WO2017060947A1 - 推定装置、制御方法、プログラム及び記憶媒体 - Google Patents
推定装置、制御方法、プログラム及び記憶媒体 Download PDFInfo
- Publication number
- WO2017060947A1 WO2017060947A1 PCT/JP2015/078163 JP2015078163W WO2017060947A1 WO 2017060947 A1 WO2017060947 A1 WO 2017060947A1 JP 2015078163 W JP2015078163 W JP 2015078163W WO 2017060947 A1 WO2017060947 A1 WO 2017060947A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- estimation
- unit
- vehicle
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3833—Creation or updating of map data characterised by the source of data
- G01C21/3848—Data obtained from both position sensors and additional sensors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
Definitions
- the present invention relates to a technique for estimating the current position with high accuracy.
- Patent Document 1 a lidar that detects a point cloud on an object surface by scanning a horizontal direction while intermittently emitting laser light and receiving reflected light (scattered light) is mounted on a vehicle.
- Patent Document 2 discloses a point search device having a map database including latitude and longitude information of a plurality of points to be searched.
- Patent Document 1-2 does not disclose any method for calculating the absolute position of the vehicle with high accuracy.
- the present invention has been made to solve the above-described problems, and has as its main object to provide an estimation device capable of estimating the current position with high accuracy.
- Invention of Claim 1 is an estimation apparatus, Comprising: The acquisition part which acquires map information, The 1st acquisition part which acquires the 1st information which shows the distance and angle to the target object which exist in a 1st range, And a first estimation unit that estimates the position of the moving object based on the position information of the object and the first information included in the map information.
- the invention according to claim 9 is a control method executed by the estimation device, and includes an acquisition step of acquiring map information, and first information indicating a distance and an angle to an object existing in the first range.
- the invention according to claim 10 is a program executed by a computer, and acquires an acquisition unit that acquires map information and first information indicating a distance and an angle to an object existing in the first range.
- the computer is caused to function as a first acquisition unit and a first estimation unit that estimates the position of the moving object based on the position information of the object and the first information included in the map information. .
- the estimation device includes an acquisition unit that acquires map information, and a first acquisition unit that acquires first information indicating a distance and an angle to an object existing in the first range. And a first estimation unit that estimates the position of the moving body based on the position information of the object and the first information included in the map information.
- the estimation apparatus includes an acquisition unit, a first acquisition unit, and a first estimation unit.
- the acquisition unit acquires map information.
- a 1st acquisition part acquires the 1st information which shows the distance and angle (namely, positional relationship of a moving body and the feature which exists in a 1st range) to the target object which exists in a 1st range.
- a 1st estimation part estimates the position of a moving body based on the positional information on the target object contained in map information, and 1st information.
- the estimation device can accurately estimate the position of the moving object by using the position information of the feature registered in the map information.
- the estimation apparatus further includes a second estimation unit that calculates a first estimated position that is an estimated position of the current position of the mobile body, and the first estimation unit includes the object and the object.
- the position of the mobile body is estimated based on the difference between the second information indicating the positional relationship with the first estimated position and the first information and the first estimated position.
- the estimation device can perform highly accurate position estimation of the moving body based on the first estimated position calculated by the second estimating unit and the difference between the second information and the first information.
- the second estimation unit calculates the first estimated position based on an estimated position of the moving body at least a predetermined time ago. Thereby, the estimation apparatus can suitably estimate the current position of the moving body in consideration of the estimated position of the moving body before a predetermined time.
- the estimation apparatus further includes a second acquisition unit that acquires control information of the mobile object, and the second estimation unit includes the estimated position of the mobile object and the movement of a predetermined time ago
- the first estimated position is calculated based on body control information.
- the estimation device can calculate the first estimated position from the estimated position of the moving body before a predetermined time with high accuracy and a low calculation load.
- the second estimation unit calculates in the immediately preceding prediction step based on a prediction step in which the first estimated position is calculated and a difference between the first information and the second information.
- An update step in which the first estimation unit corrects the first estimated position thus performed, and in the prediction step, based on the first estimated position corrected in the update step immediately before the prediction step, the current time
- the second estimation unit calculates the first estimated position corresponding to.
- the estimation device performs the update step and the prediction step alternately, thereby correcting the first estimated position calculated previously and calculating the first estimated position corresponding to the current time with high accuracy and low calculation. It can be calculated from the load.
- the first acquisition unit includes an irradiation unit that irradiates laser light while changing an irradiation direction, a light receiving unit that receives the laser light reflected by the object, A measurement having a light reception signal output from the light receiving unit, an output unit that outputs the first information based on the irradiation direction corresponding to the laser light received by the light receiving unit, and a response delay time of the laser light.
- the first information is acquired from the device.
- the 1st acquisition part can generate and output the 1st information which shows the distance and angle to the target which exists in the 1st range suitably.
- the measurement is performed on the three-dimensional shape feature registered in the map information, it is preferably used as a reference even in various situations such as disappearance of the white line on the road surface due to snow or the like, or at night.
- the first information can be generated by measuring the distance and direction to the feature.
- the feature is an artifact.
- the 1st acquisition part can generate the 1st information more stably compared with the case where a natural thing is made into object.
- the feature is an artificial object arranged periodically.
- the estimation apparatus can estimate the position of a moving body regularly.
- a control method executed by the estimation device executed by the estimation device, the acquisition step for acquiring map information, and a first distance and angle to an object existing in the first range.
- the estimation device can accurately estimate the position of the moving object using the position information of the feature registered in the map information.
- the program is executed by a computer, and includes an acquisition unit that acquires map information, and first information that indicates a distance and an angle to an object existing in the first range. Based on the first acquisition unit to be acquired, the position information of the object included in the map information, and the first information, the computer is caused to function as a first estimation unit for estimating the position of the moving body.
- the computer can accurately estimate the position of the moving object using the position information of the feature registered in the map information.
- the program is stored in a storage medium.
- FIG. 1 is a schematic configuration diagram of a driving support system according to the first embodiment.
- the driving support system shown in FIG. 1 is mounted on a vehicle, and includes an in-vehicle device 1 that performs control related to driving support of the vehicle, a lidar (Lida: Light Detection and Ranging or Laser Illuminated Detection And Ranging) 2, and a gyro sensor 3. And a vehicle speed sensor 4.
- a lidar Light Detection and Ranging or Laser Illuminated Detection And Ranging
- the in-vehicle device 1 is electrically connected to the rider 2, the gyro sensor 3, and the vehicle speed sensor 4, and based on these outputs, the position of the vehicle on which the in-vehicle device 1 is mounted (also referred to as “own vehicle position”). Make an estimate. And the vehicle equipment 1 performs automatic driving
- the vehicle-mounted device 1 stores a map database (DB: DataBase) 10 that stores road data and information about landmarks (also referred to as “landmark information”) that are provided near the road.
- the landmark information is information in which an index assigned to each landmark is associated with at least landmark position information.
- the in-vehicle device 1 limits the landmark search range by the lidar 2 or compares the output of the lidar 2 and the like to estimate the position of the host vehicle.
- the landmark that the vehicle-mounted device 1 serves as a reference for estimating the vehicle position is referred to as “reference landmark Lk”, and the index of the reference landmark Lk is assumed to be “k”.
- the reference landmark Lk is an example of the “object” in the present invention.
- the landmarks that are candidates for the reference landmark Lk are, for example, features such as kilometer posts, 100 m posts, delineators, traffic infrastructure facilities (eg signs, direction signs, signals), utility poles, street lamps, etc. that are periodically arranged along the road. It is.
- the above-mentioned landmark is preferably an artificial object in order to enable stable measurement, and is a periodically provided feature so that the position of the vehicle can be periodically corrected. Is more preferable.
- the intervals do not have to be strictly constant, but may be anything that has a certain degree of periodicity (for example, a utility pole or a streetlight). Moreover, the thing which becomes a different space
- the lidar 2 emits a pulse laser in a predetermined angle range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group information.
- the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit. Output unit.
- the scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal.
- the rider 2 is installed facing the traveling direction of the vehicle so as to scan at least the front of the vehicle.
- the rider 2, the gyro sensor 3, and the vehicle speed sensor 4 supply output data to the in-vehicle device 1, respectively.
- the in-vehicle device 1 is an example of the “estimation device” in the present invention
- the lidar 2 is an example of the “measurement device” in the present invention.
- FIG. 2 is a block diagram showing a functional configuration of the in-vehicle device 2.
- the in-vehicle device 2 mainly includes an interface 11, a storage unit 12, an input unit 14, a control unit 15, and an output unit 16. Each of these elements is connected to each other via a bus line.
- the interface 11 acquires output data from sensors such as the lidar 2, the gyro sensor 3, and the vehicle speed sensor 4, and supplies the output data to the control unit 15.
- the storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process.
- the storage unit 12 stores a map DB 10 including landmark information.
- the map DB 10 may be updated regularly.
- the control unit 15 receives partial map information related to the area to which the vehicle position belongs from a server device that manages the map information via a communication unit (not shown), and reflects it in the map DB 10.
- the input unit 14 is a button operated by the user, a touch panel, a remote controller, a voice input device, and the like, and receives an input for specifying a destination for route search, an input for specifying on / off of automatic driving, and the like.
- the output unit 16 is, for example, a display or a speaker that performs output based on the control of the control unit 15.
- the control unit 15 includes a CPU that executes a program and controls the entire vehicle-mounted device 1.
- the control unit 15 includes a host vehicle position estimation unit 17 and an automatic driving control unit 18.
- the own vehicle position estimating unit 17 outputs the output data of the gyro sensor 3 and the vehicle speed sensor 4 based on the distance and angle measurement values by the lidar 2 with respect to the reference landmark Lk and the position information of the reference landmark Lk extracted from the map DB 10.
- the vehicle position estimated from the above is corrected.
- the vehicle position estimation unit 17 is based on a state estimation method based on Bayesian estimation, and the vehicle calculated in the prediction step for estimating the vehicle position from the output data of the gyro sensor 3 and the vehicle speed sensor 4 and the immediately preceding prediction step.
- the measurement update step for correcting the estimated value of the vehicle position is executed alternately.
- the own vehicle position estimation unit 17 is an “acquisition unit”, “first acquisition unit”, “first estimation unit”, “second estimation unit”, “second acquisition unit”, and a computer that executes a program according to the present invention. It is an example.
- the automatic driving control unit 18 refers to the map DB 10 and performs automatic driving of the vehicle based on the set route and the own vehicle position estimated by the own vehicle position estimating unit 17. Based on the set route, the automatic operation control unit 18 sets a target track, and the vehicle position estimated by the host vehicle position estimation unit 17 is set so as to be within a predetermined width from the target track. Then, a guide signal is transmitted to control the position of the vehicle.
- FIG. 3 is a diagram showing the state variable vector x in two-dimensional orthogonal coordinates.
- the vehicle position on the plane defined on the two-dimensional orthogonal coordinates of xy is represented by coordinates “(x, y)” and the direction “ ⁇ ” of the vehicle.
- the azimuth ⁇ is defined as an angle formed by the traveling direction of the vehicle and the x axis.
- the coordinates (x, y) indicate an absolute position corresponding to a combination of latitude and longitude, for example.
- FIG. 4 is a diagram illustrating a schematic relationship between the prediction step and the measurement update step.
- the state estimation method based on Bayesian estimation such as the Kalman filter, as described above, the calculation and update of the estimated value are sequentially executed by the two-step process in which the prediction step and the measurement update step are alternately executed. Therefore, in this embodiment, calculation and update of the estimated value of the state variable vector x are sequentially executed by repeating the prediction step and the measurement update step.
- the control value u t is an example of “control information” in the present invention, and the prior estimated value x ⁇ t and the posterior estimated value x ⁇ t are examples of the “first estimated position” in the present invention.
- the vehicle position estimator 17 obtains a covariance matrix (also referred to as a “prior covariance matrix”) “ ⁇ ⁇ t ” corresponding to the error distribution of the prior estimated value x ⁇ t to the previous measurement. It is calculated from the covariance matrix “ ⁇ ⁇ t ⁇ 1 ” at time t ⁇ 1 calculated in the update step.
- a covariance matrix also referred to as a “prior covariance matrix”
- the vehicle position estimation unit 17 models the measurement value “z t ” of the reference landmark Lk by the lidar 2 and the measurement process by the lidar 2 from the prior estimation value x ⁇ t.
- the measurement estimated value “z ⁇ t ” of the reference landmark Lk is acquired.
- the measured value z t is a two-dimensional vector representing the distance and scan angle of the reference landmark Lk measured by the lidar 2 at time t, as will be described later.
- the vehicle position estimation unit 17 multiplies the difference between the measured value z t and the measured estimated value z ⁇ t by a Kalman gain “K t ” separately obtained,
- An updated state variable vector (also referred to as “post-mortem estimation value”) x ⁇ t is calculated by adding to the prior estimation value x ⁇ t .
- the vehicle position estimation unit 17 uses the covariance matrix corresponding to the error distribution of the posterior estimated value x ⁇ (also referred to as "posterior covariance matrix") ⁇ ⁇ t in advance as in the prediction step. Obtained from the covariance matrix ⁇ ⁇ t .
- FIG. 5 is a block diagram showing a functional configuration of the vehicle position estimation unit 17.
- the vehicle position estimation unit 17 mainly includes a state transition model block 20, a covariance calculation block 21, a landmark extraction block 22, a measurement model block 23, a covariance calculation block 24, and a Kalman gain calculation block 25.
- FIG. 6 shows the prior estimation values “x ⁇ t ”, “y ⁇ t ”, “ ⁇ ⁇ t ” at the reference time t and the a posteriori estimation values “x ⁇ t ⁇ 1 ” and “y ⁇ at the time t ⁇ 1.
- t-1 " which is a diagram showing the relationship between the" ⁇ ⁇ t-1 ".
- the covariance calculation block 21 has a matrix “Rt” indicating the error distribution obtained by converting the error distribution of the control value u t into the three-dimensional space of the state variable vector (x, y, ⁇ ), and the state shown in Expression (2).
- a prior covariance matrix ⁇ ⁇ t is calculated based on Equation (3) using a Jacobian matrix “Gt” obtained by linearizing the transition model around x ⁇ t ⁇ 1 .
- the Jacobian matrix Gt is expressed by the following equation (4).
- the measured value z t k includes a distance “r t k ” with respect to the landmark with index k and a scan angle “ ⁇ t k ” with respect to the landmark with index k when the front direction of the vehicle is 0 degrees.
- the measured value z t k is an example of “first information” in the present invention. A method for specifying the reference landmark Lk executed by the landmark extraction block 22 will be described later.
- “r ⁇ t k ” indicates the distance to the landmark of the index k when the prior estimated value x ⁇ t is a reference
- “ ⁇ ⁇ t k ” is based on the prior estimated value x ⁇ t.
- the scan angle with respect to the landmark of index k is shown.
- FIG. 7 is a diagram illustrating the relationship between the position of the reference landmark Lk and the vehicle position. Based on the geometrical relationship shown in FIG. 7, the distance r ⁇ t k is expressed as the following equation (5).
- equation (6) is materialized based on the relationship shown in FIG.
- the measurement model block 23 calculates a Jacobian matrix “H t k ” obtained by linearizing the measurement model shown in the equations (5) and (7) around the pre-estimated value x ⁇ t .
- the Jacobian matrix H t k is represented by the following equation (8).
- the measurement model block 23 supplies the Jacobian matrix H t k to the covariance calculation block 24, the Kalman gain calculation block 25, and the covariance update block 26, respectively.
- the covariance calculation block 24 calculates a covariance matrix “S t k ” necessary for calculating the Kalman gain K t k based on the following equation (9).
- the covariance calculation block 24 supplies the calculated covariance matrix S t k to the Kalman gain calculation block 25.
- the Kalman gain calculation block 25 calculates the Kalman gain K t k based on the following equation (10).
- the covariance update block 26 includes a prior covariance matrix ⁇ ⁇ t supplied from the covariance calculation block 21, a Jacobian matrix H t k supplied from the measurement model block 23, and a Kalman supplied from the Kalman gain calculation block 25. Based on the gain K t k , the posterior covariance matrix ⁇ ⁇ t is calculated based on the following equation (11) using the unit matrix “I”.
- Calculation block 31 the difference between the estimated value z ⁇ t k supplied from the measurement value z t k and the measuring model block 23 which is supplied from the landmark extraction block 22 (i.e., "z t k -z ⁇ t k") Is calculated.
- Computing block 32 multiplies the Kalman gain K t k which calculation block 31 is supplied from the Kalman gain calculation block 25 to the value calculated.
- the calculation block 33 calculates a posteriori estimated value x ⁇ by adding the value calculated by the calculation block 32 to the pre-estimated value x - t as shown in the following equation (12).
- the vehicle position estimation unit 17 can perform state estimation with high accuracy by sequentially repeating the prediction step and the measurement update step.
- state estimation filter used in these steps in addition to the extended Kalman filter, various filters developed to perform Bayesian estimation can be used.
- an unscented Kalman filter or a particle filter may be used instead of the extended Kalman filter.
- FIG. 8 is a diagram showing a functional configuration of the landmark extraction block 22.
- the landmark extraction block 22 includes a search candidate selection block 41, a measurement estimated value calculation block 42, a search range narrowing block 43, and an extraction block 44.
- Search candidate selection block 41 in advance estimate x - based on t, (., Also referred to as "scanning range Rsc") scanning by the rider 2 ranges recognize the landmarks present in the recognized scan range Rsc, Map DB10 Select from.
- the search candidate selection block 41 sets, as the scan range Rsc, an area that is ⁇ 90 ° from the azimuth ⁇ ⁇ t and that is within the distance that can be measured by the lidar 2 from the position (x ⁇ t , y ⁇ t ).
- the scan range Rsc is an example of the “first range” in the present invention.
- the scan angle is a difference within a predetermined search angle width “ ⁇ ⁇ ” from the angle ⁇ ⁇ t k from the scan range Rsc
- the distance measurement range is the search distance width from the distance r ⁇ t k.
- a range that is to be “ ⁇ r ” (also referred to as “search range Rtag”) is set. Searching angular width delta phi and search distance width delta r are each set in advance based on experiments in consideration of the error between the measured value z t k that is assumed to estimate z ⁇ t k and the like.
- the search angular width delta phi and search distance width delta r in advance the estimated value x - and estimation accuracy of t is set in consideration of at least one of the rider 2 accuracy. Specifically, the search angle range delta phi and search distance width delta r in advance estimate x - shorter as the estimated accuracy of t is high, and becomes shorter the higher the accuracy rider 2.
- Extraction block 44 based on the search range narrowing block 43 is set search range rtag, the measured values z t k corresponding to the point group of the reference landmark Lk, extracted from the whole scan data at time t of the rider 2.
- the extraction block 44 has measurement values z t i (“i” is an index of each beam emitted by the lidar 2 in one scan) that satisfies the following expressions (13) and (14). Judge whether to do.
- the extraction block 44 is selected by the search candidate selection block 41 when there is a measurement value z t i that is a set of (r t i , ⁇ t i ) that satisfies the expressions (13) and (14). Judge that the landmark actually exists. Then, the extraction block 44 supplies the position vector m k corresponding to the index k to the measurement model block 23, and becomes a set of (r t i , ⁇ t i ) that satisfies the expressions (13) and (14). the measured value z t i, and supplies the calculation block 31 as a measurement value z t k corresponding to the point group of the reference landmark Lk.
- the extraction block 44 further executes a process of selecting scan data corresponding to the reference landmark Lk from the scan data within the search range Rtag, and the measurement value z t to be supplied to the calculation block 31. k may be determined.
- the extraction block 44 acquires the shape information of the landmark selected by the search candidate selection block 41 from the map DB 10 and performs a matching process with the three-dimensional shape formed by the point cloud of the scan data within the search range Rtag. Thus, a measured value z t k corresponding to the point cloud of the reference landmark Lk is selected.
- the extraction block 44 corresponds to the point group of the reference landmark Lk by examining the magnitude of the received light intensity corresponding to the scan data within the search range Rtag and comparing it with preset threshold information. The measured value z t k is selected.
- the extraction block 44 may supply any one measurement value z t k to the calculation block 31, and from these measurement values z t k A representative value calculated or selected by statistical processing may be supplied to the calculation block 31.
- FIG. 9 is a diagram showing the relationship between the scan range Rsc and the search range Rtag.
- the scan range Rsc is a semicircular area that is within a range of 90 ° left and right from the front of the vehicle and within a distance that can be measured from the vehicle. Note that an arrow 70 in FIG. 9 indicates the scanning direction.
- the search candidate selection block 41 specifies the scan range Rsc based on the pre-estimated value x ⁇ t , considers the landmark present in the scan range Rsc as the reference landmark Lk, and responds accordingly.
- a position vector m k is selected.
- the search range narrowing block 43 sets the search range Rtag based on the equations (13) and (14).
- the extraction block 44 supplies the position vector m k to the measurement model block 23 and calculates the measurement value z t k based on the scan data in the search range Rtag. Supply to block 31.
- the vehicle position estimation unit 17 determines that the reference landmark Lk could not be detected by the lidar 2 and determines the prior estimated value x ⁇ t after the fact. and sets the estimated value x ⁇ t, pre covariance matrix sigma - sets t to posterior covariance matrix sigma ⁇ t.
- FIG. 10 is a flowchart showing a processing procedure executed by the vehicle position estimation unit 17 in the first embodiment.
- the own vehicle position estimation unit 17 repeatedly executes the flowchart of FIG.
- the vehicle position estimation unit 17 takes in the posterior estimated value x ⁇ t-1 and the posterior covariance matrix [Sigma] ⁇ t-1 at time t-1, and receives the gyro sensor 3 and the vehicle speed sensor 4 at time t.
- a control value u t is acquired (step S101).
- the state transition model block 20 of the vehicle position estimation unit 17 calculates the prior estimated value x ⁇ t based on the equation (2) (step S102).
- the covariance calculation block 21 of the vehicle position estimation unit 17 calculates the prior covariance matrix ⁇ - t based on the equation (3) (step S103).
- the landmark extraction block 22 of the vehicle position estimation unit 17 refers to the map DB 10 and executes a landmark extraction process shown in FIG. 11 described later (step S104). Then, the vehicle position estimation unit 17 determines whether or not the landmark position vector m k registered in the map DB 10 can be associated with the scan data of the rider 2 (step S105). In this case, the vehicle position estimation unit 17 determines whether or not a predetermined flag indicating that the above association has been made is set based on the landmark extraction process shown in FIG.
