WO2018025350A1 - Estimation device, estimation program, and charging control device - Google Patents
Estimation device, estimation program, and charging control device Download PDFInfo
- Publication number
- WO2018025350A1 WO2018025350A1 PCT/JP2016/072802 JP2016072802W WO2018025350A1 WO 2018025350 A1 WO2018025350 A1 WO 2018025350A1 JP 2016072802 W JP2016072802 W JP 2016072802W WO 2018025350 A1 WO2018025350 A1 WO 2018025350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- battery
- estimation
- soc
- terminal voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
Definitions
- This case relates to an estimation device, an estimation program, and a charge control device.
- Secondary batteries such as lithium ion batteries are attracting attention as power storage applications such as electric mobility (electric vehicles, etc.) and stationary power storage systems.
- electric mobility applications a technique for obtaining a charge rate SOC in order to display the remaining travel distance to the driver is desired.
- Even in a stationary power storage system, obtaining an accurate SOC is important for accurate system control.
- the characteristics of the secondary battery are affected by the current status immediately before the secondary battery.
- a technique that considers the current state immediately before the secondary power value in estimating the characteristics of the secondary battery has been disclosed (see, for example, Patent Documents 1 to 3).
- An object of one aspect is to provide an estimation device, an estimation program, and a charge control device that can estimate SOC with high estimation accuracy.
- the estimation device stores a plurality of model functions of an open-circuit voltage and a charging rate of a rechargeable battery, and calculates a model function from the plurality of model functions according to the current state of the battery.
- the charging unit and the predicted terminal voltage of the battery are estimated by a determining unit to be determined and a Kalman filter using the model function determined by the determining unit, and a difference between the predicted terminal voltage and the measured value of the terminal voltage of the battery is calculated.
- SOC can be estimated with high estimation accuracy.
- (A) And (b) is a figure which illustrates the result of having measured the terminal voltage change of the secondary battery experimentally for a long time after stopping an electric current. It is a figure which illustrates the typical method of calculating
- (A) And (b) is a figure which illustrates the general method of calculating
- (A) And (b) is a figure which illustrates the conventional method of calculating
- 1 is a block diagram of an estimation device according to Embodiment 1.
- FIG. It is a figure which illustrates the equivalent electrical circuit model of a secondary battery.
- (A) illustrates the terminal voltage-SOC curve and OCV-SOC characteristic curve measured by changing the current
- (A) And (b) is a figure which illustrates the result of having determined the sequential charging / discharging tendency.
- (A) is the case where the reset interval is 100 cycles (10 s), the determination threshold is 3E + 4 mA, the reset multiplier is 0.3, and the charge / discharge tendency is determined, (b) is the reset interval 1000 cycles (100 s), and the determination threshold is Although it is 3E + 5 mA, it is a case where the charge / discharge tendency is determined by resetting the integrated current to zero.
- the characteristics of the rechargeable secondary battery will be described. Since the characteristics of the secondary battery are affected by the current status of the secondary battery (direction, magnitude, time, etc. of the current flowing in the secondary battery), the regularity of the characteristics of the secondary battery is complicated. Therefore, it is difficult to completely reproduce the characteristics of the secondary battery. For this reason, when a single battery characteristic determined by measurement and evaluation under a specific condition is applied to a charging state estimation method, the battery characteristic is often not appropriate as a characteristic of a battery in various usage situations.
- OCV-SOC a characteristic between the terminal open circuit voltage (OCV: Open Circuit Voltage) and the state of charge (SOC: State of Charge) is often used.
- OCV-SOC characteristic is essentially a static characteristic and is considered to be a characteristic unrelated to the usage situation of the secondary battery, a single characteristic has been used regardless of the usage situation.
- the battery voltage should converge toward a specific voltage with respect to a specific SOC if a long time has passed since the current stopped flowing under any usage conditions. It is.
- FIG. 1A is a diagram illustrating the result of experimentally measuring the voltage change of the secondary battery for a long time after the use of the secondary current is stopped. From the results shown in FIG. 1A, it is apparent that the convergence voltage changes depending on the use situation before stopping the current in a realistic time, and at least the OCV value determined by a general method that can ignore the current situation. was found not to converge. This indicates that when a voltage value based on a single OCV-SOC characteristic is used for SOC estimation by a Kalman filter, an estimation error occurs due to the current state of the secondary battery.
- the OCV-SOC characteristic does not change depending on the current state, but there is also an idea that the dynamic characteristic changes depending on the current state. That is, for example, although the final voltage of the voltage change after the current is stopped does not change, the time to reach the voltage is very long. Based on this idea, there is a conventional technique in which a parameter of dynamic characteristics (for example, an equivalent circuit model used for a Kalman filter), particularly a parameter responsible for a change having a long time constant, is changed depending on the use situation. However, in the case of this method, the value of the parameter changes very greatly, so it is difficult to deal with the characteristics before and after the change only by changing the same parameter.
- a parameter of dynamic characteristics for example, an equivalent circuit model used for a Kalman filter
- the voltage change that can be expressed by the RC equivalent circuit is monotonous. If the final voltage of the voltage change does not change as described above, the voltage change may not be monotonous depending on the current state (after use state B in the figure). To cope with this, it is possible to use a more complex equivalent circuit model in the Kalman filter instead of a simple RC circuit, but avoid the increase in the calculation amount as the calculation becomes complicated (increase in parameters) as described above. I can't.
- the battery terminal voltage when current is flowing differs from the open circuit voltage (OCV) simply because there is an apparent internal resistance.
- OCV open circuit voltage
- a current flows through the internal resistance a voltage increase or a voltage drop occurs, and a difference from the OCV occurs.
- the reason why the terminal voltage changes transiently after the current changes is because the internal resistance apparently changes over time. In order to reproduce this time change, RC circuits are often used in equivalent circuit models.
- the apparent internal resistance is caused by having the following finite value resulting from the electrochemical reaction inside the battery. - present in the electrode reaction rate, utilization of reaction rate and negative electrode active material of Li + moving speed electrode inside the ion conduction velocity and the positive electrode active material through the movement speed-active material interface Li + ions in the electrolyte solution Electronic conduction velocity of substance itself ⁇ Ionic conduction velocity in electrolyte
- the above example also shows that it takes time for the internal state of the battery to reach a steady state, and that the change changes with time.
- the above speed or the change with time in other words, the internal resistance and the change with time are influenced by the internal state of the battery at the time when the current is switched.
- the apparent internal resistance that determines the terminal voltage is determined by a combination of the plurality of speeds.
- these speeds are determined by the respective states, it is necessary to determine all the states at the time when the current is switched in the model that reproduces the terminal voltage change.
- the Kalman filter using a relatively simple equivalent circuit model and a single OCV-SOC characteristic model has a long time due to the time change of the terminal voltage, particularly the electrochemical speed inside the battery. It is difficult to reproduce changes in time with small errors. As a result, there is a considerable error in the estimation of the SOC.
- a method for obtaining the OCV-SOC characteristic on the premise that the OCV-SOC characteristic is single, that is, does not change depending on the current condition of the secondary battery and the current change state will be described.
- a chargeable current capacity Cmax is first obtained in advance. As illustrated by the solid line in FIG. 2, SOC is charged from 0% to 100% at a constant current as small as possible (for example, 0.1 C when the current value that can fully charge the battery in 1 hour is 1 C). And determine the charge curve by measuring the voltage change. At this time, the product of the current and time is integrated and divided by Cmax to convert to SOC (%).
- OCV-SOC characteristic When creating a table, an OCV value corresponding to an appropriate SOC value is extracted and used.
- the SOC is changed by charging for a predetermined current * time with a small constant current.
- the current is turned off and the voltage is measured after a predetermined time.
- the above is repeated at an appropriate SOC interval from 0% to 100%, and the relationship between the measured voltage and the SOC is defined as the OCV-SOC characteristic.
- the measured voltage does not become OCV if the waiting time after the current is turned off is short.
- the second method it is conceivable that even if the standby time is lengthened, it does not converge to a single OCV. Therefore, as illustrated in FIG. 3B, the second method is performed by charging and discharging, and the midpoint is obtained from the obtained two pseudo OCV-SOC curves in the same manner as the first method.
- the third method is used in which this is the final OCV-SOC curve.
- a current as small as possible is used. However, since the internal temperature of the battery increases as long as the current flows, a change in characteristics due to the influence of temperature is inevitable. According to the third method, this influence can be reduced. It is also possible to shorten the standby time of the second method.
- R is the internal resistance of the battery and needs to be determined in advance.
- the OCV at the time of charging is smaller than the voltage of the charging curve by R / I.
- the OCV at the time of discharging is the voltage of the discharging curve.
- R ⁇ I. 4A shows a case where the internal resistance R is larger than that shown in FIG. 4B, and the OCV during charging is smaller than the OCV during discharging. This is shown in Patent Document 2.
- FIG. 4B the OCV during charging is larger than the OCV during discharging.
- the tendency of charging / discharging is judged, and the SOC is directly obtained from the voltage by switching the correspondence relationship between the two voltages stored in advance and the SOC according to the above tendency.
- FIG. 5 is a block diagram of the estimation apparatus 100 according to the first embodiment.
- the estimation apparatus 100 includes a measurement unit 10, a parameter determination unit 20, a storage unit 30, a calculation unit 40, and an output unit 50.
- the calculation unit 40 includes a calculation unit 41 and a correction unit 42.
- the estimation device 100 is incorporated in, for example, a charge control device for a secondary battery. Note that the estimation device 100 may be implemented as a function of a control device such as an electric vehicle or an electric motorcycle, and may control a charging control device for a secondary battery.
- the measurement unit 10 measures the current, terminal voltage, and the like of the secondary battery 200 at a predetermined sampling period.
- the measured current and terminal voltage are referred to as measurement current I and measurement terminal voltage V OBS .
- the measurement unit 10 outputs a measurement value to the parameter determination unit 20 and the calculation unit 40 with an ammeter, a voltmeter, or the like, for example.
- the information related to the charging rate (SOC) estimated by the calculation unit 40 is input to the output unit 50 (or when there is a request from the external device 300), the information related to the SOC is output to the external device 300, for example. Output to. External device 300 controls charging / discharging of secondary battery 200 based on the estimated SOC.
- the storage unit 30 stores information used for processing in the parameter determination unit 20 and the calculation unit 40.
- the storage unit 30 stores an OCV (Open Circuit Voltage) -SOC characteristic model function, functions and various parameters used for the Kalman filter, constituent element parameters of an equivalent electric circuit model, calculation parameters for determining them, function parameters, and the like.
- the OCV-SOC characteristic model function reproduces a graph showing the OCV-SOC characteristic of the secondary battery 200. Examples of various parameters of the Kalman filter include ⁇ v indicating prediction noise, ⁇ w indicating measurement noise, and the like.
- the parameter determination unit 20 acquires the parameters from the storage unit 30, and the constituent element parameters of the equivalent electric circuit model are determined in advance. Calculate using the following formula. In some cases, the component parameters of the equivalent electric circuit model stored in the storage unit 30 are selected.
