del grupo alineado de caracteres y el tamaño y ubicación de cada uno se detecta y almacena. Basándose en esta información, se determina un intervalo permisible para una anchura de bloque de una letra y se determina la anchura de bloques de letras que ocurre con mayor frecuencia en ese intervalo permisible. Basándose en la anchura del bloque de letras que ocurre con mayor frecuencia. Se determina un intervalo efectivo para determinar el paso de la letra y se emplea un método numérico para estimar ei tono de la letra. In US4594732A a method and an apparatus for determining the passage of a character of an aligned group of images on the surface of a paper are described, where the group contains several characters that touch or merge with each other. Separable letter blocks are extracted from the aligned group of characters and the size and location of each is detected and stored. Based on this information, an allowable range for a block width of one letter is determined and the width of letter blocks that occurs most frequently in that allowable range is determined. Based on the width of the block of letters that occurs most frequently. An effective interval is determined to determine the pitch of the letter and a numerical method is used to estimate the tone of the letter.
En la patente US5859929A se menciona un sistema y un método eficaces para la identificación de manera fiable directrices, líneas gobernadas y similares, en imágenes de texto, para distinguir aquellas porciones de líneas que tocan o Intersecan trazos de carácter en la imagen. El sistema facilita la eliminación de segmentos de guia entre trazos de carácter sin borrar trazos del carácter. El sistema funciona eficazmente tanto en el texto impreso en máquina como en el texto hecho a mano. Una imagen de texto tiene la mayoría de los caracteres separados para un procesamiento OCR posterior más eficaz. In US5859929A an effective system and method is mentioned for reliably identifying guidelines, governed lines and the like, in text images, to distinguish those portions of lines that touch or intersect character strokes in the image. The system facilitates the elimination of guide segments between character strokes without deleting character strokes. The system works effectively on both machine printed text and handmade text. A text image has the most separate characters for more efficient subsequent OCR processing.
En la patente US6438265B1, se presenta un método binario utilizado en un sistema OCR para determinar los píxeles de un texto, comprobando para cada píxel la diferencia entre su valor y los valores de una pluralidad de píxeles situados a una distancia predeterminada de la misma sea mayor que un umbral relativo correspondiente a la diferencia de intensidades entre el texto y el fondo de la imagen. Se submuestrea la imagen a una velocidad correspondiente al menos de dos píxeles para detectar núcleos de texto y después binarizar los píxeles de imagen solamente en mosaicos de varios lados de ancho del trazo que contengan núcleos de texto, utilizando en cada cuadro un umbral absoluto estimado en dicho cuadro. La determinación de pixeles en un texto incluye, para cada pixel analizado, la comprobación de que cualquiera de las diferencias entre el valor del píxel analizado y el valor de los dos píxeles situados en cada intersección de un círculo con cada uno de la línea de fila, línea de columna y ambas lineas en el ángulo de 45 grados, es mayor que el umbral relativo en el que dicho círculo está centrado en la posición del píxel analizado y tiene un radio igual al ancho del trazo. In US6438265B1, a binary method used in an OCR system to determine the pixels of a text is presented, checking for each pixel the difference between its value and the values of a plurality of pixels located at a predetermined distance thereof is greater than a relative threshold corresponding to the difference in intensities between the text and the background of the image. The image is subsampled at a corresponding rate of at least two pixels to detect text cores and then binarize the image pixels only in multi-sided mosaics of the stroke containing text cores, using in each frame an absolute threshold estimated in said picture. The determination of pixels in a text includes, for each pixel analyzed, the verification that any of the differences between the value of the analyzed pixel and the value of the two pixels located at each intersection of a circle with each of the row line , column line and both lines at the angle of 45 degrees, is greater than the relative threshold at which said circle is centered on the position of the analyzed pixel and has a radius equal to the width of the stroke.
En la patente WO2011080361 A1 se presenta un método de interpretación de información visual con caracteres alfanuméricos. El método inicia con una imagen digital, convertida a escala de grises se segmenta de forma que se obtiene una imagen en blanco y negro formada por una pluralidad de partículas; al filtrar dicha pluralidad de partículas se eliminan partículas que no contienen información asociada a un carácter de la imagen original; se obtiene una imagen dilatada para seleccionar segmentos, tratando de que cada segmento corresponda a un carácter de la imagen original. Finalmente se interpreta la información de dichos segmentos mediante un algoritmo de reconocimiento de caracteres. A method of interpreting visual information with alphanumeric characters is presented in WO2011080361 A1. The method begins with a digital image, converted to grayscale, segmented so that a black and white image formed by a plurality of particles is obtained; filtering said plurality of particles removes particles that do not contain information associated with a character of the original image; a dilated image is obtained to select segments, trying that each segment corresponds to a character of the original image. Finally, the information of these segments is interpreted by means of a character recognition algorithm.
La invención US20100303356 proporciona un método para un sistema de Reconocimiento Óptico de Caracteres (OCR) que proporciona reconocimiento de caracteres que están parcialmente ocultos por salidas debido a, por ejemplo, una impresión de un sello, firmas manuscritas, etc. El método establece un conjunto de imágenes de plantilla reconocidos a partir de la imagen del texto que está siendo procesado por el sistema OCR, en el que el efecto de la sección tachada es modelado en las imágenes de plantilla antes de comparar estas imágenes con la imagen de un personaje tachado visualmente deteriorado. La imagen de plantilla modelada que tiene la similitud más alta con el personaje tachado con impedimentos visuales es la identificación correcta para la instancia de personaje con discapacidad visual. The invention US20100303356 provides a method for an Optical Character Recognition (OCR) system that provides recognition of characters that are partially hidden by outputs due to, for example, a stamp print, handwritten signatures, etc. The method establishes a set of template images recognized from the image of the text that is being processed by the OCR system, in which the effect of the crossed out section is modeled on the template images before comparing these images with the image of a visually impaired crossed out character. The modeled template image that has the highest similarity with the crossed out character with visual impairments is the correct identification for the instance of the visually impaired character.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente invención, se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención. The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned by way of example, and therefore should not be considered as a limitation for said invention.
Breve descripción de las figuras: Brief description of the figures:
La figura 1 muestra la ventana de localización de firma; Figure 1 shows the signature location window;
La figura 2 muestra un ejemplo de eliminación de información de la plantilla del cheque características importantes en una firma; Figure 2 shows an example of deletion of check template information important features in a signature;
La figura 3 muestra las actividades de la etapa de pre-procesamiento; Figure 3 shows the activities of the pre-processing stage;
La figura 4 muestra la imagen resultante al final del proceso de pre- procesamiento; Figure 4 shows the resulting image at the end of the preprocessing process;
La figura 1 muestra el resultado de aplicar el software Signature Extraction a un documento oficial, en este caso un cheque. El primer elemento es Signature Window Manager se encarga de identificar una ventana en el cheque que corresponde con el área donde se espera que se encuentre la firma, así como de realizar los ajustes a dicha ventana de acuerdo a la interacción del usuario. Una vez confirmada la ventana, la clase Signature Window Cleaner se encarga de eliminar la información de la plantilla del cheque que se encuentra en el área de la firma, para que esta pueda ser procesada posteriormente. Al identificar la plantilla, se le muestra al usuario una imagen del cheque con un recuadro que marca la ventana donde se espera se encuentre la firma, y se le solicita que confirme que dicho recuadro encierra la firma en su totalidad. En la figura 2 se muestra el siguiente paso del proceso: una vez extraída el área de la firma se extrae la misma área de la plantilla del cheque, para identificar los elementos existentes en la plantilla y eliminarlos del área de la firma. Se identifica los lugares donde se espera tener líneas, o textos, y se busca eliminar dicha información. No obstante, es importante indicar que la eliminación de toda la información existente en la plantilla podría eliminar también información de la firma (Ver figura 2 b). Para reducir el riesgo de pérdida de dicha información, se ha aplicado un algoritmo sencillo que verifica pixeles adyacentes en búsqueda de información de la firma, con el fin de que el resultado se asemeje al mostrado en la (figura 2 c). La figura 3 ejemplifica el proceso de eliminación de líneas pertenecientes a la plantilla. En la figura 3 a), se muestra la sección correspondiente a la plantilla, y que indica la línea que se quiere eliminar; la figura 3 b) muestra la sección de la firma de la que se quiere eliminar información de la plantilla, y la figura 3 c) muestra el resultado una vez eliminada la información de la plantilla. En la figura 4 se muestran las 4 etapas del proceso de pre-procesamiento de la firma: binarización, adelgazamiento, orientación y eliminación de bordes. Una vez aplicado el proceso de eliminación de bordes, la imagen resultante es como la mostrada en la figura 5. Figure 1 shows the result of applying the Signature Extraction software to an official document, in this case a check. The first element is Signature Window Manager is responsible for identifying a window in the check that corresponds to the area where the signature is expected, as well as making adjustments to that window according to user interaction. Once the window has been confirmed, the Signature Window Cleaner class is responsible for deleting the check template information found in the signature area, so that it can be processed later. When identifying the template, the user is shown an image of the check with a box that marks the window where the signature is expected, and is asked to confirm that the box encloses the signature in its entirety. Figure 2 shows the next step in the process: once the signature area is extracted, the same template area is extracted of the check, to identify the existing elements in the template and eliminate them from the signature area. It identifies the places where it is expected to have lines, or texts, and seeks to eliminate such information. However, it is important to indicate that the removal of all existing information in the template could also remove information from the firm (See figure 2b). To reduce the risk of loss of such information, a simple algorithm has been applied that verifies adjacent pixels in search of information from the firm, so that the result resembles that shown in (Figure 2 c). Figure 3 exemplifies the process of removing lines belonging to the template. In figure 3 a), the section corresponding to the template is shown, indicating the line to be deleted; Figure 3 b) shows the section of the signature from which you want to delete template information, and Figure 3 c) shows the result once the template information has been deleted. Figure 4 shows the 4 stages of the pre-processing process of the firm: binarization, thinning, orientation and edge removal. Once the edge removal process is applied, the resulting image is like the one shown in Figure 5.
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/MX2016/000177 WO2018117791A1 (en) | 2016-12-20 | 2016-12-20 | Method for pre-processing the image of a signature using artificial vision |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/MX2016/000177 WO2018117791A1 (en) | 2016-12-20 | 2016-12-20 | Method for pre-processing the image of a signature using artificial vision |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018117791A1 true WO2018117791A1 (en) | 2018-06-28 |
Family
ID=62627004
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/MX2016/000177 Ceased WO2018117791A1 (en) | 2016-12-20 | 2016-12-20 | Method for pre-processing the image of a signature using artificial vision |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018117791A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2144746T3 (en) * | 1995-06-05 | 2000-06-16 | United Parcel Service Inc | METHOD AND APPARATUS FOR THE COLLECTION OF SIGNATURES WITHOUT CONTACT. |
| ES2306970T3 (en) * | 2003-02-19 | 2008-11-16 | Solystic | PROCEDURE FOR THE OPTICAL RECOGNITION OF POSTAL SHIPPING THAT USES VARIOUS BINARIZATIONS. |
-
2016
- 2016-12-20 WO PCT/MX2016/000177 patent/WO2018117791A1/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2144746T3 (en) * | 1995-06-05 | 2000-06-16 | United Parcel Service Inc | METHOD AND APPARATUS FOR THE COLLECTION OF SIGNATURES WITHOUT CONTACT. |
| ES2306970T3 (en) * | 2003-02-19 | 2008-11-16 | Solystic | PROCEDURE FOR THE OPTICAL RECOGNITION OF POSTAL SHIPPING THAT USES VARIOUS BINARIZATIONS. |
Non-Patent Citations (1)
| Title |
|---|
| RUBEN DARIO ACOSTA VELASQUEZ, VERIFICACION OF FIRMAS MANUSCRITAS, 31 December 2013 (2013-12-31), pages 8 a 25 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8059868B2 (en) | License plate recognition apparatus, license plate recognition method, and computer-readable storage medium | |
| US9171204B2 (en) | Method of perspective correction for devanagari text | |
| US11055589B2 (en) | Method for authenticating an illustration | |
| CN105528572B (en) | Fingerprint identification method | |
| CN101957919B (en) | Character recognition method based on image local feature retrieval | |
| KR101632912B1 (en) | Method for User Authentication using Fingerprint Recognition | |
| KR101626837B1 (en) | Method and apparatus for convergence biometric authentication based on finger joint and finger vein | |
| JP2014153820A (en) | Character segmentation device and character segmentation method | |
| Nag et al. | New cold feature based handwriting analysis for enthnicity/nationality identification | |
| JP7076772B2 (en) | Authentication system and authentication method | |
| CN107977600B (en) | Signature authentication method based on side palm characteristics | |
| WO2023028947A1 (en) | Palm vein non-contact three-dimensional modeling method and apparatus, and authentication method | |
| WO2018117791A1 (en) | Method for pre-processing the image of a signature using artificial vision | |
| EP3223189A1 (en) | Method and apparatus for determining a similarity measure between drawings | |
| Gunjal et al. | Offline signature verification using feature point extraction | |
| Rajithkumar et al. | Template matching method for recognition of stone inscripted Kannada characters of different time frames based on correlation analysis | |
| Mahmood | Arabic & Urdu text segmentation challenges & techniques | |
| WO2018111080A1 (en) | Recognising signatures on cheques in order to verify authenticity | |
| KR100564762B1 (en) | User authentication method using fingerprint information and its device | |
| JP3223878B2 (en) | Character string collating device, method and recording medium | |
| KR100714025B1 (en) | Fingerprint recognition method and device | |
| JPH10187886A (en) | Character recognition device and character recognition method | |
| Narayana et al. | Offline signature verification | |
| Wattanacheep et al. | Plane alignment algorithm for torn document reconstruction | |
| Golash et al. | Optimal and user friendly technique for enhancing security by robust password creation using biometric characteristic |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16924731 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16924731 Country of ref document: EP Kind code of ref document: A1 |