[go: up one dir, main page]

WO2018190585A2 - 연속적 유동장에서의 점도 측정 방법 및 시스템, 연속적 유동장에서의 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및 시스템 - Google Patents

연속적 유동장에서의 점도 측정 방법 및 시스템, 연속적 유동장에서의 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및 시스템 Download PDF

Info

Publication number
WO2018190585A2
WO2018190585A2 PCT/KR2018/004117 KR2018004117W WO2018190585A2 WO 2018190585 A2 WO2018190585 A2 WO 2018190585A2 KR 2018004117 W KR2018004117 W KR 2018004117W WO 2018190585 A2 WO2018190585 A2 WO 2018190585A2
Authority
WO
WIPO (PCT)
Prior art keywords
rate
flow field
flow
viscosity
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2018/004117
Other languages
English (en)
French (fr)
Other versions
WO2018190585A3 (ko
Inventor
황욱렬
장혜경
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gyeongsang National University GNU
Original Assignee
Gyeongsang National University GNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170154237A external-priority patent/KR102013036B1/ko
Application filed by Gyeongsang National University GNU filed Critical Gyeongsang National University GNU
Priority to EP18783849.5A priority Critical patent/EP3614123B1/en
Publication of WO2018190585A2 publication Critical patent/WO2018190585A2/ko
Publication of WO2018190585A3 publication Critical patent/WO2018190585A3/ko
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material

