[go: up one dir, main page]

WO2017183527A1 - Subject monitoring device and method, and subject monitoring system - Google Patents

Subject monitoring device and method, and subject monitoring system Download PDF

Info

Publication number
WO2017183527A1
WO2017183527A1 PCT/JP2017/014919 JP2017014919W WO2017183527A1 WO 2017183527 A1 WO2017183527 A1 WO 2017183527A1 JP 2017014919 W JP2017014919 W JP 2017014919W WO 2017183527 A1 WO2017183527 A1 WO 2017183527A1
Authority
WO
WIPO (PCT)
Prior art keywords
excretion
probability
unit
monitored person
final
Prior art date
Application number
PCT/JP2017/014919
Other languages
French (fr)
Japanese (ja)
Inventor
将積 直樹
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018513125A priority Critical patent/JP7151480B2/en
Publication of WO2017183527A1 publication Critical patent/WO2017183527A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to a monitored person monitoring apparatus, a monitored person monitoring method, and a monitored person monitoring system for monitoring a monitored person as a monitoring target.
  • Japan is an aging society, more specifically the ratio of population over 65 years old to the total population due to the improvement of living standards accompanying the post-war high economic growth, improvement of sanitary environment and improvement of medical standards, etc. It is a super-aging society with an aging rate exceeding 21%.
  • the total population was about 126.5 million, while the elderly population over the age of 65 was about 25.56 million.
  • the total population was about 124.11 million.
  • the elderly population will be about 34.56 million.
  • nurses who need nursing or nursing care due to illness, injury, elderly age, etc., or those who need nursing care are those who need nursing in a normal society that is not an aging society.
  • monitored person monitoring techniques for monitoring a monitored person to be monitored, such as a care recipient, have been researched and developed.
  • a safety management system disclosed in Patent Document 1 includes a central control device installed in a base station, a room connected to the central control device in a wired or wireless manner, and a separate room from the base station.
  • a safety management system comprising a nurse call terminal installed in the at least one sensor attached to the bed in the other room for detecting that the care recipient is about to leave the bed
  • An infrared CCD camera whose output is connected to the nurse call terminal and wired or wirelessly connected to the central control device and controlled by an input from the central control device.
  • the central control unit is provided with means for displaying an image captured by the infrared CCD camera. That.
  • the above-mentioned monitored person such as a nursing person has a risk of falling when he / she walks out of bed to perform excretion, for example, and may be injured if he / she falls. .
  • a monitoring person such as a nurse or a caregiver often accompanies.
  • the monitored person is elderly, there is a high risk of falling when walking, and there is also a risk of falling or falling when leaving or getting in.
  • the care recipient's action is automatically nursed when the care receiver (an example of the person being monitored) starts to move away from the bed. Since it can be grasped at the center, a nurse (an example of a supervisor) can run under the cared person. However, since the monitored person has already left the floor and walked when he rushed, there was a possibility that the attendance of the monitored person would not be in time for the falling of the monitored person.
  • the present invention is an invention made in view of the above-described circumstances, and its object is to monitor a monitored person and a monitored person that can support advance rushing by predicting the excretion probability and notifying the monitoring person It is a method and to provide a monitored person monitoring system.
  • the monitored person monitoring apparatus, the monitored person monitoring method, and the monitored person monitoring system according to the present invention obtain a first excretion probability by detecting a predetermined event related to excretion of the monitored person who is a monitoring target, A second excretion probability is obtained by measuring a predetermined time-series biological signal in the monitored person, and the final excretion probability of the monitored person is obtained based on the first and second excretion probabilities and notified to the outside. .
  • the monitored person monitoring apparatus, the monitored person monitoring method, and the monitored person monitoring system according to the present invention can support advance rushing by predicting the excretion probability and notifying the monitoring person.
  • the monitored person monitoring system in the embodiment monitors a monitored person (watched person) Ob that is a monitored object (watched object) to be monitored (watched), and communicates with the terminal device and the terminal device. And a monitored person monitoring device for monitoring the monitored person Ob.
  • the monitored person monitoring apparatus measures an excretion event detecting unit that detects a predetermined event related to excretion of the monitored person who is a monitoring target, and a time-series predetermined biological signal in the monitored person.
  • a first excretion probability calculation unit that obtains, as a first excretion probability, a probability per unit time that the monitored person excretes based on a detection result of the excretion event detection unit;
  • a second excretion probability calculating unit that obtains, as a second excretion probability, a probability per unit time that the monitored person excretes based on a measurement result of the biological signal measuring unit; and the first and second excretion probability calculations
  • a final excretion probability calculating unit that obtains a probability per unit time that the monitored person excretes as a final excretion probability based on the first and second excretion probabilities determined by the unit; and the final excretion probability Calculated in the calculation unit
  • a notification processing unit for notifying the final excretion probability to the outside.
  • the monitored person monitoring device includes a determination unit that determines whether or not the final excretion probability obtained by the final excretion probability calculation unit exceeds a predetermined threshold, and the notification process
  • the determination unit determines that the final excretion probability calculated by the final excretion probability calculation unit exceeds a predetermined threshold
  • the unit notifies the outside to that effect.
  • the monitored person monitoring device may output a message indicating that the excretion probability or final excretion probability has exceeded a predetermined threshold to an output device provided in the own device.
  • the terminal device is notified through a management server device that manages the entire supervisory monitoring system.
  • the said terminal device may be one type of apparatus
  • the said terminal device is two types of apparatuses, a fixed terminal device and a portable terminal device.
  • the main difference between these fixed terminal devices and portable terminal devices is that the fixed terminal device is fixedly operated, while the portable terminal device is operated by being carried by a supervisor (user) such as a nurse or a caregiver.
  • the fixed terminal device and the mobile terminal device are substantially the same.
  • FIG. 1 is a diagram illustrating a configuration of a monitored person monitoring system according to the embodiment.
  • FIG. 2 is a diagram showing a configuration of a sensor device in the monitored person monitoring system.
  • FIG. 3 is a view for explaining an arrangement mode of the sensor device.
  • FIG. 4 is a diagram illustrating a configuration of a Doppler sensor unit in the sensor device.
  • FIG. 5 is a diagram illustrating a configuration of an excretion event processing unit in the sensor device.
  • FIG. 6 is a diagram for explaining detection of getting out and entering the sensor device. 6A is a diagram for explaining detection of getting out of the bed, and FIG. 6B is a diagram for explaining detection of entering the floor.
  • FIG. 7 is a diagram illustrating a configuration of a biological signal processing unit in the sensor device.
  • FIG. 1 is a diagram illustrating a configuration of a monitored person monitoring system according to the embodiment.
  • FIG. 2 is a diagram showing a configuration of a sensor device in the monitored person monitoring system.
  • FIG. 8 is a diagram illustrating an example of a Doppler signal and its power spectrum when body movement is detected.
  • FIG. 9 is a diagram illustrating an example of a Doppler signal and its power spectrum when breathing is detected.
  • FIG. 10 is a diagram illustrating an example of a sensor noise signal and its power spectrum.
  • 8A, FIG. 9A, and FIG. 10A show Doppler signals in time space, the horizontal axis is time, and the vertical axis is output value (signal level, amplitude).
  • 8B, FIG. 9B, and FIG. 10B show Doppler signals (power spectrum) in the frequency space, the horizontal axis is frequency, and the vertical axis is the power of each frequency component (amplitude of each frequency component). is there.
  • the monitored person monitoring system MS in the embodiment includes, for example, as shown in FIG. 1, one or a plurality of sensor devices SU (SU-1 to SU-4), a management server device SV, A fixed terminal device SP, one or a plurality of portable terminal devices TA (TA-1, TA-2), and a private branch exchange (PBX) CX, which are wired or wireless, LAN (Local) It is connected to be communicable via a network (network, communication line) NW such as Area Network.
  • NW network, communication line
  • the network NW may be provided with repeaters such as repeaters, bridges, and routers that relay communication signals.
  • FIG. 1 one or a plurality of sensor devices SU (SU-1 to SU-4), a management server device SV, A fixed terminal device SP, one or a plurality of portable terminal devices TA (TA-1, TA-2), and a private branch exchange (PBX) CX, which are wired or wireless, LAN (Local) It is connected to be communicable via
  • the plurality of sensor devices SU-1 to SU-4, the management server device SV, the fixed terminal device SP, the plurality of portable terminal devices TA-1, TA-2, and the private branch exchange CX include an L2 switch.
  • a wired / wireless LAN for example, a LAN in accordance with the IEEE 802.11 standard
  • NW including the LS and the access point AP.
  • the plurality of sensor devices SU-1 to SU-4, the management server device SV, the fixed terminal device SP, and the private branch exchange CX are connected to the line concentrator LS, and the plurality of portable terminal devices TA-1, TA-2. Is connected to the line concentrator LS via the access point AP.
  • the network NW constitutes a so-called intranet by using Internet protocol groups such as TCP (Transmission control protocol) and IP (Internet protocol).
  • the monitored person monitoring system MS is arranged at an appropriate place according to the monitored person Ob.
  • the monitored person (person to be watched) Ob is, for example, a person who needs nursing due to illness or injury, a person who needs care due to a decrease in physical ability, a single person living alone, or the like.
  • the monitored person Ob may be a person who needs the detection when a predetermined inconvenient event such as an abnormal state occurs in the person. preferable.
  • the monitored person monitoring system MS is suitably arranged in a building such as a hospital, a welfare facility for the elderly, and a dwelling unit according to the type of the monitored person Ob.
  • the monitored person monitoring system MS is disposed in a building of a care facility that includes a plurality of living rooms RM in which a plurality of monitored persons Ob live and a plurality of living rooms such as a nurse station.
  • the sensor device SU has, for example, a communication function that communicates with other devices SV, SP, and TA via the network NW, monitors the monitored person Ob, and excretes the monitored person Ob. Is determined as the final excretion probability, notified to the outside, and when it is determined that the final excretion probability has exceeded a predetermined threshold value, the fact is notified to the outside.
  • the sensor device SU notifies the terminal devices SP and TA via the monitoring server device SV.
  • FIG. 1 shows four first to fourth sensor devices SU-1 to SU-4 as an example, and the first sensor device SU-1 is one of the monitored persons Ob.
  • the second sensor device SU-2 is arranged in a room RM-2 (not shown) of Mr.
  • the third sensor device SU-3 is disposed in the room RM-3 (not shown) of Mr. C Ob-3, one of the monitored subjects Ob, and the fourth sensor device SU-4 It is arranged in the room RM-4 (not shown) of Mr. D Ob-4, one of the monitored persons Ob.
  • a sensor device SU will be described in more detail later.
  • the management server device SV has a communication function for communicating with other devices SU, TA, SP via the network NW, and the final excretion probability or the final excretion probability exceeds a predetermined threshold value from the sensor device SU. If it is determined that it has been determined (excretion notice information), the final excretion probability and the excretion notice information are stored and recorded in association with the monitored person Ob, and the final excretion probability or The excretion notice information is notified (reported, notified, transmitted) to a predetermined terminal device SP, TA corresponding to the monitored person Ob, and data in response to a request from a client (terminal device SP, TA, etc. in this embodiment) Is provided to the client and manages the monitored person monitoring system MS as a whole.
  • the management server device SV stores a notification destination correspondence and a communication address correspondence in advance.
  • the notification destination correspondence relationship is a correspondence relationship between the notification source sensor device SU (sensor ID) and the notification destination terminal devices SP and TA (terminal ID).
  • the communication address correspondence is a correspondence between each device SU, SP, TA (each ID) and its communication address.
  • the sensor ID (sensor device identifier) is an identifier for identifying and identifying the sensor device SU.
  • the terminal ID terminal device identifier
  • the management server device SV receives a communication signal (first final excretion probability notification communication signal) that accommodates the final excretion probability, the notification source (transmission source) in the received first final excretion probability notification communication signal ) And the data such as the final excretion probability contained in the received first final excretion probability notification communication signal are stored (recorded) in association with each other.
  • the management server device SV identifies the notification destination terminal devices SP and TA corresponding to the notification source sensor device SU in the received first final excretion probability notification communication signal from the notification destination correspondence relationship, and this notification A communication signal (second final excretion probability notification communication signal) containing the sensor ID of the sensor device SU of the notification source (transmission source) and the final excretion probability is transmitted to the terminal devices SP and TA. Send.
  • the management server device SV receives a communication signal (first excretion notice notification communication signal) containing the excretion notice information
  • the sensor device of the notification source (transmission source) in the received first excretion notice notification communication signal The SU (sensor ID) and the data such as the excretion notice information stored in the received first excretion notice notification communication signal are stored (recorded) in association with each other.
  • the management server device SV identifies the notification destination terminal devices SP and TA corresponding to the notification source sensor device SU in the received first excretion notice notification communication signal from the notification destination correspondence relationship, and this notification destination To the terminal devices SP and TA, a communication signal (second excretion notice notification communication signal) containing the sensor ID of the sensor device SU of the notification source (transmission source) and the excretion notice information is transmitted.
  • the communication address is obtained from the communication address correspondence relationship.
  • Such a management server device SV can be configured by a computer with a communication function, for example.
  • the fixed terminal device SP includes a communication function for communicating with other devices SU, SV, TA via the network NW, a display function for displaying predetermined information, an input function for inputting predetermined instructions and data, and the like. Input predetermined instructions and data to be given to the management server device SV, the sensor device SU and the portable terminal device TA, display the final excretion probability obtained by the sensor device SU, and excretion obtained by the sensor device SU It is a device that functions as a user interface (UI) of the monitored person monitoring system MS by outputting the advance notice information or the like.
  • UI user interface
  • Such a fixed terminal device SP can be configured by, for example, a computer with a communication function.
  • the mobile terminal device TA has a communication function for communicating with other devices SV, SP, SU via the network NW, a display function for displaying predetermined information, an input function for inputting predetermined instructions and data, and a voice call. It has a calling function to perform, and inputs a predetermined instruction or data to be given to the management server device SV or the sensor device SU, or displays a final excretion probability obtained by the sensor device SU by a notification from the management server device SV Or a device that functions as a user interface (UI) of the monitored person monitoring system MS by, for example, outputting excretion notice information obtained by the sensor device SU by a notification from the management server device SV.
  • a portable terminal device TA can be configured by a portable communication terminal device such as a so-called tablet computer, a smartphone, or a mobile phone.
  • the sensor device SU includes an excretion event sensor unit 11, a biological signal sensor unit 12, a control processing unit 13, a storage unit 14, and a communication interface unit (communication IF unit) 15.
  • the sensor device SU includes an excretion event sensor unit 11, a biological signal sensor unit 12, a control processing unit 13, a storage unit 14, and a communication interface unit (communication IF unit) 15.
  • the communication IF unit 15 is a communication circuit that is connected to the control processing unit 13 and performs communication according to the control of the control processing unit 13.
  • the communication IF unit 15 generates a communication signal containing data to be transferred input from the control processing unit 13 according to the communication protocol used in the network NW of the monitored person monitoring system MS, and generates the generated communication signal. It transmits to other devices SV, SP, TA via the network NW.
  • the communication IF unit 15 receives a communication signal from another device SV, SP, TA via the network NW, extracts data from the received communication signal, and a format in which the control processing unit 13 can process the extracted data. And output to the control processing unit 13.
  • the communication IF unit 15 includes, for example, a communication interface circuit that complies with the IEEE 802.11 standard or the like.
  • the excretion event sensor unit 11 is connected to the control processing unit 13, and acquires data for detecting a predetermined event related to the excretion of the monitored person Ob according to the control of the control processing unit 13.
  • the predetermined event related to the excretion of the monitored person Ob is a bed leaving the monitored person from the bedding.
  • the excretion event sensor unit 11 performs control processing.
  • the imaging unit 11 is connected to the unit 13 and generates an image (image data) by imaging according to the control of the control processing unit 13.
  • An imaging unit 11 (an excretion event sensor unit and an imaging unit use the same reference numerals for convenience) as an example of the excretion event sensor unit 11 together with the biological signal sensor unit 12 as shown in FIG.
  • a space where the person Ob is scheduled to be located (location space, in the example shown in FIG. 1, the room RM of the arrangement location) is arranged on the ceiling surface CE, for example, so that the location space can be imaged from above. Then, an image (image data) overlooking the imaging target is generated, and the imaging target image (target image) is output to the control processing unit 13.
  • the imaging unit 11 is expected to be located at the head of the monitored person Ob in a bedding (such as a bed) BD on which the monitored person Ob lies. It is arranged so that the imaging target can be imaged from directly above the preset planned head position (usually the pillow arrangement position).
  • Such an imaging unit 11 may be a device that generates an image of visible light, but in the present embodiment, it is a device that generates an infrared image so that the monitored person Ob can be monitored even in a relatively dark place.
  • the imaging unit 11 has an imaging optical system that forms an infrared optical image of an imaging target on a predetermined imaging surface, and a light receiving surface that matches the imaging surface.
  • An image sensor that is arranged and converts an infrared optical image in the imaging target into an electrical signal, and image data that represents an infrared image in the imaging target by performing image processing on the output of the image sensor It is a digital infrared camera provided with the image processing part etc. which produce
  • the imaging optical system of the imaging unit 11 is preferably a wide-angle optical system (so-called wide-angle lens (including a fisheye lens)) having an angle of view that can image the entire living room RM in which the imaging unit 11 is disposed. .
  • the biological signal sensor unit 12 is connected to the control processing unit 13 and acquires data for measuring a biological signal according to the control of the control processing unit 13.
  • the biological signal sensor unit 12 includes a Doppler sensor unit 12 that is connected to the control processing unit 13 and that is controlled by the control processing unit 13 in order to perform measurement without contact.
  • the Doppler sensor unit 12 (the biosignal sensor unit and the Doppler sensor unit use the same reference numerals for the sake of convenience) as an example of the biological signal sensor unit 12 transmits a transmission wave and reflects the transmission wave reflected by the object.
  • a sensor that receives a reflected wave and outputs a Doppler signal having a Doppler frequency component based on the transmitted wave and the reflected wave.
  • the Doppler sensor unit 12 When the object is moving, the frequency of the reflected wave is shifted in proportion to the moving speed of the object due to the so-called Doppler effect. Arise.
  • the Doppler sensor unit 12 generates a Doppler frequency component signal as a Doppler signal and outputs it.
  • the transmission wave may be an ultrasonic wave, a microwave, or the like. In the present embodiment, the transmission wave is a microwave of 2.4 GHz to 24 GHz. Since microwaves can be transmitted through clothing and reflected from the body surface of the living body, the movement of the body surface can be detected even when the living body is wearing clothes, which is preferable.
  • the Doppler sensor unit 12 is arranged as described above, for example, so as to transmit the transmission wave to the location space and receive the reflected wave from the space.
  • the Doppler signal of the Doppler frequency component is output from the Doppler sensor unit 12 to the control processing unit 13.
  • the Doppler sensor unit 12 includes, for example, a transmission unit 121, a transmission antenna 122, a reception antenna 123, a reception unit 124, and an analog / digital conversion unit (AD) as illustrated in FIG. Conversion unit) 125.
  • a transmission unit 121 a transmission antenna 122, a reception antenna 123, a reception unit 124, and an analog / digital conversion unit (AD) as illustrated in FIG. Conversion unit) 125.
  • AD analog / digital conversion unit
  • the transmission unit 121 is a circuit that generates a transmission wave of an electrical signal corresponding to a microwave, and includes a microwave oscillation circuit including a Gunn diode, an amplification circuit, and the like.
  • the transmission antenna 122 is an antenna that is connected to the transmission unit 121, converts the transmission wave of the electric signal generated by the transmission unit 121 into a transmission wave of the microwave, and radiates the transmission wave of the microwave to the location space. .
  • the transmission antenna 122 radiates a microwave transmission wave with a predetermined directivity characteristic (half-width of main lobe and transmission direction).
  • the receiving antenna 123 is an antenna that acquires a microwave from the location space and converts the microwave into an electric signal.
  • the reception unit 124 is a circuit that is connected to the reception antenna 123 and generates a Doppler signal having a Doppler frequency component by signal processing from the electrical signal output from the reception antenna 123 and the transmission wave of the electrical signal.
  • the receiving unit 124 may be a circuit that generates a 1-channel Doppler signal.
  • a quadrature phase detector is provided, and an I channel and a Q channel are provided. This is a circuit for generating two-channel Doppler signals (I channel data I (t) and Q channel data Q (t)).
  • the AD conversion unit 125 is a circuit that is connected to the reception unit 124 and converts an analog Doppler signal into a digital Doppler signal by sampling and digitizing the analog Doppler signal at a predetermined sampling interval.
  • the AD conversion unit 125 is connected to the control processing unit 13 and outputs the AD converted digital Doppler signals (I channel data I (t) and Q channel data Q (t)) to the control processing unit 13.
  • the AD conversion unit 125 is provided in the Doppler sensor unit 12, but may be provided in the control processing unit 13 instead.
  • the storage unit 14 is a circuit that is connected to the control processing unit 13 and stores various predetermined programs and various predetermined data under the control of the control processing unit 13.
  • the various predetermined programs include, for example, an SU control program that controls each unit of the sensor device SU according to the function of each unit, and an output of the excretion event sensor unit (imaging unit in the present embodiment) 11.
  • the biological signal of the monitored person Ob Based on the output of the excretion event processing program for executing a process for detecting a predetermined event related to the excretion of the monitored person Ob and the output of the biological signal sensor unit (Doppler sensor unit in this embodiment) 12, the biological signal of the monitored person Ob
  • the first excretion that determines the probability per unit time that the monitored person Ob excites as the first excretion probability based on the detection result of the biological signal processing program that executes the process of extracting the excretion event and the excretion event processing program Probability per unit time that the monitored object Ob excretes based on the measurement result of the probability calculation program or the biological signal processing program
  • a clock program for measuring time, or the event in this embodiment, getting out of bed
  • the current time is calculated from the clock program.
  • the excretion time is acquired as the excretion time, and the acquired excretion time is associated with the monitored person Ob and recorded in the excretion time storage unit 141 described later, or the time series extracted by the biological signal processing program A predetermined biological signal is recorded in a biological signal storage unit 142 described later in association with the monitored person Ob, and the first and second excretion probability calculation programs obtained by the first and second excretion probability calculation programs. 2 Based on the excretion probability, the final excretion is determined as a final excretion probability that the monitored person Ob excretes.
  • a control processing program such as a determination program for determining whether or not has been included is included.
  • the various kinds of predetermined data include data necessary for executing each program such as the sensor ID of the own device and the communication address of the management server device SV.
  • the storage unit 14 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like.
  • the storage unit 14 includes a RAM (Random Access Memory) that serves as a working memory of a so-called control processing unit 13 that stores data generated during execution of the predetermined program.
  • the storage unit 14 functionally includes an excretion time storage unit 141, a biological signal storage unit 142, a first excretion prediction model storage unit 143, and a second excretion prediction model storage unit 145.
  • the excretion time storage unit 141 stores the excretion time, which is the excretion time, in association with the monitored person Ob.
  • the biological signal storage unit 142 stores the biological signal in association with the monitored person Ob.
  • the first excretion prediction model storage unit 143 stores the first excretion prediction model generated as described later in association with the monitored person Ob.
  • the second excretion prediction model storage unit 144 stores the second excretion prediction model generated as described later in association with the monitored person Ob.
  • the control processing unit 13 controls each unit of the sensor device SU according to the function of each unit, monitors the monitored person Ob, and excretes the monitored person Ob (for example, 15 minutes and 30 minutes). , 60 minutes, etc.) is determined as the final excretion probability, notified to the outside, and when it is determined that the final excretion probability has exceeded a predetermined threshold, that fact is notified to the outside It is a circuit for.
  • the control processing unit 13 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits.
  • the control processing unit 13 When the control processing program is executed, the control processing unit 13 includes a control unit 130, an excretion event processing unit 131, a biological signal processing unit 132, a first excretion probability calculating unit 133, a second excretion probability calculating unit 134, a clock Unit 135, excretion time recording processing unit 136, biological signal recording processing unit 137, final excretion probability calculating unit 138, determination unit 139, and notification processing unit 140.
  • the control unit 130 controls each unit of the sensor device SU according to the function of each unit, and controls the entire sensor device SU.
  • the excretion event processing unit 131 executes a process of detecting a predetermined event related to excretion of the monitored person Ob based on the output of the excretion event sensor unit (imaging unit in the present embodiment) 11.
  • the predetermined event related to excretion may be excretion itself, but in the present embodiment, as described above, the person being monitored is getting out of bed.
  • a monitored person who receives nursing or care by a nurse or a caregiver has a high possibility of going to the toilet for excretion as it is when leaving the bed. In particular, leaving at night is highly likely to be accompanied by excretion. In the present embodiment, as described above, bed leaving is detected without contact.
  • the excretion event processing unit 131 is illustrated in FIG. As described above, the moving object detection unit 1311 and the behavior determination unit 1312 are functionally provided.
  • the moving object detection unit 1311 receives the target image generated by the imaging unit 11, and extracts a moving object region in the target image as a person region of the monitored person Ob based on the input target image. It is. More specifically, the moving object detection unit 1311 extracts a moving object region from the target image by, for example, a background difference method or a frame difference method. The moving object detection unit 1311 outputs the extracted moving object region to the action determination unit 1312.
  • the behavior determination unit 1312 detects the bed leaving by determining the behavior of the monitored person Ob based on the moving body region input from the moving body detection unit 1311, here, the presence or absence of the bed leaving. More specifically, in order to determine the presence or absence of getting out of the bed, first, the storage unit 14 stores in advance the location area of the bedding BD as one of the various predetermined data. Then, as shown in FIG. 6A, the behavior determination unit 1312 leaves the bed when the moving body region MOb input from the moving body detection unit 1311 changes in time from within the region where the bedding BD is located to outside the region where the bedding BD is located. Judge that there is, and detect getting out of bed.
  • the behavior determination unit 1312 When the behavior determination unit 1312 detects getting out of bed, the behavior determination unit 1312 outputs the detection result to the excretion time recording processing unit 136.
  • the action determination unit 1312 may be a precondition for determining the prior detection of entering the floor as getting out of bed. In this case, as shown in FIG. 6B, the behavior determination unit 1312, when the moving body region MOb input from the moving body detection unit 1311 changes in time from outside the region where the bedding BD is located to inside the region where the bedding BD is located. It is determined that there is an entry, and the entry is detected.
  • the imaging unit 11 captures an image of the bedding BD obliquely from above or the like, the moving body region MOb and the bedding BD may overlap even if the monitored person Ob is getting out of bed. For this reason, when determining whether to leave the floor or to enter the floor, the temporal change in the area of the overlapping region where the moving body region MOb and the location area of the bedding BD overlap, or the ratio of the area of the overlapping region to the area of the moving body region MOb Time changes may be taken into account.
  • the biological signal processing unit 132 performs a process of extracting the biological signal of the monitored person Ob based on the output of the biological signal sensor unit (Doppler sensor unit in this embodiment) 12. More specifically, such a biological signal processing unit 132 functionally includes a signal cutout unit 1321 and a frequency analysis unit 1322 as shown in FIG.
  • the signal extraction unit 1321 receives a Doppler signal from the Doppler sensor unit 12. Since the Doppler signal input from the Doppler sensor unit 12 is a temporally continuous signal, the signal clipping unit 1321 performs the fast Fourier transform in the frequency analysis unit 1322 in the next stage.
  • the Doppler signal input from is cut out with a predetermined time length and output to the frequency analysis unit 1322.
  • the cutout method may be a cutout method in which the Doppler signal input from the Doppler sensor unit 12 is divided by a predetermined time length so that there is no overlapping portion between the cutout Doppler signals before and after the cutout. In order to improve the time resolution, the cut-out method is to divide by a predetermined time length so that the Doppler signals before and after the cut-out have overlapping portions.
  • the frequency analysis unit 1322 converts the time-space Doppler signal input from the signal cutout unit 1321 into a frequency-space Doppler signal (power spectrum).
  • the frequency analysis unit 1322 outputs the Doppler signal in the frequency space to the biological signal recording processing unit 137.
  • known conventional means are used for the conversion from the time space to the frequency space. For example, a fast Fourier transform method (FFT (Fast Fourier Transform) method), a discrete Fourier transform method (DFT (Discrete Fourier Transform) method), A discrete cosine transform method (DCT (Discrete Cosine Transform) method), a wavelet transform method, or the like is used.
  • FFT Fast Fourier transform method
  • DFT discrete Fourier Transform
  • DCT discrete cosine Transform
  • the frequency analysis unit 1322 converts the Doppler signal in the time space into a Doppler signal in the frequency space by a short-time Fourier transform method (STFT (Short-Time Fourier Transform) method) which is a known technique.
  • STFT Short-Time Fourier Transform
  • a time-space Doppler signal input from the Doppler sensor unit 12 is cut out by a signal cutout unit 1321 by a so-called window function for a predetermined time Doppler signal, and the Doppler signal of this predetermined time is output by a frequency analysis unit 1322.
  • Fourier transform is performed to generate a Doppler signal (power spectrum) in the frequency space.
  • the Doppler signal is continuously input from the Doppler sensor unit 12 at the sampling interval of the AD conversion unit 125, the signal clipping unit 1321 and the frequency analysis unit 1322 are input from the Doppler sensor unit 12.
  • the window functions are acted on while shifting the window functions in time, and each of them is Fourier transformed.
  • the Doppler sensor unit 12 can obtain Doppler signals due to various movements of the monitored person Ob, such as body movements and breathing movements, for example, so that the time-space Doppler signals and the frequency-space Doppler signals correspond to the Doppler signals. Have a profile.
  • the body movement such as walking and turning over is a non-periodic movement with a relatively large movement because the movement of the slowly moving trunk and the movement of the limb moving fast are mixed.
  • the Doppler signal corresponding to the body movement in which each part of the body performs various movements is a relatively wideband signal having a relatively large signal strength.
  • the target amplitude is a relatively flat (flat) profile having no peak in a specific frequency component.
  • the movement of the breath appears as a vertical movement of the chest and becomes a periodic movement with a relatively small movement.
  • rest breathing it is generally about 12 to 25 times / minute, and the chest moves up and down at about 0.2 Hz to 0.4 Hz.
  • Such a Doppler signal corresponding to the movement of breathing is a relatively narrow band signal having a relatively small signal intensity.
  • the signal is a signal whose amplitude changes regularly, and in the frequency space, as shown in FIG. 9B, a profile has a peak at a specific frequency component (about 0.3 Hz in the example shown in FIG. 9B).
  • sensor noise is generated from the Doppler sensor unit 12. Is output. This sensor noise is so-called thermal noise and becomes white noise.
  • the sensor noise is a flat signal whose amplitude is relatively small and does not change much with time.
  • the profile is a relatively flat (flat) profile having no peak at a specific frequency component.
  • the clock unit 135 measures time.
  • the clock unit 135 also has a calendar function for measuring the date.
  • the excretion time recording processing unit 136 acquires the current time (year / month / day) from the clock unit 135 as the excretion time when the excretion event processing unit 131 detects the event (the bed is regarded as excretion in the present embodiment).
  • the acquired excretion time is recorded in the excretion time storage unit 141 in association with the monitored person Ob.
  • the fact that the event (leaving from bed, excretion) occurred by recording the excretion time is also recorded in the excretion time storage unit 141.
  • the biological signal recording processing unit 137 receives a predetermined time-series biological signal measured by the biological signal sensor unit 12, in this embodiment, the Doppler signal in the frequency space obtained by the biological signal processing unit 132. Are recorded in the biological signal storage unit 142 in association with each other.
  • the first excretion probability calculating unit 133 obtains, as the first excretion probability, a predetermined per unit time probability that the monitored person Ob excretes based on the detection result of the excretion event processing unit 131. More specifically, the first excretion probability calculation unit 133 includes a plurality of sub time zones (first sub time zones) generated by dividing a predetermined time zone by a predetermined time length (first time length). The first excretion prediction model is generated by obtaining the first excretion probability based on the excretion time stored in the excretion time storage unit 141.
  • the predetermined time zone may be arbitrary according to the excretion monitoring time zone, for example, a time zone of 24 hours a day, a time zone from 20 o'clock at night to 6 o'clock, and midnight to 4 o'clock. It is the time zone until the time.
  • the excretion time is stored in the excretion time storage unit 141 in the sub time zone from 2 o'clock to 2:15, 5 times out of 7 days, the sub time from 2 o'clock to 2:15
  • Such calculation is performed for each of the 96 sub-time zones, and each first excretion probability is obtained for each of the 96 sub-time zones, and 96 of the sub-time zones and the first excretion probability is obtained.
  • Each group is the first excretion prediction model.
  • the first excretion probability calculating unit 133 stores the generated first excretion prediction model in the first excretion prediction model storage unit 143 in association with the monitored person Ob.
  • the second excretion probability calculating unit 134 obtains, as the second excretion probability, a predetermined probability per unit time that the monitored subject Ob excretes based on the processing result of the biological signal processing unit 132. More specifically, the second excretion probability calculation unit 134 uses the time-series predetermined biological signal stored in the biological signal storage unit as learning data to determine the second excretion prediction model. Is generated by learning. More specifically, a predetermined feature amount is generated as learning data for each of a plurality of second sub time periods generated by dividing the predetermined time period by a predetermined second time length.
  • the predetermined second time length may be any appropriate time length, and may be the same as or different from the predetermined first time length.
  • the predetermined feature amount is, for example, a plurality of Dopplers in a frequency space obtained in the small time period for each of a plurality of small time periods generated by dividing the second sub time period by a predetermined third time length.
  • the second sub-time zone of 30 minutes is divided into six first to sixth sub-time zones every 5 minutes, and for each of these first to sixth sub-time zones, the frequency obtained in the small time zone.
  • the power can be obtained by integrating the power spectrum, and the respiration rate can be obtained by counting the number of peaks per minute.
  • the sensor device SU is operated for a predetermined period, for example, one week, and stores the Doppler signal in the frequency space in the biological signal storage unit 142.
  • a supervisor such as a nurse or a caregiver assigns data indicating the presence or absence of excretion to each of the plurality of second sub-periods from a nursing record, a care record, etc., and stores it via the terminal devices SP and TA.
  • the second excretion probability calculation unit 134 obtains each feature amount for each second sub-time zone for one week from the Doppler signal in the frequency space thus obtained, and stores the feature amount in these feature amounts.
  • the supervised learning data is generated in association with the presence or absence of excretion stored in the memory, and the second excretion prediction model for obtaining the second excretion probability is generated by, for example, logistic regression analysis using the generated learning data .
  • the second excretion probability calculating unit 134 stores the generated second excretion prediction model in the second excretion prediction model storage unit 144 in association with the monitored person Ob.
  • the final excretion probability calculating unit 138 is based on the first and second excretion probabilities calculated by the first and second excretion probability calculating units 133 and 134, and the monitored person Ob excretes per predetermined unit time. The probability is obtained as the final excretion probability.
  • the final excretion probability calculation unit 138 outputs the obtained final excretion probability to the determination unit 139 and the notification processing unit 140, respectively. More specifically, the final excretion probability calculating unit 138 uses the first excretion probability obtained from the first excretion prediction model and the second excretion prediction model for each of the plurality of sub time periods (first sub time periods). The final excretion probability is obtained by multiplying the obtained second excretion probability.
  • the feature amounts (average power Pave, maximum power Pmax, minimum power Pmin, and the like obtained from the Doppler signal of the frequency space acquired in the sub time zone are calculated.
  • Variance Pvar, average respiration rate Bave, maximum respiration rate Bmax, minimum respiration rate Bmin, and its variance Bvar) are used.
  • the frequency space acquired in the sub time zone (the first sub time zone) Since there are a plurality of feature amounts obtained from the Doppler signal, any one of the plurality of feature amounts, an average value of the plurality of feature amounts, or a median value of the plurality of feature amounts is obtained. It is used when determining the second excretion probability from the second excretion prediction model. For this reason, it is preferable that the 1st sub time slot
  • the determination unit 139 determines whether or not the final excretion probability obtained by the final excretion probability calculation unit 138 exceeds a predetermined threshold th. As a result of the determination, when the final excretion probability does not exceed the predetermined threshold th, the determination unit 139 does nothing and the final excretion probability exceeds the predetermined threshold th. The determination unit 139 outputs to the notification processing unit 140 that the final excretion probability has exceeded a predetermined threshold th.
  • the notification processing unit 140 notifies the final excretion probability obtained by the final excretion probability calculating unit 138 to the outside.
  • the notification processing unit 140 transmits the final excretion probability obtained by the final excretion probability calculating unit 138 to the predetermined terminal devices SP and TA via the management server device SV by the communication IF unit 15. More specifically, the notification processing unit 140 sends a communication signal (first final excretion probability notification communication signal) containing the sensor ID of its own device and the final excretion probability obtained by the final excretion probability calculating unit 138.
  • the data is transmitted to the management server device SV by the communication IF unit 15.
  • the management server device SV that has received the first final excretion probability notification communication signal searches for the terminal ID of the notification destination corresponding to the sensor ID accommodated therein, and to the terminal devices SP and TA having the searched terminal ID, The sensor ID accommodated in the received final excretion probability notification communication signal and the communication signal (second final excretion probability notification communication signal) accommodating the final excretion probability are transmitted.
  • the management server device SV may transmit the sensor ID stored in the received final excretion probability notification communication signal and the communication signal containing the final excretion probability by broadcast communication.
  • the notification processing unit 140 externally indicates that the final excretion probability exceeds the predetermined threshold th. To notify.
  • the notification processing unit 140 transmits the fact that the final excretion probability has exceeded a predetermined threshold th to the predetermined terminal devices SP and TA by the communication IF unit 15 via the management server device SV. More specifically, the notification processing unit 140 includes a communication signal (first excretion notice) containing its own sensor ID and excretion notice information indicating that the final excretion probability exceeds a predetermined threshold th. Notification communication signal) is transmitted to the management server device SV by the communication IF unit 15.
  • the management server device SV that has received this first excretion notice communication signal searches for the terminal ID of the notification destination corresponding to the sensor ID accommodated therein, and sends this to the terminal devices SP and TA having the searched terminal ID.
  • a communication signal (first excretion notice notification communication signal) containing the sensor ID and excretion notice information contained in the received first excretion notice notification communication signal is transmitted.
  • the excretion event sensor unit 11 and the excretion event processing unit 131 correspond to an example of an excretion event detection unit that detects a predetermined event related to excretion of the monitored person, and the biosignal sensor unit 12 and the biosignal processing.
  • the unit 132 corresponds to an example of a biological signal measurement unit that measures a predetermined time-series biological signal in the monitored person.
  • FIG. 11 is a flowchart showing an operation of creating an excretion prediction model in the sensor device and notifying the final excretion probability.
  • FIG. 12 is a flowchart showing an operation of predicting and notifying excretion in the sensor device.
  • each device SU, SV, SP, TA performs initialization of each necessary part and starts its operation when the power is turned on.
  • the control processing unit 13 includes the control unit 130, the excretion event processing unit 131, the biological signal processing unit 132, the first excretion probability calculating unit 133, and the second excretion probability calculating unit. 134, a clock unit 135, an excretion time recording processing unit 136, a biological signal recording processing unit 137, a final excretion probability calculating unit 138, a determination unit 139, and a notification processing unit 140 are functionally configured.
  • an excretion notice mode for performing the excretion notice using the final excretion probability There is.
  • the sensor device SU acquires and stores each data by the control processing unit 13 (S11). More specifically, the sensor device SU acquires an image from the imaging unit 11 as an example of the excretion event sensor unit 11, and the excretion event processing unit 131 performs the above-described event (book) based on the image (target image). In the embodiment, when the above event is detected, the excretion time recording processing unit 136 acquires the current time as the excretion time from the clock unit 135, and stores the acquired excretion time in the excretion time storage unit 141. To do.
  • the sensor device SU acquires a Doppler signal from the Doppler sensor unit 12 as an example of the biological signal sensor unit 12, generates a Doppler signal in the frequency space by the biological signal processing unit 132, and generates the generated Doppler signal in the frequency space. This is stored in the biological signal storage unit 142.
  • a monitor such as a nurse or a caregiver assigns data indicating the presence or absence of excretion to each of the plurality of second sub-periods from a nursing record or a care record, and the terminal devices SP, TA Is stored in the storage unit 14.
  • the sensor device SU determines whether or not a preset data collection period (for example, 1 week, 10 days, 2 weeks, etc.) has ended since the start of acquisition of each data by the control processing unit 13 ( S12). If the result of this determination is that the data collection period has not ended (No), the sensor device SU returns the process to step S11 by the control processing unit 13, while the data collection period has ended ( In Yes), the sensor device SU performs the next processing S13 by the control processing unit 13. That is, each data is collected and stored until the data collection period ends.
  • a preset data collection period for example, 1 week, 10 days, 2 weeks, etc.
  • the sensor device SU In the process S13, the sensor device SU generates a first excretion prediction model by using each data acquired and stored in the process S11 and the process S12 by the first excretion probability calculation unit 133 of the control processing unit 13.
  • the generated first excretion prediction model is stored in the first excretion prediction model storage unit 143.
  • the sensor device SU generates a second excretion prediction model by using each data acquired and stored in the processing S11 and the processing S12 by the second excretion probability calculation unit 134 of the control processing unit 13,
  • the generated second excretion prediction model is stored in the second excretion prediction model storage unit 144 (S14).
  • the sensor device SU uses the final excretion probability calculating unit 138 of the control processing unit 13 based on the first and second excretion probabilities obtained by the first and second excretion probability calculating units 133 and 134 to The probability per unit time that the monitor Ob excretes is obtained as the final excretion probability (S16).
  • the sensor device SU notifies the final excretion probability obtained in step S15 to the outside by the notification processing unit 139 of the control processing unit 13 (S17), and ends the process.
  • the notification processing unit 139 transmits the first final excretion probability notification communication signal containing the sensor ID and the final excretion probability to the management server device SV via the communication IF unit 15.
  • the management server device SV that has received the first final excretion probability notification communication signal searches for the terminal ID of the notification destination corresponding to the sensor ID accommodated therein, and to the terminal devices SP and TA having the searched terminal ID, The sensor terminal ID contained in the received first final excretion probability notification communication signal and the second final excretion probability notification communication signal containing the final excretion probability are transmitted.
  • the terminal devices SP and TA that have received the second final excretion probability notification communication signal display the final excretion probability accommodated in the received second final excretion probability notification communication signal in association with the monitored person Ob.
  • the final excretion probabilities are displayed sequentially for each first sub-time period. That is, the first excretion prediction model is displayed. Note that the correspondence between the sensor ID and the name of the monitored person Ob is stored in advance in the terminal devices SP and TA.
  • the monitored person monitoring system MS operates in this way.
  • each data is acquired and recorded by a process similar to the process S11 shown in FIG. 11 at a predetermined time interval (sampling interval) set in advance, while each process shown in FIG. 12 is preset. It is repeatedly executed at a predetermined time interval (for example, 1 second).
  • the sensor device SU acquires the current time from the clock unit 135 by the first and second excretion probability calculation units 133 and 134 of the control processing unit 13 (S21).
  • the sensor device SU uses the first excretion probability calculation unit 133 to obtain the first excretion probability corresponding to the current time from the first excretion prediction model (S22).
  • the sensor device SU uses the second excretion probability calculation unit 134 to obtain the second excretion probability corresponding to the current time from the second excretion prediction model (S23).
  • the second excretion probability calculation unit 134 calculates feature amounts (described above) from a plurality of Doppler signals in the frequency space stored in the biological signal storage unit 142 from the current time to a time that is traced back in the past by the second time length.
  • the average power Pave, the maximum power Pmax, the minimum power Pmin, the variance Pvar, the average breathing rate Bave, the maximum breathing rate Bmax, the minimum breathing rate Bmin, and the variance Bvar are obtained in total 48), and the obtained feature amount Is used in the second excretion prediction model to determine the second excretion probability.
  • the sensor device SU obtains a final excretion probability based on the first excretion probability obtained in the process S22 and the second excretion probability obtained in the process S23 by the final excretion probability calculating unit 138 (S25).
  • the final excretion probability calculating unit 138 obtains the final excretion probability by multiplying the first excretion probability obtained in step S22 and the second excretion probability obtained in step S23.
  • the sensor device SU determines whether or not the final excretion probability obtained by the final excretion probability calculation unit 138 in the process S25 exceeds a predetermined threshold th by the determination unit 139 (S26). As a result of this determination, if the final excretion probability does not exceed the predetermined threshold th, the sensor device SU ends the current process, while the final excretion probability exceeds the predetermined threshold th. If it exceeds, the sensor apparatus SU ends the current process after executing the next process S27.
  • the sensor device SU notifies the outside that the final excretion probability has exceeded a predetermined threshold th by the notification processing unit 140.
  • the notification processing unit 139 transmits the first excretion notice notification communication signal containing the sensor ID and the excretion notice information to the management server device SV through the communication IF unit 15.
  • the management server device SV that has received the first excretion notice notification communication signal searches the terminal ID of the notification destination corresponding to the sensor ID accommodated therein, and sends this to the terminal devices SP and TA having the searched terminal ID.
  • a second excretion notice notification communication signal containing the sensor ID and excretion notice information contained in the received first excretion notice notification signal is transmitted.
  • the terminal devices SP and TA that have received the second excretion notice notification communication signal sound a predetermined warning sound.
  • the terminal devices SP and TA may display a message indicating the excretion notice in association with the monitored person Ob. Further, the terminal devices SP and TA may output a predetermined vibration instead of or in addition to the warning sound, or in addition to or in addition to the display.
  • the monitored person monitoring system MS operates in this way.
  • the monitored person monitoring system MS, the sensor apparatus SU which is an example of the monitored person monitoring apparatus, and the monitored person monitoring method implemented therein are the first excretion of the monitored person Ob.
  • the probability is obtained, the second excretion probability of the monitored person Ob is obtained, and the final excretion probability of the monitored person Ob is obtained based on the first and second excretion probabilities and notified to the outside. Therefore, since the monitor can predict the excretion by referring to the final excretion probability of the monitored person Ob, the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method are rushed in advance. Can support. Therefore, the risk of falling of the monitored person Ob can be reduced.
  • the monitored person monitoring system MS Since the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method obtain the final excretion probability based on the first and second excretion probabilities obtained by two methods, more accurate.
  • the excretion probability can be obtained.
  • the time of meals and bedtime are determined to some extent and have periodicity in order to have a stable life. Accordingly, the timing of excretion and the bed movement for that purpose have periodicity. Also, before excretion, there is some body movement such as unconsciously feeling uncomfortable, becoming sleepless and increasing the number of turns. In particular, this tendency tends to appear during nighttime sleeping.
  • the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method obtain the first excretion probability based on the detection result of the excretion event processing unit 131, and the second based on the processing result of the biological signal processing unit 132. Since the excretion probability is obtained and these are integrated to obtain the final excretion probability, the excretion probability can be obtained with high accuracy.
  • Japanese Patent Application Laid-Open No. 2001-161732 discloses a device for detecting the timing of changing diapers.
  • the device since the device is installed in the diaper, it is necessary for the elderly to feel uncomfortable or to change it every time the diaper is changed. Convenience is not good.
  • the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method do not require a separate device in the diaper and are easy to use.
  • the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method perform a predetermined notification to the outside when the final excretion probability exceeds a predetermined threshold th. For this reason, by referring to this notification, the monitor can recognize that the monitored person Ob is near excretion. And since the supervisor can run under the monitored person Ob before the monitored person Ob actually leaves, the risk of falling can be reduced.
  • the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method can easily detect the event by regarding getting out of bed as the event.
  • the monitored person monitoring system MS Since the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method detect getting out of bed from the image, it is possible to detect the getting-off of the monitored person Ob without contacting the monitored person Ob and thus the event.
  • the biological signal of the monitored person Ob is measured by the Doppler sensor unit 12, so that the biological signal can be measured without contact with the monitored person Ob. .
  • a monitor such as a nurse or a caregiver can set the excretion time and the terminal device SP, TA.
  • Data indicating the presence or absence of excretion is input and transmitted to the sensor device SU via the management server device SV.
  • the sensor device SU stores data representing the excretion time and presence / absence of excretion received from the terminal devices SP and TA via the management server device SV in the storage unit 14. Then, the sensor device SU adds the data obtained during the execution of the excretion notice mode to each data of the initial mode at every predetermined time interval or according to an instruction from a monitor or the like, and creates the first excretion prediction model.
  • the sensor device SU as an example of the monitored person monitoring device described above further includes an excretion receiving unit that receives an input of the excretion time, and the biological signal storage unit 142 further receives the excretion receiving unit.
  • the excretion time is recorded in the excretion time storage unit 141 in association with the monitored person Ob, and the learning data is generated by dividing the predetermined time zone by a predetermined second time length.
  • the first excretion probability calculating unit 133 regenerates the first excretion prediction model based on the excretion time stored in the excretion time storage unit 141 and includes the second excretion probability calculation unit 134.
  • the excretion time is input to the terminal device SP, TA by a monitor such as a nurse or a caregiver, and is input from the terminal device SP, TA to the sensor device SU via the management server device SV.
  • the communication IF unit 15 corresponds to an example of an excretion receiving unit that receives an input of excretion time.
  • the sensor device SU is further connected to the control processing unit 13 as necessary, for example, an input unit for inputting various commands, various data, and the like, and various commands and various data input by the input unit.
  • An output unit may be further provided, and the excretion time may be input from the input unit.
  • the final excretion probability is obtained based on the first and second excretion probabilities, but the final excretion probability may be further obtained based on the third excretion probability.
  • the third excretion prediction model in which the excretion probability increases as time elapses from the excretion time.
  • a third excretion probability calculating unit 21 for obtaining three excretion probabilities is further provided functionally in the control processing unit 13, and a final excretion probability calculating unit 138 is obtained by each of the first to third excretion probability calculating units 133, 134, and 21, respectively.
  • the final excretion probability is obtained based on the obtained first to third excretion probabilities. More specifically, for example, the final excretion probability calculation unit 138 multiplies the first to third excretion probabilities obtained by the first to third excretion probability calculation units 133, 134, and 21, respectively, thereby multiplying the final excretion probability. Find the excretion probability.
  • storage part 14 is further equipped with the 3rd excretion prediction model memory
  • a process S15 for generating a third excretion prediction model and storing it in the third excretion prediction model storage unit 22 is further added between the process S14 and the process S16, as indicated by a broken line. .
  • a process S24 for obtaining a third excretion probability is further added between the processes S23 and S25 as shown by a broken line.
  • the third excretion prediction model may be a table or a function expression generated by using a plurality of samples in advance, or may be a learning model generated by using learning data. According to this, since the final excretion probability is obtained based on the third excretion probability in addition to the first and second excretion probabilities, the final excretion probability with higher accuracy can be obtained.
  • the excretion event sensor unit 11 includes the imaging unit 11, and the excretion event processing unit 131 detects the bed leaving as excretion, but the excretion event detection unit is not limited thereto.
  • a leaving mat disposed in an area around the bedding or a place where the user leaves the bed may be used.
  • the bed leaving mat is provided with, for example, a pressure-sensitive sensor, and the monitored person Ob detects the bed leaving the monitored person Ob when the monitored person Ob rides on the bed leaving mat.
  • a seating sensor that detects seating may be used.
  • the seating sensor includes, for example, a pressure sensor, and when the monitored person Ob rides on the seating sensor, the seating of the monitored person Ob is detected by the pressure sensor. In the case of using this seating sensor, it is possible to cope with the risk of walking to bed after excretion.
  • Such a floor mat or seating sensor is connected to the control processing unit 13 of the sensor device SU so as to be communicable by wire or wirelessly.
  • the feature amounts are the average power Pave, the maximum power Pmax, the minimum power Pmin, the variance Pvar, the average respiratory rate Bave, the maximum respiratory rate Bmax, the minimum respiratory rate Bmin, and the variance Bvar.
  • the present invention is not limited to this.
  • the amount of intake water and the amount of meals may be used.
  • an intake water reception unit that receives an input of an intake water amount associated with an intake time
  • the intake water reception unit An intake water storage unit that stores the intake water amount associated with the received intake time in association with the monitored person Ob, and the learning data includes the predetermined time zone for a predetermined second time period.
  • Data is provided for each of the plurality of second sub-periods generated by dividing by the length, and the second excretion probability calculation unit 134 corresponds to the intake time stored in the intake water storage unit in the learning data. Learning the second excretion prediction model by adding the intake water amount associated with the intake time to the data of the second sub-time period and using the added learning data Therefore, to produce.
  • a meal amount receiving unit that receives an input of a meal amount associated with a meal time, and the meal received by the meal amount receiving unit
  • a meal amount storage unit that stores a meal amount associated with time in association with the monitored person Ob, and the learning data is obtained by dividing the predetermined time period by a predetermined second time length.
  • Each of the plurality of generated second sub-time zones includes data, and the second excretion probability calculating unit 134 is a second sub-time zone corresponding to the meal time stored in the meal amount storage unit in the learning data.
  • the second excretion prediction model is generated by learning by adding the amount of meal associated with the meal time to the data and using the added learning data.
  • a water intake receiving unit that receives an input of an intake water amount associated with the intake time, and a meal amount associated with the meal time
  • the intake amount storage unit that receives the input of the intake amount, the intake amount storage unit that stores the intake amount of water associated with the intake time, which is received by the intake amount reception unit, in association with the monitored person Ob, and the meal amount
  • a meal amount storage unit that is received by the reception unit and stores a meal amount associated with a meal time in association with the monitored person Ob, and the learning data includes the predetermined time period in a predetermined number of times; Data is provided for each of the plurality of second sub-periods generated by dividing by a two-hour length, and the second excretion probability calculation unit 134 stores the intake water storage unit in the learning data.
  • the intake water amount associated with the intake time is added to the data of the second sub time period corresponding to the remembered intake time, and the meal time corresponding to the meal time stored in the meal amount storage unit in the learning data is added.
  • the second excretion prediction model is generated by learning by adding the amount of meal associated with the meal time to the data of the second sub-time period and using the added learning data.
  • the intake water amount associated with the intake time and the meal amount associated with the meal time are input to the terminal devices SP and TA by a monitor such as a nurse or a caregiver, and the terminal devices SP and TA To the sensor device SU via the management server device SV.
  • the communication IF unit 15 corresponds to an example of an intake water reception unit, and also corresponds to an example of a meal amount reception unit.
  • the storage unit 14 further includes a water intake storage unit 31 and a meal amount storage unit 32 in terms of function.
  • the final excretion probability is notified to the outside in the process S17 of the initial mode.
  • the sensor device SU has the predetermined excretion probability set to a predetermined threshold th. It may be determined whether or not it has been exceeded, and the determination result may be notified to the outside.
  • the final excretion probability is displayed in a different display mode depending on whether or not the predetermined threshold th is exceeded. For example, the final excretion probability exceeding the predetermined threshold th is displayed in red or yellow, and the final excretion probability not exceeding the predetermined threshold th is displayed in blue or green.
  • the process S27 of the excretion notice mode the fact that the final excretion probability has exceeded a predetermined threshold th is notified to the outside.
  • the sensor device SU The final excretion probability may also be notified to the outside. Then, when displaying that the final excretion probability exceeds a predetermined threshold th, the final excretion probability is displayed.
  • the monitored person monitoring device is configured by the sensor device SU, but may be configured by the sensor device SU and the management server device SV.
  • the sensor device SU includes the excretion event sensor unit 11 and the biological signal sensor unit 12
  • the management server device SV includes the excretion event processing unit 131, the biological signal processing unit 132, and the first excretion probability calculation.
  • the biological signal storage unit 142, the first excretion prediction model storage unit 143, and the first excretion prediction model storage unit 144 are configured.
  • a monitored person monitoring apparatus includes an excretion event detecting unit that detects a predetermined event related to excretion of a monitored person that is a monitoring target, and a living body that measures a time-series predetermined biological signal in the monitored person.
  • a first excretion probability calculating unit that obtains, as a first excretion probability, a probability per unit time that the monitored person excretes based on a detection result of the signal measurement unit, the excretion event detection unit, and the biological signal
  • a second excretion probability calculation unit that obtains a probability per unit time that the monitored person excretes as a second excretion probability based on the measurement result of the measurement unit; and the first and second excretion probability calculation units
  • a final excretion probability calculating unit that obtains a probability per unit time that the monitored person excretes as a final excretion probability based on the obtained first and second excretion probabilities; and the final excretion probability calculating unit Sought in And a notification processing unit for notifying a final specific excretion probability to the outside.
  • the excretion time storage unit that stores the excretion time that is the time of excretion, and the excretion event detection unit
  • An excretion time recording processing unit that acquires the current time from the clock unit as the excretion time, and records the acquired excretion time in the excretion time storage unit in association with the monitored person;
  • a biological signal storage unit that stores a biological signal of the biological signal, and a biological signal recording processing unit that records a predetermined time-series biological signal measured by the biological signal measurement unit in the biological signal storage unit in association with the monitored person
  • the first excretion probability calculating unit further includes a plurality of sub time zones (first sub time zones) generated by dividing a predetermined time zone by a predetermined time length (first time length).
  • a first excretion prediction model is generated by obtaining the first excretion probability based on the excretion time stored in the storage unit, and the second excretion probability calculation unit is a time series stored in the biological signal storage unit.
  • a second excretion prediction model for obtaining the second excretion probability is generated by learning, and the final excretion probability calculating unit is configured by each of the first and second excretion probability calculating units.
  • the final excretion probability is obtained based on the first and second excretion probabilities obtained from the generated first and second excretion prediction models, respectively.
  • the above-described monitored person monitoring device further includes an excretion receiving unit that receives an input of the excretion time, and the biological signal storage unit further outputs the excretion time received by the excretion receiving unit to the monitored person.
  • the learning data includes data for each of a plurality of second sub time periods generated by dividing the predetermined time period by a predetermined second time length,
  • the first excretion probability calculation unit regenerates the first excretion prediction model based on the excretion time stored in the excretion time storage unit, and the second excretion probability calculation unit stores in the excretion time storage unit.
  • excretion presence / absence data representing the presence / absence of excretion is generated for each of the plurality of second sub time periods, and the generated excretion presence / absence data is Supervised generates learning data by adding to each data corresponding to each of the plurality of bands second sub time regenerates by relearning the second excretion prediction model by using supervised learning data to said generating.
  • an intake water reception unit that receives an input of an intake water amount associated with an intake time, and an intake water that is received by the intake water reception unit and that is associated with an intake time
  • An intake water storage unit that stores the amount in association with the monitored person, and the learning data is generated by dividing the predetermined time period by a predetermined second time length. Data is provided for each time zone, and the second excretion probability calculation unit adds the second sub-time zone data corresponding to the intake time stored in the intake water storage unit in the learning data to the intake time.
  • the second excretion prediction model is generated by learning by adding the associated intake water amount and using the added learning data.
  • a meal amount receiving unit that receives an input of a meal amount associated with a meal time, and a meal amount associated with the meal time received by the meal amount reception unit
  • a meal amount storage unit that stores the data in association with the monitored person Ob
  • the learning data includes a plurality of second sub-times generated by dividing the predetermined time period by a predetermined second time length.
  • Data is provided for each band, and the second excretion probability calculation unit corresponds to the meal time in the second sub-time data corresponding to the meal time stored in the meal amount storage unit in the learning data.
  • the added excretion amount is added and the second excretion prediction model is generated by learning by using the added learning data.
  • an intake water reception unit that receives an input of an intake water amount associated with intake time
  • a meal amount reception unit that receives an input of a meal amount associated with meal time
  • the intake water storage unit that is received by the intake water reception unit and that stores the intake water amount associated with the intake time in association with the monitored person Ob, and the meal time that is received by the meal amount reception unit
  • a meal amount storage unit that stores the associated meal amount in association with the monitored person Ob, and the learning data is generated by dividing the predetermined time period by a predetermined second time length.
  • Each of the plurality of second sub-periods includes data
  • the second excretion probability calculating unit includes a second sub-corresponding to the intake time stored in the intake water storage unit in the learning data.
  • the intake water amount associated with the intake time is added to the data of the interval, and the meal is added to the data of the second sub time zone corresponding to the meal time stored in the meal amount storage unit in the learning data.
  • the second excretion prediction model is generated by learning by adding a meal amount associated with time and using the added learning data.
  • Such a monitored person monitoring device obtains the first excretion probability of the monitored person, obtains the second excretion probability of the monitored person, and based on the first and second excretion probabilities, the final of the monitored person. To determine the probability of excretion and notify the outside. Therefore, since the monitor can predict the excretion by referring to the final excretion probability of the monitored person, the monitored person monitoring apparatus can support advance rushing. Since the monitored person monitoring device obtains the final excretion probability based on the first and second excretion probabilities obtained by two methods, the excretion probability with higher accuracy can be obtained.
  • a determination unit that determines whether or not a final excretion probability obtained by the final excretion probability calculation unit exceeds a predetermined threshold
  • the notification processing unit When it is determined by the determination unit that the final excretion probability obtained by the final excretion probability calculation unit has exceeded a predetermined threshold, a predetermined notification is given to the outside.
  • Such a monitored person monitoring device makes a predetermined notification to the outside when the final excretion probability exceeds a predetermined threshold value set in advance. Therefore, by referring to this notification, the monitor can recognize that the monitored person is nearing excretion.
  • the excretion event detecting unit includes a bed leaving detection unit that detects the bed leaving the bed person as the event.
  • Such a monitored person monitoring apparatus can easily detect the event by regarding the bed leaving as the event.
  • the bed leaving detection unit is configured to pick up an image to generate an image, and to detect the bed leaving based on the image generated by the image pickup unit. A part.
  • Such a monitored person monitoring apparatus detects a bed leaving from an image, it is possible to detect the floor of the monitored person and thus the event without contact with the monitored person.
  • the biological signal measurement unit includes a Doppler sensor.
  • Such a monitored person monitoring apparatus measures a biological signal of the monitored person with a Doppler sensor, the biological signal can be measured without contact with the monitored person.
  • the above-described monitored person monitoring apparatus further includes a third excretion probability calculation unit that obtains a third excretion probability from a third excretion prediction model in which the excretion probability increases as time elapses from the excretion time.
  • the final excretion probability calculating unit obtains the final excretion probability based on the first to third excretion probabilities obtained by the first to third excretion probability calculating units, respectively.
  • Such a monitored person monitoring apparatus obtains the final excretion probability based on the third excretion probability in addition to the first and second excretion probabilities, and thus obtains a more accurate final excretion probability. be able to.
  • an excretion event detecting step of detecting a predetermined event related to excretion of a monitored person who is a monitoring target, and measuring a time-series predetermined biological signal in the monitored person A first excretion probability calculating step of obtaining a probability per unit time as a first excretion probability that the monitored person excretes based on the detection result of the excretion event detection step; A second excretion probability calculation step of obtaining a probability per unit time that the monitored person excretes as a second excretion probability based on a measurement result of the biological signal measurement unit; and the first and second excretion probability calculations
  • Such a monitored person monitoring method obtains the first excretion probability of the monitored person, obtains the 22nd excretion probability of the monitored person, and based on the first and second excretion probabilities, the final of the monitored person is obtained. To determine the probability of excretion and notify the outside. Therefore, since the monitor can predict the excretion by referring to the final excretion probability of the monitored person, the monitored person monitoring method can support advance rushing. The monitored person monitoring method obtains the final excretion probability based on the first and second excretion probabilities obtained by two methods, so that the excretion probability with higher accuracy can be obtained.
  • a monitored person monitoring system includes a terminal device and a monitored person monitoring device that is communicably connected to the terminal device and monitors a monitored person that is a monitoring target.
  • the monitored person monitoring device is any one of the above-described monitored person monitoring devices.
  • Such a monitored person monitoring system uses any of the above-described monitored person monitoring devices, it is possible to support advance rushing by predicting the excretion probability and notifying the monitoring person.
  • a monitored person monitoring apparatus a monitored person monitoring method, and a monitored person monitoring system can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Management (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Business, Economics & Management (AREA)
  • Computing Systems (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Alarm Systems (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A subject monitoring device, subject monitoring method, and subject monitoring system according to the present invention: sense a prescribed event which relates to excretion by a subject who is a subject to be monitored, and derive a first excretion probability; measure a prescribed vital sign of the subject in time series, and derive a second excretion probability; on the basis of the first and second excretion probabilities, derive a final excretion probability of the subject; and issue a notification to the outside.

Description

被監視者監視装置、該方法および被監視者監視システムMonitored person monitoring device, method and monitored person monitoring system
 本発明は、監視対象である被監視者を監視する被監視者監視装置、被監視者監視方法およびに被監視者監視システムに関する。 The present invention relates to a monitored person monitoring apparatus, a monitored person monitoring method, and a monitored person monitoring system for monitoring a monitored person as a monitoring target.
 我が国(日本)は、戦後の高度経済成長に伴う生活水準の向上、衛生環境の改善および医療水準の向上等によって、高齢化社会、より詳しくは、総人口に対する65歳以上の人口の割合である高齢化率が21%を超える超高齢化社会になっている。また、2005年では、総人口約1億2765万人に対し65歳以上の高齢者人口は、約2556万人であったのに対し、2020年では、総人口約1億2411万人に対し高齢者人口は、約3456万人となる予測もある。このような高齢化社会では、病気や怪我や高齢等による看護や介護を必要とする要看護者や要介護者(要看護者等)は、高齢化社会ではない通常の社会で生じる要看護者等よりもその増加が見込まれる。そして、我が国は、例えば2013年の合計特殊出生率が1.43という少子化社会でもある。そのため、高齢な要看護者等を高齢の家族(配偶者、子、兄弟)が介護する老老介護も起きて来ている。 Japan (Japan) is an aging society, more specifically the ratio of population over 65 years old to the total population due to the improvement of living standards accompanying the post-war high economic growth, improvement of sanitary environment and improvement of medical standards, etc. It is a super-aging society with an aging rate exceeding 21%. In 2005, the total population was about 126.5 million, while the elderly population over the age of 65 was about 25.56 million. In 2020, the total population was about 124.11 million. There is also a prediction that the elderly population will be about 34.56 million. In such an aging society, nurses who need nursing or nursing care due to illness, injury, elderly age, etc., or those who need nursing care (such as those who require nursing care) are those who need nursing in a normal society that is not an aging society. This is expected to increase more than Japan, for example, is a society with a declining birthrate with a total fertility rate of 1.43 in 2013. For this reason, elderly care has been taking place in which elderly nurses, etc., are cared for by an elderly family (spouse, child, brother).
 要看護者等は、病院や、老人福祉施設(日本の法令では老人短期入所施設、養護老人ホームおよび特別養護老人ホーム等)等の施設に入所し、その看護や介護を受ける。このような施設では、要看護者等が、例えばベッドからの転落や歩行中の転倒等によって怪我を負ったり、ベッドから抜け出して徘徊したりするなどの事態が生じ得る。このような事態に対し、可及的速やかに対応する必要がある。また、このような事態を放置しておくとさらに重大な事態に発展してしまう可能性もある。このため、前記施設では、看護師や介護士等は、定期的に巡視することによってその安否や様子を確認している。 Employees requiring nursing care, etc. enter hospitals and facilities for welfare for the elderly (Japanese elderly law short-term entrance facilities, nursing homes for the elderly and special nursing homes for the elderly, etc.) and receive nursing and care. In such a facility, a situation in which a nurse or the like needs to be injured or fallen out of the bed, for example, by falling from the bed or falling while walking can occur. It is necessary to respond to such a situation as quickly as possible. Moreover, if such a situation is left unattended, it may develop into a more serious situation. For this reason, in the facility, nurses and caregivers regularly check their safety and state by patrol.
 しかしながら、要看護者等の増加数に対し看護師等の増加数が追い付かずに、看護業界や介護業界では、慢性的に人手不足になっている。さらに、日勤の時間帯に較べ、準夜勤や夜勤の時間帯では、看護師や介護士等の人数が減るため、一人当たりの業務負荷が増大するので、前記業務負荷の軽減が要請される。また、前記老老介護の事態は、前記施設でも例外ではなく、高齢の要看護者等を高齢の看護師等がケアすることもしばしば見られる。一般に高齢になると体力が衰えるため、健康であっても若い看護師等に比し看介護の負担が重くなり、また、その動きや判断も遅くなる。 However, the increase in the number of nurses etc. cannot keep up with the increase in the number of nurses required, and the nursing industry and the care industry are chronically short of manpower. Furthermore, since the number of nurses, caregivers and the like is reduced in the semi-night shift and night shift hours compared to the day shift hours, the work load per person increases, and thus the work load is required to be reduced. In addition, the situation of the elderly care is not an exception in the facility, and it is often seen that elderly nurses and the like care for elderly nurses and the like. In general, physical strength declines when older, so the burden of nursing care becomes heavier than young nurses, etc., even if they are healthy, and their movements and judgments are also delayed.
 このような人手不足や看護師等の負担を軽減するため、看護業務や介護業務を補完する技術が求められている。このため、近年では、要看護者等の、監視すべき監視対象である被監視者を監視(モニタ)する被監視者監視技術が研究、開発されている。 In order to reduce the labor shortage and the burden on nurses, a technology that complements nursing work and nursing care work is required. For this reason, in recent years, monitored person monitoring techniques for monitoring a monitored person to be monitored, such as a care recipient, have been researched and developed.
 このような技術の一つとして、例えば特許文献1に開示された安全管理システムは、基地局に設置された中央制御装置と、前記中央制御装置と有線又は無線で接続され基地局と別の部屋に設置されるナースコール端子とからで構成される安全管理システムにおいて、前記別の部屋内のベッドに付設され、被介護者がベットから離れようとしていることを検出する少なくとも一つ以上のセンサであって、その出力が前記ナースコール端子に接続されているセンサと、前記中央制御装置と有線又は無線で接続され前記中央制御装置からの入力によって制御される赤外線CCDカメラであって前記別の部屋に設置されている赤外線CCDカメラとを含み、前記中央制御装置には前記赤外線CCDカメラで捕らえた画像を表示する手段が備えられている。 As one of such techniques, for example, a safety management system disclosed in Patent Document 1 includes a central control device installed in a base station, a room connected to the central control device in a wired or wireless manner, and a separate room from the base station. A safety management system comprising a nurse call terminal installed in the at least one sensor attached to the bed in the other room for detecting that the care recipient is about to leave the bed An infrared CCD camera whose output is connected to the nurse call terminal and wired or wirelessly connected to the central control device and controlled by an input from the central control device. The central control unit is provided with means for displaying an image captured by the infrared CCD camera. That.
 一方、安否確認の点では、一人暮らしの独居者も前記要介護者等と同様であり、被監視対象者となる。 On the other hand, in terms of safety confirmation, a single person living alone is the same as the care recipient and the like and is a subject to be monitored.
 ところで、上述の要看護者等の被監視者は、例えば排泄等の所用を行うために、離床して歩行すると、転倒するリスクがあり、転倒してしまうと怪我を負ってしまう可能性がある。このため、被監視者が歩行を行う際に、看護師や介護士等の監視者が付き添うことが多い。特に、被監視者が高齢である場合、歩行の際に転倒するリスクが高く、さらに、離床や入床の際に、転落や転倒してしまうリスクもある。 By the way, the above-mentioned monitored person such as a nursing person has a risk of falling when he / she walks out of bed to perform excretion, for example, and may be injured if he / she falls. . For this reason, when a monitored person walks, a monitoring person such as a nurse or a caregiver often accompanies. In particular, when the monitored person is elderly, there is a high risk of falling when walking, and there is also a risk of falling or falling when leaving or getting in.
 前記特許文献1に開示された安全管理システムでは、ベッドに寝ている被介護者(被監視者の一例)がベッドから離れるという行動を起こし始めた時点で自動的に被介護者の行動をナースセンターにて把握することができるので、看護師(監視者の一例)は、被介護者の下に駆けつけることができる。しかしながら、駆けつけたときには、既に被監視者が離床して歩行しているため、被監視者の転倒に、監視者の付き添いが間に合わない虞があった。 In the safety management system disclosed in Patent Document 1, the care recipient's action is automatically nursed when the care receiver (an example of the person being monitored) starts to move away from the bed. Since it can be grasped at the center, a nurse (an example of a supervisor) can run under the cared person. However, since the monitored person has already left the floor and walked when he rushed, there was a possibility that the attendance of the monitored person would not be in time for the falling of the monitored person.
特開2000-105885号公報JP 2000-105885 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、排泄確率を予測して監視者に通知することで事前の駆け付けを支援できる被監視者監視装置、被監視者監視方法およびに被監視者監視システムを提供することである。 The present invention is an invention made in view of the above-described circumstances, and its object is to monitor a monitored person and a monitored person that can support advance rushing by predicting the excretion probability and notifying the monitoring person It is a method and to provide a monitored person monitoring system.
 本発明にかかる被監視者監視装置、被監視者監視方法およびに被監視者監視システムは、監視対象である被監視者の排泄に関わる所定の事象を検知して第1排泄確率を求め、前記被監視者における時系列な所定の生体信号を測定して第2排泄確率を求め、これら第1および第2排泄確率に基づいて前記被監視者の最終的な排泄確率を求めて外部へ通知する。このため、本発明にかかる被監視者監視装置、被監視者監視方法およびに被監視者監視システムは、排泄確率を予測して監視者に通知することで事前の駆け付けを支援できる。 The monitored person monitoring apparatus, the monitored person monitoring method, and the monitored person monitoring system according to the present invention obtain a first excretion probability by detecting a predetermined event related to excretion of the monitored person who is a monitoring target, A second excretion probability is obtained by measuring a predetermined time-series biological signal in the monitored person, and the final excretion probability of the monitored person is obtained based on the first and second excretion probabilities and notified to the outside. . For this reason, the monitored person monitoring apparatus, the monitored person monitoring method, and the monitored person monitoring system according to the present invention can support advance rushing by predicting the excretion probability and notifying the monitoring person.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態における被監視者監視システムの構成を示す図である。It is a figure which shows the structure of the to-be-monitored person monitoring system in embodiment. 前記被監視者監視システムにおけるセンサ装置の構成を示す図である。It is a figure which shows the structure of the sensor apparatus in the said to-be-monitored person monitoring system. 前記センサ装置の配設態様を説明するための図である。It is a figure for demonstrating the arrangement | positioning aspect of the said sensor apparatus. 前記センサ装置におけるドップラセンサ部の構成を示す図である。It is a figure which shows the structure of the Doppler sensor part in the said sensor apparatus. 前記センサ装置における排泄事象処理部の構成を示す図である。It is a figure which shows the structure of the excretion event process part in the said sensor apparatus. 前記センサ装置における離床および入床の各検知を説明するための図である。It is a figure for demonstrating each detection of a bed leaving and entering a floor in the said sensor apparatus. 前記センサ装置における生体信号処理部の構成を示す図である。It is a figure which shows the structure of the biosignal processing part in the said sensor apparatus. 体動を検知した場合におけるドップラ信号およびそのパワースペクトルの一例を示す図である。It is a figure which shows an example of a Doppler signal in the case of detecting a body movement, and its power spectrum. 呼吸を検知した場合におけるドップラ信号およびそのパワースペクトルの一例を示す図である。It is a figure which shows an example of a Doppler signal in the case of detecting respiration and its power spectrum. センサノイズ信号およびそのパワースペクトルの一例を示す図である。It is a figure which shows an example of a sensor noise signal and its power spectrum. 前記センサ装置における排泄予測モデルを作成し、最終的な排泄確率を通知する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which creates the excretion prediction model in the said sensor apparatus, and notifies a final excretion probability. 前記センサ装置における排泄を予測して通知する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which estimates and notifies the excretion in the said sensor apparatus.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.
 実施形態における被監視者監視システムは、監視すべき(見守るべき)監視対象(見守り対象)である被監視者(見守り対象者)Obを監視するものであり、端末装置と、前記端末装置と通信可能に接続され、被監視者Obを監視する被監視者監視装置とを備える。前記被監視者監視装置は、本実施形態では、監視対象である被監視者の排泄に関わる所定の事象を検知する排泄事象検知部と、前記被監視者における時系列な所定の生体信号を測定する生体信号測定部と、前記排泄事象検知部の検知結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第1排泄確率として求める第1排泄確率演算部と、前記生体信号測定部の測定結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第2排泄確率として求める第2排泄確率演算部と、前記第1および第2排泄確率演算部で求められた第1および第2排泄確率に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求める最終排泄確率演算部と、前記最終排泄確率演算部で求めた最終的な排泄確率を外部へ通知する通知処理部とを備える。さらに、本実施形態では、前記被監視者監視装置は、前記最終排泄確率演算部で求められた最終的な排泄確率が所定の閾値を超えたか否かを判定する判定部を備え、前記通知処理部は、前記判定部によって、前記最終排泄確率演算部で求められた最終的な排泄確率が所定の閾値を超えたと判定された場合に、その旨を外部へ所定の通知を行う。前記被監視者監視装置は、自機が備える出力装置に前記排泄確率や最終的な排泄確率が所定の閾値を超えたと判定された旨を出力しても良いが、本実施形態では、この被監視者監視システム全体を管理する管理サーバ装置を介して前記端末装置へ通知するものである。なお、前記端末装置は、1種類の装置であって良いが、本実施形態態では、前記端末装置は、固定端末装置と携帯端末装置との2種類の装置である。これら固定端末装置と携帯端末装置との主な相違は、固定端末装置が固定的に運用される一方、携帯端末装置が例えば看護師や介護士等の監視者(ユーザ)に携行されて運用される点であり、これら固定端末装置と携帯端末装置とは、略同様である。 The monitored person monitoring system in the embodiment monitors a monitored person (watched person) Ob that is a monitored object (watched object) to be monitored (watched), and communicates with the terminal device and the terminal device. And a monitored person monitoring device for monitoring the monitored person Ob. In the present embodiment, the monitored person monitoring apparatus measures an excretion event detecting unit that detects a predetermined event related to excretion of the monitored person who is a monitoring target, and a time-series predetermined biological signal in the monitored person. A first excretion probability calculation unit that obtains, as a first excretion probability, a probability per unit time that the monitored person excretes based on a detection result of the excretion event detection unit; A second excretion probability calculating unit that obtains, as a second excretion probability, a probability per unit time that the monitored person excretes based on a measurement result of the biological signal measuring unit; and the first and second excretion probability calculations A final excretion probability calculating unit that obtains a probability per unit time that the monitored person excretes as a final excretion probability based on the first and second excretion probabilities determined by the unit; and the final excretion probability Calculated in the calculation unit And a notification processing unit for notifying the final excretion probability to the outside. Furthermore, in the present embodiment, the monitored person monitoring device includes a determination unit that determines whether or not the final excretion probability obtained by the final excretion probability calculation unit exceeds a predetermined threshold, and the notification process When the determination unit determines that the final excretion probability calculated by the final excretion probability calculation unit exceeds a predetermined threshold, the unit notifies the outside to that effect. The monitored person monitoring device may output a message indicating that the excretion probability or final excretion probability has exceeded a predetermined threshold to an output device provided in the own device. The terminal device is notified through a management server device that manages the entire supervisory monitoring system. In addition, although the said terminal device may be one type of apparatus, in this embodiment, the said terminal device is two types of apparatuses, a fixed terminal device and a portable terminal device. The main difference between these fixed terminal devices and portable terminal devices is that the fixed terminal device is fixedly operated, while the portable terminal device is operated by being carried by a supervisor (user) such as a nurse or a caregiver. The fixed terminal device and the mobile terminal device are substantially the same.
 図1は、実施形態における被監視者監視システムの構成を示す図である。図2は、前記被監視者監視システムにおけるセンサ装置の構成を示す図である。図3は、前記センサ装置の配設態様を説明するための図である。図4は、前記センサ装置におけるドップラセンサ部の構成を示す図である。図5は、前記センサ装置における排泄事象処理部の構成を示す図である。図6は、前記センサ装置における離床および入床の各検知を説明するための図である。図6Aは、離床の検知を説明するための図であり、図6Bは、入床の検知を説明するための図である。図7は、前記センサ装置における生体信号処理部の構成を示す図である。図8は、体動を検知した場合におけるドップラ信号およびそのパワースペクトルの一例を示す図である。図9は、呼吸を検知した場合におけるドップラ信号およびそのパワースペクトルの一例を示す図である。図10は、センサノイズ信号およびそのパワースペクトルの一例を示す図である。図8A、図9Aおよび図10Aは、時間空間でのドップラ信号を示し、その横軸は、時間であり、その縦軸は、出力値(信号レベル、振幅)である。図8B、図9Bおよび図10Bは、周波数空間でのドップラ信号(パワースペクトル)を示し、その横軸は、周波数であり、その縦軸は、各周波数成分のパワー(各周波数成分の振幅)である。 FIG. 1 is a diagram illustrating a configuration of a monitored person monitoring system according to the embodiment. FIG. 2 is a diagram showing a configuration of a sensor device in the monitored person monitoring system. FIG. 3 is a view for explaining an arrangement mode of the sensor device. FIG. 4 is a diagram illustrating a configuration of a Doppler sensor unit in the sensor device. FIG. 5 is a diagram illustrating a configuration of an excretion event processing unit in the sensor device. FIG. 6 is a diagram for explaining detection of getting out and entering the sensor device. 6A is a diagram for explaining detection of getting out of the bed, and FIG. 6B is a diagram for explaining detection of entering the floor. FIG. 7 is a diagram illustrating a configuration of a biological signal processing unit in the sensor device. FIG. 8 is a diagram illustrating an example of a Doppler signal and its power spectrum when body movement is detected. FIG. 9 is a diagram illustrating an example of a Doppler signal and its power spectrum when breathing is detected. FIG. 10 is a diagram illustrating an example of a sensor noise signal and its power spectrum. 8A, FIG. 9A, and FIG. 10A show Doppler signals in time space, the horizontal axis is time, and the vertical axis is output value (signal level, amplitude). 8B, FIG. 9B, and FIG. 10B show Doppler signals (power spectrum) in the frequency space, the horizontal axis is frequency, and the vertical axis is the power of each frequency component (amplitude of each frequency component). is there.
 実施形態における被監視者監視システムMSは、より具体的には、例えば、図1に示すように、1または複数のセンサ装置SU(SU-1~SU-4)と、管理サーバ装置SVと、固定端末装置SPと、1または複数の携帯端末装置TA(TA-1、TA-2)と、構内交換機(PBX、Private branch exchange)CXとを備え、これらは、有線や無線で、LAN(Local Area Network)等の網(ネットワーク、通信回線)NWを介して通信可能に接続される。ネットワークNWは、通信信号を中継する例えばリピーター、ブリッジおよびルーター等の中継機が備えられても良い。図1に示す例では、これら複数のセンサ装置SU-1~SU-4、管理サーバ装置SV、固定端末装置SP、複数の携帯端末装置TA-1、TA-2および構内交換機CXは、L2スイッチの集線装置(ハブ、HUB)LSおよびアクセスポイントAPを含む有線および無線の混在したLAN(例えばIEEE802.11規格に従ったLAN等)NWによって互いに通信可能に接続されている。より詳しくは、複数のセンサ装置SU-1~SU-4、管理サーバ装置SV、固定端末装置SPおよび構内交換機CXは、集線装置LSに接続され、複数の携帯端末装置TA-1、TA-2は、アクセスポイントAPを介して集線装置LSに接続されている。そして、ネットワークNWは、TCP(Transmission control protocol)およびIP(Internet protocol)等のインターネットプロトコル群が用いられることによっていわゆるイントラネットを構成する。 More specifically, the monitored person monitoring system MS in the embodiment includes, for example, as shown in FIG. 1, one or a plurality of sensor devices SU (SU-1 to SU-4), a management server device SV, A fixed terminal device SP, one or a plurality of portable terminal devices TA (TA-1, TA-2), and a private branch exchange (PBX) CX, which are wired or wireless, LAN (Local) It is connected to be communicable via a network (network, communication line) NW such as Area Network. The network NW may be provided with repeaters such as repeaters, bridges, and routers that relay communication signals. In the example shown in FIG. 1, the plurality of sensor devices SU-1 to SU-4, the management server device SV, the fixed terminal device SP, the plurality of portable terminal devices TA-1, TA-2, and the private branch exchange CX include an L2 switch. Are connected to each other by a wired / wireless LAN (for example, a LAN in accordance with the IEEE 802.11 standard) NW including the LS and the access point AP. More specifically, the plurality of sensor devices SU-1 to SU-4, the management server device SV, the fixed terminal device SP, and the private branch exchange CX are connected to the line concentrator LS, and the plurality of portable terminal devices TA-1, TA-2. Is connected to the line concentrator LS via the access point AP. The network NW constitutes a so-called intranet by using Internet protocol groups such as TCP (Transmission control protocol) and IP (Internet protocol).
 被監視者監視システムMSは、被監視者Obに応じて適宜な場所に配設される。被監視者(見守り対象者)Obは、例えば、病気や怪我等によって看護を必要とする者や、身体能力の低下等によって介護を必要とする者や、一人暮らしの独居者等である。特に、早期発見と早期対処とを可能にする観点から、被監視者Obは、例えば異常状態等の所定の不都合な事象がその者に生じた場合にその発見を必要としている者であることが好ましい。このため、被監視者監視システムMSは、被監視者Obの種類に応じて、病院、老人福祉施設および住戸等の建物に好適に配設される。図1に示す例では、被監視者監視システムMSは、複数の被監視者Obが入居する複数の居室RMや、ナースステーション等の複数の居室を備える介護施設の建物に配設されている。 The monitored person monitoring system MS is arranged at an appropriate place according to the monitored person Ob. The monitored person (person to be watched) Ob is, for example, a person who needs nursing due to illness or injury, a person who needs care due to a decrease in physical ability, a single person living alone, or the like. In particular, from the viewpoint of enabling early detection and early action, the monitored person Ob may be a person who needs the detection when a predetermined inconvenient event such as an abnormal state occurs in the person. preferable. For this reason, the monitored person monitoring system MS is suitably arranged in a building such as a hospital, a welfare facility for the elderly, and a dwelling unit according to the type of the monitored person Ob. In the example illustrated in FIG. 1, the monitored person monitoring system MS is disposed in a building of a care facility that includes a plurality of living rooms RM in which a plurality of monitored persons Ob live and a plurality of living rooms such as a nurse station.
 センサ装置SUは、例えば、ネットワークNWを介して他の装置SV、SP、TAと通信する通信機能等を備え、被監視者Obを監視し、被監視者Obが排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求め、外部へ通知し、そして、前記最終的な排泄確率が所定の閾値を超えたと判定された場合に、その旨を外部へ通知するものである。本実施形態では、上述したとおり、センサ装置SUは、監視サーバ装置SVを介して端末装置SP、TAへ通知する。図1には、一例として、4個の第1ないし第4センサ装置SU-1~SU-4が示されており、第1センサ装置SU-1は、被監視者Obの一人であるAさんOb-1の居室RM-1(不図示)に配設され、第2センサ装置SU-2は、被監視者Obの一人であるBさんOb-2の居室RM-2(不図示)に配設され、第3センサ装置SU-3は、被監視者Obの一人であるCさんOb-3の居室RM-3(不図示)に配設され、そして、第4センサ装置SU-4は、被監視者Obの一人であるDさんOb-4の居室RM-4(不図示)に配設されている。このようなセンサ装置SUは、後述でより詳細に説明される。 The sensor device SU has, for example, a communication function that communicates with other devices SV, SP, and TA via the network NW, monitors the monitored person Ob, and excretes the monitored person Ob. Is determined as the final excretion probability, notified to the outside, and when it is determined that the final excretion probability has exceeded a predetermined threshold value, the fact is notified to the outside. In the present embodiment, as described above, the sensor device SU notifies the terminal devices SP and TA via the monitoring server device SV. FIG. 1 shows four first to fourth sensor devices SU-1 to SU-4 as an example, and the first sensor device SU-1 is one of the monitored persons Ob. The second sensor device SU-2 is arranged in a room RM-2 (not shown) of Mr. B Ob-2 who is one of the monitored persons Ob. The third sensor device SU-3 is disposed in the room RM-3 (not shown) of Mr. C Ob-3, one of the monitored subjects Ob, and the fourth sensor device SU-4 It is arranged in the room RM-4 (not shown) of Mr. D Ob-4, one of the monitored persons Ob. Such a sensor device SU will be described in more detail later.
 管理サーバ装置SVは、ネットワークNWを介して他の装置SU、TA、SPと通信する通信機能を備え、センサ装置SUから前記最終的な排泄確率や前記最終的な排泄確率が所定の閾値を超えたと判定された旨(排泄予告情報)を受けると、被監視者Obに対応付けて前記最終的な排泄確率や前記排泄予告情報を記憶(記録)して管理し、前記最終的な排泄確率や前記排泄予告情報を前記被監視者Obに対応する所定の端末装置SP、TAへ通知(通報、報知、送信)し、クライアント(本実施形態では端末装置SP、TA等)の要求に応じたデータを前記クライアントに提供し、被監視者監視システムMS全体を管理する装置である。 The management server device SV has a communication function for communicating with other devices SU, TA, SP via the network NW, and the final excretion probability or the final excretion probability exceeds a predetermined threshold value from the sensor device SU. If it is determined that it has been determined (excretion notice information), the final excretion probability and the excretion notice information are stored and recorded in association with the monitored person Ob, and the final excretion probability or The excretion notice information is notified (reported, notified, transmitted) to a predetermined terminal device SP, TA corresponding to the monitored person Ob, and data in response to a request from a client (terminal device SP, TA, etc. in this embodiment) Is provided to the client and manages the monitored person monitoring system MS as a whole.
 より具体的には、管理サーバ装置SVは、通知先対応関係および通信アドレス対応関係を予め記憶している。前記通知先対応関係は、通知元のセンサ装置SU(センサID)と通知先の端末装置SP、TA(端末ID)との対応関係である。前記通信アドレス対応関係は、各装置SU、SP、TA(各ID)とその通信アドレスとの対応関係である。センサID(センサ装置識別子)は、センサ装置SUを特定し識別するための識別子である。端末ID(端末装置識別子)は、端末装置SP、TAを特定し識別するための識別子である。まず、管理サーバ装置SVは、前記最終的な排泄確率を収容する通信信号(第1最終排泄確率通知通信信号)を受信すると、この受信した第1最終排泄確率通知通信信号における通知元(送信元)のセンサ装置SU(センサID)と前記受信した第1最終排泄確率通知通信信号に収容された前記最終的な排泄確率等のデータとを互いに対応付けて記憶(記録)する。そして、管理サーバ装置SVは、前記通知先対応関係から、前記受信した第1最終排泄確率通知通信信号における通知元のセンサ装置SUに対応する通知先の端末装置SP、TAを特定し、この通知先の端末装置SP、TAへ、前記通知元(送信元)のセンサ装置SUが持つセンサID、および、前記最終的な排泄確率等を収容した通信信号(第2最終排泄確率通知通信信号)を送信する。また、管理サーバ装置SVは、前記排泄予告情報を収容する通信信号(第1排泄予告通知通信信号)を受信すると、この受信した第1排泄予告通知通信信号における通知元(送信元)のセンサ装置SU(センサID)と前記受信した第1排泄予告通知通信信号に収容された前記排泄予告情報等のデータとを互いに対応付けて記憶(記録)する。そして、管理サーバ装置SVは、前記通知先対応関係から、前記受信した第1排泄予告通知通信信号における通知元のセンサ装置SUに対応する通知先の端末装置SP、TAを特定し、この通知先の端末装置SP、TAへ、前記通知元(送信元)のセンサ装置SUが持つセンサID、および、前記排泄予告情報等を収容した通信信号(第2排泄予告通知通信信号)を送信する。通信アドレスは、前記通信アドレス対応関係から取得される。 More specifically, the management server device SV stores a notification destination correspondence and a communication address correspondence in advance. The notification destination correspondence relationship is a correspondence relationship between the notification source sensor device SU (sensor ID) and the notification destination terminal devices SP and TA (terminal ID). The communication address correspondence is a correspondence between each device SU, SP, TA (each ID) and its communication address. The sensor ID (sensor device identifier) is an identifier for identifying and identifying the sensor device SU. The terminal ID (terminal device identifier) is an identifier for identifying and identifying the terminal devices SP and TA. First, when the management server device SV receives a communication signal (first final excretion probability notification communication signal) that accommodates the final excretion probability, the notification source (transmission source) in the received first final excretion probability notification communication signal ) And the data such as the final excretion probability contained in the received first final excretion probability notification communication signal are stored (recorded) in association with each other. Then, the management server device SV identifies the notification destination terminal devices SP and TA corresponding to the notification source sensor device SU in the received first final excretion probability notification communication signal from the notification destination correspondence relationship, and this notification A communication signal (second final excretion probability notification communication signal) containing the sensor ID of the sensor device SU of the notification source (transmission source) and the final excretion probability is transmitted to the terminal devices SP and TA. Send. Further, when the management server device SV receives a communication signal (first excretion notice notification communication signal) containing the excretion notice information, the sensor device of the notification source (transmission source) in the received first excretion notice notification communication signal The SU (sensor ID) and the data such as the excretion notice information stored in the received first excretion notice notification communication signal are stored (recorded) in association with each other. Then, the management server device SV identifies the notification destination terminal devices SP and TA corresponding to the notification source sensor device SU in the received first excretion notice notification communication signal from the notification destination correspondence relationship, and this notification destination To the terminal devices SP and TA, a communication signal (second excretion notice notification communication signal) containing the sensor ID of the sensor device SU of the notification source (transmission source) and the excretion notice information is transmitted. The communication address is obtained from the communication address correspondence relationship.
 このような管理サーバ装置SVは、例えば、通信機能付きのコンピュータによって構成可能である。 Such a management server device SV can be configured by a computer with a communication function, for example.
 固定端末装置SPは、ネットワークNWを介して他の装置SU、SV、TAと通信する通信機能、所定の情報を表示する表示機能、および、所定の指示やデータを入力する入力機能等を備え、管理サーバ装置SVやセンサ装置SUや携帯端末装置TAに与える所定の指示やデータを入力したり、センサ装置SUで得られた最終的な排泄確率を表示したり、センサ装置SUで得られた排泄予告情報を出力したり等することによって、被監視者監視システムMSのユーザインターフェース(UI)として機能する機器である。このような固定端末装置SPは、例えば、通信機能付きのコンピュータによって構成可能である。 The fixed terminal device SP includes a communication function for communicating with other devices SU, SV, TA via the network NW, a display function for displaying predetermined information, an input function for inputting predetermined instructions and data, and the like. Input predetermined instructions and data to be given to the management server device SV, the sensor device SU and the portable terminal device TA, display the final excretion probability obtained by the sensor device SU, and excretion obtained by the sensor device SU It is a device that functions as a user interface (UI) of the monitored person monitoring system MS by outputting the advance notice information or the like. Such a fixed terminal device SP can be configured by, for example, a computer with a communication function.
 携帯端末装置TAは、ネットワークNWを介して他の装置SV、SP、SUと通信する通信機能、所定の情報を表示する表示機能、所定の指示やデータを入力する入力機能、および、音声通話を行う通話機能等を備え、管理サーバ装置SVやセンサ装置SUに与える所定の指示やデータを入力したり、管理サーバ装置SVからの通知によってセンサ装置SUで得られた最終的な排泄確率を表示したり、管理サーバ装置SVからの通知によってセンサ装置SUで得られた排泄予告情報を出力したり等することによって、被監視者監視システムMSのユーザインターフェース(UI)として機能する機器である。このような携帯端末装置TAは、例えば、いわゆるタブレット型コンピュータやスマートフォンや携帯電話機等の、持ち運び可能な通信端末装置によって構成可能である。 The mobile terminal device TA has a communication function for communicating with other devices SV, SP, SU via the network NW, a display function for displaying predetermined information, an input function for inputting predetermined instructions and data, and a voice call. It has a calling function to perform, and inputs a predetermined instruction or data to be given to the management server device SV or the sensor device SU, or displays a final excretion probability obtained by the sensor device SU by a notification from the management server device SV Or a device that functions as a user interface (UI) of the monitored person monitoring system MS by, for example, outputting excretion notice information obtained by the sensor device SU by a notification from the management server device SV. Such a portable terminal device TA can be configured by a portable communication terminal device such as a so-called tablet computer, a smartphone, or a mobile phone.
 次に、センサ装置SUについて、より詳しく説明する。上述のセンサ装置SUは、例えば、図2に示すように、排泄事象センサ部11と、生体信号センサ部12と、制御処理部13と、記憶部14と、通信インタフェース部(通信IF部)15とを備える。 Next, the sensor device SU will be described in more detail. For example, as shown in FIG. 2, the sensor device SU includes an excretion event sensor unit 11, a biological signal sensor unit 12, a control processing unit 13, a storage unit 14, and a communication interface unit (communication IF unit) 15. With.
 通信IF部15は、制御処理部13に接続され、制御処理部13の制御に従って通信を行うための通信回路である。通信IF部15は、制御処理部13から入力された転送すべきデータを収容した通信信号を、この被監視者監視システムMSのネットワークNWで用いられる通信プロトコルに従って生成し、この生成した通信信号をネットワークNWを介して他の装置SV、SP、TAへ送信する。通信IF部15は、ネットワークNWを介して他の装置SV、SP、TAから通信信号を受信し、この受信した通信信号からデータを取り出し、この取り出したデータを制御処理部13が処理可能な形式のデータに変換して制御処理部13へ出力する。通信IF部15は、例えば、IEEE802.11規格等に従った通信インタフェース回路を備えて構成される。 The communication IF unit 15 is a communication circuit that is connected to the control processing unit 13 and performs communication according to the control of the control processing unit 13. The communication IF unit 15 generates a communication signal containing data to be transferred input from the control processing unit 13 according to the communication protocol used in the network NW of the monitored person monitoring system MS, and generates the generated communication signal. It transmits to other devices SV, SP, TA via the network NW. The communication IF unit 15 receives a communication signal from another device SV, SP, TA via the network NW, extracts data from the received communication signal, and a format in which the control processing unit 13 can process the extracted data. And output to the control processing unit 13. The communication IF unit 15 includes, for example, a communication interface circuit that complies with the IEEE 802.11 standard or the like.
 排泄事象センサ部11は、制御処理部13に接続され、制御処理部13の制御に従って、被監視者Obの排泄に関わる所定の事象を検知するためのデータを取得するものである。本実施形態では、被監視者Obの排泄に関わる所定の事象は、被監視者が寝具から離れた離床であり、この離床を非接触で検知するために、排泄事象センサ部11は、制御処理部13に接続され、制御処理部13の制御に従って撮像して画像(画像データ)を生成する撮像部11を備える。この排泄事象センサ部11の一例としての撮像部11(排泄事象センサ部と撮像部とは、便宜上、同一の符号を用いる)は、図3に示すように、生体信号センサ部12と共に、被監視者Obが所在を予定している空間(所在空間、図1に示す例では配設場所の居室RM)を監視可能に例えば天井面CEに配置され、前記所在空間を撮像対象としてその上方から撮像し、前記撮像対象を俯瞰した画像(画像データ)を生成し、前記撮像対象の画像(対象画像)を制御処理部13へ出力する。好ましくは、被監視者Ob全体を撮像できる蓋然性が高いことから、撮像部11は、被監視者Obが横臥する寝具(例えばベッド等)BDにおける、被監視者Obの頭部が位置すると予定されている予め設定された頭部予定位置(通常、枕の配設位置)の直上から撮像対象を撮像できるように配設される。 The excretion event sensor unit 11 is connected to the control processing unit 13, and acquires data for detecting a predetermined event related to the excretion of the monitored person Ob according to the control of the control processing unit 13. In the present embodiment, the predetermined event related to the excretion of the monitored person Ob is a bed leaving the monitored person from the bedding. In order to detect the bed leaving without contact, the excretion event sensor unit 11 performs control processing. The imaging unit 11 is connected to the unit 13 and generates an image (image data) by imaging according to the control of the control processing unit 13. An imaging unit 11 (an excretion event sensor unit and an imaging unit use the same reference numerals for convenience) as an example of the excretion event sensor unit 11 together with the biological signal sensor unit 12 as shown in FIG. A space where the person Ob is scheduled to be located (location space, in the example shown in FIG. 1, the room RM of the arrangement location) is arranged on the ceiling surface CE, for example, so that the location space can be imaged from above. Then, an image (image data) overlooking the imaging target is generated, and the imaging target image (target image) is output to the control processing unit 13. Preferably, since there is a high probability that the entire monitored person Ob can be imaged, the imaging unit 11 is expected to be located at the head of the monitored person Ob in a bedding (such as a bed) BD on which the monitored person Ob lies. It is arranged so that the imaging target can be imaged from directly above the preset planned head position (usually the pillow arrangement position).
 このような撮像部11は、可視光の画像を生成する装置であって良いが、比較的暗がりでも被監視者Obを監視できるように、本実施形態では、赤外線の画像を生成する装置である。このような撮像部11は、例えば、本実施形態では、撮像対象における赤外の光学像を所定の結像面上に結像する結像光学系、前記結像面に受光面を一致させて配置され、前記撮像対象における赤外の光学像を電気的な信号に変換するイメージセンサ、および、イメージセンサの出力を画像処理することで前記撮像対象における赤外の画像を表すデータである画像データを生成する画像処理部等を備えるデジタル赤外線カメラである。撮像部11の前記結像光学系は、本実施形態では、その配設された居室RM全体を撮像できる画角を持つ広角な光学系(いわゆる広角レンズ(魚眼レンズを含む))であることが好ましい。 Such an imaging unit 11 may be a device that generates an image of visible light, but in the present embodiment, it is a device that generates an infrared image so that the monitored person Ob can be monitored even in a relatively dark place. . For example, in this embodiment, the imaging unit 11 has an imaging optical system that forms an infrared optical image of an imaging target on a predetermined imaging surface, and a light receiving surface that matches the imaging surface. An image sensor that is arranged and converts an infrared optical image in the imaging target into an electrical signal, and image data that represents an infrared image in the imaging target by performing image processing on the output of the image sensor It is a digital infrared camera provided with the image processing part etc. which produce | generate. In the present embodiment, the imaging optical system of the imaging unit 11 is preferably a wide-angle optical system (so-called wide-angle lens (including a fisheye lens)) having an angle of view that can image the entire living room RM in which the imaging unit 11 is disposed. .
 生体信号センサ部12は、制御処理部13に接続され、制御処理部13の制御に従って、生体信号を測定するためのデータを取得するものである。本実施形態では、生体信号センサ部12は、非接触で測定するために、生体信号センサ部12は、制御処理部13に接続され、制御処理部13の制御に従うドップラセンサ部12を備える。この生体信号センサ部12の一例としてのドップラセンサ部12(生体信号センサ部とドップラセンサ部とは、便宜上、同一の符号を用いる)は、送信波を送信し、物体で反射した前記送信波の反射波を受信し、前記送信波と前記反射波とに基づいてドップラ周波数成分のドップラ信号を出力するセンサである。前記物体が動いている場合、いわゆるドップラ効果により前記物体の動いている速度に比例して反射波の周波数がシフトするため、送信波の周波数と反射波の周波数とに差(ドップラ周波数成分)が生じる。ドップラセンサ部12は、このドップラ周波数成分の信号をドップラ信号として生成し、出力する。前記送信波は、超音波やマイクロ波等であって良いが、本実施形態では、2.4GHz~24GHzのマイクロ波である。マイクロ波は、着衣を透過して生体の体表で反射できるため、生体が衣服を着ていても体表の動きを検知でき、好ましい。ドップラセンサ部12は、前記所在空間に前記送信波を送信し、前記空間から前記反射波を受信するように、例えば上述のように配置される。このドップラ周波数成分のドップラ信号は、ドップラセンサ部12から制御処理部13へ出力される。 The biological signal sensor unit 12 is connected to the control processing unit 13 and acquires data for measuring a biological signal according to the control of the control processing unit 13. In the present embodiment, the biological signal sensor unit 12 includes a Doppler sensor unit 12 that is connected to the control processing unit 13 and that is controlled by the control processing unit 13 in order to perform measurement without contact. The Doppler sensor unit 12 (the biosignal sensor unit and the Doppler sensor unit use the same reference numerals for the sake of convenience) as an example of the biological signal sensor unit 12 transmits a transmission wave and reflects the transmission wave reflected by the object. A sensor that receives a reflected wave and outputs a Doppler signal having a Doppler frequency component based on the transmitted wave and the reflected wave. When the object is moving, the frequency of the reflected wave is shifted in proportion to the moving speed of the object due to the so-called Doppler effect. Arise. The Doppler sensor unit 12 generates a Doppler frequency component signal as a Doppler signal and outputs it. The transmission wave may be an ultrasonic wave, a microwave, or the like. In the present embodiment, the transmission wave is a microwave of 2.4 GHz to 24 GHz. Since microwaves can be transmitted through clothing and reflected from the body surface of the living body, the movement of the body surface can be detected even when the living body is wearing clothes, which is preferable. The Doppler sensor unit 12 is arranged as described above, for example, so as to transmit the transmission wave to the location space and receive the reflected wave from the space. The Doppler signal of the Doppler frequency component is output from the Doppler sensor unit 12 to the control processing unit 13.
 このようなドップラセンサ部12は、より具体的には、例えば、図4に示すように、送信部121と、送信アンテナ122と、受信アンテナ123と、受信部124と、アナログデジタル変換部(AD変換部)125とを備える。 More specifically, the Doppler sensor unit 12 includes, for example, a transmission unit 121, a transmission antenna 122, a reception antenna 123, a reception unit 124, and an analog / digital conversion unit (AD) as illustrated in FIG. Conversion unit) 125.
 送信部121は、マイクロ波に対応する電気信号の送信波を生成する回路であり、例えばガンダイオードや増幅回路等を備えたマイクロ波発振回路等を備えて構成される。送信アンテナ122は、送信部121に接続され、送信部121で生成された電気信号の送信波をマイクロ波の送信波に変換し、前記所在空間に前記マイクロ波の送信波を放射するアンテナである。送信アンテナ122は、所定の指向特性(メインローブの半値幅および送信方向)でマイクロ波の送信波を放射する。 The transmission unit 121 is a circuit that generates a transmission wave of an electrical signal corresponding to a microwave, and includes a microwave oscillation circuit including a Gunn diode, an amplification circuit, and the like. The transmission antenna 122 is an antenna that is connected to the transmission unit 121, converts the transmission wave of the electric signal generated by the transmission unit 121 into a transmission wave of the microwave, and radiates the transmission wave of the microwave to the location space. . The transmission antenna 122 radiates a microwave transmission wave with a predetermined directivity characteristic (half-width of main lobe and transmission direction).
 受信アンテナ123は、前記所在空間からマイクロ波を取得してマイクロ波を電気信号に変換するアンテナである。受信部124は、受信アンテナ123に接続され、受信アンテナ123から出力された電気信号、および、電気信号の送信波から、信号処理によって、ドップラ周波数成分のドップラ信号を生成する回路である。受信部124は、1チャンネルのドップラ信号を生成する回路であっても良いが、本実施形態では、より精度良く検出するために、例えば直交位相検波器等を備え、IチャンネルとQチャネルとの2チャンネルのドップラ信号(IチャンネルデータI(t)およびQチャンネルデータQ(t))を生成する回路である。この2チャンネルの受信部124では、ドップラ周波数成分のドップラ信号Dp(t)は、I(t)+i×Q(t)の複素信号となる(Dp(t)=I(t)+i×Q(t)、iは、虚数単位であり、i=-1)。AD変換部125は、受信部124に接続され、アナログのドップラ信号を所定のサンプリング間隔でサンプリングしてデジタル化することによってデジタルのドップラ信号に変換する回路である。AD変換部125は、制御処理部13に接続され、このAD変換したデジタルのドップラ信号(IチャンネルデータI(t)およびQチャンネルデータQ(t))を制御処理部13へ出力する。なお、図4に示す例では、AD変換部125は、ドップラセンサ部12に備えられたが、これに代え、制御処理部13に備えられても良い。 The receiving antenna 123 is an antenna that acquires a microwave from the location space and converts the microwave into an electric signal. The reception unit 124 is a circuit that is connected to the reception antenna 123 and generates a Doppler signal having a Doppler frequency component by signal processing from the electrical signal output from the reception antenna 123 and the transmission wave of the electrical signal. The receiving unit 124 may be a circuit that generates a 1-channel Doppler signal. However, in this embodiment, in order to detect with higher accuracy, for example, a quadrature phase detector is provided, and an I channel and a Q channel are provided. This is a circuit for generating two-channel Doppler signals (I channel data I (t) and Q channel data Q (t)). In the two-channel receiver 124, the Doppler frequency component Doppler signal Dp (t) is a complex signal of I (t) + i × Q (t) (Dp (t) = I (t) + i × Q ( t), i is an imaginary unit, i 2 = −1). The AD conversion unit 125 is a circuit that is connected to the reception unit 124 and converts an analog Doppler signal into a digital Doppler signal by sampling and digitizing the analog Doppler signal at a predetermined sampling interval. The AD conversion unit 125 is connected to the control processing unit 13 and outputs the AD converted digital Doppler signals (I channel data I (t) and Q channel data Q (t)) to the control processing unit 13. In the example illustrated in FIG. 4, the AD conversion unit 125 is provided in the Doppler sensor unit 12, but may be provided in the control processing unit 13 instead.
 記憶部14は、制御処理部13に接続され、制御処理部13の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、センサ装置SUの各部を当該各部の機能に応じてそれぞれ制御するSU制御プログラムや、排泄事象センサ部(本実施形態では撮像部)11の出力に基づいて被監視者Obの排泄に関わる所定の事象を検知する処理を実行する排泄事象処理プログラムや、生体信号センサ部(本実施形態ではドップラセンサ部)12の出力に基づいて被監視者Obの生体信号を抽出する処理を実行する生体信号処理プログラムや、前記排泄事象処理プログラムの検知結果に基づいて、被監視者Obが排泄する、所定の単位時間当たりの確率を第1排泄確率として求める第1排泄確率演算プログラムや、前記生体信号処理プログラムの測定結果に基づいて、前記被監視者Obが排泄する、所定の単位時間当たりの確率を第2排泄確率として求める第2排泄確率演算プログラムや、計時を行う時計プログラムや、前記排泄事象処理プログラムで前記事象(本実施形態では離床)を検知した場合に、前記時計プログラムから現在時刻を前記排泄時刻として取得し、この取得した排泄時刻を前記被監視者Obに対応付けて後述の排泄時刻記憶部141に記録する排泄時刻記録処理プログラムや、前記生体信号処理プログラムで抽出された時系列な所定の生体信号を前記被監視者Obに対応付けて後述の生体信号記憶部142に記録する生体信号記録処理プログラムや、前記第1および第2排泄確率演算プログラムで求められた第1および第2排泄確率に基づいて、前記被監視者Obが排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求める最終排泄確率演算プログラムや、前記最終排泄確率演算プログラムで求めた最終的な排泄確率を外部へ通知する通知処理プログラムや、前記最終排泄確率演算プログラムで求められた最終的な排泄確率が所定の閾値を超えたか否かを判定する判定プログラム等の制御処理プログラムが含まれる。前記各種の所定のデータには、自機のセンサID、および、管理サーバ装置SVの通信アドレス等の、各プログラムを実行する上で必要なデータ等が含まれる。記憶部14は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。そして、記憶部14は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部13のワーキングメモリとなるRAM(Random Access Memory)等を含む。記憶部14は、排泄時刻記憶部141、生体信号記憶部142、第1排泄予測モデル記憶部143および第2排泄予測モデル記憶部145を機能的に備える。 The storage unit 14 is a circuit that is connected to the control processing unit 13 and stores various predetermined programs and various predetermined data under the control of the control processing unit 13. The various predetermined programs include, for example, an SU control program that controls each unit of the sensor device SU according to the function of each unit, and an output of the excretion event sensor unit (imaging unit in the present embodiment) 11. Based on the output of the excretion event processing program for executing a process for detecting a predetermined event related to the excretion of the monitored person Ob and the output of the biological signal sensor unit (Doppler sensor unit in this embodiment) 12, the biological signal of the monitored person Ob The first excretion that determines the probability per unit time that the monitored person Ob excites as the first excretion probability based on the detection result of the biological signal processing program that executes the process of extracting the excretion event and the excretion event processing program Probability per unit time that the monitored object Ob excretes based on the measurement result of the probability calculation program or the biological signal processing program When the second excretion probability calculation program obtained as the second excretion probability, a clock program for measuring time, or the event (in this embodiment, getting out of bed) is detected by the excretion event processing program, the current time is calculated from the clock program. The excretion time is acquired as the excretion time, and the acquired excretion time is associated with the monitored person Ob and recorded in the excretion time storage unit 141 described later, or the time series extracted by the biological signal processing program A predetermined biological signal is recorded in a biological signal storage unit 142 described later in association with the monitored person Ob, and the first and second excretion probability calculation programs obtained by the first and second excretion probability calculation programs. 2 Based on the excretion probability, the final excretion is determined as a final excretion probability that the monitored person Ob excretes. A probability calculation program, a notification processing program for notifying the final excretion probability calculated by the final excretion probability calculation program to the outside, or a final excretion probability determined by the final excretion probability calculation program exceeds a predetermined threshold A control processing program such as a determination program for determining whether or not has been included is included. The various kinds of predetermined data include data necessary for executing each program such as the sensor ID of the own device and the communication address of the management server device SV. The storage unit 14 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like. The storage unit 14 includes a RAM (Random Access Memory) that serves as a working memory of a so-called control processing unit 13 that stores data generated during execution of the predetermined program. The storage unit 14 functionally includes an excretion time storage unit 141, a biological signal storage unit 142, a first excretion prediction model storage unit 143, and a second excretion prediction model storage unit 145.
 排泄時刻記憶部141は、排泄を行った時刻である排泄時刻を被監視者Obに対応付けて記憶するものである。生体信号記憶部142は、生体信号を被監視者Obに対応付けて記憶するものである。第1排泄予測モデル記憶部143は、後述のように生成された第1排泄予測モデルを被監視者Obに対応付けて記憶するものである。第2排泄予測モデル記憶部144は、後述のように生成された第2排泄予測モデルを被監視者Obに対応付けて記憶するものである。 The excretion time storage unit 141 stores the excretion time, which is the excretion time, in association with the monitored person Ob. The biological signal storage unit 142 stores the biological signal in association with the monitored person Ob. The first excretion prediction model storage unit 143 stores the first excretion prediction model generated as described later in association with the monitored person Ob. The second excretion prediction model storage unit 144 stores the second excretion prediction model generated as described later in association with the monitored person Ob.
 制御処理部13は、センサ装置SUの各部を当該各部の機能に応じてそれぞれ制御し、被監視者Obを監視し、被監視者Obが排泄する、所定の単位時間(例えば15分、30分、60分等)当たりの確率を最終的な排泄確率として求め、外部へ通知し、そして、前記最終的な排泄確率が所定の閾値を超えたと判定された場合に、その旨を外部へ通知するための回路である。制御処理部13は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部13は、前記制御処理プログラムが実行されることによって、制御部130、排泄事象処理部131、生体信号処理部132、第1排泄確率演算部133、第2排泄確率演算部134、時計部135、排泄時刻記録処理部136、生体信号記録処理部137、最終排泄確率演算部138、判定部139および通知処理部140を機能的に備える。 The control processing unit 13 controls each unit of the sensor device SU according to the function of each unit, monitors the monitored person Ob, and excretes the monitored person Ob (for example, 15 minutes and 30 minutes). , 60 minutes, etc.) is determined as the final excretion probability, notified to the outside, and when it is determined that the final excretion probability has exceeded a predetermined threshold, that fact is notified to the outside It is a circuit for. The control processing unit 13 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits. When the control processing program is executed, the control processing unit 13 includes a control unit 130, an excretion event processing unit 131, a biological signal processing unit 132, a first excretion probability calculating unit 133, a second excretion probability calculating unit 134, a clock Unit 135, excretion time recording processing unit 136, biological signal recording processing unit 137, final excretion probability calculating unit 138, determination unit 139, and notification processing unit 140.
 制御部130は、センサ装置SUの各部を当該各部の機能に応じてそれぞれ制御し、センサ装置SUの全体制御を司るものである。 The control unit 130 controls each unit of the sensor device SU according to the function of each unit, and controls the entire sensor device SU.
 排泄事象処理部131は、排泄事象センサ部(本実施形態では撮像部)11の出力に基づいて被監視者Obの排泄に関わる所定の事象を検知する処理を実行する。排泄に関わる所定の前記事象は、排泄そのものであっても良いが、本実施形態では、上述したように、前記被監視者が寝具から離れた離床である。看護師や介護士等によって看護や介護等を受ける被監視者は、離床する場合、そのまま排泄のためにトイレに行く可能性が高く、特に、夜間では、離床は、排泄を伴う蓋然性が高い。そして、本実施形態では、上述したように、非接触で離床が検知される。このため、排泄事象センサ部11の一例である撮像部11で生成された画像(対象画像)から離床を検知するために、排泄事象処理部131は、例えば、本実施形態では、図5に示すように、動体検知部1311および行動判定部1312を機能的に備える。 The excretion event processing unit 131 executes a process of detecting a predetermined event related to excretion of the monitored person Ob based on the output of the excretion event sensor unit (imaging unit in the present embodiment) 11. The predetermined event related to excretion may be excretion itself, but in the present embodiment, as described above, the person being monitored is getting out of bed. A monitored person who receives nursing or care by a nurse or a caregiver has a high possibility of going to the toilet for excretion as it is when leaving the bed. In particular, leaving at night is highly likely to be accompanied by excretion. In the present embodiment, as described above, bed leaving is detected without contact. For this reason, in order to detect bed leaving from an image (target image) generated by the imaging unit 11 which is an example of the excretion event sensor unit 11, the excretion event processing unit 131 is illustrated in FIG. As described above, the moving object detection unit 1311 and the behavior determination unit 1312 are functionally provided.
 動体検知部1311は、撮像部11で生成された対象画像が入力され、この入力された対象画像に基づいて、被監視者Obの人物の領域として、前記対象画像内における動体領域を抽出するものである。より具体的には、動体検知部1311は、前記対象画像から例えば背景差分法やフレーム差分法によって動体領域を抽出する。動体検知部1311は、この抽出した動体領域を行動判定部1312へ出力する。 The moving object detection unit 1311 receives the target image generated by the imaging unit 11, and extracts a moving object region in the target image as a person region of the monitored person Ob based on the input target image. It is. More specifically, the moving object detection unit 1311 extracts a moving object region from the target image by, for example, a background difference method or a frame difference method. The moving object detection unit 1311 outputs the extracted moving object region to the action determination unit 1312.
 行動判定部1312は、動体検知部1311から入力された動体領域に基づいて被監視者Obの行動、ここでは、離床の有無を判定して離床を検知するものである。より具体的には、離床の有無を判定するために、まず、記憶部14には、前記各種の所定のデータの1つとして、予め寝具BDの所在領域が記憶される。そして、行動判定部1312は、図6Aに示すように、動体検知部1311から入力された動体領域MObが、寝具BDの所在領域内から、寝具BDの所在領域外へ時間変化した場合に、離床有りと判定し、離床を検知する。行動判定部1312は、離床を検知すると、この検知結果を排泄時刻記録処理部136へ出力する。なお、行動判定部1312は、入床の事前検知を離床と判定する前提条件としても良い。この場合、行動判定部1312は、図6Bに示すように、動体検知部1311から入力された動体領域MObが、寝具BDの所在領域外から、寝具BDの所在領域内へ時間変化した場合に、入床有りと判定し、入床を検知する。なお、撮像部11が寝具BDに対し斜め上方等から撮像すると、被監視者Obが離床していても動体領域MObと寝具BDの所在領域とが重なる場合が有り得る。このため、これら離床や入床の判定の際に、動体領域MObと寝具BDの所在領域とが重なっている重なり領域の面積の時間変化や、動体領域MObの面積に対する重なり領域の面積の比率の時間変化が考慮されても良い。 The behavior determination unit 1312 detects the bed leaving by determining the behavior of the monitored person Ob based on the moving body region input from the moving body detection unit 1311, here, the presence or absence of the bed leaving. More specifically, in order to determine the presence or absence of getting out of the bed, first, the storage unit 14 stores in advance the location area of the bedding BD as one of the various predetermined data. Then, as shown in FIG. 6A, the behavior determination unit 1312 leaves the bed when the moving body region MOb input from the moving body detection unit 1311 changes in time from within the region where the bedding BD is located to outside the region where the bedding BD is located. Judge that there is, and detect getting out of bed. When the behavior determination unit 1312 detects getting out of bed, the behavior determination unit 1312 outputs the detection result to the excretion time recording processing unit 136. In addition, the action determination unit 1312 may be a precondition for determining the prior detection of entering the floor as getting out of bed. In this case, as shown in FIG. 6B, the behavior determination unit 1312, when the moving body region MOb input from the moving body detection unit 1311 changes in time from outside the region where the bedding BD is located to inside the region where the bedding BD is located. It is determined that there is an entry, and the entry is detected. Note that when the imaging unit 11 captures an image of the bedding BD obliquely from above or the like, the moving body region MOb and the bedding BD may overlap even if the monitored person Ob is getting out of bed. For this reason, when determining whether to leave the floor or to enter the floor, the temporal change in the area of the overlapping region where the moving body region MOb and the location area of the bedding BD overlap, or the ratio of the area of the overlapping region to the area of the moving body region MOb Time changes may be taken into account.
 生体信号処理部132は、生体信号センサ部(本実施形態ではドップラセンサ部)12の出力に基づいて被監視者Obの生体信号を抽出する処理を実行するものである。このような生体信号処理部132は、より詳しくは、図7に示すように、信号切り出し部1321および周波数解析部1322を機能的に備える。 The biological signal processing unit 132 performs a process of extracting the biological signal of the monitored person Ob based on the output of the biological signal sensor unit (Doppler sensor unit in this embodiment) 12. More specifically, such a biological signal processing unit 132 functionally includes a signal cutout unit 1321 and a frequency analysis unit 1322 as shown in FIG.
 信号切り出し部1321には、ドップラセンサ部12からドップラ信号が入力される。このドップラセンサ部12から入力されるドップラ信号は、時間的に連続した信号であるので、次段の周波数解析部1322で高速フーリエ変換を実施するために、信号切り出し部1321は、ドップラセンサ部12から入力されるドップラ信号を所定の時間長で切り出し、周波数解析部1322へ出力する。切り出し方は、ドップラセンサ部12から入力されるドップラ信号を、切り出された前後のドップラ信号に重なり部分が無いように、所定の時間長で区切る切り出し方であっても良いが、本実施形態では、時間分解能を向上させるために、切り出された前後のドップラ信号に重なり部分が有るように、所定の時間長で区切る切り出し方である。 The signal extraction unit 1321 receives a Doppler signal from the Doppler sensor unit 12. Since the Doppler signal input from the Doppler sensor unit 12 is a temporally continuous signal, the signal clipping unit 1321 performs the fast Fourier transform in the frequency analysis unit 1322 in the next stage. The Doppler signal input from is cut out with a predetermined time length and output to the frequency analysis unit 1322. The cutout method may be a cutout method in which the Doppler signal input from the Doppler sensor unit 12 is divided by a predetermined time length so that there is no overlapping portion between the cutout Doppler signals before and after the cutout. In order to improve the time resolution, the cut-out method is to divide by a predetermined time length so that the Doppler signals before and after the cut-out have overlapping portions.
 周波数解析部1322は、信号切り出し部1321より入力された時間空間のドップラ信号を周波数空間のドップラ信号(パワースペクトル)に変換するものである。周波数解析部1322は、周波数空間のドップラ信号を生体信号記録処理部137へ出力する。この時間空間から周波数空間への変換には、公知の常套手段が用いられ、例えば、高速フーリエ変換法(FFT(Fast Fourier Transform)法)、離散フーリエ変換法(DFT(Discrete Fourier Transform)法)、離散コサイン変換法(DCT(Discrete Cosine Transform)法)およびウェーブレット変換法等が利用される。 The frequency analysis unit 1322 converts the time-space Doppler signal input from the signal cutout unit 1321 into a frequency-space Doppler signal (power spectrum). The frequency analysis unit 1322 outputs the Doppler signal in the frequency space to the biological signal recording processing unit 137. For the conversion from the time space to the frequency space, known conventional means are used. For example, a fast Fourier transform method (FFT (Fast Fourier Transform) method), a discrete Fourier transform method (DFT (Discrete Fourier Transform) method), A discrete cosine transform method (DCT (Discrete Cosine Transform) method), a wavelet transform method, or the like is used.
 本実施形態では、周波数解析部1322は、公知技術である短時間フーリエ変換法(STFT(Short-Time Fourier Transform)法)によって前記時間空間のドップラ信号を周波数空間のドップラ信号に変換する。このSTFT法では、ドップラセンサ部12より入力された時間空間のドップラ信号は、信号切り出し部1321でいわゆる窓関数によって所定時間のドップラ信号だけ切り出され、この所定時間のドップラ信号が周波数解析部1322でフーリエ変換され、これによって周波数空間のドップラ信号(パワースペクトル)が生成される。実際には、ドップラ信号は、AD変換部125のサンプリング間隔でドップラセンサ部12から連続的に入力されるので、信号切り出し部1321および周波数解析部1322は、ドップラセンサ部12から入力されるドップラ信号に時間的に窓関数をずらしながら当該窓関数を作用させ、そのそれぞれをフーリエ変換する。 In the present embodiment, the frequency analysis unit 1322 converts the Doppler signal in the time space into a Doppler signal in the frequency space by a short-time Fourier transform method (STFT (Short-Time Fourier Transform) method) which is a known technique. In this STFT method, a time-space Doppler signal input from the Doppler sensor unit 12 is cut out by a signal cutout unit 1321 by a so-called window function for a predetermined time Doppler signal, and the Doppler signal of this predetermined time is output by a frequency analysis unit 1322. Fourier transform is performed to generate a Doppler signal (power spectrum) in the frequency space. Actually, since the Doppler signal is continuously input from the Doppler sensor unit 12 at the sampling interval of the AD conversion unit 125, the signal clipping unit 1321 and the frequency analysis unit 1322 are input from the Doppler sensor unit 12. The window functions are acted on while shifting the window functions in time, and each of them is Fourier transformed.
 前記ドップラセンサ部12によって、例えば体動や呼吸の動き等の、被監視者Obにおける種々の動きによるドップラ信号が得られるので、時間空間のドップラ信号や周波数空間のドップラ信号は、これに応じたプロファイルを持つ。 The Doppler sensor unit 12 can obtain Doppler signals due to various movements of the monitored person Ob, such as body movements and breathing movements, for example, so that the time-space Doppler signals and the frequency-space Doppler signals correspond to the Doppler signals. Have a profile.
 例えば、歩行や寝返り等の前記体動は、ゆっくり動く胴体の動きと早く動く手足の動きが混在し、比較的大きな動作で非周期的な動きとなる。このような体の各部が様々な動きをする体動に対応するドップラ信号は、比較的大きな信号強度を持つ比較的広帯域な信号であり、時間空間では、例えば、図8Aに示すように、比較的振幅が大きく時間経過に従って振幅が不規則に変化する信号となり、周波数空間では、図8Bに示すように、特定の周波数成分にピークを持たない比較的フラットな(平坦な)プロファイルとなる。 For example, the body movement such as walking and turning over is a non-periodic movement with a relatively large movement because the movement of the slowly moving trunk and the movement of the limb moving fast are mixed. The Doppler signal corresponding to the body movement in which each part of the body performs various movements is a relatively wideband signal having a relatively large signal strength. In time space, for example, as shown in FIG. As shown in FIG. 8B, in the frequency space, the target amplitude is a relatively flat (flat) profile having no peak in a specific frequency component.
 また例えば、前記呼吸の動きは、胸部の上下動として現れ、比較的小さな動作で周期的な動きとなる。安静呼吸では、一般に、約12~25回/分であり、約0.2Hz~0.4Hzで胸部が上下動する。このような呼吸の動きに対応するドップラ信号は、比較的小さな信号強度を持つ比較的狭帯域な信号であり、時間空間では、例えば、図9Aに示すように、比較的振幅が小さく時間経過に従って振幅が規則に変化する信号となり、周波数空間では、図9Bに示すように、特定の周波数成分(図9Bに示す例では約0.3Hz)にピークを持つプロファイルとなる。 Also, for example, the movement of the breath appears as a vertical movement of the chest and becomes a periodic movement with a relatively small movement. In rest breathing, it is generally about 12 to 25 times / minute, and the chest moves up and down at about 0.2 Hz to 0.4 Hz. Such a Doppler signal corresponding to the movement of breathing is a relatively narrow band signal having a relatively small signal intensity. In time space, for example, as shown in FIG. The signal is a signal whose amplitude changes regularly, and in the frequency space, as shown in FIG. 9B, a profile has a peak at a specific frequency component (about 0.3 Hz in the example shown in FIG. 9B).
 また、ドップラセンサ部12の測定対象範囲内に被監視者Obが不存在等で動くものが無い場合(被監視者Obの呼吸停止の場合を含む)には、センサノイズがドップラセンサ部12から出力される。このセンサノイズは、いわゆる熱雑音であり、ホワイトノイズとなり、時間空間では、例えば、図10Aに示すように、比較的振幅が小さく時間経過に従って振幅があまり変化しないフラットな信号となり、周波数空間では、図10Bに示すように、特定の周波数成分にピークを持たない比較的フラットな(平坦な)プロファイルとなる。 Further, when there is no moving object in the measurement target range of the Doppler sensor unit 12 due to absence of the monitored person Ob (including the case where the monitored person Ob stops breathing), sensor noise is generated from the Doppler sensor unit 12. Is output. This sensor noise is so-called thermal noise and becomes white noise. In the time space, for example, as shown in FIG. 10A, the sensor noise is a flat signal whose amplitude is relatively small and does not change much with time. In the frequency space, As shown in FIG. 10B, the profile is a relatively flat (flat) profile having no peak at a specific frequency component.
 図2に戻って、時計部135は、計時を行うものである。時計部135は、年月日を計るカレンダ機能も備える。 Referring back to FIG. 2, the clock unit 135 measures time. The clock unit 135 also has a calendar function for measuring the date.
 排泄時刻記録処理部136は、排泄事象処理部131で前記事象(本実施形態では排泄とみなされる離床)を検知した場合に、時計部135から現在時刻(年月日時)を排泄時刻として取得し、この取得した排泄時刻を被監視者Obに対応付けて排泄時刻記憶部141に記録するものである。排泄時刻の記録によって前記事象(離床、排泄)のあった事実も排泄時刻記憶部141に記録されることになる。 The excretion time recording processing unit 136 acquires the current time (year / month / day) from the clock unit 135 as the excretion time when the excretion event processing unit 131 detects the event (the bed is regarded as excretion in the present embodiment). The acquired excretion time is recorded in the excretion time storage unit 141 in association with the monitored person Ob. The fact that the event (leaving from bed, excretion) occurred by recording the excretion time is also recorded in the excretion time storage unit 141.
 生体信号記録処理部137は、生体信号センサ部12で測定された時系列な所定の生体信号、本実施形態では、生体信号処理部132で求められた周波数空間のドップラ信号を前記被監視者Obに対応付けて生体信号記憶部142に記録するものである。 The biological signal recording processing unit 137 receives a predetermined time-series biological signal measured by the biological signal sensor unit 12, in this embodiment, the Doppler signal in the frequency space obtained by the biological signal processing unit 132. Are recorded in the biological signal storage unit 142 in association with each other.
 第1排泄確率演算部133は、排泄事象処理部131の検知結果に基づいて、前記被監視者Obが排泄する、所定の単位時間当たりの確率を第1排泄確率として求めるものである。より具体的には、第1排泄確率演算部133は、所定の時間帯を所定の時間長(第1時間長)で区切ることによって生成された複数のサブ時間帯(第1サブ時間帯)それぞれについて、排泄時刻記憶部141に記憶された排泄時刻に基づいて前記第1排泄確率を求めることによって第1排泄予測モデルを生成する。前記所定の時間帯は、排泄の監視時間帯に応じた任意であって良く、例えば、一日24時間の時間帯、夜間20時から翌6時までの時間帯、および、深夜0時から4時までの時間帯等である。前記所定の時間長は、任意の適宜な時間長であって良く、例えば、10分、15分および30分等である。一例では、一日24時間が0時から15分ごとに区切られ、96(=4×24)個のサブ時間帯が生成される。そして、所定期間、例えば1週間に亘ってセンサ装置SUが、稼働され、排泄時刻を排泄時刻記憶部141に記憶して行く。この結果、例えば、2時から2時15分のサブ時間帯内に、7日間のうち5回、排泄時刻が排泄時刻記憶部141に記憶されている場合、2時から2時15分のサブ時間帯における第1排泄確率は、(排泄検知回数)/(観測回数)=5回/7日間(7回)=約71%と求められる。このような演算が前記96個の各サブ時間帯それぞれについて実行され、前記96個の各サブ時間帯それぞれについて各第1排泄確率が求められ、これらサブ時間帯とその第1排泄確率との96個の組が前記第1排泄予測モデルとなる。 The first excretion probability calculating unit 133 obtains, as the first excretion probability, a predetermined per unit time probability that the monitored person Ob excretes based on the detection result of the excretion event processing unit 131. More specifically, the first excretion probability calculation unit 133 includes a plurality of sub time zones (first sub time zones) generated by dividing a predetermined time zone by a predetermined time length (first time length). The first excretion prediction model is generated by obtaining the first excretion probability based on the excretion time stored in the excretion time storage unit 141. The predetermined time zone may be arbitrary according to the excretion monitoring time zone, for example, a time zone of 24 hours a day, a time zone from 20 o'clock at night to 6 o'clock, and midnight to 4 o'clock. It is the time zone until the time. The predetermined time length may be any appropriate time length, such as 10 minutes, 15 minutes, and 30 minutes. In one example, 24 hours a day are divided every 15 minutes from 0:00, and 96 (= 4 × 24) sub-time zones are generated. Then, the sensor device SU is operated over a predetermined period, for example, one week, and the excretion time is stored in the excretion time storage unit 141. As a result, for example, when the excretion time is stored in the excretion time storage unit 141 in the sub time zone from 2 o'clock to 2:15, 5 times out of 7 days, the sub time from 2 o'clock to 2:15 The first excretion probability in the time zone is calculated as (excretion detection frequency) / (observation frequency) = 5 times / 7 days (7 times) = about 71%. Such calculation is performed for each of the 96 sub-time zones, and each first excretion probability is obtained for each of the 96 sub-time zones, and 96 of the sub-time zones and the first excretion probability is obtained. Each group is the first excretion prediction model.
 そして、第1排泄確率演算部133は、この生成した第1排泄予測モデルを前記被監視者Obに対応付けて第1排泄予測モデル記憶部143に記憶する。 Then, the first excretion probability calculating unit 133 stores the generated first excretion prediction model in the first excretion prediction model storage unit 143 in association with the monitored person Ob.
 第2排泄確率演算部134は、生体信号処理部132の処理結果に基づいて、前記被監視者Obが排泄する、所定の単位時間当たりの確率を第2排泄確率として求めるものである。より具体的には、第2排泄確率演算部134は、前記生体信号記憶部に記憶された時系列な所定の生体信号を学習データとして用いることによって前記第2排泄確率を求める第2排泄予測モデルを学習によって生成する。より詳しくは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、所定の特徴量が学習データとして生成される。前記所定の第2時間長は、任意な適宜な時間長であって良く、前記所定の第1時間長と同一であっても異なっても良い。前記所定の特徴量は、例えば、前記第2サブ時間帯を所定の第3時間長で区切ることによって生成された複数の小時間帯それぞれについて、当該小時間帯で得られる周波数空間の複数のドップラ信号から求められた平均パワーPave、最大パワーPmax、最小パワーPmin、その分散Pvar、平均呼吸数Bave、最大呼吸数Bmax、最小呼吸数Bminおよびその分散Bvarである。したがって、前記所定の特徴量は、平均パワーPave、最大パワーPmax、最小パワーPmin、その分散Pvar、平均呼吸数Bave、最大呼吸数Bmax、最小呼吸数Bminおよびその分散Bvarの8個に、前記小時間帯の個数を乗じた個数となる。例えば、30分の第2サブ時間帯が5分ごとの6個の第1ないし第6小時間帯に区切られ、これら第1ないし第6小時間帯それぞれについて、当該小時間帯で得られる周波数空間の複数のドップラ信号から求められた平均パワーPave、最大パワーPmax、最小パワーPmin、その分散Pvar、平均呼吸数Bave、最大呼吸数Bmax、最小呼吸数Bminおよびその分散Bvarが求められ、これらは、合計48(=8×6)個となる。なお、パワーは、パワースペクトルを積分することで求めることができ、呼吸数は、1分間のピーク数を計数することで求めることができる。 The second excretion probability calculating unit 134 obtains, as the second excretion probability, a predetermined probability per unit time that the monitored subject Ob excretes based on the processing result of the biological signal processing unit 132. More specifically, the second excretion probability calculation unit 134 uses the time-series predetermined biological signal stored in the biological signal storage unit as learning data to determine the second excretion prediction model. Is generated by learning. More specifically, a predetermined feature amount is generated as learning data for each of a plurality of second sub time periods generated by dividing the predetermined time period by a predetermined second time length. The predetermined second time length may be any appropriate time length, and may be the same as or different from the predetermined first time length. The predetermined feature amount is, for example, a plurality of Dopplers in a frequency space obtained in the small time period for each of a plurality of small time periods generated by dividing the second sub time period by a predetermined third time length. The average power Pave, the maximum power Pmax, the minimum power Pmin, the variance Pvar, the average breathing rate Bave, the maximum breathing rate Bmax, the minimum breathing rate Bmin, and the variance Bvar obtained from the signal. Therefore, the predetermined feature amount includes eight of the average power Pave, the maximum power Pmax, the minimum power Pmin, its variance Pvar, the average breath rate Bave, the maximum breath rate Bmax, the minimum breath rate Bmin, and its variance Bvar. The number is multiplied by the number of time zones. For example, the second sub-time zone of 30 minutes is divided into six first to sixth sub-time zones every 5 minutes, and for each of these first to sixth sub-time zones, the frequency obtained in the small time zone. The average power Pave, the maximum power Pmax, the minimum power Pmin, the variance Pvar, the average breathing rate Bave, the maximum breathing rate Bmax, the minimum breathing rate Bmin, and the variance Bvar obtained from a plurality of Doppler signals in space are obtained. 48 (= 8 × 6) in total. The power can be obtained by integrating the power spectrum, and the respiration rate can be obtained by counting the number of peaks per minute.
 そして、所定期間、例えば1週間に亘ってセンサ装置SUが、稼働され、周波数空間のドップラ信号を生体信号記憶部142に記憶して行く。一方、看護師や介護士等の監視者は、看護記録や介護記録等から前記複数の第2サブ時間帯それぞれに、排泄の有無を表すデータを割り付けて、端末装置SP、TAを介して記憶部14に記憶して行く。そして、第2排泄確率演算部134は、このように得られた周波数空間のドップラ信号から、1週間分の各第2サブ時間帯それぞれについて、各特徴量を求め、これら特徴量に記憶部14に記憶された排泄の有無を対応付けて教師有りの学習データを生成し、この生成した学習データを用いて、前記第2排泄確率を求める第2排泄予測モデルを例えばロジスティック回帰分析等によって生成する。 Then, the sensor device SU is operated for a predetermined period, for example, one week, and stores the Doppler signal in the frequency space in the biological signal storage unit 142. On the other hand, a supervisor such as a nurse or a caregiver assigns data indicating the presence or absence of excretion to each of the plurality of second sub-periods from a nursing record, a care record, etc., and stores it via the terminal devices SP and TA. Store in part 14. Then, the second excretion probability calculation unit 134 obtains each feature amount for each second sub-time zone for one week from the Doppler signal in the frequency space thus obtained, and stores the feature amount in these feature amounts. The supervised learning data is generated in association with the presence or absence of excretion stored in the memory, and the second excretion prediction model for obtaining the second excretion probability is generated by, for example, logistic regression analysis using the generated learning data .
 そして、第2排泄確率演算部134は、この生成した第2排泄予測モデルを前記被監視者Obに対応付けて第2排泄予測モデル記憶部144に記憶する。 Then, the second excretion probability calculating unit 134 stores the generated second excretion prediction model in the second excretion prediction model storage unit 144 in association with the monitored person Ob.
 最終排泄確率演算部138は、第1および第2排泄確率演算部133、134で求められた第1および第2排泄確率に基づいて、前記被監視者Obが排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求めるものである。最終排泄確率演算部138は、この求めた最終的な排泄確率を判定部139および通知処理部140それぞれへ出力する。より具体的には、最終排泄確率演算部138は、前記複数のサブ時間帯(第1サブ時間帯)それぞれについて、第1排泄予測モデルから求めた第1排泄確率と、第2排泄予測モデルから求めた第2排泄確率とを乗算することで、前記最終的な排泄確率を求める。この第2排泄予測モデルから第2排泄確率を求める際には、当該サブ時間帯に取得された周波数空間のドップラ信号から求められた特徴量(平均パワーPave、最大パワーPmax、最小パワーPmin、その分散Pvar、平均呼吸数Bave、最大呼吸数Bmax、最小呼吸数Bminおよびその分散Bvar)が用いられる。前記所定の時間帯が一日24時間であってデータ収集期間が複数日(観測回数が複数回)である場合には、当該サブ時間帯(当該第1サブ時間帯)に取得された周波数空間のドップラ信号から求められる特徴量は、複数であるので、これら複数の特徴量の中のいずれか1つ、あるいは、これら複数の特徴量の平均値、あるいは、これら複数の特徴量の中央値が前記第2排泄予測モデルから第2排泄確率を求める際に用いられる。このため、第1サブ時間帯と第2サブ時間帯とは、一致していることが好ましい。 The final excretion probability calculating unit 138 is based on the first and second excretion probabilities calculated by the first and second excretion probability calculating units 133 and 134, and the monitored person Ob excretes per predetermined unit time. The probability is obtained as the final excretion probability. The final excretion probability calculation unit 138 outputs the obtained final excretion probability to the determination unit 139 and the notification processing unit 140, respectively. More specifically, the final excretion probability calculating unit 138 uses the first excretion probability obtained from the first excretion prediction model and the second excretion prediction model for each of the plurality of sub time periods (first sub time periods). The final excretion probability is obtained by multiplying the obtained second excretion probability. When obtaining the second excretion probability from the second excretion prediction model, the feature amounts (average power Pave, maximum power Pmax, minimum power Pmin, and the like obtained from the Doppler signal of the frequency space acquired in the sub time zone are calculated. Variance Pvar, average respiration rate Bave, maximum respiration rate Bmax, minimum respiration rate Bmin, and its variance Bvar) are used. When the predetermined time zone is 24 hours a day and the data collection period is a plurality of days (the number of observations is a plurality of times), the frequency space acquired in the sub time zone (the first sub time zone) Since there are a plurality of feature amounts obtained from the Doppler signal, any one of the plurality of feature amounts, an average value of the plurality of feature amounts, or a median value of the plurality of feature amounts is obtained. It is used when determining the second excretion probability from the second excretion prediction model. For this reason, it is preferable that the 1st sub time slot | zone and the 2nd sub time slot | zone correspond.
 判定部139は、最終排泄確率演算部138で求められた最終的な排泄確率が所定の閾値thを超えたか否かを判定する。この判定の結果、前記最終的な排泄確率が所定の閾値thを超えていない場合には、判定部139は、何もせず、前記最終的な排泄確率が所定の閾値thを超えている場合には、判定部139は、前記最終的な排泄確率が所定の閾値thを超えた旨を通知処理部140へ出力する。 The determination unit 139 determines whether or not the final excretion probability obtained by the final excretion probability calculation unit 138 exceeds a predetermined threshold th. As a result of the determination, when the final excretion probability does not exceed the predetermined threshold th, the determination unit 139 does nothing and the final excretion probability exceeds the predetermined threshold th. The determination unit 139 outputs to the notification processing unit 140 that the final excretion probability has exceeded a predetermined threshold th.
 通知処理部140は、最終排泄確率演算部138で求めた最終的な排泄確率を外部へ通知するものである。本実施形態では、通知処理部140は、最終排泄確率演算部138で求めた最終的な排泄確率を管理サーバ装置SVを介して所定の端末装置SP、TAへ通信IF部15で送信する。より具体的には、通知処理部140は、自機のセンサID、および、最終排泄確率演算部138で求めた最終的な排泄確率を収容した通信信号(第1最終排泄確率通知通信信号)を管理サーバ装置SVへ通信IF部15で送信する。この第1最終排泄確率通知通信信号を受信した管理サーバ装置SVは、それに収容されたセンサIDに対応する通知先の端末IDを検索し、この検索した端末IDを持つ端末装置SP、TAへ、この受信した最終排泄確率通知通信信号に収容されていたセンサID、および、最終的な排泄確率を収容した通信信号(第2最終排泄確率通知通信信号)を送信する。なお、管理サーバ装置SVは、前記受信した最終排泄確率通知通信信号に収容されていたセンサID、および、最終的な排泄確率を収容した通信信号を同報通信で送信しても良い。 The notification processing unit 140 notifies the final excretion probability obtained by the final excretion probability calculating unit 138 to the outside. In the present embodiment, the notification processing unit 140 transmits the final excretion probability obtained by the final excretion probability calculating unit 138 to the predetermined terminal devices SP and TA via the management server device SV by the communication IF unit 15. More specifically, the notification processing unit 140 sends a communication signal (first final excretion probability notification communication signal) containing the sensor ID of its own device and the final excretion probability obtained by the final excretion probability calculating unit 138. The data is transmitted to the management server device SV by the communication IF unit 15. The management server device SV that has received the first final excretion probability notification communication signal searches for the terminal ID of the notification destination corresponding to the sensor ID accommodated therein, and to the terminal devices SP and TA having the searched terminal ID, The sensor ID accommodated in the received final excretion probability notification communication signal and the communication signal (second final excretion probability notification communication signal) accommodating the final excretion probability are transmitted. The management server device SV may transmit the sensor ID stored in the received final excretion probability notification communication signal and the communication signal containing the final excretion probability by broadcast communication.
 そして、前記最終的な排泄確率が所定の閾値thを超えた旨が判定部139から入力されると、通知処理部140は、前記最終的な排泄確率が所定の閾値thを超えた旨を外部へ通知する。本実施形態では、通知処理部140は、前記最終的な排泄確率が所定の閾値thを超えた旨を管理サーバ装置SVを介して所定の端末装置SP、TAへ通信IF部15で送信する。より具体的には、通知処理部140は、自機のセンサID、および、前記最終的な排泄確率が所定の閾値thを超えた旨を表す排泄予告情報を収容した通信信号(第1排泄予告通知通信信号)を管理サーバ装置SVへ通信IF部15で送信する。この第1排泄予告知通信信号を受信した管理サーバ装置SVは、それに収容されたセンサIDに対応する通知先の端末IDを検索し、この検索した端末IDを持つ端末装置SP、TAへ、この受信した第1排泄予告通知通信信号に収容されていたセンサIDおよび排泄予告情報を収容した通信信号(第1排泄予告通知通信信号)を送信する。 When the determination unit 139 inputs that the final excretion probability exceeds a predetermined threshold th, the notification processing unit 140 externally indicates that the final excretion probability exceeds the predetermined threshold th. To notify. In the present embodiment, the notification processing unit 140 transmits the fact that the final excretion probability has exceeded a predetermined threshold th to the predetermined terminal devices SP and TA by the communication IF unit 15 via the management server device SV. More specifically, the notification processing unit 140 includes a communication signal (first excretion notice) containing its own sensor ID and excretion notice information indicating that the final excretion probability exceeds a predetermined threshold th. Notification communication signal) is transmitted to the management server device SV by the communication IF unit 15. The management server device SV that has received this first excretion notice communication signal searches for the terminal ID of the notification destination corresponding to the sensor ID accommodated therein, and sends this to the terminal devices SP and TA having the searched terminal ID. A communication signal (first excretion notice notification communication signal) containing the sensor ID and excretion notice information contained in the received first excretion notice notification communication signal is transmitted.
 本実施形態では、排泄事象センサ部11および排泄事象処理部131は、被監視者の排泄に関わる所定の事象を検知する排泄事象検知部の一例に相当し、生体信号センサ部12および生体信号処理部132は、前記被監視者における時系列な所定の生体信号を測定する生体信号測定部の一例に相当する。 In the present embodiment, the excretion event sensor unit 11 and the excretion event processing unit 131 correspond to an example of an excretion event detection unit that detects a predetermined event related to excretion of the monitored person, and the biosignal sensor unit 12 and the biosignal processing. The unit 132 corresponds to an example of a biological signal measurement unit that measures a predetermined time-series biological signal in the monitored person.
 次に、本実施形態の動作について説明する。図11は、前記センサ装置における排泄予測モデルを作成し、最終的な排泄確率を通知する動作を示すフローチャートである。図12は、前記センサ装置における排泄を予測して通知する動作を示すフローチャートである。 Next, the operation of this embodiment will be described. FIG. 11 is a flowchart showing an operation of creating an excretion prediction model in the sensor device and notifying the final excretion probability. FIG. 12 is a flowchart showing an operation of predicting and notifying excretion in the sensor device.
 上記構成の被監視者監視システムMSでは、各装置SU、SV、SP、TAは、電源が投入されると、必要な各部の初期化を実行し、その稼働を始める。センサ装置SUでは、その制御処理プログラムの実行によって、制御処理部13には、制御部130、排泄事象処理部131、生体信号処理部132、第1排泄確率演算部133、第2排泄確率演算部134、時計部135、排泄時刻記録処理部136、生体信号記録処理部137、最終排泄確率演算部138、判定部139および通知処理部140が機能的に構成される。 In the monitored person monitoring system MS having the above-described configuration, each device SU, SV, SP, TA performs initialization of each necessary part and starts its operation when the power is turned on. In the sensor device SU, by executing the control processing program, the control processing unit 13 includes the control unit 130, the excretion event processing unit 131, the biological signal processing unit 132, the first excretion probability calculating unit 133, and the second excretion probability calculating unit. 134, a clock unit 135, an excretion time recording processing unit 136, a biological signal recording processing unit 137, a final excretion probability calculating unit 138, a determination unit 139, and a notification processing unit 140 are functionally configured.
 本実施形態における被監視者監視システムMSでは、第1および第2排泄予測モデルを作成し最終的な排泄確率を通知する初期モードと、最終的な排泄確率を用いて排泄予告を行う排泄予告モードとがある。以下、これらを順次に説明する。 In the monitored person monitoring system MS in the present embodiment, an initial mode for creating the first and second excretion prediction models and notifying the final excretion probability, and an excretion notice mode for performing the excretion notice using the final excretion probability There is. Hereinafter, these will be described sequentially.
 (初期モード)
 初期モードでは、図11において、まず、センサ装置SUは、制御処理部13によって、各データを取得し、記憶する(S11)。より具体的には、センサ装置SUは、排泄事象センサ部11の一例としての撮像部11から画像を取得し、排泄事象処理部131によって、前記画像(対象画像)に基づいて前記事象(本実施形態では離床)を検知し、前記事象を検知すると、排泄時刻記録処理部136によって、時計部135から現在時刻が排泄時刻として取得され、この取得した排泄時刻を排泄時刻記憶部141に記憶する。センサ装置SUは、生体信号センサ部12の一例としてのドップラセンサ部12からドップラ信号を取得し、生体信号処理部132によって、周波数空間のドップラ信号を生成し、この生成した周波数空間のドップラ信号を生体信号記憶部142に記憶する。なお、この際に、看護師や介護士等の監視者は、看護記録や介護記録等から前記複数の第2サブ時間帯それぞれに、排泄の有無を表すデータを割り付けて、端末装置SP、TAを介して記憶部14に記憶して行く。
(Initial mode)
In the initial mode, in FIG. 11, first, the sensor device SU acquires and stores each data by the control processing unit 13 (S11). More specifically, the sensor device SU acquires an image from the imaging unit 11 as an example of the excretion event sensor unit 11, and the excretion event processing unit 131 performs the above-described event (book) based on the image (target image). In the embodiment, when the above event is detected, the excretion time recording processing unit 136 acquires the current time as the excretion time from the clock unit 135, and stores the acquired excretion time in the excretion time storage unit 141. To do. The sensor device SU acquires a Doppler signal from the Doppler sensor unit 12 as an example of the biological signal sensor unit 12, generates a Doppler signal in the frequency space by the biological signal processing unit 132, and generates the generated Doppler signal in the frequency space. This is stored in the biological signal storage unit 142. At this time, a monitor such as a nurse or a caregiver assigns data indicating the presence or absence of excretion to each of the plurality of second sub-periods from a nursing record or a care record, and the terminal devices SP, TA Is stored in the storage unit 14.
 次に、センサ装置SUは、制御処理部13によって、各データの取得開始から、予め設定されたデータ収集期間(例えば1週間、10日間、2週間等)が終了したか否かを判定する(S12)。この判定の結果、データ収集期間が終了していない場合(No)には、センサ装置SUは、制御処理部13によって、処理を処理S11に戻し、一方、データ収集期間が終了している場合(Yes)には、センサ装置SUは、制御処理部13によって、次の処理S13を実行する。すなわち、データ収集期間が終了するまで、各データが収集され、記憶されて行く。 Next, the sensor device SU determines whether or not a preset data collection period (for example, 1 week, 10 days, 2 weeks, etc.) has ended since the start of acquisition of each data by the control processing unit 13 ( S12). If the result of this determination is that the data collection period has not ended (No), the sensor device SU returns the process to step S11 by the control processing unit 13, while the data collection period has ended ( In Yes), the sensor device SU performs the next processing S13 by the control processing unit 13. That is, each data is collected and stored until the data collection period ends.
 処理S13では、センサ装置SUは、制御処理部13の第1排泄確率演算部133によって、処理S11および処理S12で取得され記憶された各データを用いることで、第1排泄予測モデルを生成し、この生成した第1排泄予測モデルを第1排泄予測モデル記憶部143に記憶する。 In the process S13, the sensor device SU generates a first excretion prediction model by using each data acquired and stored in the process S11 and the process S12 by the first excretion probability calculation unit 133 of the control processing unit 13. The generated first excretion prediction model is stored in the first excretion prediction model storage unit 143.
 この次に、センサ装置SUは、制御処理部13の第2排泄確率演算部134によって、処理S11および処理S12で取得され記憶された各データを用いることで、第2排泄予測モデルを生成し、この生成した第2排泄予測モデルを第2排泄予測モデル記憶部144に記憶する(S14)。 Next, the sensor device SU generates a second excretion prediction model by using each data acquired and stored in the processing S11 and the processing S12 by the second excretion probability calculation unit 134 of the control processing unit 13, The generated second excretion prediction model is stored in the second excretion prediction model storage unit 144 (S14).
 次に、センサ装置SUは、制御処理部13の最終排泄確率演算部138によって、第1および第2排泄確率演算部133、134で求められた第1および第2排泄確率に基づいて、前記被監視者Obが排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求める(S16)。 Next, the sensor device SU uses the final excretion probability calculating unit 138 of the control processing unit 13 based on the first and second excretion probabilities obtained by the first and second excretion probability calculating units 133 and 134 to The probability per unit time that the monitor Ob excretes is obtained as the final excretion probability (S16).
 次に、センサ装置SUは、制御処理部13の通知処理部139によって、処理S15で求めた最終的な排泄確率を外部へ通知し(S17)、処理を終了する。本実施形態では、通知処理部139は、センサIDおよび前記最終的な排泄確率を収容した第1最終排泄確率通知通信信号を管理サーバ装置SVへ通信IF部15で送信する。この第1最終排泄確率通知通信信号を受信した管理サーバ装置SVは、それに収容されたセンサIDに対応する通知先の端末IDを検索し、この検索した端末IDを持つ端末装置SP、TAへ、この受信した第1最終排泄確率通知通信信号に収容されていたセンサIDおよび最終的な排泄確率を収容した第2最終排泄確率通知通信信号を送信する。この第2最終排泄確率通知通信信号を受信した端末装置SP、TAは、この受信した第2最終排泄確率通知通信信号に収容された最終的な排泄確率を前記被監視者Obに対応付けて表示する。例えば、前記第1サブ時間帯ごとに順次に並べて各最終的な排泄確率が表示される。すなわち、第1排泄予測モデルが表示される。なお、端末装置SP、TAには、センサIDと被監視者Obの氏名との対応関係が予め記憶される。 Next, the sensor device SU notifies the final excretion probability obtained in step S15 to the outside by the notification processing unit 139 of the control processing unit 13 (S17), and ends the process. In the present embodiment, the notification processing unit 139 transmits the first final excretion probability notification communication signal containing the sensor ID and the final excretion probability to the management server device SV via the communication IF unit 15. The management server device SV that has received the first final excretion probability notification communication signal searches for the terminal ID of the notification destination corresponding to the sensor ID accommodated therein, and to the terminal devices SP and TA having the searched terminal ID, The sensor terminal ID contained in the received first final excretion probability notification communication signal and the second final excretion probability notification communication signal containing the final excretion probability are transmitted. The terminal devices SP and TA that have received the second final excretion probability notification communication signal display the final excretion probability accommodated in the received second final excretion probability notification communication signal in association with the monitored person Ob. To do. For example, the final excretion probabilities are displayed sequentially for each first sub-time period. That is, the first excretion prediction model is displayed. Note that the correspondence between the sensor ID and the name of the monitored person Ob is stored in advance in the terminal devices SP and TA.
 初期モードでは、被監視者監視システムMSは、このように動作する。 In the initial mode, the monitored person monitoring system MS operates in this way.
 (排泄予告モード)
 排泄予告モードでは、予め設定された所定の時間間隔(サンプリング間隔)で図11に示す処理S11と同様な処理で各データが取得され、記録される一方、図12に示す各処理が予め設定された所定の時間間隔(例えば1秒等)で繰り返し実行される。
(Excretion notice mode)
In the excretion notice mode, each data is acquired and recorded by a process similar to the process S11 shown in FIG. 11 at a predetermined time interval (sampling interval) set in advance, while each process shown in FIG. 12 is preset. It is repeatedly executed at a predetermined time interval (for example, 1 second).
 図12において、まず、センサ装置SUは、制御処理部13の第1および第2排泄確率演算部133、134によって時計部135から現在時刻を取得する(S21)。 In FIG. 12, first, the sensor device SU acquires the current time from the clock unit 135 by the first and second excretion probability calculation units 133 and 134 of the control processing unit 13 (S21).
 次に、センサ装置SUは、第1排泄確率演算部133によって、現在時刻に当たる第1排泄確率を第1排泄予測モデルから求める(S22)。 Next, the sensor device SU uses the first excretion probability calculation unit 133 to obtain the first excretion probability corresponding to the current time from the first excretion prediction model (S22).
 次に、センサ装置SUは、第2排泄確率演算部134によって、現在時刻に当たる第2排泄確率を第2排泄予測モデルから求める(S23)。例えば、第2排泄確率演算部134は、現在時刻から前記第2時間長だけ過去に遡った時刻までの、生体信号記憶部142に記憶された周波数空間の複数のドップラ信号から特徴量(上述の例では、平均パワーPave、最大パワーPmax、最小パワーPmin、その分散Pvar、平均呼吸数Bave、最大呼吸数Bmax、最小呼吸数Bminおよびその分散Bvarの合計48個)を求め、この求めた特徴量を第2排泄予測モデルに用いることで第2排泄確率を求める。 Next, the sensor device SU uses the second excretion probability calculation unit 134 to obtain the second excretion probability corresponding to the current time from the second excretion prediction model (S23). For example, the second excretion probability calculation unit 134 calculates feature amounts (described above) from a plurality of Doppler signals in the frequency space stored in the biological signal storage unit 142 from the current time to a time that is traced back in the past by the second time length. In the example, the average power Pave, the maximum power Pmax, the minimum power Pmin, the variance Pvar, the average breathing rate Bave, the maximum breathing rate Bmax, the minimum breathing rate Bmin, and the variance Bvar are obtained in total 48), and the obtained feature amount Is used in the second excretion prediction model to determine the second excretion probability.
 次に、センサ装置SUは、最終排泄確率演算部138によって、処理S22で求めた第1排泄確率および処理S23で求めた第2排泄確率に基づいて最終的な排泄確率を求める(S25)。例えば、最終排泄確率演算部138は、処理S22で求めた第1排泄確率と処理S23で求めた第2排泄確率とを乗算することによって最終的な排泄確率を求める。 Next, the sensor device SU obtains a final excretion probability based on the first excretion probability obtained in the process S22 and the second excretion probability obtained in the process S23 by the final excretion probability calculating unit 138 (S25). For example, the final excretion probability calculating unit 138 obtains the final excretion probability by multiplying the first excretion probability obtained in step S22 and the second excretion probability obtained in step S23.
 次に、センサ装置SUは、判定部139によって、処理S25で最終排泄確率演算部138によって求められた最終的な排泄確率が所定の閾値thを超えたか否かを判定する(S26)。この判定の結果、前記最終的な排泄確率が所定の閾値thを超えていない場合には、センサ装置SUは、今回の処理を終了し、一方、前記最終的な排泄確率が所定の閾値thを超えている場合には、センサ装置SUは、次の処理S27を実行した後に、今回の処理を終了する。 Next, the sensor device SU determines whether or not the final excretion probability obtained by the final excretion probability calculation unit 138 in the process S25 exceeds a predetermined threshold th by the determination unit 139 (S26). As a result of this determination, if the final excretion probability does not exceed the predetermined threshold th, the sensor device SU ends the current process, while the final excretion probability exceeds the predetermined threshold th. If it exceeds, the sensor apparatus SU ends the current process after executing the next process S27.
 この処理S27では、センサ装置SUは、通知処理部140によって、前記最終的な排泄確率が所定の閾値thを超えた旨を外部へ通知する。本実施形態では、通知処理部139は、センサIDおよび排泄予告情報を収容した第1排泄予告通知通信信号を管理サーバ装置SVへ通信IF部15で送信する。この第1排泄予告通知通信信号を受信した管理サーバ装置SVは、それに収容されたセンサIDに対応する通知先の端末IDを検索し、この検索した端末IDを持つ端末装置SP、TAへ、この受信した第1排泄予告通知通信信号に収容されていたセンサIDおよび排泄予告情報を収容した第2排泄予告通知通信信号を送信する。この第2排泄予告通知通信信号を受信した端末装置SP、TAは、所定の警告音を鳴らす。なお、警告音に代え、あるいは、追加して、端末装置SP、TAは、排泄予告を表すメッセージを前記被監視者Obに対応付けて表示しても良い。また、警告音に代え、あるいは、追加して、または、前記表示代え、あるいは、追加して、端末装置SP、TAは、所定の振動を出力しても良い。 In this process S27, the sensor device SU notifies the outside that the final excretion probability has exceeded a predetermined threshold th by the notification processing unit 140. In this embodiment, the notification processing unit 139 transmits the first excretion notice notification communication signal containing the sensor ID and the excretion notice information to the management server device SV through the communication IF unit 15. The management server device SV that has received the first excretion notice notification communication signal searches the terminal ID of the notification destination corresponding to the sensor ID accommodated therein, and sends this to the terminal devices SP and TA having the searched terminal ID. A second excretion notice notification communication signal containing the sensor ID and excretion notice information contained in the received first excretion notice notification signal is transmitted. The terminal devices SP and TA that have received the second excretion notice notification communication signal sound a predetermined warning sound. In place of or in addition to the warning sound, the terminal devices SP and TA may display a message indicating the excretion notice in association with the monitored person Ob. Further, the terminal devices SP and TA may output a predetermined vibration instead of or in addition to the warning sound, or in addition to or in addition to the display.
 排泄予告モードでは、被監視者監視システムMSは、このように動作する。 In the excretion notice mode, the monitored person monitoring system MS operates in this way.
 以上説明したように、本実施形態における被監視者監視システムMS、被監視者監視装置の一例であるセンサ装置SUおよびこれに実装された被監視者監視方法は、被監視者Obの第1排泄確率を求め、前記被監視者Obの第2排泄確率を求め、これら第1および第2排泄確率に基づいて前記被監視者Obの最終的な排泄確率を求めて外部へ通知する。したがって、監視者は、被監視者Obの最終的な排泄確率を参照することで、排泄を予測できるから、上記被監視者監視システムMS、センサ装置SUおよび被監視者監視方法は、事前の駆け付けを支援できる。したがって、前記被監視者Obの転倒リスクを低減できる。 As described above, the monitored person monitoring system MS, the sensor apparatus SU which is an example of the monitored person monitoring apparatus, and the monitored person monitoring method implemented therein are the first excretion of the monitored person Ob. The probability is obtained, the second excretion probability of the monitored person Ob is obtained, and the final excretion probability of the monitored person Ob is obtained based on the first and second excretion probabilities and notified to the outside. Therefore, since the monitor can predict the excretion by referring to the final excretion probability of the monitored person Ob, the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method are rushed in advance. Can support. Therefore, the risk of falling of the monitored person Ob can be reduced.
 上記被監視者監視システムMS、センサ装置SUおよび被監視者監視方法は、最終的な排泄確率を、2通りの手法で求めた第1および第2排泄確率に基づいて求めるので、より精度の良い排泄確率を求めることができる。 Since the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method obtain the final excretion probability based on the first and second excretion probabilities obtained by two methods, more accurate. The excretion probability can be obtained.
 特に、施設に入居している高齢者の場合、安定した生活を送ってもらうために、食事の時刻や就寝の時刻は、ある程度決められており、周期性を持っている。それに従い、排泄の時期やそのための離床動作も周期性を持っている。また、排泄前には無意識のうちに違和感を感じ、眠りが浅くなったり寝返りが増える等の何らかの体動がある。特に、夜間就寝中では、その傾向が表れやすい。上記被監視者監視システムMS、センサ装置SUおよび被監視者監視方法は、排泄事象処理部131の検知結果に基づいて第1排泄確率を求め、生体信号処理部132の処理結果に基づいて第2排泄確率を求め、これらを統合して最終的な排泄確率を求めているので、精度よく排泄確率を求めることができる。 Especially in the case of elderly people who live in facilities, the time of meals and bedtime are determined to some extent and have periodicity in order to have a stable life. Accordingly, the timing of excretion and the bed movement for that purpose have periodicity. Also, before excretion, there is some body movement such as unconsciously feeling uncomfortable, becoming sleepless and increasing the number of turns. In particular, this tendency tends to appear during nighttime sleeping. The monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method obtain the first excretion probability based on the detection result of the excretion event processing unit 131, and the second based on the processing result of the biological signal processing unit 132. Since the excretion probability is obtained and these are integrated to obtain the final excretion probability, the excretion probability can be obtained with high accuracy.
 寝たきりの状態で24時間おむつに排泄している高齢者は、排泄後のおむつ交換が看護師や介護士等の監視者にとって大きな業務負担となっている。そのため、排泄前におむつ交換のタイミングを知りたいという要望がある。例えば特開2001-161732には、おむつ交換の時期を検出するデバイスが開示されているが、おむつ内に配設するあるため、高齢者が違和感を感じたり、おむつ交換のたびに配設する必要がある等、使い勝手が良くない。しかしながら、上記被監視者監視システムMS、センサ装置SUおよび被監視者監視方法は、別途、おむつ内にデバイスを配設する必要が無く、使い勝手がよい。 For elderly people who are excreted in diapers 24 hours a day when they are bedridden, exchanging diapers after excretion is a heavy work burden for nurses and caregivers. Therefore, there is a desire to know the timing of changing diapers before excretion. For example, Japanese Patent Application Laid-Open No. 2001-161732 discloses a device for detecting the timing of changing diapers. However, since the device is installed in the diaper, it is necessary for the elderly to feel uncomfortable or to change it every time the diaper is changed. Convenience is not good. However, the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method do not require a separate device in the diaper and are easy to use.
 上記被監視者監視システムMS、センサ装置SUおよび被監視者監視方法は、最終的な排泄確率が所定の閾値thを超えた場合、外部へ所定の通知を行う。このため、この通知を参照することで、監視者は、被監視者Obの排泄が近いことを認識できる。そして、監視者は、被監視者Obの実際の離床前に、被監視者Obの下に駆け付けることが可能となるので、転倒のリスクを低減できる。 The monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method perform a predetermined notification to the outside when the final excretion probability exceeds a predetermined threshold th. For this reason, by referring to this notification, the monitor can recognize that the monitored person Ob is near excretion. And since the supervisor can run under the monitored person Ob before the monitored person Ob actually leaves, the risk of falling can be reduced.
 上記被監視者監視システムMS、センサ装置SUおよび被監視者監視方法は、離床を前記事象とみなすことで前記事象を簡易に検知できる。 The monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method can easily detect the event by regarding getting out of bed as the event.
 上記被監視者監視システムMS、センサ装置SUおよび被監視者監視方法は、画像から離床を検知するので、被監視者Obに非接触で被監視者Obの離床、ひいては前記事象を検知できる。 Since the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method detect getting out of bed from the image, it is possible to detect the getting-off of the monitored person Ob without contacting the monitored person Ob and thus the event.
 上記被監視者監視システムMS、センサ装置SUおよび被監視者監視方法は、被監視者Obの生体信号をドップラセンサ部12で測定するので、被監視者Obに非接触でその生体信号を測定できる。 In the monitored person monitoring system MS, the sensor device SU, and the monitored person monitoring method, the biological signal of the monitored person Ob is measured by the Doppler sensor unit 12, so that the biological signal can be measured without contact with the monitored person Ob. .
 なお、上述の実施形態において、排泄予告モードの実施中に、被監視者Obにおける実際の排泄があった際に、看護師や介護士等の監視者は、端末装置SP、TAから排泄時刻および排泄の有無を表すデータを入力し、管理サーバ装置SVを介してセンサ装置SUへ送信する。センサ装置SUは、端末装置SP、TAから管理サーバ装置SVを介して受信した排泄時刻および排泄の有無を表すデータを記憶部14に記憶する。そして、センサ装置SUは、所定の期間間隔ごとに、あるいは、監視者等の指示により、初期モードの各データに、排泄予告モードの実施中に得られたデータを加えて第1排泄予測モデルを再計算し、初期モードの各データに、排泄予告モードの実施中に得られたデータを加えて学習データを更新し、この更新した学習データで第2排泄予測モデルを学習し直して更新しても良い。これによってさらに第1および第2排泄予測モデルの精度が向上できる。 In the above-described embodiment, when there is an actual excretion in the monitored person Ob during the excretion notice mode, a monitor such as a nurse or a caregiver can set the excretion time and the terminal device SP, TA. Data indicating the presence or absence of excretion is input and transmitted to the sensor device SU via the management server device SV. The sensor device SU stores data representing the excretion time and presence / absence of excretion received from the terminal devices SP and TA via the management server device SV in the storage unit 14. Then, the sensor device SU adds the data obtained during the execution of the excretion notice mode to each data of the initial mode at every predetermined time interval or according to an instruction from a monitor or the like, and creates the first excretion prediction model. Recalculate, update the learning data by adding the data obtained during the implementation of the excretion notice mode to each data in the initial mode, and re-learn and update the second excretion prediction model with this updated learning data. Also good. This can further improve the accuracy of the first and second excretion prediction models.
 このような場合、上述の被監視者監視装置の一例としてのセンサ装置SUにおいて、前記排泄時刻の入力を受け付ける排泄受付部をさらに備え、生体信号記憶部142は、さらに、前記排泄受付部で受け付けた排泄時刻を前記被監視者Obに対応付けて排泄時刻記憶部141に記録し、前記学習データは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、データを備え、第1排泄確率演算部133は、排泄時刻記憶部141に記憶された排泄時刻に基づいて第1排泄予測モデルを再生成し、第2排泄確率演算部134は、排泄時刻記憶部141に記憶された排泄時刻に基づいて前記複数の第2サブ時間帯それぞれについて排泄の有無を表す排泄有無データを生成し、前記生成した排泄有無データを、前記学習データにおける前記複数の第2サブ時間帯それぞれに対応する各データに加えることで教師有り学習データを生成し、前記生成した教師有り学習データを用いることによって前記第2排泄予測モデルを再学習によって再生成する。本実施形態では、排泄時刻は、看護師や介護士等の監視者によって端末装置SP、TAに入力され、端末装置SP、TAから管理サーバ装置SVを介してセンサ装置SUに入力されるので、通信IF部15が、排泄時刻の入力を受け付ける排泄受付部の一例に相当する。なお、センサ装置SUは、必要に応じて、さらに、制御処理部13に接続され例えば各種コマンドや各種データ等を入力する入力部や、前記入力部で入力された各種コマンドや各種データを出力する出力部をさらに備え、排泄時刻は、前記入力部から入力されても良い。 In such a case, the sensor device SU as an example of the monitored person monitoring device described above further includes an excretion receiving unit that receives an input of the excretion time, and the biological signal storage unit 142 further receives the excretion receiving unit. The excretion time is recorded in the excretion time storage unit 141 in association with the monitored person Ob, and the learning data is generated by dividing the predetermined time zone by a predetermined second time length. The first excretion probability calculating unit 133 regenerates the first excretion prediction model based on the excretion time stored in the excretion time storage unit 141 and includes the second excretion probability calculation unit 134. Generates excretion presence / absence data indicating the presence / absence of excretion for each of the plurality of second sub-periods based on the excretion time stored in the excretion time storage unit 141, and the generation Supervised learning data is generated by adding the excretion data to each data corresponding to each of the plurality of second sub-time zones in the learning data, and the second supervised learning data is used to generate the second supervised learning data. Regenerate the excretion prediction model by re-learning. In the present embodiment, the excretion time is input to the terminal device SP, TA by a monitor such as a nurse or a caregiver, and is input from the terminal device SP, TA to the sensor device SU via the management server device SV. The communication IF unit 15 corresponds to an example of an excretion receiving unit that receives an input of excretion time. The sensor device SU is further connected to the control processing unit 13 as necessary, for example, an input unit for inputting various commands, various data, and the like, and various commands and various data input by the input unit. An output unit may be further provided, and the excretion time may be input from the input unit.
 また、上述の実施形態では、第1および第2排泄確率に基づいて最終的な排泄確率が求められたが、さらに第3排泄確率に基づいて最終的な排泄確率が求められても良い。このような場合、上述の被監視者監視装置の一例としてのセンサ装置SUにおいて、図2に破線で示すように、排泄時刻から時間が経過するに従って排泄確率が高くなる第3排泄予測モデルから第3排泄確率を求める第3排泄確率演算部21を、制御処理部13に機能的にさらに備え、最終排泄確率演算部138は、第1ないし第3排泄確率演算部133、134、21それぞれで求められた第1ないし第3排泄確率それぞれに基づいて前記最終的な排泄確率を求める。より具体的には、例えば、最終排泄確率演算部138は、第1ないし第3排泄確率演算部133、134、21それぞれで求められた第1ないし第3排泄確率を乗算することによって前記最終的な排泄確率を求める。記憶部14は、図2に破線で示すように、第3排泄予測モデルを記憶する第3排泄予測モデル記憶部22を機能的にさらに備える。図11に示すフローチャートでは、処理S14と処理S16との間に、破線で示すように、第3排泄予測モデルを生成し、第3排泄予測モデル記憶部22に記憶する処理S15がさらに追加される。図12に示すフローチャートでは、処理S23と処理S25との間に、破線で示すように、第3排泄確率を求める処理S24がさらに追加される。前記第3排泄予測モデルは、予め複数のサンプルを用いることによって生成されたテーブルや関数式であって良く、あるいは、学習データを用いることによって生成された学習モデルであって良い。これによれば、最終的な排泄確率を、第1および第2排泄確率に加えてさらに第3排泄確率に基づいて求めるので、さらにより精度の良い最終的な排泄確率を求めることができる。 Further, in the above-described embodiment, the final excretion probability is obtained based on the first and second excretion probabilities, but the final excretion probability may be further obtained based on the third excretion probability. In such a case, in the sensor device SU as an example of the monitored person monitoring device described above, as shown by a broken line in FIG. 2, the third excretion prediction model in which the excretion probability increases as time elapses from the excretion time. A third excretion probability calculating unit 21 for obtaining three excretion probabilities is further provided functionally in the control processing unit 13, and a final excretion probability calculating unit 138 is obtained by each of the first to third excretion probability calculating units 133, 134, and 21, respectively. The final excretion probability is obtained based on the obtained first to third excretion probabilities. More specifically, for example, the final excretion probability calculation unit 138 multiplies the first to third excretion probabilities obtained by the first to third excretion probability calculation units 133, 134, and 21, respectively, thereby multiplying the final excretion probability. Find the excretion probability. The memory | storage part 14 is further equipped with the 3rd excretion prediction model memory | storage part 22 which memorize | stores a 3rd excretion prediction model functionally, as shown with a broken line in FIG. In the flowchart shown in FIG. 11, a process S15 for generating a third excretion prediction model and storing it in the third excretion prediction model storage unit 22 is further added between the process S14 and the process S16, as indicated by a broken line. . In the flowchart shown in FIG. 12, a process S24 for obtaining a third excretion probability is further added between the processes S23 and S25 as shown by a broken line. The third excretion prediction model may be a table or a function expression generated by using a plurality of samples in advance, or may be a learning model generated by using learning data. According to this, since the final excretion probability is obtained based on the third excretion probability in addition to the first and second excretion probabilities, the final excretion probability with higher accuracy can be obtained.
 また、上述の実施形態では、排泄事象センサ部11は、撮像部11を備え、排泄事象処理部131によって離床を排泄として検知したが、排泄事象検知部は、これに限定されるものではない。例えば、寝具周りの領域や離床する場所等に配設された離床マットが用いられても良い。離床マットは、例えば、感圧センサを備え、被監視者Obが当該離床マットに乗ることで、前記感圧センサによって被監視者Obの離床を検知する。また例えば、トイレに配設された、着座を検知する着座センサが用いられても良い。着座センサは、例えば、感圧センサを備え、被監視者Obが当該着座センサに乗ることで、前記感圧センサによって被監視者Obの着座を検知する。この着座センサを用いる場合では、排泄後、入床までの歩行の際のリスクに対応できる。このような離床マットや着座センサでは、有線または無線によって通信可能にセンサ装置SUの制御処理部13に接続される。 In the above-described embodiment, the excretion event sensor unit 11 includes the imaging unit 11, and the excretion event processing unit 131 detects the bed leaving as excretion, but the excretion event detection unit is not limited thereto. For example, a leaving mat disposed in an area around the bedding or a place where the user leaves the bed may be used. The bed leaving mat is provided with, for example, a pressure-sensitive sensor, and the monitored person Ob detects the bed leaving the monitored person Ob when the monitored person Ob rides on the bed leaving mat. In addition, for example, a seating sensor that detects seating may be used. The seating sensor includes, for example, a pressure sensor, and when the monitored person Ob rides on the seating sensor, the seating of the monitored person Ob is detected by the pressure sensor. In the case of using this seating sensor, it is possible to cope with the risk of walking to bed after excretion. Such a floor mat or seating sensor is connected to the control processing unit 13 of the sensor device SU so as to be communicable by wire or wirelessly.
 また、上述の実施形態では、特徴量は、平均パワーPave、最大パワーPmax、最小パワーPmin、その分散Pvar、平均呼吸数Bave、最大呼吸数Bmax、最小呼吸数Bminおよびその分散Bvarであったが、これに限定されるものではない。例えば、これらに加え、摂取水分量や、食事量が用いられても良い。このような場合、上述の被監視者監視装置の一例としてのセンサ装置SUにおいて、好ましくは、摂取時刻に対応付けられた摂取水分量の入力を受け付ける摂取水分受付部と、前記摂取水分受付部で受け付けた、摂取時刻に対応付けられた摂取水分量を前記被監視者Obに対応付けて記憶する摂取水分記憶部とをさらに備え、前記学習データは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、データを備え、第2排泄確率演算部134は、前記学習データにおける、前記摂取水分記憶部に記憶された摂取時刻に対応する第2サブ時間帯のデータに、前記摂取時刻に対応付けられた摂取水分量を加え、前記加えた学習データを用いることによって前記第2排泄予測モデルを学習によって生成する。また、上述の被監視者監視装置の一例としてのセンサ装置SUにおいて、好ましくは、食事時刻に対応付けられた食事量の入力を受け付ける食事量受付部と、前記食事量受付部で受け付けた、食事時刻に対応付けられた食事量を前記被監視者Obに対応付けて記憶する食事量記憶部とをさらに備え、前記学習データは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、データを備え、第2排泄確率演算部134は、前記学習データにおける、前記食事量記憶部に記憶された食事時刻に対応する第2サブ時間帯のデータに、前記食事時刻に対応付けられた食事量を加え、前記加えた学習データを用いることによって前記第2排泄予測モデルを学習によって生成する。また、上述の被監視者監視装置の一例としてのセンサ装置SUにおいて、好ましくは、摂取時刻に対応付けられた摂取水分量の入力を受け付ける摂取水分受付部と、食事時刻に対応付けられた食事量の入力を受け付ける食事量受付部と、前記摂取水分受付部で受け付けた、摂取時刻に対応付けられた摂取水分量を前記被監視者Obに対応付けて記憶する摂取水分記憶部と、前記食事量受付部で受け付けた、食事時刻に対応付けられた食事量を前記被監視者Obに対応付けて記憶する食事量記憶部とをさらに備え、前記学習データは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、データを備え、第2排泄確率演算部134は、前記学習データにおける、前記摂取水分記憶部に記憶された摂取時刻に対応する第2サブ時間帯のデータに、前記摂取時刻に対応付けられた摂取水分量を加え、前記学習データにおける、前記食事量記憶部に記憶された食事時刻に対応する第2サブ時間帯のデータに、前記食事時刻に対応付けられた食事量を加え、前記加えた学習データを用いることによって前記第2排泄予測モデルを学習によって生成する。 In the above-described embodiment, the feature amounts are the average power Pave, the maximum power Pmax, the minimum power Pmin, the variance Pvar, the average respiratory rate Bave, the maximum respiratory rate Bmax, the minimum respiratory rate Bmin, and the variance Bvar. However, the present invention is not limited to this. For example, in addition to these, the amount of intake water and the amount of meals may be used. In such a case, in the sensor device SU as an example of the monitored person monitoring device described above, preferably, an intake water reception unit that receives an input of an intake water amount associated with an intake time, and the intake water reception unit An intake water storage unit that stores the intake water amount associated with the received intake time in association with the monitored person Ob, and the learning data includes the predetermined time zone for a predetermined second time period. Data is provided for each of the plurality of second sub-periods generated by dividing by the length, and the second excretion probability calculation unit 134 corresponds to the intake time stored in the intake water storage unit in the learning data. Learning the second excretion prediction model by adding the intake water amount associated with the intake time to the data of the second sub-time period and using the added learning data Therefore, to produce. In the sensor device SU as an example of the monitored person monitoring device described above, preferably, a meal amount receiving unit that receives an input of a meal amount associated with a meal time, and the meal received by the meal amount receiving unit A meal amount storage unit that stores a meal amount associated with time in association with the monitored person Ob, and the learning data is obtained by dividing the predetermined time period by a predetermined second time length. Each of the plurality of generated second sub-time zones includes data, and the second excretion probability calculating unit 134 is a second sub-time zone corresponding to the meal time stored in the meal amount storage unit in the learning data. The second excretion prediction model is generated by learning by adding the amount of meal associated with the meal time to the data and using the added learning data. In the sensor device SU as an example of the monitored person monitoring device described above, preferably, a water intake receiving unit that receives an input of an intake water amount associated with the intake time, and a meal amount associated with the meal time The intake amount storage unit that receives the input of the intake amount, the intake amount storage unit that stores the intake amount of water associated with the intake time, which is received by the intake amount reception unit, in association with the monitored person Ob, and the meal amount A meal amount storage unit that is received by the reception unit and stores a meal amount associated with a meal time in association with the monitored person Ob, and the learning data includes the predetermined time period in a predetermined number of times; Data is provided for each of the plurality of second sub-periods generated by dividing by a two-hour length, and the second excretion probability calculation unit 134 stores the intake water storage unit in the learning data. The intake water amount associated with the intake time is added to the data of the second sub time period corresponding to the remembered intake time, and the meal time corresponding to the meal time stored in the meal amount storage unit in the learning data is added. The second excretion prediction model is generated by learning by adding the amount of meal associated with the meal time to the data of the second sub-time period and using the added learning data.
 このような摂取時刻に対応付けられた摂取水分量や、食事時刻に対応付けられた食事量は、看護師や介護士等の監視者によって端末装置SP、TAに入力され、端末装置SP、TAから管理サーバ装置SVを介してセンサ装置SUに入力される。通信IF部15は、摂取水分受付部の一例に相当し、食事量受付部の一例にも相当する。記憶部14には、図2に破線で示すように、摂取水分記憶部31や、食事量記憶部32が機能的にさらに備えられる。 The intake water amount associated with the intake time and the meal amount associated with the meal time are input to the terminal devices SP and TA by a monitor such as a nurse or a caregiver, and the terminal devices SP and TA To the sensor device SU via the management server device SV. The communication IF unit 15 corresponds to an example of an intake water reception unit, and also corresponds to an example of a meal amount reception unit. As shown by a broken line in FIG. 2, the storage unit 14 further includes a water intake storage unit 31 and a meal amount storage unit 32 in terms of function.
 また、上述の実施形態では、初期モードの処理S17において、最終的な排泄確率が外部へ通知されたが、これに加えて、センサ装置SUは、前記最終的な排泄確率が所定の閾値thを超えたか否かを判定し、その判定結果も外部へ通知しても良い。そして、最終的な排泄確率を表示する場合に、前記所定の閾値thを越えているか否かに応じた異なる表示態様で前記最終的な排泄確率が表示される。例えば、前記所定の閾値thを越えている最終的な排泄確率は、赤色や黄色で表示され、前記所定の閾値thを越えていない最終的な排泄確率は、青色や緑色で表示される。 In the above-described embodiment, the final excretion probability is notified to the outside in the process S17 of the initial mode. In addition, the sensor device SU has the predetermined excretion probability set to a predetermined threshold th. It may be determined whether or not it has been exceeded, and the determination result may be notified to the outside. When displaying the final excretion probability, the final excretion probability is displayed in a different display mode depending on whether or not the predetermined threshold th is exceeded. For example, the final excretion probability exceeding the predetermined threshold th is displayed in red or yellow, and the final excretion probability not exceeding the predetermined threshold th is displayed in blue or green.
 また、上述の実施形態では、排泄予告モードの処理S27において、前記最終的な排泄確率が所定の閾値thを超えた旨が外部へ通知されたが、これに加えて、センサ装置SUは、前記最終的な排泄確率も外部へ通知されても良い。そして、前記最終的な排泄確率が所定の閾値thを超えた旨を表示する場合に、前記最終的な排泄確率が表示される。 Further, in the above-described embodiment, in the process S27 of the excretion notice mode, the fact that the final excretion probability has exceeded a predetermined threshold th is notified to the outside. In addition, the sensor device SU The final excretion probability may also be notified to the outside. Then, when displaying that the final excretion probability exceeds a predetermined threshold th, the final excretion probability is displayed.
 また、上述の実施形態では、被監視者監視装置は、センサ装置SUに構成されたが、センサ装置SUと管理サーバ装置SVとで構成されても良い。このような場合、一例では、センサ装置SUは、排泄事象センサ部11および生体信号センサ部12を備え、管理サーバ装置SVは、排泄事象処理部131、生体信号処理部132、第1排泄確率演算部133、第2排泄確率演算部134、時計部135、排泄時刻記録処理部136、生体信号記録処理部137、最終排泄確率演算部138、判定部139、通知処理部140、排泄時刻記憶部141、生体信号記憶部142、第1排泄予測モデル記憶部143および第1排泄予測モデル記憶部144を備えて構成される。 In the above-described embodiment, the monitored person monitoring device is configured by the sensor device SU, but may be configured by the sensor device SU and the management server device SV. In such a case, in one example, the sensor device SU includes the excretion event sensor unit 11 and the biological signal sensor unit 12, and the management server device SV includes the excretion event processing unit 131, the biological signal processing unit 132, and the first excretion probability calculation. Unit 133, second excretion probability calculating unit 134, clock unit 135, excretion time recording processing unit 136, biological signal recording processing unit 137, final excretion probability calculating unit 138, determination unit 139, notification processing unit 140, excretion time storage unit 141 The biological signal storage unit 142, the first excretion prediction model storage unit 143, and the first excretion prediction model storage unit 144 are configured.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる被監視者監視装置は、監視対象である被監視者の排泄に関わる所定の事象を検知する排泄事象検知部と、前記被監視者における時系列な所定の生体信号を測定する生体信号測定部と、前記排泄事象検知部の検知結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第1排泄確率として求める第1排泄確率演算部と、前記生体信号測定部の測定結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第2排泄確率として求める第2排泄確率演算部と、前記第1および第2排泄確率演算部で求められた第1および第2排泄確率に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求める最終排泄確率演算部と、前記最終排泄確率演算部で求めた最終的な排泄確率を外部へ通知する通知処理部とを備える。好ましくは、上述の被監視者監視装置において、計時を行う時計部と、排泄を行った時刻である排泄時刻を記憶する排泄時刻記憶部と、前記排泄事象検知部で前記事象を検知した場合に、前記時計部から現在時刻を前記排泄時刻として取得し、前記取得した排泄時刻を前記被監視者に対応付けて前記排泄時刻記憶部に記録する排泄時刻記録処理部と、前記時系列な所定の生体信号を記憶する生体信号記憶部と、前記生体信号測定部で測定された時系列な所定の生体信号を前記被監視者に対応付けて前記生体信号記憶部に記録する生体信号記録処理部とをさらに備え、前記第1排泄確率演算部は、所定の時間帯を所定の時間長(第1時間長)で区切ることによって生成された複数のサブ時間帯(第1サブ時間帯)それぞれについて、前記排泄時刻記憶部に記憶された排泄時刻に基づいて前記第1排泄確率を求めることによって第1排泄予測モデルを生成し、前記第2排泄確率演算部は、前記生体信号記憶部に記憶された時系列な所定の生体信号を学習データとして用いることによって、前記第2排泄確率を求める第2排泄予測モデルを学習によって生成し、前記最終排泄確率演算部は、前記第1および第2排泄確率演算部それぞれによって生成された第1および第2排泄予測モデルそれぞれから求まる第1および第2排泄確率に基づいて前記最終的な排泄確率を求める。好ましくは、上述の被監視者監視装置において、前記排泄時刻の入力を受け付ける排泄受付部をさらに備え、前記生体信号記憶部は、さらに、前記排泄受付部で受け付けた排泄時刻を前記被監視者に対応付けて前記排泄時刻記憶部に記憶し、前記学習データは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、データを備え、前記第1排泄確率演算部は、前記排泄時刻記憶部に記憶された排泄時刻に基づいて前記第1排泄予測モデルを再生成し、前記第2排泄確率演算部は、前記排泄時刻記憶部に記憶された排泄時刻に基づいて前記複数の第2サブ時間帯それぞれについて排泄の有無を表す排泄有無データを生成し、前記生成した排泄有無データを、前記学習データにおける前記複数の第2サブ時間帯それぞれに対応する各データに加えることで教師有り学習データを生成し、前記生成した教師有り学習データを用いることによって前記第2排泄予測モデルを再学習によって再生成する。好ましくは、上述の被監視者監視装置において、摂取時刻に対応付けられた摂取水分量の入力を受け付ける摂取水分受付部と、前記摂取水分受付部で受け付けた、摂取時刻に対応付けられた摂取水分量を前記被監視者に対応付けて記憶する摂取水分記憶部とをさらに備え、前記学習データは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、データを備え、前記第2排泄確率演算部は、前記学習データにおける、前記摂取水分記憶部に記憶された摂取時刻に対応する第2サブ時間帯のデータに、前記摂取時刻に対応付けられた摂取水分量を加え、前記加えた学習データを用いることによって前記第2排泄予測モデルを学習によって生成する。好ましくは、上述の被監視者監視装置において、食事時刻に対応付けられた食事量の入力を受け付ける食事量受付部と、前記食事量受付部で受け付けた、食事時刻に対応付けられた食事量を前記被監視者Obに対応付けて記憶する食事量記憶部とをさらに備え、前記学習データは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、データを備え、前記第2排泄確率演算部は、前記学習データにおける、前記食事量記憶部に記憶された食事時刻に対応する第2サブ時間帯のデータに、前記食事時刻に対応付けられた食事量を加え、前記加えた学習データを用いることによって前記第2排泄予測モデルを学習によって生成する。好ましくは、上述の被監視者監視装置において、摂取時刻に対応付けられた摂取水分量の入力を受け付ける摂取水分受付部と、食事時刻に対応付けられた食事量の入力を受け付ける食事量受付部と、前記摂取水分受付部で受け付けた、摂取時刻に対応付けられた摂取水分量を前記被監視者Obに対応付けて記憶する摂取水分記憶部と、前記食事量受付部で受け付けた、食事時刻に対応付けられた食事量を前記被監視者Obに対応付けて記憶する食事量記憶部とをさらに備え、前記学習データは、前記所定の時間帯を所定の第2時間長で区切ることによって生成された複数の第2サブ時間帯それぞれについて、データを備え、前記第2排泄確率演算部は、前記学習データにおける、前記摂取水分記憶部に記憶された摂取時刻に対応する第2サブ時間帯のデータに、前記摂取時刻に対応付けられた摂取水分量を加え、前記学習データにおける、前記食事量記憶部に記憶された食事時刻に対応する第2サブ時間帯のデータに、前記食事時刻に対応付けられた食事量を加え、前記加えた学習データを用いることによって前記第2排泄予測モデルを学習によって生成する。 A monitored person monitoring apparatus according to one aspect includes an excretion event detecting unit that detects a predetermined event related to excretion of a monitored person that is a monitoring target, and a living body that measures a time-series predetermined biological signal in the monitored person. A first excretion probability calculating unit that obtains, as a first excretion probability, a probability per unit time that the monitored person excretes based on a detection result of the signal measurement unit, the excretion event detection unit, and the biological signal A second excretion probability calculation unit that obtains a probability per unit time that the monitored person excretes as a second excretion probability based on the measurement result of the measurement unit; and the first and second excretion probability calculation units A final excretion probability calculating unit that obtains a probability per unit time that the monitored person excretes as a final excretion probability based on the obtained first and second excretion probabilities; and the final excretion probability calculating unit Sought in And a notification processing unit for notifying a final specific excretion probability to the outside. Preferably, in the above-mentioned monitored person monitoring device, when the event is detected by the clock unit that performs timing, the excretion time storage unit that stores the excretion time that is the time of excretion, and the excretion event detection unit An excretion time recording processing unit that acquires the current time from the clock unit as the excretion time, and records the acquired excretion time in the excretion time storage unit in association with the monitored person; A biological signal storage unit that stores a biological signal of the biological signal, and a biological signal recording processing unit that records a predetermined time-series biological signal measured by the biological signal measurement unit in the biological signal storage unit in association with the monitored person The first excretion probability calculating unit further includes a plurality of sub time zones (first sub time zones) generated by dividing a predetermined time zone by a predetermined time length (first time length). , At the time of excretion A first excretion prediction model is generated by obtaining the first excretion probability based on the excretion time stored in the storage unit, and the second excretion probability calculation unit is a time series stored in the biological signal storage unit. By using a predetermined biological signal as learning data, a second excretion prediction model for obtaining the second excretion probability is generated by learning, and the final excretion probability calculating unit is configured by each of the first and second excretion probability calculating units. The final excretion probability is obtained based on the first and second excretion probabilities obtained from the generated first and second excretion prediction models, respectively. Preferably, the above-described monitored person monitoring device further includes an excretion receiving unit that receives an input of the excretion time, and the biological signal storage unit further outputs the excretion time received by the excretion receiving unit to the monitored person. In association with the excretion time storage unit, the learning data includes data for each of a plurality of second sub time periods generated by dividing the predetermined time period by a predetermined second time length, The first excretion probability calculation unit regenerates the first excretion prediction model based on the excretion time stored in the excretion time storage unit, and the second excretion probability calculation unit stores in the excretion time storage unit. Based on the excretion time generated, excretion presence / absence data representing the presence / absence of excretion is generated for each of the plurality of second sub time periods, and the generated excretion presence / absence data is Supervised generates learning data by adding to each data corresponding to each of the plurality of bands second sub time regenerates by relearning the second excretion prediction model by using supervised learning data to said generating. Preferably, in the above-described monitored person monitoring apparatus, an intake water reception unit that receives an input of an intake water amount associated with an intake time, and an intake water that is received by the intake water reception unit and that is associated with an intake time An intake water storage unit that stores the amount in association with the monitored person, and the learning data is generated by dividing the predetermined time period by a predetermined second time length. Data is provided for each time zone, and the second excretion probability calculation unit adds the second sub-time zone data corresponding to the intake time stored in the intake water storage unit in the learning data to the intake time. The second excretion prediction model is generated by learning by adding the associated intake water amount and using the added learning data. Preferably, in the above-described monitored person monitoring device, a meal amount receiving unit that receives an input of a meal amount associated with a meal time, and a meal amount associated with the meal time received by the meal amount reception unit A meal amount storage unit that stores the data in association with the monitored person Ob, and the learning data includes a plurality of second sub-times generated by dividing the predetermined time period by a predetermined second time length. Data is provided for each band, and the second excretion probability calculation unit corresponds to the meal time in the second sub-time data corresponding to the meal time stored in the meal amount storage unit in the learning data. The added excretion amount is added and the second excretion prediction model is generated by learning by using the added learning data. Preferably, in the above-described monitored person monitoring apparatus, an intake water reception unit that receives an input of an intake water amount associated with intake time, and a meal amount reception unit that receives an input of a meal amount associated with meal time The intake water storage unit that is received by the intake water reception unit and that stores the intake water amount associated with the intake time in association with the monitored person Ob, and the meal time that is received by the meal amount reception unit A meal amount storage unit that stores the associated meal amount in association with the monitored person Ob, and the learning data is generated by dividing the predetermined time period by a predetermined second time length. Each of the plurality of second sub-periods includes data, and the second excretion probability calculating unit includes a second sub-corresponding to the intake time stored in the intake water storage unit in the learning data. The intake water amount associated with the intake time is added to the data of the interval, and the meal is added to the data of the second sub time zone corresponding to the meal time stored in the meal amount storage unit in the learning data. The second excretion prediction model is generated by learning by adding a meal amount associated with time and using the added learning data.
 このような被監視者監視装置は、被監視者の第1排泄確率を求め、前記被監視者の第2排泄確率を求め、これら第1および第2排泄確率に基づいて前記被監視者の最終的な排泄確率を求めて外部へ通知する。したがって、監視者は、被監視者の最終的な排泄確率を参照することで、排泄を予測できるから、上記被監視者監視装置は、事前の駆け付けを支援できる。上記被監視者監視装置は、最終的な排泄確率を、2通りの手法で求めた第1および第2排泄確率に基づいて求めるので、より精度の良い排泄確率を求めることができる。 Such a monitored person monitoring device obtains the first excretion probability of the monitored person, obtains the second excretion probability of the monitored person, and based on the first and second excretion probabilities, the final of the monitored person. To determine the probability of excretion and notify the outside. Therefore, since the monitor can predict the excretion by referring to the final excretion probability of the monitored person, the monitored person monitoring apparatus can support advance rushing. Since the monitored person monitoring device obtains the final excretion probability based on the first and second excretion probabilities obtained by two methods, the excretion probability with higher accuracy can be obtained.
 他の一態様では、上述の被監視者監視装置において、前記最終排泄確率演算部で求められた最終的な排泄確率が所定の閾値を超えたか否かを判定する判定部と、前記通知処理部は、前記判定部によって、前記最終排泄確率演算部で求められた最終的な排泄確率が所定の閾値を超えたと判定された場合に、その旨を外部へ所定の通知を行う。 In another aspect, in the above-described monitored person monitoring apparatus, a determination unit that determines whether or not a final excretion probability obtained by the final excretion probability calculation unit exceeds a predetermined threshold, and the notification processing unit When it is determined by the determination unit that the final excretion probability obtained by the final excretion probability calculation unit has exceeded a predetermined threshold, a predetermined notification is given to the outside.
 このような被監視者監視装置は、最終的な排泄確率が、予め設定された所定の閾値を超えた場合、外部へ所定の通知を行う。このため、この通知を参照することで、監視者は、被監視者の排泄が近いことを認識できる。 Such a monitored person monitoring device makes a predetermined notification to the outside when the final excretion probability exceeds a predetermined threshold value set in advance. Therefore, by referring to this notification, the monitor can recognize that the monitored person is nearing excretion.
 他の一態様では、これら上述の被監視者監視装置において、前記排泄事象検知部は、前記被監視者が寝具から離れた離床を前記事象として検知する離床検知部を備える。 In another aspect, in the above-described monitored person monitoring apparatus, the excretion event detecting unit includes a bed leaving detection unit that detects the bed leaving the bed person as the event.
 このような被監視者監視装置は、離床を前記事象とみなすことで前記事象を簡易に検知できる。 Such a monitored person monitoring apparatus can easily detect the event by regarding the bed leaving as the event.
 他の一態様では、これら上述の被監視者監視装置において、前記離床検知部は、撮像して画像を生成する撮像部と、前記撮像部で生成された画像に基づいて前記離床を検知する検知部とを備える。 In another aspect, in the above-described monitored person monitoring apparatus, the bed leaving detection unit is configured to pick up an image to generate an image, and to detect the bed leaving based on the image generated by the image pickup unit. A part.
 このような被監視者監視装置は、画像から離床を検知するので、被監視者に非接触で被監視者の離床、ひいては前記事象を検知できる。 Since such a monitored person monitoring apparatus detects a bed leaving from an image, it is possible to detect the floor of the monitored person and thus the event without contact with the monitored person.
 他の一態様では、これら上述の被監視者監視装置において、前記生体信号測定部は、ドップラセンサを備える。 In another aspect, in the above-described monitored person monitoring device, the biological signal measurement unit includes a Doppler sensor.
 このような被監視者監視装置は、被監視者の生体信号をドップラセンサで測定するので、被監視者に非接触でその生体信号を測定できる。 Since such a monitored person monitoring apparatus measures a biological signal of the monitored person with a Doppler sensor, the biological signal can be measured without contact with the monitored person.
 他の一態様では、これら上述の被監視者監視装置において、排泄時刻から時間が経過するに従って排泄確率が高くなる第3排泄予測モデルから第3排泄確率を求める第3排泄確率演算部をさらに備え、前記最終排泄確率演算部は、第1ないし第3排泄確率演算部それぞれで求められた第1ないし第3排泄確率それぞれに基づいて前記最終的な排泄確率を求める。 In another aspect, the above-described monitored person monitoring apparatus further includes a third excretion probability calculation unit that obtains a third excretion probability from a third excretion prediction model in which the excretion probability increases as time elapses from the excretion time. The final excretion probability calculating unit obtains the final excretion probability based on the first to third excretion probabilities obtained by the first to third excretion probability calculating units, respectively.
 このような被監視者監視装置は、最終的な排泄確率を、第1および第2排泄確率に加えてさらに第3排泄確率に基づいて求めるので、さらにより精度の良い最終的な排泄確率を求めることができる。 Such a monitored person monitoring apparatus obtains the final excretion probability based on the third excretion probability in addition to the first and second excretion probabilities, and thus obtains a more accurate final excretion probability. be able to.
 他の一態様にかかる被監視者監視方法は、監視対象である被監視者の排泄に関わる所定の事象を検知する排泄事象検知工程と、前記被監視者における時系列な所定の生体信号を測定する生体信号測定工程と、前記排泄事象検知工程の検知結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第1排泄確率として求める第1排泄確率演算工程と、前記生体信号測定部の測定結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第2排泄確率として求める第2排泄確率演算工程と、前記第1および第2排泄確率演算工程で求められた第1および第2排泄確率に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求める最終排泄確率演算工程と、前記最終排泄確率演算工程で求めた最終的な排泄確率を外部へ通知する通知処理工程とを備える。 According to another aspect of the monitored person monitoring method, an excretion event detecting step of detecting a predetermined event related to excretion of a monitored person who is a monitoring target, and measuring a time-series predetermined biological signal in the monitored person A first excretion probability calculating step of obtaining a probability per unit time as a first excretion probability that the monitored person excretes based on the detection result of the excretion event detection step; A second excretion probability calculation step of obtaining a probability per unit time that the monitored person excretes as a second excretion probability based on a measurement result of the biological signal measurement unit; and the first and second excretion probability calculations A final excretion probability calculating step for determining a final excretion probability as a final excretion probability that the monitored person excretes based on the first and second excretion probabilities determined in the process; and the final excretion And a notification step of notifying the final excretion probability calculated at a rate calculation step to the outside.
 このような被監視者監視方法は、被監視者の第1排泄確率を求め、前記被監視者の第22排泄確率を求め、これら第1および第2排泄確率に基づいて前記被監視者の最終的な排泄確率を求めて外部へ通知する。したがって、監視者は、被監視者の最終的な排泄確率を参照することで、排泄を予測できるから、上記被監視者監視方法は、事前の駆け付けを支援できる。上記被監視者監視方法は、最終的な排泄確率を、2通りの手法で求めた第1および第2排泄確率に基づいて求めるので、より精度の良い排泄確率を求めることができる。 Such a monitored person monitoring method obtains the first excretion probability of the monitored person, obtains the 22nd excretion probability of the monitored person, and based on the first and second excretion probabilities, the final of the monitored person is obtained. To determine the probability of excretion and notify the outside. Therefore, since the monitor can predict the excretion by referring to the final excretion probability of the monitored person, the monitored person monitoring method can support advance rushing. The monitored person monitoring method obtains the final excretion probability based on the first and second excretion probabilities obtained by two methods, so that the excretion probability with higher accuracy can be obtained.
 他の一態様にかかる被監視者監視システムは、端末装置と、前記端末装置と通信可能に接続され、監視対象である被監視者を監視する被監視者監視装置とを備える被監視者監視システムであって、前記被監視者監視装置は、これら上述のいずれかの被監視者監視装置である。 A monitored person monitoring system according to another aspect includes a terminal device and a monitored person monitoring device that is communicably connected to the terminal device and monitors a monitored person that is a monitoring target. The monitored person monitoring device is any one of the above-described monitored person monitoring devices.
 このような被監視者監視システムは、これら上述のいずれかの被監視者監視装置を用いるので、排泄確率を予測して監視者に通知することで事前の駆け付けを支援できる。 Since such a monitored person monitoring system uses any of the above-described monitored person monitoring devices, it is possible to support advance rushing by predicting the excretion probability and notifying the monitoring person.
 この出願は、2016年4月19日に出願された日本国特許出願特願2016-83279を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2016-83279 filed on April 19, 2016, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、被監視者監視装置、被監視者監視方法およびに被監視者監視システムが提供できる。
 
According to the present invention, a monitored person monitoring apparatus, a monitored person monitoring method, and a monitored person monitoring system can be provided.

Claims (8)

  1.  監視対象である被監視者の排泄に関わる所定の事象を検知する排泄事象検知部と、
     前記被監視者における時系列な所定の生体信号を測定する生体信号測定部と、
     前記排泄事象検知部の検知結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第1排泄確率として求める第1排泄確率演算部と、
     前記生体信号測定部の測定結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第2排泄確率として求める第2排泄確率演算部と、
     前記第1および第2排泄確率演算部で求められた第1および第2排泄確率に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求める最終排泄確率演算部と、
     前記最終排泄確率演算部で求めた最終的な排泄確率を外部へ通知する通知処理部とを備える、
     被監視者監視装置。
    An excretion event detection unit for detecting a predetermined event related to excretion of a monitored person to be monitored;
    A biological signal measuring unit for measuring a predetermined biological signal in time series in the monitored person;
    A first excretion probability calculation unit that obtains, as a first excretion probability, a probability per unit time that the monitored person excretes based on a detection result of the excretion event detection unit;
    A second excretion probability calculating unit that obtains, as a second excretion probability, a probability per unit time that the monitored person excretes based on the measurement result of the biological signal measuring unit;
    Based on the first and second excretion probabilities obtained by the first and second excretion probability calculating units, final excretion is obtained by determining a probability per unit time that the monitored person excretes as a final excretion probability. A probability calculator,
    A notification processing unit for notifying the final excretion probability determined by the final excretion probability calculating unit to the outside,
    Monitored person monitoring device.
  2.  前記最終排泄確率演算部で求められた最終的な排泄確率が所定の閾値を超えたか否かを判定する判定部をさらに備え、
     前記通知処理部は、前記判定部によって、前記最終排泄確率演算部で求められた最終的な排泄確率が所定の閾値を超えたと判定された場合に、その旨を外部へ所定の通知を行う、
     請求項1に記載の被監視者監視装置。
    A determination unit for determining whether or not the final excretion probability obtained by the final excretion probability calculation unit exceeds a predetermined threshold;
    The notification processing unit, when it is determined by the determination unit that the final excretion probability calculated by the final excretion probability calculation unit exceeds a predetermined threshold, to give a predetermined notification to the outside,
    The monitored person monitoring apparatus according to claim 1.
  3.  前記排泄事象検知部は、前記被監視者が寝具から離れた離床を前記事象として検知する離床検知部を備える、
     請求項1または請求項2に記載の被監視者監視装置。
    The excretion event detection unit includes a bed leaving detection unit that detects the bed leaving the bedding from the bedding as the event.
    The monitored person monitoring apparatus according to claim 1 or 2.
  4.  前記離床検知部は、撮像して画像を生成する撮像部と、前記撮像部で生成された画像に基づいて前記離床を検知する検知部とを備える、
     請求項3に記載の被監視者監視装置。
    The bed leaving detection unit includes an image pickup unit that picks up an image and generates an image, and a detection unit that detects the bed removal based on the image generated by the image pickup unit.
    The monitored person monitoring apparatus according to claim 3.
  5.  前記生体信号測定部は、ドップラセンサを備える、
     請求項1ないし請求項3のいずれか1項に記載の被監視者監視装置。
    The biological signal measurement unit includes a Doppler sensor,
    The monitored person monitoring apparatus according to any one of claims 1 to 3.
  6.  排泄時刻から時間が経過するに従って排泄確率が高くなる第3排泄予測モデルから第3排泄確率を求める第3排泄確率演算部をさらに備え、
     前記最終排泄確率演算部は、第1ないし第3排泄確率演算部それぞれで求められた第1ないし第3排泄確率それぞれに基づいて前記最終的な排泄確率を求める、
     請求項1ないし請求項5のいずれか1項に記載の被監視者監視装置。
    A third excretion probability calculating unit for obtaining a third excretion probability from a third excretion prediction model in which the excretion probability increases as time elapses from the excretion time;
    The final excretion probability calculating unit obtains the final excretion probability based on the first to third excretion probabilities obtained by the first to third excretion probability calculating units,
    The monitored person monitoring apparatus according to any one of claims 1 to 5.
  7.  監視対象である被監視者の排泄に関わる所定の事象を検知する排泄事象検知工程と、
     前記被監視者における時系列な所定の生体信号を測定する生体信号測定工程と、
     前記排泄事象検知工程の検知結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第1排泄確率として求める第1排泄確率演算工程と、
     前記生体信号測定部の測定結果に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を第2排泄確率として求める第2排泄確率演算工程と、
     前記第1および第2排泄確率演算工程で求められた第1および第2排泄確率に基づいて、前記被監視者が排泄する、所定の単位時間当たりの確率を最終的な排泄確率として求める最終排泄確率演算工程と、
     前記最終排泄確率演算工程で求めた最終的な排泄確率を外部へ通知する通知処理工程とを備える、
     被監視者監視方法。
    An excretion event detection step for detecting a predetermined event related to excretion of the monitored person to be monitored;
    A biological signal measuring step of measuring a predetermined biological signal in time series in the monitored person;
    A first excretion probability calculating step of obtaining a probability per unit time as a first excretion probability that the monitored person excretes based on a detection result of the excretion event detection step;
    A second excretion probability calculating step of obtaining, as a second excretion probability, a probability per unit time that the monitored person excretes based on the measurement result of the biological signal measurement unit;
    Based on the first and second excretion probabilities obtained in the first and second excretion probability calculation steps, final excretion is obtained as a final excretion probability that the monitored person excretes the predetermined unit time. A probability calculation process;
    A notification processing step of notifying the final excretion probability determined in the final excretion probability calculation step to the outside,
    Monitored person monitoring method.
  8.  端末装置と、前記端末装置と通信可能に接続され、監視対象である被監視者を監視する被監視者監視装置とを備える被監視者監視システムであって、
     前記被監視者監視装置は、請求項1ないし請求項6のいずれか1項に記載の被監視者監視装置である、
     被監視者監視システム。
     
    A monitored person monitoring system comprising a terminal device and a monitored person monitoring device connected to the terminal device so as to be communicable and monitoring a monitored person to be monitored,
    The monitored person monitoring apparatus is the monitored person monitoring apparatus according to any one of claims 1 to 6.
    Monitored person monitoring system.
PCT/JP2017/014919 2016-04-19 2017-04-12 Subject monitoring device and method, and subject monitoring system WO2017183527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513125A JP7151480B2 (en) 2016-04-19 2017-04-12 Monitored Person Monitoring Apparatus, Method and Monitored Person Monitoring System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016083279 2016-04-19
JP2016-083279 2016-04-19

Publications (1)

Publication Number Publication Date
WO2017183527A1 true WO2017183527A1 (en) 2017-10-26

Family

ID=60116727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014919 WO2017183527A1 (en) 2016-04-19 2017-04-12 Subject monitoring device and method, and subject monitoring system

Country Status (2)

Country Link
JP (1) JP7151480B2 (en)
WO (1) WO2017183527A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062340A (en) * 2018-10-19 2020-04-23 キヤノンメディカルシステムズ株式会社 Image processing apparatus and program
JP2021149329A (en) * 2020-03-17 2021-09-27 株式会社リコー Excretion management system, excretion management method, and program
WO2021241406A1 (en) * 2020-05-27 2021-12-02 ミネベアミツミ株式会社 Body-condition-monitoring system and bed system
JP2022172606A (en) * 2021-05-06 2022-11-17 花王株式会社 Information processing system
JP2022184781A (en) * 2021-05-31 2022-12-13 積水化学工業株式会社 Excretion detection system, excretion detection method, detection device, excretion detection device, and excretion detection program
JP2023178322A (en) * 2018-03-30 2023-12-14 コニカミノルタ株式会社 Fall detection device, method thereof, and monitored person monitoring support system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023105703A (en) * 2022-01-19 2023-07-31 株式会社リコー Excretion management system, excretion management method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153820A (en) * 2012-01-27 2013-08-15 Sleep System Kenkyusho:Kk Device and method for predicting excretion
JP2014223060A (en) * 2013-04-16 2014-12-04 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Excrement detection system, excrement detection method, and excrement detection program
JP2014230679A (en) * 2013-05-30 2014-12-11 富士通株式会社 Detection method, detection device, and detection program
JP2016043273A (en) * 2014-08-26 2016-04-04 大塚メディカルデバイス株式会社 Ultrasonic urine volume measuring device and ultrasonic probe positioning method in ultrasonic urine volume measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153820A (en) * 2012-01-27 2013-08-15 Sleep System Kenkyusho:Kk Device and method for predicting excretion
JP2014223060A (en) * 2013-04-16 2014-12-04 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Excrement detection system, excrement detection method, and excrement detection program
JP2014230679A (en) * 2013-05-30 2014-12-11 富士通株式会社 Detection method, detection device, and detection program
JP2016043273A (en) * 2014-08-26 2016-04-04 大塚メディカルデバイス株式会社 Ultrasonic urine volume measuring device and ultrasonic probe positioning method in ultrasonic urine volume measuring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023178322A (en) * 2018-03-30 2023-12-14 コニカミノルタ株式会社 Fall detection device, method thereof, and monitored person monitoring support system
JP2020062340A (en) * 2018-10-19 2020-04-23 キヤノンメディカルシステムズ株式会社 Image processing apparatus and program
JP7325942B2 (en) 2018-10-19 2023-08-15 キヤノンメディカルシステムズ株式会社 Image processing device and program
JP2021149329A (en) * 2020-03-17 2021-09-27 株式会社リコー Excretion management system, excretion management method, and program
JP7501017B2 (en) 2020-03-17 2024-06-18 株式会社リコー Excretion management system, excretion management method and program
WO2021241406A1 (en) * 2020-05-27 2021-12-02 ミネベアミツミ株式会社 Body-condition-monitoring system and bed system
JP2021186063A (en) * 2020-05-27 2021-12-13 ミネベアミツミ株式会社 Body state monitoring system and bed system
JP2022172606A (en) * 2021-05-06 2022-11-17 花王株式会社 Information processing system
JP2022184781A (en) * 2021-05-31 2022-12-13 積水化学工業株式会社 Excretion detection system, excretion detection method, detection device, excretion detection device, and excretion detection program

Also Published As

Publication number Publication date
JPWO2017183527A1 (en) 2019-02-21
JP7151480B2 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2017183527A1 (en) Subject monitoring device and method, and subject monitoring system
JP6852733B2 (en) Living body monitoring device and living body monitoring method
JP6806145B2 (en) Monitored person monitoring system and monitored person monitoring method
JP7363780B2 (en) Report output program, report output method, and report output device
WO2017221752A1 (en) Central processing device for monitored-person monitoring system, central processing method, and monitored-person monitoring system
JP7415434B2 (en) Information sharing device, information sharing system, and information sharing program
JP6142975B1 (en) Monitored person monitoring apparatus and method, and monitored person monitoring system
WO2018003752A1 (en) Breathing abnormality detection device and breathing abnormality detection method
JP2017117423A (en) Watching system and watching method
WO2017212995A1 (en) Device, method, and system for monitoring monitored person
JP2024079830A (en) CONTROL PROGRAM, INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING SYSTEM, AND CONTROL METHOD
WO2020003715A1 (en) Report output program, report output method, and report output device
WO2020003953A1 (en) Program executed by computer, information processing device, and method executed by computer
JP2017148504A (en) Device for monitoring person to be monitored, method and system thereof
JP6908028B2 (en) Observer monitoring device, method, system and program
Jähne-Raden et al. Wireless sensor network for fall prevention on geriatric wards: A report
WO2017104321A1 (en) Monitoring system and monitoring method
JP7147787B2 (en) Monitored Person Monitoring Support Device, Monitored Person Monitoring Support Method, and Monitored Person Monitoring Support Program
JP2021196889A (en) Care information processing program, care information processing device, and care information processing system
JPWO2019244647A1 (en) Programs that run on your computer, information processing equipment, and how they run on your computer
JPWO2020003952A1 (en) Programs that run on your computer, information processing equipment, and how they run on your computer
JP7338268B2 (en) Monitoring system and monitoring method
JP7409305B2 (en) Report output program, report output method, and report output device
JP2024024210A (en) Information processing system, information processing method, and information processing program
JP2022190750A (en) Information processing apparatus, information processing system, information processing program, and control method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513125

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785866

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785866

Country of ref document: EP

Kind code of ref document: A1