- FIG. 6 is a diagram illustrating an equivalent electric circuit model of the secondary battery 200.
- the equivalent electric circuit model is an RC circuit that represents a transient voltage change with respect to a current change, and includes a power supply, a DC resistance R0, and two RC circuits (C1 and R1). , C2 and R2) are connected in series.
- the RC circuit R1C1 is configured by connecting a resistor R1 and a capacitor C1 in parallel.
- the RC circuit R2C2 is configured by connecting a resistor R2 and a capacitor C2 in parallel.
- the parameter determination unit 20 calculates the values of R0, R1, R2, C1, and C2 using a predetermined calculation formula. Alternatively, predetermined values of R0, R1, R2, C1, and C2 are selected.
- a voltage is generated in the power supply by the accumulated power.
- the voltage generated by this power supply is an open circuit voltage (OCV).
- OCV open circuit voltage
- the OCV of the power supply varies depending on the SOC. Further, the power source is illustrated assuming that the OCV changes between charging and discharging even if the SOC is the same. For this reason, the power supply has current sources V OCV_DC (SOC) and V OCV_CC (SOC) that represent potential differences OCV that change according to changes in the SOC.
- the current source V OCV_DC (SOC) represents the potential difference OCV during discharge.
- a current source V OCV_CC (SOC) represents a potential difference OCV during charging.
- the calculation unit 41 estimates the SOC using a Kalman filter: KF (or an extended Kalman filter: EKF).
- KF Kalman filter
- the arithmetic unit 40 obtains an OCV-SOC characteristic model function, various parameters for KF, etc. from the storage unit 30 and uses each parameter of the equivalent electric circuit model input from the parameter determination unit 20 to calculate the SOC. Perform estimation processing.
- the parameter determination unit 20 may not use the parameter determination and may obtain and use a predetermined parameter stored in the storage unit 30 in some cases. Note that for each KF calculation step, measurement values are input and parameters are input and determined.
- the determination of the parameter includes a determination that the parameter of the previous step is used.
- an OCV-SOC characteristic model that can reduce an error from an actual characteristic by taking into account a change in characteristics due to the operation of the secondary battery 200 is determined in advance.
- the charge / discharge curve is measured at a constant current with the current changed (3 levels or more), and the OCV-SOC characteristics are determined from the measured current dependence of the charge / discharge curve.
- a regression curve is obtained from the measured current-terminal voltage data, and the voltage at the intersection of the curve and the 0 A (zero ampere) axis is defined as OCV.
- this current-voltage relationship is not linear, it is desirable to use a curve of a quadratic or higher formula. This is performed a plurality of times while changing the SOC to determine the OCV-SOC characteristic. Thereby, the voltage (OCV) of the current 0A can be obtained with high accuracy.
- the two OCV-SOC characteristics obtained as shown in FIG. 7A are incorporated into the Kalman filter as OCV-SOC characteristic model functions. Since the characteristic is a curve, it is of course possible to use a function that represents the curve. However, since the characteristic curve is not monotonous, a function that requires a large amount of calculation (time) such as a trigonometric function or an exponential function is generally required.
- the characteristic curve may be divided into a plurality of SOC regions, and the characteristic curve may be approximated by a linear function in each region.
- the method of linear approximation is the same as the case of a single OCV-SOC characteristic, but since there are two characteristics, the number of SOC regions (number of straight lines) is determined for each, and a straight line is determined for each region. Determine the function. As illustrated in FIG. 8, the number and range of SOC regions into which the OCV-SOC characteristic model function is divided, and the approximate linear function can be set separately for each of the two characteristics.
- the parameter determination unit 20 uses two determination results by the determination method of the current state and the current change state in the Kalman filter. It is determined which one of the OCV-SOC characteristic model functions is used and which region is in the SOC value estimated by the estimation formula. The parameter determination unit 20 selects the above approximate linear function based on the determination result. A method for determining the battery usage status in the Kalman filter will be described later.
- FIG. 9 is a diagram illustrating a flowchart executed when the parameter determination unit 20 selects the OCV-SOC characteristic model function. As illustrated in FIG. 9, the parameter determination unit 20 determines whether or not the measured current is equal to or less than a threshold value (step S1). By executing step S1, it can be determined whether or not the secondary battery 200 is passing almost no current.
- step S1 the parameter determination unit 20 determines whether or not the state where the measured current is equal to or lower than the threshold value continues for a predetermined period (step S2). If it is determined as “Yes” in step S2, the parameter determination unit 20 selects the OCV-SOC characteristic model function on the discharge side (step S3). The selected OCV-SOC characteristic model function is stored in the storage unit 30.
- step S4 determines whether or not the state where the measured current exceeds the threshold value continues for a predetermined period. If it is determined as “Yes” in step S4, the parameter determination unit 20 determines whether the measured current is positive or negative (step S5). If it is determined in step S5 that the measured current is negative, step S3 is executed. When it is determined in step S5 that the measured current is positive, the parameter determination unit 20 selects the charging-side OCV-SOC characteristic model function (step S6). The selected OCV-SOC characteristic model function is stored in the storage unit 30.
- Step S7 determines whether the secondary battery 200 tends to be discharged or charged. If it is determined in step S7 that the secondary battery 200 has a tendency to discharge, step S3 is executed. If it is determined in step S7 that the secondary battery 200 has a charging tendency, step S6 is executed.
- the parameter determination unit 20 determines the charge / discharge tendency according to the following procedure.
- Addition of current value A tendency is determined by a value obtained by sequentially adding current values.
- Reset of addition Addition is reset at a specific number of additions (for example, 1000 times when the estimation period is 0.1 s).
- Processing at reset The added value is not set to zero. Multiply the previous current addition value by a specific constant (a numerical value less than 1; for example, 0.3), and restart the current addition to that value.
- the integration reset cycle of (2) is a relatively long time. This is because the SOC estimation by the Kalman filter may cause an operation that increases the estimation error for a short time immediately after the switching of the OCV-SOC characteristic model, so that the switching is not performed more frequently than necessary.
- the change in charge / discharge tendency can be determined without delay.
- switching of the OCV-SOC characteristic model does not occur in a short time. The estimation accuracy can be increased for a long time.
- the reason for multiplying the constant (less than 1) instead of resetting the current integration in (3) to zero is to suppress erroneous switching in a short time by taking over the trend information of the previous reset period.
- the tendency is false (opposite) for a short time.
- a correct tendency is shown by repeating the integration.
- this method can prevent a short-time erroneous determination, a delay occurs in determining that the trend has truly switched.
- FIG. 10 is an explanatory diagram illustrating an example of an SOC estimation process using a Kalman filter.
- equation (1) is an example of the state estimated value of the Kalman filter in step k, and is an example of the state estimated values of v1, v2, and SOC.
- k indicates the number of steps of the Kalman filter.
- ⁇ t is a time interval in which the Kalman filter is performed, and usually corresponds to a sampling period in which the measurement unit 10 measures the measurement current I and the measurement terminal voltage V OBS . However, the measurement period and the Kalman filter period do not necessarily coincide.
- Sc a is the chargeable capacity of the secondary battery that is the target of SOC estimation.
- Sc may differ depending on the secondary battery.
- Sc a can be obtained by use specifications and charge / discharge measurement of the secondary battery.
- Sc and a change with temperature and deterioration based on the measured or estimated secondary battery temperature and the measured or estimated deterioration degree, every SOC estimation period or periodically / irregularly The obtained chargeable capacity value can be applied.
- V OBS (k) represents the measurement terminal voltage in step k, and is hereinafter referred to as measurement terminal voltage.
- [Character 1] Indicates a corrected state estimated value of the Kalman filter in step k ⁇ 1, and is hereinafter referred to as a state estimated value one step before.
- [Character 2] Indicates the difference between the measured terminal voltage and the predicted terminal voltage in step k, and hereinafter referred to as the difference.
- [Character 3] Indicates a state estimation value before correction of the Kalman filter in step k, and is hereinafter referred to as a state estimation value before correction.
- [Character 4] Indicates a correction value of the estimated state value of the Kalman filter in step k, and is hereinafter referred to as a correction value.
- G (k) represents the Kalman gain of step k.
- A indicates Jacobian.
- P (k) represents the error covariance matrix of the estimated value in step k, that is, the accuracy of the estimated value.
- ⁇ v is a covariance matrix indicating estimated noise.
- ⁇ w is a covariance matrix indicating measurement noise.
- the calculation unit 41 uses the following equation (2) based on the state estimated value one step before and the measurement current i (k ⁇ 1) before correction.
- the estimated state value is calculated (step S11).
- the parameter determination unit 20 uses a plurality of OCV-SOC characteristics stored in the storage unit 30 based on the result of the above equation (2) and the tendency of the measurement current acquired by the measurement unit 10.
- One OCV-SOC characteristic model function is selected from the model functions (step S12).
- the calculation unit 41 predicts the predicted terminal voltage V ⁇ according to the following formula (4) from the result of the above formula (2) (step S13).
- the calculation unit 41 calculates the measurement terminal voltage V OBS and the prediction terminal voltage V ⁇ from the measurement terminal voltage V OBS and the prediction terminal voltage V ⁇ according to the following equation (5). Is calculated (step S14).
- the correction unit 42 calculates Jacobian A using the following equation (6) based on the state estimated value one step before (Step S15).
- the correction unit 42 uses the following equation (7) based on the Jacobian A, the one-step previous covariance matrix P (k ⁇ 1), and the prediction noise ⁇ v, and uses the prior covariance matrix P ⁇ (k). Is calculated (step S16).
- the correction unit 42 calculates the Kalman gain G (k) using the following equation (8) based on the prior covariance matrix P ⁇ (k) and the measurement noise ⁇ w (step S17).
- the correcting unit 42 calculates the covariance matrix P (k) using the following equation (9) based on the Kalman gain G (k) and the prior covariance matrix P ⁇ (k) (step S18). .
- the correcting unit 42 repeats steps S16 to S18 for each step.
- the correction unit 42 uses the following equation (10) based on the calculated difference and the Kalman gain G (k) calculated in step S17 to correct the state estimated value.
- a value is calculated (step S19).
- the correcting unit 42 calculates a state estimated value using the following equation (11) based on the state estimated value before correction calculated in step S11 and the corrected value calculated in step S19 (step S20).
- the state estimated value can also be expressed by the following equation (12).
- the correcting unit 42 calculates the SOC using the following formula (13) in the case of this example (step S21).
- the calculation unit 41 and the correction unit 42 can estimate the SOC every second, for example, by repeating the processes of steps S11 to S21 as the SOC estimation process for each step.
- the estimated values of SOC, v1, and v2 are brought close to the true value.
- FIG. 11 (a) and FIG. 11 (b) show the result of determining the sequential charge / discharge tendency by the above method.
- FIG. 11A shows a change in current (0.1 s interval) and a change in SOC of the battery to be determined.
- the SOC is calculated by an integration method using a highly accurate ammeter. From the change in the SOC, it can be seen that the charging trend, the discharging tendency, and the charging tendency change from the left.