- the covariance calculation block 24 is based on the above equation (9), to calculate the covariance matrix S t k (step S106).
- the Kalman gain calculation block 25 calculates the Kalman gain K t k based on the above equation (10) (step S107).
- the calculation block 33 performs the measurement value z t k supplied from the landmark extraction block 22 and the estimation value supplied from the measurement model block 23 with respect to the prior estimation value x ⁇ t.
- a posteriori estimated value x ⁇ t is calculated by adding a value obtained by multiplying the difference from z ⁇ t k (ie, "z t k -z ⁇ t k ") by the Kalman gain K t k (step S108).
- the covariance update block 26 is supplied from the prior covariance matrix ⁇ ⁇ t supplied from the covariance calculation block 21, the Jacobian matrix H t k supplied from the measurement model block 23, and the Kalman gain calculation block 25.
- the posterior covariance matrix ⁇ ⁇ t is calculated based on the above-described equation (11) based on the Kalman gain K tk k (step S109).
- the unit delay block 34 supplies the posterior estimation value x ⁇ t to the state transition model block 20 as the posterior estimation value x ⁇ t-1
- the unit delay block 35 supplies the posterior covariance matrix ⁇ ⁇ t to the posterior covariance.
- the matrix ⁇ ⁇ t ⁇ 1 is supplied to the covariance calculation block 21.
- step S105 when unable to correspondence described above (step S105; No), the vehicle position estimating section 17, pre-estimated value x - and sets t to posteriori estimate x ⁇ t, pre covariance matrix sigma - t is set to the posterior covariance matrix ⁇ ⁇ t (step S110).
- FIG. 11 is a flowchart showing details of the landmark extraction processing in step S104 of FIG.
- the search range narrowing block 43 of the landmark extraction block 22 takes in the scan data of the lidar 2 (step S201).
- the lidar 2 emits “n” beams whose emission angles are gradually changed by scanning for one cycle, and by measuring the received light intensity and response time of the reflected light of each beam, Measured values z t 1 to z t n are output respectively.
- the search candidate selection block 41 selects a landmark position vector m k existing in the scan range Rsc of the rider 2 from the map DB 10 (step S202).
- the search candidate selection block 41 specifies, as the scan range Rsc, an area that is ⁇ 90 ° from the azimuth ⁇ ⁇ t and that is within the distance measurement range of the lidar 2 from the position (x ⁇ t , y ⁇ t ).
- the position vector m k indicating the position in the specified area is extracted from the map DB 10.
- step S205 if the distance r t i exists that a range shown in Equation (14) (step S205; Yes), extracted block 44, from the measured values z t i included in the search range, the process of specifying the measurement value corresponding to the reference landmark Lk (known shape and feature extraction processing, utilization, etc. of the received light intensity) further executes the Then, the finally selected measurement value is regarded as z t k and extracted (step S206).
- the extraction block 44 outputs the extracted position vector m k and the measured value z t k which is scan data corresponding to the position vector m k , and sets a flag indicating that the association has been made (step) S207). This flag is referred to in the determination process in step S105 of FIG.
- the extraction block 44 among the measured values z t i to be scanned angle phi t i satisfying the formula (13), if the distance r ⁇ t i is not present what the range shown in Equation (14) (step S205; No), the flag indicating that the association has been made is not set (step S208).
- FIG. 12 is a block diagram of a driving support system according to the second embodiment.
- the in-vehicle device 1 is electrically connected to the direction sensor 5.
- the direction sensor 5 is, for example, a geomagnetic sensor, a direction magnet, or a GPS compass, and supplies information on the direction corresponding to the traveling direction of the vehicle to the in-vehicle device 1.
- the vehicle-mounted device 1 has the configuration shown in FIG. 2 as in the first embodiment, and includes landmark information registered in the map DB 10 and outputs of the lidar 2, gyro sensor 3, vehicle speed sensor 4, and direction sensor 5. Based on the data, the vehicle position is estimated.
- symbol is attached
- FIG. 13 shows a schematic configuration of the vehicle position estimation unit 17A of the vehicle-mounted device 1 in the second embodiment.
- the host vehicle position estimation unit 17 ⁇ / b> A includes a landmark extraction block 22 and a position estimation block 28.
- ⁇ t the direction of the vehicle at the reference time t output from the direction sensor 5
- x ⁇ t (X ⁇ t , y ⁇ t ) ”.
- the landmark extraction block 22 includes a search candidate selection block 41, a measurement estimated value calculation block 42, a search range narrowing block 43, and an extraction block 44, and a position vector m k of the reference landmark Lk and a lidar for the reference landmark Lk.
- the measurement value z t k which is the scan data of 2 is output.
- the search candidate selection block 41 in the first embodiment, pre-estimated value x is supplied from the state transition model block 20 - were identified scan range Rsc based to t.
- the search candidate selection block 41 first, like the state transition model block 20 of the first embodiment, based on the geometric relationship shown in FIG. A temporary estimate of coordinates is calculated.
- the search candidate selection block 41 identifies a is within measurable distance rider 2 from the calculated xy coordinates of the vehicle position area as a scan range Rsc . Then, the search candidate selection block 41 extracts a landmark position vector m k indicating the position in the identified area from the map DB 10.
- the search range narrowing block 43 sets the search range Rtag shown in the equations (13) and (14), and the extraction block 44 satisfies the equations (13) and (14) (r t i , ⁇ t If there is a measurement value z t i (here, z t k ) that is a set of i ), the measurement value and the position vector m k are supplied to the position estimation block 28.
- the extraction block 44 should further execute and supply processing for selecting scan data corresponding to the reference landmark Lk from the scan data within the search range Rtag, as in the first embodiment.
- the measured value z t k may be determined.
- is less than 90 °, the position estimation block 28 estimates the estimated value x ⁇ t (() based on the following equations (15) and (16). x ⁇ t , y ⁇ t ) are calculated.
- FIG. 14 (A) is the estimated value x - shows the case - "t x 'x-coordinate value of the position vector m k than" m k, x "is larger x coordinate value of t.
- FIG. 14 (B) is the estimated value x - x-coordinate value of t "x - t” and x-coordinate value of the position vector m k "m k, x” and indicates equal
- the vehicle position estimation unit 17A determines that the search candidate selection block 41 has calculated.
- the search candidate selection block 41 may extract position vectors of a plurality of landmarks existing in the scan range Rsc from the map DB 10 and perform a matching process with the scan data of the lidar 2. Good.
- the search candidate selection block 41 extracts the position vector of a plurality of landmarks existing in the scan range Rsc from the map DB 10, so that the occlusion is detected for any landmark. Even if it occurs, the vehicle position is estimated based on a landmark where no occlusion has occurred. Thereby, the reference landmark Lk necessary for the vehicle position estimation can be detected with higher probability. Also, if multiple landmarks can be extracted and all of them can be used, the measurement update step can be performed multiple times (adjusting the prior estimate using multiple landmarks). it can). In this case, the estimation accuracy of the vehicle position can be statistically improved.
- the landmark extraction block 22 refers to the map DB 10 in step S202 and determines that there are a plurality of landmarks in the scan range Rsc
- the landmark extraction block 22 selects at least two or more landmark position vectors from the map DB 10. To do.
- the landmark extraction block 22 calculates a measurement estimated value for the selected position vector.
- the landmark extraction block 22 sets a search range Rtag shown in Expression (13) and Expression (14) for each calculated measurement estimated value, and the first search range within each search range is set. Attempts to extract scan data corresponding to the landmarks selected for. If this association is successful, a measurement value and a position vector corresponding to the scan data are output in step S207.
- step S105 is determined to be Yes.
- a series of processing from S106 to S109 performed after that is processing to be performed on each extracted landmark, and data corresponding to each landmark (corresponding to the output of step S207) is input. These series of processes are processed in a loop for the number of landmarks extracted.
- the vehicle position estimating section 17A instead of specifying the orientation theta t based on the output of the azimuth sensor 5, may be estimated orientation theta t based on the output of the gyro sensor 3.
- the host vehicle position estimation unit 17A sets the time between the time t-1 and the time t at the angular velocity ⁇ t with respect to the azimuth ⁇ t-1 calculated one time ago. By adding a value ( ⁇ t ⁇ t) multiplied by the width ⁇ t, an estimated value of the direction ⁇ t at the reference time is calculated. Also in this example, as in the second embodiment, it is possible to suitably calculate the estimated value x ⁇ t of the vehicle position without using Bayesian estimation such as an extended Kalman filter.
- the measured value z t k for the landmark of index k by the lidar 2 is the distance “r t k ” and the scan angle “ ⁇ t k ” for the landmark of index k when the front direction of the vehicle is 0 degrees.
- a server device may have the map DB 10 instead of the configuration in which the map DB 10 is stored in the storage unit 12.
- the in-vehicle device 1 acquires necessary landmark information by communicating with the server device through a communication unit (not shown).
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Computer Networks & Wireless Communication (AREA)
Abstract
現在位置を高精度に推定することが可能な推定装置を提供する。 運転支援システムは、車両に搭載され、車両の運転支援に関する制御を行う車載機1と、ライダ2と、ジャイロセンサ3と、車速センサ4とを有する。車載機1は、インデックスkの基準ランドマークLkと自車両との位置関係を示す計測値zt
kをライダ2から取得する。車載機1は、地図DB10に含まれる基準ランドマークLkの位置ベクトルmkと、計測値zt
kとに基づいて、車速センサ4が測定した移動速度及びジャイロセンサ3が測定した角速度から推定した事前推定値x-
tを補正することで、事後推定値x^
tを算出する。
Description
本発明は、現在位置を高精度に推定する技術に関する。
従来から、周辺に存在する物体との距離を測定する技術が知られている。例えば、特許文献1には、レーザ光を間欠的に発光させつつ水平方向を走査し、その反射光(散乱光)を受信することで、物体表面の点群を検出するライダを車両に搭載した例が開示されている。また、特許文献2には、検索対象となる複数の地点の緯度経度情報を含む地図データベースを有する地点検索装置が開示されている。
自動運転などの分野では、高精度な現在位置の推定を行うことが必要となっているのに対し、従来のような車両の状態を検知する内界センサの出力を主とした現在位置の推定方法では十分でない場合がある。特許文献1-2には、車両の絶対位置を高精度に算出する方法については何ら開示がない。
本発明は、上記のような課題を解決するためになされたものであり、現在位置を高精度に推定することが可能な推定装置を提供することを主な目的とする。
請求項1に記載の発明は、推定装置であって、地図情報を取得する取得部と、第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得部と、前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定部と、を備えることを特徴とする。
また、請求項9に記載の発明は、推定装置が実行する制御方法であって、地図情報を取得する取得工程と、第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得工程と、前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定工程と、を有することを特徴とする。
また、請求項10に記載の発明は、コンピュータが実行するプログラムであって、地図情報を取得する取得部と、第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得部と、前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定部として前記コンピュータを機能させることを特徴とする。
本発明の好適な実施形態によれば、推定装置は、地図情報を取得する取得部と、第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得部と、前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定部と、を備える。
上記推定装置は、取得部と、第1取得部と、第1推定部とを有する。取得部は、地図情報を取得する。第1取得部は、第1範囲に存在する対象物までの距離及び角度(即ち、移動体と第1範囲に存在する地物との位置関係)を示す第1情報を取得する。第1推定部は、地図情報に含まれる対象物の位置情報及び第1情報に基づいて、移動体の位置を推定する。この態様では、推定装置は、地図情報に登録された地物の位置情報を利用することで、的確に移動体の位置を推定することができる。
上記推定装置の一態様では、推定装置は、前記移動体の現在位置の推定位置である第1推定位置を算出する第2推定部をさらに備え、前記第1推定部は、前記対象物と前記第1推定位置との位置関係を示す第2情報と前記第1情報との差分及び前記第1推定位置に基づいて、前記移動体の位置を推定する。この態様により、推定装置は、第2推定部で算出した第1推定位置と、第2情報と前記第1情報との差分とに基づき、高精度な移動体の位置推定を行うことができる。
上記推定装置の他の一態様では、前記第2推定部は、少なくとも所定時間前の移動体の推定位置に基づいて、前記第1推定位置を算出する。これにより、推定装置は、所定時間前の移動体の推定位置を勘案して好適に現在の移動体の位置を推定することができる。
上記推定装置の他の一態様では、推定装置は、前記移動体の制御情報を取得する第2取得部をさらに備え、前記第2推定部は、所定時間前の移動体の推定位置と前記移動体の制御情報とに基づいて、前記第1推定位置を算出する。この態様により、推定装置は、所定時間前の移動体の推定位置から、高精度かつ低計算負荷により、第1推定位置を算出することができる。
上記推定装置の他の一態様では、前記第2推定部が前記第1推定位置を算出する予測ステップと、前記第1情報と前記第2情報との差分に基づいて、直前の予測ステップで算出された第1推定位置を前記第1推定部が補正する更新ステップと、を交互に実行し、前記予測ステップでは、当該予測ステップの直前の更新ステップで補正した第1推定位置に基づき、現時刻に対応する前記第1推定位置を前記第2推定部が算出する。この態様では、推定装置は、更新ステップと予測ステップとを交互に実行することで、前に算出した第1推定位置を補正しつつ、現在時刻に対応する第1推定位置を高精度かつ低計算負荷により算出することができる。
上記推定装置の他の一態様では、前記第1取得部は、照射方向を変えながらレーザ光を照射する照射部と、前記対象物にて反射された前記レーザ光を受光する受光部と、前記受光部が出力する受光信号と、前記受光部が受光したレーザ光に対応する前記照射方向と、当該レーザ光の応答遅延時間と、に基づく前記第1情報を出力する出力部と、を有する測定装置から前記第1情報を取得する。この態様により、第1取得部は、第1範囲に存在する対象物までの距離及び角度を示す第1情報を好適に生成して出力することができる。また、この態様では、地図情報に登録された3次元形状の地物を対象に計測を行うため、積雪などによる路面上の白線消失、夜間などの種々の状況であっても好適に基準となる地物までの距離及び方位を測定して第1情報を生成することができる。
上記推定装置の他の一態様では、前記地物は、人工物である。これにより、第1取得部は、自然物を対象とする場合と比較して、より安定的に第1情報を生成することができる。
上記推定装置の他の一態様では、前記地物は、周期的に配置された人工物である。これにより、推定装置は、定期的に移動体の位置を推定することができる。
本発明の他の好適な実施形態によれば、推定装置が実行する制御方法であって、地図情報を取得する取得工程と、第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得工程と、前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定工程と、を有する。推定装置は、この制御方法を実行することで、地図情報に登録された地物の位置情報を利用して的確に移動体の位置を推定することができる。
本発明の他の好適な実施形態によれば、コンピュータが実行するプログラムであって、地図情報を取得する取得部と、第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得部と、前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定部として前記コンピュータを機能させる。コンピュータは、このプログラムを実行することで、地図情報に登録された地物の位置情報を利用して的確に移動体の位置を推定することができる。好適には、上記プログラムは、記憶媒体に記憶される。
以下、図面を参照して本発明の好適な各実施例について説明する。
<第1実施例>
(1)概略構成
図1は、第1実施例に係る運転支援システムの概略構成図である。図1に示す運転支援システムは、車両に搭載され、車両の運転支援に関する制御を行う車載機1と、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)2と、ジャイロセンサ3と、車速センサ4とを有する。
(1)概略構成
図1は、第1実施例に係る運転支援システムの概略構成図である。図1に示す運転支援システムは、車両に搭載され、車両の運転支援に関する制御を行う車載機1と、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)2と、ジャイロセンサ3と、車速センサ4とを有する。
車載機1は、ライダ2、ジャイロセンサ3、及び車速センサ4と電気的に接続し、これらの出力に基づき、車載機1が搭載される車両の位置(「自車位置」とも呼ぶ。)の推定を行う。そして、車載機1は、自車位置の推定結果に基づき、設定されたルートに沿って走行するように、車両の自動運転制御などを行う。車載機1は、道路データ及び道路付近に設けられた目印となるランドマークに関する情報(「ランドマーク情報」とも呼ぶ。)を記憶した地図データベース(DB:DataBase)10を記憶する。ランドマーク情報は、各ランドマークに割り当てられたインデックスと、ランドマークの位置情報とが少なくとも関連付けられた情報である。そして、車載機1は、このランドマーク情報に基づき、ライダ2によるランドマークの探索範囲を限定したり、ライダ2等の出力と照合させて自車位置の推定を行ったりする。以後では、車載機1が自車位置推定のために基準とするランドマークを「基準ランドマークLk」と呼び、基準ランドマークLkのインデックスを「k」とする。基準ランドマークLkは、本発明における「対象物」の一例である。
基準ランドマークLkの候補となるランドマークは、例えば、道路脇に周期的に並んでいるキロポスト、100mポスト、デリニエータ、交通インフラ設備(例えば標識、方面看板、信号)、電柱、街灯などの地物である。好適には、上述のランドマークは、安定した計測を可能とするため、人工物であることが好ましく、定期的に自車位置を補正できるように、周期的に設けられた地物であることがより好ましい。なお,その間隔は厳格に一定周期である必要はなく,ある程度の周期性を持って存在するものであれば良い(例えば電柱や街灯など)。また走行エリアごとに異なる間隔となっているものでも良い。
ライダ2は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群情報を生成する。この場合、ライダ2は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。本実施例では、ライダ2は、少なくとも車両の前方をスキャンするように車両の進行方向を向いて設置されているものとする。ライダ2、ジャイロセンサ3、車速センサ4は、それぞれ、出力データを車載機1へ供給する。なお、車載機1は、本発明における「推定装置」の一例であり、ライダ2は、本発明における「測定装置」の一例である。
図2は、車載機2の機能的構成を示すブロック図である。車載機2は、主に、インターフェース11と、記憶部12と、入力部14と、制御部15と、出力部16とを有する。これらの各要素は、バスラインを介して相互に接続されている。
インターフェース11は、ライダ2、ジャイロセンサ3、及び車速センサ4などのセンサから出力データを取得し、制御部15へ供給する。
記憶部12は、制御部15が実行するプログラムや、制御部15が所定の処理を実行するのに必要な情報を記憶する。本実施例では、記憶部12は、ランドマーク情報を含む地図DB10を記憶する。なお、地図DB10は、定期的に更新されてもよい。この場合、例えば、制御部15は、図示しない通信部を介し、地図情報を管理するサーバ装置から、自車位置が属するエリアに関する部分地図情報を受信し、地図DB10に反映させる。
入力部14は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等であり、経路探索のための目的地を指定する入力、自動運転のオン及びオフを指定する入力などを受け付ける。出力部16は、例えば、制御部15の制御に基づき出力を行うディスプレイやスピーカ等である。
制御部15は、プログラムを実行するCPUなどを含み、車載機1の全体を制御する。本実施例では、制御部15は、自車位置推定部17と、自動運転制御部18とを有する。
自車位置推定部17は、基準ランドマークLkに対するライダ2による距離及び角度の計測値と、地図DB10から抽出した基準ランドマークLkの位置情報とに基づき、ジャイロセンサ3及び車速センサ4の出力データから推定した自車位置を補正する。このとき、自車位置推定部17は、ベイズ推定に基づく状態推定手法に基づき、ジャイロセンサ3及び車速センサ4の出力データから自車位置を推定する予測ステップと、直前の予測ステップで算出した自車位置の推定値を補正する計測更新ステップとを交互に実行する。第1実施例では、ベイズ推定に基づく状態推定手法の一例として、拡張カルマンフィルタを用いた例について後述する。自車位置推定部17は、本発明における「取得部」、「第1取得部」、「第1推定部」、「第2推定部」、「第2取得部」、及びプログラムを実行するコンピュータの一例である。
自動運転制御部18は、地図DB10を参照し、設定された経路と、自車位置推定部17が推定した自車位置とに基づき、車両の自動運転を行う。自動運転制御部18は、設定された経路に基づき、目標軌道を設定し、自車位置推定部17が推定した自車位置が目標軌道から所定幅以内のずれ幅となるように、車両に対してガイド信号を送信して車両の位置を制御する。
(2)拡張カルマンフィルタを用いた自車位置推定
次に、自車位置推定部17による自車位置の推定処理について説明する。
次に、自車位置推定部17による自車位置の推定処理について説明する。
(2-1)基本説明
以下では、自車位置推定部17が実行する処理の前提となる基本事項について説明する。以後の説明では、自車位置を状態変数ベクトル「x=(x、y、θ)」で表わす。また、予測ステップで推定された暫定的な推定値には当該推定値を表す文字の上に「-」を付し、計測更新ステップで更新された,より精度の高い推定値には当該値を表す文字の上に「^」を付す。なお、任意の記号の上に「^」または「-」が付された文字を、本明細書では便宜上、「A^」または「A-」(「A」は任意の文字)と表す。
以下では、自車位置推定部17が実行する処理の前提となる基本事項について説明する。以後の説明では、自車位置を状態変数ベクトル「x=(x、y、θ)」で表わす。また、予測ステップで推定された暫定的な推定値には当該推定値を表す文字の上に「-」を付し、計測更新ステップで更新された,より精度の高い推定値には当該値を表す文字の上に「^」を付す。なお、任意の記号の上に「^」または「-」が付された文字を、本明細書では便宜上、「A^」または「A-」(「A」は任意の文字)と表す。
図3は、状態変数ベクトルxを2次元直交座標で表した図である。図3に示すように、xyの2次元直交座標上で定義された平面での自車位置は、座標「(x、y)」、自車の方位「θ」により表される。ここでは、方位θは、車の進行方向とx軸とのなす角として定義されている。座標(x、y)は、例えば緯度及び経度の組合せに相当する絶対位置を示す。
図4は、予測ステップと計測更新ステップとの概略的な関係を示す図である。カルマンフィルタのようなベイズ推定に基づく状態推定手法では、上述したように、予測ステップと、計測更新ステップとを交互に実行する2ステップ処理によって推定値の算出及び更新を逐次的に実行する。よって、本実施例では、予測ステップと計測更新ステップとを繰り返すことで状態変数ベクトルxの推定値の算出及び更新を逐次的に実行する。以後では、計算対象となる基準時刻(即ち現在時刻)「t」の状態変数ベクトルを、「x-
t」または「x^
t」と表記する。
予測ステップでは、自車位置推定部17は、直前の計測更新ステップで算出された時刻t-1の状態変数ベクトルx^
t-1に対し、車両の移動速度「v」と角速度「ω」(これらをまとめて「制御値ut=(vt、ωt)T」と表記する。)を作用させることで、時刻tの自車位置の推定値(「事前推定値」とも呼ぶ。)x-
tを算出する。制御値utは本発明における「制御情報」の一例であり、事前推定値x-
t及び事後推定値x^
tは本発明における「第1推定位置」の一例である。また、これと同時に、自車位置推定部17は、事前推定値x-
tの誤差分布に相当する共分散行列(「事前共分散行列」とも呼ぶ。)「Σ-
t」を、直前の計測更新ステップで算出された時刻t-1での共分散行列「Σ^
t-1」から算出する。
また、計測更新ステップでは、自車位置推定部17は、基準ランドマークLkのライダ2による計測値「zt」と、ライダ2による計測処理を事前推定値x-
tからモデル化して求めた上述の基準ランドマークLkの計測推定値「z^
t」とをそれぞれ取得する。計測値ztは、後述するように、時刻tにライダ2が計測した基準ランドマークLkの距離及びスキャン角度を表す2次元ベクトルである。そして、自車位置推定部17は、以下の式(1)に示すように、計測値ztと計測推定値z^
tとの差分に別途求めるカルマンゲイン「Kt」を乗算し、これを事前推定値x-
tに加えることで、更新された状態変数ベクトル(「事後推定値」とも呼ぶ。)x^
tを算出する。
(2-2)処理概要
図5は、自車位置推定部17の機能的な構成を示すブロック図である。自車位置推定部17は、主に、状態遷移モデルブロック20と、共分散計算ブロック21と、ランドマーク抽出ブロック22と、計測モデルブロック23と、共分散計算ブロック24と、カルマンゲイン計算ブロック25と、共分散更新ブロック26と、演算ブロック31~33と、単位遅延ブロック34,35と、を有する。
図5は、自車位置推定部17の機能的な構成を示すブロック図である。自車位置推定部17は、主に、状態遷移モデルブロック20と、共分散計算ブロック21と、ランドマーク抽出ブロック22と、計測モデルブロック23と、共分散計算ブロック24と、カルマンゲイン計算ブロック25と、共分散更新ブロック26と、演算ブロック31~33と、単位遅延ブロック34,35と、を有する。
状態遷移モデル(速度動作モデル)ブロック20は、時刻t-1での事後推定値x^
t-1から、制御値ut=(vt、ωt)Tに基づき、事前推定値x-
t=(x-
t、y-
t、θ-
t)Tを算出する。図6は、基準時刻tでの事前推定値「x-
t」、「y-
t」、「θ-
t」と時刻t-1での事後推定値「x^
t-1」、「y^
t-1」、「θ^
t-1」との関係を示す図である。図6に示す幾何学的関係によれば、事前推定値x-
t=(x-
t、y-
t、θ-
t)Tは、以下の式(2)により表される。なお、「Δt」は、時刻tと時刻t-1との時間差を表す。
共分散計算ブロック21は、制御値utの誤差分布を状態変数ベクトル(x、y、θ)の3次元空間に変換した誤差分布を示す行列「Rt」と、式(2)に示される状態遷移モデルをx^
t-1のまわりで線形化したヤコビ行列「Gt」を用いて、式(3)に基づき事前共分散行列Σ-
tを算出する。
計測モデルブロック23は、インデックスkの基準ランドマークLkの位置ベクトルmk及び事前推定値x-
tから、計測値zt
kの推定値「z^
t
k=(r^
t
k、φ^
t
k)T」を算出し、演算ブロック31へ供給する。ここで、「r^
t
k」は、事前推定値x-
tを基準とした場合のインデックスkのランドマークに対する距離を示し、「φ^
t
k」は、事前推定値x-
tを基準とした場合のインデックスkのランドマークに対するスキャン角度を示す。図7は、基準ランドマークLkの位置と自車位置との関係を示す図である。図7に示す幾何学的関係に基づき、距離r^
t
kは以下の式(5)のように表される。
さらに、計測モデルブロック23は、式(5)及び式(7)に示される計測モデルを事前推定値x-
tのまわりで線形化したヤコビ行列「Ht
k」を算出する。ここで、ヤコビ行列Ht
kは、以下の式(8)により表される。
共分散計算ブロック24は、カルマンゲインKt
kの算出に必要な共分散行列「St
k」を、以下の式(9)に基づき算出する。
カルマンゲイン計算ブロック25は、カルマンゲインKt
kを、以下の式(10)に基づき算出する。
(2-3)ランドマーク抽出ブロックの詳細
図8は、ランドマーク抽出ブロック22の機能的構成を示す図である。図8に示すように、ランドマーク抽出ブロック22は、探索候補選定ブロック41と、計測推定値計算ブロック42と、探索範囲絞込みブロック43と、抽出ブロック44とを有する。
図8は、ランドマーク抽出ブロック22の機能的構成を示す図である。図8に示すように、ランドマーク抽出ブロック22は、探索候補選定ブロック41と、計測推定値計算ブロック42と、探索範囲絞込みブロック43と、抽出ブロック44とを有する。
探索候補選定ブロック41は、事前推定値x-
tに基づき、ライダ2によるスキャン範囲(「スキャン範囲Rsc」とも呼ぶ。)を認識し、認識したスキャン範囲Rsc内に存在するランドマークを、地図DB10から選定する。この場合、探索候補選定ブロック41は、方位θ-
tから±90°であって、位置(x-
t、y-
t)からライダ2の測距可能距離以内となるエリアを、スキャン範囲Rscとして設定する。そして、探索候補選定ブロック41は、インデックスkに対応する位置ベクトルmk=(mk,x、mk,y)を地図DB10から抽出する。スキャン範囲Rscは、本発明における「第1範囲」の一例である。
計測推定値計算ブロック42は、事前推定値x-
tと、地図DB10から抽出したインデックスkに対応する位置ベクトルmkとに基づき、計測値zt
kの推定値z^
t
k=(r^
t
k、φ^
t
k)Tを算出する。具体的には、計測推定値計算ブロック42は、上述した式(5)及び式(7)に基づき、推定値z^
t
k=(r^
t
k、φ^
t
k)Tを算出する。
探索範囲絞込みブロック43は、スキャン範囲Rscから、スキャン角度が角度φ^
t
kから所定の探索角度幅「Δφ」以内の差であって、測距範囲が距離r^
t
kから探索距離幅「Δr」となる範囲(「探索範囲Rtag」とも呼ぶ。)を設定する。探索角度幅Δφ及び探索距離幅Δrは、それぞれ、想定される計測値zt
kと推定値z^
t
kとの誤差を勘案して実験等に基づき予め設定される。上述の誤差は、推定値z^
t
k=(r^
t
k、φ^
t
k)Tの算出(式5及び7参照)に必要な事前推定値x-
t=(x-
t、y-
t、θ-
t)Tの推定精度と、計測値zt
kに相当するスキャンデータを出力するライダ2の精度とに依存する。よって、好適には、探索角度幅Δφ及び探索距離幅Δrは、事前推定値x-
tの推定精度と、ライダ2の精度との少なくとも一方を勘案して設定される。具体的には、探索角度幅Δφ及び探索距離幅Δrは、事前推定値x-
tの推定精度が高いほど短くなり、かつ、ライダ2の精度が高いほど短くなる。
抽出ブロック44は、探索範囲絞込みブロック43が設定した探索範囲Rtagに基づき、基準ランドマークLkの点群に相当する計測値zt
kを、ライダ2の時刻tにおける全スキャンデータから抽出する。具体的には、抽出ブロック44は、以下の式(13)及び式(14)を満たす計測値zt
i(「i」はライダ2が1回のスキャンで出射する各ビームのインデックス)が存在するか否か判定する。
この場合、好適には、抽出ブロック44は、探索範囲Rtag内のスキャンデータから、基準ランドマークLkに対応するスキャンデータを選定する処理をさらに実行し、演算ブロック31へ供給すべき計測値zt
kを決定するとよい。
例えば、抽出ブロック44は、探索候補選定ブロック41が選定したランドマークの形状情報を地図DB10から取得し、探索範囲Rtag内のスキャンデータの点群が構成する3次元形状とのマッチング処理を行うことで、基準ランドマークLkの点群に相当する計測値zt
kを選定する。他の例では、抽出ブロック44は、探索範囲Rtag内のスキャンデータに対応する受光強度の大きさを調べ,予め設定された閾値情報と比較することで、基準ランドマークLkの点群に相当する計測値zt
kを選定する。なお、抽出ブロック44は、選定した計測値zt
kが複数存在する場合には、任意の1つの計測値zt
kを演算ブロック31へ供給してもよく、これらの計測値zt
kから統計処理により算出又は選定した代表値を演算ブロック31へ供給してもよい。
図9は、スキャン範囲Rscと探索範囲Rtagとの関係を示す図である。図9の例では、スキャン範囲Rscは、車両の正面から左右90°の範囲であって車両から測距可能距離以内となる半円エリアとなっている。なお、図9の矢印70はスキャン方向を示す。
図9の例では、まず、探索候補選定ブロック41は、事前推定値x-
tに基づきスキャン範囲Rscを特定すると共に、スキャン範囲Rsc内に存在するランドマークを基準ランドマークLkとみなし、対応する位置ベクトルmkを選定する。そして、計測推定値計算ブロック42は、基準ランドマークLkの位置ベクトルmk及び事前推定値x-
tから、計測値zt
kの推定値z^
t
k=(r^
t
k、φ^
t
k)Tを算出する。探索範囲絞込みブロック43は、式(13)及び式(14)に基づき探索範囲Rtagを設定する。抽出ブロック44は、設定された探索範囲Rtag内にスキャンデータが存在する場合、位置ベクトルmkを計測モデルブロック23へ供給すると共に、探索範囲Rtag内のスキャンデータに基づく計測値zt
kを演算ブロック31へ供給する。なお、設定された探索範囲Rtag内にスキャンデータが存在しない場合には、自車位置推定部17は、基準ランドマークLkがライダ2により検出できなかったと判断し、事前推定値x-
tを事後推定値x^
tに設定すると共に、事前共分散行列Σ-
tを事後共分散行列Σ^
tに設定する。
(3)処理フロー
(3-1)処理概要
図10は、第1実施例において自車位置推定部17が実行する処理の手順を示すフローチャートである。自車位置推定部17は、図10のフローチャートを繰り返し実行する。
(3-1)処理概要
図10は、第1実施例において自車位置推定部17が実行する処理の手順を示すフローチャートである。自車位置推定部17は、図10のフローチャートを繰り返し実行する。
まず、自車位置推定部17は、時刻t-1での事後推定値x^
t-1と事後共分散行列Σ^
t-1とを取り込むと共に、ジャイロセンサ3及び車速センサ4から時刻tにおける制御値utを取得する(ステップS101)。次に、自車位置推定部17の状態遷移モデルブロック20は、式(2)に基づき、事前推定値x-
tを計算する(ステップS102)。そして、自車位置推定部17の共分散計算ブロック21は、式(3)に基づき、事前共分散行列Σー
tを計算する(ステップS103)。
次に、自車位置推定部17のランドマーク抽出ブロック22は、地図DB10を参照し、後述する図11に示すランドマーク抽出処理を実行する(ステップS104)。そして、自車位置推定部17は、地図DB10に登録されたランドマークの位置ベクトルmkとライダ2のスキャンデータとの対応付けができたか否か判定する(ステップS105)。この場合、自車位置推定部17は、図11に示すランドマーク抽出処理に基づき、上述の対応付けができたことを示す所定のフラグが設定されたか否か判定する。
そして、上述の対応付けができた場合(ステップS105;Yes)、共分散計算ブロック24は、上述の式(9)に基づき、共分散行列St
kを計算する(ステップS106)。次に、カルマンゲイン計算ブロック25は、カルマンゲインKt
kを、上述の式(10)に基づき算出する(ステップS107)。そして、演算ブロック33は、式(12)に示すように、事前推定値x-
tに対し、ランドマーク抽出ブロック22から供給される計測値zt
kと計測モデルブロック23から供給される推定値z^
t
kとの差分(即ち「zt
k-z^
t
k」)にカルマンゲインKt
kを乗じた値を加算することで、事後推定値x^
tを計算する(ステップS108)。また、共分散更新ブロック26は、共分散計算ブロック21から供給される事前共分散行列Σ-
tと、計測モデルブロック23から供給されるヤコビ行列Ht
kと、カルマンゲイン計算ブロック25から供給されるカルマンゲインKt
kとに基づき、事後共分散行列Σ^
tを、上述の式(11)に基づき計算する(ステップS109)。その後、単位遅延ブロック34は、事後推定値x^
tを事後推定値x^
t-1として状態遷移モデルブロック20に供給し、単位遅延ブロック35は、事後共分散行列Σ^
tを事後共分散行列Σ^
t-1として共分散計算ブロック21に供給する。
一方、上述の対応付けができなかった場合(ステップS105;No)、自車位置推定部17は、事前推定値x-
tを事後推定値x^
tに設定すると共に、事前共分散行列Σ-
tを事後共分散行列Σ^
tに設定する(ステップS110)。
(3-2)ランドマーク抽出処理
図11は、図10のステップS104のランドマーク抽出処理の詳細を示すフローチャートである。
図11は、図10のステップS104のランドマーク抽出処理の詳細を示すフローチャートである。
まず、ランドマーク抽出ブロック22の探索範囲絞込みブロック43は、ライダ2のスキャンデータを取り込む(ステップS201)。ここでは、ライダ2は、1周期分のスキャンにより出射角度を徐々に変化させた「n」本のビームを出射するものとし、各ビームの反射光の受光強度及び応答時間を計測することで、それぞれ計測値zt
1~zt
nを出力するものとする。
次に、探索候補選定ブロック41は、ライダ2のスキャン範囲Rscに存在するランドマークの位置ベクトルmkを地図DB10から選定する(ステップS202)。この場合、探索候補選定ブロック41は、スキャン範囲Rscとして、方位θ-
tから±90°であって位置(x-
t、y-
t)からライダ2の測距可能距離以内となるエリアを特定し、特定したエリア内の位置を示す位置ベクトルmkを、地図DB10から抽出する。
その後、計測推定値計算ブロック42は、事前推定値x-
tから位置ベクトルmkを計測した場合の計測値zt
kの推定値z^
t
k=(r^
t
k、φ^
t
k)Tを算出する(ステップS203)。具体的には、計測推定値計算ブロック42は、上述した式(5)及び式(7)に基づき、推定値z^
t
k=(r^
t
k、φ^
t
k)Tを算出する。
次に、探索範囲絞込みブロック43は、式(13)を満たすスキャン角度φt
i(i=1~n)を絞り込む(ステップS204)。抽出ブロック44は、式(13)を満たすスキャン角度φt
iとなる計測値zt
iのうち、距離r^
t
iが式(14)に示す範囲となるものが存在するか否か判定する(ステップS205)。そして、式(13)を満たすスキャン角度φt
iとなる計測値zt
iのうち、距離rt
iが式(14)に示す範囲となるものが存在する場合(ステップS205;Yes)、抽出ブロック44は、この探索範囲に含まれる計測値zt
iの中から、基準ランドマークLkに対応する計測値を特定する処理(公知の形状・特徴抽出処理,受光強度の利用など)をさらに実行し,最終的に選定された計測値をzt
kとみなして抽出する(ステップS206)。そして、抽出ブロック44は、抽出した位置ベクトルmk及び当該位置ベクトルmkに対応するスキャンデータである計測値zt
kを出力すると共に、対応付けができた旨を示すフラグをセットする(ステップS207)。このフラグは、前述した図10のステップS105の判定処理において参照される。
一方、抽出ブロック44は、式(13)を満たすスキャン角度φt
iとなる計測値zt
iのうち、距離r^
t
iが式(14)に示す範囲となるものが存在しない場合(ステップS205;No)、対応付けができた旨のフラグをセットしない(ステップS208)。
<第2実施例>
図12は、第2実施例に係る運転支援システムのブロック構成図である。図12の例では、車載機1は、方位センサ5と電気的に接続されている。方位センサ5は、例えば地磁気センサ、方位磁石、又はGPSコンパス等であって、車両の進行方向に対応する方位の情報を車載機1へ供給する。車載機1は、第1実施例と同様に図2に示す構成を有し、地図DB10に登録されたランドマーク情報と、ライダ2、ジャイロセンサ3、車速センサ4、及び方位センサ5の各出力データとに基づき、自車位置の推定を行う。以後では、第1実施例と同一の構成要素については、適宜同一の符号を付し、その説明を省略する。
図12は、第2実施例に係る運転支援システムのブロック構成図である。図12の例では、車載機1は、方位センサ5と電気的に接続されている。方位センサ5は、例えば地磁気センサ、方位磁石、又はGPSコンパス等であって、車両の進行方向に対応する方位の情報を車載機1へ供給する。車載機1は、第1実施例と同様に図2に示す構成を有し、地図DB10に登録されたランドマーク情報と、ライダ2、ジャイロセンサ3、車速センサ4、及び方位センサ5の各出力データとに基づき、自車位置の推定を行う。以後では、第1実施例と同一の構成要素については、適宜同一の符号を付し、その説明を省略する。
図13は、第2実施例における車載機1の自車位置推定部17Aの概略構成を示す。図13の例では、自車位置推定部17Aは、ランドマーク抽出ブロック22と、位置推定ブロック28とを有する。以後において、方位センサ5が出力する基準時刻tでの車両の方位を「θt」と表記し、位置推定ブロック28が出力する基準時刻tでの自車位置の推定値を「x-
t=(x-
t、y-
t)」と表記する。
ランドマーク抽出ブロック22は、探索候補選定ブロック41、計測推定値計算ブロック42、探索範囲絞込みブロック43、抽出ブロック44を有し、基準ランドマークLkの位置ベクトルmkと、基準ランドマークLkに対するライダ2のスキャンデータである計測値zt
kとを出力する。
具体的には、探索候補選定ブロック41は、第1実施例では、状態遷移モデルブロック20から供給される事前推定値x-
tに基づきスキャン範囲Rscを特定していた。これに代えて、第2実施例では、探索候補選定ブロック41は、まず、第1実施例の状態遷移モデルブロック20と同様に、図6に示す幾何学的関係に基づき、自車位置のxy座標の仮の推定値を算出する。具体的には、探索候補選定ブロック41は、一時刻前に位置推定ブロック28が推定した自車位置の推定値x-
t-1及び一時刻前に測定された方位θt-1と、制御値ut=(vt、ωt)Tとに基づき、式(2)に従い、自車位置のxy座標の仮の推定値を算出する。そして、探索候補選定ブロック41は、算出した自車位置のxy座標の仮の推定値と方位θtに基づき、スキャン範囲Rscを特定する。具体的には、探索候補選定ブロック41は、方位θtから±90°であって、算出した自車位置のxy座標からライダ2の測距可能距離以内となるエリアをスキャン範囲Rscとして特定する。そして、探索候補選定ブロック41は、特定したエリア内の位置を示すランドマークの位置ベクトルmkを、地図DB10から抽出する。
計測推定値計算ブロック42は、探索候補選定ブロック41が算出した自車位置のxy座標の仮の推定値(第1実施例の事前推定値x-
tに相当)と、地図DB10から抽出した位置ベクトルmkとに基づき、式(5)及び式(7)を参照し、計測値zt
kの推定値z^
t
k=(r^
t
k、φ^
t
k)Tを算出する。なお、計測推定値計算ブロック42は、式(5)及び式(7)を参照する場合、事前推定値x-
t=(x-
t、y-
t)の代わりに、探索候補選定ブロック41が算出した自車位置のxy座標の仮の推定値を用い、方位θ-
tの代わりに方位θtを用いる。そして、探索範囲絞込みブロック43は、式(13)及び式(14)に示す探索範囲Rtagを設定し、抽出ブロック44は、式(13)及び式(14)を満たす(rt
i、φt
i)の組となる計測値zt
i(ここではzt
kとする)が存在する場合に、当該計測値と位置ベクトルmkを位置推定ブロック28に供給する。この場合、好適には、抽出ブロック44は、第1実施例と同様に、探索範囲Rtag内のスキャンデータから、基準ランドマークLkに対応するスキャンデータを選定する処理をさらに実行し、供給すべき計測値zt
kを決定してもよい。
位置推定ブロック28は、抽出ブロック44から供給される位置ベクトルmk及び計測値zt
k=(rt
k、φt
k)Tと、方位センサ5が出力する方位θtとから、自車位置の推定値x-
t=(x-
t、y-
t)を算出する。具体的には、位置推定ブロック28は、絶対値|θt+φt
k|が90°未満の場合には、以下の式(15)及び式(16)に基づき、推定値x-
t=(x-
t、y-
t)を算出する。
まず、距離rt
k及びスキャン角度φt
kは、距離r^
t
k及びスキャン角度φ^
t
kと同様に、前述した図7に示す幾何学的関係を有することから、推定値x-
t=(x-
t、y-
t)と方位θtとの間で、それぞれ上述した式(5)及び式(6)と同様の関係が成立する。ここで、以下の式(19)は式(6)を変形した式に相当し、式(20)は式(5)を変形した式に相当する。
図14(A)に示すように、「θt+φt
k」が90°未満の場合には、「x-
t<mk、x」が成立する。また、図14(B)に示すように、「θt+φt
k」が90°の場合には、「x-
t=mk、x」が成立する。さらに、図14(C)に示すように、「θt+φt
k」が90°より大きい場合には、「x-
t>mk、x」が成立する。
従って、「θt+φt
k」が負値になる場合を含めると、
(a)|θt+φt k|<90° → x- t<mk、x
(b)|θt+φt k|=90° → x- t=mk、x
(c)|θt+φt k|>90° → x- t>mk、x
となる。そして、上記(a)の場合には、式(21)の左辺は正値になることから、右辺の符号は「+」となるため、上述の式(15)が導出される。また、上記(b)の場合には、式(18)に示す関係「x- t=mk、x」が成立する。さらに、上記(c)の場合には、式(21)の左辺は負値になることから、右辺の符号は「-」となるため、上述の式(17)が導出される。また、推定値x- tのy座標値「y- t」は、式(19)を変形することで、式(16)のように表される。
(a)|θt+φt k|<90° → x- t<mk、x
(b)|θt+φt k|=90° → x- t=mk、x
(c)|θt+φt k|>90° → x- t>mk、x
となる。そして、上記(a)の場合には、式(21)の左辺は正値になることから、右辺の符号は「+」となるため、上述の式(15)が導出される。また、上記(b)の場合には、式(18)に示す関係「x- t=mk、x」が成立する。さらに、上記(c)の場合には、式(21)の左辺は負値になることから、右辺の符号は「-」となるため、上述の式(17)が導出される。また、推定値x- tのy座標値「y- t」は、式(19)を変形することで、式(16)のように表される。
以上のように、第2実施例によれば、自車位置推定部17Aは、方位センサ5から得られる方位θtを利用することで、地図DB10に登録されているランドマークの位置ベクトルmk及び計測値zt
k=(r^
t
k、φ^
t
k)Tから、自車位置の推定値x-
t=(x-
t、y-
t)を好適に算出することができる。
なお、地図DB10に登録されたランドマークの位置ベクトルmkとライダ2のスキャンデータとの対応付けができなかった場合には、自車位置推定部17Aは、探索候補選定ブロック41が算出した自車位置のxy座標の仮の推定値を、自車位置の推定値x-
t=(x-
t、y-
t)として設定する。即ち、この場合、自車位置の推定値x-
t=(x-
t、y-
t)は、一時刻前に位置推定ブロック28が推定した自車位置の推定値x-
t-1と、車速センサ4及びジャイロセンサ5が基準時刻tに測定した制御値utと、一時刻前に測定された方位θt-1とに基づき算出された推定値となる。
<変形例>
以下では、第1及び第2実施例に好適な変形例について説明する。
以下では、第1及び第2実施例に好適な変形例について説明する。
(変形例1)
第1及び第2実施例において、探索候補選定ブロック41は、スキャン範囲Rsc内に存在する複数のランドマークの位置ベクトルを地図DB10から抽出し、ライダ2のスキャンデータとの照合処理を行ってもよい。
第1及び第2実施例において、探索候補選定ブロック41は、スキャン範囲Rsc内に存在する複数のランドマークの位置ベクトルを地図DB10から抽出し、ライダ2のスキャンデータとの照合処理を行ってもよい。
一般に、車両の走行時には、自車前方や側方に他の車両などの障害物が存在するため、地図DB10から選定した基準ランドマークLkのスキャンデータがライダ2から得られない状況(即ちオクルージョン)が発生する。以上を勘案し、本変形例では、探索候補選定ブロック41は、スキャン範囲Rsc内に存在する複数のランドマークの位置ベクトルを地図DB10から抽出することで、いずれかのランドマークに対してオクルージョンが発生した場合であっても、オクルージョンが発生していないランドマークを基準として自車位置推定を行う。これにより、自車位置推定に必要な基準ランドマークLkをより高確率で検出することができる。また,複数のランドマークを抽出することができて,それらの全てを利用できる場合は,計測更新ステップを複数回行うことができる(複数のランドマークを使って事前推定値の補正を行うことができる)。この場合,自車位置の推定精度を統計的に向上させることが出来る。
本変形例の処理を、図11を参照して補足説明する。ランドマーク抽出ブロック22は、ステップS202において、地図DB10を参照し、スキャン範囲Rsc内に複数のランドマークが存在すると判断した場合には、少なくとも2つ以上のランドマークの位置ベクトルを地図DB10から選定する。そして、S203では、ランドマーク抽出ブロック22は、選定した位置ベクトルに対し、計測推定値を計算する。そして、ランドマーク抽出ブロック22は、ステップS204及びS205において、計算した各計測推定値に対して式(13)及び式(14)に示す探索範囲Rtagを設定し、それぞれの探索範囲の中で先に選定したランドマークに対応するスキャンデータの抽出を試みる。この対応付けが成功した場合,当該スキャンデータに相当する計測値と位置ベクトルをステップS207で出力する。
また,複数のランドマークの抽出がなされ,それらの全ての利用できる場合の処理を図10を参照して補足説明する。この場合は,S104に示すランドマーク抽出処理で複数のランドマークが抽出されており,ステップS105がYesと判断された状態になっている。その先で行われるS106からS109の一連の処理が,抽出された個々のランドマークに対して行われるべき処理であり,個々のランドマークに対応するデータ(ステップS207の出力に対応)を入力として,これら一連の処理が抽出されたランドマークの数の分,ループ的に処理される。
(変形例2)
第2実施例において、自車位置推定部17Aは、方位センサ5の出力に基づき方位θtを特定する代わりに、ジャイロセンサ3の出力に基づき方位θtを推定してもよい。
第2実施例において、自車位置推定部17Aは、方位センサ5の出力に基づき方位θtを特定する代わりに、ジャイロセンサ3の出力に基づき方位θtを推定してもよい。
この場合、自車位置推定部17Aは、図6及び式(2)と同様に、一時刻前に算出した方位θt-1に対し、角速度ωtに時刻t-1と時刻tとの時間幅Δtを乗じた値(ωtΔt)を加算することで、基準時刻における方位θtの推定値を算出する。この例によっても、第2実施例と同様に、拡張カルマンフィルタなどのベイズ推定によらずに自車位置の推定値x-
tを好適に算出することができる。
(変形例3)
ライダ2によるインデックスkのランドマークに対する計測値zt kは,距離「rt k」と、車両の正面方向を0度としたときのインデックスkのランドマークに対するスキャン角度「φt k」とを要素とするベクトル値であるとして上記の説明を記載したが,ライダ製品によっては,ターゲットまでの距離と角度を3次元空間上の座標値に変換した上で出力がなされるものもある。例えば2次元でスキャンを行うライダの場合,rt kとφt kと用いて,xt k=rt kcosφt k,yt k=rt ksinφt kという直行座標形式で出力がなされる。このような出力が得られるライダ製品については,例えば,単純にxt k,yt kの値からrt k,φt kの値を逆算した上で,本発明で説明した手法を適用すれば良い。
ライダ2によるインデックスkのランドマークに対する計測値zt kは,距離「rt k」と、車両の正面方向を0度としたときのインデックスkのランドマークに対するスキャン角度「φt k」とを要素とするベクトル値であるとして上記の説明を記載したが,ライダ製品によっては,ターゲットまでの距離と角度を3次元空間上の座標値に変換した上で出力がなされるものもある。例えば2次元でスキャンを行うライダの場合,rt kとφt kと用いて,xt k=rt kcosφt k,yt k=rt ksinφt kという直行座標形式で出力がなされる。このような出力が得られるライダ製品については,例えば,単純にxt k,yt kの値からrt k,φt kの値を逆算した上で,本発明で説明した手法を適用すれば良い。
(変形例4)
車載機1は、地図DB10を記憶部12に記憶する構成に代えて、図示しないサーバ装置が地図DB10を有してもよい。この場合、車載機1は、図示しない通信部でサーバ装置と通信することにより、必要なランドマーク情報を取得する。
車載機1は、地図DB10を記憶部12に記憶する構成に代えて、図示しないサーバ装置が地図DB10を有してもよい。この場合、車載機1は、図示しない通信部でサーバ装置と通信することにより、必要なランドマーク情報を取得する。
1 車載機
2 ライダ
3 ジャイロセンサ
4 車速センサ
5 方位センサ
10 地図DB
2 ライダ
3 ジャイロセンサ
4 車速センサ
5 方位センサ
10 地図DB
Claims (11)
- 地図情報を取得する取得部と、
第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得部と、
前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定部と、
を備える推定装置。 - 前記移動体の現在位置の推定位置である第1推定位置を算出する第2推定部をさらに備え、
前記第1推定部は、前記対象物と前記第1推定位置との位置関係を示す第2情報と前記第1情報との差分及び前記第1推定位置に基づいて、前記移動体の位置を推定する請求項1に記載の推定装置。 - 前記第2推定部は、少なくとも所定時間前の移動体の推定位置に基づいて、前記第1推定位置を算出する請求項2に記載の推定装置。
- 前記移動体の制御情報を取得する第2取得部をさらに備え、
前記第2推定部は、所定時間前の移動体の推定位置と前記移動体の制御情報とに基づいて、前記第1推定位置を算出する請求項3に記載の推定装置。 - 前記第2推定部が前記第1推定位置を算出する予測ステップと、前記第1情報と前記第2情報との差分に基づいて、直前の予測ステップで算出された第1推定位置を前記第1推定部が補正する更新ステップと、を交互に実行し、
前記予測ステップでは、当該予測ステップの直前の更新ステップで補正した第1推定位置に基づき、現時刻に対応する前記第1推定位置を前記第2推定部が算出する請求項3または4に記載の推定装置。 - 前記第1取得部は、
照射方向を変えながらレーザ光を照射する照射部と、
前記対象物にて反射された前記レーザ光を受光する受光部と、
前記受光部が出力する受光信号と、前記受光部が受光したレーザ光に対応する前記照射方向と、当該レーザ光の応答遅延時間と、に基づく前記第1情報を出力する出力部と、
を有する測定装置から前記第1情報を取得する請求項1~5のいずれか一項に記載の推定装置。 - 前記対象物は、人工物である請求項1~6のいずれか一項に記載の推定装置。
- 前記対象物は、周期的に配置された人工物である請求項7に記載の推定装置。
- 推定装置が実行する制御方法であって、
地図情報を取得する取得工程と、
第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得工程と、
前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定工程と、
を有する制御方法。 - コンピュータが実行するプログラムであって、
地図情報を取得する取得部と、
第1範囲に存在する対象物までの距離及び角度を示す第1情報を取得する第1取得部と、
前記地図情報に含まれる前記対象物の位置情報及び前記第1情報に基づいて、前記移動体の位置を推定する第1推定部
として前記コンピュータを機能させるプログラム。 - 請求項10に記載のプログラムを記憶した記憶媒体。
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2015/078163 WO2017060947A1 (ja) | 2015-10-05 | 2015-10-05 | 推定装置、制御方法、プログラム及び記憶媒体 |
| JP2017544078A JP6608456B2 (ja) | 2015-10-05 | 2015-10-05 | 推定装置、制御方法、プログラム及び記憶媒体 |
| US15/759,816 US11199850B2 (en) | 2015-10-05 | 2015-10-05 | Estimation device, control method, program and storage medium |
| CN201580083034.4A CN108351216B (zh) | 2015-10-05 | 2015-10-05 | 估计装置、控制方法、程序以及存储介质 |
| EP15905767.8A EP3361218B1 (en) | 2015-10-05 | 2015-10-05 | Estimation apparatus, control method, program, and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2015/078163 WO2017060947A1 (ja) | 2015-10-05 | 2015-10-05 | 推定装置、制御方法、プログラム及び記憶媒体 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017060947A1 true WO2017060947A1 (ja) | 2017-04-13 |
Family
ID=58487315
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2015/078163 Ceased WO2017060947A1 (ja) | 2015-10-05 | 2015-10-05 | 推定装置、制御方法、プログラム及び記憶媒体 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US11199850B2 (ja) |
| EP (1) | EP3361218B1 (ja) |
| JP (1) | JP6608456B2 (ja) |
| CN (1) | CN108351216B (ja) |
| WO (1) | WO2017060947A1 (ja) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018212294A1 (ja) * | 2017-05-19 | 2018-11-22 | パイオニア株式会社 | 自己位置推定装置、制御方法、プログラム及び記憶媒体 |
| JP2018185156A (ja) * | 2017-04-24 | 2018-11-22 | 日産自動車株式会社 | 物標位置推定方法及び物標位置推定装置 |
| CN110296693A (zh) * | 2018-03-21 | 2019-10-01 | 赫克斯冈技术中心 | 具有扫描功能的光电测量装置和光电测量方法 |
| WO2019188745A1 (ja) * | 2018-03-28 | 2019-10-03 | パイオニア株式会社 | 情報処理装置、制御方法、プログラム及び記憶媒体 |
| WO2020209144A1 (ja) * | 2019-04-09 | 2020-10-15 | パイオニア株式会社 | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 |
| CN113804194A (zh) * | 2021-10-25 | 2021-12-17 | 中国第一汽车股份有限公司 | 一种行驶设备的定位方法、装置、设备及存储介质 |
| JP2022521035A (ja) * | 2018-12-18 | 2022-04-05 | ボルボトラックコーポレーション | 車両の座標を特定する方法 |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6343316B2 (ja) * | 2016-09-16 | 2018-06-13 | パナソニック株式会社 | 端末装置、通信システム、および通信制御方法 |
| US11536572B2 (en) * | 2016-11-09 | 2022-12-27 | The Texas A&M University System | Method and system for accurate long term simultaneous localization and mapping with absolute orientation sensing |
| EP3339999B1 (en) * | 2016-12-22 | 2021-10-27 | Panasonic Intellectual Property Corporation of America | Information processing apparatus, information processing method, and recording medium storing programm |
| CN110799853B (zh) * | 2018-10-26 | 2024-04-30 | 深圳市大疆创新科技有限公司 | 一种环境感知系统及移动平台 |
| WO2020102932A1 (zh) * | 2018-11-19 | 2020-05-28 | 深圳大学 | 一种逻辑基的轨迹起始方法、系统、电子装置和存储介质 |
| JP7117394B2 (ja) * | 2018-11-29 | 2022-08-12 | 日立Astemo株式会社 | 車両制御システム及びサーバ |
| CN109443351B (zh) * | 2019-01-02 | 2020-08-11 | 亿嘉和科技股份有限公司 | 一种稀疏环境下的机器人三维激光定位方法 |
| US11487024B2 (en) | 2019-01-22 | 2022-11-01 | Futurewei Technologies, Inc | Determining geographic location of a mobile device using sensor data |
| CN111983636A (zh) * | 2020-08-12 | 2020-11-24 | 深圳华芯信息技术股份有限公司 | 位姿融合方法、系统、终端、介质以及移动机器人 |
| US11555920B2 (en) * | 2020-10-28 | 2023-01-17 | GM Global Technology Operations LLC | Estimating vehicle velocity using radar data |
| FR3117585A1 (fr) * | 2020-12-15 | 2022-06-17 | Psa Automobiles Sa | Procédé d’affichage d’éléments de guidage, à destination d’un conducteur d’un véhicule comprenant un dispositif d’affichage tête haute |
| KR102880040B1 (ko) * | 2021-03-23 | 2025-11-03 | 삼성전자주식회사 | 로봇 및 그 제어 방법 |
| JP2023053891A (ja) * | 2021-10-01 | 2023-04-13 | 三菱電機株式会社 | 自己位置推定装置及び自己位置推定方法 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007187618A (ja) * | 2006-01-16 | 2007-07-26 | Omron Corp | 物体識別装置 |
| WO2012086029A1 (ja) * | 2010-12-22 | 2012-06-28 | 株式会社日立製作所 | 自律移動システム |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101010710A (zh) * | 2005-07-07 | 2007-08-01 | 松下电器产业株式会社 | 地图信息校正装置、地图信息校正方法、程序、和使用地图信息校正装置的信息提供装置和信息获取装置 |
| JP5316292B2 (ja) * | 2009-07-31 | 2013-10-16 | アイシン・エィ・ダブリュ株式会社 | 地図情報案内装置、地図情報案内方法及びコンピュータプログラム |
| US8301374B2 (en) | 2009-08-25 | 2012-10-30 | Southwest Research Institute | Position estimation for ground vehicle navigation based on landmark identification/yaw rate and perception of landmarks |
| GB201116959D0 (en) * | 2011-09-30 | 2011-11-16 | Bae Systems Plc | Vehicle localisation with 2d laser scanner and 3d prior scans |
| US9037411B2 (en) * | 2012-05-11 | 2015-05-19 | Honeywell International Inc. | Systems and methods for landmark selection for navigation |
| US8473144B1 (en) | 2012-10-30 | 2013-06-25 | Google Inc. | Controlling vehicle lateral lane positioning |
| CN103453901B (zh) * | 2013-06-27 | 2016-09-28 | 展讯通信(上海)有限公司 | 一种位置指引系统及位置指引方法 |
| CN104019813B (zh) * | 2014-06-19 | 2017-01-25 | 无锡知谷网络科技有限公司 | 目标即时定位和构建地图的方法与系统 |
| EP3971672A1 (en) * | 2014-12-17 | 2022-03-23 | Husqvarna AB | Multi-sensor, autonomous robotic vehicle with mapping capability |
| JP5957555B2 (ja) | 2015-03-03 | 2016-07-27 | パイオニア株式会社 | 表示方法、表示装置、表示プログラム、および記録媒体 |
| US9880263B2 (en) * | 2015-04-06 | 2018-01-30 | Waymo Llc | Long range steerable LIDAR system |
| US10345809B2 (en) * | 2015-05-13 | 2019-07-09 | Uber Technologies, Inc. | Providing remote assistance to an autonomous vehicle |
| EP3109589B1 (en) * | 2015-06-23 | 2019-01-30 | Volvo Car Corporation | A unit and method for improving positioning accuracy |
| US10139828B2 (en) * | 2015-09-24 | 2018-11-27 | Uber Technologies, Inc. | Autonomous vehicle operated with safety augmentation |
| EP3497405B1 (en) * | 2016-08-09 | 2022-06-15 | Nauto, Inc. | System and method for precision localization and mapping |
| WO2018125848A1 (en) * | 2016-12-30 | 2018-07-05 | DeepMap Inc. | Route generation using high definition maps for autonomous vehicles |
| US10359518B2 (en) * | 2016-12-30 | 2019-07-23 | DeepMap Inc. | Vector data encoding of high definition map data for autonomous vehicles |
-
2015
- 2015-10-05 WO PCT/JP2015/078163 patent/WO2017060947A1/ja not_active Ceased
- 2015-10-05 CN CN201580083034.4A patent/CN108351216B/zh active Active
- 2015-10-05 EP EP15905767.8A patent/EP3361218B1/en active Active
- 2015-10-05 JP JP2017544078A patent/JP6608456B2/ja active Active
- 2015-10-05 US US15/759,816 patent/US11199850B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007187618A (ja) * | 2006-01-16 | 2007-07-26 | Omron Corp | 物体識別装置 |
| WO2012086029A1 (ja) * | 2010-12-22 | 2012-06-28 | 株式会社日立製作所 | 自律移動システム |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3361218A4 * |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018185156A (ja) * | 2017-04-24 | 2018-11-22 | 日産自動車株式会社 | 物標位置推定方法及び物標位置推定装置 |
| JP2022020797A (ja) * | 2017-05-19 | 2022-02-01 | パイオニア株式会社 | 自己位置推定装置、制御方法、プログラム及び記憶媒体 |
| WO2018212294A1 (ja) * | 2017-05-19 | 2018-11-22 | パイオニア株式会社 | 自己位置推定装置、制御方法、プログラム及び記憶媒体 |
| JP2024161105A (ja) * | 2017-05-19 | 2024-11-15 | パイオニア株式会社 | 自己位置推定装置、制御方法、プログラム及び記憶媒体 |
| JPWO2018212294A1 (ja) * | 2017-05-19 | 2020-03-12 | パイオニア株式会社 | 自己位置推定装置、制御方法、プログラム及び記憶媒体 |
| JP2023101820A (ja) * | 2017-05-19 | 2023-07-21 | パイオニア株式会社 | 自己位置推定装置、制御方法、プログラム及び記憶媒体 |
| US11585897B2 (en) | 2018-03-21 | 2023-02-21 | Hexagon Technology Center Gmbh | Optoelectronic measuring device having scanning functionality |
| CN110296693A (zh) * | 2018-03-21 | 2019-10-01 | 赫克斯冈技术中心 | 具有扫描功能的光电测量装置和光电测量方法 |
| WO2019188745A1 (ja) * | 2018-03-28 | 2019-10-03 | パイオニア株式会社 | 情報処理装置、制御方法、プログラム及び記憶媒体 |
| JP2022521035A (ja) * | 2018-12-18 | 2022-04-05 | ボルボトラックコーポレーション | 車両の座標を特定する方法 |
| JP7441843B2 (ja) | 2018-12-18 | 2024-03-01 | ボルボトラックコーポレーション | 車両の座標を特定する方法 |
| JPWO2020209144A1 (ja) * | 2019-04-09 | 2020-10-15 | ||
| WO2020209144A1 (ja) * | 2019-04-09 | 2020-10-15 | パイオニア株式会社 | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 |
| JP2023164553A (ja) * | 2019-04-09 | 2023-11-10 | パイオニア株式会社 | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 |
| US12085653B2 (en) | 2019-04-09 | 2024-09-10 | Pioneer Corporation | Position estimation device, estimation device, control method, program and storage media |
| CN113804194A (zh) * | 2021-10-25 | 2021-12-17 | 中国第一汽车股份有限公司 | 一种行驶设备的定位方法、装置、设备及存储介质 |
| CN113804194B (zh) * | 2021-10-25 | 2024-03-15 | 中国第一汽车股份有限公司 | 一种行驶设备的定位方法、装置、设备及存储介质 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108351216B (zh) | 2022-01-18 |
| CN108351216A (zh) | 2018-07-31 |
| EP3361218A1 (en) | 2018-08-15 |
| JP6608456B2 (ja) | 2019-11-20 |
| US20180253105A1 (en) | 2018-09-06 |
| US11199850B2 (en) | 2021-12-14 |
| EP3361218C0 (en) | 2023-11-29 |
| JPWO2017060947A1 (ja) | 2018-08-02 |
| EP3361218B1 (en) | 2023-11-29 |
| EP3361218A4 (en) | 2019-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6608456B2 (ja) | 推定装置、制御方法、プログラム及び記憶媒体 | |
| JP2017072422A (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 | |
| JP7155284B2 (ja) | 計測精度算出装置、自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
| JP2023164553A (ja) | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 | |
| JP6980010B2 (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
| US11822009B2 (en) | Self-position estimation device, self-position estimation method, program, and recording medium | |
| JP2017072423A (ja) | 推定装置、制御方法、プログラム及び記憶媒体 | |
| JP2022176322A (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
| JP2023075184A (ja) | 出力装置、制御方法、プログラム及び記憶媒体 | |
| JP2025083454A (ja) | 情報処理装置、地図データ生成装置、方法及びプログラム | |
| JP2020098196A (ja) | 推定装置、制御方法、プログラム及び記憶媒体 | |
| US12248070B2 (en) | Information processing device, control method, program and storage medium | |
| JP2019174191A (ja) | データ構造、情報送信装置、制御方法、プログラム及び記憶媒体 | |
| JP2024161108A (ja) | 推定装置、制御方法、プログラム及び記憶媒体 | |
| WO2018212302A1 (ja) | 自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
| JP2022025118A (ja) | 推定装置、制御方法、プログラム及び記憶媒体 | |
| WO2019188874A1 (ja) | データ構造、情報処理装置、及び地図データ生成装置 | |
| WO2019188877A1 (ja) | 情報送信装置、データ構造、制御方法、プログラム及び記憶媒体 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15905767 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2017544078 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15759816 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |