WO2018111062A1 - Method for the characterisation of a working environment in the driving of vehicles by measuring vibration that contributes to fatigue - Google Patents
Method for the characterisation of a working environment in the driving of vehicles by measuring vibration that contributes to fatigue Download PDFInfo
- Publication number
- WO2018111062A1 WO2018111062A1 PCT/MX2016/000139 MX2016000139W WO2018111062A1 WO 2018111062 A1 WO2018111062 A1 WO 2018111062A1 MX 2016000139 W MX2016000139 W MX 2016000139W WO 2018111062 A1 WO2018111062 A1 WO 2018111062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- driving
- driver
- vehicle
- fatigue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Definitions
- the present invention is developed in the field of workload estimation, particularly referring to a method for assessing the marginal effect of the vibratory conditions of the vehicle transmitted to the driver.
- the detection and monitoring of the fatigue status of a vehicle operator are key to increasing their driving safety.
- There are two main characteristics that are used to detect fatigue in drivers these are: visible characteristics, such as the driving posture, the state of the eyes, the opening of the mouth, the position of the head; and non-visible characteristics, such as heart rate, heart waves, brain waves and the like.
- visible characteristics such as the driving posture, the state of the eyes, the opening of the mouth, the position of the head
- non-visible characteristics such as heart rate, heart waves, brain waves and the like.
- other parameters external to the driver include the measurement of driving performance, type of work environment, hours of work, noise, vibration, among others.
- the following brief compilation of patents related to fatigue detection systems found in different databases is shown.
- the US6998972 patent calculates the workload by means of vehicle, environment and driver's task data. Others, such as CN205405809 and CN1817299, measure the heart rate using a bracelet and watch, respectively.
- the invention CN 103273882 works with the driving behavior, the CN 103489010 with the detection of the road environment and US20050030184A1 with the behavior of the vehicle, in order to detect any symptoms of fatigue.
- the CN104318714 patent provides a pre-alert method for the state of deduced driving fatigue according to the monitoring of facial features, eye signals and information on the movement of the driver's head.
- alarm CN patent 104318714 provides a pre-alert method for deduced driving fatigue status in accordance with the monitoring of facial features, eye signals and information on the movement of the driver's head.
- alarming the driver also remember to rest after 2 hours of driving or according to a schedule of optimal driving hours.
- CN patent 102717765 mentions an auxiliary system in the detection of fatigue, wherein said system is composed of a camera to detect type of road and number of times the driver leaves the lane, GPS, season of the year , driving duration, obtaining speed and acceleration control of the vehicle.
- Figure 1 is a schematic diagram of the system stages. The different variables used to characterize the workload of the driver of a vehicle in different scenarios are shown.
- Figure 2 is an illustration that specifies where the accelerometers are placed in the seat.
- Figure 3 is a flow chart of vibration data processing by the processing unit of the patented system.
- the method starts from the driving scenario [Block 1] where the vehicle is developed.
- the accelerometers obtain mechanical vibration data present in the back and seat of the person, measured in the different orthogonal axes X, Y, Z [Block 2].
- the scalar magnitude resulting from the acceleration in the aforementioned axes is obtained [Block 3].
- the type of wave present in the mechanical movement is determined through the analysis of the accelerometer measurements in the power spectrum [Block 4].
- a noise sensor inside the cabin and a light sensor outside it obtain relevant information from the stage environment where the driving of the vehicle takes place [Block 5].
- the information concerning the mechanical vibration is then combined with the environmental levels to, by means of a variable weighting method [Block 6], determine the workload at a specific driving time [Block 7].
- Figure 2 indicates the positioning of the accelerometers in the driver's backrest [8] and in the driver's seat [9]. Both are connected with a wire to the processing unit of the patented system [10].
- Figure 3 shows the flow chart with mathematical operations for the values thrown by the accelerometers in the 3 orthogonal axes (X, Y, Z).
- a resulting acceleration is obtained for each axis (aw), by adding the products of the weighting of each detected frequency (wi) by its corresponding acceleration measured (ai) [Block 11].
- the magnitude of the resulting vector in each accelerometer (ap) is obtained, by the square root of the product of each resulting acceleration, obtained previously for each orthogonal axis (awx, awy, awz), with its corresponding condition weighting (kx, ky, kz) [Block 12].
- the resulting Total Acceleration Magnitude (aR) is obtained by the magnitude of the resulting vector of each accelerometer (api and ap2) [Block 13].
Landscapes
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
MÉTODO PARA CARACTERIZACIÓN DE AMBIENTE DE TRABAJO EN CONDUCCIÓN DE VEHÍCULOS MEDIANTE MEDICIÓN DE VIBRACIÓN PROPICIADORA DE FATIGA METHOD FOR CHARACTERIZATION OF WORK ENVIRONMENT IN VEHICLE DRIVING BY MEASURING FATIGUE VIBRATION MEASUREMENT
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención se desarrolla en el campo de estimación de carga de trabajo, refiriéndose particularmente a un método para evaluar el efecto marginal de las condiciones vibratorias del vehículo transmitidas al conductor. ANTECEDENTES DE LA INVENCIÓN The present invention is developed in the field of workload estimation, particularly referring to a method for assessing the marginal effect of the vibratory conditions of the vehicle transmitted to the driver. BACKGROUND OF THE INVENTION
La detección y seguimiento del estado de fatiga de un operador de vehículos son clave para incrementar la seguridad en la conducción de los mismos. Existen dos principales características que se utilizan para detectar fatiga en los conductores, estas son: características visibles, como la postura de conducción, el estado de los ojos, la apertura de la boca, la posición de la cabeza; y características no visibles, tales como frecuencia cardíaca, ondas cardíacas, ondas cerebrales y similares. Adicionalmente se han considerado otros parámetros externos al conductor que influyen en la detección y hasta la predicción de fatiga en la persona, comprenden la medición del desempeño de conducción, tipo de ambiente de trabajo, horas de trabajo, ruidos, vibraciones, entre otras. Se muestra la siguiente breve recopilación de patentes relacionadas con sistemas de detección de fatiga encontradas en distintas bases de datos. The detection and monitoring of the fatigue status of a vehicle operator are key to increasing their driving safety. There are two main characteristics that are used to detect fatigue in drivers, these are: visible characteristics, such as the driving posture, the state of the eyes, the opening of the mouth, the position of the head; and non-visible characteristics, such as heart rate, heart waves, brain waves and the like. Additionally, other parameters external to the driver have been considered that influence the detection and even the prediction of fatigue in the person, include the measurement of driving performance, type of work environment, hours of work, noise, vibration, among others. The following brief compilation of patents related to fatigue detection systems found in different databases is shown.
La patente US6998972 calcula la carga de trabajo mediante datos del vehículo, ambiente y de la tarea del conductor. Otras, como la CN205405809 y la CN1817299, miden el ritmo cardiaco mediante una pulsera y reloj, respectivamente. La invención CN 103273882 trabaja con el comportamiento de conducción, la CN 103489010 con la detección del ambiente de carretera y US20050030184A1 con el comportamiento del vehículo, con el fin de detectar algún síntoma de fatiga. The US6998972 patent calculates the workload by means of vehicle, environment and driver's task data. Others, such as CN205405809 and CN1817299, measure the heart rate using a bracelet and watch, respectively. The invention CN 103273882 works with the driving behavior, the CN 103489010 with the detection of the road environment and US20050030184A1 with the behavior of the vehicle, in order to detect any symptoms of fatigue.
La patente CN104318714 proporciona un método de pre-alerta para estado de fatiga de conducción deducido de acuerdo con el monitoreo de los rasgos faciales, señales oculares e información del movimiento de la cabeza del conductor. Además de alarmar La patente CN 104318714 proporciona un método de pre-alerta para estado de fatiga de conducción deducido de acuerdo con el monitoreo de los rasgos faciales, señales oculares e información del movimiento de la cabeza del conductor. Además de alarmar al conductor, también recuerda descansar después de 2 horas de manejo o según una programación de las horas óptimas de conducción. Por otro lado, la patente CN 102717765 menciona un sistema auxiliar en la detección de fatiga, en donde dicho sistema está compuesto de una cámara para detectar tipo de camino y número de veces en que el conductor se sale del carril, GPS, temporada del año, duración de la conducción, obtención de velocidad y control de aceleraciones del vehículo. The CN104318714 patent provides a pre-alert method for the state of deduced driving fatigue according to the monitoring of facial features, eye signals and information on the movement of the driver's head. In addition to alarm CN patent 104318714 provides a pre-alert method for deduced driving fatigue status in accordance with the monitoring of facial features, eye signals and information on the movement of the driver's head. In addition to alarming the driver, also remember to rest after 2 hours of driving or according to a schedule of optimal driving hours. On the other hand, CN patent 102717765 mentions an auxiliary system in the detection of fatigue, wherein said system is composed of a camera to detect type of road and number of times the driver leaves the lane, GPS, season of the year , driving duration, obtaining speed and acceleration control of the vehicle.
DESCRIPCION DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente invención se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo por lo que no deben considerarse como una limitante para dicha invención. The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned by way of example and should therefore not be considered as a limitation for said invention.
Breve descripción de las figuras: La figura 1 es un diagrama esquemático de las etapas del sistema. Se muestran las distintas variables utilizadas para caracterizar la carga de trabajo del conductor de un vehículo en distintos escenarios. Brief description of the figures: Figure 1 is a schematic diagram of the system stages. The different variables used to characterize the workload of the driver of a vehicle in different scenarios are shown.
La figura 2 es una ilustración que especifica dónde están colocados los acelerómetros en el asiento. Figure 2 is an illustration that specifies where the accelerometers are placed in the seat.
La figura 3 es un diagrama de flujo de procesamiento de datos de vibración por parte de la unidad de procesamiento del sistema patentado. Figure 3 is a flow chart of vibration data processing by the processing unit of the patented system.
Como se indica en la Figura 1, el método parte del escenario de conducción [Bloque 1] donde se desarrolla el vehículo. Para determinar la afección vibratoria en el cuerpo del conductor, los acelerómetros obtienen datos de vibración mecánica presente en el respaldo y asiento de la persona, medidos en los distintos ejes ortogonales X, Y, Z [Bloque 2]. Mediante el método especificado en la Figura 3, se obtiene la magnitud escalar resultante de la aceleración en los ejes anteriormente mencionados [Bloque 3]. Seguidamente se determina el tipo de onda presente en el movimiento mecánico a través del análisis de las mediciones de los acelerómetros en el espectro de potencia [Bloque 4]. Paralelo a esto, un sensor de ruido en el interior de la cabina y un sensor de luz al exterior de la misma obtienen información relevante del ambiente del escenario donde se desarrolla la conducción del vehículo [Bloque 5]. Se combina entonces la información referente a la vibración mecánica (magnitud escalar de aceleración resultante y tipo de onda) con los niveles ambientales para, mediante un método de ponderación de variables [Bloque 6], determinar la carga de trabajo en un tiempo específico de conducción [Bloque 7]. As indicated in Figure 1, the method starts from the driving scenario [Block 1] where the vehicle is developed. To determine the vibrational condition in the driver's body, the accelerometers obtain mechanical vibration data present in the back and seat of the person, measured in the different orthogonal axes X, Y, Z [Block 2]. Using the method specified in Figure 3, the scalar magnitude resulting from the acceleration in the aforementioned axes is obtained [Block 3]. Next, the type of wave present in the mechanical movement is determined through the analysis of the accelerometer measurements in the power spectrum [Block 4]. Parallel to this, a noise sensor inside the cabin and a light sensor outside it obtain relevant information from the stage environment where the driving of the vehicle takes place [Block 5]. The information concerning the mechanical vibration (scalar magnitude of the resulting acceleration and wave type) is then combined with the environmental levels to, by means of a variable weighting method [Block 6], determine the workload at a specific driving time [Block 7].
En la Figura 2 se indica el posicionamiento de los acelerómetros en el respaldo del conductor [8] y en el asiento del mismo [9]. Ambos están conectados con un alambre a la unidad de procesamiento del sistema patentado [10]. Figure 2 indicates the positioning of the accelerometers in the driver's backrest [8] and in the driver's seat [9]. Both are connected with a wire to the processing unit of the patented system [10].
La Figura 3 muestra el diagrama de flujo con operaciones matemáticas para los valores arrojados por los acelerómetros en los 3 ejes ortogonales (X, Y, Z). Primero se obtiene una aceleración resultante para cada eje (aw), mediante la sumatoria de los productos de la ponderación de cada frecuencia detectada (wi) por su aceleración correspondiente medida (ai) [Bloque 11]. Seguidamente, se obtiene la magnitud del vector resultante en cada acelerómetro (ap), mediante la raíz cuadrada del producto de cada aceleración resultante, obtenida anteriormente para cada eje ortogonal (awx, awy, awz), con su correspondiente ponderación de afección (kx, ky, kz) [Bloque 12]. Para finalizar, se obtiene la Magnitud de Aceleración Total Resultante (aR) mediante la magnitud del vector resultante de cada aceletrómetro (api y ap2) [Bloque 13]. Figure 3 shows the flow chart with mathematical operations for the values thrown by the accelerometers in the 3 orthogonal axes (X, Y, Z). First, a resulting acceleration is obtained for each axis (aw), by adding the products of the weighting of each detected frequency (wi) by its corresponding acceleration measured (ai) [Block 11]. Next, the magnitude of the resulting vector in each accelerometer (ap) is obtained, by the square root of the product of each resulting acceleration, obtained previously for each orthogonal axis (awx, awy, awz), with its corresponding condition weighting (kx, ky, kz) [Block 12]. Finally, the resulting Total Acceleration Magnitude (aR) is obtained by the magnitude of the resulting vector of each accelerometer (api and ap2) [Block 13].
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/MX2016/000139 WO2018111062A1 (en) | 2016-12-15 | 2016-12-15 | Method for the characterisation of a working environment in the driving of vehicles by measuring vibration that contributes to fatigue |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/MX2016/000139 WO2018111062A1 (en) | 2016-12-15 | 2016-12-15 | Method for the characterisation of a working environment in the driving of vehicles by measuring vibration that contributes to fatigue |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018111062A1 true WO2018111062A1 (en) | 2018-06-21 |
Family
ID=62559515
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/MX2016/000139 Ceased WO2018111062A1 (en) | 2016-12-15 | 2016-12-15 | Method for the characterisation of a working environment in the driving of vehicles by measuring vibration that contributes to fatigue |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018111062A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002033529A2 (en) * | 2000-10-14 | 2002-04-25 | Motorola, Inc. | System and method for driver performance improvement |
| EP1416349A1 (en) * | 2002-10-31 | 2004-05-06 | General Motors Corporation | Driving workload estimation |
| WO2007018991A2 (en) * | 2005-08-02 | 2007-02-15 | Gm Global Technology Operations, Inc. | Adaptive driver workload estimator |
| US20120150412A1 (en) * | 2010-12-14 | 2012-06-14 | Electronics And Telecommunications Research Institute | Driving work load measurement apparatus and method |
-
2016
- 2016-12-15 WO PCT/MX2016/000139 patent/WO2018111062A1/en not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002033529A2 (en) * | 2000-10-14 | 2002-04-25 | Motorola, Inc. | System and method for driver performance improvement |
| EP1416349A1 (en) * | 2002-10-31 | 2004-05-06 | General Motors Corporation | Driving workload estimation |
| WO2007018991A2 (en) * | 2005-08-02 | 2007-02-15 | Gm Global Technology Operations, Inc. | Adaptive driver workload estimator |
| US20120150412A1 (en) * | 2010-12-14 | 2012-06-14 | Electronics And Telecommunications Research Institute | Driving work load measurement apparatus and method |
Non-Patent Citations (1)
| Title |
|---|
| AZIZAN, M.A. ET AL.: "The influence of vibrations on vehicle occupant fatigue", 43RD INTERNATIONAL CONGRESS ON NOISE CONTROL ENGINEERING : IMPROVING THE WORLD THROUGH NOISE CONTROL, INTERNOISE, 20 November 2014 (2014-11-20), pages 1 - 11, XP055495791, Retrieved from the Internet <URL:https://pdfs.semanticscholar.org/5700/3db1abe23c8d54eb5c288585a573ed23e69e.pdf> [retrieved on 20170522] * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4533629B2 (en) | Method for preventing motion sickness and device for detecting and signaling motion that may cause motion sickness | |
| US10569650B1 (en) | System and method to monitor and alert vehicle operator of impairment | |
| CN1834583B (en) | Vehicle Surrounding Monitoring Device | |
| CN105799615B (en) | The system and method for improving driver's experience | |
| US20190133511A1 (en) | Occupant motion sickness sensing | |
| US9663047B2 (en) | Method and system for inferring the behavior or state of the driver of a vehicle, use of the method and computer program for carrying out the method | |
| CN109580259A (en) | Detect the abnormal system and method in vehicle suspension system | |
| CN109791739A (en) | Carsick estimation device, carsick anti-locking apparatus and carsick estimation method | |
| JPWO2018073939A1 (en) | Measurement program, measurement method and measurement apparatus | |
| JP6215944B2 (en) | Processing related to eyelid movement to detect drowsiness | |
| JP2017201114A (en) | Construction machinery | |
| EP1853155A4 (en) | MEASUREMENT OF VIGILANCE | |
| JP2011248535A (en) | Driver state determination device and driver support device | |
| CN111753586A (en) | Fatigue driving monitoring device and method | |
| CN107662613A (en) | A kind of extreme driving behavior recognition methods and system based on mobile intelligent perception | |
| Murata et al. | A basic study on the prevention of drowsy driving using the change of neck bending angle and the sitting pressure distribution | |
| ATE552148T1 (en) | PEDESTRIAN PROTECTION SYSTEM FOR A MOTOR VEHICLE | |
| WO2018111062A1 (en) | Method for the characterisation of a working environment in the driving of vehicles by measuring vibration that contributes to fatigue | |
| JP5415110B2 (en) | Occupant detection device | |
| JP6618865B2 (en) | Vibration analysis method and apparatus | |
| JP2018081622A (en) | Driving support apparatus and driving support method | |
| JP2019082805A (en) | Vehicle device and computer program | |
| CN107007292B (en) | Methods for learning about fatigue | |
| KR20210158525A (en) | System for reducting mortion sickness for driving of autonomous vehicle | |
| DEGAN et al. | Risk assessment of the whole-body vibration exposure for drivers of armored vehicles: A case study |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16924018 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16924018 Country of ref document: EP Kind code of ref document: A1 |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 20.01.2020. |