- FIG. 11B shows a determination result by the method according to the present embodiment.
- the reset interval is 1000 cycles (100 s)
- the determination threshold is 3E + 5 mA
- the reset multiplier is 0.3.
- FIG. 12A shows a case where the reset interval is 100 cycles (10 s), the determination threshold is 3E + 4 mA, and the reset multiplier is 0.3. It can be seen that erroneous determination frequently occurs by making the reset interval relatively short. Looking at the determination time, it takes a long time for the correct determination to be made, so that the correct determination is made overall. However, when this determination is applied to the Kalman filter, if the time of erroneous determination is large as shown in this figure, the estimation error caused at the time of erroneous determination cannot be corrected within the correct determination time, and correct estimation cannot be performed.
- FIG. 12B shows the case where the reset interval is 1000 cycles (100 s) and the determination threshold is 3E + 5 mA, but the integrated current is reset to zero. Similar to FIG. 12A, erroneous determination frequently occurs.
- FIG. 13 is a diagram illustrating the SOC estimation accuracy by the Kalman filter when a single OCV-SOC characteristic model function is used and when two OCV-SOC characteristic model functions are switched according to the present embodiment.
- the OCV-SOC characteristic model function is based on the above-mentioned plurality of linear functions (each of the SOC division regions and the linear function has different coefficients).
- an estimation error occurs, whereas according to the present embodiment, it is shown that high-precision estimation is possible.
- a model function is determined from a plurality of OCV-SOC characteristic model functions according to the current state of the secondary battery 200.
- an appropriate OCV-SOC model function according to the current state can be used.
- the charging rate and the predicted terminal voltage of the secondary battery 200 are estimated by the Kalman filter using the determined model function, and the difference between the predicted terminal voltage and the measured value of the terminal voltage of the secondary battery 200 is calculated.
- the charging rate is corrected based on the difference and the Kalman gain of the Kalman filter.
- the SOC is corrected for each step by the Kalman filter, instead of directly obtaining the SOC from the voltage using the determined model function. Thereby, the SOC can be estimated with high accuracy.
- FIG. 14 is a block diagram for explaining an example of a hardware configuration of the estimation apparatus 100.
- the estimation device 100 includes a CPU 101, a RAM 102, a storage device 103, an interface 104, and the like. Each of these devices is connected by a bus or the like.
- a CPU (Central Processing Unit) 101 is a central processing unit.
- the CPU 101 includes one or more cores.
- a RAM (Random Access Memory) 102 is a volatile memory that temporarily stores programs executed by the CPU 101, data processed by the CPU 101, and the like.
- the storage device 103 is a nonvolatile storage device.
- the storage device 103 for example, a ROM (Read Only Memory), a solid state drive (SSD) such as a flash memory, a hard disk driven by a hard disk drive, or the like can be used.
- the interface 104 is a device that transmits and receives signals to and from an external device.
- the CPU 101 executes a program stored in the storage device 103, each unit of the estimation device 100 is realized.
- an MPU Micro Processing Unit
- it may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
- FIG. 15 is a diagram illustrating an estimation system according to a modification.
- the parameter determination unit 20 and the calculation unit 40 obtain measurement values such as current values and terminal voltages from the measurement unit 10.
- a server having the functions of the parameter determination unit 20 and the calculation unit 40 may acquire measurement data from the measurement unit 10 through a telecommunication line.
- the server includes the CPU 101, the RAM 102, the storage device 103, the interface 104, and the like illustrated in FIG. 14 and realizes functions as the parameter determination unit 20 and the calculation unit 40.
- the storage unit 30 functions as an example of a storage unit that stores a plurality of model functions of the open-circuit voltage and the charging rate of a rechargeable battery.
- the parameter determination unit 20 functions as an example of a determination unit that determines a model function from a plurality of model functions in accordance with the battery current status.
- the calculation unit 41 estimates a battery charging rate and a predicted terminal voltage by a Kalman filter using the model function determined by the determination unit, and calculates a difference between the predicted terminal voltage and the measured value of the battery terminal voltage. It serves as an example.
- the correction unit 42 functions as an example of a correction unit that corrects the charging rate based on the difference and the Kalman gain of the Kalman filter.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
本件は、推定装置、推定プログラムおよび充電制御装置に関する。 This case relates to an estimation device, an estimation program, and a charge control device.
リチウムイオン電池などの2次電池は、電動モビリティ(電気自動車等)、定置蓄電システム等の蓄電用途として注目されている。電動モビリティ用途では、残走行距離を運転者に表示するために充電率SOCを得る技術が望まれている。定置蓄電システムにおいても、正確なSOCを得ることは正確なシステム制御のために重要である。 Secondary batteries such as lithium ion batteries are attracting attention as power storage applications such as electric mobility (electric vehicles, etc.) and stationary power storage systems. In electric mobility applications, a technique for obtaining a charge rate SOC in order to display the remaining travel distance to the driver is desired. Even in a stationary power storage system, obtaining an accurate SOC is important for accurate system control.
正確な制御が望まれる理由として、過充電や過放電を防止することが挙げられる。不正確なSOCしか得られない場合には、大きい充放電マージンを取らざるを得ないので、電池本来の蓄電性能を発揮することが困難となる。これは電池の数を増やすことになり、システムのコストの増加につながる。 The reason why accurate control is desired is to prevent overcharge and overdischarge. When only an inaccurate SOC can be obtained, a large charge / discharge margin must be taken, and it becomes difficult to exhibit the battery's original power storage performance. This increases the number of batteries, leading to an increase in system cost.
2次電池の特性は、2次電池の直前の電流状況に影響を受ける。そこで、2次電池の特性を推定するうえで、2次電値の直前の電流状況を考慮する技術が開示されている(例えば、特許文献1~3参照)。
The characteristics of the secondary battery are affected by the current status immediately before the secondary battery. In view of this, a technique that considers the current state immediately before the secondary power value in estimating the characteristics of the secondary battery has been disclosed (see, for example,
しかしながら、上記技術では、電圧からSOCを直接求めることになるため、高い推定精度が得られないおそれがある。 However, in the above technique, since the SOC is directly obtained from the voltage, there is a possibility that high estimation accuracy cannot be obtained.
1つの側面では、高い推定精度でSOCを推定することができる推定装置、推定プログラムおよび充電制御装置を提供することを目的とする。 An object of one aspect is to provide an estimation device, an estimation program, and a charge control device that can estimate SOC with high estimation accuracy.
1つの態様では、推定装置は、充電可能な電池の開放電圧と充電率とのモデル関数を複数記憶する記憶部と、前記電池の電流の状況に応じて、複数の前記モデル関数からモデル関数を決定する決定部と、前記決定部が決定したモデル関数を用いたカルマンフィルタにより、前記電池の充電率および予測端子電圧を推定し、前記予測端子電圧と前記電池の端子電圧の実測値との差分を算出する算出部と、前記差分と、前記カルマンフィルタのカルマンゲインとに基づいて前記充電率を補正する補正部と、を備える。 In one aspect, the estimation device stores a plurality of model functions of an open-circuit voltage and a charging rate of a rechargeable battery, and calculates a model function from the plurality of model functions according to the current state of the battery. The charging unit and the predicted terminal voltage of the battery are estimated by a determining unit to be determined and a Kalman filter using the model function determined by the determining unit, and a difference between the predicted terminal voltage and the measured value of the terminal voltage of the battery is calculated. A calculation unit for calculating, and a correction unit for correcting the charging rate based on the difference and a Kalman gain of the Kalman filter.
高い推定精度でSOCを推定することができる。 SOC can be estimated with high estimation accuracy.
実施例の説明に先立って、充電可能な2次電池の特性について説明する。2次電池の特性は、2次電池の電流の状況(2次電池内を流れる電流の向き、大きさ、時間等)に影響を受けるため、2次電池の特性の規則性は複雑である。したがって、2次電池の特性を完全に再現することは困難である。そのため、特定の条件下で測定・評価して決定した単一の電池特性を充電状態の推定手法に適用すると、当該電池特性は、多様な使用状況にある電池の特性として適切でない場合が多い。 Prior to the description of the examples, the characteristics of the rechargeable secondary battery will be described. Since the characteristics of the secondary battery are affected by the current status of the secondary battery (direction, magnitude, time, etc. of the current flowing in the secondary battery), the regularity of the characteristics of the secondary battery is complicated. Therefore, it is difficult to completely reproduce the characteristics of the secondary battery. For this reason, when a single battery characteristic determined by measurement and evaluation under a specific condition is applied to a charging state estimation method, the battery characteristic is often not appropriate as a characteristic of a battery in various usage situations.
一般的に推定に使われる電池特性には、電流が流れている状態での動特性、および電流が流れていない状態での静特性の2つがある。このうち静特性としては、端子開放電圧(OCV:Open Circuit Voltage)と充電状態(SOC:State of Charge)との間の特性(以下、OCV-SOC特性)が用いられることが多い。また、本来OCV-SOC特性は静特性であって2次電池の使用状況とは無関係の特性であると考えられるため、使用状況によらず単一の特性が用いられてきた。この考えは、言い換えれば、どのような使用状況であっても電流が流れなくなって長い時間が経てば、特定のSOCに対して電池電圧も特定の電圧に向かって収束していくはず、というものである。 There are two battery characteristics that are generally used for estimation: dynamic characteristics when current is flowing and static characteristics when current is not flowing. Of these, as the static characteristic, a characteristic (hereinafter referred to as OCV-SOC characteristic) between the terminal open circuit voltage (OCV: Open Circuit Voltage) and the state of charge (SOC: State of Charge) is often used. In addition, since the OCV-SOC characteristic is essentially a static characteristic and is considered to be a characteristic unrelated to the usage situation of the secondary battery, a single characteristic has been used regardless of the usage situation. In other words, the battery voltage should converge toward a specific voltage with respect to a specific SOC if a long time has passed since the current stopped flowing under any usage conditions. It is.
図1(a)は、2次電流の使用を停止してから2次電池の電圧変化を実験的に長時間測定した結果を例示する図である。図1(a)の結果から、現実的な時間では明らかに電流を止める前の使用状況によって収束電圧が変わってしまうこと、少なくとも電流状況が無視できるような一般的な手法で決定したOCV値には収束しないことがわかった。これは、単一のOCV-SOC特性に基づく電圧値をカルマンフィルタによるSOC推定に使用した場合には、2次電池の電流状況により推定誤差が生じることを示している。 FIG. 1A is a diagram illustrating the result of experimentally measuring the voltage change of the secondary battery for a long time after the use of the secondary current is stopped. From the results shown in FIG. 1A, it is apparent that the convergence voltage changes depending on the use situation before stopping the current in a realistic time, and at least the OCV value determined by a general method that can ignore the current situation. Was found not to converge. This indicates that when a voltage value based on a single OCV-SOC characteristic is used for SOC estimation by a Kalman filter, an estimation error occurs due to the current state of the secondary battery.
一方で、OCV-SOC特性は電流状況により変わらないが、動特性が電流状況によって変化したという考えもある。つまり、例えば電流を止めてからの電圧変化の最終電圧は変わらないが、その電圧に至るまでの時間が非常に長くなったという考え方である。この考えに基づけば、動特性の(例えばカルマンフィルタに用いる等価回路モデルの)パラメータ、特に長時間の時定数を持つ変化を担うパラメータを、使用状況により変化させるとういう従来の技術がある。ただしこの方法の場合、上記パラメータの値が非常に大きく変化するため、変化前後の特性を同一のパラメータの変化だけで対処するのは難しい。そのため、RC等価回路であれば、非常に長い時定数を担う新たなRC回路を追加する必要が生じる。これは、パラメータが増加することになるため、計算量の増加につながる。特に、カルマンフィルタを用いた推定手法では、カルマンフィルタ内で行列計算が行われるため、パラメータの増加により大幅な計算量の増加が生じる。さらに、この時定数パラメータを電流状況によって変化させる規則性を見出すのは非常に困難であると考えられる。 On the other hand, the OCV-SOC characteristic does not change depending on the current state, but there is also an idea that the dynamic characteristic changes depending on the current state. That is, for example, although the final voltage of the voltage change after the current is stopped does not change, the time to reach the voltage is very long. Based on this idea, there is a conventional technique in which a parameter of dynamic characteristics (for example, an equivalent circuit model used for a Kalman filter), particularly a parameter responsible for a change having a long time constant, is changed depending on the use situation. However, in the case of this method, the value of the parameter changes very greatly, so it is difficult to deal with the characteristics before and after the change only by changing the same parameter. Therefore, if it is an RC equivalent circuit, it will be necessary to add the new RC circuit which bears a very long time constant. This leads to an increase in the amount of calculation because the parameter increases. In particular, in the estimation method using the Kalman filter, since the matrix calculation is performed in the Kalman filter, a large increase in calculation amount occurs due to an increase in parameters. Furthermore, it is considered very difficult to find regularity that changes the time constant parameter according to the current state.
また、図1(b)で使用状況Aの後および一般的な手法で決定したOCVに収束する電圧変化として例示するように、RC等価回路で表現できる電圧の変化は単調なものである。上記の様に電圧変化の最終電圧は変わらないとすると、電流状況によって電圧変化が単調でなくなる場合がある(同図、使用状況Bの後)。これに対応するため、単純なRC回路ではなくより複雑な等価回路モデルをカルマンフィルタで使用することも考えられるが、上記と同様に計算が複雑になる(パラメータの増加)とともに計算量の増加は避けられない。 Further, as illustrated in FIG. 1B as a voltage change that converges to the OCV determined by the general method after the usage situation A, the voltage change that can be expressed by the RC equivalent circuit is monotonous. If the final voltage of the voltage change does not change as described above, the voltage change may not be monotonous depending on the current state (after use state B in the figure). To cope with this, it is possible to use a more complex equivalent circuit model in the Kalman filter instead of a simple RC circuit, but avoid the increase in the calculation amount as the calculation becomes complicated (increase in parameters) as described above. I can't.
ここで、一例として、リチウムイオン電池において、電流状況によってOCVが変化するメカニズムについて説明する。電流が流れているときの電池端子電圧が開放電圧(OCV)と異なるのは、単純に言えば見かけ上の内部抵抗が存在するからである。この内部抵抗に電流が流れることにより、電圧上昇あるいは電圧降下が発生し、OCVとの差異が生じる。また、電流変化後に端子電圧が過渡変化するのは、見かけ上、内部抵抗が時間変化するからである。この時間変化を再現するために、等価回路モデルではRC回路を用いることが多い。 Here, as an example, a mechanism in which the OCV changes depending on the current state in a lithium ion battery will be described. The battery terminal voltage when current is flowing differs from the open circuit voltage (OCV) simply because there is an apparent internal resistance. When a current flows through the internal resistance, a voltage increase or a voltage drop occurs, and a difference from the OCV occurs. The reason why the terminal voltage changes transiently after the current changes is because the internal resistance apparently changes over time. In order to reproduce this time change, RC circuits are often used in equivalent circuit models.
ここで、見かけ上の内部抵抗は、電池内部の電気化学反応に起因する以下のような有限な値を持つことにより生じていると言える。
・電極内に存在する電解液中のLi+イオンの移動速度
・活物質界面を通してのLi+の移動速度
・電極内部のイオン伝導速度
・正極活物質の反応速度
・負極活物質の反応速度
・活物質自体の電子伝導速度
・電解液中のイオン伝導速度
Here, it can be said that the apparent internal resistance is caused by having the following finite value resulting from the electrochemical reaction inside the battery.
- present in the electrode reaction rate, utilization of reaction rate and negative electrode active material of Li + moving speed electrode inside the ion conduction velocity and the positive electrode active material through the movement speed-active material interface Li + ions in the electrolyte solution Electronic conduction velocity of substance itself ・ Ionic conduction velocity in electrolyte
ここで、単純には上記速度が小さいほど内部抵抗は大きくなるが、電子回路のように瞬間的に反応するような大きな速度でないことは想像される。また、上記いずれかの速度が時間変化することで内部抵抗の時間変化が発生することになる。例えば、充放電によりLi+イオンは電極の活物質内に取り込まれるが、この反応は表面付近ではLi+イオンが活物質に到達した直後に起こるが、表面の取込サイトが埋まってしまうと、取込は活物質内深部で起こることになる。この際、上記活物質界面を通してのLi+イオン移動が起こるため、Li+イオンが活物質に到達した後取込が終了するまでに時間がかかることになる。また、Li+イオンは活物質界面にも捕獲されることが考えられ、これにより移動速度は徐々に小さくなることが推測される。移動速度の低下により定常状態に至るまでに多くの時間がかかることになる。 Here, simply, the smaller the speed, the larger the internal resistance. However, it is imagined that the speed is not so high that it reacts instantaneously like an electronic circuit. Further, when any of the above speeds changes with time, the internal resistance changes with time. For example, Li + ions are taken into the active material of the electrode by charging / discharging, but this reaction occurs immediately after the Li + ions reach the active material near the surface, but when the surface uptake site is buried, Uptake occurs deep within the active material. At this time, since Li + ion movement through the active material interface occurs, it takes time until the uptake is completed after Li + ions reach the active material. In addition, it is conceivable that Li + ions are also trapped at the active material interface, and thereby the moving speed is gradually reduced. It takes a lot of time to reach a steady state due to a decrease in the moving speed.
さらに、電解液中をイオンが伝導し電極間を移動する過程においては、移動するための時間が必要になる。また、電解液中をイオンが伝導する際には、正負のイオンの濃度に偏りが生じ濃度分布が発生することが知られている。この濃度分布は時間的に変化していくが、濃度分布により電解液中のイオン伝導速度が変化することが考えられる。 Furthermore, in the process in which ions are conducted in the electrolyte and move between the electrodes, time for movement is required. Further, it is known that when ions are conducted in the electrolytic solution, the concentration of positive and negative ions is biased and a concentration distribution is generated. Although this concentration distribution changes with time, it is conceivable that the ion conduction velocity in the electrolytic solution changes due to the concentration distribution.
上記の例からも、電池内部の状態が定常状態になるまでに時間がかかり、またその変化が時間変化することが示された。これに加えて、上記の速度またその時間変化、言い換えれば内部抵抗とその時間変化が、電流が切り替わった時点での電池の内部の状態に影響されることは容易に推測される。端子電圧を決定する見かけ上の内部抵抗は、上記の複数の速度の組合せで決定されることになる。また、これらの速度は、それぞれの状態により決まることになるから、端子電圧変化を再現するモデルにおいては電流が切り替わった時点でのそれぞれの状態を全て決定することが必要になる。しかしながら、それは非常に困難である。さらに言えば、これらを全て厳密に等価回路モデルに取り込むことは非常に難しく、計算量を考慮した比較的単純なモデルであればなおさらである。 The above example also shows that it takes time for the internal state of the battery to reach a steady state, and that the change changes with time. In addition to this, it is easily estimated that the above speed or the change with time, in other words, the internal resistance and the change with time are influenced by the internal state of the battery at the time when the current is switched. The apparent internal resistance that determines the terminal voltage is determined by a combination of the plurality of speeds. In addition, since these speeds are determined by the respective states, it is necessary to determine all the states at the time when the current is switched in the model that reproduces the terminal voltage change. However, it is very difficult. Furthermore, it is very difficult to incorporate all of them into an equivalent circuit model strictly, especially if it is a relatively simple model that takes the amount of calculation into account.
以上のように考えられるメカニズムにより、比較的単純な等価回路モデルと単一のOCV-SOC特性モデルを用いたカルマンフィルタでは、端子電圧の時間変化、特に電池内部の電気化学的な速度に起因する長時間の変化を小さな誤差で再現することが難しい。それにより、SOCの推定に少なからず誤差が生じることになる。 Due to the mechanism considered above, the Kalman filter using a relatively simple equivalent circuit model and a single OCV-SOC characteristic model has a long time due to the time change of the terminal voltage, particularly the electrochemical speed inside the battery. It is difficult to reproduce changes in time with small errors. As a result, there is a considerable error in the estimation of the SOC.
ここで、OCV-SOC特性は単一のもの、つまり2次電池の電流条件および電流変化の状況によって変化しないことを前提とするOCV-SOC特性を求める手法について説明する。第1の代表的な手法では、まず予め充電可能な電流容量Cmaxを求めておく。図2の実線で例示するように、可能な限り小さな一定電流(例えば、1時間で電池を満充電できる電流値を1Cとした場合に0.1C)でSOC=0%から100%まで充電を行い、電圧変化を測定して充電曲線を求める。この時、電流と時間を乗じたものを積算し、これをCmaxで除することでSOC(%)に変換する。さらに、充電と同様にSOC=100%から0%まで放電を行うことで、放電曲線を求める(図2の破線)。以上は、放電から実施してもかまわない。最後に、充電曲線と放電曲線との中点(図2の点線)を求めて、単一のOCV曲線(OCV-SOC特性)を求める。テーブル化する場合は、適当なSOC値に対するOCV値を抽出して、これを用いる。 Here, a method for obtaining the OCV-SOC characteristic on the premise that the OCV-SOC characteristic is single, that is, does not change depending on the current condition of the secondary battery and the current change state will be described. In the first representative method, a chargeable current capacity Cmax is first obtained in advance. As illustrated by the solid line in FIG. 2, SOC is charged from 0% to 100% at a constant current as small as possible (for example, 0.1 C when the current value that can fully charge the battery in 1 hour is 1 C). And determine the charge curve by measuring the voltage change. At this time, the product of the current and time is integrated and divided by Cmax to convert to SOC (%). Further, a discharge curve is obtained by discharging from SOC = 100% to 0% as in the case of charging (broken line in FIG. 2). The above may be carried out from discharge. Finally, a midpoint (dotted line in FIG. 2) between the charge curve and the discharge curve is obtained to obtain a single OCV curve (OCV-SOC characteristic). When creating a table, an OCV value corresponding to an appropriate SOC value is extracted and used.
次に、第2の一般的な手法では、充電か放電のどちらかを用いるが、ここでは充電を例に説明する。図3(a)で例示するように、第2の手法でも、小さな一定電流で所定の電流*時間だけ充電を行うことでSOCを変化させる。ここで、一旦電流を切って所定の時間を待って電圧を測定する。以上を0%から100%まで適当なSOC間隔で繰り返し、測定した電圧とSOCとの関係をOCV-SOC特性とする。先に説明したように、電流を切った後に電圧が収束するには非常に長い時間がかかるため、上記電流を切って待機する時間が短いと測定した電圧がOCVとならないことが考えられる。また、待機時間を長くすると、特性の取得に非常に長い時間がかかってしまう問題がある。可能性として、現実的なものとして考えられる長い待機時間(例えば24時間)でも、OCVに収束しないことも考えられる。 Next, in the second general method, either charging or discharging is used, but here, charging will be described as an example. As illustrated in FIG. 3A, in the second method as well, the SOC is changed by charging for a predetermined current * time with a small constant current. Here, the current is turned off and the voltage is measured after a predetermined time. The above is repeated at an appropriate SOC interval from 0% to 100%, and the relationship between the measured voltage and the SOC is defined as the OCV-SOC characteristic. As described above, since it takes a very long time for the voltage to converge after the current is turned off, it is conceivable that the measured voltage does not become OCV if the waiting time after the current is turned off is short. Further, when the standby time is lengthened, there is a problem that it takes a very long time to acquire characteristics. As a possibility, even if a long waiting time (for example, 24 hours) that is considered to be realistic, it does not converge to the OCV.
第2の手法では、待機時間を長くしても単一のOCVに収束しないことが考えられる。このため、図3(b)で例示するように、第2の手法を充電と放電とで行い、求められた2つの疑似OCV-SOC曲線から、第1の手法と同様に、中点を求めてこれを最終的なOCV-SOC曲線とする第3の手法を用いる場合がある。第1の手法においてはできるだけ小さな電流を用いているが、電流が流れる限り電池の内部温度は高くなるので、温度の影響による特性変化は避けられない。第3の手法によれば、この影響を減ずることができる。また、第2の手法の待機時間を短縮することも可能になる。 In the second method, it is conceivable that even if the standby time is lengthened, it does not converge to a single OCV. Therefore, as illustrated in FIG. 3B, the second method is performed by charging and discharging, and the midpoint is obtained from the obtained two pseudo OCV-SOC curves in the same manner as the first method. In some cases, the third method is used in which this is the final OCV-SOC curve. In the first method, a current as small as possible is used. However, since the internal temperature of the battery increases as long as the current flows, a change in characteristics due to the influence of temperature is inevitable. According to the third method, this influence can be reduced. It is also possible to shorten the standby time of the second method.
次に、電池の電流状況あるいは電流変化の状況により、複数のOCV-SOC特性を持つという第4の従来の手法について説明する。例えば、図4(a)または図4(b)で例示するように、充放電曲線を単一の特性を求める第1の手法と同様に求め、それらの電圧Vtから、OCV=Vt-R・Iに従って、充電時および放電時のOCVを算出する。ここで、Rは電池の内部抵抗であり、事前に決定しておく必要がある。充電時の電流の符号をプラス、放電時の電流の符号をマイナスとすることにより、充電時のOCVは充電曲線の電圧よりもR/Iだけ小さく、逆に放電時のOCVは放電曲線の電圧よりもR・Iだけ大きくなる。図4(a)は(b)に比べて内部抵抗Rが大きい場合で、充電時のOCVが放電時のOCVに比べて小さい。これは、特許文献2に示されている。一方、図4(b)では、充電時のOCVが放電時のOCVに比べて大きい。いずれの手法でも、充放電の傾向を判断し、予め記憶してある2つの電圧とSOCとの対応関係を上記傾向により切り替えて用いて、電圧からSOCを直接求めることになる。
Next, a fourth conventional method that has a plurality of OCV-SOC characteristics depending on the battery current situation or current change situation will be described. For example, as illustrated in FIG. 4A or 4B, a charge / discharge curve is obtained in the same manner as in the first method for obtaining a single characteristic, and OCV = Vt−R · According to I, the OCV during charging and discharging is calculated. Here, R is the internal resistance of the battery and needs to be determined in advance. By making the sign of the current at the time of charging positive and the sign of the current at the time of discharging negative, the OCV at the time of charging is smaller than the voltage of the charging curve by R / I. Conversely, the OCV at the time of discharging is the voltage of the discharging curve. Than R · I. 4A shows a case where the internal resistance R is larger than that shown in FIG. 4B, and the OCV during charging is smaller than the OCV during discharging. This is shown in
第1~第3の手法では、単一のOCV-SOC特性を求めることになるため、充電時および放電時の正確なOCV-SOC特性は得られない。第4の手法では、2つのOCV-SOC特性を求めるものの、電圧からSOCを直接求めるため、SOCの高い推定精度が得られない。 In the first to third methods, since a single OCV-SOC characteristic is obtained, accurate OCV-SOC characteristics during charging and discharging cannot be obtained. In the fourth method, although two OCV-SOC characteristics are obtained, since the SOC is directly obtained from the voltage, it is not possible to obtain a high estimation accuracy of the SOC.
以下の実施例では、高いSOC推定精度を得ることができる推定装置、推定方法および推定プログラムについて説明する。 In the following embodiments, an estimation device, an estimation method, and an estimation program that can obtain high SOC estimation accuracy will be described.
図5は、実施例1に係る推定装置100のブロック図である。図5で例示するように、推定装置100は、測定部10、パラメータ決定部20、記憶部30、演算部40、および出力部50を備える。演算部40は、算出部41および補正部42を備える。推定装置100は、例えば、2次電池の充電制御装置に組み込まれる。なお、推定装置100は、例えば、電気自動車や電動バイク等の制御装置の一機能として実装して、2次電池の充電制御装置を制御するようにしてもよい。
FIG. 5 is a block diagram of the
測定部10は、2次電池200の電流、端子電圧等を所定のサンプリング周期で測定する。測定された電流および端子電圧を、測定電流Iおよび測定端子電圧VOBSと称する。測定部10は、例えば、電流計、電圧計等で、測定値をパラメータ決定部20および演算部40に出力する。
The
出力部50は、演算部40で推定された充電率(SOC)に係る情報が入力されると(あるいは外部装置300からの要求があった場合に)、SOCに係る情報を、例えば外部装置300に出力する。外部装置300は、推定されたSOCに基づいて、2次電池200の充放電を制御する。
When the information related to the charging rate (SOC) estimated by the
記憶部30は、パラメータ決定部20および演算部40における処理に用いる情報を記憶する。記憶部30は、OCV(Open Circuit Voltage)-SOC特性モデル関数、カルマンフィルタに用いる関数や各種パラメータ、等価電気回路モデルの構成素子パラメータあるいはそれらを決定するための計算および関数のパラメータ等を記憶する。OCV-SOC特性モデル関数は、2次電池200のOCV-SOC特性を示すグラフを再現するものである。カルマンフィルタの各種パラメータとしては、例えば、予測ノイズを示すΣv、測定ノイズを示すΣw等が挙げられる。
The
パラメータ決定部20は、まず、測定部10から測定端子電圧VOBSおよび測定電流Iが入力されると、記憶部30からパラメータを取得して、等価電気回路モデルの構成素子パラメータを、予め決定された計算式を用いて算出する。また、記憶部30に記憶されている等価電気回路モデルの構成素子パラメータそのものを選定する場合もある。
First, when the measurement terminal voltage V OBS and the measurement current I are input from the
図6は、2次電池200の等価電気回路モデルを例示する図である。図6で例示するように、等価電気回路モデルは、電流変化に対して過渡的な電圧の変化を表すRC回路であって、電源と、直流抵抗R0と、2つのRC回路(C1およびR1と、C2およびR2)とが直列に接続された構成を有する。RC回路R1C1は、抵抗R1とコンデンサC1とが並列に接続されて構成されている。RC回路R2C2は、抵抗R2とコンデンサC2とが並列に接続されて構成されている。パラメータ決定部20は、予め決定された計算式を用いてR0,R1,R2,C1およびC2の値を算出する。あるいは、予め決定されたR0,R1,R2,C1およびC2の値を選択する。
FIG. 6 is a diagram illustrating an equivalent electric circuit model of the
なお、等価電気回路モデルにおいて、電源では、蓄積された電力により電圧が生じる。この電源で生じる電圧が開回路電圧(OCV:Open Circuit Voltage)である。電源は、SOCによってOCVが変化する。また、電源は、SOCが同一でも充電時と放電時とでOCVが変化することを想定して例示している。このため、電源は、SOCの変化に応じて変化する電位差OCVを表す電流源VOCV_DC(SOC)およびVOCV_CC(SOC)を有する。ここで、電流源VOCV_DC(SOC)は、放電時の電位差OCVを表す。電流源VOCV_CC(SOC)は、充電時の電位差OCVを表す。 In the equivalent electric circuit model, a voltage is generated in the power supply by the accumulated power. The voltage generated by this power supply is an open circuit voltage (OCV). The OCV of the power supply varies depending on the SOC. Further, the power source is illustrated assuming that the OCV changes between charging and discharging even if the SOC is the same. For this reason, the power supply has current sources V OCV_DC (SOC) and V OCV_CC (SOC) that represent potential differences OCV that change according to changes in the SOC. Here, the current source V OCV_DC (SOC) represents the potential difference OCV during discharge. A current source V OCV_CC (SOC) represents a potential difference OCV during charging.