Definitions

  • One embodiment of the invention relates to a method and system for measuring viscosity in any continuous flow field, and another embodiment of the invention relates to a method and system for predicting the flow rate or pressure drop of a non-Newtonian fluid in a continuous flow field.
  • Rheologically complex fluids such as polymer melts and solutions, particle suspensions, slurries, and droplet systems, have complex viscosities such as shear thinning and yield stress due to microstructure and hydrodynamic interactions. It is applied to various processes such as chemical process, polymer processing, electronic materials (display and secondary battery), food, cosmetics, paint, water treatment, oil drilling.
  • Conventional methods for measuring the viscosity of such complex fluids basically take one of the following methods by taking a sample of the fluid. (i) It is possible to measure the viscosity through the relationship between the two by placing a fluid between the plates and giving a shear force to one plate to measure the shear rate. (ii) Viscosity can be measured using the relationship between pressure difference and flow rate by flowing a fluid through a simple circular cross section or a thin rectangular microtube.
  • Metzner-Otto technique is an energy dissipation rate-based flow quantification technique that is applied to scaling concept and empirical approach only in existing limited agitator flow.
  • Metzner-Otto assumed that there was an average shear rate representative of the total flow field in the stirring system, and defined a correlation that the average shear rate is proportional to the velocity of the impeller, and that the equality of the energy dissipation rate between Newtonian fluid and non-Newtonian fluid is defined.
  • the effective shear rate and effective viscosity of the flow in the non-Newtonian fluid stirrer are defined.
  • the present invention has been developed to apply similar energy dissipation-based quantification techniques to all continuous flow fields with inlets and outlets.
  • the flow rate and pressure drop relations are very important information in determining process conditions.
  • the relationship between flow rate and pressure drop is the type of polymer used. And all appeared different depending on the temperature, there was a need to obtain through separate experiments and analysis for each fluid used.
  • the present invention is to provide a method that can easily measure the viscosity behavior of the fluid by obtaining the flow number (flow number) of the flow field in any continuous flow field and using only the flow rate and pressure drop.
  • the present invention is to provide a method and system that can easily predict the pressure drop or flow rate of the non-Newtonian fluid by preparing only the flow characteristics of the flow field and the viscosity behavior of the non-Newtonian fluid in any continuous flow field.
  • Viscosity measurement method in a continuous flow field a method for measuring the viscosity in a continuous flow field of a specific shape having an inlet and an outlet, comprising the steps of preparing the flow water in the flow field; Measuring the flow rate and pressure drop of the fluid in the flow field; And calculating an average energy dissipation rate using the flow rate and the pressure drop, and deriving a viscosity of the fluid according to the effective shear rate based on the flow water in the flow field and the average energy dissipation rate.
  • the viscosity of the fluid according to the effective shear rate may be derived using Equations 1 and 2 below.
  • the continuous flow field has a plurality of inlets and a single outlet
  • the step of deriving the viscosity of the fluid to calculate the total energy dissipation rate using the following equation A, the total energy dissipation rate and the volume of the flow field Based on the average energy dissipation rate can be calculated.
  • n is the quantity of the inlet
  • the continuous flow field has a single inlet and a plurality of outlets
  • the step of deriving the viscosity of the fluid to calculate the total energy dissipation rate using the following equation B, the total energy dissipation rate and the volume of the flow field Based on the average energy dissipation rate can be calculated.
  • n is the quantity of exits
  • the flow water in the flow field includes an energy dissipation factor K p
  • preparing the flow water in the flow field includes obtaining the energy energy dissipation factor K p in advance
  • the energy dissipation rate Acquiring a coefficient K p in advance includes injecting a Newtonian fluid of known viscosity into the flow field; Measuring the flow rate and pressure drop of the Newtonian fluid in the flow field; Obtaining an average energy dissipation rate of the Newtonian fluid using the flow rate and the pressure drop of the Newtonian fluid; Obtaining Reynolds number and power number using the density, average velocity and viscosity of the Newtonian fluid, the characteristic length of the flow field, the apparent shear rate of the Newtonian fluid, and the average energy dissipation rate of the Newtonian fluid; And it may include the step of obtaining the energy dissipation rate coefficient K p using the relationship between the Reynolds number, the number of power and the energy dissipation rate coefficient K p.
  • the flow water in the flow field includes an energy dissipation factor K p
  • preparing the flow water in the flow field includes obtaining the energy energy dissipation factor K p in advance
  • the energy dissipation rate Obtaining a coefficient K p in advance comprises: obtaining a velocity field of the flow field using Newtonian fluid; Obtaining a local energy dissipation rate by multiplying the viscosity of the Newtonian fluid by the square of the shear rate at the minute point of the flow field; Integrating the local energy dissipation rate over the entire flow field to obtain a total energy dissipation rate; Dividing the total energy dissipation rate by the volume of the flow field to obtain an average energy dissipation rate of the Newtonian fluid; Obtaining Reynolds number and power number using the density, average velocity and viscosity of the Newtonian fluid, the characteristic length of the flow field, the apparent shear rate of the Newtonian fluid, and the average energy dissipation rate
  • the flow water in the flow field includes an effective shear rate coefficient K s
  • preparing the flow water in the flow field includes obtaining the effective shear rate coefficient K s in advance
  • the effective shear rate coefficient Acquiring K s in advance includes injecting a non-Newtonian fluid having a known viscosity behavior into the flow field; Measuring the flow rate and pressure drop of the non-Newtonian fluid in the flow field; Obtaining an average energy dissipation rate and a power number of the non-Newtonian fluid using the flow rate and the pressure drop of the non-Newtonian fluid; Finding a Reynolds number of the Newtonian fluid corresponding to the power number of the Newtonian fluid having the same value as the number of powers of the non-Newtonian fluid, and considering the Reynolds number of the Newtonian fluid as an effective Reynolds number; Calculating the viscosity of the non-Newtonian fluid using the effective Reynolds number, the density of the non-Newtonian fluid, the average velocity, and the characteristic length of the flow field, and
  • the flow water in the flow field includes an effective shear rate coefficient K s
  • preparing the flow water in the flow field includes obtaining the effective shear rate coefficient K s in advance
  • the effective shear rate coefficient Acquiring K s in advance may include performing a flow analysis using a non-Newtonian fluid having a known viscosity behavior; Obtaining a local energy dissipation rate by multiplying the viscosity of the non-Newtonian fluid by the square of the shear rate at the minute point of the flow field; Integrating the local energy dissipation rate over the entire flow field to obtain a total energy dissipation rate; Dividing the total energy dissipation rate by the volume of the flow field to obtain an average energy dissipation rate of the non-Newtonian fluid; Obtaining a power number using the density, average speed, apparent shear rate, and average energy dissipation rate of the non-Newtonian fluid; Finding a Reynolds number of the Newtonian fluid corresponding to the power number
  • Viscosity measurement system in a continuous flow field is a system for measuring the viscosity in a continuous flow field of a specific shape having an inlet and an outlet, the flow water storage unit for storing the flow water in the flow field ; A flow rate measuring unit measuring a flow rate of the fluid in the flow field; A pressure measuring unit for calculating a pressure drop in the flow field; And a derivation unit for calculating an average energy dissipation rate using the measured flow rate and pressure drop, and deriving a viscosity of the fluid according to the effective shear rate based on the flow water in the flow field and the average energy dissipation rate.
  • the derivation unit may derive the viscosity of the fluid according to the effective shear rate by using Equations 1 and 2 below.
  • the derivation unit calculates the total energy dissipation rate using the following equation A, the average energy dissipation based on the total energy dissipation rate and the volume of the flow field The rate can be calculated.
  • n is the quantity of the inlet
  • the continuous flow field has a single inlet and a plurality of outlets
  • the step of deriving the viscosity of the fluid to calculate the total energy dissipation rate using the following equation B, the total energy dissipation rate and the volume of the flow field Based on the average energy dissipation rate can be calculated.
  • n is the quantity of exits
  • a method for predicting a flow rate or a pressure drop of a non-Newtonian fluid is to predict a flow rate or pressure drop of a non-Newtonian fluid flowing in a continuous flow field of a specific shape having an inlet and an outlet.
  • a method comprising: preparing a flow of water in the flow field; Preparing viscosity behavior information of the non-Newtonian fluid; And deriving the other information from any one of flow rate and pressure drop of the non-Newtonian fluid in the flow field based on the flow water and the viscosity behavior information in the flow field.
  • the deriving of the other information may use at least one of Equations 6, 7 and 8 below.
  • N p Is the number of powers
  • P is the total power according to the stress, the product of the flow rate and the pressure drop
  • Re is the Reynolds number
  • K p is the energy dissipation factor
  • K s is the effective shear factor
  • the flow water in the flow field is the energy dissipation factor K p
  • the extracting of the other information may include: obtaining an effective shear rate of the flow field using a relationship between an apparent shear rate and an effective shear rate coefficient K s of the flow field; Obtaining an effective viscosity using the effective shear rate and the viscosity behavior of the flow field; Obtaining an effective Reynolds number using the relationship between the average velocity, the density and the viscosity of the fluid, the characteristic length of the flow field and the effective viscosity; Calculating a power number using the effective shear rate coefficient K s and the effective Reynolds number; and an overall velocity depending on the stress using the average velocity, density, apparent shear rate, fluid volume in the flow field, and the power number. Comprising a step of obtaining a power, and the relationship between the flow rate and the pressure drop of the non-Newtonian fluid in the flow field through the step of obtaining the total power according to the stress.
  • the deriving of the other information may include the flow rate information of the non-Newtonian fluid in the flow field, and the apparent shear rate and the flow rate of the fluid through the flow rate information of the non-Newtonian fluid in the flow field.
  • the method may further include obtaining at least one of average speeds.
  • a prediction system for predicting the flow rate or pressure drop of a non-Newtonian fluid may predict the flow rate or pressure drop of the non-Newtonian fluid flowing in a continuous flow field of a specific shape having an inlet and an outlet.
  • a system capable of: a flow water storage unit for storing the flow water in the flow field; A viscosity behavior information storage unit for storing the viscosity behavior information of the non-Newtonian fluid; And a derivation unit for deriving the other information from any one of the flow rate and the pressure drop of the non-Newtonian fluid in the flow field based on the flow water and the viscosity behavior information in the flow field.
  • the derivation unit may use at least one of Equations 6, 7 and 8 below.
  • N p Is the number of powers
  • P is the total power according to the stress, the product of the flow rate and the pressure drop
  • the apparent shear rate, Is effective shear rate, Re is Reynolds number
  • K p is energy dissipation factor
  • K s Is the effective shear factor.
  • the flow water in the flow field includes the energy dissipation rate K p , the effective shear rate coefficient K s , and the derivation unit, the effective shear rate to obtain the effective shear rate using the relationship between the apparent shear rate and the effective shear rate coefficient K s
  • a rate calculator An effective viscosity calculation unit for obtaining an effective viscosity using the effective shear rate and the viscosity behavior
  • An effective Reynolds number calculation unit for obtaining an effective Reynolds number using the relationship between the average velocity of the fluid, the density and the viscosity, the characteristic length of the flow field and the effective viscosity
  • a power number calculation unit for calculating a power number using the effective shear rate coefficient K s and the effective Reynolds number
  • a total power calculation unit for calculating a total power according to the above, wherein the total power calculation unit may obtain a relationship between the flow rate and the pressure drop of the non-
  • the any one of the information is the flow rate information of the non-Newtonian fluid in the flow field
  • the derivation unit flow rate for obtaining at least one of the apparent shear rate and the average speed of the fluid through the flow rate information of the non-Newtonian fluid in the flow field
  • the information usage unit may further include.
  • a method and / or system that can easily measure the viscosity behavior of a fluid by measuring only the flow rate and pressure drop by using the flow number of the flow field in any continuous flow field Can be provided.
  • 1 is a graph showing the relationship between the shear rate and the viscosity of a rheological complex fluid.
  • FIG. 2 is a conceptual diagram schematically showing an example of a flow field having a single inlet and a single outlet.
  • FIG. 3 is a conceptual diagram schematically showing an example of a flow field having a plurality of inlets and a single outlet.
  • FIG. 4 is a conceptual diagram schematically showing an example of a flow field having a single inlet and a plurality of outlets.
  • FIG. 5 is a conceptual diagram schematically showing the configuration of a fluid viscosity measurement system according to another aspect of an embodiment of the present invention.
  • FIG. 6 shows the results obtained by calculating the viscosity according to the shear rate for the flow of a given Carbopol 981 aqueous solution in various ratios of the enlarged / reduced circular pipe, and the flow rate and the effective shear rate coefficient based on the previously obtained energy dissipation factor and effective shear rate coefficient. This is a result plot showing that the results of viscosity measurements using only the pressure drop information coincide.
  • 7A is a schematic diagram of a die of a particular shape.
  • FIG. 7B is a flow rate and pressure based on the results obtained by calculating the viscosity according to the shear rate through the simulation of two non-Newtonian fluid models in the die shown in FIG. 7A, and the energy dissipation factor and the effective shear rate coefficient. This figure shows that all the results obtained from the viscosity using only the drop information agree.
  • FIG. 8 is a conceptual block diagram illustrating a configuration of a system for predicting a flow rate or a pressure drop of a non-Newtonian fluid according to another aspect of the present disclosure.
  • FIG. 9 is a flow simulation of a corresponding pressure drop for an arbitrary flow rate for an enlarged / reduced circular pipe flow, and predicts a flow rate or pressure drop of a non-Newtonian fluid according to another aspect of the present invention. The results show that the pressure drop corresponding to any flow rate using the method and / or the system is almost identical.
  • FIG. 10 is a flow simulation of a corresponding pressure drop for an arbitrary flow rate for a "Kenics static mixer" flow, and predicts a flow rate or pressure drop of a non-Newtonian fluid according to another aspect of the present invention. The results show that the pressure drop corresponding to any flow rate using the method and / or the system is almost identical.
  • FIG. 11 is a flow simulation of a pressure drop corresponding to an arbitrary flow rate for a flow in a “body-centered cubic (BCC) porous medium”, and a ratio according to one aspect of another embodiment of the present invention.
  • BCC body-centered cubic
  • the singular expression includes the plural expression unless the context clearly indicates the singular. And when a particular part is said to "include” a particular configuration, this means that unless specifically stated otherwise said particular portion may further include said other configuration, not to exclude other configurations than said specific configuration.
  • Fluid viscosity measurement method is to prepare the flow water quantified the flow characteristics of the unspecified multiple fluids flowing in a continuous flow field of a specific shape with an inlet and an outlet, such as a pipe, the actual flow in the flow field
  • a method of measuring the viscosity behavior (viscosity, effective shear rate and their relationship) of a fluid, in particular a non-Newtonian fluid by measuring only the flow rate and pressure drop of the fluid.
  • Such a method of measuring fluid viscosity includes preparing a flow water in a flow field, measuring a flow rate and a pressure drop of the fluid in the flow field, and calculating an average energy dissipation rate using the flow rate and the pressure drop, Deriving the viscosity of the fluid according to the effective shear rate based on the flow rate and the average energy dissipation rate.
  • the flow characteristics of the unspecified complex fluids flowing in a specific shape of the flow field may be a quantified flow rate, that is, a non-dimensionalized number regardless of the types of fluids, and the flow water in such a flow field is the coefficient of energy dissipation rate) K p and / or the coefficient of effective shear rate K s .
  • the flow water in such a flow field is a non-dimensionalized number N p that can represent energy dissipation for a particular shape of the flow field.
  • N p non-dimensionalized number
  • the flow rate may be measured using a flow meter, and the pressure drop may be measured using a pressure gauge.
  • the pressure drop can be calculated by comparing each pressure at the start and end points of the viscosity measurement section.
  • the effective shear rate And the corresponding viscosity ⁇ may be derived using Equations 1 and 2 below.
  • Effective Shear Rate of Fluid The relationship between and viscosity ⁇ may be equal to the relationship between the shear rate and the viscosity of the rheological complex fluid shown in FIG. 1.
  • Is the average energy dissipation rate of the flow field Is the effective shear rate of the flow field, Is the viscosity of the fluid, Is the apparent shear rate of the flow field, K p Is the coefficient of energy dissipation rate, K s May mean a coefficient of effective shear rate.
  • Average energy dissipation rate Can be expressed as the total energy dissipation rate divided by the volume of the flow field, and the total energy dissipation rate can be calculated based on the flow rate and pressure drop of the fluid in the laminar flow region. Can be a function of the flow rate, the pressure drop, and the volume of the flow field.
  • Apparent shear rate Can be defined differently for each flow field and chosen by the researcher.
  • the apparent shear rate is It can be defined as. That is, the apparent shear rate may also be a function of the flow rate of the fluid.
  • Effective Shear Rate Is K p which is one of the flows determined according to the shape of a specific flow field according to Equation 2
  • apparent shear rate Therefore, once the flow field is determined, it can be treated as a function of the flow rate of the fluid.
  • FIG. 2 is a conceptual diagram schematically showing an example of a flow field having a single inlet and a single outlet.
  • the flow rate is measured at at least one of the inlet and the outlet, and the measured value is obtained as the flow rate value of the fluid and measured at the inlet.
  • the difference between the pressure and the pressure measured at the outlet is obtained, and the difference is obtained as the pressure drop of the fluid.
  • the average energy dissipation rate is obtained by dividing the product (total energy dissipation rate) of the obtained flow rate and the pressure drop by the volume of the flow field. Can be calculated.
  • FIG. 3 is a conceptual diagram schematically showing an example of a flow field having a plurality of inlets and a single outlet.
  • the flow rate is measured at the plurality of inlets, and the measured value is determined by the flow rate value of the fluid at each inlet ( , In the case of the flow field of FIG. , ) And compare the pressure measured at each outlet with the pressure measured at the outlet and compare the difference between the pressure drop values of the fluid between each inlet and single outlet ( , In the case of the flow field of FIG. , ) And the flow rate value of the fluid at each inlet ( ) And the pressure drop value of the fluid between each inlet and single outlet ( The total energy dissipation rate can be calculated using Equation A below.
  • n is the quantity of the inlet
  • the average energy dissipation rate Can be calculated.
  • the apparent shear rate Is the flow rate at a single outlet ( ) can be defined as the value divided by the cross-sectional area at a single outlet.
  • FIG. 4 is a conceptual diagram schematically showing an example of a flow field having a single inlet and a plurality of outlets.
  • the flow rate is measured at the plurality of outlets and the measured value is determined by the flow rate value of the fluid at each outlet ( In the case of the flow field of FIG. , ) And compare each of the pressures measured at a single inlet with the pressures measured at the plurality of outlets and compare the difference between the pressure drop values of the fluid between the single inlet and each outlet ( , In the case of the flow field of FIG. , ) And the flow rate value of the fluid at each outlet ( ) And the pressure drop value of the fluid between a single inlet and each outlet ( The total energy dissipation rate can be calculated using Equation B below.
  • n is the quantity of exits
  • the average energy dissipation rate Can be calculated.
  • the apparent shear rate Is the flow rate at a single inlet ( ) can be defined as the value divided by the cross-sectional area at a single inlet.
  • Preparing the flow water in the flow field includes obtaining the energy dissipation factor K p in advance, so that the energy dissipation factor K p can be obtained in advance for the flow field.
  • the energy dissipation factor K p can be found by experimental techniques.
  • a Newtonian fluid having a known viscosity can be injected into a corresponding flow field system, that is, a flow field having a specific shape, and the flow rate and pressure drop in the laminar flow region can be measured.
  • the flow rate can be measured using a flow meter
  • the pressure drop can be measured using a pressure gauge. The pressure drop can be calculated by comparing each pressure at the start and end points of a particular section.
  • the average energy dissipation rate can be calculated from the flow rate, the pressure drop value, and the volume of the flow field in the laminar flow region. For example, average energy dissipation rate in a flow field with a single inlet and a single outlet as shown in FIG. Can be expressed as the product of the flow rate and pressure drop in the laminar flow divided by the volume.
  • Equations 3 and 4 Two dimensional numbers (Reynolds number Re and power number N p ) are used to quantify the energy dissipation rate-based flow characteristics.
  • the density, average velocity and viscosity of the Newtonian fluid, the characteristic length of the flow field, the apparent shear rate, and Newton It can be calculated using the average energy dissipation rate of the fluid. For example, it can be obtained as shown in Equations 3 and 4 below.
  • is the density of the fluid
  • Is the average velocity of the fluid
  • L is the characteristic length of the flow field system
  • is the viscosity of the fluid
  • the physical density of the Newtonian fluid injected into the system may be used as the density ⁇ and the viscosity ⁇ of the fluid in Equation 3 above.
  • Average speed in Equation 3 May be the flow rate divided by the cross-sectional area, and the characteristic length of the system may vary depending on the shape of the flow field.
  • the average energy dissipation rate of the flow field in Equation 4 Is the value calculated based on the flow rate and pressure drop in the laminar flow region of Newtonian fluid injected into the system, and the volume of the flow field. May be a value calculated based on the flow rate of Newtonian fluid injected into the system.
  • Equations 3 and 4 since the values on the right side are already known or can be measured using a related device such as a speed sensor, the Reynolds number Re and the power number N P can be obtained using the values.
  • Equation 5 The energy dissipation factor K P can be obtained by using Equation 5 below indicating the relationship between the Reynolds number Re, the power number N P, and the energy dissipation factor K P. Can be calculated. Equation 5 may refer to a relationship between two dimensionless numbers established in a laminar flow having a small Reynolds number.
  • the energy dissipation factor K P Calculate the energy dissipation factor K P Can also be obtained through numerical analysis.
  • the Newtonian fluid used in the experimental technique can be used to find the velocity field in a given flow field.
  • the local energy dissipation rate ⁇ 2 can be obtained by multiplying the viscosity of the Newtonian fluid and the shear rate at the micro point of the flow field, and the total energy dissipation rate can be obtained by integrating it over the entire flow field.
  • the total energy dissipation rate obtained as above may be divided by the volume of the flow field to obtain the average energy dissipation rate, and then may be obtained using the same.
  • Preparing the flow water in the flow field includes obtaining the effective shear rate coefficient K s in advance, so that the effective shear coefficient K s can also be obtained in advance for the flow field system.
  • the effective shear modulus K s can be found by experimental techniques.
  • a non-Newtonian fluid such as an Xanthan gum aqueous solution
  • a known viscosity behavior viscosity-effective shear rate relationship
  • the viscosity behavior (viscosity-effective shear rate relationship) of the non-Newtonian fluid can be, for example, as shown in FIG.
  • the average energy dissipation rate of non-Newtonian fluids can be calculated based on the flow rate and pressure drop in the laminar flow region of the non-Newtonian fluid injected into the system and the volume of the flow field.
  • the power number N p is the average energy dissipation rate of the non-Newtonian fluid calculated based on the density ⁇ of the non-Newtonian fluid injected into the system and the flow rate in the laminar flow region of the non-Newtonian fluid.
  • Apparent shear rate And average speed By using Equation 4 on the basis of can be calculated.
  • the power number N p calculated as above The number of power-Newtonian fluid has the same value N p Find the Reynolds number corresponding to.
  • the Reynolds number at this time may be the effective Reynolds number Re eff of the complex fluid.
  • the relation between Reynolds number Re and the corresponding Reynolds number Re may be defined by the energy dissipation rate K P and Equation 5 previously calculated.
  • the viscosity can be calculated using the density of the non-Newtonian fluid, the average speed, and the characteristic length of the flow field. For example, Equation 3 described above may be used. The viscosity thus calculated may be the effective viscosity ⁇ eff of the complex fluid.
  • is the density of the fluid
  • Is the average velocity of the fluid
  • L is the characteristic length of the flow field system
  • is the viscosity of the fluid
  • the Reynolds number Re is used as the effective Reynolds number Re eff
  • the density ⁇ of the fluid may be the density of the non-Newtonian fluid injected into the system.
  • Average speed May be the flow rate divided by the cross-sectional area, and the characteristic length of the system may vary depending on the shape of the flow field.
  • the effective shear rate coefficient K s can be found using the relationship between the effective shear rate and the apparent shear rate, that is, Equation 2 described above.
  • Is the average energy dissipation rate of the flow field Is the effective shear rate of the flow field, Is the viscosity of the fluid, Is the apparent shear rate of the flow field, K p Is the coefficient of energy dissipation rate, K s May mean a coefficient of effective shear rate.
  • the effective shear rate coefficient K s can also be obtained through numerical techniques.
  • the flow analysis in the flow field may be performed using the non-Newtonian fluid having known viscosity behavior.
  • the local energy dissipation rate ⁇ 2 is obtained by multiplying the viscosity of the non-Newtonian fluid by the shear rate at the micro point of the flow field, and the total energy dissipation rate can be obtained by integrating the total energy dissipation rate over the entire flow field.
  • the total energy dissipation rate obtained as described above is divided by the volume of the flow field to obtain the average energy dissipation rate, and the power number can also be obtained through Equation 4.
  • is the density of the fluid
  • Is the average velocity of the fluid Is the average energy dissipation rate of the flow field
  • ⁇ of the fluid in Equation 4 is the density of the non-Newtonian fluid is used
  • the average velocity of the fluid and apparent shear rate
  • the same method as the experimental method described above can be used. That is, the Reynolds number corresponding to the power number N P of the Newtonian fluid having the same value as the obtained power number N P can be found. Reynolds number effective Reynolds number of complex fluid Re eff Can be. And the viscosity can be calculated using the effective Reynolds number and equation (3).
  • is the density of the fluid
  • I the average velocity of the fluid
  • L is the characteristic length of the flow field system
  • the viscosity of the fluid.
  • the density ⁇ of the fluid in Equation 3 is the density of the non-Newtonian fluid is used, the average velocity of the fluid
  • the viscosity thus calculated may be the effective viscosity ⁇ eff of the complex fluid.
  • the effective shear rate through the viscosity behavior (viscosity-effective shear rate relationship) of the complex fluid from the effective viscosity You can find Finally, the effective shear rate coefficient K s can be found using Equation 2.
  • the energy dissipation factor K p and the effective shear modulus K s described above may be a kind of flow number that does not have much relation with the rheological properties of the fluid but only with respect to the type of system (flow field). Therefore, if the energy dissipation factor and the effective shear modulus are obtained only once for a specific type of flow field, the flow characteristics of various complex fluids can be quantified thereafter.
  • fluid viscosity measuring system 100 prepares the flow water quantifying the flow characteristics of a plurality of unspecified fluids flowing in a continuous flow field (F) of a specific shape having an inlet and an outlet, the flow rate of the fluid flowing in the flow field (F) Only the overpressure drop can be measured to determine the viscosity behavior (viscosity, effective shear rate, and their relationship) of fluids, especially non-Newtonian fluids.
  • the fluid viscosity measuring system 100 may be used as the fluid viscosity measuring method described above.
  • FIG. 5 is a conceptual diagram schematically showing the configuration of a fluid viscosity measurement system according to another aspect of an embodiment of the present invention.
  • the fluid viscosity measuring system 100 is a system for measuring viscosity in a continuous flow field F having a specific shape having an inlet and an outlet, and includes a flow water storage unit for storing the flow water in the flow field F ( 110); A flow rate measuring unit 120 measuring a flow rate of the fluid in the flow field F; A pressure measuring unit 130 for calculating a pressure drop in the flow field F; And a derivation unit 140 for calculating an average energy dissipation rate using the measured flow rate and pressure drop, and deriving a viscosity of the fluid according to the effective shear rate based on the flow water and the average energy dissipation rate in the flow field F; It may include.
  • the fluid viscosity measuring system 100 is shown as an example of applying the continuous inlet flow field F having a single inlet and a single outlet as shown in FIG. 2, but the fluid viscosity measuring system 100 may be applied.
  • the shape of the continuous flow field is not limited to this. That is, the fluid viscosity measurement system 100 may include a continuous flow field having a plurality of inlets and a single outlet as shown in FIGS. 3 and 4, a continuous flow field having a single inlet and a plurality of outlets, and a plurality of inlets and multiple outlets, although not shown in the drawings. Branches can also be applied to continuous flow fields.
  • the fluid viscosity measuring system 100 may be applied to a continuous flow field having a complex cross-sectional shape in addition to a simple cross-sectional shape such as a circular cross section.
  • the flow water storage unit 110 may store flow water information that quantifies the flow characteristics of the unspecified multiple fluids flowing in a specific shape of the flow field (for example, a pipe of a circular cross section) having an inlet and an outlet.
  • the fluid storage unit 110 may be implemented as a nonvolatile memory, a volatile memory, a flash-memory, a hard disk drive (HDD), or a solid state drive (SSD) capable of storing various data.
  • the flow water of the flow field may include an energy dissipation rate K p and / or an effective shear rate coefficient K s for the flow field system, and may be prepared by preparing the flow water in the fluid viscosity measurement method. Since preparing the flow water in the fluid viscosity measurement method has been described above, a detailed description thereof will be omitted.
  • the flow rate measuring unit 120 may measure the flow rate of the fluid in the flow field (F) that is the information for calculating the average energy dissipation rate.
  • the flow rate measuring unit 120 may include a flow meter disposed at at least one position of the inlet or the outlet to measure the flow rate of the fluid in the flow field F through the flow meter.
  • the pressure measuring unit 130 may measure the pressure at the inlet and / or outlet of the flow field F to calculate the pressure drop in the flow field F, which is the information for calculating the average energy dissipation rate. .
  • the pressure drop of the flow field F may be calculated by obtaining the difference between the respective pressures at the inlet and the outlet of the flow field F measured by the pressure measuring unit 130.
  • the pressure measuring unit 130 may include at least a first pressure sensor 131 disposed at the inlet.
  • a die installed in an extruder or an injection molding machine used for processing a polymer such as plastic is used as a continuous flow field to be subjected to viscosity measurement, so the outlet of the die is atmospheric pressure, so the pressure drop in the flow field F is reduced to the first.
  • the pressure at the inlet measured by the pressure sensor 131 may be calculated by comparing the pressure at the outlet, which is preliminary atmospheric pressure information.
  • the pressure measuring unit 130 may further include a second pressure sensor 132 disposed at the outlet.
  • the pressure drop of the flow field F may be calculated by comparing the pressure at the inlet measured by the first pressure sensor 131 with the pressure at the outlet measured by the second pressure sensor 132.
  • Derivation unit 140 calculates the average energy dissipation rate by using and processing the flow rate measured by the flow rate measuring unit 120 and the pressure drop information that can be calculated through the pressure measuring unit 130, the flow water storage unit 110
  • the viscosity of the fluid according to the effective shear rate can be derived by using and processing the information of the flow water in the flow field (F).
  • the derivation unit 140 includes an operation algorithm for generating new data by using and processing the various information stored in the flow water storage unit 110 and the various measuring bells measured in the flow measurement unit 120 and / or the pressure measurement. It may be a program module or software.
  • the derivation unit 140 may derive the viscosity according to the effective shear rate of the fluid by deriving the viscosity according to the effective shear rate of the fluid in the method of measuring the viscosity of the fluid. That is, the step of deriving the viscosity according to the effective shear rate of the fluid can be derived using Equation 1 and Equation 2, and as described above, a detailed description thereof will be omitted.
  • FIG. 6 shows the results obtained by calculating the viscosity according to the shear rate for the flow of a given Carbopol 981 aqueous solution in various ratios of the enlarged / reduced circular pipe, and the flow rate and the effective shear rate coefficient based on the previously obtained energy dissipation factor and effective shear rate coefficient.
  • This is a result plot showing that the results of viscosity measurements using only the pressure drop information coincide.
  • the graph on the right shows the actual viscosity behavior of Carbopol 981 0.2wt% aqueous solution and the viscosity predicted by the method of the present disclosure, and even if the ratio of enlargement / reduction is different, the energy dissipation factor is calculated to predict the viscosity. It was confirmed that the actual viscosity behavior can be accurately predicted.
  • Carbopol 981 aqueous solution is a representative non-Newtonian fluid having both yield stress and shear thinning.
  • FIG. 7A is a schematic diagram of a die of a specific shape
  • FIG. 7B is a result of obtaining a viscosity according to a shear rate through simulation for two non-Newtonian fluid models in a die shown in FIG. Based on the dissipation factor and effective shear modulus, the results show that the results of viscosity measurements using only flow rate and pressure drop information are consistent.
  • FIG. 7A shows a die of a particular shape with a single inlet and outlet.
  • the results of obtaining the viscosity according to the simulation permit shear rate through a finite element method (FEM) based program for two non-Newtonian fluid models (Carreau) are represented by solid lines.
  • FEM finite element method
  • the viscosity was calculated according to the shear rate using only the flow rate and pressure drop information. It can be seen from FIG. 7B that the results obtained by obtaining the viscosity according to the shear rate derived by the simulation and the results obtained by obtaining the viscosity according to the shear rate derived according to an embodiment of the present invention are consistent.
  • a method for estimating the flow rate or pressure drop of a non-Newtonian fluid may include: By preparing in advance the viscosity behavior (viscosity, effective shear rate and their relationship) of a Newtonian fluid, the present invention relates to a method for predicting the flow rate or pressure drop of a non-Newtonian fluid actually flowing in the flow field.
  • the method for estimating the flow rate or pressure drop of the non-Newtonian fluid may include preparing the flow water in the flow field, preparing the viscosity behavior information of the non-Newtonian fluid, and the viscosity behavior information of the flow water and the non-Newtonian fluid in the flow field. And deriving the other information from the information of any one of the flow rate and the pressure drop of the non-Newtonian fluid in the flow field based on the following (hereinafter referred to as 'derivating another information'). have.
  • the pressure drop corresponding to the flow rate may be predicted, or when the pressure drop of the non-Newtonian fluid is determined, the flow rate corresponding to the pressure drop may be predicted.
  • the flow characteristics of the unspecified complex fluids flowing in a specific shape of the flow field may be a quantified flow rate, that is, a non-dimensionalized number regardless of the types of fluids, and the flow water in such a flow field is the coefficient of energy dissipation rate) K p and / or the coefficient of effective shear rate K s .
  • the flow water in such a flow field is a non-dimensionalized number N p that can represent energy dissipation for a particular shape of the flow field.
  • Preparing the viscosity behavior information of the non-Newtonian fluid may be to prepare a viscosity behavior curve as shown in Figure 1 showing the viscosity-effective shear rate relationship. This viscosity behavior curve can be obtained through a viscosity measuring instrument.
  • Equation 6 may be the same as Equations previously described, but are described as new equations for convenience of description.
  • N p Is the number of powers
  • P is the total power according to the stress, the product of the flow rate and the pressure drop
  • Is the apparent shear rate of the flow field Is the effective shear rate of the flow field
  • Re is Reynolds number
  • K p is the energy dissipation rate coefficient
  • K s may mean the effective shear rate coefficient.
  • the effective shear rate can be obtained by using the relationship between the effective shear rate coefficient K s derived from the flow characteristics of the flow field. Where apparent shear rate May be a function of the flow rate of the non-Newtonian fluid flowing in the flow field. Apparent shear rate The relationship between and the effective shear rate coefficient K s can be defined by Equation 8, the effective shear rate through Equation 8 Can be derived. Where effective shear rate Apparent apparent shear rate Similarly, it can be derived as a function of the flow rate of the non-Newtonian fluid.
  • the effective viscosity can be obtained using the derived effective shear rate and the viscosity behavior (viscosity-effective shear rate relationship, viscosity behavior curve) of the non-Newtonian fluid prepared in advance.
  • the effective viscosity can be expressed by ⁇ eff .
  • Effective viscosity ⁇ eff degree Effective shear rate Likewise, it may mean a function of the flow rate of the non-Newtonian fluid.
  • the effective Reynolds number can then be determined using the relationship between the average velocity, density and viscosity of the fluid, the characteristic length of the flow field and the derived effective viscosity.
  • the relationship between the average velocity, density and viscosity of the fluid, and the characteristic length of the flow field can be defined by Equation 9.
  • is the density of the fluid
  • Is the average velocity of the fluid
  • L is the characteristic length of the flow field system
  • is the viscosity of the fluid.
  • Average velocity of fluid May be the flow rate of the fluid divided by the cross-sectional area, and the characteristic length of the flow field system may vary depending on the shape of the flow field.
  • the density ⁇ of the fluid in Equation 9 is determined by the type of non-Newtonian fluid, the characteristic length L of the flow field is determined by the shape of the flow field, and the average velocity of the fluid
  • the effective viscosity ⁇ eff as the viscosity ⁇ of the fluid can mean a function of the flow rate of the fluid, so the effective Reynolds number Re eff derived as Reynolds number Re It may also mean a function of the flow rate of the fluid.
  • the power number can be obtained using the effective shear rate coefficient K s and the effective Reynolds number Re eff derived in advance.
  • the number of powers may be derived using Equation (7).
  • power number N p derived using the same may also mean a function of the flow rate of the fluid.
  • Equation 6 may be used.
  • the density ⁇ of the fluid in Equation 6 is determined by the type of non-Newtonian fluid, the volume of the fluid may be determined by the shape of the flow field, the average velocity of the fluid Apparent shear rate , Power N p Since may be a function of the flow rate of the fluid as mentioned above, the total power P for the stress derived by Equation 6 may also mean a function of the flow rate of the fluid.
  • the total power P for stress can be expressed as the product of the pressure drop and the flow rate of the fluid, as shown in Equation 10.
  • P may mean the total power according to the stress
  • ⁇ p is the pressure drop of the fluid
  • Q may mean the flow rate of the fluid.
  • the equation is the shape of the flow field, the flow characteristics in the flow field, and the non-Newtonian. It may be arranged in a form including a constant (Constant Number) determined by the viscosity behavior of the fluid, and a variable (Variable Number) such as the pressure drop and the flow rate of the fluid. That is, the relationship between the pressure drop and the flow rate of a particular non-Newtonian fluid in the flow field can be derived.
  • Equation 11 the relationship between the pressure drop and the flow rate of the flowing non-Newtonian fluid can be derived as in Equation 11 below.
  • ⁇ p is the pressure drop of the fluid
  • Q is the flow rate of the fluid
  • K p Is the energy dissipation factor
  • V is the volume of the flow field
  • L is the characteristic length of the flow field
  • ⁇ eff may mean the effective viscosity
  • the pressure drop of the non-Newtonian fluid corresponding to the flow rate may be derived.
  • Equation 11 is derived based on the flow function of the non-Newtonian fluid, and since the variables on the right side include many variables related to the flow function of the non-Newtonian fluid, it is possible to find a flow solution related to each variable. It is desirable to use computing devices, software, and numerical analysis tools that include algorithms. In addition to using such a tool, using Equation 11, the arbitrary flow rates of the non-Newtonian fluid and the pressure drops corresponding to the flow rates are organized into table data, and the specific pressure drop information of the non-Newtonian fluid is based on the summarized data. The flow rate of the non-Newtonian fluid may also be derived by searching for corresponding flow rate information.
  • Equation 12 the relationship between the pressure drop and the flow rate in a simple circular pipe flow field having a radius R and the total volume V can be derived by Equation 12.
  • Fluid flow rate or pressure drop prediction system
  • FIG. 8 is a conceptual block diagram illustrating a configuration of a system for predicting a flow rate or a pressure drop of a non-Newtonian fluid according to another aspect of the present disclosure.
  • a system for predicting the flow rate or pressure drop of a non-Newtonian fluid according to another aspect (hereinafter referred to as a 'prediction system') is provided in a specific shape of a flow field having an inlet and an outlet, such as a pipe.
  • Preliminary preparation of the flow water quantifying the flow characteristics of the unspecified multiple fluids and the viscosity behavior (viscosity, effective shear rate, and their relationship) of the non-Newtonian fluid can predict the flow rate or pressure drop of the non-Newtonian fluid flowing in the flow field. It is about a system that can.
  • Such a prediction system may be a system using a method for predicting a flow rate or a pressure drop of a non-Newtonian fluid according to an aspect of the present invention described above.
  • the role played by the configuration included in the prediction system may correspond to the technical contents of various steps including the method of estimating the flow rate or the pressure drop of the non-Newtonian fluid according to one embodiment of the present invention. Therefore, detailed description thereof will be omitted.
  • the prediction system 200 includes a flow water storage unit 210 for storing the flow water in the flow field, a viscosity behavior information storage unit 220 for storing the viscosity behavior information of the non-Newtonian fluid, and the flow water in the flow field and the Based on the viscosity behavior information, may include a derivation unit 230 for deriving the other information from any one of the information of the flow rate and pressure drop of the non-Newtonian fluid in the flow field.
  • the flow water storage unit 210 and the viscosity behavior information storage unit 220 is a nonvolatile memory, a volatile memory, a flash memory (flash-memory), a hard disk drive (HDD), or a solid state drive capable of storing various data. SSD) and the like.
  • the derivation unit 230 may be a program module or software including an operation algorithm for generating new data by using and processing various data stored in the flow water storage unit 210 and the viscosity behavior information storage unit 220.
  • the flow water storage unit 210 may store the energy dissipation rate K p and the effective shear rate coefficient K s obtained in advance for the flow field system. Since the method for calculating the energy dissipation rate K p and the effective shear rate coefficient K s has been described above, a detailed description thereof will be omitted.
  • Viscosity behavior information storage unit 220 may store the viscosity-effective shear rate coordinate information of the viscosity behavior curve to the clay behavior curve as shown in Figure 1 showing the viscosity-effective shear rate relationship of the non-Newtonian fluid to be predicted.
  • the derivation unit 230 calculates a pressure drop corresponding to the flow rate of the non-Newtonian fluid by using at least one of Equations 6, 7, and 8 described above, or calculates a flow rate corresponding to the pressure drop of the non-Newtonian fluid. Can be calculated.
  • the derivation unit 230 represents a functional relationship including variables that can be derived based on the flow rate of the non-Newtonian fluid in the flow field and a pressure drop variable or a flow rate information-pressure drop information relationship of the non-Newtonian fluid in the flow field.
  • the pressure drop information corresponding to the flow rate information of the non-Newtonian fluid may be derived, or the flow rate information corresponding to the pressure drop information of the non-Newtonian fluid may be derived.
  • the derivation unit 230 calculates an effective shear rate using the relationship between the apparent shear rate and the effective shear rate coefficient K s , and calculates an effective viscosity using the effective shear rate and the viscosity behavior.
  • An effective Reynolds number calculation unit 233 for calculating an effective Reynolds number using the relationship between the effective viscosity calculation unit 232 to obtain the average velocity, density and viscosity of the fluid, the characteristic length of the flow field and the effective viscosity;
  • a power number calculation unit 2134 for calculating the power number using the effective shear rate coefficient K s and the effective Reynolds number, and using the average velocity, density, apparent shear rate, fluid volume in the flow field, and the power number
  • the total power calculation unit 235 for obtaining the total power according to the stress may include.
  • the total power calculator 235 may calculate a relationship between the flow rate and the pressure drop of the non-Newtonian fluid in the flow field based on the total power according to the obtained stress.
  • the derivation unit 230 may further include a flow rate information using unit 236 for obtaining at least one of an apparent shear rate and an average speed of the fluid through the flow rate information of the non-Newtonian fluid in the flow field.
  • At least one of the effective shear rate calculator 231, the effective Reynolds number calculator 233, and the total power calculator 235 may use information derived from the flow rate information utilization unit 236.
  • Energy Dissipation Factor K p and Effective Shear Factor K s May be a kind of flow number that does not have much to do with the rheological properties of the fluid and only depends on the type of system (flow field). Therefore, once the energy dissipation factor and effective shear modulus are obtained once for a particular type of flow field, the flow characteristics such as the relationship between pressure drop and flow rate for various complex fluids, especially non-Newtonian fluids, are Can be quantified.
  • FIG. 9 is a flow simulation of a corresponding pressure drop for an arbitrary flow rate for an enlarged / reduced circular pipe flow, and predicts a flow rate or pressure drop of a non-Newtonian fluid according to another aspect of the present invention. The results show that the pressure drop corresponding to any flow rate using the method and / or the system is almost identical.
  • the non-Newtonian fluid models used are three kinds, such as a power-law model, a Carreau model, and a modified H-B model.
  • FIG. 10 is a flow simulation of a corresponding pressure drop for an arbitrary flow rate for a "Kenics static mixer" flow, and predicts a flow rate or pressure drop of a non-Newtonian fluid according to another aspect of the present invention.
  • the results of predicting the pressure drop corresponding to an arbitrary flow rate using a method and / or a system show that the result is almost identical.
  • the non-Newtonian fluid models used are three kinds, such as a power-law model, a Carreau model, and a modified H-B model.
  • FIG. 11 is a flow simulation of a pressure drop corresponding to an arbitrary flow rate for a flow in a “body-centered cubic (BCC) porous medium”, and a ratio according to one aspect of another embodiment of the present invention.
  • BCC body-centered cubic
  • the non-Newtonian fluid model used is a power-law model.
  • Flow information of the flow corresponding to each volume fraction vf in the "porous medium of the body-centered cubic (BCC) structure" according to FIG. 11 is as follows.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

본 발명의 일 실시예에 따르면, 임의의 연속적 유동장에 있어서 유동장의 유동수를 준비하면, 유량과 압력강하만을 측정함으로써 유체의 점도거동을 손쉽게 측정할 수 있는 방법 및/또는 시스템을 제공할 수 있다. 본 발명의 다른 실시예에 따르면, 임의의 연속장 유동장에 있어서 유동장의 유동수 및 유동장에서 유동하는 비뉴턴 유체의 점도거동 만을 준비하면, 해당 유동장에서의 압력강하 또는 유량을 손쉽게 예측할 수 있는 방법 및/또는 시스템을 제공할 수 있다.

Description

연속적 유동장에서의 점도 측정 방법 및 시스템, 연속적 유동장에서의 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및 시스템
본 발명의 일 실시예는 임의의 연속적 유동장에서의 점도 측정 방법 및 시스템에 관한 것이며, 본 발명의 다른 실시예는 연속적 유동장에서 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및 시스템에 관한 것이다
고분자 용융체 및 솔루션, 입자현탁액, 슬러리, 액적계 등 유변학적 복잡유체(rheologically complex fluid)는 미세구조와 유체역학적 상호작용으로 전단담화(shear-thinning), 항복응력(yield stress) 등 복잡한 점도의 변화를 보이며, 화학공정, 고분자가공, 전자재료(디스플레이 및 이차전지), 식품, 화장품, 페인트, 수처리, 석유시추 등 다양한 공정에 적용되고 있다.
이러한 복잡 유체의 점도를 측정하는 기존의 방법은 기본적으로 유체의 샘플을 취하여 다음 중 하나의 방법을 이용하고 있다. (i) 평판사이에 유체를 넣고 한쪽 평판에 전단력을 주어 전단율을 측정하여 이 둘 사이의 관계를 통해 점도를 측정할 수 있다. (ii) 간단한 원형단면 혹은 얇은 직사각형 미세관에 유체를 흘려 압력차와 유량의 관계를 이용하여 점도를 측정할 수 있다.
그런데, 위의 두 방법 모두 운동량보존(힘 평형)의 원리로부터 유도되기 때문에, 매우 간단한 형상(원형평판, 원형단면 미세관, 직사각형 미세관)에 대해서만 적용이 가능할 수 있다.
한편, 기존의 제한된 교반기 유동에서만 스케일링 개념과 경험적 접근으로 적용되고 있는 에너지소산율 기반의 유동정량화 기법인 Metzner-Otto 기법이 있다. Metzner-Otto는 교반시스템에서 전체 유동장을 대표하는 평균 전단율이 있다고 가정하였고, 이 평균 전단율은 임펠러의 속도와 비례한다는 상관 관계를 정의하였으며, 뉴턴유체와 비뉴턴유체의 에너지소산율의 동일성을 이용하여 비뉴턴유체 교반기 내 유동의 유효전단율과 유효점도를 정의하였다. 본 발명은 이와 유사한 에너지소산율 기반의 정량화 기법을 입구와 출구가 있는 모든 연속적 유동장에 대하여 적용하도록 개발한 기술이다.
종래기술의 예로 미국 특허 6,412,337을 들 수 있다. 이 종래기술은 Metzner-Otto의 개념을 확장하여 정적교반기(static mixer)에서 점도측정을 구현하였다. 에너지소산율의 동일성을 이용한 개념은 같으나 유체의 점도모델을 멱급수(power-law) 유체로 가정하고 멱급수 유체의 두 가지 계수(consistency index 및 power-law index)를 찾고자 “두 개의 정적교반기(static mixer)를 연결”하여 각각 압력강하와 유량을 측정하였다. 반면, 본 발명은, 점도모델을 미리 정하지 않고, 임의의 유동장에서 단 한 번의 압력강하와 유량만을 측정하여 바로 점도를 측정할 수 있으므로 위 종래기술과 상이하며 적용범위가 훨씬 넓을 수 있다. 적용범위가 넓다는 것은 다룰 수 있는 유체의 점도모델이 다양하며, 정적교반기가 아닌 어떠한 형상의 일반적인 유동장에 대해서도 적용이 가능함을 의미할 수 있다.
한편, 연속적 유동장에 있어, 비뉴턴 유체의 물성에 대한 유량과 압력강하의 관계는 매우 상이하게 나타나는데, 종래에는 유동해석이나 실험을 통해 각 유체마다 유량과 압력강하의 관계를 개별적으로 구해야 했으므로 매우 번거러움이 있었다.
예를 들어, 고분자 가공에 사용되는 압출다이의 다이특성(die characteristics)이라고 불리는 유량과 압력강하 관계는 공정조건 등을 정하는데 있어 매우 중요한 정보인데, 유량과 압력강하의 관계는 사용하는 고분자의 종류 및 온도에 따라 모두 상이하게 나타났으므로, 이용하는 유체마다 별도의 실험 및 해석을 통해 구해야 하는 번거로움이 있었다.
본 발명은 임의의 연속적 유동장에 있어서 유동장의 유동수(flow number)를 구하고 이를 이용하여, 유량과 압력강하만을 측정함으로써 유체의 점도거동을 손쉽게 측정할 수 있는 방법을 제공하기 위한 것이다.
또한, 입구와 출구가 있는 임의적 형태의 연속적 유동장 내에서 공정 중에(in-situ) 실제 시스템에서 직접적으로(on-site) 유체의 점도를 측정할 수 있는 방법을 제공하기 위한 것이다.
아울러, 본 발명은 임의의 연속적 유동장에 있어서 유동장의 유동 특성 및 비뉴턴 유체의 점도거동만을 준비하면 비뉴턴 유체의 압력강하 또는 유량을 손쉽게 예측할 수 있는 방법 및 시스템을 제공하기 위한 것이다.
본 발명의 일 실시예 중 일측면에 따른 연속적 유동장에서의 점도 측정 방법은, 입구와 출구를 갖는 특정 형상의 연속적 유동장에서의 점도를 측정하는 방법으로서, 상기 유동장에서의 유동수를 준비하는 단계; 상기 유동장에서의 유체의 유량 및 압력강하를 측정하는 단계; 및 상기 유량 및 상기 압력강하를 이용하여 평균에너지소산율을 산출하고, 상기 유동장에서의 유동수 및 상기 평균에너지소산율을 기초로 유효전단율에 따른 유체의 점도를 도출하는 단계를 포함할 수 있다.
여기서, 상기 유체의 점도를 도출하는 단계는 하기 수학식1및 수학식2를 이용하여 상기 유효전단율에 따른 유체의 점도를 도출할 수 있다.
[수학식1]
Figure PCTKR2018004117-appb-I000001
[수학식2]
Figure PCTKR2018004117-appb-I000002
여기서,
Figure PCTKR2018004117-appb-I000003
는 상기 유동장의 평균에너지소산율로서 상기 유량, 상기 압력강하 및 유동장의 부피에 대한 함수이고,
Figure PCTKR2018004117-appb-I000004
는 상기 유동장의 유효전단율,
Figure PCTKR2018004117-appb-I000005
는 상기 유체의 점도,
Figure PCTKR2018004117-appb-I000006
는 상기 유동장의 겉보기 전단율, Kp 는 에너지소산율계수, Ks 는 유효전단율계수.
여기서, 상기 연속적 유동장은 복수개의 입구와 단일 출구를 구비하며, 상기 유체의 점도를 도출하는 단계는 하기 수학식 A을 이용하여 총에너지소산율을 산출하고, 상기 총에너지소산율 및 상기 유동장의 부피를 기초로 평균에너지소산율을 산출할 수 있다.
[수학식 A]
Figure PCTKR2018004117-appb-I000007
여기서, n은 입구의 수량,
Figure PCTKR2018004117-appb-I000008
는 각 입구와 단일 출구 사이에서의 유체의 압력강하,
Figure PCTKR2018004117-appb-I000009
는 각 입구에서의 유체의 유량.
여기서, 상기 연속적 유동장은 단일 입구와 복수개의 출구를 구비하며, 상기 유체의 점도를 도출하는 단계는 하기 수학식 B을 이용하여 총에너지소산율을 산출하고, 상기 총에너지소산율 및 상기 유동장의 부피를 기초로 평균에너지소산율을 산출할 수 있다.
[수학식 B]
Figure PCTKR2018004117-appb-I000010
여기서, n은 출구의 수량,
Figure PCTKR2018004117-appb-I000011
는 단일 입구와 각 출구 사이에서의 유체의 압력강하,
Figure PCTKR2018004117-appb-I000012
는 각 출구에서의 유체의 유량.
여기서, 상기 유동장에서의 유동수는 에너지소산율계수 Kp 를 포함하며, 상기 유동장에서의 유동수를 준비하는 단계는 상기 에너지 에너지소산율계수 Kp 를 사전에 획득하는 단계를 포함하고, 상기 에너지소산율계수 Kp 를 사전에 획득하는 단계는, 점도를 알고 있는 뉴턴유체를 상기 유동장에 주입하는 단계; 상기 유동장에서의 상기 뉴턴유체의 유량 및 압력강하를 측정하는 단계; 상기 뉴턴유체의 유량 및 압력강하를 이용하여 상기 뉴턴유체의 평균에너지소산율을 구하는 단계; 상기 뉴턴유체의 밀도, 평균속도 및 점도, 상기 유동장의 특성길이, 상기 뉴턴유체의 겉보기 전단율, 상기 뉴턴유체의 평균에너지소산율을 이용하여 레이놀즈수 및 파워수를 구하는 단계; 및 상기 레이놀즈수, 상기 파워수 및 상기 에너지소산율계수 Kp 간의 관계를 이용하여 상기 에너지소산율계수 Kp 를 구하는 단계를 포함할 수 있다.
여기서, 상기 유동장에서의 유동수는 에너지소산율계수 Kp 를 포함하며, 상기 유동장에서의 유동수를 준비하는 단계는 상기 에너지 에너지소산율계수 Kp 를 사전에 획득하는 단계를 포함하고, 상기 에너지소산율계수 Kp 를 사전에 획득하는 단계는, 뉴턴유체를 이용하여 상기 유동장의 속도장을 구하는 단계; 상기 뉴턴유체의 점도와 상기 유동장의 미소지점에서의 전단율의 제곱을 곱하여 국부 에너지소산율을 구하는 단계; 상기 국부 에너지소산율을 상기 유동장 전체에 대하여 적분하여 총 에너지소산율을 구하는 단계; 상기 총 에너지소산율을 상기 유동장의 부피로 나누어 상기 뉴턴유체의 평균에너지소산율을 구하는 단계; 상기 뉴턴유체의 밀도, 평균속도 및 점도, 상기 유동장의 특성길이, 상기 뉴턴유체의 겉보기 전단율, 상기 뉴턴유체의 평균에너지소산율을 이용하여 레이놀즈수 및 파워수를 구하는 단계; 및 상기 레이놀즈수, 상기 파워수 및 상기 에너지소산율계수 Kp 간의 관계를 이용하여 상기 에너지소산율계수 Kp 를 구하는 단계를 포함할 수 있다.
여기서, 상기 유동장에서의 유동수는 유효전단율계수 Ks 를 포함하며, 상기 유동장에서의 유동수를 준비하는 단계는 상기 유효전단율계수 Ks 를 사전에 획득하는 단계를 포함하고, 상기 유효전단율계수 Ks 를 사전에 획득하는 단계는, 점도거동을 알고 있는 비뉴턴유체를 상기 유동장에 주입하는 단계; 상기 유동장에서의 상기 비뉴턴유체의 유량 및 압력강하를 측정하는 단계; 상기 비뉴턴유체의 유량 및 압력강하를 이용하여 상기 비뉴턴유체의 평균에너지소산율 및 파워수를 구하는 단계; 상기 비뉴턴유체의 파워수와 동일한 값을 가지는 뉴턴유체의 파워수에 대응되는 뉴턴유체의 레이놀즈수를 찾고, 상기 뉴턴유체의 레이놀즈수를 유효 레이놀즈수로 간주하는 단계; 상기 유효 레이놀즈수, 상기 비뉴턴유체의 밀도, 평균속도, 상기 유동장의 특성길이를 이용하여 상기 비뉴턴유체의 점도를 구하고, 상기 점도를 유효 점도로 간주하는 단계; 상기 유효 점도와 상기 점도거동을 이용하여 상기 유동장의 유효전단율을 구하는 단계; 및 상기 유효전단율과 겉보기 전단율 간의 관계를 이용하여 상기 유효전단율계수 Ks 를 구하는 단계를 포함할 수 있다.
여기서, 상기 유동장에서의 유동수는 유효전단율계수 Ks 를 포함하며, 상기 유동장에서의 유동수를 준비하는 단계는 상기 유효전단율계수 Ks 를 사전에 획득하는 단계를 포함하고, 상기 유효전단율계수 Ks 를 사전에 획득하는 단계는, 점도거동을 알고 있는 비뉴턴유체를 이용하여 유동해석을 수행하는 단계; 상기 비뉴턴유체의 점도와 상기 유동장의 미소지점에서의 전단율의 제곱을 곱하여 국부 에너지소산율을 구하는 단계; 상기 국부 에너지소산율을 상기 유동장 전체에 대하여 적분하여 총 에너지소산율을 구하는 단계; 상기 총 에너지소산율을 상기 유동장의 부피로 나누어 상기 비뉴턴유체의 평균에너지소산율을 구하는 단계; 상기 비뉴턴유체의 밀도, 평균속도, 겉보기 전단율 및 평균에너지소산율을 이용하여 파워수를 구하는 단계; 상기 비뉴턴유체의 파워수와 동일한 값을 가지는 뉴턴유체의 파워수에 대응되는 뉴턴유체의 레이놀즈수를 찾고, 상기 뉴턴유체의 레이놀즈수를 유효 레이놀즈수로 간주하는 단계; 상기 유효 레이놀즈수, 상기 비뉴턴유체의 밀도, 평균속도, 상기 유동장의 특성길이를 이용하여 상기 비뉴턴유체의 점도를 구하고, 상기 점도를 유효 점도로 간주하는 단계; 상기 유효 점도와 상기 점도거동을 이용하여 상기 유동장의 유효전단율을 구하는 단계; 및 상기 유효전단율과 겉보기 전단율 간의 관계를 이용하여 상기 유효전단율계수 Ks 를 구하는 단계를 포함할 수 있다.
본 발명의 일 실시예 중 다른 측면에 따른 연속적 유동장에서의 점도 측정 시스템은, 입구와 출구를 갖는 특정 형상의 연속적 유동장에서의 점도를 측정하는 시스템으로서, 상기 유동장에서의 유동수를 저장하는 유동수저장부; 상기 유동장에서의 유체의 유량을 측정하는 유량측정부; 상기 유동장에서의 압력강하를 산출하기 위한 압력측정부; 및 상기 측정된 유량 및 압력강하를 이용하여 평균에너지소산율을 산출하고, 상기 유동장에서의 유동수 및 상기 평균에너지소산율을 기초로 유효전단율에 따른 유체의 점도를 도출하는 도출부;를 포함할 수 있다.
여기서, 상기 도출부는 하기 수학식1및 수학식2를 이용하여 상기 유효전단율에 따른 유체의 점도를 도출할 수 있다.
[수학식1]
*
Figure PCTKR2018004117-appb-I000013
[수학식2]
Figure PCTKR2018004117-appb-I000014
여기서,
Figure PCTKR2018004117-appb-I000015
는 상기 유동장의 평균에너지소산율로서 상기 유량, 상기 압력강하 및 유동장의 부피에 대한 함수이고,
Figure PCTKR2018004117-appb-I000016
는 상기 유동장의 유효전단율,
Figure PCTKR2018004117-appb-I000017
는 상기 유체의 점도,
Figure PCTKR2018004117-appb-I000018
는 상기 유동장의 겉보기 전단율, Kp 는 에너지소산율계수, Ks 는 유효전단율계수.
여기서, 상기 연속적 유동장은 복수개의 입구와 단일 출구를 구비하며, 상기 도출부는 하기 수학식 A을 이용하여 총에너지소산율을 산출하고, 상기 총에너지소산율 및 상기 유동장의 부피를 기초로 평균에너지소산율을 산출할 수 있다.
[수학식 A]
*
Figure PCTKR2018004117-appb-I000019
여기서, n은 입구의 수량,
Figure PCTKR2018004117-appb-I000020
는 각 입구와 단일 출구 사이에서의 유체의 압력강하,
Figure PCTKR2018004117-appb-I000021
는 각 입구에서의 유체의 유량.
여기서, 상기 연속적 유동장은 단일 입구와 복수개의 출구를 구비하며, 상기 유체의 점도를 도출하는 단계는 하기 수학식 B을 이용하여 총에너지소산율을 산출하고, 상기 총에너지소산율 및 상기 유동장의 부피를 기초로 평균에너지소산율을 산출할 수 있다.
[수학식 B]
Figure PCTKR2018004117-appb-I000022
여기서, n은 출구의 수량,
Figure PCTKR2018004117-appb-I000023
는 단일 입구와 각 출구 사이에서의 유체의 압력강하,
Figure PCTKR2018004117-appb-I000024
는 각 출구에서의 유체의 유량.
본 발명의 다른 실시예에 따른 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법은, 입구와 출구를 갖는 특정 형상의 연속적 유동장에서 유동하는 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법으로서, 상기 유동장에서의 유동수를 준비하는 단계; 상기 비뉴턴 유체의 점도거동 정보를 준비하는 단계; 및 상기 유동장에서의 유동수 및 상기 점도거동 정보를 기초로 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 중 어느 하나의 정보로부터 다른 하나의 정보를 도출하는 단계를 포함할 수 있다.
여기서, 상기 다른 하나의 정보를 도출하는 단계는 하기 수학식6, 수학식7 및 수학식 8 중 적어도 하나를 이용할 수 있다.
[수학식6]
Figure PCTKR2018004117-appb-I000025
[수학식7]
Figure PCTKR2018004117-appb-I000026
[수학식8]
Figure PCTKR2018004117-appb-I000027
여기서, Np 는 파워수, P 는 응력에 따른 전체 파워로서 상기 유량과 상기 압력강하의 곱,
Figure PCTKR2018004117-appb-I000028
는 상기 유동장의 겉보기 전단율,
Figure PCTKR2018004117-appb-I000029
는 상기 유동장의 유효전단율, Re 는 레이놀즈수, Kp 는 에너지소산율계수, Ks 는 유효전단율계수.
여기서, 상기 유동장에서의 유동수는 에너지소산율계수 Kp 을 포함하며, 상기 다른 하나의 정보를 추출하는 단계는, 상기 유동장의 겉보기 전단율과 유효전단율계수 Ks 간의 관계를 이용하여 상기 유동장의 유효전단율을 구하는 단계; 상기 유동장의 유효전단율과 상기 점도거동을 이용하여 유효점도를 구하는 단계; 유체의 평균속도, 밀도 및 점도, 상기 유동장의 특성길이 간의 관계와 상기 유효점도를 이용하여 유효레이놀즈수를 구하는 단계; 상기 유효전단율계수 Ks 와 상기 유효레이놀즈수를 이용하여 파워수를 구하는 단계;및 유체의 평균속도, 밀도, 겉보기 전단율, 상기 유동장에서의 유체 부피 및 상기 파워수를 이용하여 응력에 따른 전체 파워를 구하는 단계;를 포함하며, 상기 응력에 따른 전체 파워를 구하는 단계를 통해 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 간의 관계를 구할 수 있다.
여기서, 상기 다른 하나의 정보를 도출하는 단계는, 상기 어느 하나의 정보가 상기 유동장에서의 비뉴턴 유체의 유량 정보이며, 상기 유동장에서의 비뉴턴 유체의 유량 정보를 통해 상기 겉보기 전단율 및 유체의 평균속도 중 적어도 하나를 구하는 단계를 더 포함할 수 있다.
본 발명의 다른 실시예에 따른 다른 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 예측시스템은, 입구와 출구를 갖는 특정 형상의 연속적 유동장에서 유동하는 비뉴턴 유체의 유량 또는 압력강하를 예측할 수 있는 시스템으로서, 상기 유동장에서의 유동수를 저장하는 유동수저장부; 상기 비뉴턴 유체의 점도거동 정보를 저장하는 점도거동정보저장부; 및 상기 유동장에서의 유동수 및 상기 점도거동 정보를 기초로, 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 중 어느 하나의 정보로부터 다른 하나의 정보를 도출하는 도출부를 포함할 수 있다.
여기서, 상기 도출부는 하기 수학식6, 수학식7 및 수학식 8 중 적어도 하나를 이용할 수 있다.
[수학식6]
Figure PCTKR2018004117-appb-I000030
[수학식7]
Figure PCTKR2018004117-appb-I000031
[수학식8]
Figure PCTKR2018004117-appb-I000032
여기서, Np 는 파워수, P 는 응력에 따른 전체 파워로서 상기 유량과 상기 압력강하의 곱,
Figure PCTKR2018004117-appb-I000033
는 겉보기 전단율,
Figure PCTKR2018004117-appb-I000034
는 유효전단율, Re 는 레이놀즈수, Kp 는 에너지소산율계수, Ks 는 유효전단율계수.
여기서, 상기 유동장에서의 유동수는 에너지소산율 Kp, 유효전단율계수 Ks 를 포함하며, 상기 도출부는, 겉보기 전단율과 유효전단율계수 Ks 간의 관계를 이용하여 유효전단율을 구하는 유효전단율 산출부; 상기 유효전단율과 상기 점도거동을 이용하여 유효점도를 구하는 유효점도 산출부; 유체의 평균속도, 밀도 및 점도, 상기 유동장의 특성길이 간의 관계와 상기 유효점도를 이용하여 유효레이놀즈수를 구하는 유효레이놀즈수 산출부; 상기 유효전단율계수 Ks 와 상기 유효레이놀즈수를 이용하여 파워수를 구하는 파워수 산출부;및 유체의 평균속도, 밀도, 겉보기 전단율, 상기 유동장에서의 유체 부피 및 상기 파워수를 이용하여 응력에 따른 전체 파워를 구하는 전체파워 산출부;를 포함하며, 상기 전체파워 산출부는, 상기 구해진 응력에 따른 전체 파워를 기초로 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 간의 관계를 구할 수 있다.
여기서, 상기 어느 하나의 정보가 상기 유동장에서의 비뉴턴 유체의 유량 정보이며, 상기 도출부는 상기 유동장에서의 비뉴턴 유체의 유량 정보를 통해 상기 겉보기 전단율 및 유체의 평균속도 중 적어도 하나를 구하는 유량정보이용부를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 임의의 연속적 유동장에 있어서 유동장의 유동수(flow number)를 구하고 이를 이용하면, 유량과 압력강하만을 측정함으로써 유체의 점도거동을 손쉽게 측정할 수 있는 방법 및/또는 시스템을 제공할 수 있다.
또한, 입구와 출구가 있는 임의적 형태의 연속적 유동장 내에서 공정 중에(in-situ) 실제 시스템에서 직접적으로(on-site) 유체의 점도를 측정할 수 있는 방법 및/또는 시스템을 제공할 수 있다.
본 발명의 다른 실시예에 따르면, 임의의 연속장 유동장에 있어서 유동장의 유동수 및 유동장에서 흐르는 비뉴턴 유체의 전단율에 따른 점도거동 만을 알고 있으면, 해당 유동장에서의 압력강하 또는 유량을 손쉽게 예측할 수 있는 방법 및/또는 시스템을 제공할 수 있다.
도 1은 유변학적 복잡유체의 전단율과 점도 사이의 관계를 그래프로 나타낸 도면이다.
도 2는 단일 입구와 단일 출구를 구비하는 유동장의 일 예를 개략적으로 도시한 개념도이다.
도 3은 복수개의 입구와 단일 출구를 구비하는 유동장의 일 예를 개략적으로 도시한 개념도이다.
도 4은 단일 입구와 복수개의 출구를 구비하는 유동장의 일 예를 개략적으로 도시한 개념도이다.
도 5는 본 발명의 일 실시예 중 다른 측면에 따른 유체 점도 측정 시스템의 구성을 개략적으로 나타낸 개념도 이다.
도 6는 다양한 비율의 확대/축소 원형파이프에서의 주어진 Carbopol 981 수용액의 유동에 대하여 시뮬레이션을 통해 전단율에 따른 점도를 구한 결과와, 미리 구한 에너지소산율계수와 유효전단율계수를 기초로 유량과 압력강하 정보만을 이용하여 점도를 구한 결과가 모두 일치함을 보여주는 결과 그림이다.
도 7a는 특정 형상의 다이(Die)의 모식도이다.
도 7b는 도 7a에 도시된 다이에서의 비뉴턴유체 모델 두가지의 유동에 대하여 시뮬레이션을 통해 전단율에 따른 점도를 구한 결과와, 미리 구한 에너지소산율계수와 유효전단율계수를 기초로 유량과 압력강하 정보만을 이용하여 점도를 구한 결과가 모두 일치함을 보여주는 그림이다.
도 8은 본 발명의 다른 실시예 중 다른 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 시스템의 구성을 블록화한 개념도이다.
도 9은 확대/축소 원형파이프 유동에 대하여 임의의 유량에 대해 대응되는 압력강하를 유동해석으로 시뮬레이션한 결과와, 본 발명의 다른 실시예 중 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및/또는 시스템을 이용하여 임의의 유량에 대응되는 압력강하를 예측한 결과가 거의 일치함을 보여주는 그림이다.
도 10은 "Kenics static mixer"유동에 대하여 임의의 유량에 대해 대응되는 압력강하를 유동해석으로 시뮬레이션한 결과와, 본 발명의 다른 실시예 중 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및/또는 시스템을 이용하여 임의의 유량에 대응되는 압력강하를 예측한 결과가 거의 일치함을 보여주는 그림이다.
도 11은 "Body-centered cubic(BCC) 구조의 다공질매질"내 유동에 대하여 임의의 유량에 대해 대응되는 압력강하를 유동해석으로 시뮬레이션한 결과와, 본 발명의 다른 실시예 중 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및/또는 시스템을 이용하여 임의의 유량에 대응되는 압력강하를 예측한 결과가 거의 일치함을 보여주는 그림이다.
이하에서는 첨부된 도면을 참조하여 구체적인 실시예들을 상세히 설명하도록 한다. 아울러, 관련된 공지 구성 또는 공지 기능에 대한 구체적인 설명이 상기 실시예들의 요지를 흐릴 수 있다고 판단되는 경우에는 그 구체적인 설명을 생략한다.
한편, 단수의 표현은 문맥상 명백하게 단수만을 가리키는 것이 아닌 한 복수의 표현을 포함한다. 그리고 특정 부분이 특정 구성을 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 상기 특정 부분은 상기 특정 구성 외의 다른 구성을 제외하는 것이 아니라 상기 다른 구성을 더 포함할 수 있음을 의미한다.
유체 점도 측정 방법
이하에서는 본 발명의 일 실시예 중 일 측면에 따른 유체 점도 측정 방법을 상세히 설명한다. 본 일 실시예 중 일 측면에 따른 유체 점도 측정 방법은 파이프와 같이 입구 및 출구가 있는 특정 형상의 연속적 유동장에서 유동하는 불특정다수 유체들의 유동 특성을 정량화한 유동수를 준비하면, 실제 그 유동장에서 유동하는 유체의 유량과 압력강하만을 측정하여 유체, 특히 비뉴턴 유체의 점도거동(점도, 유효전단율 및 이들의 관계)을 측정할 수 있는 방법에 관한 것이다.
이러한 유체 점도 측정 방법은, 유동장에서의 유동수를 준비하는 단계와, 유동장에서의 유체의 유량 및 압력강하를 측정하는 단계, 및 유량 및 압력강하를 이용하여 평균에너지소산율을 산출하고, 유동장에서의 유동수 및 상기 평균에너지소산율을 기초로 유효전단율에 따른 유체의 점도를 도출하는 단계를 포함할 수 있다.
한편, 특정 형상의 유동장에서 유동하는 불특정다수 복잡 유체들의 유동 특성은 유체들의 종류에 관계없이 정량화된 유동수, 즉 무차원화된 수일 수 있으며, 이러한 유동장에서의 유동수는 에너지소산율계수(coefficient of energy dissipation rate) Kp 및/또는 유효전단율계수(coefficient of effective shear rate) Ks 를 포함할 수 있다. 이러한 유동장에서의 유동수는 특정 형상의 유동장에 대해 에너지소산을 나타낼 수 있는 무차원화된 수 Np 와 레이놀즈 수 Re 와의 관계를 이용하여 산출될 수 있는데, 유동장에서의 유동수를 준비하는 단계는 후술하기로 한다.
유동장에서의 유체의 유량 및 압력강하를 측정하는 단계에서는, 유량계를 이용하여 유량을 측정할 수 있고, 압력계를 이용하여 압력강하를 측정할 수 있다. 압력강하는 점도 측정 구간의 시작점과 종료점에서 각 압력을 비교함으로써 산출될 수 있다.
유체의 유효전단율에 따른 점도를 도출하는 단계는, 유효전단율
Figure PCTKR2018004117-appb-I000035
과 이에 해당하는 점도 μ를 아래의 수학식 1 및 수학식 2를 이용하여 도출할 수 있다. 유체의 유효전단율
Figure PCTKR2018004117-appb-I000036
과 점도 μ 사이의 관계는 도 1에 도시된 유변학적 복잡유체의 전단율과 점도 사이의 관계와 같을 수 있다.
[수학식1]
Figure PCTKR2018004117-appb-I000037
[수학식2]
Figure PCTKR2018004117-appb-I000038
여기서,
Figure PCTKR2018004117-appb-I000039
는 유동장의 평균에너지소산율,
Figure PCTKR2018004117-appb-I000040
는 유동장의 유효전단율,
Figure PCTKR2018004117-appb-I000041
는 유체의 점도,
Figure PCTKR2018004117-appb-I000042
는 유동장의 겉보기 전단율, Kp 는 에너지소산율계수(coefficient of energy dissipation rate), Ks 는 유효전단율계수(coefficient of effective shear rate)을 의미할 수 있다.
평균에너지소산율
Figure PCTKR2018004117-appb-I000043
은 총에너지소산율을 유동장의 부피로 나눈 것으로 나타낼 수 있으며, 총에너지소산율은 층류영역에서의 유체의 유량 및 압력강하를 기초로 산출될 수 있으므로, 평균에너지소산율
Figure PCTKR2018004117-appb-I000044
는 유체의 유량, 압력강하 및 유동장의 부피에 대한 함수일 수 있다.
겉보기전단율
Figure PCTKR2018004117-appb-I000045
은 유동장 마다 다르게 정의할 수 있으며 연구자가 선택할 수 있다. 예를 들어, 입구반지름이 R인 원형단면 파이프에서 겉보기 전단율은
Figure PCTKR2018004117-appb-I000046
로 정의될 수 있다. 즉, 겉보기 전단율 또한 유체의 유량에 대한 함수일 수 있다.
유효전단율
Figure PCTKR2018004117-appb-I000047
은 수학식 2에 따라 특정 유동장의 형상에 따라 결정되는 유동수 중 하나인 Kp 와 겉보기전단율
Figure PCTKR2018004117-appb-I000048
이므로, 유동장이 결정되면 유체의 유량에 대한 함수로 취급할 수 있다.
도 2는 단일 입구와 단일 출구를 구비하는 유동장의 일 예를 개략적으로 도시한 개념도이다.
도 2에 도시된 바와 같은 단일 입구와 단일 출구를 구비하는 유동장의 경우에는 입구 또는 출구 중 적어도 어느 하나의 위치에서 유량을 측정하여 그 측정된 값을 유체의 유량 값으로 획득하고, 입구에서 측정되는 압력과 출구에서 측정되는 압력을 비교하여 그 차를 유체의 압력강하 값으로 획득하며, 획득된 유체의 유량 값과 압력강하 값의 곱(총에너지소산율)을 유동장의 부피로 나누면 평균에너지소산율
Figure PCTKR2018004117-appb-I000049
을 산출할 수 있다.
도 3은 복수개의 입구와 단일 출구를 구비하는 유동장의 일 예를 개략적으로 도시한 개념도이다.
도 3에 도시된 바와 같은 복수개의 입구와 단일 출구를 구비하는 유동장의 경우에는, 복수개의 입구에서 유량을 측정하여 그 측정된 값을 각 입구에서의 유체의 유량 값(
Figure PCTKR2018004117-appb-I000050
, 도 3의 유동장의 경우에는
Figure PCTKR2018004117-appb-I000051
,
Figure PCTKR2018004117-appb-I000052
)으로 획득하고, 복수개의 입구에서 측정되는 압력 각각과 출구에서 측정되는 압력을 비교하여 그 차를 각 입구와 단일 출구 사이에서의 유체의 압력강하 값(
Figure PCTKR2018004117-appb-I000053
, 도 3의 유동장의 경우에는
Figure PCTKR2018004117-appb-I000054
,
Figure PCTKR2018004117-appb-I000055
)으로 획득하며, 획득된 각 입구에서의 유체의 유량 값(
Figure PCTKR2018004117-appb-I000056
)과 각 입구와 단일 출구 사이에서의 유체의 압력강하 값(
Figure PCTKR2018004117-appb-I000057
)을 기초로 아래의 수학식 A를 이용하여 총에너지소산율을 산출할 수 있다.
[수학식 A]
Figure PCTKR2018004117-appb-I000058
여기서, n은 입구의 수량,
Figure PCTKR2018004117-appb-I000059
는 각 입구와 단일 출구 사이에서의 유체의 압력강하,
Figure PCTKR2018004117-appb-I000060
는 각 입구에서의 유체의 유량을 의미할 수 있다.
그리고, 산출된 총에너지소산율을 을 유동장의 부피로 나누면 평균에너지소산율
Figure PCTKR2018004117-appb-I000061
을 산출할 수 있다.
도 3에 도시된 바와 같은 유동장의 경우에는, 겉보기 전단율
Figure PCTKR2018004117-appb-I000062
은 단일 출구에서의 유량(
Figure PCTKR2018004117-appb-I000063
)을 단일 출구에서의 단면적으로 나눈 값으로 정의할 수 있다.
도 4은 단일 입구와 복수개의 출구를 구비하는 유동장의 일 예를 개략적으로 도시한 개념도이다.
도 4에 도시된 바와 같은 복수개의 입구와 단일 출구를 구비하는 유동장의 경우에는, 복수개의 출구에서 유량을 측정하여 그 측정된 값을 각 출구에서의 유체의 유량 값(
Figure PCTKR2018004117-appb-I000064
, 도4의 유동장의 경우에는
Figure PCTKR2018004117-appb-I000065
,
Figure PCTKR2018004117-appb-I000066
)으로 획득하고, 단일 입구에서 측정되는 압력과 복수 개의 출구에서 측정되는 압력 각각을 비교하여 그 차를 단일 입구와 각 출구 사이에서의 유체의 압력강하 값(
Figure PCTKR2018004117-appb-I000067
, 도 4의 유동장의 경우에는
Figure PCTKR2018004117-appb-I000068
,
Figure PCTKR2018004117-appb-I000069
)으로 획득하며, 획득된 각 출구에서의 유체의 유량 값(
Figure PCTKR2018004117-appb-I000070
)과 단일 입구와 각 출구 사이에서의 유체의 압력강하 값(
Figure PCTKR2018004117-appb-I000071
)을 기초로 아래의 수학식 B를 이용하여 총에너지소산율을 산출할 수 있다.
[수학식 B]
Figure PCTKR2018004117-appb-I000072
여기서, n은 출구의 수량,
Figure PCTKR2018004117-appb-I000073
는 단일 입구와 각 출구 사이에서의 유체의 압력강하,
Figure PCTKR2018004117-appb-I000074
는 각 출구에서의 유체의 유량.
그리고, 산출된 총에너지소산율을 유동장의 부피로 나누면 평균에너지소산율
Figure PCTKR2018004117-appb-I000075
을 산출할 수 있다.
도 4에 도시된 바와 같은 유동장의 경우에는, 겉보기 전단율
Figure PCTKR2018004117-appb-I000076
은 단일 입구에서의 유량(
Figure PCTKR2018004117-appb-I000077
)을 단일 입구에서의 단면적으로 나눈 값으로 정의할 수 있다.
이하에서는 유동장에서의 유동수를 준비하는 단계를 설명하기로 한다.
유동장에서의 유동수를 준비하는 단계는 에너지소산율계수 Kp 를 사전에 획득하는 단계를 포함하여, 에너지소산율계수 Kp 는 해당 유동장에 대하여 사전에 얻어질 수 있다. 예를 들어, 에너지소산율계수 Kp 는 실험적 기법으로 구할 수 있다.
먼저, 해당 유동장 시스템, 즉 특정 형상을 갖는 유동장에 점도를 알고 있는 뉴턴유체를 주입하고 층류영역에서의 유량과 압력강하를 측정할 수 있다. 참고로, 유량은 유량계를 이용하여 측정이 가능하고, 압력강하는 압력계를 이용하여 측정이 가능하다. 압력강하는 특정 구간의 시작점과 종료점에서 각 압력을 비교함으로써 산출될 수 있다.
그리고 이러한 층류영역에서의 유량과 압력강하 값, 그리고 유동장의 부피로부터 평균에너지소산율을 계산할 수 있다. 예를 들어, 도 2에 도시된 바와 같은 단일 입구 및 단일 출구를 구비하는 유동장에서의 평균에너지소산율
Figure PCTKR2018004117-appb-I000078
은 층류영역에서의 유량과 압력강하의 곱을 부피로 나눈 것으로 나타낼 수 있다.
이후, 에너지소산율 기반의 유동특성을 정량화하기 위한 두 개의 무차원 수(레이놀즈수 Re 및 파워수 Np)를 뉴턴유체의 밀도, 평균속도 및 점도, 해당 유동장의 특성길이, 겉보기 전단율, 뉴턴유체의 평균에너지소산율을 이용하여 구할 수 있다. 예를 들어, 다음의 수학식 3및 수학식 4와 같이 구할 수 있다.
[수학식 3]
Figure PCTKR2018004117-appb-I000079
여기서, ρ는 유체의 밀도,
Figure PCTKR2018004117-appb-I000080
는 유체의 평균속도, L은 유동장 시스템의 특성길이, μ는 유체의 점도를 의미할 수 있다.
구체적으로, 상기 수학식 3에서의 유체의 밀도 ρ, 유체의 점도 μ 는 해당 시스템에 주입되는 뉴턴유체의 물성이 이용될 수 있다. 상기 수학식 3에서의 평균속도
Figure PCTKR2018004117-appb-I000081
는 유량을 단면적으로 나눈 값일 수 있고, 시스템의 특성길이는 유동장의 형상에 따라 달라질 수 있다.
[수학식 4]
Figure PCTKR2018004117-appb-I000082
여기서,
Figure PCTKR2018004117-appb-I000083
는 유동장의 평균에너지소산율,
Figure PCTKR2018004117-appb-I000084
는 유동장의 겉보기 전단율을 의미할 수 있다.
구체적으로, 상기 수학식 4에서의 유동장의 평균에너지소산율
Figure PCTKR2018004117-appb-I000085
은 해당 시스템에 주입된 뉴턴유체의 층류영역에서의 유량과 압력강하 값, 그리고 유동장의 부피를 기초로 산출된 값일 수 있고, 겉보기전단율은
Figure PCTKR2018004117-appb-I000086
은 해당 시스템에 주입되는 뉴턴유체의 유량을 기초로 산출된 값일 수 있다.
상기 수학식 3 및 4에서, 우변의 값들은 이미 알고 있거나 속도센서 등 관련 장치를 이용해 측정할 수 있는 값이므로, 이를 이용하여 레이놀즈수 Re 및 파워수 NP를 구할 수 있다.
그리고, 레이놀즈수 Re, 파워수 NP 및 에너지소산율계수 KP 간의 관계를 나타내는 아래의 수학식 5를 이용하면 에너지소산율계수 KP 를 계산할 수 있다. 수학식5는 레이놀즈수가 작은 층류유동에서 성립하는 두 무차원수의 관계를 의미할 수 있다.
[수학식5]
Figure PCTKR2018004117-appb-I000087
이상에서는 실험적 기법으로 에너지소산율계수 KP 를 구하는 것을 설명하였으나, 에너지소산율계수 KP 는 수치해석적 기법을 통하여도 구할 수 있다. 예를 들어, 실험적 기법에서 사용되었던 뉴턴유체를 이용하여 해당 유동장에서의 속도장을 구할 수 있다. 그리고 뉴턴유체의 점도와 유동장의 미소지점에서의 전단율의 제곱을 곱하여 국부 에너지소산율 μγ2을 구하고, 이를 유동장 전체에 대해 적분하여 총 에너지소산율을 구할 수 있다. 상기와 같이 구해진 총 에너지소산율을 유동장의 부피로 나누어 평균에너지소산율을 구한 후 이를 이용하여 구할 수도 있다. 평균에너지소산율을 구한 이후로는 앞서 설명한 실험적 기법과 동일한 방법이 이용될 수 있다. 즉, 구해진 평균에너지소산율을 비롯한 정보들을 이용하여 레이놀즈수 및 파워수를 구하고, 레이놀즈수, 파워수 및 에너지소산율계수 KP 간의 관계를 이용하여 에너지소산율계수 KP 를 구할 수 있다.
유동장에서의 유동수를 준비하는 단계는 유효전단율계수 Ks 를 사전에 획득하는 단계를 포함하여, 유효전단율계수 Ks 역시 해당 유동장 시스템에 대하여 사전에 얻어질 수 있다. 예를 들어, 유효전단율계수 Ks 는 실험적 기법으로 구할 수 있다.
먼저, 해당 시스템, 즉 특정 형상을 갖는 유동장에 점도거동(점도-유효전단율 관계)을 알고 있는 비뉴턴유체(Xanthan gum 수용액 등)를 주입하고 유량과 압력강하를 측정할 수 있다. 비뉴턴유체의 점도거동(점도-유효전단율 관계)은 예를 들어, 도 1에 도시된 바와 같을 수 있다.
그리고 이러한 층류영역에서의 유량과 압력강하 값으로부터 비뉴턴유체의 평균에너지소산율
Figure PCTKR2018004117-appb-I000088
및 파워수 Np 를 계산할 수 있다.
구체적으로 비뉴턴유체의 평균에너지소산율
Figure PCTKR2018004117-appb-I000089
은 해당 시스템에 주입된 비뉴턴유체의 층류영역에서의 유량과 압력강하 값, 그리고 유동장의 부피를 기초로 산출될 수 있다. 또한, 파워수 Np 는, 해당 시스템에 주입되는 비뉴턴유체의 밀도 ρ, 비뉴턴유체의 층류영역에서의 유량을 기초로 산출된 비뉴턴유체의 평균에너지소산율
Figure PCTKR2018004117-appb-I000090
, 겉보기전단율
Figure PCTKR2018004117-appb-I000091
및 평균속도
Figure PCTKR2018004117-appb-I000092
를 기초로 수학식 4를 이용함으로써, 산출될 수 있다.
[수학식 4]
Figure PCTKR2018004117-appb-I000093
이후, 상기와 같이 계산된 파워수 Np 와 동일한 값을 가지는 뉴턴유체의 파워수 Np 에 대응되는 레이놀즈수를 찾을 수 있다. 이때의 레이놀즈수가 복잡유체의 유효 레이놀즈수 Reeff일 수 있다. 여기서, 뉴턴유체의 파워수 Np 와 이에 대응되는 레이놀즈수 Re 와의 관계는 앞서 계산된 에너지소산율 KP 과 수학식 5에 의해 정의될 수 있다.
그리고 상기 유효 레이놀즈수 Reeff 와 상기 비뉴턴유체의 밀도, 평균속도, 상기 유동장의 특성길이를 이용하여 점도를 계산할 수 있다. 예를 들어, 앞서 설명한 수학식 3이 이용될 수 있다. 이렇게 계산된 점도가 복잡유체의 유효점도 μeff일 수 있다.
[수학식 3]
Figure PCTKR2018004117-appb-I000094
여기서, ρ는 유체의 밀도,
Figure PCTKR2018004117-appb-I000095
는 유체의 평균속도, L은 유동장 시스템의 특성길이, μ는 유체의 점도를 의미할 수 있다.
구체적으로 레이놀즈수 Re는 상기 유효레놀즈수 Reeff가 이용되며, 유체의 밀도 ρ는 해당 시스템에 주입되는 비뉴턴유체의 밀도가 이용될 수 있다. 평균속도
Figure PCTKR2018004117-appb-I000096
는 유량을 단면적으로 나눈 값일 수 있고, 시스템의 특성길이는 유동장의 형상에 따라 달라질 수 있다.
그리고 상기 유효점도로부터 복잡유체의 점도거동(점도-유효전단율 관계)을 통해 유효전단율
Figure PCTKR2018004117-appb-I000097
을 찾을 수 있다.
최종적으로, 유효전단율과 겉보기 전단율 간의 관계, 즉 앞서 설명한 수학식 2를 이용하여 유효전단율계수 Ks를 찾을 수 있다.
[수학식2]
Figure PCTKR2018004117-appb-I000098
여기서,
Figure PCTKR2018004117-appb-I000099
는 유동장의 평균에너지소산율,
Figure PCTKR2018004117-appb-I000100
는 유동장의 유효전단율,
Figure PCTKR2018004117-appb-I000101
는 유체의 점도,
Figure PCTKR2018004117-appb-I000102
는 유동장의 겉보기 전단율, Kp 는 에너지소산율계수(coefficient of energy dissipation rate), Ks 는 유효전단율계수(coefficient of effective shear rate)을 의미할 수 있다.
한편, 유효전단율계수 Ks 도 수치해석적 기법을 통해 얻어질 수 있다. 예를 들어, 우선 점도거동을 알고 있는 상기 비뉴턴유체를 이용하여 상기 유동장에서의 유동해석을 수행할 수 있다. 그리고, 비뉴턴유체의 점도와 유동장의 미소지점에서의 전단율의 제곱을 곱하여 국부 에너지소산율 μγ2을 구하고, 이를 유동장 전체에 대해 적분하여 총 에너지소산율을 구할 수 있다. 상기와 같이 구해진 총 에너지소산율을 유동장의 부피로 나누어 평균에너지소산율을 구하고, 파워수 역시 수학식 4를 통해 구할 수 있다.
[수학식 4]
Figure PCTKR2018004117-appb-I000103
여기서, ρ는 유체의 밀도,
Figure PCTKR2018004117-appb-I000104
는 유체의 평균속도,
Figure PCTKR2018004117-appb-I000105
는 유동장의 평균에너지소산율,
Figure PCTKR2018004117-appb-I000106
는 유동장의 겉보기 전단율을 의미할 수 있다. 구체적으로, 수학식 4에서의 유체의 밀도 ρ 는 비뉴턴유체의 밀도가 이용되며, 유체의 평균속도
Figure PCTKR2018004117-appb-I000107
및 겉보기 전단율
Figure PCTKR2018004117-appb-I000108
은 시뮬레이션을 이용한 유동해석을 통해 취득할 수 있는 유량, 압력강하 등의 정보를 이용하여 도출된 결과가 이용될 수 있다.
평균에너지소산율와 파워수를 구한 이후로는 앞서 설명한 실험적 기법과 동일한 방법이 이용될 수 있다. 즉, 구해진 파워수 NP 와 동일한 값을 가지는 뉴턴유체의 파워수 NP 에 대응되는 레이놀즈수를 찾을 수 있다. 이때의 레이놀즈수가 복잡유체의 유효 레이놀즈수 Reeff 일 수 있다. 그리고 상기 유효 레이놀즈수와 수학식3을 이용하여 점도를 계산할 수 있다.
[수학식 3]
Figure PCTKR2018004117-appb-I000109
여기서, ρ는 유체의 밀도,
Figure PCTKR2018004117-appb-I000110
는 유체의 평균속도, L은 유동장 시스템의 특성길이, μ는 유체의 점도를 의미할 수 있다. 구체적으로, 수학식 3에서의 유체의 밀도 ρ는 비뉴턴유체의 밀도가 이용되며, 유체의 평균속도
Figure PCTKR2018004117-appb-I000111
는 시뮬레이션을 이용한 유동해석을 통해 취득할 수 있는 유량, 압력강하 등의 정보를 이용하여 도출된 결과가 이용될 수 있다.
이렇게 계산된 점도가 복잡유체의 유효점도 μeff일 수 있다. 그리고 상기 유효점도로부터 복잡유체의 점도거동(점도-유효전단율 관계)을 통해 유효전단율
Figure PCTKR2018004117-appb-I000112
을 찾을 수 있다. 최종적으로, 상기 수학식2를 이용하여 유효전단율계수 Ks를 찾을 수 있다.
앞서 설명한 에너지소산율계수 Kp 및 유효전단율계수 Ks는 유체의 유변물성과는 큰 관계가 없고 시스템(유동장)의 형태에만 관계되는 일종의 유동수(flow number)일 수 있다. 따라서, 특정 형태의 유동장에 대하여 에너지소산율계수와 유효전단율계수를 사전에 한 번만 구해놓으면, 이후로는 여러 복잡유체에 대한 유동특성을 정량화할 수 있다.
유체 점도 측정 시스템
이하에서는 본 발명의 일 실시예 중 다른 측면에 따른 유체 점도 측정 시스템을 설명한다. 유체 점도 측정시스템(100)은 입구와 출구를 갖는 특정 형상의 연속적 유동장(F)에서 유동하는 불특정다수 유체들의 유동 특성을 정량화한 유동수를 준비하면, 실제 그 유동장(F)에서 유동하는 유체의 유량과 압력강하만을 측정하여 유체, 특히 비뉴턴 유체의 점도거동(점도, 유효전단율 및 이들의 관계)을 측정할 수 있다. 이러한 유체 점도 측정시스템(100)은 앞서 설명하였던 유체 점도 측정 방법이 이용될 수 있다.
도 5는 본 발명의 일 실시예 중 다른 측면에 따른 유체 점도 측정 시스템의 구성을 개략적으로 나타낸 개념도 이다.
도 5를 참조하면 유체 점도 측정 시스템(100)은, 입구와 출구를 갖는 특정 형상의 연속적 유동장(F)에서의 점도를 측정하는 시스템으로서, 유동장(F)에서의 유동수를 저장하는 유동수저장부(110); 유동장(F)에서의 유체의 유량을 측정하는 유량측정부(120); 유동장(F)에서의 압력강하를 산출하기 위한 압력측정부(130); 및 측정된 유량 및 압력강하를 이용하여 평균에너지소산율을 산출하고, 유동장(F)에서의 유동수 및 평균에너지소산율을 기초로 유효전단율에 따른 유체의 점도를 도출하는 도출부(140);를 포함할 수 있다.
도 5에서는 유체 점도 측정 시스템(100)을 도 2에 도시된 바와 같이 단일 입구 및 단일 출구를 가지는 연속적 유동장(F)에 대해서 적용하는 일례로 도시하였으나, 유체 점도 측정 시스템(100)이 적용될 수 있는 연속적 유동장의 형상은 이에 한정하지 않는다. 즉, 유체 점도 측정 시스템(100)은 도 3 및 도 4와 같이 복수의 입구 및 단일 출구를 가지는 연속적 유동장, 단일 입구 및 복수 출구를 가지는 연속적 유동장, 그리고 도면으로 도시하지는 않았지만 복수 입구 및 복수 출구를 가지는 연속적 유동장에 대해서도 적용될 수 있다. 아울러, 유체 점도 측정 시스템(100)은 원형 단면과 같이 단순한 단면 형상 이외에도 복잡한 단면 형상을 가지는 연속적 유동장에 대해서도 적용될 수 있다.
이하에서는 설명의 편의상, 도 2에 도시된 바와 같은 단일 입구 및 단일 출구를 가지는 연속적 유동장(F)에 유체 점도 측정 시스템(100)을 적용하는 것을 중심으로 설명한다.
유동수저장부(110)는 입구 및 출구가 있는 특정 형상의 유동장(예를 들어, 원형단면의 파이프)에서 유동하는 불특정다수 유체들의 유동 특성을 정량화한 유동수 정보를 저장할 수 있다. 유동수저장부(110)는 각종 데이터를 저장할 수 있는 비휘발성 메모리, 휘발성 메모리, 플래시메모리(flash-memory), 하드디스크 드라이브(HDD) 또는 솔리드 스테이트 드라이브(SSD) 등으로 구현될 수 있다. 여기서, 유동장의 유동수는 해당 유동장 시스템에 대한 에너지소산율 Kp 및/또는 유효전단율계수 Ks 를 포함할 수 있으며, 유체 점도 측정 방법에서의 유동수를 준비하는 단계를 통해 준비될 수 있다. 이러한 유체 점도 측정 방법에서의 유동수를 준비하는 단계는 전술한 바 있으므로, 자세한 설명은 생략하기로 한다.
유량측정부(120)는 평균에너지소산율을 산출하기 위한 기초가 되는 정보인 유동장(F)에서의 유체의 유량을 측정할 수 있다. 이러한 유량측정부(120)는 입구 또는 출구 중 적어도 하나의 위치에 배치되는 유량계를 포함하여 유량계를 통해 유동장(F)에서의 유체의 유량을 측정할 수 있다.
압력측정부(130)는 평균에너지소산율을 산출하기 위한 기초가 되는 정보인 유동장(F)에서의 압력강하를 산출하기 위해 유동장(F)의 입구 및/또는 출구에서의 압력을 측정할 수 있다. 유동장(F)의 압력강하는 압력측정부(130)를 통해 측정된 유동장(F)의 입구와 출구에서의 각 압력의 차를 구하여 산출될 수 있다.
이러한 압력측정부(130)는 적어도 입구에 배치되는 제1압력센서(131)를 포함할 수 있다. 플라스틱과 같은 고분자 가공에 이용되는 압출기 또는 사출기에 설치되는 다이(Die)를 점도 측정의 대상인 연속적 유동장으로 하는 경우에는 다이(Die)의 출구가 대기압이므로, 이러한 유동장(F)의 압력강하는 제1압력센서(131)에서 측정하는 입구에서의 압력과, 미리 준비된 대기압 정보인 출구에서의 압력을 비교하여 산출될 수 있다.
출구에서의 압력이 대기압이 아닌 경우, 압력측정부(130)는 출구에 배치되는 제2압력센서(132)를 더 포함할 수 있다. 이러한 유동장(F)의 압력강하는 제1압력센서(131)에서 측정하는 입구에서의 압력과, 제2압력센서(132)에서 측정하는 출구에서의 압력을 비교하여 산출될 수 있다.
도출부(140)는 유량측정부(120)에서 측정된 유량과 압력측정부(130)를 통해 산출될 수 있는 압력강하 정보를 이용 및 가공하여 평균에너지소산율을 산출하고, 유동수저장부(110)에 저장된 유동장(F)에서의 유동수 정보를 이용 및 가공하여 유효전단율에 따른 유체의 점도를 도출할 수 있다. 이러한 도출부(140)는 유동수저장부(110)에 저장된 각종 정보와, 유량측정부(120) 및/또는 압력측정에 측정된 각종 종보를 이용 및 가공하여 새로운 데이터를 생성하는 연산알고리즘을 포함하는 프로그램모듈 내지 소프트웨어일 수 있다.
도출부(140)는 유체의 점도 측정 방법에서의 유체의 유효전단율에 따른 점도를 도출하는 단계를 통해 유체의 유효전단율에 따른 점도를 도출할 수 있다. 즉, 이러한 유체의 유효전단율에 따른 점도를 도출하는 단계는 수학식 1 및 수학식 2를 이용하여 도출할 수 있으며 전술한 바 있으므로, 자세한 설명은 생략하기로 한다.
도 6은 다양한 비율의 확대/축소 원형파이프에서의 주어진 Carbopol 981 수용액의 유동에 대하여 시뮬레이션을 통해 전단율에 따른 점도를 구한 결과와, 미리 구한 에너지소산율계수와 유효전단율계수를 기초로 유량과 압력강하 정보만을 이용하여 점도를 구한 결과가 모두 일치함을 보여주는 결과 그림이다. 특히, 우측의 그래프는 실제 Carbopol 981 0.2wt% 수용액의 점도거동과 본 개시의 방법으로 예측한 점도를 표시한 것으로, 확대/축소의 비율이 달라도 각각의 에너지소산율계수를 계산하여 점도를 예측하면 실제 점도거동을 정확하게 예측할 수 있음을 확인하였다. 참고로, Carbopol 981 수용액은 항복응력과 전단담화를 동시에 갖는 대표적인 비뉴턴유체이다.
도 7a는 특정 형상의 다이(Die)의 모식도이며, 도 7b는 도 7a에 도시된 다이에서의 비뉴턴유체 모델 두가지의 유동에 대하여 시뮬레이션을 통해 전단율에 따른 점도를 구한 결과와, 미리 구한 에너지소산율계수와 유효전단율계수를 기초로 유량과 압력강하 정보만을 이용하여 점도를 구한 결과가 모두 일치함을 보여주는 그림이다. 구체적으로, 도 7a는 단일 입구와 출구를 갖는 특정 형상의 다이(Die)를 도시한 도면이다. 아울러, 도 7b에는 비뉴턴유체 모델 두가지(power-law; Carreau)에 대해 유한요소법(finite element method, FEM)기반의 프로그램을 통해 시뮬레이션허여 전단율에 따른 점도를 구한 결과를 실선으로 표현하고, 해당 다이에 대해 미리 구한 에너지소산율계수와 유효전단율계수를 기초로 유량과 압력강하 정보만을 이용하여 전단율에 따른 점도를 구한 결과를 포인트로 표현하였다. 도 7B를 통해 시뮬레이션에 의해 도출된 전단율에 따른 점도를 구한 결과와 본 발명의 일 실시예에 따라 도출된 전단율에 따른 점도를 구한 결과가 일치함을 확인할 수 있다.
유체 유량 또는 압력강하 예측 방법
이하에서는 본 발명의 다른 실시예 중 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법을 상세히 설명한다. 본 다른 실시예 중 다른 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법은 파이프와 같이 입구 및 출구가 있는 특정 형상의 유동장에서 유동하는 불특정다수 유체들의 유동 특성을 정량화한 유동수와, 비뉴턴 유체의 점도거동(점도, 유효전단율 및 이들의 관계)를 미리 준비하면 실제 그 유동장에서 유동하는 비뉴턴 유체의 유량 또는 압력강하를 예측할 수 있는 방법에 관한 것이다.
이러한 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법은, 유동장에서의 유동수를 준비하는 단계와, 비뉴턴 유체의 점도거동 정보를 준비하는 단계, 및 유동장에서의 유동수 및 비뉴턴 유체의 점도거동 정보를 기초로 유동장에서의 비뉴턴 유체의 유량 및 압력강하 중 어느 하나의 정보로부터 다른 하나의 정보를 도출하는 단계(이하, '다른 하나의 정보를 도출하는 단계'로 칭하기도 함)를 포함할 수 있다. 상세히, 비뉴턴 유체의 유량이 정해지면 그 유량에 대응되는 압력강하를 예측할 수 있으며, 또는 비뉴턴 유체의 압력강하가 정해지면 그 압력강하에 대응되는 유량을 예측할 수 있다.
한편, 특정 형상의 유동장에서 유동하는 불특정다수 복잡 유체들의 유동 특성은 유체들의 종류에 관계없이 정량화된 유동수, 즉 무차원화된 수일 수 있으며, 이러한 유동장에서의 유동수는 에너지소산율계수(coefficient of energy dissipation rate) Kp 및/또는 유효전단율계수(coefficient of effective shear rate) Ks 를 포함할 수 있다. 이러한 유동장에서의 유동수는 특정 형상의 유동장에 대해 에너지소산을 나타낼 수 있는 무차원화된 수 Np 와 레이놀즈 수 Re와의 관계를 이용하여 산출될 수 있는데, 유동장에서의 유동수를 준비하는 단계는 전술한 유체의 점도 측정 방법에서 있어서 유동장에서의 유동수를 준비하는 단계와 실질적으로 동일하므로, 자세한 설명은 생략하기로 한다.
비뉴턴 유체의 점도거동 정보를 준비하는 단계는 점도-유효전단율 관계를 보여주는 도 1과 같은 점도거동커브를 준비하는 것일 수 있다. 이러한 점도거동커브는 점도측정기구를 통해 얻어질 수 있다.
다른 하나의 정보를 도출하는 단계는 다음의 수학식 6, 수학식 7 및 수학식 8 중 적어도를 하나를 이용할 수 있다. 수학식 6이후로 설명하는 수학식 들은 그 이전에 설명한 수학식 과 동일한 식도 있으나, 설명의 편의상 새로운 수학식 으로 표기하기로 한다.
[수학식6]
Figure PCTKR2018004117-appb-I000113
[수학식7]
Figure PCTKR2018004117-appb-I000114
[수학식8]
Figure PCTKR2018004117-appb-I000115
여기서, Np 는 파워수, P 는 응력에 따른 전체 파워로서 상기 유량과 상기 압력강하의 곱,
Figure PCTKR2018004117-appb-I000116
는 상기 유동장의 겉보기 전단율,
Figure PCTKR2018004117-appb-I000117
는 상기 유동장의 유효전단율, Re는 레이놀즈수, Kp는 에너지소산율계수, Ks는 유효전단율계수를 의미할 수 있다.
이러한 다른 하나의 정보를 추출하는 단계는 먼저 겉보기 전단율
Figure PCTKR2018004117-appb-I000118
과 유동장의 유동특성으로 도출된 유효전단율계수 Ks 간의 관계를 이용하여 유효전단율을 구할 수 있다. 여기서, 겉보기 전단율
Figure PCTKR2018004117-appb-I000119
은 유동장에서 유동하는 비뉴턴 유체의 유량에 대한 함수를 의미할 수 있다. 겉보기 전단율
Figure PCTKR2018004117-appb-I000120
과 유효전단율계수 Ks 간의 관계는 수학식 8로 정의될 수 있으며, 수학식 8을 통해 유효전단율
Figure PCTKR2018004117-appb-I000121
을 도출할 수 있다. 여기서, 유효전단율
Figure PCTKR2018004117-appb-I000122
은 겉보기 전단율
Figure PCTKR2018004117-appb-I000123
과 마찬가지로 비뉴턴 유체의 유량에 대한 함수로 도출될 수 있다.
그리고, 도출된 유효전단율과 미리 준비된 비뉴턴 유체의 점도거동(점도-유효전단율 관계, 점도거동커브)을 이용하여 유효점도를 구할 수 있다. 여기서, 유효점도는 μeff 로 나타낼 수 있다. 유효점도 μeff 도 유효전단율
Figure PCTKR2018004117-appb-I000124
와 마찬가지로 비뉴턴 유체의 유량에 대한 함수를 의미할 수 있다.
이후에 유체의 평균속도, 밀도 및 점도, 상기 유동장의 특성길이 간의 관계와 상기 도출된 유효점도를 이용하여 유효레이놀즈수를 구할 수 있다. 여기서, 유체의 평균속도, 밀도 및 점도, 상기 유동장의 특성길이 간의 관계는 수학식 9로 정의될 수 있다.
[수학식 9]
Figure PCTKR2018004117-appb-I000125
여기서, ρ는 유체의 밀도,
Figure PCTKR2018004117-appb-I000126
는 유체의 평균속도, L은 유동장 시스템의 특성길이, μ는 유체의 점도를 의미할 수 있다. 유체의 평균속도
Figure PCTKR2018004117-appb-I000127
는 유체의 유량을 단면적으로 나눈 값일 수 있고, 유동장 시스템의 특성길이는 유동장의 형상에 따라 달라질 수 있다.
수학식 9에서의 유체의 밀도 ρ는 비뉴턴 유체의 종류에 따라 결정되며, 유동장의 특성길이 L은 유동장의 형상에 따라 결정되고, 유체의 평균속도
Figure PCTKR2018004117-appb-I000128
, 유체의 점도 μ로서 유효점도 μeff 는 유체의 유량에 대한 함수를 의미할 수 있으므로, 레이놀즈수 Re 로서 도출되는 유효레이놀즈수 Reeff 또한 유체의 유량에 대한 함수를 의미할 수 있다.
그리고 미리 준비된 상기 유동장에서의 유효전단율계수 Ks 와 앞서 도출된 유효레이놀즈수 Reeff 를 이용하여 파워수를 구할 수 있다. 상세히, 수학식 7을 이용하여 파워수를 도출할 수 있다.
수학식 7에서의 레이놀즈수 Re 에는 앞서 도출된 유효레이놀즈수 Reeff 가 이용될 수 있으므로, 이를 이용하여 도출된 파워수 Np 또한 유체의 유량에 대한 함수를 의미할 수 있다.
이후에 유체의 평균속도, 밀도, 겉보기 전단율, 상기 유동장에서의 유체 부피 및 도출된 상기 파워수를 이용하여 응력에 따른 전체 파워를 구할 수 있다. 상세히, 수학식 6이 이용될 수 있다.
수학식 6에서의 유체의 밀도 ρ는 비뉴턴 유체의 종류에 따라 결정되며, 유체의 부피는 유동장의 형상에 따라 결정될 수 있으며, 유체의 평균속도
Figure PCTKR2018004117-appb-I000129
, 겉보기 전단율
Figure PCTKR2018004117-appb-I000130
, 파워수 Np 는 앞서 언급한 바와 같이 유체의 유량에 대한 함수 일 수 있으므로, 수학식 6에 의해 도출되는 응력에 대한 전체 파워 P 또한 유체의 유량에 대한 함수를 의미할 수 있다.
한편 응력에 대한 전체 파워 P는 수학식 10과 같이, 유체의 압력강하와 유량의 곱으로 나타낼 수 있다.
[수학식 10]
Figure PCTKR2018004117-appb-I000131
여기서, P 는 응력에 따른 전체 파워, △p는 유체의 압력강하, Q 는 유체의 유량을 의미할 수 있다.
따라서, 수학식 6에 의해 도출되는 응력에 대한 전체 파워 P 와 수학식 10 에 따른 응력에 대한 전체 파워 P 를 같다고 하는 방정식을 세우게 되면, 해당 방정식은 유동장의 형상, 유동장에서의 유동특성, 비뉴턴유체의 점도거동 등에 의해 정해지는 상수(Constant Number)와, 유체의 압력강하 및 유량과 같은 변수(Variable Number)를 포함하는 형태로 정리될 수 있다. 즉, 해당 유동장에서의 특정 비뉴턴 유체의 압력강하와 유량 간의 관계를 도출할 수 있다.
예를 들어, 특성길이 L 과 전체 부피 V 를 가지는 일반적인 유동장 시스템에서, 유동하는 비뉴턴 유체의 압력강하와 유량 간의 관계는 아래의 수학식 11과 같이 도출될 수 있다.
[수학식 11]
Figure PCTKR2018004117-appb-I000132
여기서, △p 는 유체의 압력강하, Q 는 유체의 유량, Kp 는 에너지소산율계수, V는 유동장의 부피, L 은 유동장의 특성길이,
Figure PCTKR2018004117-appb-I000133
는 유체의 평균속도,
Figure PCTKR2018004117-appb-I000134
은 겉보기 전단율, μeff 는 유효 점도를 의미할 수 있다.
따라서, 해당 유동장 시스템에서 비뉴턴 유체의 유량이 결정되면 해당 유량에 대응되는 비뉴턴 유체의 압력강하를 도출할 수 있다.
역으로, 해당 유동장 시스템에서 비뉴턴 유체의 압력강하가 결정되면 해당 압력강하에 대응되는 비뉴턴 유체의 유량을 도출할 수 있다. 다만, 수학식 11은 비뉴턴 유체의 유량함수를 기초로 도출된 형태이며, 우변에 있는 변수들은 비뉴턴 유체의 유량함수와 관련된 변수들을 다수 포함하고 있으므로 각 변수들과 관계된 유량 해를 찾을 수 있는 알고리즘을 포함하는 컴퓨팅 장치, 소프트웨어, 수치해석 툴을 이용하는 것이 바람직하다. 이러한 툴을 이용하는 외에도 상기 수학식 11을 이용하여 비뉴턴 유체의 임의의 유량들과 그 유량들에 대응되는 압력강하들을 테이블 데이터로 정리하고 정리된 데이터를 기초로 비뉴턴 유체의 특정 압력강하 정보에 대응되는 유량 정보를 찾는 방식으로도 비뉴턴 유체의 유량을 도출할 수도 있다.
한편, 수학식 11을 기초로, 반지름 R과 전체 부피 V를 가지는 단순 원형 파이프 유동장에서의 압력강하와 유량간의 관계는 수학식 12로 도출될 수 있다.
[수학식 12]
Figure PCTKR2018004117-appb-I000135
유체 유량 또는 압력강하 예측 시스템
도 8은 본 발명의 다른 실시예 중 다른 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 시스템의 구성을 블록화한 개념도이다.
본 발명의 다른 실시예 중 다른 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 시스템(이하, '예측시스템'이라고 칭하기도 함)은, 파이프와 같이 입구 및 출구가 있는 특정 형상의 유동장에서 유동하는 불특정다수 유체들의 유동 특성을 정량화한 유동수와, 비뉴턴 유체의 점도거동(점도, 유효전단율 및 이들의 관계)를 미리 준비하면 상기 유동장에서 유동하는 비뉴턴 유체의 유량 또는 압력강하를 예측할 수 있는 시스템에 관한 것이다.
이러한 예측시스템은 앞서 설명한 본 발명의 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법을 이용하는 시스템일 수 있다. 설명의 편의상 예측시스템이 포함하고 있는 구성이 수행하는 역할은 본 발명의 다른 실시예 중 일측에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법이 포함하고 있는 여러 단계들의 기술적 내용에 대응될 수 있으므로, 자세한 설명은 생략하기로 한다.
이러한 예측시스템(200)은, 유동장에서의 유동수를 저장하는 유동수저장부(210)와, 비뉴턴 유체의 점도거동 정보를 저장하는 점도거동정보저장부(220) 및, 상기 유동장에서의 유동수 및 상기 점도거동 정보를 기초로, 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 중 어느 하나의 정보로부터 다른 하나의 정보를 도출하는 도출부(230)를 포함할 수 있다. 여기서, 유동수저장부(210)와 점도거동정보저장부(220)는 각종 데이터를 저장할 수 있는 비휘발성 메모리, 휘발성 메모리, 플래시메모리(flash-memory), 하드디스크 드라이브(HDD) 또는 솔리드 스테이트 드라이브(SSD) 등으로 구현될 수 있다. 여기서, 도출부(230)는 유동수저장부(210) 및 점도거동정보저장부(220)에 저장된 각종 데이터를 이용 및 가공하여 새로운 데이터를 생성하는 연산알고리즘을 포함하는 프로그램모듈 내지 소프트웨어일 수 있다.
유동수저장부(210)는 해당 유동장 시스템에 대하여 사전에 얻어진 에너지소산율 Kp 와 유효전단율계수 Ks 를 저장할 수 있다. 에너지소산율 Kp 와 유효전단율계수 Ks 을 구하는 방법은 전술한 바 있으므로, 자세한 설명은 생략한다.
점도거동정보저장부(220)는 예측하고자 하는 대상의 비뉴턴 유체의 점도-유효전단율 관계를 보여주는 도 1과 같은 점도거동커브 내지 점토거동커브의 점도-유효전단율 좌표정보를 저장할 수 있다.
도출부(230)는 앞서 설명한 수학식 6, 수학식 7 및 수학식 8 중 적어도 하나를 이용하여 비뉴턴 유체의 유량에 대응되는 압력강하를 연산하거나, 비뉴턴 유체의 압력강하에 대응되는 유량을 연산할 수 있다.
이러한 도출부(230)는 유동장에서의 비뉴턴 유체의 유량을 기초로 도출될 수 있는 변수들과 압력강하 변수를 포함하는 함수관계식 또는 유동장에서의 비뉴턴 유체의 유량정보-압력강하정보 관계를 나타내는 테이블데이터를 이용하여, 비뉴턴 유체의 유량 정보에 대응되는 압력강하 정보를 도출하거나, 비뉴턴 유체의 압력강하 정보에 대응되는 유량 정보를 도출할 수 있다.
이러한 도출부(230)는 겉보기 전단율과 유효전단율계수 Ks 간의 관계를 이용하여 유효전단율을 구하는 유효전단율 산출부(231)와, 유효전단율과 상기 점도거동을 이용하여 유효점도를 구하는 유효점도 산출부(232)와, 유체의 평균속도, 밀도 및 점도, 상기 유동장의 특성길이 간의 관계와 상기 유효점도를 이용하여 유효레이놀즈수를 구하는 유효레이놀즈수 산출부(233); 상기 유효전단율계수 Ks 와 상기 유효레이놀즈수를 이용하여 파워수를 구하는 파워수 산출부2134), 및 유체의 평균속도, 밀도, 겉보기 전단율, 상기 유동장에서의 유체 부피 및 상기 파워수를 이용하여 응력에 따른 전체 파워를 구하는 전체파워 산출부(235);를 포함할 수 있다.
전체파워 산출부(235)는 상기 구해진 응력에 따른 전체 파워를 기초로 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 간의 관계를 구할 수 있다.
도출부(230)는 유동장에서의 비뉴턴 유체의 유량 정보를 통해 겉보기 전단율 및 유체의 평균속도 중 적어도 하나를 구하는 유량정보이용부(236)를 더 포함할 수 있다.
유효전단율 산출부(231)와, 유효레이놀즈수 산출부(233) 및 전체파워 산출부(235) 중 적어도 하나는 유량정보이용부(236)에서 도출된 정보를 이용할 수 있다.
앞서 설명한 에너지소산율계수 Kp 및 유효전단율계수 Ks 는 유체의 유변물성과는 큰 관계가 없고 시스템(유동장)의 형태에만 관계되는 일종의 유동수(flow number)일 수 있다. 따라서, 특정 형태의 유동장에 대하여 에너지소산율계수와 유효전단율계수를 사전에 한 번만 구해놓으면, 이후로는 여러 복잡유체, 특히 비뉴턴 유체에 대한 압력강하와 유량 사이의 관계와 같은 유동특성을 정량화할 수 있다.
이로써, 특정 형태의 유동장에 대한 특정 비뉴턴 유체에 대한 압력강하와 유량 사이의 관계를 손쉽게 정량화할 수 있으므로, 고분자 가공에 사용되는 압출다이의 다이특성(die characteristics)으로 지칭되는 압력강하와 유량 사이의 정량화된 정보를 이용하여 최적 공정을 용이하게 도출할 수 있는 장점이 있다.
도 9은 확대/축소 원형파이프 유동에 대하여 임의의 유량에 대해 대응되는 압력강하를 유동해석으로 시뮬레이션한 결과와, 본 발명의 다른 실시예 중 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및/또는 시스템을 이용하여 임의의 유량에 대응되는 압력강하를 예측한 결과가 거의 일치함을 보여주는 그림이다.
여기서, 이용된 비뉴턴유체 모델은 파워-로우 모델(Power-law model),Carreau 모델(Carreau model), 수정된 H-B 모델(Modified H-B model)과 같이 총 3가지이다.
도 9에 따른 확대/축소 원형파이프 유동의 유동수 정보는 다음과 같다.
에너지소산율계수 Kp = 86, 유효전단율계수 Kp = 0.71
도 10은 "Kenics static mixer"유동에 대하여 임의의 유량에 대해 대응되는 압력강하를 유동해석으로 시뮬레이션한 결과와, 본 발명의 다른 실시예 중 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및/또는 시스템을 이용하여 임의의 유량에 대응되는 압력강하를 예측한 결과가 (어떤 것과)거의 일치함을 보여주는 그림이다.
여기서, 이용된 비뉴턴유체 모델은 파워-로우 모델(Power-law model),Carreau 모델(Carreau model), 수정된 H-B 모델(Modified H-B model)과 같이 총 3가지이다.
도 10에 따른 "Kenics static mixer" 유동의 유동수 정보는 다음과 같다.
에너지소산율계수 Kp = 16.13, 유효전단율계수 Kp = 1.77
도 11은 "Body-centered cubic(BCC) 구조의 다공질매질"내 유동에 대하여 임의의 유량에 대해 대응되는 압력강하를 유동해석으로 시뮬레이션한 결과와, 본 발명의 다른 실시예 중 일 측면에 따른 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및/또는 시스템을 이용하여 임의의 유량에 대응되는 압력강하를 예측한 결과가 거의 일치함을 보여주는 그림이다.
여기서, 이용된 비뉴턴유체 모델은 파워-로우 모델(Power-law model)이다.
도 11에 따른 "Body-centered cubic(BCC) 구조의 다공질매질"내 각각의 부피분율(vf)에 대응하는 유동의 유동수 정보는 다음과 같다.
Vf=0.1: 에너지소산율계수 Kp = 2.34, 유효전단율계수 Kp = 1.29
Vf=0.3: 에너지소산율계수 Kp = 5.78, 유효전단율계수 Kp = 1.05
Vf=0.5: 에너지소산율계수 Kp = 9.94, 유효전단율계수 Kp = 0.9
Vf=0.65: 에너지소산율계수 Kp = 13.58, 유효전단율계수 Kp = 0.83
이상에서 설명된 실시예들은 본 발명의 일부 예를 설명한 것에 불과하고, 본 발명의 범위는 설명된 실시예들에 한정되는 것은 아니며, 이 분야의 통상의 기술자에 의하여 다양한 변경, 변형 또는 치환이 있을 수 있다. 예를 들어, 특정 실시예에서 함께 설명된 구성들 내지는 특징들은 서로 분산되어 실시될 수 있고, 서로 다른 실시예 각각에서 설명된 구성들 내지는 특징들은 서로 결합된 형태로 실시될 수 있다. 마찬가지로, 각 청구항에 기재된 구성들 내지는 특징들도 서로 분산되어 실시되거나 결합되어 실시될 수 있다. 그리고 위와 같은 실시는 모두 본 발명의 범위에 속하는 것으로 보아야 한다.

Claims (20)

  1. 입구와 출구를 갖는 특정 형상의 연속적 유동장에서의 점도를 측정하는 방법으로서,
    상기 유동장에서의 유동수를 준비하는 단계;
    상기 유동장에서의 유체의 유량 및 압력강하를 측정하는 단계; 및
    상기 유량 및 상기 압력강하를 이용하여 평균에너지소산율을 산출하고, 상기 유동장에서의 유동수 및 상기 평균에너지소산율을 기초로 유효전단율에 따른 유체의 점도를 도출하는 단계를 포함하는, 연속적 유동장에서의 점도 측정 방법.
  2. 제1항에 있어서,
    상기 유체의 점도를 도출하는 단계는 하기 수학식1 및 수학식2를 이용하여 상기 유효전단율에 따른 유체의 점도를 도출하는, 연속적 유동장에서의 점도 측정 방법:
    [수학식1]
    Figure PCTKR2018004117-appb-I000136
    [수학식2]
    Figure PCTKR2018004117-appb-I000137
    여기서,
    Figure PCTKR2018004117-appb-I000138
    는 상기 유동장의 평균에너지소산율로서 상기 유량, 상기 압력강하 및 유동장의 부피에 대한 함수이고,
    Figure PCTKR2018004117-appb-I000139
    는 상기 유동장의 유효전단율,
    Figure PCTKR2018004117-appb-I000140
    는 상기 유체의 점도,
    Figure PCTKR2018004117-appb-I000141
    는 상기 유동장의 겉보기 전단율, Kp 는 에너지소산율계수, Ks 는 유효전단율계수.
  3. 제1항에 있어서,
    상기 연속적 유동장은 복수개의 입구와 단일 출구를 구비하며,
    상기 유체의 점도를 도출하는 단계는 하기 수학식 A을 이용하여 총에너지소산율을 산출하고, 상기 총에너지소산율 및 상기 유동장의 부피를 기초로 평균에너지소산율을 산출하는, 연속적 유동장에서의 점도 측정 방법:
    [수학식 A]
    Figure PCTKR2018004117-appb-I000142
    여기서, n은 입구의 수량,
    Figure PCTKR2018004117-appb-I000143
    는 각 입구와 단일 출구 사이에서의 유체의 압력강하,
    Figure PCTKR2018004117-appb-I000144
    는 각 입구에서의 유체의 유량.
  4. 제1항에 있어서,
    상기 연속적 유동장은 단일 입구와 복수개의 출구를 구비하며,
    상기 유체의 점도를 도출하는 단계는 하기 수학식 B을 이용하여 총에너지소산율을 산출하고, 상기 총에너지소산율 및 상기 유동장의 부피를 기초로 평균에너지소산율을 산출하는, 연속적 유동장에서의 점도 측정 방법:
    [수학식 B]
    Figure PCTKR2018004117-appb-I000145
    여기서, n은 출구의 수량,
    Figure PCTKR2018004117-appb-I000146
    는 단일 입구와 각 출구 사이에서의 유체의 압력강하,
    Figure PCTKR2018004117-appb-I000147
    는 각 출구에서의 유체의 유량.
  5. 제1항에 있어서,
    상기 유동장에서의 유동수는 에너지소산율계수 Kp 를 포함하며,
    상기 유동장에서의 유동수를 준비하는 단계는 상기 에너지소산율계수 Kp 를 사전에 획득하는 단계를 포함하고,
    상기 에너지소산율계수 Kp 를 사전에 획득하는 단계는,
    점도를 알고 있는 뉴턴유체를 상기 유동장에 주입하는 단계;
    상기 유동장에서의 상기 뉴턴유체의 유량 및 압력강하를 측정하는 단계;
    상기 뉴턴유체의 유량 및 압력강하를 이용하여 상기 뉴턴유체의 평균에너지소산율을 구하는 단계;
    상기 뉴턴유체의 밀도, 평균속도 및 점도, 상기 유동장의 특성길이, 상기 뉴턴유체의 겉보기 전단율, 상기 뉴턴유체의 평균에너지소산율을 이용하여 레이놀즈수 및 파워수를 구하는 단계; 및
    상기 레이놀즈수, 상기 파워수 및 상기 에너지소산율계수 Kp 간의 관계를 이용하여 상기 에너지소산율계수 Kp 를 구하는 단계를 포함하는 연속적 유동장에서의 점도 측정 방법.
  6. 제1항에 있어서,
    상기 유동장에서의 유동수는 에너지소산율계수 Kp 를 포함하며,
    상기 유동장에서의 유동수를 준비하는 단계는 상기 에너지소산율계수 Kp 를 사전에 획득하는 단계를 포함하고,
    상기 에너지소산율계수 Kp 를 사전에 획득하는 단계는,
    뉴턴유체를 이용하여 상기 유동장의 속도장을 구하는 단계;
    상기 뉴턴유체의 점도와 상기 유동장의 미소지점에서의 전단율의 제곱을 곱하여 국부 에너지소산율을 구하는 단계;
    상기 국부 에너지소산율을 상기 유동장 전체에 대하여 적분하여 총 에너지소산율을 구하는 단계;
    상기 총 에너지소산율을 상기 유동장의 부피로 나누어 상기 뉴턴유체의 평균에너지소산율을 구하는 단계;
    상기 뉴턴유체의 밀도, 평균속도 및 점도, 상기 유동장의 특성길이, 상기 뉴턴유체의 겉보기 전단율, 상기 뉴턴유체의 평균에너지소산율을 이용하여 레이놀즈수 및 파워수를 구하는 단계; 및
    상기 레이놀즈수, 상기 파워수 및 상기 에너지소산율계수 Kp 간의 관계를 이용하여 상기 에너지소산율계수 Kp 를 구하는 단계를 포함하는 연속적 유동장에서의 점도 측정 방법.
  7. 제1항에 있어서,
    상기 유동장에서의 유동수는 유효전단율계수 Ks 를 포함하며,
    상기 유동장에서의 유동수를 준비하는 단계는 상기 유효전단율계수 Ks 를 사전에 획득하는 단계를 포함하고,
    상기 유효전단율계수 Ks 를 사전에 획득하는 단계는,
    점도거동을 알고 있는 비뉴턴유체를 상기 유동장에 주입하는 단계;
    상기 유동장에서의 상기 비뉴턴유체의 유량 및 압력강하를 측정하는 단계;
    상기 비뉴턴유체의 유량 및 압력강하를 이용하여 상기 비뉴턴유체의 평균에너지소산율 및 파워수를 구하는 단계;
    상기 비뉴턴유체의 파워수와 동일한 값을 가지는 뉴턴유체의 파워수에 대응되는 뉴턴유체의 레이놀즈수를 찾고, 상기 뉴턴유체의 레이놀즈수를 유효 레이놀즈수로 간주하는 단계;
    상기 유효 레이놀즈수, 상기 비뉴턴유체의 밀도, 평균속도, 상기 유동장의 특성길이를 이용하여 상기 비뉴턴유체의 점도를 구하고, 상기 점도를 유효 점도로 간주하는 단계;
    상기 유효 점도와 상기 점도거동을 이용하여 상기 유동장의 유효전단율을 구하는 단계; 및
    상기 유효전단율과 겉보기 전단율 간의 관계를 이용하여 상기 유효전단율계수 Ks 를 구하는 단계를 포함하는 연속적 유동장에서의 점도 측정 방법.
  8. 제1항에 있어서,
    상기 유동장에서의 유동수는 유효전단율계수 Ks 를 포함하며,
    상기 유동장에서의 유동수를 준비하는 단계는 상기 유효전단율계수 Ks 를 사전에 획득하는 단계를 포함하고,
    상기 유효전단율계수 Ks 를 사전에 획득하는 단계는,
    점도거동을 알고 있는 비뉴턴유체를 이용하여 유동해석을 수행하는 단계;
    상기 비뉴턴유체의 점도와 상기 유동장의 미소지점에서의 전단율의 제곱을 곱하여 국부 에너지소산율을 구하는 단계;
    상기 국부 에너지소산율을 상기 유동장 전체에 대하여 적분하여 총 에너지소산율을 구하는 단계;
    상기 총 에너지소산율을 상기 유동장의 부피로 나누어 상기 비뉴턴유체의 평균에너지소산율을 구하는 단계;
    상기 비뉴턴유체의 밀도, 평균속도, 겉보기 전단율 및 평균에너지소산율을 이용하여 파워수를 구하는 단계;
    상기 비뉴턴유체의 파워수와 동일한 값을 가지는 뉴턴유체의 파워수에 대응되는 뉴턴유체의 레이놀즈수를 찾고, 상기 뉴턴유체의 레이놀즈수를 유효 레이놀즈수로 간주하는 단계;
    상기 유효 레이놀즈수, 상기 비뉴턴유체의 밀도, 평균속도, 상기 유동장의 특성길이를 이용하여 상기 비뉴턴유체의 점도를 구하고, 상기 점도를 유효 점도로 간주하는 단계;
    상기 유효 점도와 상기 점도거동을 이용하여 상기 유동장의 유효전단율을 구하는 단계; 및
    상기 유효전단율과 겉보기 전단율 간의 관계를 이용하여 상기 유효전단율계수 Ks 를 구하는 단계를 포함하는 연속적 유동장에서의 점도 측정 방법.
  9. 입구와 출구를 갖는 특정 형상의 연속적 유동장에서의 점도를 측정하는 시스템으로서,
    상기 유동장에서의 유동수를 저장하는 유동수저장부;
    상기 유동장에서의 유체의 유량을 측정하는 유량측정부;
    상기 유동장에서의 압력강하를 산출하기 위한 압력측정부; 및
    상기 측정된 유량 및 압력강하를 이용하여 평균에너지소산율을 산출하고, 상기 유동장에서의 유동수 및 상기 평균에너지소산율을 기초로 유효전단율에 따른 유체의 점도를 도출하는 도출부;를 포함하는, 연속적 유동장에서의 점도 측정 시스템.
  10. 제9항에 있어서,
    상기 도출부는 하기 수학식1및 수학식2를 이용하여 상기 유효전단율에 따른 유체의 점도를 도출하는, 연속적 유동장에서의 점도 측정 시스템:
    [수학식1]
    Figure PCTKR2018004117-appb-I000148
    [수학식2]
    Figure PCTKR2018004117-appb-I000149
    여기서,
    Figure PCTKR2018004117-appb-I000150
    는 상기 유동장의 평균에너지소산율로서 상기 유량, 상기 압력강하 및 유동장의 부피에 대한 함수이고,
    Figure PCTKR2018004117-appb-I000151
    는 상기 유동장의 유효전단율,
    Figure PCTKR2018004117-appb-I000152
    는 상기 유체의 점도,
    Figure PCTKR2018004117-appb-I000153
    는 상기 유동장의 겉보기 전단율, Kp 는 에너지소산율계수, Ks 는 유효전단율계수.
  11. 제9항에 있어서,
    상기 연속적 유동장은 복수개의 입구와 단일 출구를 구비하며,
    상기 도출부는 하기 수학식 A을 이용하여 총에너지소산율을 산출하고, 상기 총에너지소산율 및 상기 유동장의 부피를 기초로 평균에너지소산율을 산출하는, 연속적 유동장에서의 점도 측정 시스템:
    [수학식 A]
    Figure PCTKR2018004117-appb-I000154
    여기서, n은 입구의 수량,
    Figure PCTKR2018004117-appb-I000155
    는 각 입구와 단일 출구 사이에서의 유체의 압력강하,
    Figure PCTKR2018004117-appb-I000156
    는 각 입구에서의 유체의 유량.
  12. 제9항에 있어서,
    상기 연속적 유동장은 단일 입구와 복수개의 출구를 구비하며,
    상기 도출부는 하기 수학식 B을 이용하여 총에너지소산율을 산출하고, 상기 총에너지소산율 및 상기 유동장의 부피를 기초로 평균에너지소산율을 산출하는, 연속적 유동장에서의 점도 측정 시스템:
    [수학식 B]
    Figure PCTKR2018004117-appb-I000157
    여기서, n은 출구의 수량,
    Figure PCTKR2018004117-appb-I000158
    는 단일 입구와 각 출구 사이에서의 유체의 압력강하,
    Figure PCTKR2018004117-appb-I000159
    는 각 출구에서의 유체의 유량.
  13. 입구와 출구를 갖는 특정 형상의 연속적 유동장에서 유동하는 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법으로서,
    상기 유동장에서의 유동수를 준비하는 단계;
    상기 비뉴턴 유체의 점도거동 정보를 준비하는 단계; 및
    상기 유동장에서의 유동수 및 상기 점도거동 정보를 기초로 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 중 어느 하나의 정보로부터 다른 하나의 정보를 도출하는 단계를 포함하는, 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법.
  14. 제13항에 있어서,
    상기 다른 하나의 정보를 도출하는 단계는 하기 수학식6, 수학식7 및 수학식 8 중 적어도 하나를 이용하는, 연속적 유동장에서의 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법:
    [수학식6]
    Figure PCTKR2018004117-appb-I000160
    [수학식7]
    Figure PCTKR2018004117-appb-I000161
    [수학식8]
    Figure PCTKR2018004117-appb-I000162
    여기서, Np 는 파워수, P 는 응력에 따른 전체 파워로서 상기 유량과 상기 압력강하의 곱,
    Figure PCTKR2018004117-appb-I000163
    는 상기 유동장의 겉보기 전단율,
    Figure PCTKR2018004117-appb-I000164
    는 상기 유동장의 유효전단율, Re 는 레이놀즈수, Kp 는 에너지소산율계수, Ks는 유효전단율계수.
  15. 제14항에 있어서,
    상기 유동장에서의 유동수는 에너지소산율 Kp, 유효전단율계수 Ks 을 포함하며,
    상기 다른 하나의 정보를 추출하는 단계는,
    상기 유동장의 겉보기 전단율과 유효전단율계수 Ks 간의 관계를 이용하여 상기 유동장의 유효전단율을 구하는 단계;
    상기 유동장의 유효전단율과 상기 점도거동을 이용하여 유효점도를 구하는 단계;
    유체의 평균속도, 밀도 및 점도, 상기 유동장의 특성길이 간의 관계와 상기 유효점도를 이용하여 유효레이놀즈수를 구하는 단계;
    상기 유효전단율계수 Ks 와 상기 유효레이놀즈수를 이용하여 파워수를 구하는 단계;및
    유체의 평균속도, 밀도, 겉보기 전단율, 상기 유동장에서의 유체 부피 및 상기 파워수를 이용하여 응력에 따른 전체 파워를 구하는 단계;를 포함하며,
    상기 응력에 따른 전체 파워를 구하는 단계를 통해 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 간의 관계를 구할 수 있는, 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법.
  16. 제15항에 있어서,
    상기 다른 하나의 정보를 도출하는 단계는,
    상기 어느 하나의 정보가 상기 유동장에서의 비뉴턴 유체의 유량 정보이며, 상기 유동장에서의 비뉴턴 유체의 유량 정보를 통해 상기 겉보기 전단율 및 유체의 평균속도 중 적어도 하나를 구하는 단계를 더 포함하는, 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법.
  17. 입구와 출구를 갖는 특정 형상의 연속적 유동장에서 유동하는 비뉴턴 유체의 유량 또는 압력강하를 예측할 수 있는 시스템으로서,
    상기 유동장에서의 유동수를 저장하는 유동수저장부;
    상기 비뉴턴 유체의 점도거동 정보를 저장하는 점도거동정보저장부; 및
    상기 유동장에서의 유동수 및 상기 점도거동 정보를 기초로, 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 중 어느 하나의 정보로부터 다른 하나의 정보를 도출하는 도출부를 포함하는, 비뉴턴 유체의 유량 또는 압력강하를 예측하는 예측시스템.
  18. 제17항에 있어서,
    상기 도출부는 하기 수학식6, 수학식7 및 수학식 8 중 적어도 하나를 이용하는, 비뉴턴 유체의 유량 또는 압력강하를 예측하는 예측시스템:
    [수학식6]
    Figure PCTKR2018004117-appb-I000165
    [수학식7]
    Figure PCTKR2018004117-appb-I000166
    [수학식8]
    Figure PCTKR2018004117-appb-I000167
    여기서, Np 는 파워수, P 는 응력에 따른 전체 파워로서 상기 유량과 상기 압력강하의 곱,
    Figure PCTKR2018004117-appb-I000168
    는 겉보기 전단율,
    Figure PCTKR2018004117-appb-I000169
    는 유효전단율, Re 는 레이놀즈수, Kp 는 에너지소산율계수, Ks는 유효전단율계수.
  19. 제18항에 있어서,
    상기 유동장에서의 유동수는 에너지소산율 Kp, 유효전단율계수 Ks 를 포함하며,
    상기 도출부는,
    겉보기 전단율과 유효전단율계수 Ks 간의 관계를 이용하여 유효전단율을 구하는 유효전단율 산출부;
    상기 유효전단율과 상기 점도거동을 이용하여 유효점도를 구하는 유효점도 산출부;
    유체의 평균속도, 밀도 및 점도, 상기 유동장의 특성길이 간의 관계와 상기 유효점도를 이용하여 유효레이놀즈수를 구하는 유효레이놀즈수 산출부;
    상기 유효전단율계수 Ks 와 상기 유효레이놀즈수를 이용하여 파워수를 구하는 파워수 산출부;및
    유체의 평균속도, 밀도, 겉보기 전단율, 상기 유동장에서의 유체 부피 및 상기 파워수를 이용하여 응력에 따른 전체 파워를 구하는 전체파워 산출부;를 포함하며,
    상기 전체파워 산출부는, 상기 구해진 응력에 따른 전체 파워를 기초로 상기 유동장에서의 비뉴턴 유체의 유량 및 압력강하 간의 관계를 구하는, 비뉴턴 유체의 유량 또는 압력강하를 예측하는 예측시스템.
  20. 제19항에 있어서,
    상기 어느 하나의 정보가 상기 유동장에서의 비뉴턴 유체의 유량 정보이며,
    상기 도출부는 상기 유동장에서의 비뉴턴 유체의 유량 정보를 통해 상기 겉보기 전단율 및 유체의 평균속도 중 적어도 하나를 구하는 유량정보이용부를 더 포함하는, 비뉴턴 유체의 유량 또는 압력강하를 예측하는 예측시스템.
PCT/KR2018/004117 2017-04-13 2018-04-09 연속적 유동장에서의 점도 측정 방법 및 시스템, 연속적 유동장에서의 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및 시스템 Ceased WO2018190585A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18783849.5A EP3614123B1 (en) 2017-04-13 2018-04-09 Method and system for measuring viscosity in continuous flow field

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170048086 2017-04-13
KR10-2017-0048086 2017-04-13
KR10-2017-0154237 2017-11-17
KR1020170154237A KR102013036B1 (ko) 2017-04-13 2017-11-17 연속적 유동장에서의 점도 측정 방법 및 시스템, 연속적 유동장에서의 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및 시스템

Publications (2)

Publication Number Publication Date
WO2018190585A2 true WO2018190585A2 (ko) 2018-10-18
WO2018190585A3 WO2018190585A3 (ko) 2018-12-06

Family

ID=63793491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004117 Ceased WO2018190585A2 (ko) 2017-04-13 2018-04-09 연속적 유동장에서의 점도 측정 방법 및 시스템, 연속적 유동장에서의 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및 시스템

Country Status (1)

Country Link
WO (1) WO2018190585A2 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412337B1 (en) 2000-01-28 2002-07-02 Polyvalor S.E.C. Apparatus and method for measuring the rheological properties of a power law fluid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005012505B4 (de) * 2005-02-16 2006-12-07 Krohne Ag Verfahren zum Betreiben eines Massendurchflußmeßgeräts
CA2680300C (en) * 2007-03-14 2015-06-16 Micro Motion, Inc. Vibratory flow meter and method for determining viscosity in a flow material
KR101215353B1 (ko) * 2011-03-03 2012-12-26 광주과학기술원 유체 점도 측정 장치 및 점도 측정 방법
US20140005957A1 (en) * 2012-06-29 2014-01-02 Rosemount Inc. Viscometer for newtonian and non-newtonian fluids
DE102012113045B4 (de) * 2012-12-21 2023-03-23 Endress+Hauser SE+Co. KG Verfahren zur Bestimmung und oder Überwachung von zumindest einem Parameter in der Automatisierungstechnik

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412337B1 (en) 2000-01-28 2002-07-02 Polyvalor S.E.C. Apparatus and method for measuring the rheological properties of a power law fluid

Also Published As

Publication number Publication date
WO2018190585A3 (ko) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2015030343A1 (en) Optical element rotation type mueller-matrix ellipsometer and method for measuring mueller-matrix of sample using the same
WO2022031059A1 (ko) 분석적 민감도 수식에 기초하여 배터리 전기화학적 파라미터의 동정을 위한 전류 여기를 최적화하는 시스템 및 방법
WO2014077480A1 (en) Method of determining surface orientation of single crystal wafer
WO2014178505A1 (en) Method for determining permeability and flow velocity of porous medium by using dispersion number of pores
White Fluid mechanical analysis of injection mold filling
WO2015174766A1 (ko) 배터리 냉각 시스템 시뮬레이션 장치 및 방법
WO2020184812A1 (ko) 배터리 건강 상태 추정 방법
Gaskell et al. Modelling and analysis of meniscus roll coating
WO2020116853A1 (ko) 이차 전지의 충전 장치 및 방법
WO2018062946A1 (ko) 다공성 매질의 비틀림 수력 직경의 산출 방법 및 이를 이용한 다공성 매질 내의 유동 해석 방법
WO2018190585A2 (ko) 연속적 유동장에서의 점도 측정 방법 및 시스템, 연속적 유동장에서의 비뉴턴 유체의 유량 또는 압력강하를 예측하는 방법 및 시스템
WO2014035113A1 (en) Method of controlling touch function and an electronic device thereof
WO2017142299A1 (ko) 공간분할 세그먼트에 대한 동적이동 추적 기반 수기서명 인증 시스템 및 방법
WO2012070910A2 (ko) 대표값 산출 장치 및 방법.
WO2023038211A1 (ko) 사출성형공정 모니터링 시스템 및 방법
WO2019156385A1 (ko) 배터리의 전력 한계를 평탄화하는 방법 및 배터리 관리 시스템
WO2017065463A1 (ko) 단류식 창조 조력발전 최적운영 예측방법
Abeykoon et al. Dynamic modelling of die melt temperature profile in polymer extrusion
WO2023106844A1 (ko) 고속 롤투롤 메탈 코팅 시스템 및 이를 이용한 메탈 코팅 고속 최적 건조 방법
WO2024014797A1 (ko) 강인한 음성인식을 위한 타겟 마스크 및 독립성분분석 기반의 실시간 빔포밍 및 방향 벡터 추정 방법
WO2019045320A1 (ko) 소재의 전자 구조를 예측하는 방법 및 전자 장치
WO2025116635A1 (ko) 최적의 막분리 공정을 모델링하는 막분리 공정 설계 시스템
WO2020263042A1 (ko) 복수의 광원을 이용한 컴퓨터 단층 촬영 장치 및 컴퓨터 단층 촬영 방법
WO2013100344A1 (ko) 지로터 오일 펌프 및 그 설계 방법
WO2022098056A1 (ko) 컨볼루션 연산을 수행하는 전자 장치 및 그 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783849

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

ENP Entry into the national phase in:

Ref document number: 2018783849

Country of ref document: EP

Effective date: 20191113