WO2017077610A1 - 構造解析方法、及び構造解析プログラム - Google Patents
構造解析方法、及び構造解析プログラム Download PDFInfo
- Publication number
- WO2017077610A1 WO2017077610A1 PCT/JP2015/081099 JP2015081099W WO2017077610A1 WO 2017077610 A1 WO2017077610 A1 WO 2017077610A1 JP 2015081099 W JP2015081099 W JP 2015081099W WO 2017077610 A1 WO2017077610 A1 WO 2017077610A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- model
- analysis
- mass
- structural analysis
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
Definitions
- the present invention relates to a structure analysis method and a structure analysis program.
- a technique for performing structural analysis using a finite element method is known.
- structural analysis using the finite element method for example, displacement and stress of a structure are obtained by solving simultaneous linear equations.
- a direct method or an iterative method can be given as a large classification.
- the direct method is a solution method that directly obtains a solution by triangulating a coefficient matrix
- the iterative method is a solution method that obtains an approximate solution by iterative calculation.
- Non-Patent Document 1 introduces an algorithm of a direct method suitable for a sparse matrix.
- Non-Patent Document 2 introduces an iterative algorithm suitable for parallel processing and a calculation example thereof.
- an object of the present invention is to provide a structure analysis method and a structure analysis program that can shorten analysis time.
- model information is acquired, based on the acquired model information, the mass of the model to be analyzed is evaluated, and on the basis of the evaluation result of the model, the model
- a structural analysis method and a structural analysis program for selecting whether to use a direct method or an iterative method as an algorithm for solving simultaneous linear equations of a structural analysis solver using a finite element method are proposed.
- analysis time can be shortened.
- FIG. 1 is an explanatory diagram showing an example of the operation of the structural analysis apparatus according to the present invention.
- FIG. 2 is an explanatory diagram showing elements and nodes used in the structural analysis of the finite element method.
- FIG. 3 is a block diagram illustrating a hardware configuration example of the structural analysis apparatus.
- FIG. 4 is a block diagram illustrating a functional configuration example of the structural analysis apparatus.
- FIG. 5 is an explanatory diagram showing an example of model information.
- FIG. 6 is an explanatory diagram illustrating a model example used for deriving a threshold value.
- FIG. 7 is an explanatory diagram showing an example of deriving a threshold value when the number of elements is 5000.
- FIG. 8 is an explanatory diagram illustrating an example of deriving a threshold value when the number of elements is 10,000.
- FIG. 9 is an explanatory diagram illustrating an example of a threshold corresponding to the model scale.
- FIG. 10 is an explanatory diagram illustrating an example of calculating the degree of mass and an example of selecting a solution.
- FIG. 11 is an explanatory diagram illustrating an example of derivation of the threshold value of the degree of chunk when the constraint condition is cantilever.
- FIG. 12 is an explanatory diagram illustrating an example of derivation of the threshold value of the chunkiness when the constraint condition is fixed at both ends.
- FIG. 13 is an explanatory diagram illustrating an example of selection of a correction method and a solution method for the threshold value of the chunkiness based on the strength of the constraint condition.
- FIG. 14 is an explanatory diagram illustrating an example of selecting a solution.
- FIG. 15 is a flowchart showing a structural analysis processing procedure example 1 by the structural analysis apparatus.
- FIG. 16 is a flowchart showing a structural analysis processing procedure example 2 by the structural analysis apparatus.
- FIG. 17 is an explanatory diagram illustrating a system application example.
- FIG. 18 is an explanatory diagram illustrating an example of an analysis database.
- FIG. 19 is an explanatory diagram illustrating a selection example of a solution based on the results in the system.
- FIG. 20 is an explanatory diagram of an example of managing the server state and the memory amount.
- FIG. 21 is a flowchart (part 1) illustrating an example of a structure analysis processing procedure by the system.
- FIG. 22 is a flowchart (part 2) illustrating an example of the structure analysis processing procedure by the system.
- FIG. 1 is an explanatory diagram showing an example of the operation of the structural analysis apparatus according to the present invention.
- the structural analysis apparatus 100 is a computer that performs structural analysis using a finite element method for an FEM (Finite Element Method) model to be analyzed.
- the finite element method is a numerical analysis method for approximately solving a differential equation.
- displacement is evaluated as a stiffness index
- stress is evaluated as a strength index, and the like.
- the FEM model to be analyzed is hereinafter also simply referred to as a model, an analysis target model, and the like.
- a region where an equation is defined is divided into small regions, and an equation in each small region is approximated by a common interpolation function.
- the small area is referred to as an element 102.
- a node 103 is arranged at each vertex.
- a region where an equation is defined is a structure to be analyzed.
- the analysis target model is a state in which structural analysis by FEM is made possible by approximating a structure to be analyzed, and is placed in a simulation space.
- the simulation space is a space set to represent on the computer an analysis region including the inside of the physical structure to be analyzed and the space outside the structure.
- the structure to be analyzed is divided into a plurality of elements 102 and the entire shape is represented as a collection of elements 102.
- a collection of elements 102 is also referred to as a mesh.
- the size of one lattice in the mesh is also referred to as mesh size.
- the shape of one element 102 is a tetrahedron, a triangle, etc. in the case of two dimensions, and a tetrahedron, a pentahedron, a hexahedron, etc. in the case of three dimensions.
- a tetrahedral secondary element is taken as an example of the element 102, but an example of the shape of the element 102 and the relationship between the element 102 and the node 103 will be described in detail with reference to FIG. 2.
- the developer creates, for example, three-dimensional model information of a three-dimensional solid model in which a structure is represented by polygons using CAD (Computer Aided Design).
- the three-dimensional model information includes polygon coordinate data, for example.
- CAE Computer Aided Engineering
- the CAE has three pieces of software called a preprocessor, a solver, and a postprocessor, for example.
- the CAE preprocessor can create model information representing an FEM model by performing mesh division and boundary condition definition.
- the CAE solver is a structural analysis solver that performs numerical analysis on the FEM model represented by the model information 111.
- the CAE post processor visualizes the analysis results obtained by the CAE solver.
- the force balance equation is a simultaneous linear equation.
- K is a stiffness matrix.
- u is a vector representing the displacement of each node 103 for each degree of freedom.
- u is an unknown vector obtained by analysis.
- f is a vector representing the load.
- f is a load value corresponding to the degree of freedom of each node 103 when the load condition is set.
- the direct method is, for example, a solution method that directly obtains a solution by triangulating a coefficient matrix.
- Examples of the direct method include a multifrontal method.
- the iterative method is a method for obtaining an approximate solution by iterative calculation.
- the iterative method includes, for example, a preprocessed CG method.
- the direct method generally requires more memory than the iterative method.
- the direct method has a characteristic of simultaneous linear equations, and if the non-zero region increases, more calculation amount and memory amount are required, and analysis time may be longer.
- the analysis time may be long when the analysis target model has a lump shape.
- the solution may not easily converge due to the characteristics of the simultaneous linear equations, and the analysis time may be long.
- the analysis time may be long when the shape of the analysis target model is a plate beam.
- the structural analysis apparatus 100 evaluates the mass of the analysis target model based on information representing the shape of the analysis target model as the characteristic of the simultaneous linear equations, and the simultaneous linear equations using the finite element method.
- the solution method is selected from a direct method and an iterative method. Thereby, it can be determined whether the shape of the analysis model is a shape close to a block or a plate beam. Therefore, a solution method corresponding to the characteristics of the simultaneous linear equations can be selected, and the analysis time can be shortened.
- the structural analysis apparatus 100 acquires model information 111.
- the model information 111 includes information representing the shape of the analysis target model 101, for example. A detailed example of the model information 111 will be described with reference to FIG.
- the structural analysis apparatus 100 evaluates the degree of mass of the analysis target model 101 based on the acquired model information 111.
- the degree of mass is an index value indicating whether the shape of the analysis target model formed by the element group included in the analysis target model is a thick gathered shape.
- the higher the degree of mass the higher the possibility that the shape of the analysis target model formed by the element group included in the analysis target model is a thick and gathered shape.
- the lower the degree of mass the higher the possibility that the shape of the analysis target model formed by the element group included in the analysis target model is a thin and flat shape.
- the degree of mass is an index value as to whether the shape of the structure formed by the material or member included in the structure represented by the model is thick and gathered.
- the higher the degree of mass the higher the possibility that the shape of the structure formed by the materials and members included in the structure is thicker and more concentrated.
- the lower the degree of mass the higher the possibility that the shape of the structure formed by the materials and members contained in the structure will be thin and flat or thin.
- a model or a structure in which the element group, material, or member is thin, flat, or thin is also referred to as a plate beam.
- a model or structure having a shape in which element groups, materials, or members are gathered together is also referred to as a lump.
- the mass of the analysis target model 101 may be evaluated based on the volume of the analysis target model 101, for example.
- the degree of mass of the analysis target model 101 may be evaluated based on information on the volume of the analysis target model 101 and the weight of the analysis target model 101, for example.
- the degree of mass of the analysis target model 101 may be evaluated based on the elements 102 and the nodes 103 included in the analysis target model 101, for example. Specifically, the degree of mass of the analysis target model 101 is evaluated by determination methods 1 to 5 described later.
- the structural analysis apparatus 100 uses an algorithm for solving the linear equations of the structural analysis solver using the finite element method of the analysis target model 101 as, for example, a direct method. Select whether to use iterative method. For example, the structural analysis apparatus 100 selects an iterative method when the degree of mass is equal to or greater than a threshold value, and selects the direct method when the degree of mass is less than the threshold value. Thereby, it is possible to select an iterative method as the mass is larger. In the example of FIG. 1, since the degree of mass am is less than the threshold value ath, the structural analysis apparatus 100 selects the direct method.
- the analysis target model 101 is a plate beam
- the solution does not converge in the iterative method, and analysis takes time. For this reason, the analysis time can be shortened by selecting the direct method when the mass is small.
- the analysis target model 101 is a mass
- the non-zero regions of the coefficient matrix and the triangular matrix increase in the direct method, and it takes time for the analysis. For this reason, analysis time can be shortened by selecting an iterative method when the mass is large. In this way, by determining the characteristics of the shape of the analysis target model 101 based on the degree of mass, it is possible to determine the characteristics of the simultaneous linear equations and shorten the analysis time.
- FIG. 2 is an explanatory diagram showing elements and nodes used for structural analysis of the finite element method.
- the structure is, for example, a continuous body.
- the CAE preprocessor creates an FEM model by approximating a three-dimensional model of a structure created in a three-dimensional simulation space.
- the element types include a three-dimensional solid element, a two-dimensional shell element, a one-dimensional beam element and a truss element, and a zero-dimensional mass element.
- Solid element shapes include hexahedron, pentahedron, and tetrahedron.
- the shape of the shell element includes a quadrangle and a triangle.
- the shape of the beam element or truss element is a line.
- the shape of the mass element is a point.
- the element shape is a tetrahedron
- there are a plurality of node defining methods such as a primary element and a secondary element.
- the nodes included in the element are the vertices of the tetrahedron.
- the nodes are the vertices of the tetrahedron and the center point of the line connecting the vertices.
- the number of nodes constituting an element differs depending on the element shape and the node definition method.
- description will be made using a tetrahedral secondary element as an element type.
- the solid element is also referred to as a solid element.
- the shell element is also referred to as a plate element, for example.
- the beam element is also referred to as a beam element.
- the number of degrees of freedom of analysis of constituent nodes described later differs.
- FIG. 3 is a block diagram illustrating a hardware configuration example of the structural analysis apparatus.
- the structural analysis apparatus 100 includes a CPU (Central Processing Unit) 301, a ROM (Read Only Memory) 302, a RAM (Random Access Memory) 303, a disk drive 304, and a disk 305.
- the structural analysis apparatus 100 includes an I / F (Interface) 306, a keyboard 307, a mouse 308, and a display 309.
- the CPU 301, ROM 302, RAM 303, disk drive 304, I / F 306, keyboard 307, mouse 308, and display 309 are connected by a bus 300.
- the CPU 301 controls the entire structure analysis apparatus 100.
- the ROM 302 stores programs such as a boot program.
- the RAM 303 is used as a work area for the CPU 301.
- the disk drive 304 controls reading / writing of data with respect to the disk 305 according to the control of the CPU 301.
- the disk 305 stores data written under the control of the disk drive 304. Examples of the disk 305 include a magnetic disk and an optical disk.
- the I / F 306 is connected to a network 310 such as a LAN (Local Area Network), a WAN (Wide Area Network), or the Internet through a communication line, and is connected to other devices via the network 310.
- the I / F 306 controls an internal interface with the network 310 and controls input / output of data from an external device.
- a modem or a LAN adapter can be used as the I / F 306.
- the keyboard 307 and the mouse 308 are interfaces for inputting various data by user operation.
- a display 309 is an interface that outputs data in accordance with an instruction from the CPU 301.
- the structural analysis apparatus 100 may be provided with an input device that captures images and moving images from a camera and an input device that captures audio from a microphone. Although not shown, the structure analysis apparatus 100 may be provided with an output device such as a printer.
- FIG. 4 is a block diagram illustrating a functional configuration example of the structural analysis apparatus.
- the structural analysis apparatus 100 includes an acquisition unit 401, a first evaluation unit 402, a second evaluation unit 403, a third evaluation unit 404, a selection unit 405, and a correction unit 406.
- the processing of the control unit from the acquisition unit 401 to the correction unit 406 is coded in a program stored in a storage device such as a ROM 302, a RAM 303, or a disk 305 that can be accessed by the CPU 301 shown in FIG.
- the CPU 301 reads the program from the storage device and executes the process coded in the program. Thereby, the process of a control part is implement
- the processing result of the control unit is stored in a storage device such as the RAM 303, the ROM 302, and the disk 305, for example.
- the acquisition unit 401 acquires the model information 111.
- the model information 111 is information representing a model to be analyzed.
- the model information 111 includes information representing the shape of the model, for example.
- Information representing the shape of the model includes element information of elements included in the model, nodes included in the elements, position information of the nodes, and the like.
- Information representing the shape of the model may be information such as volume and surface area, for example.
- the acquired model information 111 may include information indicating the material of the model, for example.
- the acquired model information 111 may include, for example, information on boundary conditions set in the model at the time of analysis.
- FIG. 5 is an explanatory diagram showing an example of model information.
- 5 (1) to 5 (3) show, as model information 111, element information of elements included in the model, nodes included in the elements, position information of the nodes, and the like.
- FIG. 5 (4) shows information representing the shape of the model, information representing the material of the model, information representing boundary conditions set in the model at the time of analysis, and the like as the model information 111.
- the boundary condition is a condition set at the boundary to represent the load state of the structure.
- boundary conditions There are two types of boundary conditions, for example, constraint conditions and load conditions.
- the constraint condition is a condition such as which part is fixed how and how much forced displacement is given to the structure to be analyzed.
- the load condition is a condition such as how much force is applied to which part in which direction.
- the model information 111 has a model ID field and an element ID field. Identification information for identifying a model is set in the model ID field. In the element ID field, identification information for identifying an element included in the model to be analyzed is set. In the example of FIG. 5 (1), the model ma has elements en1 to en3, for example.
- the model information 111 has fields of element ID and node ID. Identification information for identifying the element is set in the element ID field. Identification information for identifying the node included in the element is set in the node ID field.
- the element en1 has nodes nn1 to nn4.
- the model information 111 has a field of node ID and node position information. Identification information for identifying the node is set in the node ID field. In the node position information field, node position information is set.
- the node position information is, for example, the coordinate values of the x-axis, y-axis, and z-axis of the node.
- the structural analysis apparatus 100 can specify the shape of the model based on the model information 111 shown in FIGS. 5 (1) to (3). For example, the structural analysis apparatus 100 can calculate the volume and surface area of the model.
- the model information 111 includes model ID, volume, mass, main moment of inertia, number of nodes, element type, mesh size, number of elements, number of analysis degrees of freedom, minimum volume of sphere, It has fields such as surface area and boundary conditions.
- Identification information for identifying a model is set in the model ID field.
- the volume of the model is set in the volume field.
- the mass of the model is set in the mass field.
- the main inertia moment of the model is set in the main inertia moment field.
- the volume, mass and main moment of inertia are information determined from the material and shape of the model.
- degrees of freedom for example, the total number of degrees of freedom of each node included in the model is set.
- the final number of degrees of freedom of analysis cannot be determined without completing the assembly of simultaneous linear equations performed within the CAE solver. For this reason, as the number of degrees of freedom in analysis, for example, an approximate value based on the number of nodes ⁇ the number of degrees of freedom per node may be set.
- the element length of one representative element for mesh division is set.
- information on cross-sectional characteristics such as plate thickness and cross-sectional area may be set together.
- the number of nodes included in the model is set in the number of nodes field.
- the number of elements included in the model is set.
- a predicted value can be calculated based on the mesh size, the volume of the shape, and the element type.
- the number of nodes can be calculated as a predicted value based on the number of elements, the element type, and the degree of mass.
- the number of elements and the number of nodes can be specified based on the model information 111 when the model information 111 shown in FIGS. 5 (1) to (3) already exists.
- the minimum sphere volume covering the model is set.
- there is a field of the minimum sphere volume but the present invention is not limited to this.
- the volume of the sphere or the volume of the cube is used when calculating the degree of mass in the determination method 1 described later.
- the surface area of the model is set in the surface area field.
- the boundary condition field includes, for example, a constraint condition, a constraint area, and a load condition field.
- a constraint condition is set in the constraint condition field.
- the constraint condition include one-side end surface fixing, both-end fixing, and all-around fixing.
- the constraint area field an area that is constrained according to a constraint condition among the surface areas of the model is set.
- the number of degrees of freedom to be constrained for example, the number of degrees of freedom to be constrained among the degrees of freedom per node is set. For example, when there are three directions of freedom per node, the number of directions to be restricted among the three directions is the number of degrees of freedom of restriction.
- the load condition is set in the load condition field. Examples of the load condition include a gravity load in each direction.
- the first evaluation unit 402 shown in FIG. 4 evaluates the mass of the model to be analyzed based on the model information 111 acquired by the acquisition unit 401. Then, the selection unit 405 selects whether the algorithm for solving the linear equations of the structural analysis solver using the finite element method of the model is a direct method or an iterative method based on the evaluation result of the model bulkiness.
- determination method 1 to determination method 5 are given as examples of the evaluation of the chunkiness and the judgment based on the chunkiness.
- the first evaluation unit 402 calculates the degree of filling of the model to be analyzed for a certain space as the degree of mass. Specifically, the first evaluation unit 402 calculates, for example, a ratio between the volume of the model to be analyzed and the volume of the smallest specific type of solid that covers the model as the mass.
- the specific type of solid here is a solid that can be used for filling. Filling is space filling or ball filling. Examples of the solid that can be used for filling include a sphere, a cube, and a rhomboid dodecahedron. Here, a sphere is taken as an example.
- the first evaluation unit 402 calculates the ratio between the volume of the model and the volume of the smallest sphere that covers the model as the mass. For example, the first evaluation unit 402 calculates the mass based on the following formula (1).
- the solution can be selected, and the solution can be easily determined.
- the first evaluation unit 402 calculates an index as to whether or not the model to be analyzed is heavy as the mass. Specifically, the first evaluation unit 402 calculates the mass based on the main moment of inertia, the mass, and the volume of the model to be analyzed, for example, based on the moment of inertia. For example, the first evaluation unit 402 calculates the mass based on the following equation (2).
- this determination method 2 it is possible to select a solution even before the mesh division is performed by the CAE preprocessor, and it is possible to easily determine the solution.
- the first evaluation unit 402 calculates the ratio of the total number of elements and the total number of nodes of the analysis target model as the degree of mass. Specifically, the 1st evaluation part 402 calculates a mass by following Formula (3).
- the number of nodes of the entire model is smaller than the number of elements ⁇ the number of nodes per element.
- the analysis target model is a plate-beam model
- the number of nodes increases on the surface of the analysis target model, so that the possibility that the number of nodes is shared by a plurality of elements is reduced.
- the analysis target model is a mass, there is a high possibility that nodes will be shared internally. For this reason, the larger the value of “the total number of elements / the total number of nodes”, the higher the possibility of being a lump.
- the mass is high, the number of shared nodes is relatively large, the coefficient matrix of the simultaneous linear equations and the non-zero region of the triangular matrix increase, and the analysis time of the direct method becomes long. For this reason, analysis time can be shortened by selecting an iterative method when the mass is high. Also, if the iterative method is selected for a plate beam, convergence is slow and analysis time is long. When the mass is low, the analysis time can be shortened by selecting the direct method.
- the first evaluation unit 402 calculates an index value based on the number of degrees of freedom of analysis of the analysis target model as the degree of mass. Specifically, the first evaluation unit 402 calculates, for example, a ratio of the sum of the number of analysis degrees of freedom for each element in the entire model and the number of degrees of freedom of analysis of the entire model as the degree of bulk. For example, the first evaluation unit 402 calculates the degree of mass by the following equation (4).
- ⁇ lump total number of analysis degrees of freedom for each model / number of degrees of freedom of analysis of the entire model (4)
- the total sum of the number of degrees of freedom of analysis for each element in the model is the total value of the number of degrees of freedom of analysis per element. More specifically, the total sum of the number of degrees of freedom of analysis for each element in the entire model is the number of elements ⁇ the number of nodes per element ⁇ the number of degrees of freedom per node.
- the number of degrees of freedom of analysis of the entire model is the number of dimensions of the simultaneous linear equations, and when unknown, it can be calculated by the number of nodes of the entire model ⁇ the number of degrees of freedom per node ⁇ the number of degrees of freedom of constraint of the entire model.
- the number of elements is 5000, the number of nodes per element is 10, the number of nodes is 8000, and the number of degrees of freedom per node is 3.
- the total sum of the analysis degrees of freedom for each element in the entire model is 5000 ⁇ 10 ⁇ 3.
- the number of degrees of freedom of analysis of the entire model is 8000 ⁇ 3 if the number of degrees of freedom of constraint of the entire model is ignored.
- the degree of lump is 150,000 / 24000.
- the number of nodes in the entire model is less than the number of elements ⁇ the number of nodes per element. If the model to be analyzed is a lump, there is a high possibility that the nodes are shared by a plurality of elements. On the other hand, if the model to be analyzed is a plate beam, there is a high possibility that a node is on the surface, and the number of nodes shared by a plurality of elements is relatively smaller than that of a block. When the mass is high, the number of shared nodes is relatively large, the coefficient matrix of the simultaneous linear equations and the non-zero region of the triangular matrix increase, and the analysis time of the direct method becomes long.
- analysis time can be shortened by selecting an iterative method when the mass is high. Also, if the iterative method is selected for a plate beam, convergence is slow and analysis time is long. When the mass is low, the analysis time can be shortened by selecting the direct method.
- the degree of mass can be compared even between models with different element types. For this reason, even if the element types are different, the determination can be made with the same threshold value, and the solution can be easily selected.
- the first evaluation unit 402 calculates the degree of mass based on the number of nodes on the surface of the analysis target model. Specifically, the first evaluation unit 402 calculates, for example, the ratio of the number of nodes of the entire model and the number of nodes on the model surface as the degree of mass. Further, in the determination method 5, the first evaluation unit 402 may calculate the ratio between the number of nodes in the model and the number of nodes on the surface of the model as the mass. Further, in the determination method 5, the first evaluation unit 402 may calculate the ratio between the number of nodes in the model and the number of nodes in the entire model as the mass. The number of nodes inside the model is the number of nodes other than the nodes on the surface of the model. For example, the first evaluation unit 402 calculates the mass according to the following formula (5).
- the first evaluation unit 402 is a node in the model or a node on the surface. Can be identified.
- the shape type of the model is a lump, the number of nodes shared within the model increases, and therefore the number of nodes on the model surface relatively decreases. For this reason, according to the equation (5), if the number of nodes on the model surface is small with respect to the number of nodes of the entire model, the degree of mass increases and the possibility of being a mass increases. On the other hand, if the shape type of the model is a plate beam, the number of nodes shared within the model is reduced, and the number of nodes on the model surface is relatively increased. For this reason, if the number of nodes on the model surface is larger than the number of nodes in the entire model, the degree of mass decreases and the possibility of a plate beam increases.
- an analysis target model is created for the finite element method. Therefore, the number of elements and the number of nodes can be easily specified by referring to the model information 111, and according to the determination methods 3 to 5, the analysis method can be easily selected.
- the selection unit 405 selects whether the algorithm for solving the simultaneous linear equations of the structural analysis solver using the finite element method of the model is a direct method or an iterative method, based on the evaluation result of the model bulkiness. . For example, the selection unit 405 selects an iterative method as the degree of mass increases. Specifically, the selection unit 405 selects whether to use the direct method or the iterative method depending on whether the degree of mass is equal to or greater than a threshold value. For example, the selection unit 405 selects an iterative method if the degree of mass is equal to or greater than a threshold value, and selects the direct method if the degree of mass is less than the threshold value. Thereby, it becomes easy to select an iterative method, so that a mass is large.
- the threshold value is set in advance and stored in a storage device such as the ROM 302, the RAM 303, and the disk 305.
- the threshold setting method is described as being performed by the structural analysis apparatus 100.
- the present invention is not limited to this.
- an apparatus different from the structural analysis apparatus 100 determines the threshold and provides the structural analysis apparatus 100 with the threshold. May be.
- the structural analysis apparatus 100 calculates a mass for each of a plurality of models, for example.
- the structural analysis apparatus 100 performs numerical analysis by a direct method and an iterative method for each of a plurality of models.
- the structural analysis apparatus 100 obtains the degree of mass when the performance ratio of the analysis time by the direct method and the analysis time by the iterative method is 1, by linear interpolation, and sets it as a threshold value.
- FIG. 6 is an explanatory diagram showing an example model used for deriving a threshold value.
- the threshold value derivation will be described by taking the models m1 to m4 as examples.
- the dimension of the model m1 is, for example, 10 ⁇ 100 ⁇ 1000, and the shape type is a plate beam.
- the dimension of the model m2 is, for example, 50 ⁇ 100 ⁇ 1000, and the shape type is a plate beam.
- the size of the model m3 is, for example, 50 ⁇ 100 ⁇ 200, and the shape type is a lump.
- the dimension of the model m4 is, for example, 250 ⁇ 500 ⁇ 1000, and the shape type is a lump.
- each determination method is used for each of the case where the model m1 to the model m4 are mesh-divided so that the number of elements is about 5000 and the case where the model is divided so that the number of elements is about 10,000.
- An example in which a threshold value is set based on the lump degree and the analysis time is shown.
- FIG. 7 is an explanatory diagram showing an example of deriving a threshold value when the number of elements is 5000.
- (1) to (11) indicate numerical values used in the determination method, and (12) and (13) indicate analysis times.
- the structural analysis apparatus 100 uses the determination method 1 to obtain the degree of mass by the volume of the model / the volume of the smallest sphere covering the model.
- the volume of the model is shown in FIG. 7 (1), and the volume of the smallest sphere that covers the model is shown in FIG. 7 (6).
- the mass of the model m1 using the determination method 1 becomes “1.88E-03” by “1.00E + 06 / 5.32E + 08”.
- the structural analysis apparatus 100 uses the determination method 2, for example, “(main inertia moment Ix ⁇ main inertia moment Iy ⁇ main inertia moment Iz) / (mass ⁇ 3) / (model The volume is obtained by “volume ⁇ 2)”.
- the main inertia moment Ix is shown in FIG. 7 (3)
- the main inertia moment Iy is shown in FIG. 7 (4)
- the main inertia moment Iz is shown in FIG. 7 (5).
- the mass is shown in FIG.
- the mass of the model m1 using the determination method 2 is “1.69E ⁇ ” by “1 / ((6.54E + 05 ⁇ 6.61E + 05 ⁇ 6.61E + 03) /7.85 ⁇ 3/1.00E+06)”. 01 ".
- the structural analysis device 100 uses the determination method 3 to obtain the degree of mass by “the number of model elements / the number of nodes of the model”.
- the number of model elements is shown in (8), and the number of model nodes is shown in FIG. 7 (7).
- the mass of the model m1 using the determination method 3 becomes “5.36E-01” by “4660/8893”.
- the structural analysis apparatus 100 uses the determination method 4 to obtain the degree of mass by “the total number of degrees of freedom of analysis for each element / number of degrees of freedom of analysis”.
- the total number of analysis degrees of freedom for each element is shown in FIG.
- the number of degrees of freedom in analysis is shown in FIG.
- the mass of the model m1 using the determination method 4 becomes “5.39” by “(4660 ⁇ 3 ⁇ 10) / 25944”.
- the total number of analysis degrees of freedom for each element is the number of elements ⁇ the number of degrees of freedom per node ⁇ the number of nodes per element, and becomes “139800” by “4660 ⁇ 3 ⁇ 10”.
- the element type is a tetrahedral secondary element.
- the structure analysis apparatus 100 uses the determination method 5 to obtain the degree of mass by “the number of nodes of the entire model / the number of nodes on the model surface”.
- the number of nodes of the entire model is shown in FIG.
- the number of nodes on the model surface is shown in FIG.
- the mass of the model m1 using the determination method 5 becomes “1.84” by “8693/4730”.
- the models m2 to m4 are obtained using the determination methods 1 to 5.
- the structural analysis apparatus 100 obtains an analysis time by performing numerical analysis by a direct method and numerical analysis by an iterative method for each of the models m1 to m4, for example. Then, the structural analysis apparatus 100 obtains the ratio of the analysis time by the direct method and the analysis time by the iterative method as the performance ratio of the analysis method.
- the structural analysis apparatus 100 obtains the mass when the performance ratio is 1 by linearly interpolating the mass of the model m2 and the mass of the model m3. Then, the structural analysis device 100 sets the degree of mass when the performance ratio is 1 as the threshold value. For example, not only linear interpolation but also Lagrange interpolation, spline interpolation, or least square method may be used.
- the threshold value in each determination method can be obtained.
- the model m2 has a shorter analysis time by the direct method than an analysis time by the iterative method.
- the analysis time for the model m3 is shorter than the analysis time for the direct method.
- the mass of the model m2 is smaller than that of the model m3. Therefore, as described above, the selection unit 405 selects the iterative method when the degree of mass calculated by the first evaluation unit 402 is equal to or greater than the threshold, and selects the direct method when the degree of mass is less than the threshold. By doing so, the analysis time can be shortened.
- FIG. 8 is an explanatory diagram showing an example of deriving a threshold value when the number of elements is 10,000.
- FIG. 8 is an example of obtaining a threshold value in the same manner as in FIG. 7, and thus detailed description thereof is omitted.
- FIG. 8 since there is a performance ratio 1 between the performance ratio of the model m2 and the performance ratio of the model m3, as in the example shown in FIG. Linearity interpolation is performed on the mass of the model m3, and the mass when the performance ratio is 1 is obtained as a threshold value. Further, in the example of FIG. 8, as in the example shown in FIG. 7, the analysis time of the model m2 is shorter than the analysis time by the iterative method. On the other hand, the model m3 having a larger mass than the model m2 has a shorter analysis time by the iterative method than the analysis time by the direct method.
- the selection unit 405 selects the iterative method if the degree of mass calculated by the first evaluation unit 402 is equal to or greater than the threshold, and selects the direct method if it is less than the threshold. Analysis time can be shortened.
- the selection unit 405 illustrated in FIG. 5 compares the degree of mass calculated by the first evaluation unit 402 with the acquired threshold value. Then, the selection unit 405 selects the iterative method when the degree of mass is equal to or greater than the threshold, and selects the direct method when it is less than the threshold.
- the selection unit 405 selects whether the algorithm for solving the simultaneous linear equations is the direct method or the iterative method based on the evaluation result of the model's mass, the strength of the boundary condition of the model and / or The model size of the model is reflected in the selection.
- the selection unit 405 selects the strength of the boundary condition of the model and / or the model when selecting whether the algorithm of the structural analysis using the FEM is the direct method or the iterative method based on the evaluation result of the model's mass. Based on the model size, the algorithm selection criteria according to the mass is changed.
- the threshold value that is the selection criterion of the algorithm is corrected in order to reflect the strength of the model boundary condition and / or the model size of the model in the selection. It is also possible to correct the mass.
- model scale will be described, and the strength of the model boundary conditions will be described later.
- the selection unit 405 reflects the model size of the model in the selection when selecting whether the algorithm is a direct method or an iterative method based on the degree of mass.
- the model size of the model may be, for example, the number of elements, the number of nodes, or the number of degrees of freedom of analysis described above. Further, the selection unit 405 reflects the evaluated model size and the amount of memory that can be used at the time of analysis when selecting whether the algorithm is a direct method or an iterative method based on the degree of mass. May be.
- the structural analysis apparatus 100 performs the direct method when, for example, the amount of memory used when analyzing the model scale of the model 101 using the direct method is less than the memory usage that can be used at the time of analysis. select.
- the structural analysis apparatus 100 selects the iterative method when, for example, the amount of memory used when analyzing the model size of the model 101 using the direct method is greater than or equal to the amount of memory used that can be used at the time of analysis. .
- the estimated amount of memory used when analyzing a model can be calculated based on the model size calculated from the element type, the number of elements, the number of nodes, and the like.
- the amount of memory used for one element may be prepared in advance in a storage device or the like. Then, the structural analysis apparatus 100 may calculate the memory amount to be used according to the number of elements of the analysis target model 101.
- the direct method analysis is generally more accurate than the iterative method analysis, and it is understood that the direct method analysis will not take time, the direct method is used to improve the accuracy. There is. However, as described above, in the case of analysis by the direct method, if the memory usage is insufficient, the analysis takes time. For this reason, by selecting the analysis method according to the model size, the memory usage can be estimated based on the model size, so the analysis by the direct method can be performed without running out of memory, improving the accuracy and analyzing time. Can be shortened.
- the selection unit 405 selects, for example, whether the algorithm for solving the simultaneous linear equations of the structural analysis solver using the FEM is a direct method or an iterative method based on the evaluation result of the model bulkiness, The larger the model size of the model, the more iterative method is selected.
- the second evaluation unit 403 evaluates the model scale based on, for example, the number of elements and / or the number of nodes and / or the number of degrees of freedom of analysis calculated from the model information 111 and the mesh size. For example, when the model information 111 includes information representing the shape of the model such as the model volume, the second evaluation unit 403 calculates the number of elements based on the model volume, the mesh size, and the element type. To do. The number of elements calculated here is a predicted value. Further, the second evaluation unit 403 calculates the number of nodes based on, for example, the number of elements of the model, the element type, and the degree of mass. The number of nodes calculated here is a predicted value. In addition, the second evaluation unit 403 calculates the number of degrees of freedom in analysis based on, for example, the number of nodes of the model, the element type, and the constraint condition. The number of degrees of freedom of analysis calculated here is a predicted value.
- the second evaluation unit 403 when the model information 111 includes elements included in the model, information about nodes, analysis degree of freedom, and the like, the second evaluation unit 403 The number of elements, the number of nodes, and the number of degrees of freedom of analysis may be specified from the model information 111.
- the selection unit 405 selects an iterative method as the model size is larger, for example. Specifically, the selection unit 405 acquires a threshold according to the model scale of the model, and selects an analysis method from an iterative method and a direct method based on the acquired threshold.
- FIG. 9 is an explanatory diagram showing an example of a threshold according to the model scale.
- the threshold value table 900 has threshold values for each determination method and the number of elements, for example.
- the determination method is, for example, determination method 1 to determination method 5 described above.
- the number of elements is given as an example of model scale evaluation, but the number of elements is not limited to this.
- the number of elements is, for example, 3000, 5000, 7000, and 10,000.
- threshold th11 corresponding to the number of elements of 3000> threshold th12 corresponding to the number of elements 5000> threshold th13 corresponding to the number of elements 7000> threshold corresponding to the number of elements 10000 th14.
- the smaller the number of elements the larger the threshold value.
- the iterative method is selected as the number of elements is larger.
- the model size is large, if the direct method is used, a large amount of memory is used at the time of analysis, and the amount of memory used becomes insufficient, and analysis takes time. For this reason, when the model size is large, the iterative method is selected, so that it is possible to avoid a shortage of memory at the time of analysis and to shorten the analysis time.
- the selection unit 405 acquires a threshold value corresponding to the number of elements from the threshold value table 900, and compares the calculated chunkiness with the acquired threshold value. Specifically, for example, when the number of elements of the analysis target model is 4000 or less, the selection unit 405 acquires a threshold corresponding to the number of elements of 3000. Specifically, for example, when the number of elements of the analysis target model is greater than 4000 and equal to or less than 7000, the selection unit 405 acquires a threshold corresponding to the number of elements of 5000. Thus, a range of the number of elements may be provided. Then, the selection unit 405 selects the iterative method when the calculated chunkiness is equal to or greater than the acquired threshold value, and selects the direct method when the calculated chunkiness is less than the acquired threshold value.
- the threshold is smaller when the number of elements is 10,000 than when the number of elements is 5000. This is because, for the same model, when the number of elements is 10,000, the element division is performed with a smaller mesh size, so the model's mass itself is higher. It is.
- the correction unit 406 may calculate the threshold corresponding to the number of elements of the model to be analyzed by performing linear interpolation on the threshold corresponding to the number of elements included in the threshold table 900. For example, when the number of elements of the model to be analyzed is 7500, the correction unit 406 linearly interpolates a threshold corresponding to the number of elements of 7000 and a threshold corresponding to the number of elements of 10000, so that the number of elements is 7500. A threshold value corresponding to may be obtained. When there are many sample points of the threshold value, the correction unit 406 may obtain a threshold value corresponding to the number of elements of the analysis target model using Lagrange interpolation, spline interpolation, a least square method, or the like.
- FIG. 10 is an explanatory diagram showing an example of calculating the degree of mass and an example of selecting a solution.
- the analysis target model has, for example, a size of 50 ⁇ 100 ⁇ 500.
- the type of shape is unknown.
- the first evaluation unit 402 calculates the degree of mass for at least one of the determination methods 1 to 5, for example. Since the detailed calculation method is as described above, it is omitted. In the example of FIG. 10, the first evaluation unit 402 calculates the lumps for all the determination methods 1 to 5.
- the second evaluation unit 403 evaluates the model size of the analysis target model based on, for example, the number of elements and / or the number of nodes and / or the number of degrees of freedom of analysis for the analysis target model.
- the model scale index value may be, for example, the number of elements themselves or the number of nodes.
- the model scale index value may be, for example, the number of degrees of freedom in analysis.
- the selection unit 405 obtains a threshold according to the model scale evaluated from the threshold table 900, for example.
- the selection unit 405 acquires, for example, the threshold value of each determination method corresponding to the number of elements of 5000 from the threshold value table 900.
- the example of FIG. 7 is used as the threshold value of each determination method corresponding to the number of elements of 5000.
- the selection unit 405 selects the direct method.
- the selection unit 405 selects the direct method.
- the selection unit 405 selects the direct method.
- the selection unit 405 selects the direct method.
- the selection unit 405 selects the direct method.
- the selection unit 405 selects the direct method and executes numerical analysis.
- the boundary condition includes a constraint condition and a load condition.
- the strength of the boundary condition may be, for example, one of the constraint condition strength and the load condition weakness, or may be evaluated based on the constraint condition strength and the load condition weakness.
- Constraint type includes the type and direction of the constraint, the position and area to be constrained, and the like.
- the strength of the constraint condition is, for example, the strength with which the analysis target model is constrained according to the constraint condition.
- the strength of the constraint condition is evaluated based on, for example, the area of a region corresponding to a range that is constrained on the surface of the model to be analyzed by the constraint condition as described later.
- As the load condition the type of load, the magnitude and direction of the load, the position and area where the load is applied, and the like are set.
- the weakness of the load condition is, for example, the reciprocal of the magnitude of the influence of the load condition on the rigidity.
- the weakness of the load condition is evaluated based on, for example, the reciprocal of the magnitude of the influence of the load condition on the rigidity.
- the selection unit 405 reflects the strength of the constraint condition of the model in the selection when selecting whether the algorithm for solving the simultaneous linear equations is the direct method or the iterative method based on the evaluation result of the model bulkiness. .
- the third evaluation unit 404 calculates the strength of the constraint condition based on the model constraint area and the constraint freedom.
- the constraint area is the area of the portion that is constrained in the model according to the constraint conditions.
- the restriction degree of freedom is the degree of freedom restricted among the degrees of freedom per node. More specifically, the third evaluation unit 404 calculates the strength of the constraint condition using the following equation (6).
- Strength of restraint condition restraint area / surface area ⁇ (number of degrees of freedom of restraint per node / number of degrees of freedom per node) (6)
- the sum of these becomes the strength of the constraint conditions in the entire model.
- the selection unit 405 selects an algorithm based on the degree of mass corrected based on the strength of the constraint condition calculated by the third evaluation unit 404.
- the selection unit 405 obtains an evaluation based on the strength of the constraint condition of the model when selecting whether the algorithm is the direct method or the iterative method based on the evaluation result of the model's mass. Change the selection criteria of the algorithm according to the determined mass. Specifically, the selection unit 405 sets the threshold corrected based on the strength of the model constraint condition as a new selection criterion.
- the selection unit 405 selects whether to use the algorithm as a direct method or an iterative method based on the evaluation result of the model's bulkiness
- the direct method is selected as the strength of the model constraint is smaller.
- the constraint conditions of the model are insufficient, there is a problem that the iterative method does not converge, a solution cannot be obtained, and analysis takes time.
- the direct method by using the direct method, a solution can be obtained relatively stably, and the analysis time can be shortened.
- the constraint conditions of the model are strong, the analysis time can be shortened by using an iterative method.
- the structural analysis apparatus 100 obtains the threshold value of the chunkiness using models with different constraint condition strengths. Then, the correcting unit 406 corrects the threshold based on the strength of the constraint condition of the analysis target model and the threshold value of the chunkiness obtained by the models having different strengths of the constraint condition.
- a process different from the structural analysis apparatus 100 may be used for the process of obtaining the blockiness threshold value by using models having different constraint conditions.
- FIG. 11 is an explanatory diagram showing a derivation example of the threshold value of the degree of mass when the constraint condition is cantilever.
- FIG. 11 shows an example in which the threshold value of the chunkiness is obtained using the chunkiness and the analysis time when the constraint condition is cantilevered for the models m2 and m3 shown in FIG.
- the model m2 and the model m3 are exemplified by the case of 5000 elements.
- a hatched portion of the model m2 and the model m3 is a portion to be restrained.
- the structure analysis apparatus 100 calculates the strength of the constraint condition for each of the model m2 and the model m3 based on the equation (6).
- the number of degrees of freedom of restriction per node and the number of degrees of freedom per node are 3, they are omitted.
- the constraint condition is cantilever, and the dimension of the model m2 is “50 ⁇ 100 ⁇ 1000”. For this reason, the restraint area of the model m2 becomes “5.00E + 03” by “50 ⁇ 100”. Further, the constraint condition is cantilever, and the dimension of the model m3 is “50 ⁇ 100 ⁇ 200”. Therefore, the constraint area of the model m3 is “5.00E + 03” by “50 ⁇ 100”.
- the structural analysis apparatus 100 obtains an analysis time by performing numerical analysis of each of the direct method and the iterative method for each of the model m2 and the model m3. Then, the structural analysis apparatus 100 calculates a performance ratio between the analysis time in the direct method and the analysis time in the iterative method.
- the performance ratio for the model m2 is “0.24”, and the performance ratio for the model m3 is “1.49”.
- the structural analysis apparatus 100 obtains the degree of mass in each of the determination methods 1 to 5 when the performance ratio between the analysis time by the direct method and the analysis time by the iterative method is 1, and uses it as a threshold value by linear interpolation. .
- the structural analysis apparatus 100 obtains the strength of the constraint condition corresponding to the threshold value of the mass. Specifically, the constraint condition strength when the performance ratio is 1 based on the strength of the constraint condition of the model m2 and the strength of the constraint condition of the model m3, and the performance ratio of the model m2 and the performance ratio of the model m3. Is calculated by linear interpolation. Instead of linear interpolation, Lagrange interpolation, spline interpolation, least squares, or the like may be used.
- FIG. 12 is an explanatory diagram showing an example of derivation of the threshold value of the degree of mass when the constraint condition is fixed at both ends.
- FIG. 12 shows an example in which the threshold value of the lumps is obtained using the lumps and the analysis time when the constraint condition is fixed at both ends for the models m2 and m3 shown in FIG.
- the model m2 and the model m3 are exemplified by the case of 5000 elements.
- a hatched portion of the model m2 and the model m3 is a portion to be restrained.
- the structure analysis apparatus 100 calculates the strength of the constraint condition for each of the model m2 and the model m3 based on the equation (6).
- the number of degrees of freedom of restriction per node and the number of degrees of freedom per node are 3, they are omitted.
- the constraint area of the model m2 is “1.00E + 04” due to “50 ⁇ 100 ⁇ 2”. Further, since the constraint condition is fixed at both ends and the size of the model m3 is “50 ⁇ 100 ⁇ 200”, the constraint area of the model m3 is “1.00E + 04” by “50 ⁇ 100 ⁇ 2”.
- the structural analysis apparatus 100 obtains an analysis time by performing numerical analysis of each of the direct method and the iterative method for each of the model m2 and the model m3. Then, the structural analysis apparatus 100 calculates a performance ratio between the analysis time in the direct method and the analysis time in the iterative method.
- the performance ratio for the model m2 is “0.38”, and the performance ratio for the model m3 is “2.11”.
- the structural analysis apparatus 100 obtains the degree of mass in each of the determination methods 1 to 5 when the performance ratio between the analysis time by the direct method and the analysis time by the iterative method is 1, and uses it as a threshold value by linear interpolation. .
- the structural analysis apparatus 100 obtains the strength of the constraint condition corresponding to the threshold value of the mass. Specifically, the constraint condition strength when the performance ratio is 1 based on the strength of the constraint condition of the model m2 and the strength of the constraint condition of the model m3, and the performance ratio of the model m2 and the performance ratio of the model m3. Is calculated by linear interpolation. Instead of linear interpolation, Lagrange interpolation, spline interpolation, least squares, or the like may be used.
- the correction unit 406 corrects the threshold value of the mass based on the strength of the constraint condition calculated by the third evaluation unit 404, for example.
- FIG. 13 is an explanatory diagram showing an example of correction of the threshold value of the chunkiness by the strength of the constraint condition and selection of the solution method.
- the correction unit 406 compares the constraint condition strength corresponding to the performance ratio of 1 and the constraint condition strength of the analysis target model, and corrects the threshold value by linear interpolation.
- linear interpolation Lagrange interpolation, spline interpolation, least squares, or the like may be used.
- the strength of the constraint condition of the analysis target model becomes “6.25E-02” by “(1.00E + 04) / (1.60E + 5)”.
- the corrected threshold value can be obtained as follows.
- the threshold value in the case of cantilever is “1.00E-01” as shown in FIG. 11
- the threshold value in the case where both ends are fixed is “6.30E-02” as shown in FIG. is there.
- Threshold after correction threshold in the case of cantilever + (threshold when both ends are fixed-threshold in the case of cantilever)
- a function that can obtain a corrected threshold value by giving the strength of the constraint condition of the model to be analyzed based on the threshold value and the strength of the constraint condition in each constraint condition may be created. Then, the correction unit 406 may obtain a threshold value corresponding to the strength of the constraint condition by giving the strength of the constraint condition of the analysis target model to the function.
- the correction unit 406 calculates a threshold value according to the strength of the constraint conditions for the determination methods 2 to 5 as in the determination method 1. Then, the selection unit 405 selects either the direct method or the iterative method depending on whether or not the calculated mass is equal to or greater than the corrected threshold value.
- the selection unit 405 selects a direct method.
- the selection unit 405 selects a direct method.
- the selection unit 405 selects an iterative method.
- the selection unit 405 selects an iterative method.
- the selection unit 405 selects a direct method.
- the solution selected depending on the determination method may be different.
- the selection unit 405 may select a solution for each of the plurality of determination methods and output the selection result.
- the user may be made to select the final solution by outputting the selection result for each determination method.
- the selection unit 405 may select a solution for each of a plurality of determination methods, and may select a solution selected by more determination methods as a final solution.
- the selection unit 405 may select a solution using a part of the determination methods.
- the selection unit 405 may select a solution method according to, for example, three of the degree of mass, the model scale, and the strength of the boundary condition. As described above, the selection unit 405 not only corrects the threshold according to the strength of the boundary condition or selects the threshold according to the model scale, but the selection unit 405 includes: A solution may be selected for each.
- FIG. 14 is an explanatory diagram showing an example of selecting a solution.
- the threshold value and the boundary between the area for selecting the direct method and the area for selecting the iterative method are set in advance. You may set it.
- the selection unit 405 may select a solution method from the direct method and the iterative method depending on in which region each calculated determination value is included in the three-dimensional space.
- the selection unit 405 selects a direct method when each of the three variables of the degree of mass, the model size, and the strength of the boundary condition is within a threshold, and the degree of the mass and the model size are selected. And if any of the three variables of boundary condition strength is not within the threshold, the iterative method is selected.
- the boundary is provided by the threshold value, but the boundary may be provided by a curved surface.
- the selection unit 405 uses a combination of some of the plurality of evaluation methods as an N-dimensional space to set the threshold value.
- the solution may be selected from a direct method and an iterative method depending on the boundary.
- the plurality of evaluation methods are, for example, the determination methods 1 to 5 for the degree of mass, the number of nodes, the number of elements, the number of analysis degrees of freedom, and the strength of the boundary conditions for the model scale. Strength and weak load conditions.
- the selection unit 405 selects either the iterative method or the direct method.
- the selection unit 405 is not limited to this, and for example, selects any solution from a plurality of types of iterative methods and a plurality of types of direct methods.
- a plurality of threshold values may be provided, and any one of the plurality of solutions may be selected.
- the direct method and the iterative method are given as examples, the present invention is not limited to this, and other solutions may be included.
- the selection unit 405 selects a numerical analysis algorithm for structural analysis using a finite element method of the model based on the evaluation result of the model's mass.
- the threshold setting method may be performed in the same manner as the threshold setting method for selecting the iterative method and the direct method described above, and thus detailed description thereof is omitted.
- FIG. 15 is a flowchart showing a structural analysis processing procedure example 1 by the structural analysis apparatus.
- the structural analysis apparatus 100 acquires model information 111 of the analysis target model (step S1501).
- the structure analysis apparatus 100 evaluates the mass of the analysis target model (step S1502).
- the structural analysis device 100 compares the degree of mass with a threshold value (step S1503).
- step S1503 If the degree of mass is less than the threshold value (step S1503: less than the threshold value), the structural analysis apparatus 100 selects the direct method (step S1504) and proceeds to step S1506.
- step S1503 the degree of mass is equal to or greater than the threshold (step S1503: equal to or greater than the threshold)
- step S1505 the degree of mass is equal to or greater than the threshold
- step S1505 the structural analysis apparatus 100 selects numerical analysis using the selected solution (step S1506), and ends a series of processing.
- FIG. 16 is a flowchart showing a structural analysis processing procedure example 2 by the structural analysis apparatus.
- the structural analysis apparatus 100 acquires model information 111 of the analysis target model (step S1601).
- the structure analysis apparatus 100 evaluates the strength of the constraint condition (step S1602).
- the structural analysis apparatus 100 evaluates the mass of the analysis target model (step S1603).
- the structural analysis apparatus 100 evaluates the model size of the analysis target model (step S1604).
- the structural analysis apparatus 100 acquires a threshold value corresponding to the model scale (step S1605).
- the structure analysis apparatus 100 corrects the acquired threshold value based on the strength of the constraint condition (step S1606).
- the structural analysis apparatus 100 compares the degree of mass with a threshold value (step S1607). When the degree of mass is less than the threshold value (step S1607: less than the threshold value), the structural analysis apparatus 100 selects the direct method (step S1608).
- step S1607 If the degree of mass is equal to or greater than the threshold (step S1607: greater than or equal to the threshold), the structure analysis apparatus 100 selects an iterative method (step S1609). The structural analysis apparatus 100 performs numerical analysis by the solution selected with the selected calculation resource (step S1610), and ends the series of processes.
- FIG. 17 is an explanatory diagram showing a system application example.
- the system 1700 includes, for example, a client terminal device 1701 and a data center 1702. There may be a plurality of client terminal devices 1701 as shown in FIG.
- the data center 1702 includes a plurality of servers 1703.
- the client terminal device 1701 and the data center 1702 are connected via the network 310.
- a method for managing the server 1703 in the data center 1702 is not particularly limited.
- the structure analysis apparatus 100 may be realized by a client terminal device 1701 and a plurality of servers 1703.
- the acquisition unit 401, the first evaluation unit 402 to the third evaluation unit 404, and the correction unit 406 may be realized by the client terminal device 1701
- the selection unit 405 may be realized by the server 1703.
- the server 1703 may not include input / output devices such as the keyboard 307, the mouse 308, and the display 309.
- the server 1703 executes, for example, CAD and CAE. Then, the client terminal device 1701 obtains the model information 111 created by CAE, for example, and evaluates the mass. Then, the client terminal device 1701 transmits the evaluated mass to the server 1703. In addition, the client terminal device 1701 may transmit the evaluated model scale and the strength of the boundary condition to the server 1703 without being limited to the degree of mass. Then, the server 1703 selects one of the iterative method and the direct method based on the degree of mass, and executes numerical analysis using the selected solution. Here, the server 1703 may register the results of past analysis in the database. Then, the server 1703 may select a solution based on the mass received from the client terminal device 1701.
- FIG. 18 is an explanatory diagram showing an example of an analysis database.
- the analysis database 1800 includes, for example, the model ID, the degree 1, the degree 2, the degree 3, the degree 4, the degree 5, the strength of the boundary condition, the model size, the analysis time of the direct method A, the direct method B It has fields of analysis time, analysis time of iteration method C, and analysis time of iteration method D. By setting information in each field, it is stored as a record (1801-1, 1801-2).
- the analysis database 1800 is realized by a storage device such as the ROM 302, the RAM 303, and the disk 305, for example.
- the model ID field identification information for identifying a model is set.
- the degree of chunk in the model determination method 1 indicated by the model ID is set.
- the blockiness 2 field the blockiness in the model determination method 2 indicated by the model ID is set.
- the degree of chunk 3 indicated by the model ID is set.
- the chunk degree in the model determination method 4 indicated by the model ID is set.
- the chunkiness in the model determination method 5 indicated by the model ID is set.
- the boundary condition strength field the boundary condition strength of the model indicated by the model ID is set. For example, the strength of the constraint condition is set.
- the model size field the model size of the model indicated by the model ID is set. For example, the number of elements is set.
- an analysis time when a numerical analysis is performed using the direct method A is set.
- an analysis time when a numerical analysis is performed using the direct method B is set.
- an analysis time when a numerical analysis is performed using the iterative method C is set.
- an analysis time when a numerical analysis is performed using the iterative method D is set.
- FIG. 19 is an explanatory diagram showing an example of selecting a solution based on the results in the system.
- the client terminal device 1701 transmits, for example, evaluation results such as the degree of mass, the strength of constraint conditions, and the model scale to the server 1703.
- the server 1703 searches the analysis database 1800 for a record having an evaluation result closest to the evaluation result received from the client terminal device 1701. Specifically, the server 1703 may compare the evaluation result with the evaluation result in the record included in the analysis database 1800, score the similarity, and detect a record having the closest evaluation result.
- the server 1703 selects, for example, a solution with the shortest analysis time among solution analysis times included in the detected record as a solution of the analysis target model.
- the iterative method C is selected.
- the server 1703 determines a calculation resource based on the selected solution and model size.
- the analysis is performed using the server 1703-1 and the server 1703-2. An example of determining the calculation resource will be described with reference to FIG.
- the server 1703-1 and the server 1703-2 perform numerical analysis on the analysis target model using the selected iteration method C by parallel processing.
- the server 1703 transmits the analysis result to the client terminal. Further, the server 1703 registers the evaluation result and the analysis time as records in the analysis database 1800.
- the server 1703 performs numerical analysis by a solution that is not selected as a solution of the analysis target model when computer resources are available, and registers the analysis time in the analysis database 1800.
- the server 1703 may select a solution by comparing the degree of mass with a threshold value as described above.
- FIG. 20 is an explanatory diagram showing an example of managing the server state and the memory amount.
- the table 2000 has information for managing the status and resources of the server 1703 in the data center 1702.
- the table 2000 includes fields such as a server ID, a state, a memory amount, and the number of CPUs.
- identification information for identifying the server 1703 is set.
- Information indicating the state of the server 1703 is set in the state field.
- the state of the server 1703 is represented by “in use” and “unused”.
- the state of the server 1703 may be represented by the number of CPUs in use.
- the memory amount field the memory amount of the RAM 303 and the disk 305 that the server 1703 has is set.
- the number of CPUs field for example, the number of processors included in the server 1703 is set.
- the server 1703-1 to the server 1703-3 have the same amount of memory and the same number of CPUs, but the server 1703-4 has a larger amount of memory and the number of CPUs than the servers 1703-1 to 1703-3. Take the case as an example.
- the model to be analyzed is from x to z.
- the model size of the analysis target model is approximately the same.
- the analysis target model x is ax
- the analysis target model y is ay
- the analysis target model z is az.
- the relationship of the mass is ax> threshold> ay> az.
- the iterative method is selected as the solution method of the analysis target model x
- the direct method is selected as the solution method of the analysis target model y
- the direct method is selected as the solution method of the analysis target model z.
- the server 1703 selects a computing resource with a large memory amount. For example, the server 1703 selects the server 1703-4 as a calculation resource. For example, in the case of the iterative method, the server 1703 selects one of the servers 1703-1 to 1703-3. Further, for example, when a plurality of iteration methods can be selected, the server 1703 performs simultaneous processing by a plurality of servers 1703 among the servers 1703-1 to 1703-3 depending on the type of the iteration method. Also good. Further, the server 1703 may select a plurality of computing resources in the case of a solution that allows parallel processing using a plurality of servers. Furthermore, the server 1703 may estimate in advance the computational resources such as the amount of memory necessary for efficient calculation from the model information, and may select an appropriate computational resource according to the result.
- the server 1703-4 is selected as a calculation resource.
- the server 1703-1 is selected as a calculation resource.
- the server 1703-2 is selected as a calculation resource.
- the selection unit 405 selects a calculation resource for each analysis target model.
- FIGS. 21 and 22 are flowcharts showing an example of the structure analysis processing procedure by the system.
- the system 1700 includes the client terminal device 1701 and the server 1703 as described above. Therefore, the processing illustrated in FIGS. 21 and 22 may be performed by the server 1703 or the client terminal device 1701.
- the system 1700 acquires the model information 111 of the analysis target model by the client terminal device 1701 (step S2101). Next, the system 1700 uses the client terminal device 1701 to evaluate the model size of the analysis target model (step S2102). The system 1700 evaluates the strength of the boundary condition by the client terminal device 1701 (step S2103).
- the system 1700 uses the client terminal device 1701 to evaluate the mass of the analysis target model (step S2104).
- the server 1703 searches the analysis database 1800 for a record including the evaluation result closest to the evaluation result of the analysis target model (step S2105).
- the system 1700 selects the solution with the shortest analysis time from the records searched by the server 1703 (step S2106).
- the system 1700 performs numerical analysis by the solution specified by the server 1703 (step S2107).
- the system 1700 outputs an analysis result by the server 1703 (step S2201).
- the system 1700 stores the evaluation result and the analysis time in the analysis database 1800 using the server 1703 (step S2202).
- the system 1700 determines whether or not the load on the computer environment is high (step S2203). If the load on the computer environment is high (step S2203: YES), the system 1700 returns to step S2203.
- a high load on the computer environment means, for example, a state in which there is no server 1703 without processing.
- step S2204 determines whether the server 1703 has executed analysis with all the solutions. When it is determined that analysis has not been executed for all solutions (step S2204: No), the system 1700 executes numerical analysis using a solution having the shortest analysis time among the searched records among the unexecuted solutions (step S2204: No). Step S2205). The system 1700 stores the analysis time in the analysis database 1800 (step S2206), and returns to step S2203. When it is determined that the analysis has been executed for all the solutions (step S2204: Yes), the system 1700 ends the series of processes.
- the structural analysis apparatus 100 evaluates the mass of the model based on information representing the shape of the model to be analyzed, and selects a solution method using simultaneous linear equations using the finite element method. Accordingly, by determining the feature of the model shape, a solution method is selected according to the characteristics of the simultaneous linear equations, and therefore, the analysis time can be shortened.
- the mass is evaluated based on the volume of the model and the volume of the smallest sphere or cube that covers the model.
- the degree of mass is evaluated based on the volume of the model, the mass of the model, and the main moment of inertia of the model.
- the solution is selected according to the shape of the model and the weight of the model. Thereby, even in a stage before mesh division by the CAE preprocessor, the solution can be selected and the solution can be easily determined.
- the degree of mass is evaluated based on the number of model elements and the number of nodes. For example, if the analysis target model is a plate-beam model, the number of nodes increases on the surface of the analysis target model, so that the possibility that the number of nodes is shared by a plurality of elements is reduced. On the other hand, if the analysis target model is a mass, there is a high possibility that nodes will be shared internally. Therefore, if the total number of elements / total number of nodes is a large value, the possibility of being a mass is high, and if the total number of elements / total number of nodes is a small value, the possibility of being a plate beam is high. Become.
- the degree of mass is evaluated based on the total number of degrees of freedom of analysis of each element included in the model and the number of degrees of freedom of analysis of the entire model.
- the number of degrees of freedom in analysis for example, a predicted value can be calculated based on the number of nodes. For this reason, the number of degrees of freedom of analysis can be estimated from the analysis object model when using the finite element method, and the solution method can be easily determined.
- the degree of mass can be compared between models with different element types, the versatility is high.
- the mass is evaluated based on the number of nodes on the surface of the model among the number of nodes of the model and the number of nodes inside the model among the number of nodes of the model. For example, if the analysis target model is a plate-beam model, the number of nodes increases on the surface of the analysis target model, so that the possibility that the number of nodes is shared by a plurality of elements is reduced. On the other hand, if the analysis target model is a mass, there is a high possibility that nodes will be shared internally. For this reason, it is possible to determine whether the shape is close to a lump or a shape close to a plate beam by the ratio between the number of nodes on the surface and the number of nodes on the inside. Therefore, the analysis time can be shortened.
- the structural analysis apparatus 100 selects a solution based on the evaluation result of the model's chunkiness, the larger the chunkiness, the easier it is to select the iterative method.
- the model to be analyzed is a plate beam, the solution does not converge in the iterative method, and analysis takes time. For this reason, the analysis time can be shortened by selecting the direct method when the mass is small. Further, if the analysis target model is a mass, the calculation amount increases in the direct method, and the analysis takes time. For this reason, analysis time can be shortened by selecting an iterative method when the mass is large.
- the structure analysis apparatus 100 reflects the strength of the model boundary condition and / or the model size of the model in the selection when selecting a solution based on the evaluation result of the model bulkiness. Therefore, since the solution method according to the characteristic of simultaneous linear equations is selected more, the analysis time can be shortened.
- the structure analysis apparatus 100 selects a solution based on the evaluation result of the model mass
- the structure analysis apparatus 100 selects the iterative method as the strength of the model boundary condition increases.
- the model is unstable and does not converge in the iterative method, such as when the constraint conditions of the model are insufficient.
- the direct method is easily selected when the strength of the boundary condition of the model is small.
- the analysis time can be shortened.
- the model is stable, such as when the boundary condition of the model is large, the analysis time can be shortened by making it easier to select the iterative method.
- the structural analysis apparatus 100 selects a solution based on the evaluation result of the model bulkiness
- the structural analysis apparatus 100 selects the iterative method as the model size of the model is larger. Using the direct method increases the amount of memory used.
- the model size is large, the amount of calculation is large, so that the amount of memory used is large. For this reason, when the model size is large, the analysis time can be shortened by selecting an iterative method with a small memory usage.
- the structural analysis device 100 is obtained by evaluating based on the strength of the boundary condition of the model and / or the model size of the model when selecting a solution based on the evaluation result of the model's mass. Change the algorithm selection criteria according to the degree of mass. As a result, the larger the model scale of the model, the easier it is to select the iterative method, and the larger the model boundary condition, the easier it is to select the iterative method.
- the structural analysis apparatus 100 calculates the strength of the boundary condition based on the constraint area and the constraint freedom of the model. In this way, since the strength of the boundary condition can be easily evaluated, it is possible to shorten the time required for the determination.
- the structural analysis apparatus 100 evaluates the model scale based on the number of elements and / or the number of nodes and / or the number of degrees of freedom of analysis calculated from the model information and the mesh size. In this way, since the model scale can be easily evaluated, the time required for determination can be shortened.
- the structure analysis apparatus 100 evaluates the model's mass and / or model scale and / or the strength of the boundary condition based on information representing the shape of the model to be analyzed and the boundary condition, and uses a finite element method for the model.
- a numerical analysis algorithm for analysis is selected, and calculation resources used in the numerical analysis are determined. Thereby, the characteristics of the numerical analysis can be determined from the features of the model and the boundary conditions, and the analysis time can be shortened by using an analysis method and calculation resources according to the characteristics of the numerical analysis.
- the structural analysis method described in this embodiment can be realized by executing a prepared structural analysis program on a computer such as a personal computer or a workstation.
- the structural analysis program is recorded on a computer-readable recording medium such as a magnetic disk, an optical disk, or a USB (Universal Serial Bus) flash memory, and is executed by being read from the recording medium by the computer.
- the structural analysis program may be distributed through a network such as the Internet.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
構造解析装置(100)は、モデル情報(111)を取得する。構造解析装置(100)は、取得したモデル情報に基づき、解析対象のモデルの塊度を評価する。構造解析装置(100)は、モデルの塊度の評価結果に基づいて、モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する。構造解析装置(100)は、例えば、塊度が閾値以上の場合に反復法を選択し、塊度が閾値未満の場合に直接法を選択する。塊度が大きいほど、反復法が選択されやすくなり、解析時間の短縮を図ることができる。
Description
本発明は、構造解析方法、及び構造解析プログラムに関する。
従来、有限要素法を用いて構造解析を行う技術が公知である。有限要素法を用いた構造解析では、例えば、連立一次方程式を解くことにより構造物の変位や応力を求める。この連立一次方程式の求解は、計算量が多く計算に時間がかかるため、計算機を用いて高速に解くための様々な技術がある。連立一次方程式の解法としては、例えば、大きな分類として直接法や反復法などが挙げられる。直接法は、例えば、係数行列を三角化することで解を直接求める解法であるのに対して、反復法は、反復計算により近似解を求める解法である。
直接法や反復法に代表される連立一次方程式求解のアルゴリズムは、計算機をより効率的に使用して、より高速に解くための様々な技術開発が行われてきている。例えば、非特許文献1には疎行列向きの直接法のアルゴリズムが紹介されている。非特許文献2には並列処理に適した反復法のアルゴリズムとその計算例が紹介されている。
山本有作:"疎行列連立一次方程式の直接解法",計算工学,Vol.11,No.4,pp.14-18(2006)
大原敏靖,川島康弘,藤野清次:"Hybrid反復法ソルバによるFEM構造解析の処理時間短縮",計算工学講演会論文集 Proceedings of the Conference on Computational Engineering and Sceience 19,4p,2014-06
しかしながら、連立一次方程式の解法には得手不得手があり、全ての問題を確実に、かつ最も速く解く解法は存在しない。したがって、従来、解析対象のモデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを特定の解法として数値解析を行うと、モデルによっては他の解法よりも解析時間が長くなるという問題点がある。例えば直接法は、連立一次方程式の特性により、非ゼロ領域が増えると演算量やメモリ量がより多く必要となり、解析時間が長くなる場合がある。一方、例えば、反復法は、連立一次方程式の特性により解が収束しにくいことがあり、解析時間が長くなる場合がある。
1つの側面では、本発明は、解析時間の短縮化を図ることができる構造解析方法、及び構造解析プログラムを提供することを目的とする。
本発明の一側面によれば、モデル情報を取得し、取得した前記モデル情報に基づいて、解析対象のモデルの塊度を評価し、前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する構造解析方法、及び構造解析プログラムが提案される。
本発明の一態様によれば、解析時間の短縮化を図ることができる。
以下に添付図面を参照して、本発明にかかる構造解析方法、及び構造解析プログラムの実施の形態を詳細に説明する。
図1は、本発明にかかる構造解析装置による一動作例を示す説明図である。構造解析装置100は、解析対象のFEM(Finite Element Method:有限要素法)モデルについて有限要素法を用いた構造解析を行うコンピュータである。ここで、有限要素法とは、微分方程式を近似的に解くための数値解析の方法である。構造解析による評価では、例えば、剛性の指標として変位、強度の指標として応力などが評価される。
解析対象のFEMモデルは、以降単にモデル、解析対象モデルなどとも称する。有限要素法では、方程式が定義された領域を小領域に分割し、各小領域における方程式を共通な補間関数で近似する方法である。ここで、小領域を要素102と称する。要素102は、各頂点などに節点103が配置される。有限要素法を用いた構造解析では、方程式が定義された領域が解析対象の構造物である。解析対象モデルは、解析対象の構造物を近似させることによりFEMによる構造解析が可能な状態にしたものであり、シミュレーション空間上に配置されるものである。
シミュレーション空間とは、解析対象の物理的な構造物の内部とその構造物の外部の空間とを含む解析領域をコンピュータ上に表すために設定された空間である。解析対象モデルでは、解析対象の構造物を複数の要素102に分割し、要素102の集まりとして全体の形状を表す。要素102の集まりをメッシュとも称する。メッシュにおける1つの格子のサイズをメッシュサイズとも称する。
1つの要素102の形状は、2次元の場合に四角形や三角形などであり、3次元の場合に四面体や五面体や六面体などである。図1では、要素102として四面体の二次要素を例に挙げるが、要素102の形状の例や要素102と節点103との関係については図2を用いて詳細に説明する。
開発者は、例えば、CAD(Computer Aided Design)を用いて構造物をポリゴンで表した3次元形状の立体モデルの立体モデル情報を作成する。立体モデル情報は例えばポリゴンの座標データなどを有する。つぎに、開発者は、CAE(Computer Aided Engineering)を用いて、設計した構造物が要求性能を満たすかどうかを、実際に構造物を作る前にコンピュータ上でシミュレーションする。ここで、CAEは、例えばプリプロセッサとソルバーとポストプロセッサと呼ばれる3つのソフトウェアを有する。
まず、CAEのプリプロセッサは、メッシュ分割や境界条件定義を行うことによりFEMモデルを表すモデル情報を作成することができる。つぎに、CAEのソルバーは、モデル情報111が表すFEMモデルに対して数値解析を行う構造解析ソルバーである。最後に、CAEのポストプロセッサは、CAEのソルバーによって得られた解析結果の可視化を行う。
従来、FEMによる構造解析では、力のつりあい方程式を解くことにより、構造物の変位や応力を求めることができる。力のつりあい方程式は連立一次方程式である。連立一次方程式は「Ku=f」とも表す。Kは剛性行列である。uはそれぞれの節点103の自由度ごとの変位を表すベクトルである。uは解析で求める未知ベクトルである。fは荷重を表すベクトルである。fは、荷重条件を設定した場合、各節点103の自由度に対応した荷重値である。
従来、連立一次方程式の求解は、計算量が多く計算に時間がかかるため、計算機を用いてより高速に解くための様々な手法が開発されている。連立一次方程式の解法として、直接法や反復法がある。直接法は、例えば、係数行列を三角化することで解を直接求める解法である。直接法としては、例えば、マルチフロンタル法などがある。反復法は、反復計算により近似解を求める解法である。反復法は、例えば、前処理付きCG法などがある。
しかしながら、従来技術では、解析対象モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを特定の解法として数値解析を行うと、モデルによっては他の解法よりも解析時間が長くなるという問題点がある。例えば、一般的に直接法は反復法よりメモリ量が多く必要である。また、直接法は連立一次方程式の特性により、非ゼロ領域が増えると演算量やメモリ量がより多く必要となり、解析時間が長くなる場合がある。例えば、直接法は、解析対象モデルの形状が塊ものの場合に解析時間が長くなることがある。一方、例えば、反復法は、連立一次方程式の特性により解が収束しにくいことがあり、解析時間が長くなる場合がある。例えば、反復法は、解析対象モデルの形状が板梁ものの場合に、解析時間が長くなることがある。
そこで、本実施の形態では、構造解析装置100は、連立一次方程式の特性として、解析対象モデルの形状を表す情報に基づき解析対象モデルの塊度を評価し、有限要素法を用いた連立一次方程式による解法を、例えば、直接法と反復法とから選択する。これにより、解析モデルの形状が塊ものに近い形状であるか板梁ものに近い形状であるかを判定することができる。したがって、連立一次方程式の特性に応じた解法を選択することができ、解析時間の短縮化を図ることができる。
まず、構造解析装置100は、モデル情報111を取得する。モデル情報111は、例えば、解析対象モデル101の形状を表す情報を含む。モデル情報111の詳細な例は、後述する図5を用いて説明する。
つぎに、構造解析装置100は、取得したモデル情報111に基づき、解析対象モデル101の塊度を評価する。
塊度は、例えば、解析対象モデルに含まれる要素群が形成する解析対象モデルの形状が、厚く寄り集まった形状であるかの指標値である。塊度が高いほど、解析対象モデルに含まれる要素群が形成する解析対象モデルの形状が、厚く寄り集まった形状である可能性が高いことを示す。塊度が低いほど、解析対象モデルに含まれる要素群が形成する解析対象モデルの形状が、薄く平たくなった形状である可能性が高いことを示す。
または、塊度は、例えば、モデルによって表される構造物に含まれる材料や部材が形成する構造物の形状が厚く寄り集まった形状であるかの指標値である。塊度が高いほど、構造物に含まれる材料や部材が形成する構造物の形状が厚く寄り集まった形状である可能性が高いことを示す。塊度が低いほど、構造物に含まれる材料や部材が形成する構造物の形状が薄く平たかったり、細かったりする可能性が高いことを示す。ここで、例えば、要素群、材料、または部材が薄く平たかったり、細かったりする形状のモデルや構造物を板梁ものとも称する。また、例えば、要素群、材料または部材が厚く寄り集まった形状のモデルや構造物を塊ものとも称する。
解析対象モデル101の塊度は、例えば、解析対象モデル101の体積に基づいて評価されてもよい。また、解析対象モデル101の塊度は、例えば、解析対象モデル101の体積と解析対象モデル101の重さに関する情報に基づいて評価されてもよい。解析対象モデル101の塊度は、例えば、解析対象モデル101に含まれる要素102や節点103に基づいて評価されてもよい。具体的には、後述する判定方法1~5などにより解析対象モデル101の塊度が評価される。
そして、構造解析装置100は、解析対象モデル101の塊度の評価結果に基づいて、解析対象モデル101の有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを、例えば、直接法とするか反復法とするか選択する。構造解析装置100は、例えば、塊度が閾値以上であれば、反復法を選択し、塊度が閾値未満であれば、直接法を選択する。これにより、塊度が大きいほど、反復法を選択することができる。図1の例では、塊度amが閾値ath未満であるため、構造解析装置100は、直接法を選択する。
上述したように、解析対象モデル101が板梁ものであると、反復法において解が収束せず解析に時間がかかる。このため、塊度が小さい場合に、直接法を選択することにより、解析時間の短縮を図ることができる。また、解析対象モデル101が塊ものであると、直接法における、係数行列や三角行列の非ゼロ領域が増え解析に時間がかかる。このため、塊度が大きい場合に、反復法を選択することにより、解析時間の短縮を図ることができる。このように、塊度によって解析対象モデル101の形状の特徴を判定することで、連立一次方程式の特性を判定し、解析時間の短縮化を図ることができる。
図2は、有限要素法の構造解析に用いる要素と節点を示す説明図である。図2(1)に示すように、構造物は、例えば、連続体である。上述したように、CAEのプリプロセッサは、3次元のシミュレーション空間上に作成された構造物の立体モデルを近似することによりFEMモデルを作成する。
図2(2)に示すように、要素タイプは、3次元のソリッド要素、2次元のシェル要素、1次元のビーム要素やトラス要素、0次元の質量要素などが挙げられる。ソリッド要素の形状は、六面体、五面体、四面体などがある。シェル要素の形状は、四角形、三角形などがある。また、ビーム要素やトラス要素の形状は、線である。質量要素の形状は、点である。
図2(3)に示すように、例えば、要素形状が四面体の場合、一次要素と二次要素のように節点の定義方法が複数ある。一次要素の場合、要素に含まれる節点は、四面体の頂点である。二次要素の場合、節点は、四面体の頂点と、頂点間を結ぶ線の中心点と、である。このように、要素形状や節点の定義方法により、要素を構成する節点数が異なる。本実施の形態では、要素タイプとして四面体の二次要素を用いて説明する。
ここで、ソリッド要素は、固体要素とも称する。また、シェル要素は、例えば、板要素とも称する。また、ビーム要素は、梁要素とも称する。これらの要素タイプにより、それぞれ後述する構成節点の解析自由度数が異なる。
(構造解析装置100のハードウェア構成例)
図3は、構造解析装置のハードウェア構成例を示すブロック図である。図3において、構造解析装置100は、CPU(Central Processing Unit)301と、ROM(Read Only Memory)302と、RAM(Random Access Memory)303と、ディスクドライブ304と、ディスク305と、を有する。また、構造解析装置100は、I/F(Interface)306と、キーボード307と、マウス308と、ディスプレイ309と、を有する。また、CPU301と、ROM302と、RAM303と、ディスクドライブ304と、I/F306と、キーボード307と、マウス308と、ディスプレイ309とは、バス300によってそれぞれ接続される。
図3は、構造解析装置のハードウェア構成例を示すブロック図である。図3において、構造解析装置100は、CPU(Central Processing Unit)301と、ROM(Read Only Memory)302と、RAM(Random Access Memory)303と、ディスクドライブ304と、ディスク305と、を有する。また、構造解析装置100は、I/F(Interface)306と、キーボード307と、マウス308と、ディスプレイ309と、を有する。また、CPU301と、ROM302と、RAM303と、ディスクドライブ304と、I/F306と、キーボード307と、マウス308と、ディスプレイ309とは、バス300によってそれぞれ接続される。
ここで、CPU301は、構造解析装置100の全体の制御を司る。ROM302は、ブートプログラムなどのプログラムを記憶する。RAM303は、CPU301のワークエリアとして使用される。ディスクドライブ304は、CPU301の制御にしたがってディスク305に対するデータのリード/ライトを制御する。ディスク305は、ディスクドライブ304の制御で書き込まれたデータを記憶する。ディスク305としては、磁気ディスク、光ディスクなどが挙げられる。
I/F306は、通信回線を通じてLAN(Local Area Network)、WAN(Wide Area Network)、インターネットなどのネットワーク310に接続され、このネットワーク310を介して他の装置に接続される。そして、I/F306は、ネットワーク310と内部のインターフェースを司り、外部装置からのデータの入出力を制御する。I/F306には、例えばモデムやLANアダプタなどを採用することができる。
キーボード307やマウス308は、利用者の操作により、各種データの入力を行うインターフェースである。ディスプレイ309は、CPU301の指示により、データを出力するインターフェースである。
また、図示を省略するが、構造解析装置100には、カメラから画像や動画を取り込む入力装置やマイクから音声を取り込む入力装置が設けられていてもよい。また、図示を省略するが、構造解析装置100には、プリンタなどの出力装置が設けられていてもよい。
(構造解析装置100の機能的構成例)
図4は、構造解析装置の機能的構成例を示すブロック図である。構造解析装置100は、取得部401と、第1評価部402と、第2評価部403と、第3評価部404と、選択部405と、補正部406と、を有する。取得部401から補正部406までの制御部の処理は、例えば、図3に示すCPU301がアクセス可能なROM302、RAM303、ディスク305などの記憶装置に記憶されたプログラムにコーディングされている。そして、CPU301が記憶装置から該プログラムを読み出して、プログラムにコーディングされている処理を実行する。これにより、制御部の処理が実現される。また、制御部の処理結果は、例えば、RAM303、ROM302、ディスク305などの記憶装置に記憶される。
図4は、構造解析装置の機能的構成例を示すブロック図である。構造解析装置100は、取得部401と、第1評価部402と、第2評価部403と、第3評価部404と、選択部405と、補正部406と、を有する。取得部401から補正部406までの制御部の処理は、例えば、図3に示すCPU301がアクセス可能なROM302、RAM303、ディスク305などの記憶装置に記憶されたプログラムにコーディングされている。そして、CPU301が記憶装置から該プログラムを読み出して、プログラムにコーディングされている処理を実行する。これにより、制御部の処理が実現される。また、制御部の処理結果は、例えば、RAM303、ROM302、ディスク305などの記憶装置に記憶される。
取得部401は、モデル情報111を取得する。モデル情報111は、解析対象のモデルを表す情報である。モデル情報111は、例えば、モデルの形状を表す情報を含む。また、モデルの形状を表す情報は、モデルに含まれる要素の要素情報、要素に含まれる節点及び節点の位置情報などが挙げられる。モデルの形状を表す情報は、例えば、体積、表面積、などの情報であってもよい。また、取得されるモデル情報111は、例えば、モデルの材質を表す情報を含んでいてもよい。また、取得されるモデル情報111は、例えば、解析時にモデルに設定される境界条件の情報を含んでいてもよい。
図5は、モデル情報例を示す説明図である。図5(1)~図5(3)には、モデル情報111として、モデルに含まれる要素の要素情報、要素に含まれる節点及び節点の位置情報などを示す。また、図5(4)には、モデル情報111として、モデルの形状を表す情報やモデルの材質を表す情報や解析時にモデルに設定される境界条件を表す情報などを示す。ここで、境界条件とは、構造物の負荷状態を表すために境界に設定する条件である。境界条件には、例えば、拘束条件と荷重条件の2種類がある。拘束条件は、解析対象の構造物に対して、どの部位をどのように固定するか、どのくらい強制的な変位を与えるか、などの条件のことである。荷重条件はどの部位にどのような方向でどのくらい力を加えるかなどの条件である。
図5(1)では、モデル情報111は、モデルID、要素IDのフィールドを有する。モデルIDのフィールドには、モデルを識別する識別情報が設定される。要素IDのフィールドには、解析対象のモデルに含まれる要素を識別する識別情報が設定される。図5(1)の例では、モデルmaは、例えば、要素en1~en3を有する。
つぎに、図5(2)の例では、モデル情報111は、要素ID、節点IDのフィールドを有する。要素IDのフィールドには、要素を識別する識別情報が設定される。節点IDのフィールドには、要素に含まれる節点を識別する識別情報が設定される。図5(2)の例では、要素en1は、節点nn1~nn4を有する。
そして、図5(3)の例では、モデル情報111は、節点ID、節点位置情報のフィールドを有する。節点IDのフィールドには、節点を識別する識別情報が設定される。節点位置情報のフィールドには、節点の位置情報が設定される。節点の位置情報は、例えば、節点のx軸、y軸、z軸の座標値である。
図5(1)~(3)に示すモデル情報111によって、構造解析装置100は、モデルの形状を特定可能である。例えば、構造解析装置100は、モデルの体積、表面積などを算出可能である。
つぎに、図5(4)の例では、モデル情報111は、モデルID、体積、質量、主慣性モーメント、節点数、要素タイプ、メッシュサイズ、要素数、解析自由度数、最小の球の体積、表面積、境界条件などのフィールドを有する。モデルIDのフィールドには、モデルを識別する識別情報が設定される。体積のフィールドには、モデルの体積が設定される。質量のフィールドには、モデルの質量が設定される。主慣性モーメントのフィールドには、モデルの主慣性モーメントが設定される。ここで、体積や質量や主慣性モーメントは、モデルの材質や形状から決定される情報である。
要素タイプのフィールドには、図2に示したような要素タイプを識別する情報が設定される。また、解析自由度数のフィールドには、例えば、モデルに含まれる各節点の自由度数の総和が設定される。最終的な解析自由度数は、CAEのソルバー内部で行われる連立一次方程式の組立が完了しないと判明しない。このため、解析自由度数は、例えば、節点数×1節点あたりの自由度数などによる概算値が設定されてもよい。
メッシュサイズのフィールドには、メッシュ分割する際の代表的な1要素の要素長が設定される。板要素や梁要素などの場合には、板厚や断面積など断面特性の情報があわせて設定されてもよい。
節点数のフィールドには、モデルに含まれる節点の数が設定される。また、要素数のフィールドには、モデルに含まれる要素の数が設定される。要素数については、メッシュサイズと、形状の体積と、要素タイプと、によって予測値を算出することが可能である。また、節点数は、要素数と、要素タイプと、塊度に基づいて予測値を算出することが可能である。また、要素数と節点数とについては、図5(1)~(3)に示すモデル情報111がすでにある場合、当該モデル情報111に基づいて特定可能である。
最小の球の体積のフィールドには、モデルを覆う最小の球の体積が設定される。ここでは、最小の球の体積のフィールドがあるが、これに限らず、例えば、モデルを覆う最小の立方体の体積のフィールドがあってもよい。この球の体積または立方体の体積は後述する判定方法1において塊度の算出時に用いられる。
表面積のフィールドには、モデルの表面積が設定される。境界条件のフィールドは、例えば、拘束条件、拘束面積、荷重条件のフィールドを有する。そして、拘束条件のフィールドには、例えば、拘束条件が設定される。拘束条件としては、例えば、片側端面固定、両端固定、全周固定などが挙げられる。拘束面積のフィールドには、モデルの表面積のうち、拘束条件に応じて拘束される面積が設定される。拘束自由度数のフィールドには、例えば、1節点当たりの自由度数のうち拘束される自由度数が設定される。例えば、1節点当たりの自由度が3方向である場合に、3方向のうち何方向を拘束するかが拘束自由度数である。荷重条件のフィールドには、荷重条件が設定される。荷重条件としては、例えば、各方向における重力荷重などが挙げられる。
つぎに、図4に示す第1評価部402は、取得部401が取得したモデル情報111に基づいて、解析対象のモデルの塊度を評価する。そして、選択部405は、モデルの塊度の評価結果に基づいて、モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する。
本実施の形態では、塊度の評価と塊度による判定について、判定方法1~判定方法5までを例に挙げる。
(判定方法1)
第1評価部402は、判定方法1において、ある空間に対する解析対象のモデルの充填度を塊度として算出する。具体的に、第1評価部402は、例えば、解析対象のモデルの体積と、モデルを覆う最小の特定種類の立体の体積と、の比率を塊度として算出する。ここでの特定種類の立体とは、充填に用いることが可能な立体である。充填とは、空間充填や球充填である。充填に用いることが可能な立体とは、例えば、球体、立方体、菱形十二面体などが挙げられる。ここでは、球体を例に挙げる。第1評価部402は、例えば、モデルの体積と、モデルを覆う最小の球体の体積と、の比率を塊度として算出する。第1評価部402は、例えば、以下式(1)に基づいて塊度を算出する。
第1評価部402は、判定方法1において、ある空間に対する解析対象のモデルの充填度を塊度として算出する。具体的に、第1評価部402は、例えば、解析対象のモデルの体積と、モデルを覆う最小の特定種類の立体の体積と、の比率を塊度として算出する。ここでの特定種類の立体とは、充填に用いることが可能な立体である。充填とは、空間充填や球充填である。充填に用いることが可能な立体とは、例えば、球体、立方体、菱形十二面体などが挙げられる。ここでは、球体を例に挙げる。第1評価部402は、例えば、モデルの体積と、モデルを覆う最小の球体の体積と、の比率を塊度として算出する。第1評価部402は、例えば、以下式(1)に基づいて塊度を算出する。
塊度=モデルの体積/モデルを覆う最小の球体の体積・・・式(1)
この判定方法1により、CAEのプリプロセッサによってメッシュ分割を行う前段階であっても、解法の選択を行うことができ、解法を簡単に決定することが可能となる。
(判定方法2)
第1評価部402は、判定方法2において、解析対象のモデルが重いかどうかの指標を塊度として算出する。具体的に、第1評価部402は、例えば、慣性モーメントによって解析対象のモデルの主慣性モーメントと質量と体積とに基づいて塊度を算出する。第1評価部402は、例えば、以下の式(2)に基づいて塊度を算出する。
第1評価部402は、判定方法2において、解析対象のモデルが重いかどうかの指標を塊度として算出する。具体的に、第1評価部402は、例えば、慣性モーメントによって解析対象のモデルの主慣性モーメントと質量と体積とに基づいて塊度を算出する。第1評価部402は、例えば、以下の式(2)に基づいて塊度を算出する。
塊度=1/((Ix×Iy×Iz)/(M^3)/(V^2))・・・式(2)
ここで、Ix、Iy、Izはモデルの主慣性モーメント、Mはモデルの質量、Vはモデルの体積である。
ここで、Ix、Iy、Izはモデルの主慣性モーメント、Mはモデルの質量、Vはモデルの体積である。
この判定方法2により、CAEのプリプロセッサによってメッシュ分割を行う前段階であっても、解法の選択を行うことができ、解法を簡単に決定することが可能となる。
(判定方法3)
第1評価部402は、判定方法3において、解析対象モデルの全要素数と全節点数との比を塊度として算出する。具体的に、第1評価部402は、以下式(3)によって塊度を算出する。
第1評価部402は、判定方法3において、解析対象モデルの全要素数と全節点数との比を塊度として算出する。具体的に、第1評価部402は、以下式(3)によって塊度を算出する。
塊度=全要素数/全節点数・・・式(3)
ここで、節点は複数の要素により共有されるため、モデル全体の節点数は、要素数×1要素当たりの節点数より少なくなる。例えば、解析対象モデルが板梁ものであると、節点が解析対象モデルの表面に多くなるため、節点の数が複数の要素により共有化される可能性が低くなる。これに対して、解析対象モデルが塊ものであれば、内部で節点が共有化される可能性が高くなる。このため、「全要素数/全節点数」が大きな値であるほど、塊ものである可能性が高くなる。一方、「全要素数/全節点数」が小さな値であるほど、板梁ものである可能性が高くなる。塊度が高いと、共有化される節点が相対的に多くなり、連立一次方程式の係数行列や三角行列の非ゼロ領域が増え、直接法の解析時間が長くなる。このため、塊度が高い場合に、反復法が選択されることにより解析時間の短縮化を図ることができる。また、板梁ものについて反復法を選択すると、収束が遅く、解析時間が長くなる。塊度が低い場合に、直接法が選択されることにより解析時間の短縮化を図ることができる。
(判定方法4)
第1評価部402は、判定方法例4において、解析対象モデルの解析自由度数に基づく指標値を塊度として算出する。具体的に、第1評価部402は、例えば、要素ごとの解析自由度数のモデル全体での総和と、モデル全体の解析自由度数と、の比を塊度として算出する。第1評価部402は、例えば、以下式(4)によって塊度を算出する。
第1評価部402は、判定方法例4において、解析対象モデルの解析自由度数に基づく指標値を塊度として算出する。具体的に、第1評価部402は、例えば、要素ごとの解析自由度数のモデル全体での総和と、モデル全体の解析自由度数と、の比を塊度として算出する。第1評価部402は、例えば、以下式(4)によって塊度を算出する。
塊度=要素ごとの解析自由度数のモデル全体での総和/モデル全体の解析自由度数・・・式(4)
要素ごとの解析自由度数のモデル全体での総和は、1要素当たりの解析自由度数の合計値である。より具体的には、要素ごとの解析自由度数のモデル全体での総和は、要素数×1要素当たりの節点数×1節点当たり自由度数である。モデル全体の解析自由度数は、連立一次方程式の次元数であり、未知の場合はモデル全体の節点数×1節点当たり自由度数-モデル全体の拘束自由度数で算出できる。
要素数が5000であり、1要素当たりの節点数が10であり、節点数が8000であり、1節点当たりの自由度数が3を例に挙げる。要素ごとの解析自由度数のモデル全体での総和は、5000×10×3である。これに対して、モデル全体の解析自由度数は、モデル全体の拘束自由度数を無視すれば、8000×3である。そして、塊度は、150000/24000となる。
上述したように、節点は複数の要素により共有されるため、モデル全体の節点数は、要素数×1要素当たりの節点数より少ない。解析対象のモデルが、塊ものであると、節点が複数の要素により共有される可能性が高くなる。これに対して、解析対象のモデルが板梁ものであると、節点が表面にある可能性が高くなり、節点が複数の要素により共有される数は塊ものよりは相対的に小さくなる。塊度が高いと、共有化される節点が相対的に多くなり、連立一次方程式の係数行列や三角行列の非ゼロ領域が増え、直接法の解析時間が長くなる。このため、塊度が高い場合に、反復法が選択されることにより解析時間の短縮化を図ることができる。また、板梁ものについて反復法を選択すると、収束が遅く、解析時間が長くなる。塊度が低い場合に、直接法が選択されることにより解析時間の短縮化を図ることができる。
また、判定方法4によれば、要素タイプが異なるモデル間であっても塊度の比較を行うことができる。このため、要素タイプが異なっていても同じ閾値で判定を行うことも可能であり、解法の選択を簡単に行うことができる。
(判定方法5)
第1評価部402は、判定方法5において、解析対象モデルの表面上の節点数によって塊度を算出する。具体的に、第1評価部402は、例えば、モデル全体の節点数とモデル表面上の節点数との比を塊度として算出する。また、第1評価部402は、判定方法5において、モデル内部にある節点数と、モデルの表面上にある節点数と、の比を塊度として算出してもよい。また、第1評価部402は、判定方法5において、モデルの内部にある節点数と、モデル全体の節点数と、の比を塊度として算出してもよい。モデルの内部にある節点数とは、モデルの表面上にある節点以外の節点の数である。第1評価部402は、例えば、以下式(5)によって塊度を算出する。
第1評価部402は、判定方法5において、解析対象モデルの表面上の節点数によって塊度を算出する。具体的に、第1評価部402は、例えば、モデル全体の節点数とモデル表面上の節点数との比を塊度として算出する。また、第1評価部402は、判定方法5において、モデル内部にある節点数と、モデルの表面上にある節点数と、の比を塊度として算出してもよい。また、第1評価部402は、判定方法5において、モデルの内部にある節点数と、モデル全体の節点数と、の比を塊度として算出してもよい。モデルの内部にある節点数とは、モデルの表面上にある節点以外の節点の数である。第1評価部402は、例えば、以下式(5)によって塊度を算出する。
塊度=モデル全体の節点数/モデル表面上の節点数・・・式(5)
ここで、第1評価部402は、図5(1)~(3)などに示したモデル情報111に基づいて、モデルに含まれる各節点が内部にある節点であるか表面にある節点であるかを特定できる。
上述したように、モデルの形状のタイプが塊ものであると、モデル内部において共有される節点の数が多くなるため、相対的にモデル表面上の節点数が少なくなる。このため、式(5)によると、モデル全体の節点数に対してモデル表面上の節点数が少ないと、塊度が大きくなり、塊ものである可能性が高くなる。これに対して、モデルの形状のタイプが板梁ものであると、モデル内部において共有される節点の数が少なくなり、相対的にモデル表面上の節点数が多くなる。このため、モデル全体の節点数に対してモデル表面上の節点数が多いと、塊度が小さくなり、板梁ものである可能性が高くなる。
また、有限要素法を用いる場合に、有限要素法用に解析対象モデルが作成される。このため、要素数や節点数はモデル情報111を参照すれば、簡単に特定可能であり、判定方法3~5によれば、解析法を簡単に選択することができる。
つぎに、選択部405は、モデルの塊度の評価結果に基づいて、モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する。選択部405は、例えば、塊度が大きいほど、反復法を選択する。具体的に、選択部405は、塊度が閾値以上であるか否かによって直接法とするか反復法とするかを選択する。選択部405は、例えば、塊度が閾値以上であれば、反復法を選択し、塊度が閾値未満であれば、直接法を選択する。これにより、塊度が大きいほど、反復法が選択されやすくなる。閾値は、予め設定してROM302、RAM303、ディスク305などの記憶装置に記憶させておく。
つぎに、選択部405による詳細な選択例の説明の前に、選択部405による選択時の閾値の設定方法について説明する。ここでは、閾値の設定方法を構造解析装置100が行うとして説明するが、これに限らず、例えば、構造解析装置100と異なる装置が閾値を決定しておき、構造解析装置100に閾値を提供してもよい。
まず、構造解析装置100は、例えば、複数のモデルの各々について塊度を算出する。また、構造解析装置100は、複数のモデルの各々について、直接法及び反復法による数値解析を実行する。構造解析装置100は、直接法による解析時間と、反復法による解析時間との性能比が1となる場合の塊度を線形補間により求めて閾値とする。
図6は、閾値の導出に用いるモデル例を示す説明図である。モデルm1~モデルm4を例に挙げて閾値の導出について説明する。モデルm1の寸法は、例えば、10×100×1000であり、形状のタイプは板梁ものである。モデルm2の寸法は、例えば、50×100×1000であり、形状のタイプは板梁ものである。モデルm3の寸法は、例えば、50×100×200であり、形状のタイプは塊ものである。モデルm4の寸法は、例えば、250×500×1000であり、形状のタイプは塊ものである。
本実施の形態では、モデルm1~モデルm4を要素数が5000程度になるようにメッシュ分割した場合と、要素数が10000程度となるようにメッシュ分割した場合と、の各々について、各判定方法での塊度と解析時間とによって閾値を設定する例を示す。
図7は、要素数が5000の場合の閾値の導出例を示す説明図である。図7において(1)~(11)には判定方法で用いる各数値と、(12)と(13)には解析時間を示す。
まず、構造解析装置100は、例えば、上述したように、判定方法1を用いて、モデルの体積/モデルを覆う最小の球体の体積によって塊度を求める。モデルの体積は図7(1)に示し、モデルを覆う最小の球体の体積は図7(6)に示す。
例えば、判定方法1を用いたモデルm1の塊度は、「1.00E+06/5.32E+08」によって「1.88E-03」となる。
つぎに、構造解析装置100は、例えば、上述したように、判定方法2を用いて、「(主慣性モーメントIx×主慣性モーメントIy×主慣性モーメントIz)/(質量^3)/(モデルの体積^2)」によって塊度を求める。主慣性モーメントIxは図7(3)に示し、主慣性モーメントIyは図7(4)に示し、主慣性モーメントIzは図7(5)に示す。質量は図7(2)に示す。
例えば、判定方法2を用いたモデルm1の塊度は、「1/((6.54E+05×6.61E+05×6.61E+03)/7.85^3/1.00E+06)」によって「1.69E-01」となる。
つぎに、構造解析装置100は、例えば、上述したように、判定方法3を用いて、「モデルの要素数/モデルの節点数」によって塊度を求める。モデルの要素数は(8)に示し、モデルの節点数は図7(7)に示す。
例えば、判定方法3を用いたモデルm1の塊度は、「4660/8693」によって「5.36E-01」となる。
つぎに、構造解析装置100は、例えば、上述したように、判定方法4を用いて、「各要素ごとの解析自由度数の総和/解析自由度数」によって塊度を求める。各要素ごとの解析自由度数の総和は、図7(10)に示す。解析自由度数は、図7(9)に示す。
例えば、判定方法4を用いたモデルm1の塊度は、「(4660×3×10)/25944」によって「5.39」となる。上述したように、各要素ごとの解析自由度数の総和は、要素数×1節点当たりの自由度数×1要素当たりの節点数であり、「4660×3×10」によって「139800」となる。要素タイプは四面体の二次要素である。
そして、構造解析装置100は、例えば、上述したように、判定方法5を用いて、「モデル全体の節点数/モデル表面上の節点数」によって塊度を求める。モデル全体の節点数は図7(7)に示す。モデル表面上の節点数は図7(11)に示す。
例えば、判定方法5を用いたモデルm1の塊度は、「8693/4730」によって「1.84」となる。同様に、モデルm2~モデルm4についても判定方法1~判定方法5を用いて求める。
つぎに、構造解析装置100は、例えば、モデルm1~m4の各々について、直接法による数値解析と、反復法による数値解析と、を行うことにより解析時間を求める。そして、構造解析装置100は、直接法による解析時間と反復法による解析時間との比を解析方法の性能比として求める。
図7の例では、モデルm2の性能比とモデルm3の性能比との間に性能比1がある。そこで、構造解析装置100は、モデルm2の塊度とモデルm3の塊度とを線形補間して性能比が1となる場合の塊度を求める。そして、構造解析装置100は、性能比が1となる場合の塊度を閾値として設定する。例えば、線形補間に限らず、ラグランジュ補間、スプライン補間、最小二乗法によって求めてもよい。
以下に判定方法1における閾値を線形補間によって求める例を示す。
閾値=モデルm2の塊度+(モデルm3の塊度-モデルm2の塊度)×((1-モデル2の性能比)/(モデル3の性能比-モデル2の性能比))
=(9.37E-03)+((1.59E-01)-(9.37E-03))×((1-0.24)/(1.49-0.24))
=1.00E-01
閾値=モデルm2の塊度+(モデルm3の塊度-モデルm2の塊度)×((1-モデル2の性能比)/(モデル3の性能比-モデル2の性能比))
=(9.37E-03)+((1.59E-01)-(9.37E-03))×((1-0.24)/(1.49-0.24))
=1.00E-01
このようにして、各判定方法における閾値を求めることができる。性能比で示すように、モデルm2は反復法による解析時間よりも直接法による解析時間が短い。これに対して、モデルm3は直接法による解析時間よりも反復法による解析時間が短い。また、モデルm2の塊度は、モデルm3の塊度よりも小さい。このため、選択部405が、上述したように、第1評価部402により算出された塊度が閾値以上である場合に反復法を選択し、塊度が閾値未満である場合に直接法を選択することにより、解析時間の短縮化を図ることができる。
図8は、要素数が10000の場合の閾値の導出例を示す説明図である。図8では、図7と同様に閾値を求める例であるため、詳細な説明を省略する。
また、図8では、図7に示した例と同様に、モデルm2の性能比とモデルm3の性能比との間に性能比1があるため、構造解析装置100は、モデルm2の塊度とモデルm3の塊度とを線形補間して性能比が1となる場合の塊度を閾値として求める。また、図8の例では、図7に示した例と同様に、モデルm2は反復法による解析時間よりも直接法による解析時間が短い。これに対して、モデルm2により塊度が大きいモデルm3は直接法による解析時間よりも反復法による解析時間が短い。このため、上述したように、選択部405は、第1評価部402により算出された塊度が閾値以上であれば、反復法を選択し、閾値未満であれば、直接法を選択することにより、解析時間の短縮化を図ることができる。
つぎに、上述したように、図5に示す選択部405は、第1評価部402が算出した塊度と取得した閾値とを比較する。そして、選択部405は、塊度が閾値以上である場合、反復法を選択し、閾値未満である場合、直接法を選択する。
また、選択部405は、モデルの塊度の評価結果に基づいて、連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する際に、モデルの境界条件の強さ及び/又はモデルのモデル規模を選択に反映させる。
選択部405は、モデルの塊度の評価結果に基づいて、FEMを用いる構造解析のアルゴリズムを直接法とするか反復法とするか選択する際に、モデルの境界条件の強さ及び/又はモデルのモデル規模に基づいて、塊度に応じたアルゴリズムの選択基準を変更する。
このように、直接法とするか反復法とするか選択する際に、モデルの境界条件の強さ及び/又はモデルのモデル規模を選択に反映させるために、アルゴリズムの選択基準である閾値が補正されてもよいし、塊度が補正されてもよい。
まず、モデル規模について説明し、モデルの境界条件の強さについては、後述する。
解析対象モデル101のモデル規模が大きいと、解析する節点103の数が多いため、メモリ使用量が多くなる。このため、選択部405は、塊度に基づいてアルゴリズムを直接法とするか反復法とするか選択する際に、モデルのモデル規模を選択に反映される。モデルのモデル規模は、例えば、上述した、要素数、節点数、解析自由度数であってもよい。また、選択部405は、塊度に基づいてアルゴリズムを直接法とするか反復法とするか選択する際に、評価したモデル規模と、解析時に使用可能なメモリ使用量と、を選択に反映させてもよい。
具体的に、構造解析装置100は、例えば、直接法を用いてモデル101のモデル規模を解析する場合に使用するメモリ量が、解析時に使用可能なメモリ使用量未満である場合に、直接法を選択する。一方、構造解析装置100は、例えば、直接法を用いてモデル101のモデル規模を解析する場合に使用するメモリ量が、解析時に使用可能なメモリ使用量以上である場合に、反復法を選択する。
例えば、モデルを解析する場合に使用するメモリ量は、要素タイプや要素数や節点数などから算出されるモデル規模に基づいて推測値を算出可能である。例えば、直接法を用いる場合に要素1つに対してどの程度のメモリ量を使用するかを予め記憶装置などに用意しておいてもよい。そして、構造解析装置100は、解析対象モデル101の要素数に応じて使用するメモリ量を算出してもよい。
例えば、一般的に直接法による解析の方が反復法による解析よりも精度が高いため、直接法による解析に時間がかからないことが分かる場合に、精度の向上のために、直接法を利用したい場合がある。しかし、上述したように、直接法による解析の場合、メモリの使用量が不足すると、解析に時間がかかる。このため、モデル規模に応じて解析法を選択することで、モデル規模によってメモリの使用量を推定できるため、メモリを不足させずに直接法による解析を行い、精度の向上を図りつつ、解析時間の短縮化を図ることができる。
また、選択部405は、例えば、モデルの塊度の評価結果に基づいて、FEMを用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する際に、モデルのモデル規模が大規模であるほど、反復法を選択する。
第2評価部403は、例えば、モデル情報111とメッシュサイズとから算出された要素数及び/又は節点数及び/又は解析自由度数に基づいてモデル規模の評価を行う。例えば、モデル情報111が、例えば、モデルの体積などのモデルの形状を表す情報含む場合、第2評価部403は、モデルの体積と、メッシュサイズと、要素タイプと、に基づいて要素数を算出する。ここで算出される要素数は予測値である。また、第2評価部403は、例えば、モデルの要素数と、要素タイプと、塊度と、に基づいて節点数を算出する。ここで算出される節点数は、予測値となる。また、第2評価部403は、例えば、モデルの節点数と、要素タイプと、拘束条件と、に基づいて解析自由度数を算出する。ここで算出される解析自由度数は、予測値となる。
また、図5(1)~(3)に示したように、モデル情報111にモデルに含まれる要素や節点や解析自由度数の情報などがモデル情報111に含まれる場合、第2評価部403はモデル情報111から要素数や節点数や解析自由度数を特定してもよい。
また、選択部405は、例えば、モデル規模が大規模であるほど、反復法を選択する。具体的に、選択部405は、モデルのモデル規模に応じて閾値を取得して、取得した閾値に基づいて反復法と直接法とから解析方法を選択する。
図9は、モデル規模に応じた閾値例を示す説明図である。閾値テーブル900は、例えば、判定方法及び要素数ごとに閾値を有する。判定方法は、例えば、上述した判定方法1~判定方法5である。図9では、モデル規模の評価の一例として、要素数を挙げるが、これに限らず、上述したように節点数や解析自由度数であってもよい。
閾値テーブル900例では、要素数は、例えば、3000、5000、7000、10000である。ここで、判定方法1を例に挙げると、要素数が3000に対応する閾値th11>要素数が5000に対応する閾値th12>要素数が7000に対応する閾値th13>要素数が10000に対応する閾値th14である。このように、要素数が小さいほど、閾値が大きくなる。これにより、要素数が大きいほど、閾値が小さいため、要素数が大きいほど、反復法が選択されるようになる。モデル規模が大きい場合に、直接法を用いると解析時にメモリの使用量が多く、メモリの使用量が足りなくなり、解析に時間がかかる。このため、モデル規模が大きいときに、反復法が選択されるようになることで、解析時にメモリが不足することを回避でき、解析時間の短縮化を図ることができる。
選択部405は、閾値テーブル900から要素数に応じた閾値を取得して、算出した塊度と取得した閾値とを比較する。具体的に、選択部405は、例えば、解析対象モデルの要素数が4000以下であれば、要素数が3000に対応する閾値を取得する。具体的に、選択部405は、例えば、解析対象モデルの要素数が4000より大きく7000以下であれば、要素数が5000に対応する閾値を取得する。このように、要素数の範囲を設けてもよい。そして、選択部405は、算出した塊度が取得した閾値以上である場合に反復法を選択し、算出した塊度が取得した閾値未満である場合、直接法を選択する。
ここで、図7及び図8の例では、判定方法3~5について、要素数が5000の場合よりも要素数が10000の場合の方が、閾値が小さくなっている。これは同一のモデルに対して、要素数が5000の場合よりも要素数が10000の場合の方が、より小さいメッシュサイズで要素分割を行ったため、モデルの塊度自体が高くなったことが原因である。
また、補正部406が、解析対象のモデルの要素数に対応する閾値を、閾値テーブル900に含まれる各要素数に対応する閾値に対して線形補間を行うことにより算出してもよい。補正部406は、例えば、解析対象のモデルの要素数が7500であれば、要素数が7000に対応する閾値と、要素数が10000に対応する閾値と、を線形補間して、要素数が7500に対応する閾値を求めてもよい。また、閾値のサンプル点が多い場合、補正部406は、ラグランジュ補間やスプライン補間、最小二乗法などを用いて、解析対象モデルの要素数に対応する閾値を求めてもよい。
これにより、塊度の評価に基づくアルゴリズムの選択時に、モデル規模が大規模であると、反復法が選択されるようになる。
図10は、塊度の算出例と解法の選択例を示す説明図である。解析対象モデルは、例えば、寸法が50×100×500である。形状のタイプは不明である。
第1評価部402は、例えば、判定方法1~5のうちの少なくともいずれかについて、塊度を算出する。詳細な算出方法については上記の通りのため、省略する。図10の例では、第1評価部402は、すべての判定方法1~5について塊度を算出する。
そして、第2評価部403は、例えば、解析対象モデルについての要素数及び/または節点数及び/または解析自由度数に基づいて解析対象モデルのモデル規模を評価する。ここで、モデル規模の指標値は、例えば、要素数そのものや節点数であってもよい。また、モデル規模の指標値は、例えば解析自由度数であってもよい。
選択部405は、例えば、閾値テーブル900から評価したモデル規模に応じて閾値を取得する。図10の例では、要素数が4724であるため、選択部405は、例えば、閾値テーブル900から、要素数が5000に対応する各判定方法の閾値を取得する。要素数が5000に対応する各判定方法の閾値として、図7の例を用いる。
図10の例では、判定方法1において、塊度「3.55E-02」<閾値「1.00E-01」であるため、選択部405は、直接法を選択する。
図10の例では、判定方法2において、塊度「1.32E+01」<閾値「4.08E+01」であるため、選択部405は、直接法を選択する。
図10の例では、判定方法3において、塊度「5.99E-01」<閾値「6.04E-01」であるため、選択部405は、直接法を選択する。
図10の例では、判定方法4において、塊度「6.17」<閾値「6.18」であるため、選択部405は、直接法を選択する。
図10の例では、判定方法5において、塊度「2.49」<閾値「2.64」であるため、選択部405は、直接法を選択する。
図10の例では、各判定方法において直接法が選択されたため、選択部405は、直接法を選択して数値解析を実行する。
つぎに、境界条件の強さについて説明する。図5に示すモデル情報111において説明したように、境界条件には、拘束条件と、荷重条件とがある。境界条件の強さは、例えば、拘束条件の強さと荷重条件の弱さとのいずれかであってもよいし、拘束条件の強さと荷重条件の弱さとに基づいて評価されてもよい。
拘束条件は、拘束の種類や方向、拘束する位置や領域、などが設定される。拘束条件の強さは、例えば、拘束条件に応じて解析対象モデルが拘束される強さである。拘束条件の強さは、例えば、後述するように拘束条件によって解析対象モデルの表面のうち拘束される範囲に相当する領域の面積に基づいて評価される。荷重条件は、荷重の種類、荷重の大きさや方向、荷重をかける位置や領域、などが設定される。荷重条件の弱さは、例えば、荷重条件が剛性に与える影響の大きさの逆数である。荷重条件の弱さは、例えば、荷重条件が剛性に与える影響の大きさの逆数に基づいて評価される。
ここでは、拘束条件を例に挙げて説明する。選択部405は、モデルの塊度の評価結果に基づいて、連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する際に、モデルの拘束条件の強さを選択に反映させる。具体的に、第3評価部404は、モデルの拘束面積、拘束自由度に基づいて、拘束条件の強さを算出する。拘束面積は、上述したように、拘束条件に応じてモデル内で拘束される部分の面積である。拘束自由度数は、上述したように、1節点当たりの自由度数のうち拘束される自由度数である。より具体的に、第3評価部404は、以下式(6)によって拘束条件の強さを算出する。
拘束条件の強さ=拘束面積/表面積×(1節点当たりの拘束自由度数/1節点当たりの自由度数)・・・式(6)
モデルに複数の拘束条件が設定されている場合は、これらの総和が、モデル全体での拘束条件の強さとなる。
モデルに複数の拘束条件が設定されている場合は、これらの総和が、モデル全体での拘束条件の強さとなる。
そして、選択部405は、第3評価部404によって算出された拘束条件の強さに基づいて補正された塊度に基づいて、アルゴリズムを選択する。
選択部405は、例えば、モデルの塊度の評価結果に基づいて、アルゴリズムを直接法とするかと反復法とするか選択する際に、モデルの拘束条件の強さに基づいて、評価して得られた塊度に応じたアルゴリズムの選択基準を変更する。具体的に、選択部405は、モデルの拘束条件の強さに基づいて補正された閾値を新たな選択基準とする。
また、例えば、選択部405は、モデルの塊度の評価結果に基づいてアルゴリズムを直接法とするか反復法とするか選択する際に、モデルの拘束条件の強さが小さいほど、直接法を選択するようにする。従来、モデルの拘束条件が不十分な場合、反復法では収束せずに、解が求められなかったり、解析に時間がかかったりするという問題点がある。このようなモデルの場合には、直接法を用いることで、比較的安定的に解を求めることができ、解析時間の短縮化を図ることができる。また、逆にモデルの拘束条件が強い場合には、反復法を用いることで、解析時間の短縮化を図ることができる。
ここでは、モデルの拘束条件の強さに基づいて閾値を補正する例を説明する。まず、拘束条件の強さに基づいて閾値を補正するために、構造解析装置100は、拘束条件の強さが異なるモデルによって塊度の閾値を求めておく。そして、補正部406は、解析対象モデルの拘束条件の強さと、拘束条件の強さが異なるモデルによって求めた塊度の閾値と、に基づいて閾値を補正する。ここで、拘束条件の強さが異なるモデルによって塊度の閾値を求める処理については構造解析装置100と異なる装置であってもよい。
図11は、拘束条件が片持ちの場合における塊度の閾値の導出例を示す説明図である。図11には、図6に示したモデルm2とモデルm3とについて拘束条件が片持ちの場合における塊度と解析時間とを用いて塊度の閾値を求めた例を示す。また、モデルm2とモデルm3とは、5000要素の場合を例に挙げる。モデルm2とモデルm3のハッチングされた箇所が拘束される箇所である。
判定方法1~5の各々におけるモデルm2とモデルm3の塊度の算出例については、図8に示した通りである。
構造解析装置100は、式(6)に基づいて、モデルm2とモデルm3の各々についての拘束条件の強さを算出する。ここで、1節点当たりの拘束自由度数と1節点当たりの自由度数とはいずれも3であるため、省略する。
拘束条件が片持ちであり、モデルm2の寸法が「50×100×1000」である。このため、モデルm2の拘束面積は、「50×100」によって「5.00E+03」となる。また、拘束条件が片持ちであり、モデルm3の寸法が「50×100×200」である。このため、モデルm3の拘束面積は、「50×100」によって「5.00E+03」となる。
そして、モデルm2についての拘束条件の強さは、「(5.00E+03)/(3.10E+05)」によって「1.61E-02」となる。また、モデルm3についての拘束条件の強さは、「(5.00E+03)/(3.10E+05)」によって「1.61E-02」となる。
構造解析装置100は、モデルm2とモデルm3との各々について、直接法と反復法との各々の数値解析を行うことにより解析時間を得る。そして、構造解析装置100は、直接法における解析時間と、反復法における解析時間と、の性能比を算出する。
モデルm2についての性能比は「0.24」であり、モデルm3についての性能比は「1.49」である。
つぎに、構造解析装置100は、直接法による解析時間と、反復法による解析時間との性能比が1となる場合の判定方法1~5の各々における塊度を線形補間により求めて閾値とする。つぎに、構造解析装置100は、この塊度の閾値に相当する拘束条件の強さを求める。具体的には、モデルm2の拘束条件の強さ及びモデルm3の拘束条件の強さと、モデルm2の性能比及びモデルm3の性能比と、に基づいて性能比が1の場合における拘束条件の強さを線形補間で算出する。線形補間の代わりにラグランジュ補間やスプライン補間、最小二乗法などを用いてもよい。
性能比が1の場合における拘束条件の強さ=モデルm2の拘束条件の強さ+(モデルm3の拘束条件の強さ-モデルm2の拘束条件の強さ)×((1-モデルm2の性能比)/(モデルm3の性能比-モデルm2の性能比))
=(1.61E-02)+((1.61E-02)-(1.61E-02))×((1-0.24)/(1.49-0.24))
=4.97E-02
=(1.61E-02)+((1.61E-02)-(1.61E-02))×((1-0.24)/(1.49-0.24))
=4.97E-02
図12は、拘束条件が両端固定の場合における塊度の閾値の導出例を示す説明図である。図12には、図6に示したモデルm2とモデルm3とについて拘束条件が両端固定の場合における塊度と解析時間とを用いて塊度の閾値を求めた例を示す。また、モデルm2とモデルm3とは、5000要素の場合を例に挙げる。モデルm2とモデルm3のハッチングされた箇所が拘束される箇所である。
判定方法1~5の各々におけるモデルm2とモデルm3の塊度の算出例については、図8に示した通りである。
構造解析装置100は、式(6)に基づいて、モデルm2とモデルm3の各々についての拘束条件の強さを算出する。ここで、1節点当たりの拘束自由度数と1節点当たりの自由度数とはいずれも3であるため、省略する。
拘束条件が両端固定であり、モデルm2の寸法が「50×100×1000」であるため、モデルm2の拘束面積は、「50×100×2」によって「1.00E+04」となる。また、拘束条件が両端固定であり、モデルm3の寸法が「50×100×200」であるため、モデルm3の拘束面積は、「50×100×2」によって「1.00E+04」となる。
そして、モデルm2についての拘束条件の強さは、「(1.00E+04)/(3.10E+05)」によって「3.23E-02」となる。また、モデルm3についての拘束条件の強さは、「(1.00E+04)/(7.00E+04)」によって「1.43E-01」となる。
構造解析装置100は、モデルm2とモデルm3との各々について、直接法と反復法との各々の数値解析を行うことにより解析時間を得る。そして、構造解析装置100は、直接法における解析時間と、反復法における解析時間と、の性能比を算出する。
モデルm2についての性能比は「0.38」であり、モデルm3についての性能比は「2.11」である。
つぎに、構造解析装置100は、直接法による解析時間と、反復法による解析時間との性能比が1となる場合の判定方法1~5の各々における塊度を線形補間により求めて閾値とする。つぎに、構造解析装置100は、この塊度の閾値に相当する拘束条件の強さを求める。具体的には、モデルm2の拘束条件の強さ及びモデルm3の拘束条件の強さと、モデルm2の性能比及びモデルm3の性能比と、に基づいて性能比が1の場合における拘束条件の強さを線形補間により算出する。線形補間の代わりにラグランジュ補間やスプライン補間、最小二乗法などを用いてもよい。
性能比が1の場合における拘束条件の強さ=モデルm2の拘束条件の強さ+(モデルm3の拘束条件の強さ-モデルm2の拘束条件の強さ)×((1-モデルm2の性能比)/(モデルm3の性能比-モデルm2の性能比))
=(3.23E-02)+((1.43E-01)-(3.23E-02))×((1-0.38)/(2.11-0.38))
=7.20E-02
=(3.23E-02)+((1.43E-01)-(3.23E-02))×((1-0.38)/(2.11-0.38))
=7.20E-02
つぎに、補正部406は、例えば、第3評価部404によって算出された拘束条件の強さに基づいて塊度の閾値を補正する。
図13は、拘束条件の強さによる塊度の閾値の補正及び解法の選択例を示す説明図である。補正部406は、例えば、上述の性能比が1に対応する拘束条件の強さと、解析対象モデルの拘束条件の強さとを比較して線形補間により閾値を補正する。線形補間の代わりにラグランジュ補間やスプライン補間、最小二乗法などを用いてもよい。
解析対象モデルの拘束条件の強さは、「(1.00E+04)/(1.60E+5)」によって「6.25E-02」となる。
ここで、判定方法1を例に挙げて閾値の補正について説明する。補正後の閾値は以下のように求めることができる。判定方法1における片持ちの場合の閾値は、図11に示すように「1.00E-01」であり、両端固定の場合の閾値は、図12に示すように「6.30E-02」である。
補正後の閾値=片持ちの場合の閾値+(両端固定の場合の閾値-片持ちの場合の閾値)×((解析対象モデルの拘束条件の強さ-片持ちの場合における性能比1に対応する拘束条件の強さ)/(両端固定の場合における性能比1に対応する拘束条件の強さ-片持ちの場合における性能比1に対応する拘束条件の強さ))
=(1.00E-01)+((6.30E-02)-(1.00E-01))×(((6.25E-02)-(4.97E-02))/((7.20E-02)-(4.97E-02))
=7.88E-02
補正後の閾値=片持ちの場合の閾値+(両端固定の場合の閾値-片持ちの場合の閾値)×((解析対象モデルの拘束条件の強さ-片持ちの場合における性能比1に対応する拘束条件の強さ)/(両端固定の場合における性能比1に対応する拘束条件の強さ-片持ちの場合における性能比1に対応する拘束条件の強さ))
=(1.00E-01)+((6.30E-02)-(1.00E-01))×(((6.25E-02)-(4.97E-02))/((7.20E-02)-(4.97E-02))
=7.88E-02
また、各拘束条件における閾値と拘束条件の強さとに基づいて、解析対象モデルの拘束条件の強さを与えれば補正後の閾値を求めることが可能な関数を作成しておいてもよい。そして、補正部406は、関数に解析対象モデルの拘束条件の強さを与えることにより拘束条件の強さに応じた閾値を求めてもよい。
また、補正部406は、判定方法2~5についても判定方法1と同様に拘束条件の強さに応じた閾値を算出する。そして、選択部405は、算出された塊度が補正した閾値以上であるか否かによって直接法と反復法とのうちのいずれかを選択する。
図13の例では、判定方法1において、選択部405は、直接法を選択する。判定方法2において、選択部405は、直接法を選択する。判定方法3において、選択部405は、反復法を選択する。判定方法4において、選択部405は、反復法を選択する。判定方法5において、選択部405は、直接法を選択する。
また、図13に示すように、判定方法に応じて選択される解法が異なる場合がある。このため、選択部405は、複数の判定方法の各々について解法を選択し、選択結果を出力してもよい。このように、判定方法ごとの選択結果を出力することにより、利用者に最終的な解法の選択をさせてもよい。
また、選択部405は、複数の判定方法の各々について解法を選択し、より多くの判定方法により選択された解法を最終的な解法として選択してもよい。また、選択部405は、複数の判定方法のうち一部の判定方法を用いて解法を選択してもよい。
また、選択部405は、例えば、塊度と、モデル規模と、境界条件の強さと、の3つによって解法を選択してもよい。上述したように、境界条件の強さによって閾値を補正したり、モデル規模に応じて閾値を選択するだけでなく、選択部405は、塊度と、モデル規模と、境界条件の強さと、の各々について解法を選択してもよい。
図14は、解法の選択例を示す説明図である。塊度と、モデル規模と、境界条件の強さとの3つを変数として3次元空間に対して、直接法を選択する領域と、反復法を選択する領域と、の閾値や曲面による境界を予め設定しておいてもよい。そして、選択部405は、3次元空間に対して、各算出した判定値がいずれの領域に含まれるかによって直接法と反復法とから解法を選択してもよい。図14の例では、選択部405は、塊度と、モデル規模と、境界条件の強さとの3つの変数のそれぞれが閾値以内である場合に、直接法を選択し、塊度と、モデル規模と、境界条件の強さとの3つの変数のいずれかが閾値以内でない場合、反復法を選択する。
また、図14の例では、閾値により境界を設けたが、曲面により境界を設けてもよい。また、塊度と、モデル規模と、境界条件の強さとの各々について複数の評価方法がある場合、選択部405は、複数の評価方法のうちの一部の組み合わせによりN次元空間として、閾値の境界により直接法と反復法とから解法を選択してもよい。複数の評価方法とは、上述したように、例えば、塊度については、判定方法1~5、モデル規模については、節点数、要素数、解析自由度数、境界条件の強さについては、拘束条件の強さ、荷重条件の弱さなどが挙げられる。
また、上述例では、選択部405は、反復法と直接法とのいずれかを選択するが、これに限らず、例えば、複数種類の反復法と複数種類の直接法からいずれかの解法を選択してもよいし、閾値を複数設けて複数の解法からいずれかの解法を選択してもよい。また、直接法と反復法とを例として挙げたが、これに限られるものではなく、その他の解法が含まれても良い。選択部405は、例えば、モデルの塊度の評価結果に基づいて、モデルの有限要素法を用いた構造解析の数値解析アルゴリズムを選択する。ここで、閾値の設定方法については、上述した反復法と直接法の選択のための閾値の設定方法と同様に行えばよいため、詳細な説明を省略する。
(構造解析装置100による構造解析処理手順例)
図15は、構造解析装置による構造解析処理手順例1を示すフローチャートである。構造解析装置100は、解析対象モデルのモデル情報111を取得する(ステップS1501)。
図15は、構造解析装置による構造解析処理手順例1を示すフローチャートである。構造解析装置100は、解析対象モデルのモデル情報111を取得する(ステップS1501)。
構造解析装置100は、解析対象モデルの塊度を評価する(ステップS1502)。構造解析装置100は、塊度と閾値とを比較する(ステップS1503)。
塊度が閾値未満の場合(ステップS1503:閾値未満)、構造解析装置100は、直接法を選択し(ステップS1504)、ステップS1506へ移行する。塊度が閾値以上の場合(ステップS1503:閾値以上)、構造解析装置100は、反復法を選択し(ステップS1505)、ステップS1506へ移行する。つぎに、構造解析装置100は、選択した解法により数値解析を実行し(ステップS1506)、一連の処理を終了する。
図16は、構造解析装置による構造解析処理手順例2を示すフローチャートである。構造解析装置100は、解析対象モデルのモデル情報111を取得する(ステップS1601)。
構造解析装置100は、拘束条件の強さを評価する(ステップS1602)。構造解析装置100は、解析対象モデルの塊度を評価する(ステップS1603)。構造解析装置100は、解析対象モデルのモデル規模を評価する(ステップS1604)。構造解析装置100は、モデル規模に応じた閾値を取得する(ステップS1605)。
構造解析装置100は、取得した閾値を拘束条件の強さに基づいて補正する(ステップS1606)。構造解析装置100は、塊度と閾値とを比較する(ステップS1607)。塊度が閾値未満である場合(ステップS1607:閾値未満)、構造解析装置100は、直接法を選択する(ステップS1608)。
塊度が閾値以上である場合(ステップS1607:閾値以上)、構造解析装置100は、反復法を選択する(ステップS1609)。構造解析装置100は、選択した計算資源で選択した解法により数値解析を実行し(ステップS1610)、一連の処理を終了する。
図17は、システム適用例を示す説明図である。システム1700は、例えば、クライアント端末装置1701と、データセンタ1702と、を有する。クライアント端末装置1701は、図17に示すように複数であってもよい。データセンタ1702は、例えば、複数のサーバ1703を有する。クライアント端末装置1701とデータセンタ1702とはネットワーク310を介して接続される。データセンタ1702におけるサーバ1703の管理方法については特に限定しない。
構造解析装置100は、クライアント端末装置1701と、複数のサーバ1703と、によって実現されてもよい。例えば、取得部401と、第1評価部402から第3評価部404と、補正部406と、についてはクライアント端末装置1701によって実現され、選択部405についてはサーバ1703によって実現されてもよい。ここで、データセンタ1702のいずれのサーバ1703が選択部405による処理を行うかを予め決定していてもよい。
ここで、クライアント端末装置1701とサーバ1703のハードウェア構成の詳細例については図示省略するが、図3に示した構造解析装置100のハードウェア構成と同様であってよい。また、サーバ1703は、キーボード307マウス308やディスプレイ309などの入出力装置がなくてもよい。
サーバ1703は、例えば、CADとCAEを実行する。そして、クライアント端末装置1701は、例えば、CAEによって作成されたモデル情報111を取得して塊度を評価する。そして、クライアント端末装置1701は、評価した塊度をサーバ1703へ送信する。また、塊度に限らず、クライアント端末装置1701は、評価したモデル規模や境界条件の強さをサーバ1703へ送信してもよい。そして、サーバ1703は、塊度に基づいて反復法と直接法とのいずれかの解法を選択し、選択した解法により数値解析を実行する。ここで、サーバ1703は、過去の解析の実績をデータベースに登録してもよい。そして、サーバ1703は、クライアント端末装置1701から受信した塊度に基づいて解法を選択してもよい。
図18は、解析データベース例を示す説明図である。解析データベース1800は、例えば、モデルID、塊度1、塊度2、塊度3、塊度4、塊度5、境界条件の強さ、モデル規模、直接法Aの解析時間、直接法Bの解析時間、反復法Cの解析時間、反復法Dの解析時間のフィールドを有する。各フィールドに情報が設定されることによりレコード(1801-1,1801-2)として記憶される。解析データベース1800は、例えば、ROM302、RAM303、ディスク305などの記憶装置によって実現される。
モデルIDのフィールドには、モデルを識別する識別情報が設定される。塊度1のフィールドには、モデルIDが示すモデルの判定方法1における塊度が設定される。塊度2のフィールドには、モデルIDが示すモデルの判定方法2における塊度が設定される。塊度3のフィールドには、モデルIDが示すモデルの判定方法3における塊度が設定される。塊度4のフィールドには、モデルIDが示すモデルの判定方法4における塊度が設定される。塊度5のフィールドには、モデルIDが示すモデルの判定方法5における塊度が設定される。境界条件の強さのフィールドには、モデルIDが示すモデルの境界条件の強さが設定される。例えば、拘束条件の強さが設定される。モデル規模のフィールドには、モデルIDが示すモデルのモデル規模が設定される。例えば、要素数が設定される。
直接法Aの解析時間のフィールドには、直接法Aを用いて数値解析した場合の解析時間が設定される。直接法Bの解析時間のフィールドには、直接法Bを用いて数値解析した場合の解析時間が設定される。反復法Cの解析時間のフィールドには、反復法Cを用いて数値解析した場合の解析時間が設定される。反復法Dの解析時間のフィールドには、反復法Dを用いて数値解析した場合の解析時間が設定される。このように、解法には様々な方法があるため、解析時間のフィールドは、準備された様々な解法や前処理の方法毎に用意される。
また、図18に示すフィールドに限らず、モデルの寸法、体積、メッシュサイズ、要素タイプなども記憶されていてもよい。また、メモリ量やCPU数などの解析実行時に割り当てられた計算資源や実際に必要だった実績値としての計算資源の情報も記憶されていてもよい。
図19は、システムにおける実績に基づく解法の選択例を示す説明図である。クライアント端末装置1701は、例えば、塊度、拘束条件の強さ、モデル規模などの評価結果をサーバ1703へ送信する。つぎに、サーバ1703は、クライアント端末装置1701から受信した評価結果に最も近い評価結果を有するレコードを解析データベース1800から検索する。具体的に、サーバ1703は、評価結果と、解析データベース1800に含まれるレコード内の評価結果と、を比較して、類似度をスコア化して最も近い評価結果を有するレコードを検出してもよい。
サーバ1703は、例えば、検出したレコードに含まれる解法の解析時間のうち最も短い解析時間の解法を、解析対象モデルの解法として選択する。図19の例では、反復法Cが選択される。サーバ1703は、例えば、選択した解法やモデル規模に基づいて、計算資源を決定する。図19の例では、サーバ1703-1とサーバ1703-2とを用いて解析が行われる。計算資源の決定例については、例えば、図20を用いて説明する。
サーバ1703-1とサーバ1703-2とが、並列処理により、選択した反復法Cを用いて解析対象モデルに対して数値解析を行う。
つぎに、サーバ1703は、解析結果をクライアント端末へ送信する。また、サーバ1703は、評価結果と、解析時間と、をレコードとして解析データベース1800へ登録する。
また、サーバ1703は、計算機資源が空いている場合に、解析対象モデルの解法として選択しなかった解法による数値解析を行い、解析時間を解析データベース1800へ登録する。
また、検出された最も近い評価結果について、各類似度が低い場合には、サーバ1703は、上述したように塊度と閾値とを比較して解法を選択してもよい。
図20は、サーバの状態とメモリ量の管理例を示す説明図である。テーブル2000は、データセンタ1702内にあるサーバ1703の状態と資源を管理するための情報を有する。テーブル2000は、例えば、サーバID、状態、メモリ量、CPU数などのフィールドを有する。
サーバIDのフィールドには、サーバ1703を識別する識別情報が設定される。状態のフィールドには、サーバ1703の状態を示す情報が設定される。図20の例では、「使用中」と「未使用」によってサーバ1703の状態を表す。また、より詳細に、使用中のCPU数などによってサーバ1703の状態を表してもよい。
メモリ量のフィールドには、サーバ1703が有するRAM303やディスク305のメモリ量が設定される。CPU数のフィールドには、例えば、サーバ1703が有するプロセッサの数が設定される。
ここで、サーバ1703-1~サーバ1703-3については、メモリ量とCPU数が同じであるが、サーバ1703-4は、サーバ1703-1~サーバ1703-3よりもメモリ量及びCPU数が多い場合を例に挙げる。
解析対象モデルがx~zまでの3つの例を挙げる。ここで、解析対象モデルのモデル規模は同程度であるとする。また、解析対象モデルxの塊度がaxであり、解析対象モデルyの塊度がayであり、解析対象モデルzの塊度がazとする。塊度の関係はax>閾値>ay>azである。解析対象モデルxの解法は反復法が選択され、解析対象モデルyの解法は直接法が選択され、解析対象モデルzの解法は直接法が選択される。
ここで、サーバ1703は、直接法を選択した場合に、メモリ量が多い計算資源を選択する。サーバ1703は、例えば、サーバ1703-4を計算資源として選択する。サーバ1703は、例えば、反復法の場合、サーバ1703-1~サーバ1703-3のいずれかを選択する。また、サーバ1703は、例えば、複数の反復法が選択可能な場合、反復法の種類に応じて、サーバ1703-1~サーバ1703-3のうちの複数のサーバ1703によって同時処理を行うようにしてもよい。また、サーバ1703は、複数のサーバを用いた並列処理が可能な解法の場合には、複数の計算資源を選択してもよい。さらに、サーバ1703は、モデル情報から、効率的な計算に必要なメモリ量などの計算資源を予め見積もり、その結果に応じて適切な計算資源を選択してもよい。
例えば、解析対象モデルxについては、例えば、計算資源としてサーバ1703-4が選択される。解析対象モデルyについては、例えば、計算資源としてサーバ1703-1が選択される。解析対象モデルzについては、例えば、計算資源としてサーバ1703-2が選択される。このように、選択部405は、それぞれの解析対象モデルについて計算資源を選択する。
また、計算資源の選択のために、テーブルを用いる例を挙げたが、特に限定しない。
(システム1700による構造解析処理手順例を示すフローチャートである。)
図21及び図22は、システムによる構造解析処理手順例を示すフローチャートである。ここで、システム1700は、上述したように、クライアント端末装置1701と、サーバ1703とを有する。そのため、図21及び図22に示す処理については、サーバ1703が行ってもよいし、クライアント端末装置1701が行ってもよい。
図21及び図22は、システムによる構造解析処理手順例を示すフローチャートである。ここで、システム1700は、上述したように、クライアント端末装置1701と、サーバ1703とを有する。そのため、図21及び図22に示す処理については、サーバ1703が行ってもよいし、クライアント端末装置1701が行ってもよい。
システム1700は、クライアント端末装置1701によって解析対象モデルのモデル情報111を取得する(ステップS2101)。つぎに、システム1700は、クライアント端末装置1701によって解析対象モデルのモデル規模を評価する(ステップS2102)。システム1700は、クライアント端末装置1701によって境界条件の強さを評価する(ステップS2103)。
つぎに、システム1700は、クライアント端末装置1701によって解析対象モデルの塊度を評価する(ステップS2104)。システム1700は、解析データベース1800から、サーバ1703によって、解析対象モデルの評価結果に最も近い評価結果を含むレコードを検索する(ステップS2105)。システム1700は、サーバ1703によって検索したレコードから最も解析時間の短い解法を選択する(ステップS2106)。つぎに、システム1700は、サーバ1703によって特定した解法により数値解析を実行する(ステップS2107)。
つぎに、システム1700は、サーバ1703によって解析結果を出力する(ステップS2201)。そして、システム1700は、サーバ1703によって評価結果と解析時間を解析データベース1800に格納する(ステップS2202)。システム1700は、計算機環境の負荷が高いか否かを判定する(ステップS2203)。計算機環境の負荷が高い場合(ステップS2203:Yes)、システム1700は、ステップS2203へ戻る。計算機環境の負荷が高いとは、例えば、処理のないサーバ1703がない状態である。
計算機環境の負荷が低い場合(ステップS2203:No)、システム1700は、サーバ1703によってすべての解法で解析実行したか否かを判断する(ステップS2204)。すべての解法で解析実行していないと判断された場合(ステップS2204:No)、システム1700は、未実行の解法のうち検索したレコードの中で最も解析時間が短い解法により数値解析を実行する(ステップS2205)。そして、システム1700は、解析時間を解析データベース1800に格納し(ステップS2206)、ステップS2203へ戻る。すべての解法で解析実行したと判断された場合(ステップS2204:Yes)、システム1700は、一連の処理を終了する。
以上説明したように、構造解析装置100は、解析対象のモデルの形状を表す情報に基づきモデルの塊度を評価し、有限要素法を用いた連立一次方程式による解法を選択する。これにより、モデルの形状の特徴を判定することで、連立一次方程式の特性に応じた解法が選択されるため、解析時間の短縮化を図ることが可能となる。
また、塊度は、モデルの体積と、モデルを覆う最小の球または立方体の体積と、に基づいて評価される。これにより、CAEのプリプロセッサによってメッシュ分割を行う前段階であっても、解法の選択を行うことができ、解法を簡単に決定することが可能となる。
また、塊度は、モデルの体積とモデルの質量とモデルの主慣性モーメントとに基づき評価される。このように、モデルの形状とモデルの重さとに応じて解法が選択される。これにより、CAEのプリプロセッサによってメッシュ分割を行う前段階であっても、解法の選択を行うことができ、解法を簡単に決定することが可能となる。
また、塊度は、モデルの要素数と節点数とに基づいて評価される。例えば、解析対象モデルが板梁ものであると、節点が解析対象モデルの表面に多くなるため、節点の数が複数の要素により共有化される可能性が低くなる。これに対して、解析対象モデルが塊ものであれば、内部で節点が共有化される可能性が高くなる。このため、全要素数/全節点数が大きな値であれば、塊ものである可能性が高くなり、全要素数/全節点数が小さな値であれば、板梁ものである可能性が高くなる。このため、解析対象モデルが塊ものに対して反復法を選択させ、解析対象モデルが板梁ものに対して直接法を選択させることができ、解析時間の短縮化を図ることができる。また、有限要素法を用いる際の解析対象モデルから要素数や節点数は簡単に特定可能であるため、解法を簡単に決定することができる。
また、塊度は、モデルに含まれる各要素の解析自由度数の総和とモデル全体の解析自由度数とに基づいて評価される。解析自由度数は、例えば、節点数などによって予測値を算出することができる。このため、有限要素法を用いる際の解析対象モデルから解析自由度数を見積もることができ、解法を簡単に決定することができる。また、要素タイプが異なるモデル間で塊度の比較を行うことができるため、汎用性が高い。
また、塊度は、モデルの節点数のうちのモデルの表面上にある節点の数と、モデルの節点数のうちのモデルの内部にある節点の数と、に基づいて評価される。例えば、解析対象モデルが板梁ものであると、節点が解析対象モデルの表面に多くなるため、節点の数が複数の要素により共有化される可能性が低くなる。これに対して、解析対象モデルが塊ものであれば、内部で節点が共有化される可能性が高くなる。このため、表面上にある節点数と、内部にある節点数との比によって塊ものに近い形状であるか板梁ものに近い形状であるかを判定することができる。したがって、解析時間の短縮化を図ることができる。
また、構造解析装置100は、モデルの塊度の評価結果に基づいて、解法を選択する際に、塊度が大きいほど、反復法が選択されやすくする。解析対象モデルが板梁ものであると、反復法において解が収束せず解析に時間がかかる。このため、塊度が小さい場合に、直接法を選択することにより、解析時間の短縮を図ることができる。また、解析対象モデルが塊ものであると、直接法において演算量が増え解析に時間がかかる。このため、塊度が大きい場合に、反復法を選択することにより、解析時間の短縮化を図ることができる。
また、構造解析装置100は、モデルの塊度の評価結果に基づいて、解法を選択する際に、モデルの境界条件の強さ及び/又は前記モデルのモデル規模を選択に反映させる。これにより、より連立一次方程式の特性に応じた解法が選択されるため、解析時間の短縮化を図ることができる。
また、構造解析装置100は、モデルの塊度の評価結果に基づいて、解法を選択する際に、モデルの境界条件の強さが大きいほど、反復法を選択する。従来、モデルの拘束条件が不十分な場合など、モデルが不安定であり、反復法において収束しない場合がある。このため、モデルの境界条件の強さが小さい場合に、直接法が選択されやすくなる。これにより、解析時間の短縮化を図ることができる。また、モデルの境界条件の強さが大きい場合など、モデルが安定している場合に、反復法が選択されやすくなることで、解析時間の短縮化を図ることができる。
また、構造解析装置100は、モデルの塊度の評価結果に基づいて、解法を選択する際に、モデルのモデル規模が大規模であるほど、反復法を選択する。直接法を用いると、メモリの使用量が大きくなる。また、モデルの規模が大きいと、演算量が多いため、メモリの使用量が大きくなる。このため、モデルの規模が大きい場合に、メモリの使用量の少ない反復法が選択されることにより、解析時間の短縮化を図ることができる。
また、構造解析装置100は、モデルの塊度の評価結果に基づいて、解法を選択する際に、モデルの境界条件の強さ及び/又は前記モデルのモデル規模に基づいて、評価して得られた塊度に応じたアルゴリズムの選択基準を変更する。これにより、モデルのモデル規模が大規模であるほど、反復法が選択されやすくでき、モデルの境界条件の強さが大きいほど、反復法が選択されやすくできる。
また、構造解析装置100は、境界条件の強さを、モデルの拘束面積、拘束自由度に基づいて算出する。このように、境界条件の強さを簡単に評価することができるため、判定に要する時間の短縮化を図ることができる。
また、構造解析装置100は、モデル規模を、モデル情報とメッシュサイズとから算出された要素数及び/又は節点数及び/又は解析自由度数に基づいて評価する。このように、モデル規模を簡単に評価することができるため、判定に要する時間の短縮化を図ることができる。
構造解析装置100は、解析対象のモデルの形状や境界条件を表す情報に基づきモデルの塊度及び/又はモデル規模及び/又は境界条件の強さを評価し、モデルの有限要素法を用いた構造解析の数値解析アルゴリズムを選択するとともに、数値解析で用いる計算資源を決定する。これにより、モデルの形状や境界条件の特徴から、数値解析の特性を判定でき、数値解析の特性に応じた解析方法と計算資源を用いて、解析時間の短縮化を図ることができる。
なお、本実施の形態で説明した構造解析方法は、予め用意された構造解析プログラムをパーソナル・コンピュータやワークステーション等のコンピュータで実行することにより実現することができる。本構造解析プログラムは、磁気ディスク、光ディスク、USB(Universal Serial Bus)フラッシュメモリなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。また、構造解析プログラムは、インターネット等のネットワークを介して配布してもよい。
100 構造解析装置
101 解析対象モデル
102 要素
103 節点
111 モデル情報
401 取得部
402 第1評価部
403 第2評価部
404 第3評価部
405 選択部
406 補正部
m1,m2,m3,m4 モデル
101 解析対象モデル
102 要素
103 節点
111 モデル情報
401 取得部
402 第1評価部
403 第2評価部
404 第3評価部
405 選択部
406 補正部
m1,m2,m3,m4 モデル
Claims (17)
- モデル情報を取得し、
取得した前記モデル情報に基づいて、解析対象のモデルの塊度を評価し、
前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する、
処理をコンピュータが実行することを特徴とする構造解析方法。 - 前記塊度は、前記モデルの体積と、前記モデルを覆う最小の球または立方体の体積と、に基づいて評価されることを特徴とする請求項1に記載の構造解析方法。
- 前記塊度は、前記モデルの体積と前記モデルの質量と前記モデルの主慣性モーメントとに基づき評価されることを特徴とする請求項1に記載の構造解析方法。
- 前記塊度は、前記モデルの要素数と節点数とに基づいて評価されることを特徴とする請求項1に記載の構造解析方法。
- 前記塊度は、前記モデルに含まれる各要素の解析自由度数の総和と前記モデル全体の解析自由度数とに基づいて評価されることを特徴とする請求項1に記載の構造解析方法。
- 前記塊度は、前記モデルの節点数のうちの前記モデルの表面上にある節点数と、前記モデルの節点数のうち前記モデルの表面上にある節点以外の節点数と、の比に基づいて評価されることを特徴とする請求項1に記載の構造解析方法。
- 前記塊度は、前記モデルの節点数のうちの前記モデルの表面上にある節点数と、前記モデルの節点数と、の比に基づいて評価されることを特徴とする請求項1に記載の構造解析方法。
- 前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する際に、前記塊度が大きいほど、反復法が選択されやすくする、ことを特徴とする請求項1に記載の構造解析方法。
- 前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する際に、前記モデルの境界条件の強さ及び/又は前記モデルのモデル規模を選択に反映させる、ことを特徴とする請求項1に記載の構造解析方法。
- 前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する際に、前記モデルの境界条件の強さが大きいほど、反復法が選択されやすくする、ことを特徴とする請求項1に記載の構造解析方法。
- 前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する際に、前記モデルのモデル規模が大規模であるほど、反復法が選択されやすくする、ことを特徴とする請求項1に記載の構造解析方法。
- 前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析に用いるアルゴリズムを直接法とするか反復法とするか選択する際に、前記モデルの境界条件の強さ及び/又は前記モデルのモデル規模に基づいて、評価して得られた前記塊度に応じたアルゴリズムの選択基準を変更する、ことを特徴とする請求項1に記載の構造解析方法。
- 前記境界条件の強さは、前記境界条件に含まれる拘束条件による前記モデルの拘束面積、拘束自由度に基づいて算出されることを特徴とする請求項12に記載の構造解析方法。
- 前記モデル規模の評価は、前記モデル情報と前記メッシュサイズとから算出された要素数及び/又は節点数及び/又は解析自由度数に基づいて行われる、ことを特徴とする請求項12に記載の構造解析方法。
- モデル情報を取得し、
取得した前記モデル情報に基づいて、解析対象のモデルの塊度及び/又は境界条件の強さ及び/又はモデル規模を評価し、
前記モデルの塊度及び/又は境界条件の強さ及び/又はモデル規模の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析の数値解析アルゴリズムを選択するとともに、数値解析で用いる計算資源を決定する、
処理をコンピュータが実行することを特徴とする構造解析方法。 - モデル情報を取得し、
取得した前記モデル情報に基づいて、解析対象のモデルの塊度を評価し、
前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析ソルバーの連立一次方程式求解のアルゴリズムを直接法とするか反復法とするか選択する、
処理をコンピュータに実行させることを特徴とする構造解析プログラム。 - モデル情報を取得し、
取得した前記モデル情報に基づいて、解析対象のモデルの塊度を評価し、
前記モデルの塊度の評価結果に基づいて、前記モデルの有限要素法を用いた構造解析の数値解析アルゴリズムを選択するとともに、数値解析で用いる計算資源を決定する
処理をコンピュータに実行させることを特徴とする構造解析プログラム。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017548569A JP6645509B2 (ja) | 2015-11-04 | 2015-11-04 | 構造解析方法、及び構造解析プログラム |
| PCT/JP2015/081099 WO2017077610A1 (ja) | 2015-11-04 | 2015-11-04 | 構造解析方法、及び構造解析プログラム |
| TW105135270A TWI614687B (zh) | 2015-11-04 | 2016-10-31 | 構造解析方法及構造解析程式 |
| US15/962,654 US11295050B2 (en) | 2015-11-04 | 2018-04-25 | Structural analysis method and structural analysis apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2015/081099 WO2017077610A1 (ja) | 2015-11-04 | 2015-11-04 | 構造解析方法、及び構造解析プログラム |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/962,654 Continuation US11295050B2 (en) | 2015-11-04 | 2018-04-25 | Structural analysis method and structural analysis apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017077610A1 true WO2017077610A1 (ja) | 2017-05-11 |
Family
ID=58662391
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2015/081099 Ceased WO2017077610A1 (ja) | 2015-11-04 | 2015-11-04 | 構造解析方法、及び構造解析プログラム |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US11295050B2 (ja) |
| JP (1) | JP6645509B2 (ja) |
| TW (1) | TWI614687B (ja) |
| WO (1) | WO2017077610A1 (ja) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019016032A (ja) * | 2017-07-04 | 2019-01-31 | 清水建設株式会社 | 建物設計支援システム及び建物設計支援プログラム |
| JP2021182274A (ja) * | 2020-05-19 | 2021-11-25 | 株式会社竹中工務店 | 設計支援装置 |
| CN113887107A (zh) * | 2021-10-13 | 2022-01-04 | 国网山东省电力公司电力科学研究院 | 基于数字孪生体的六面体体积计算方法及系统 |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11544425B2 (en) * | 2019-04-12 | 2023-01-03 | Cnh Industrial America Llc | Systems and methods for expediting design of physical components through use of computationally efficient virtual simulations |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0573527A (ja) * | 1991-09-12 | 1993-03-26 | Nippon Steel Corp | 電磁場解析装置 |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3190697B2 (ja) | 1991-02-28 | 2001-07-23 | 日本電気株式会社 | 有限要素法による構造解析システム |
| US5815394A (en) * | 1996-04-04 | 1998-09-29 | The Ohio State University Research Foundation | Method and apparatus for efficient design automation and optimization, and structure produced thereby |
| JP4597691B2 (ja) * | 2005-01-31 | 2010-12-15 | 富士通株式会社 | 有限要素法を用いた構造解析方法 |
| JP4804189B2 (ja) * | 2006-03-29 | 2011-11-02 | 富士通株式会社 | 構造解析装置、構造解析方法、及び構造解析プログラム |
| JP4778558B2 (ja) * | 2006-08-30 | 2011-09-21 | 富士通株式会社 | 有限要素法と境界要素法による結合方程式の高速演算処理方法 |
| WO2008107983A1 (ja) * | 2007-03-07 | 2008-09-12 | Fujitsu Limited | 解析装置、解析方法及び解析プログラム |
| JP4973957B2 (ja) | 2009-11-02 | 2012-07-11 | 独立行政法人科学技術振興機構 | 有限要素法解析方法、有限要素法解析装置及び有限要素法解析プログラム |
| CN104919460B (zh) * | 2013-05-10 | 2019-01-22 | 新日铁住金株式会社 | 变形解析装置、变形解析方法及程序 |
| EP2891997A1 (en) * | 2014-01-06 | 2015-07-08 | Fujitsu Limited | Methods and apparatus for including a confidential structural component in a third party remote product simulation |
| US10565333B2 (en) * | 2014-04-25 | 2020-02-18 | Alberto Daniel Lacaze | Structural analysis for additive manufacturing |
| JP6601222B2 (ja) * | 2016-01-04 | 2019-11-06 | 富士通株式会社 | 行列演算プログラム、行列分割方法、及び並列処理装置 |
-
2015
- 2015-11-04 WO PCT/JP2015/081099 patent/WO2017077610A1/ja not_active Ceased
- 2015-11-04 JP JP2017548569A patent/JP6645509B2/ja active Active
-
2016
- 2016-10-31 TW TW105135270A patent/TWI614687B/zh active
-
2018
- 2018-04-25 US US15/962,654 patent/US11295050B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0573527A (ja) * | 1991-09-12 | 1993-03-26 | Nippon Steel Corp | 電磁場解析装置 |
Non-Patent Citations (3)
| Title |
|---|
| 3-JIGEN NETSU KAISEKI XCOOL GIJUTSU SETSUMEISHO (SETTENHO KAISEKI MODULE HEN, 1 October 1997 (1997-10-01), pages 13, 94 * |
| KEIKOTAI HANDBOOK, 25 December 1987 (1987-12-25), pages 383 - 384 * |
| YOSHIAKI HARADA, YUGEN YOSOHO YOMOYAMA BANASHI DAI 61 WA HANPUKUHO NO FANTASY, 30 October 2014 (2014-10-30), Retrieved from the Internet <URL:http://web.archive.org/web/20141030130722/http://femingway.com/?p=2394> [retrieved on 20160115] * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019016032A (ja) * | 2017-07-04 | 2019-01-31 | 清水建設株式会社 | 建物設計支援システム及び建物設計支援プログラム |
| JP6994854B2 (ja) | 2017-07-04 | 2022-01-14 | 清水建設株式会社 | 建物設計支援システム及び建物設計支援プログラム |
| JP2021182274A (ja) * | 2020-05-19 | 2021-11-25 | 株式会社竹中工務店 | 設計支援装置 |
| JP7456847B2 (ja) | 2020-05-19 | 2024-03-27 | 株式会社竹中工務店 | 設計支援装置 |
| CN113887107A (zh) * | 2021-10-13 | 2022-01-04 | 国网山东省电力公司电力科学研究院 | 基于数字孪生体的六面体体积计算方法及系统 |
Also Published As
| Publication number | Publication date |
|---|---|
| TWI614687B (zh) | 2018-02-11 |
| US20180239855A1 (en) | 2018-08-23 |
| US11295050B2 (en) | 2022-04-05 |
| TW201719397A (zh) | 2017-06-01 |
| JPWO2017077610A1 (ja) | 2018-08-09 |
| JP6645509B2 (ja) | 2020-02-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114861500B (zh) | 基于三维点云自动生成隧道结构有限元模型的方法及系统 | |
| JP2018518747A (ja) | 幾何学モデルを単純化する方法 | |
| JP6645509B2 (ja) | 構造解析方法、及び構造解析プログラム | |
| Trobec et al. | Parallel scientific computing: theory, algorithms, and applications of mesh based and meshless methods | |
| Zhang et al. | Data‐driven bending elasticity design by shell thickness | |
| US20190286786A1 (en) | Efficient sensitivity analysis for generative parametric design of dynamic mechanical assemblies | |
| Moxey et al. | Optimising the performance of the spectral/hp element method with collective linear algebra operations | |
| US11003816B2 (en) | Structure analysis device and structure analysis method | |
| CN118673619A (zh) | 基于数字孪生的复杂产品装配精度在线预测方法及系统 | |
| JP6065543B2 (ja) | ニューラルネットワーク設計方法、フィッティング方法、及びプログラム | |
| Banks et al. | Quantitative validation of physically based deformable models in computer graphics | |
| CN117993150A (zh) | 代理模型训练方法、目标对象优化方法及相关装置 | |
| JP4232566B2 (ja) | 有限要素による数値解析における形状把握方法 | |
| Wei et al. | FPGA design of real-time MDFD system using high level synthesis | |
| JP4830094B2 (ja) | 計算機 | |
| CN116306326B (zh) | 一种关节接触力学仿真模型建立方法、装置及电子设备 | |
| CN119476068B (zh) | 流体模型的状态参数生成方法、装置、设备和存储介质 | |
| CN118709501B (zh) | 一种穹顶结构静力性能分析方法及系统 | |
| CN103324705B (zh) | 大规模向量场数据处理方法 | |
| JP2012190444A (ja) | メッシュモデル作成方法及び解析方法 | |
| JP2006313400A5 (ja) | ||
| Luther et al. | Numerical Investigation to the Deformation of Measured Large-Scaled Structures Based on Isogeometric Analysis | |
| JP2020004310A (ja) | 解析装置、解析方法及び解析プログラム | |
| Bieri | An Integrated Bi-Fidelity Approach to Parametric Studies of Finite Wing Geometries | |
| Haugo et al. | Minimal free space constraints for implicit distance bounds |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15907796 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2017548569 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 15907796 Country of ref document: EP Kind code of ref document: A1 |