直流抵抗R0の両端の電位差をv0とし、RC回路R1C1の両端の電位差をv1とし、RC回路R2C2の両端の電位差をv2とする。この場合、等価電気回路モデルの端子電圧として表される2次電池200の予測端子電圧V-は、電位差OCVと、電圧v0と、電圧v1と、電圧v2とを用いて、V-=OCV(SOC)-v0-v1-v2で表される。
The potential difference between both ends of the DC resistor R0 is v0, the potential difference between both ends of the RC circuit R1C1 is v1, and the potential difference between both ends of the RC circuit R2C2 is v2. In this case, the predicted terminal voltage V − of the
算出部41は、測定部10から測定電流Iおよび測定端子電圧VOBSが入力されると、カルマンフィルタ:KF(あるいは拡張カルマンフィルター:EKF)を用いて、SOCを推定する。カルマンフィルタにおいては、演算部40は、記憶部30からOCV-SOC特性モデル関数、KF用各種パラメータ等を入手し、パラメータ決定部20から入力された等価電気回路モデルの各パラメータを用いて、SOCの推定処理を行う。等価電気回路モデルの各パラメータについては、パラメータ決定部20によるパラメータの決定を行わずに、記憶部30に記憶された予め決定しておいたパラメータ入手して用いる場合もある。なお、KFの計算ステップ毎に、測定値の入力、パラメータの入力・決定が行われる。ここで、パラメータの決定には、前ステップのパラメータを使用するという判断を含む。
When the measurement current I and the measurement terminal voltage V OBS are input from the
次に、記憶部30に記憶されているOCV-SOC特性モデル関数について説明する。本実施例においては、2次電池200の動作による特性の変化を加味することにより、実特性との誤差を小さくできるOCV-SOC特性モデルを予め決定しておく。
Next, the OCV-SOC characteristic model function stored in the
具体的には、図7(a)で例示するように、電流を変えた(3水準以上)一定電流で充放電曲線を測定し、充放電曲線の測定電流依存性からOCV-SOC特性を決定する。図7(b)および図7(c)は、SOC=50%(0.5)の場合のOCVの求め方を例示する。それぞれ、測定電流-端子電圧のデータから回帰曲線を求め、その曲線と0A(ゼロアンペア)軸との交点の電圧をOCVとする。通常、この電流-電圧の関係は線形ではないので、2次以上の式の曲線を用いることが望ましい。これを、SOCを変えて複数回行うことにより、OCV-SOC特性を決定する。これにより、電流0Aの電圧(OCV)を精度良く求めることができる。 Specifically, as illustrated in FIG. 7A, the charge / discharge curve is measured at a constant current with the current changed (3 levels or more), and the OCV-SOC characteristics are determined from the measured current dependence of the charge / discharge curve. To do. FIG. 7B and FIG. 7C illustrate how to obtain the OCV when SOC = 50% (0.5). In each case, a regression curve is obtained from the measured current-terminal voltage data, and the voltage at the intersection of the curve and the 0 A (zero ampere) axis is defined as OCV. Usually, since this current-voltage relationship is not linear, it is desirable to use a curve of a quadratic or higher formula. This is performed a plurality of times while changing the SOC to determine the OCV-SOC characteristic. Thereby, the voltage (OCV) of the current 0A can be obtained with high accuracy.
図7(a)のように求めた2つのOCV-SOC特性をOCV-SOC特性モデル関数としてカルマンフィルタに組込む。特性は曲線であるので、曲線を表現する関数を用いることはもちろん可能である。ただし、特性の曲線が単調なものではないので、一般的に三角関数や指数関数など計算量(時間)が非常に多くなる関数が必要になる。特性の曲線を複数のSOC領域に分け、それぞれの領域で直線関数によって特性曲線を近似してもよい。 The two OCV-SOC characteristics obtained as shown in FIG. 7A are incorporated into the Kalman filter as OCV-SOC characteristic model functions. Since the characteristic is a curve, it is of course possible to use a function that represents the curve. However, since the characteristic curve is not monotonous, a function that requires a large amount of calculation (time) such as a trigonometric function or an exponential function is generally required. The characteristic curve may be divided into a plurality of SOC regions, and the characteristic curve may be approximated by a linear function in each region.
直線近似の方法は、単一のOCV-SOC特性の場合と同様であるが、特性が2本になるので、それぞれに対してSOC領域数(直線数)を決定し、それぞれの領域毎に直線関数を決定する。なお、図8で例示するように、OCV-SOC特性モデル関数を分割するSOC領域の数、範囲、また近似直線関数は2本の特性毎に別個に設定することができる。 The method of linear approximation is the same as the case of a single OCV-SOC characteristic, but since there are two characteristics, the number of SOC regions (number of straight lines) is determined for each, and a straight line is determined for each region. Determine the function. As illustrated in FIG. 8, the number and range of SOC regions into which the OCV-SOC characteristic model function is divided, and the approximate linear function can be set separately for each of the two characteristics.
特性の曲線を複数のSOC領域に分け、それぞれの領域で直線関数によって特性曲線を近似した場合、パラメータ決定部20は、カルマンフィルタ内で電流状況および電流変化の状況の判定手法による判定結果から2つのOCV-SOC特性モデル関数のうちどちらを用いるのか、また推定式により推定されたSOC値からどの領域にあるのか、を判断する。パラメータ決定部20は、その判断結果に基づき、上記の近似直線関数を選択する。カルマンフィルタ内での電池使用状況の判定手法は、後述する。
When the characteristic curve is divided into a plurality of SOC regions, and the characteristic curve is approximated by a linear function in each region, the
図9は、パラメータ決定部20がOCV-SOC特性モデル関数を選択する場合に実行するフローチャートを例示する図である。図9で例示するように、パラメータ決定部20は、測定電流が閾値以下であるか否かを判定する(ステップS1)。ステップS1の実行により、2次電池200がほとんど電流を流していないか否かを判定することができる。
FIG. 9 is a diagram illustrating a flowchart executed when the
ステップS1で「Yes」と判定された場合、パラメータ決定部20は、測定電流が上記閾値以下の状態が所定期間にわたって継続しているか否かを判定する(ステップS2)。ステップS2で「Yes」と判定された場合、パラメータ決定部20は、放電側のOCV-SOC特性モデル関数を選択する(ステップS3)。選択されたOCV-SOC特性モデル関数は、記憶部30に記憶される。
When it is determined as “Yes” in step S1, the
ステップS1で「No」と判定された場合、パラメータ決定部20は、測定電流が上記閾値を上回る状態が所定期間にわたって継続しているか否かを判定する(ステップS4)。ステップS4で「Yes」と判定された場合、パラメータ決定部20は、測定電流がプラスであるかマイナスであるかを判定する(ステップS5)。ステップS5で測定電流がマイナスであると判定された場合、ステップS3が実行される。ステップS5で測定電流がプラスであると判定された場合、パラメータ決定部20は、充電側のOCV-SOC特性モデル関数を選択する(ステップS6)。選択されたOCV-SOC特性モデル関数は、記憶部30に記憶される。
When it is determined “No” in step S1, the
ステップS2で「No」と判定された場合またはステップS4で「No」と判定された場合、パラメータ決定部20は、2次電池200が放電傾向にあるか充電傾向にあるかを判定する(ステップS7)。ステップS7で2次電池200が放電傾向にあると判定された場合、ステップS3が実行される。ステップS7で2次電池200が充電傾向にあると判定された場合、ステップS6が実行される。
When it is determined as “No” in Step S2 or when it is determined as “No” in Step S4, the
次に、2次電池200が放電傾向にあるか充電傾向にあるかを判断するための基準の一例について説明する。例えば、パラメータ決定部20は、以下の手順により、充放電傾向を判定する。
(1)電流値の加算:電流値を逐次加算していった値で傾向を判断する。
(2)加算のリセット:加算は特定の加算回数(例えば推定周期が0.1sで1000回)でリセットする。
(3)リセット時の処理:加算値をゼロにはしない。直前の電流加算値に特定の定数(1未満の数値。例えば0.3)を乗じて、その値に電流加算を再開する。
(4)傾向の判断:上記リセットを繰り返しながら電流を加算した値が、特定の閾値(例えば、300A)より大きければ充電傾向と判断し、以下であれば放電傾向と判断する
Next, an example of a reference for determining whether the
(1) Addition of current value: A tendency is determined by a value obtained by sequentially adding current values.
(2) Reset of addition: Addition is reset at a specific number of additions (for example, 1000 times when the estimation period is 0.1 s).
(3) Processing at reset: The added value is not set to zero. Multiply the previous current addition value by a specific constant (a numerical value less than 1; for example, 0.3), and restart the current addition to that value.
(4) Judgment of tendency: If the value obtained by adding the current while repeating the above reset is larger than a specific threshold (for example, 300 A), it is judged as a charging tendency, and if it is below, it is judged as a discharging tendency.
ここで、(2)の積算リセット周期は、比較的長い時間になっている。これは、カルマンフィルタによるSOC推定ではOCV-SOC特性モデルの切り替え直後に短時間ではあるが推定誤差が大きくなる動作をしてしまうことがあるため、必要以上に頻繁な切り替えを発生させないためである。短時間の積算でリセットした場合には、充放電傾向の変化を遅延なく判定することができるが、実際にはOCV-SOC特性モデルの切り替わりは短時間で起こるものではないので、カルマンフィルタの場合はある程度長時間の方が推定精度を高くすることができる。 Here, the integration reset cycle of (2) is a relatively long time. This is because the SOC estimation by the Kalman filter may cause an operation that increases the estimation error for a short time immediately after the switching of the OCV-SOC characteristic model, so that the switching is not performed more frequently than necessary. When resetting in a short period of time, the change in charge / discharge tendency can be determined without delay. However, in actuality, switching of the OCV-SOC characteristic model does not occur in a short time. The estimation accuracy can be increased for a long time.
また、(3)の電流積算をゼロにリセットするのではなく、定数(1未満)を乗ずるのは、前リセット周期の傾向情報を引き継ぐことにより短時間の間違った切り替えを抑制するためである。電池を流れる電流の符号が頻繁に変わっているような動作状況において、ゼロリセットした場合には、充電傾向あるいは放電傾向が継続している場合でも、短時間ではあるが誤った(反対)の傾向に切り替わり、その後積算が繰り返されることで正しい傾向を示すようになる場合が発生する。上記の通り、カルマンフィルタにおいては切り替わり直後の短時間に誤差が大きくなるので、これを避けることが好ましい。一方、この手法により短時間の誤判定は防ぐことはできるが、真に傾向が切り替わったことを判定するのに遅延が発生してしまう。しかしながら、実際のOCV-SOC特性モデルの切り替わりは短時間で起こるものではない。また、判定遅延時間に発生するOCV-SOC特性モデルの誤選択による推定誤差は、正しいモデルが選択された後に正しい推定値に向けて補正されていく(カルマンフィルタの動作)。したがって、カルマンフィルタによる推定においては、本実施例に係る手法による判定の方が、精度が上がることになる。 Also, the reason for multiplying the constant (less than 1) instead of resetting the current integration in (3) to zero is to suppress erroneous switching in a short time by taking over the trend information of the previous reset period. In an operating situation in which the sign of the current flowing through the battery changes frequently, even if the tendency to charge or discharge continues even if the zero reset is performed, the tendency is false (opposite) for a short time. In some cases, a correct tendency is shown by repeating the integration. As described above, in the Kalman filter, since an error increases in a short time immediately after switching, it is preferable to avoid this. On the other hand, although this method can prevent a short-time erroneous determination, a delay occurs in determining that the trend has truly switched. However, switching of the actual OCV-SOC characteristic model does not occur in a short time. In addition, an estimation error due to erroneous selection of the OCV-SOC characteristic model that occurs during the determination delay time is corrected toward the correct estimated value after the correct model is selected (Kalman filter operation). Therefore, in the estimation by the Kalman filter, the accuracy is improved by the determination by the method according to the present embodiment.
続いて、図10を参照しつつ、カルマンフィルタの詳細について説明する。図10は、カルマンフィルタを用いたSOC推定処理の一例を示す説明図である。まず、下記式(1)は、ステップkのカルマンフィルタの状態推定値の一例であり、v1,v2およびSOCの状態推定値の一例である。kは、カルマンフィルタのステップ数を示す。Δtは、カルマンフィルタが行われる時間間隔であり、通常、測定部10が測定電流Iおよび測定端子電圧VOBSを測定するサンプリング周期に相当する。ただし、測定周期とカルマンフィルタ周期は必ずしも一致する必要はない。
次に、図10の説明に用いる文字を説明する。VOBS(k)は、ステップkの測定端子電圧を示し、以下、測定端子電圧という。
[文字1]
は、ステップk-1のカルマンフィルタの補正された状態推定値を示し、以下、1ステップ前の状態推定値という。
[文字2]
は、ステップkの測定端子電圧と予測端子電圧との差分を示し、以下、差分という。
[文字3]
は、ステップkのカルマンフィルタの補正前の状態推定値を示し、以下、補正前の状態推定値という。
[文字4]
は、ステップkのカルマンフィルタの状態推定値の補正値を示し、以下、補正値という。
Next, characters used in the description of FIG. 10 will be described. V OBS (k) represents the measurement terminal voltage in step k, and is hereinafter referred to as measurement terminal voltage.
[Character 1]
Indicates a corrected state estimated value of the Kalman filter in step k−1, and is hereinafter referred to as a state estimated value one step before.
[Character 2]
Indicates the difference between the measured terminal voltage and the predicted terminal voltage in step k, and hereinafter referred to as the difference.
[Character 3]
Indicates a state estimation value before correction of the Kalman filter in step k, and is hereinafter referred to as a state estimation value before correction.
[Character 4]
Indicates a correction value of the estimated state value of the Kalman filter in step k, and is hereinafter referred to as a correction value.
G(k)は、ステップkのカルマンゲインを示す。Aは、ヤコビアンを示す。P(k)は、ステップkの推定値の誤差の共分散行列、つまり推定値の精度を示す。Σvは、推定ノイズを示す共分散行列である。Σwは、測定ノイズを示す共分散行列である。 G (k) represents the Kalman gain of step k. A indicates Jacobian. P (k) represents the error covariance matrix of the estimated value in step k, that is, the accuracy of the estimated value. Σv is a covariance matrix indicating estimated noise. Σw is a covariance matrix indicating measurement noise.
算出部41は、測定電流i(k)が入力されると、1ステップ前の状態推定値と、測定電流i(k-1)とに基づいて、下記の式(2)を用いて補正前の状態推定値を算出する(ステップS11)。ここで、測定電流i(k)は、1秒ごとに入力される場合を示しており、Δt=1であることから、例えば、簡易的に下記に示す式(3)の関係を用いることができる。
次に、パラメータ決定部20は、上述したように、上記式(2)の結果と、測定部10が取得した測定電流の傾向とから、記憶部30に記憶されている複数のOCV-SOC特性モデル関数から1つのOCV-SOC特性モデル関数を選択する(ステップS12)。次に、算出部41は、上記式(2)の結果から、下記式(4)に従って、予測端子電圧V-を予測する(ステップS13)。
算出部41は、測定端子電圧VOBSが入力されると、測定端子電圧VOBSと、予測端子電圧V-とから、下記式(5)に従って、測定端子電圧VOBSと予測端子電圧V-との差分を算出する(ステップS14)。
次に、補正部42は、1ステップ前の状態推定値に基づいて、下記の式(6)を用いてヤコビアンAを算出する(ステップS15)。
補正部42は、ヤコビアンAと、1ステップ前の共分散行列P(k-1)と、予測ノイズΣvとに基づいて、下記の式(7)を用いて事前共分散行列P-(k)を算出する(ステップS16)。
補正部42は、事前共分散行列P-(k)と、測定ノイズΣwとに基づいて、下記の式(8)を用いてカルマンゲインG(k)を算出する(ステップS17)。
補正部42は、カルマンゲインG(k)と、事前共分散行列P-(k)とに基づいて、下記の式(9)を用いて共分散行列P(k)を算出する(ステップS18)。補正部42は、ステップS16~ステップS18を1ステップごとに繰り返す。
次に、補正部42は、算出された差分と、ステップS17で算出されたカルマンゲインG(k)とに基づいて、下記の式(10)を用いて、状態推定値を修正するための修正値を算出する(ステップS19)。
補正部42は、ステップS11で算出された補正前の状態推定値と、ステップS19で算出された修正値とに基づいて、下記の式(11)を用いて状態推定値を算出する(ステップS20)。ここで、状態推定値は、下記の式(12)とも表すことができる。
補正部42は、状態推定値に基づいて、今回の例の場合、下記の式(13)を用いてSOCを算出する(ステップS21)。
このように、算出部41および補正部42は、SOC推定処理としてステップS11~S21の処理を1ステップごとに繰り返すことによって、例えば、1秒ごとにSOCを推定できる。以上のカルマンフィルタでは、実測した測定端子電圧VOBSとSOC,v1,v2の推定値から予測した予測端子電圧V-との差分と、カルマンゲインGとを用いて、SOC,v1,v2の推定値を補正している。これを毎ステップ繰り返すことで、SOC,v1,v2の推定値を真値に近づけている。
As described above, the
図11(a)および図11(b)は、上記手法で逐次充放電傾向を判定した結果を以下に示す。図11(a)では、判定対象の電池の電流変化(0.1s間隔)とSOCの変化とを示している。SOCは、高精度の電流計を用いた積算法で算出している。SOCの変化から、左から充電傾向、放電傾向、充電傾向と推移していることがわかる。 FIG. 11 (a) and FIG. 11 (b) show the result of determining the sequential charge / discharge tendency by the above method. FIG. 11A shows a change in current (0.1 s interval) and a change in SOC of the battery to be determined. The SOC is calculated by an integration method using a highly accurate ammeter. From the change in the SOC, it can be seen that the charging trend, the discharging tendency, and the charging tendency change from the left.
図11(b)は、本実施例に係る手法による判定結果を示す。リセット間隔は1000サイクル(100s)、判定閾値は3E+5mA、リセット乗数は0.3である。このように、本実施例に係る手法で傾向の変化を正しく判定できており、また傾向が維持されている途中での誤判定も見られない。判定の遅れも顕著ではない。 FIG. 11B shows a determination result by the method according to the present embodiment. The reset interval is 1000 cycles (100 s), the determination threshold is 3E + 5 mA, and the reset multiplier is 0.3. Thus, the change of the tendency can be correctly determined by the method according to the present embodiment, and no erroneous determination is seen while the tendency is maintained. Judgment delay is not significant.
図12(a)は、リセット間隔を100サイクル(10s)、判定閾値を3E+4mA、リセット乗数を0.3としたものである。リセット間隔を比較的短くすることで、頻繁に誤判定が発生していることがわかる。判定の時間を見ると、正しい判定が行われている時間が長いので、総合的には正しい判定がなされていることになる。しかし、カルマンフィルタにこの判定を適用した場合、誤判定の時間がこの図のように多いと、誤判定時に生じた推定誤差を正しい判定の時間内に補正しきれずに、正しい推定ができなくなる。 FIG. 12A shows a case where the reset interval is 100 cycles (10 s), the determination threshold is 3E + 4 mA, and the reset multiplier is 0.3. It can be seen that erroneous determination frequently occurs by making the reset interval relatively short. Looking at the determination time, it takes a long time for the correct determination to be made, so that the correct determination is made overall. However, when this determination is applied to the Kalman filter, if the time of erroneous determination is large as shown in this figure, the estimation error caused at the time of erroneous determination cannot be corrected within the correct determination time, and correct estimation cannot be performed.
図12(b)は、リセット間隔1000サイクル(100s)、判定閾値は3E+5mAであるが、積算電流をゼロリセットした場合である。図12(a)と同様に、頻繁に誤判定が発生している。 FIG. 12B shows the case where the reset interval is 1000 cycles (100 s) and the determination threshold is 3E + 5 mA, but the integrated current is reset to zero. Similar to FIG. 12A, erroneous determination frequently occurs.
図13は、単一のOCV-SOC特性モデル関数を用いた場合、および本実施例に従って2つのOCV-SOC特性モデル関数を切り替える場合の、カルマンフィルタによるSOC推定精度について例示する図である。両者とも、OCV-SOC特性モデル関数は、前述の複数の直線関数によるものである(それぞれのSOC分割領域、直線関数の係数は異なる)。単一のOCV-SOC特性モデル関数を用いる場合には、推定誤差が発生しているのに対し、本実施例によれば、高い精度の推定が可能になることが表されている。 FIG. 13 is a diagram illustrating the SOC estimation accuracy by the Kalman filter when a single OCV-SOC characteristic model function is used and when two OCV-SOC characteristic model functions are switched according to the present embodiment. In both cases, the OCV-SOC characteristic model function is based on the above-mentioned plurality of linear functions (each of the SOC division regions and the linear function has different coefficients). In the case of using a single OCV-SOC characteristic model function, an estimation error occurs, whereas according to the present embodiment, it is shown that high-precision estimation is possible.
本実施例によれば、2次電池200の電流の状況に応じて、複数のOCV-SOC特性モデル関数からモデル関数が決定される。それにより、電流の状況に応じた適切なOCV-SOCモデル関数を用いることができる。また、決定されたモデル関数を用いたカルマンフィルタにより、2次電池200の充電率および予測端子電圧が推定され、予測端子電圧と2次電池200の端子電圧の実測値との差分が算出される。当該差分と、カルマンフィルタのカルマンゲインとに基づいて充電率が補正される。このように、決定されたモデル関数を用いて電圧から直接的にSOCを求めるのではなく、カルマンフィルタによってステップごとにSOCが補正される。それにより、高精度にSOCを推定することができる。
According to the present embodiment, a model function is determined from a plurality of OCV-SOC characteristic model functions according to the current state of the
図14は、推定装置100のハードウェア構成の一例を説明するためのブロック図である。図14で例示するように、推定装置100は、CPU101、RAM102、記憶装置103、インタフェース104などを備える。これらの各機器は、バスなどによって接続されている。CPU(Central Processing Unit)101は、中央演算処理装置である。CPU101は、1以上のコアを含む。RAM(Random Access Memory)102は、CPU101が実行するプログラム、CPU101が処理するデータなどを一時的に記憶する揮発性メモリである。記憶装置103は、不揮発性記憶装置である。記憶装置103として、例えば、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD)、ハードディスクドライブに駆動されるハードディスクなどを用いることができる。インタフェース104は、外部機器との信号の送受信を行う機器である。CPU101が記憶装置103に記憶されているプログラムを実行することによって、推定装置100の各部が実現される。または、CPUの代わりにMPU(Micro Processing Unit)等を用いても良い。または、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されるようにしてもよい。
FIG. 14 is a block diagram for explaining an example of a hardware configuration of the
(変形例)
図15は、変形例にかかる推定システムについて例示する図である。上記各例においては、パラメータ決定部20および演算部40は、測定部10から電流値、端子電圧などの測定値を取得している。これに対して、パラメータ決定部20および演算部40の機能を有するサーバが、電気通信回線を通じて測定部10から測定データを取得してもよい。例えば、サーバは、図14のCPU101、RAM102、記憶装置103、インタフェース104などを備え、パラメータ決定部20および演算部40としての機能を実現する。
(Modification)
FIG. 15 is a diagram illustrating an estimation system according to a modification. In each of the above examples, the
なお、上記各例において、記憶部30が、充電可能な電池の開放電圧と充電率とのモデル関数を複数記憶する記憶部の一例として機能する。パラメータ決定部20が、電池の電流の状況に応じて、複数のモデル関数からモデル関数を決定する決定部の一例として機能する。算出部41が、決定部が決定したモデル関数を用いたカルマンフィルタにより、電池の充電率および予測端子電圧を推定し、予測端子電圧と電池の端子電圧の実測値との差分を算出する算出部の一例として機能する。補正部42が、差分と、カルマンフィルタのカルマンゲインとに基づいて充電率を補正する補正部の一例としいて機能する。
In each of the above examples, the
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.
10 測定部
20 パラメータ決定部
30 記憶部
40 演算部
50 出力部
100 推定装置
200 2次電池
300 外部装置
DESCRIPTION OF
Claims (15)
前記電池の電流の状況に応じて、複数の前記モデル関数からモデル関数を決定する決定部と、
前記決定部が決定したモデル関数を用いたカルマンフィルタにより、前記電池の充電率および予測端子電圧を推定し、前記予測端子電圧と前記電池の端子電圧の実測値との差分を算出する算出部と、
前記差分と、前記カルマンフィルタのカルマンゲインとに基づいて前記充電率を補正する補正部と、を備えることを特徴とする推定装置。 A storage unit for storing a plurality of model functions of an open voltage and a charging rate of a rechargeable battery;
A determining unit that determines a model function from a plurality of the model functions according to the current state of the battery,
By a Kalman filter using the model function determined by the determination unit, a charging unit and a predicted terminal voltage of the battery are estimated, and a calculation unit that calculates a difference between the predicted terminal voltage and an actual value of the battery terminal voltage;
An estimation device comprising: a correction unit that corrects the charging rate based on the difference and a Kalman gain of the Kalman filter.
充電可能な電池の開放電圧と充電率との複数のモデル関数から、前記電池の電流の状況に応じてモデル関数を決定する処理と、
決定された前記モデル関数を用いたカルマンフィルタにより、前記電池の充電率および予測端子電圧を推定し、前記予測端子電圧と前記電池の端子電圧の実測値との差分を算出する処理と、
前記差分と、前記カルマンフィルタのカルマンゲインとに基づいて前記充電率を補正する処理と、を実行させることを特徴とする推定プログラム。 On the computer,
A process of determining a model function according to the current state of the battery from a plurality of model functions of an open voltage and a charging rate of the rechargeable battery,
A process for estimating a charging rate and a predicted terminal voltage of the battery by a Kalman filter using the determined model function, and calculating a difference between the predicted terminal voltage and an actual value of the terminal voltage of the battery;
An estimation program for executing the process of correcting the charging rate based on the difference and a Kalman gain of the Kalman filter.
前記補正部によって補正された前記充電率に基づいて前記電池の充放電制御を行う制御装置と、を備えることを特徴とする充電制御装置。 A storage unit that stores a plurality of model functions of an open-circuit voltage and a charging rate of a rechargeable battery, a determination unit that determines a model function from a plurality of the model functions according to the current state of the battery, and the determination unit The Kalman filter using the model function determined by the calculation unit estimates a charging rate and a predicted terminal voltage of the battery, and calculates a difference between the predicted terminal voltage and the measured value of the terminal voltage of the battery, and the difference A correction unit that corrects the charging rate based on the Kalman gain of the Kalman filter;
And a control device that performs charge / discharge control of the battery based on the charge rate corrected by the correction unit.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2016/072802 WO2018025350A1 (en) | 2016-08-03 | 2016-08-03 | Estimation device, estimation program, and charging control device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2016/072802 WO2018025350A1 (en) | 2016-08-03 | 2016-08-03 | Estimation device, estimation program, and charging control device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018025350A1 true WO2018025350A1 (en) | 2018-02-08 |
Family
ID=61073625
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2016/072802 Ceased WO2018025350A1 (en) | 2016-08-03 | 2016-08-03 | Estimation device, estimation program, and charging control device |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018025350A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108646191A (en) * | 2018-05-10 | 2018-10-12 | 西安交通大学 | A kind of battery charge state method of estimation based on DAFEKF |
| CN109164391A (en) * | 2018-07-12 | 2019-01-08 | 杭州神驹科技有限公司 | A kind of power battery charged state estimation on line method and system |
| JP2019146302A (en) * | 2018-02-16 | 2019-08-29 | 株式会社半導体エネルギー研究所 | Charging state estimation device for secondary battery, abnormality detection device, and management system for secondary battery |
| WO2020027119A1 (en) * | 2018-07-31 | 2020-02-06 | 本田技研工業株式会社 | Measurement system, measurement method, computer program and recording medium |
| CN114578130A (en) * | 2021-11-30 | 2022-06-03 | 荣耀终端有限公司 | Electric quantity calibration method and related device |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011047918A (en) * | 2009-03-31 | 2011-03-10 | Primearth Ev Energy Co Ltd | Control device of secondary battery, and correction method of map |
| JP2011151983A (en) * | 2010-01-22 | 2011-08-04 | Panasonic Corp | Soc detection circuit, and battery power supply device |
| JP2013148458A (en) * | 2012-01-19 | 2013-08-01 | Eliiy Power Co Ltd | Charged state estimation device, charged state estimation method, and program |
| WO2014080595A1 (en) * | 2012-11-20 | 2014-05-30 | 三洋電機株式会社 | Battery management device and power supply |
| JP2015081855A (en) * | 2013-10-23 | 2015-04-27 | スズキ株式会社 | Charge state calculation device |
| JP2015105875A (en) * | 2013-11-29 | 2015-06-08 | 富士通株式会社 | Approximate function creation program, approximate function creation method, approximate function creation device, and state-of-charge estimation program |
| JP2016085166A (en) * | 2014-10-28 | 2016-05-19 | 株式会社東芝 | Device and method of evaluating storage battery |
| JP2016099123A (en) * | 2014-11-18 | 2016-05-30 | 学校法人立命館 | Power storage residual amount estimation device, method for estimating power storage residual amount of secondary battery and computer program |
-
2016
- 2016-08-03 WO PCT/JP2016/072802 patent/WO2018025350A1/en not_active Ceased
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011047918A (en) * | 2009-03-31 | 2011-03-10 | Primearth Ev Energy Co Ltd | Control device of secondary battery, and correction method of map |
| JP2011151983A (en) * | 2010-01-22 | 2011-08-04 | Panasonic Corp | Soc detection circuit, and battery power supply device |
| JP2013148458A (en) * | 2012-01-19 | 2013-08-01 | Eliiy Power Co Ltd | Charged state estimation device, charged state estimation method, and program |
| WO2014080595A1 (en) * | 2012-11-20 | 2014-05-30 | 三洋電機株式会社 | Battery management device and power supply |
| JP2015081855A (en) * | 2013-10-23 | 2015-04-27 | スズキ株式会社 | Charge state calculation device |
| JP2015105875A (en) * | 2013-11-29 | 2015-06-08 | 富士通株式会社 | Approximate function creation program, approximate function creation method, approximate function creation device, and state-of-charge estimation program |
| JP2016085166A (en) * | 2014-10-28 | 2016-05-19 | 株式会社東芝 | Device and method of evaluating storage battery |
| JP2016099123A (en) * | 2014-11-18 | 2016-05-30 | 学校法人立命館 | Power storage residual amount estimation device, method for estimating power storage residual amount of secondary battery and computer program |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019146302A (en) * | 2018-02-16 | 2019-08-29 | 株式会社半導体エネルギー研究所 | Charging state estimation device for secondary battery, abnormality detection device, and management system for secondary battery |
| CN108646191A (en) * | 2018-05-10 | 2018-10-12 | 西安交通大学 | A kind of battery charge state method of estimation based on DAFEKF |
| CN108646191B (en) * | 2018-05-10 | 2019-11-08 | 西安交通大学 | A method for estimating battery state of charge based on DAFEKF |
| CN109164391A (en) * | 2018-07-12 | 2019-01-08 | 杭州神驹科技有限公司 | A kind of power battery charged state estimation on line method and system |
| CN109164391B (en) * | 2018-07-12 | 2021-03-23 | 杭州神驹科技有限公司 | Power battery state of charge online estimation method and system |
| WO2020027119A1 (en) * | 2018-07-31 | 2020-02-06 | 本田技研工業株式会社 | Measurement system, measurement method, computer program and recording medium |
| JPWO2020027119A1 (en) * | 2018-07-31 | 2021-08-26 | 本田技研工業株式会社 | Measurement system, measurement method, computer program and storage medium |
| JP7374096B2 (en) | 2018-07-31 | 2023-11-06 | 本田技研工業株式会社 | Measuring system, measuring method, computer program and storage medium |
| CN114578130A (en) * | 2021-11-30 | 2022-06-03 | 荣耀终端有限公司 | Electric quantity calibration method and related device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110914696B (en) | Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of a battery | |
| US11163010B2 (en) | Secondary battery deterioration estimation device and secondary battery deterioration estimation method | |
| CN107690585B (en) | Method and apparatus for determining the state of health and state of charge of a lithium sulfur battery | |
| Campestrini et al. | Influence of change in open circuit voltage on the state of charge estimation with an extended Kalman filter | |
| CN102124354B (en) | Apparatus and method for estimating battery resistance characteristics using battery voltage behavior | |
| US9482722B2 (en) | State of charge estimation device and method of estimating state of charge | |
| JP6509725B2 (en) | Estimating the state of charge of the battery | |
| CN112912747B (en) | Battery state estimating device and battery control device | |
| CN108957337A (en) | Determination method, apparatus, storage medium and the electronic equipment of cell health state | |
| JP5929778B2 (en) | CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD | |
| JP6221884B2 (en) | Estimation program, estimation method, and estimation apparatus | |
| JP6749080B2 (en) | Power storage system, secondary battery control system, and secondary battery control method | |
| JP6440377B2 (en) | Secondary battery state detection device and secondary battery state detection method | |
| JP2016166864A (en) | Storage element management device, storage element management method, storage element module, storage element management program, and moving body | |
| EP3961232B1 (en) | Method and apparatus for battery state estimation | |
| JP6171897B2 (en) | Approximation function creation program, approximation function creation method, approximation function creation device, and charging rate estimation program | |
| WO2018025350A1 (en) | Estimation device, estimation program, and charging control device | |
| WO2017179175A1 (en) | Estimation device, estimation program, and charging control device | |
| JP2016176780A (en) | Battery remaining capacity prediction device and battery pack | |
| JP2015185284A (en) | Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method | |
| JP6299187B2 (en) | Estimation program, estimation method, and estimation apparatus | |
| JPWO2018211824A1 (en) | Battery control device and vehicle system | |
| JP6421411B2 (en) | Estimation program for estimating battery charging rate, estimation method for estimating battery charging rate, and estimation device for estimating battery charging rate | |
| WO2018029849A1 (en) | Estimation device, estimation program, and charging control device | |
| WO2018025306A1 (en) | Estimation device, estimation program, and charging control device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16911610 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16911610 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |