WO2016117564A1 - Program, information storage medium, and recognition device - Google Patents
Program, information storage medium, and recognition device Download PDFInfo
- Publication number
- WO2016117564A1 WO2016117564A1 PCT/JP2016/051457 JP2016051457W WO2016117564A1 WO 2016117564 A1 WO2016117564 A1 WO 2016117564A1 JP 2016051457 W JP2016051457 W JP 2016051457W WO 2016117564 A1 WO2016117564 A1 WO 2016117564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stroke
- specific gesture
- character string
- mathematical expression
- range specified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/18—Extraction of features or characteristics of the image
- G06V30/1801—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes or intersections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/22—Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
Definitions
- the present invention relates to a program, an information storage medium, and a recognition device.
- Mathematical expressions consist of the relationship between symbols and the position and size of symbols representing the four arithmetic operators, parentheses, fractional symbols and roots, integral symbols, and powers.
- a handwritten mathematical expression recognition system it is normal to assume an alphanumeric symbol as a symbol.
- a character string other than an alphanumeric symbol is often written as a symbol.
- Formulas containing these strings often appear in textbooks and are often written on a blackboard.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a program, an information storage medium, and a recognition device that can recognize mathematical expressions including character strings. is there.
- the present invention is a program for recognizing a mathematical expression including a character string from a handwritten input stroke string, and the input stroke or stroke string is a specific gesture for distinguishing a character string from a mathematical expression.
- a registration unit for registering information regarding a range specified by the specific gesture and a specified by the specific gesture among the input strokes when it is determined that the specific gesture is satisfied.
- a category in which a stroke included in the range to be set is set as a stroke corresponding to one of the character string and the mathematical expression, and a stroke not included in the range specified by the specific gesture is set as a stroke corresponding to the other of the character string and the mathematical expression Text and the stroke set as the stroke corresponding to the character string.
- the present invention also relates to an information storage medium that can be read by a computer and stores a program for causing the computer to function as each of the above-described units.
- the present invention also relates to a recognition device including the above-described units.
- the stroke included in the range specified by the specific gesture is set as a stroke corresponding to one of the character string and the mathematical expression
- a stroke that is not included in the range specified by the specific gesture is set as a stroke corresponding to the other of the character string and the mathematical expression
- the character string is recognized by the character string recognition engine from the stroke set as the stroke corresponding to the character string.
- the classification unit is designated by the specific gesture when it is determined that the input stroke or stroke sequence corresponds to the specific gesture.
- the stroke included in the range is set as a stroke corresponding to one of the character string and the mathematical expression, and it is determined that the input stroke does not correspond to the specific gesture, the input stroke is specified by the specific gesture It is possible to determine whether the input stroke is included in the range specified by the specific gesture, and the input stroke may be set as a stroke corresponding to one of the character string and the mathematical expression.
- the sorting unit sets a stroke included in a range specified by the specific gesture as a stroke corresponding to a character string. And set a stroke that is not included in the range specified by the specific gesture as a stroke corresponding to the mathematical expression, and the recognition unit uses a stroke included in the range specified by the one specific gesture as one symbol. It may be handled and a mathematical expression is recognized by a mathematical expression recognition engine.
- a stroke included in a range specified by one specific gesture (a stroke set as a stroke corresponding to a character string) is treated as one symbol, and a mathematical expression is recognized by a mathematical expression recognition engine.
- a mathematical expression including a character string can be recognized using a mathematical expression recognition engine that cannot recognize the character string.
- the computer further functions as a display control unit that performs control to display the input stroke sequence on the display unit, and the display control unit corresponds to the specific gesture. Then, control may be performed to display the determined stroke or stroke sequence as an image representing a shape corresponding to the specific gesture.
- the recognition apparatus further includes a display control unit that performs control to display the input stroke sequence on the display unit, and the display control unit displays the stroke or the stroke sequence determined to correspond to the specific gesture.
- the image may be displayed as an image representing the shape corresponding to the specific gesture.
- the present invention it is possible to cause the user to recognize that the specific gesture has been correctly determined by displaying the stroke determined to correspond to the specific gesture as an image representing the shape corresponding to the specific gesture. Convenience can be improved.
- the display control unit does not include a stroke included in a range specified by the specific gesture within a range specified by the specific gesture. You may control to display with a color different from a stroke.
- the stroke included in the range specified by the specific gesture is displayed in a color different from the stroke not included in the range specified by the specific gesture, whereby the character string and the mathematical expression are displayed by the specific gesture. It is possible to make the user recognize that it is correctly classified, and to improve the convenience for the user.
- the registration unit corresponds to the specific gesture. Then, it may be determined.
- FIG. 1 is an example of a functional block diagram of the recognition apparatus of the present embodiment.
- FIG. 2A is a diagram illustrating an example of writing in which mathematical expressions, character strings, and specific gestures are mixed.
- FIG. 2B is a diagram illustrating an example of the specific gesture table.
- FIG. 3A is a diagram for explaining the order in which specific gestures are written.
- FIG. 3B is a diagram for explaining the order in which specific gestures are written.
- FIG. 3C is a diagram for explaining the order in which the specific gesture is written.
- FIG. 3D is a diagram for explaining the order in which specific gestures are written.
- FIG. 4A is a diagram illustrating an example of writing of a rectangular specific gesture.
- FIG. 4B is a diagram illustrating an example of writing of a rectangular specific gesture.
- FIG. 5 is a flowchart illustrating an example of processing in the sequential method.
- FIG. 6A is a diagram illustrating a specific display example in the sequential method.
- FIG. 6B is a diagram illustrating a specific display example in the sequential method.
- FIG. 6C is a diagram illustrating a specific display example in the sequential method.
- FIG. 6D is a diagram illustrating a specific display example in the sequential method.
- FIG. 6E is a diagram illustrating a specific display example in the sequential method.
- FIG. 6F is a diagram illustrating a specific display example in the sequential method.
- FIG. 7 is a flowchart showing an example of processing in the batch method.
- FIG. 8A is a diagram illustrating a specific display example in the batch method.
- FIG. 8B is a diagram illustrating a specific display example in the batch method.
- FIG. 8C is a diagram illustrating a specific display example in the batch method.
- FIG. 1 shows an example of a functional block diagram of the recognition apparatus of the present embodiment.
- the recognition apparatus of this embodiment is good also as a structure which abbreviate
- the character input unit 160 is for the user to input handwritten characters with a writing medium (pen, fingertip, etc.), and the function can be realized by a writing surface such as a tablet or a touch panel.
- the character input unit 160 detects coordinate data representing the position of the writing medium from when the writing medium touches the writing surface until it leaves, and strokes (strokes) the detected coordinate data string (coordinate point series). Is output to the processing unit 100.
- a vector from the end point of the stroke to the start point of the next stroke is called an off stroke (handwriting vector), and a series of strokes and off strokes is called a stroke sequence.
- the storage unit 170 stores a program and various data for causing the computer to function as each unit of the processing unit 100, and also functions as a work area of the processing unit 100.
- the function can be realized by a hard disk, a RAM, or the like.
- the display unit 190 outputs the image generated by the processing unit 100, and its function can be realized by a display such as a touch panel, LCD, or CRT that also functions as the character input unit 160.
- the processing unit 100 performs processing such as recognition processing and display control based on the coordinate data and program from the character input unit 160.
- the processing unit 100 performs various processes using the main storage unit in the storage unit 170 as a work area.
- the functions of the processing unit 100 can be realized by hardware such as various processors (CPU, DSP, etc.), ASIC (gate array, etc.), and programs.
- the processing unit 100 includes a registration unit 110, a sorting unit 112, a recognition unit 114, and a display control unit 120.
- the registration unit 110 determines whether or not the input stroke or stroke sequence corresponds to a specific gesture for distinguishing a character string from a mathematical expression, and determines that the input gesture corresponds to the specific gesture. A process for registering information related to the range (area) specified by. The registered information is stored in the storage unit 170.
- the registration unit 110 may determine that the stroke or stroke sequence corresponds to the specific gesture.
- the sorting unit 112 sets a stroke included in the range specified by the specific gesture among the input strokes as a stroke corresponding to one of the character string and the mathematical expression, and is included in the range specified by the specific gesture.
- a stroke that does not exist is set as a stroke corresponding to the other of the character string and the mathematical expression. That is, the sorting unit 112 sets a stroke included in the range specified by the specific gesture among the input strokes as a stroke corresponding to the character string, and is not included in the range specified by the specific gesture. May be set as a stroke corresponding to the mathematical formula, or vice versa.
- the recognition unit 114 recognizes a character string by the character string recognition engine from the stroke set as a stroke corresponding to the character string by the classification unit 112, and uses the mathematical expression recognition engine from the stroke set by the classification unit 112 as a stroke corresponding to the mathematical expression.
- the process of recognizing the mathematical formula is performed.
- the classification unit 112 sets a stroke included in the range specified by the specific gesture as a stroke corresponding to a character string
- the recognition unit 114 is specified by one specific gesture and the specific gesture.
- the stroke included in the range may be handled as one symbol, and the mathematical expression may be recognized by the mathematical expression recognition engine.
- the character strings “area”, “height”, and “width” are treated as one symbol such as “x”, “y”, and “z”, respectively, and applied to the mathematical expression recognition engine. It may be recognized.
- the display control unit 120 performs control to display the input stroke sequence on the display unit 190.
- the display control unit 120 may perform control to display the stroke or the stroke sequence determined to correspond to the specific gesture as an image representing a shape corresponding to the specific gesture (for example, an image representing a rectangle). Good.
- the display control unit 120 may perform control to display a stroke included in a range specified by the specific gesture in a color different from a stroke not included in the range specified by the specific gesture.
- the display control unit 120 performs control to display a mathematical expression (recognition result) including a character string recognized by the recognition unit 114 on the display unit 190.
- a gesture for distinguishing a character string and a mathematical expression is introduced.
- This is called a specific gesture.
- the specific gesture means an operation of specifying a stroke included in a range specified by the gesture and performing a process corresponding to the stroke other than a character to be recognized or a symbol other than a mathematical expression.
- a rectangle surrounding a character string is adopted as the specific gesture. That is, when a stroke (or stroke sequence) input by handwriting forms a substantially rectangular shape, it is determined that the stroke corresponds to the specific gesture, and the character string is recognized from the stroke included in the range specified by the specific gesture. The mathematical expression is recognized from the stroke not included in the range specified by the specific gesture.
- the reason for adopting the rectangle as the shape of the specific gesture is that the rectangle does not appear in an ordinary mathematical formula, and it is natural for humans to write the rectangle to specify the range. Note that squares and rectangles may be used as symbols in certain areas of mathematics. In this case, symbols having a different shape may be adopted as specific gestures instead of rectangles.
- the specific gesture may be any shape as long as the shape is unique (easily distinguishable from other symbols and symbols) and the range indicated by the specific gesture is clear.
- the shape of the specific gesture may be one that writes one or both of the diagonal lines of the rectangle from right to left (because writing from left to right makes it indistinguishable from “X”), or both of the diagonal lines of the rectangle What is continuously written (a shape in which “ ⁇ ” is inverted) may be used.
- a specific gesture is used to distinguish a character string included in a mathematical expression, but a specific gesture (for example, a rectangle surrounding the mathematical expression) may be used to distinguish a mathematical expression included in the character string.
- FIG. 2A is a diagram illustrating an example of writing in which mathematical expressions, character strings, and specific gestures are mixed.
- the registration unit 110 monitors whether or not the stroke is a specific gesture.
- the registration unit 110 determines the stroke order of the specific gesture (the stroke of the stroke corresponding to the specific gesture). (Order) and coordinates (rectangular rectangular coordinates or rectangular opposing rectangular coordinates) are registered in the specific gesture table.
- FIG. 2B is a diagram showing a specific gesture table corresponding to the writing example of FIG. 2A. For example, in the specific gesture table shown in FIG.
- the specific gesture BG 1 is written in the fifth stroke after the 4-stroke character string “area”, and the coordinates of the upper left corner and the lower right corner (with the specific gesture).
- An example of information relating to the designated range) is registered, and for the specific gesture BG 2 is written in the 13th screen after the first “x”, and the coordinates of its upper left corner and lower right corner are registered,
- the specific gesture BG 3 is written in the 18th screen after the second “x”, and the coordinates of its upper left corner and lower right corner are registered.
- the classification unit 112 refers to the specific gesture table as illustrated in FIG. 2B, classifies the stroke surrounded by any specific gesture as a part of the character string (stroke corresponding to the character string), and other than that The stroke is divided as a part of the formula (stroke corresponding to the formula).
- the case where the specific gesture is written in one stroke is shown, but it may be allowed to write the specific gesture in multiple strokes.
- the maximum number of strokes for example, 4 strokes
- the stroke corresponding to a mathematical expression or character is written from the start of writing the specific gesture to the end of writing.
- the stroke order of the first stroke and the stroke order of the last stroke constituting the specific gesture are registered in the specific gesture table.
- the “adjusted stroke order” in the specific gesture table of FIG. 2B will be described later.
- FIG. 3A shows a case where a specific gesture BG is first written, and then a character string is written in the specific gesture BG.
- FIG. 3B first writes a character string, and then,
- FIG. 3C shows a case where a specific gesture BG surrounding the character string is written, and
- FIG. 3A shows a case where a specific gesture BG is first written, and then a character string is written in the specific gesture BG.
- FIG. 3C shows a case where the character string is first written and then another stroke is written, and then the specific gesture BG surrounding the character string is written.
- FIG. 3D shows a case where a character string is added to a specific gesture BG surrounding a character string already written.
- Fig. 4 shows an example of writing a rectangular specific gesture.
- the user starts writing from the upper left corner of the rectangle, proceeds clockwise (see FIG. 4A) or counterclockwise (see FIG. 4B), and returns to the upper left corner.
- the specific gesture includes at least a part (for example, 1/3 or more) of brushstrokes constituting the input stroke
- the sorting unit 112 is surrounded by the specific gesture (specified by the specific gesture). To be included in the range to be included. This is because the specific gesture written by the user may cross another stroke (see FIG. 3).
- an online recognition method that uses time-series information of a stroke and an offline recognition method that uses a feature as an image of a stroke are used together to recognize the specific gesture.
- the recognition target when recognizing a specific gesture is a mathematical expression (a symbol such as an English character, an arithmetic operator, an operator such as a fractional symbol, a root or an integral symbol, a parenthesis) and a specific gesture (a surrounding rectangle).
- MRF Markov Random Field
- MQDF Modified Quadrantic Discriminant Function
- the stroke can be easily converted into an image by connecting the strokes in chronological order. Although the time-series information is lost when the stroke is converted into an image, the influence of the stroke order difference, overwriting, or the like can be eliminated by converting it into an image.
- Gradient features are extracted from this image by the Sobel filter and projected in eight directions.
- the original image is 64 ⁇ 64 pixels and is divided into 8 ⁇ 8 sections of the same size.
- a Gaussian filter of 18 ⁇ 18 pixels is applied to blur.
- the direction feature close to the center greatly contributes, the contribution of the periphery becomes small, and some contribution is also received from the adjacent section, which makes it strong against misalignment.
- features in 8 directions are extracted for each 8 ⁇ 8 section, and 512-dimensional features are obtained as a whole.
- dimensions are compressed by Fisher's discriminant analysis to obtain 256-dimensional features.
- MQDF is used for identification.
- a threshold value is set, and if the distance to the rectangle of the input pattern is the shortest, it is rejected if it is larger than the threshold value.
- the online recognition method gives a logarithmic value of a probability value (a negative value, but a larger value is better), and the offline recognition method gives a distance (a smaller value is better). Therefore, it is necessary to match these scales. Therefore, the integrated score is calculated by multiplying the online recognition score by ⁇ 1 to make it a positive value (thus, the smaller the better) and taking the weighted sum.
- the integrated score score combination is calculated by the following equation.
- score online and score offline are the score of the online recognition method and the score of the offline recognition method, respectively.
- the registration unit 110 recognizes the smallest gesture combination as the specific gesture among the recognition targets.
- the recognition device is equipped with an interactive device that displays time-series writing points in real time and provides recognition feedback for each stroke (stroke), as in a tablet PC, and a memory for time-series writing points.
- an interactive device that displays time-series writing points in real time and provides recognition feedback for each stroke (stroke), as in a tablet PC, and a memory for time-series writing points.
- a non-interactive device in which recording is performed with a tablet or an electronic pen, and reading and processing of the data is performed collectively by a PC or the like.
- Sequential processing In the sequential method adopted in interactive devices, the user designates the language (for example, English or Japanese) for recognizing the character string, starts up the system (program), and enters the input section such as a touch panel. Start writing mathematical formulas and strings. The system recognizes a specific gesture and classifies a character string and a mathematical expression each time a stroke is written, and recognizes a character string and a numerical string and displays a recognition result after writing.
- FIG. 5 is a flowchart illustrating an example of processing in the sequential method.
- the processing unit 100 acquires a stroke input to the character input unit 160 (step S10).
- the display control unit 120 performs control to display the acquired stroke on the display unit 190.
- the registration unit 110 determines whether or not the latest stroke up to the maximum number of strokes (for example, 4 strokes) of the specific gesture corresponds to the specific gesture (configures the specific gesture) from the acquired stroke (Ste S12). For example, the registration unit 110 calculates an integrated score score combination for each of a recent stroke of one stroke, a stroke sequence of two strokes, a stroke sequence of three strokes, a stroke sequence of four strokes (maximum number of strokes), When the specific combination gives the smallest score combination among the recognition targets, it is recognized as a specific gesture. However, for a stroke rejected by either the online recognition method or the offline recognition method, the score combination is not calculated, and if any stroke is rejected, it is determined that the stroke does not correspond to the specific gesture.
- the registration unit 110 specifies the information of the specific gesture (stroke order and opposing two-dimensional coordinates) from the stroke information determined to be applicable to the specific gesture. Register in the gesture table (step S14).
- the registration unit 110 cancels the setting when the stroke determined to correspond to the specific gesture has been previously set as a stroke corresponding to the mathematical expression.
- the display control unit 120 controls to display an image of a stroke determined to be a specific gesture as an image representing a rectangle (a shape corresponding to the specific gesture) of a color (for example, red) different from other strokes. I do. Thereby, it can be fed back to the user that the specific gesture has been correctly recognized.
- the sorting unit 112 refers to the specific gesture table, and sets a stroke included in a range specified by the registered specific gesture as a stroke corresponding to the character string (step S16).
- the display control unit 120 performs control to change the color of the stroke included in the range specified by the specific gesture (for example, change from black to blue). Thereby, it can be fed back to the user that the character string has been correctly classified by the specific gesture. If there is no stroke included in the range specified by the specific gesture, the process of step S16 is skipped.
- the sorting unit 112 refers to the specific gesture table, and determines whether or not the acquired stroke is included in the range specified by any specific gesture. Is determined (step S18).
- the sorting unit 112 sets the acquired stroke as a stroke corresponding to the character string (Step S18).
- the display control unit 120 performs control to change the color of the acquired stroke (for example, change from black to blue).
- the sorting unit 112 sets the acquired stroke as a stroke corresponding to the mathematical expression (Step S18). S22).
- step S24 the processing unit 100 determines whether or not there is an input of a stroke (step S24). If there is an input (Y in step S24), the processing unit 100 proceeds to the process of step S10, and writing by the user is completed. Until this is done, the processing from step S10 is repeated.
- the recognition unit 114 recognizes the character string by the character string recognition engine from the stroke set as the stroke corresponding to the character string in steps S16 and S20.
- the mathematical expression recognition engine recognizes the mathematical expression from the stroke set as the stroke corresponding to the mathematical expression in step S22 (step S26). Then, the display control unit 120 performs control for causing the display unit 190 to display the recognition result (the mathematical expression including the character string).
- the mathematical expression recognition engine does not understand the stroke corresponding to the specific gesture or the stroke corresponding to the character string, but there is no information on the character string surrounded by the specific gesture (that is, from the stroke information corresponding to the mathematical expression). Alone), the structure of the formula cannot be analyzed. Therefore, in the method of the present embodiment, one specific gesture and a character string surrounded by the specific gesture are treated as one symbol (one symbol in the mathematical expression), and the coordinate information and mathematical expression of the specific gesture handled as the symbol are supported. Recognize mathematical formulas from stroke information. Therefore, the stroke order of the specific gesture is adjusted.
- the earlier stroke order of the specific gesture is set as the stroke order after adjustment of the specific gesture.
- “1”, “9”, and “12” are registered as the adjusted stroke order of the specific gestures BG 1 , BG 2 , and BG 3 , respectively.
- the recognition unit 114 treats the specific gesture BG 1 and the character string “area” included in the specific gesture BG 1 as one symbol written in the first stroke by referring to the specific gesture table,
- the specific gesture BG 2 and the character string “height” included therein are treated as one symbol written in the ninth stroke, and the specific gesture BG 3 and the character string “width” included therein are written in the 12th stroke.
- the structure of the mathematical formula can be analyzed from the relationship between the position and size of these symbols and the stroke corresponding to the mathematical formula.
- the user may make a mistake in writing, so it is desirable to have an Undo function.
- the specific gesture and its registration information are deleted and included in the range specified by the specific gesture.
- the stroke (the stroke set as the stroke corresponding to the character string) is reset as the stroke corresponding to the mathematical expression.
- the latest undo stroke is a stroke corresponding to a character string or a mathematical expression, the stroke is simply deleted.
- FIG. 6 is a diagram illustrating a specific display example in the sequential method.
- the user first writes a character string “value” and a mathematical expression, and then writes a specific gesture BG 1 surrounding the character string “value” (FIG. 6A).
- the registration unit 110 recognizes the specific gesture BG 1 , and the display control unit 120 displays the specific gesture BG 1 in red as an image BI 1 (specific gesture image) that represents a rectangle having the same size as the specific gesture BG 1. It was replaced to change the color of a character string enclosed by a particular gesture BG 1 "value" in blue (Fig. 6B).
- the user writes a new specific gesture BG 2 (FIG. 6C).
- the registration unit 110 recognizes the specific gesture BG 2 and the display control unit 120 replaces the specific gesture BG 2 with the specific gesture image BI 2 (FIG. 6D).
- the display control unit 120 displays the character string “result” in blue every time a stroke is acquired (FIG. 6E).
- the recognition unit 114 recognizes the character string and the mathematical expression, and the display control unit 120 displays the recognition result (FIG. 6F).
- the specific gesture images BI 1 and BI 2 are removed and the recognition result is displayed.
- FIG. 7 is a flowchart showing an example of processing of the latter method in the batch method.
- the processing unit 100 acquires the stroke sequence input to the character input unit 160 (step S30). Next, the processing unit 100 sets 1 to the variable i (step S32). Next, the registration unit 110 determines whether or not the most recent stroke from the i-th (i-th stroke) stroke to the maximum number of strokes (for example, 4 strokes) of the specific gesture corresponds to the specific gesture (step) S34).
- the registration unit 110 specifies the information of the specific gesture (stroke order and opposing two-dimensional coordinates) from the stroke information determined to be applicable to the specific gesture. Register in the gesture table (step S36). If it does not correspond to the specific gesture (N in step S34), the i-th stroke is set as a non-gesture stroke (stroke not corresponding to the specific gesture) (step S38).
- the processing unit 100 increases the value of the variable i by 1 (step S40), and whether or not the value of the variable i is n (n is the total number of strokes included in the acquired stroke sequence) or not. Is determined (step S42). When the value of the variable i is n or less (Y in step S42), the process proceeds to step S34, and the processing from step S34 is repeated until the value of the variable i exceeds n.
- the processing unit 100 sets 1 to the variable i (step S44).
- the sorting unit 112 refers to the specific gesture table to determine whether or not the i-th non-gesture stroke set in step S38 is included in a range specified by any specific gesture (Ste S46).
- the sorting unit 112 sets the i-th non-gesture stroke as a stroke corresponding to the character string. Set (step S48).
- the sorting unit 112 sets the i-th non-gesture stroke as a stroke corresponding to the mathematical expression. (Step S50).
- the processing unit 100 increases the value of the variable i by 1 (step S52), and determines whether or not the value of the variable i is equal to or less than m (m is the total number of non-gesture strokes) (step S54). ). When the value of the variable i is less than or equal to m (Y in step S54), the process proceeds to step S46, and the processes in and after step S46 are repeated until the value of the variable i exceeds m.
- the recognition unit 114 recognizes the character string by the character string recognition engine from the stroke set as the stroke corresponding to the character string in step S48,
- the mathematical expression is recognized by the mathematical expression recognition engine from the specific gesture table (coordinate information of the specific gesture treated as a symbol) and the stroke set as the stroke corresponding to the mathematical expression in step S50 (step S56).
- the display control unit 120 performs control for causing the display unit 190 to display the recognition result (the mathematical expression including the character string).
- FIG. 8 is a diagram illustrating a specific display example in the batch method.
- all strokes written by the user and taken into the recognition device are displayed (FIG. 8A), and when the user performs an operation to instruct execution of recognition, recognition of a specific gesture, classification of character strings and mathematical expressions, The recognition of the character string and the numerical sequence is executed, and the recognition result is displayed (FIG. 8C).
- FIG. 8B After performing recognition of a specific gesture and classification of a character string and a mathematical expression, and before performing recognition of a character string and a numerical sequence, as shown in FIG. 8B, the recognition result of the specific gesture and the classification of the mathematical expression and the character string The result may be displayed.
- FIG. 8A all strokes written by the user and taken into the recognition device
- FIG. 8C the recognition result is displayed.
- FIG. 8B after performing recognition of a specific gesture and classification of a character string and a mathematical expression, and before performing recognition of a character string and a numerical sequence, as shown in FIG. 8B,
- the specific gestures BG 1 , BG 2 , and BG 3 are replaced with the specific gesture images BI 1 , BI 2 , and BI 3 , respectively, and the characters surrounded by the specific gestures BG 1 , BG 2 , and BG 3 are used.
- the colors of the columns “area”, “height”, and “width” are changed to blue.
- a specific gesture for dividing a character string and a mathematical expression is introduced, a stroke surrounded by the specific gesture is divided into a character string, and a stroke not surrounded by the specific gesture is divided into a mathematical expression,
- the character string recognition engine and the mathematical expression recognition engine By recognizing each by the character string recognition engine and the mathematical expression recognition engine, it is possible to clearly distinguish the character string and the mathematical expression included in the mathematical expression. Further, when recognizing a mathematical expression, by treating the specific gesture and the stroke surrounded by the specific gesture as one symbol, the structural analysis of the mathematical expression including the character string can be performed using the mathematical expression recognition engine.
- the stroke surrounded by the specific gesture is processed into a character string (step S16 in FIG. 5), and the stroke is also written.
- the process of dividing the stroke into a character string is performed (step S20 in FIG. 5), so that the character string and the mathematical expression are divided regardless of the timing at which the specific gesture is written. It is possible to improve user convenience. That is, according to the present embodiment, when writing a character string after writing a specific gesture (FIG. 3A), writing a specific gesture after writing a character string (FIG. 3B, FIG. 3C), Even when a character string is added to the specific gesture (FIG. 3D), the process of dividing the character string and the mathematical expression can be performed.
- the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
- the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
- the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
- the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
- processing unit 110 registration unit, 112 sorting unit, 114 recognition unit, 120 display control unit, 160 character input unit, 170 storage unit, 190 display unit
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Character Discrimination (AREA)
Abstract
Description
本発明は、プログラム、情報記憶媒体及び認識装置に関する。 The present invention relates to a program, an information storage medium, and a recognition device.
従来、数式を入力する手法として、LaTeXなどの専門言語を用いる方法や、数式入力エディタを用いる方法等が用いられてきたが、前者は専門用語を習得する必要があり、後者はメニュー選択と記号選択を繰り返す必要があり、ともに一般人には使い勝手が悪かった。これに対して、タブレットなどに手書きされた数式をコンピュータにより認識させる方法は古くから研究されてきた。そして、長年の研究により認識率は向上しており、また、近年におけるタブレット型PCの急速な普及から、一般人に浸透する可能性も増している。 Conventionally, as a method of inputting a mathematical formula, a method using a specialized language such as LaTeX or a method using a mathematical formula input editor has been used. However, the former needs to learn technical terms, and the latter requires menu selection and symbols. It was necessary to repeat the selection, both of which were unusable for ordinary people. On the other hand, a method for recognizing a mathematical formula handwritten on a tablet or the like by a computer has been studied for a long time. The recognition rate has been improved by many years of research, and the possibility of penetrating the general public is increasing due to the rapid spread of tablet PCs in recent years.
数式は、シンボルと、四則演算子、括弧、分数記号やルート、積分記号、べき乗などを表す記号の位置や大きさの関係からなる。手書き数式認識システムでは、シンボルとして英数字記号を仮定するのが普通であるが、実際には、シンボルとして英数字記号以外の文字列が書かれる場合も多く、従来の手書き数式認識システムでは、数式に含まれる文字列が認識されないという問題があった。こうした文字列を含む数式は、教科書のなかで良く現れるし、黒板に板書されることも多い。 Mathematical expressions consist of the relationship between symbols and the position and size of symbols representing the four arithmetic operators, parentheses, fractional symbols and roots, integral symbols, and powers. In a handwritten mathematical expression recognition system, it is normal to assume an alphanumeric symbol as a symbol. However, in practice, a character string other than an alphanumeric symbol is often written as a symbol. There was a problem that the character string contained in was not recognized. Formulas containing these strings often appear in textbooks and are often written on a blackboard.
本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、文字列を含む数式を認識することが可能なプログラム、情報記憶媒体及び認識装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a program, an information storage medium, and a recognition device that can recognize mathematical expressions including character strings. is there.
(1)本発明は、手書き入力されたストローク列から文字列を含む数式を認識するためのプログラムであって、入力されたストローク又はストローク列が、文字列と数式とを区分するための特定ジェスチャに該当するか否かを判定し、前記特定ジェスチャに該当すると判定した場合に、前記特定ジェスチャで指定される範囲に関する情報を登録する登録部と、入力されたストロークのうち、前記特定ジェスチャで指定される範囲に含まれるストロークを文字列及び数式の一方に対応するストロークとして設定し、前記特定ジェスチャで指定される範囲に含まれないストロークを文字列及び数式の他方に対応するストロークとして設定する区分部と、文字列に対応するストロークとして設定されたストロークから文字列認識エンジンにより文字列を認識し、数式に対応するストロークとして設定されたストロークから数式認識エンジンにより数式を認識する認識部としてコンピュータを機能させるためのプログラムに関する。また、本発明は、コンピュータ読み取り可能な情報記憶媒体であって、上記各部としてコンピュータを機能させるためのプログラムを記憶した情報記憶媒体に関係する。また、本発明は、上記各部を含む認識装置に関係する。 (1) The present invention is a program for recognizing a mathematical expression including a character string from a handwritten input stroke string, and the input stroke or stroke string is a specific gesture for distinguishing a character string from a mathematical expression. A registration unit for registering information regarding a range specified by the specific gesture and a specified by the specific gesture among the input strokes when it is determined that the specific gesture is satisfied. A category in which a stroke included in the range to be set is set as a stroke corresponding to one of the character string and the mathematical expression, and a stroke not included in the range specified by the specific gesture is set as a stroke corresponding to the other of the character string and the mathematical expression Text and the stroke set as the stroke corresponding to the character string. It recognizes the sequence, a program for causing a computer to function the formula as recognition unit for recognizing a mathematical expression recognition engine from the set stroke as a stroke which corresponds to the formula. The present invention also relates to an information storage medium that can be read by a computer and stores a program for causing the computer to function as each of the above-described units. The present invention also relates to a recognition device including the above-described units.
本発明によれば、入力されたストロークが特定ジェスチャに該当するか否かを判定し、特定ジェスチャで指定される範囲に含まれるストロークを文字列及び数式の一方に対応するストロークとして設定して、特定ジェスチャで指定される範囲に含まれないストロークを文字列及び数式の他方に対応するストロークとして設定し、文字列に対応するストロークとして設定されたストロークから文字列認識エンジンにより文字列を認識し、数式に対応するストロークとして設定されたストロークから数式認識エンジンにより数式を認識することで、数式に含まれる文字列と数式とを明確に区分してそれぞれを認識することができる。なお、特定ジェスチャを用いずに、数式と文字列を自動的に分離(区分)する方法も考えられる。しかしながら、自動的に数式と文字列を区分することは困難であり、誤分割は避けられないため、本発明では、文字列と数式とを区分するための特定ジェスチャを導入している。 According to the present invention, it is determined whether or not the input stroke corresponds to the specific gesture, the stroke included in the range specified by the specific gesture is set as a stroke corresponding to one of the character string and the mathematical expression, A stroke that is not included in the range specified by the specific gesture is set as a stroke corresponding to the other of the character string and the mathematical expression, and the character string is recognized by the character string recognition engine from the stroke set as the stroke corresponding to the character string. By recognizing the mathematical expression from the stroke set as the stroke corresponding to the mathematical expression by the mathematical expression recognition engine, the character string included in the mathematical expression and the mathematical expression can be clearly divided and recognized. A method of automatically separating (classifying) mathematical expressions and character strings without using specific gestures is also conceivable. However, since it is difficult to automatically distinguish between mathematical expressions and character strings, and erroneous division is inevitable, the present invention introduces a specific gesture for distinguishing between character strings and mathematical expressions.
(2)また本発明に係るプログラム、情報記憶媒体及び認識装置では、前記区分部は、入力されたストローク又はストローク列が前記特定ジェスチャに該当すると判定された場合に、当該特定ジェスチャで指定される範囲に含まれるストロークを文字列及び数式の一方に対応するストロークとして設定し、入力されたストロークが前記特定ジェスチャに該当しないと判定された場合に、当該入力されたストロークが前記特定ジェスチャで指定される範囲に含まれるか否かを判定し、前記特定ジェスチャで指定される範囲に含まれる場合に、当該入力されたストロークを文字列及び数式の一方に対応するストロークとして設定してもよい。 (2) In the program, the information storage medium, and the recognition device according to the present invention, the classification unit is designated by the specific gesture when it is determined that the input stroke or stroke sequence corresponds to the specific gesture. When the stroke included in the range is set as a stroke corresponding to one of the character string and the mathematical expression, and it is determined that the input stroke does not correspond to the specific gesture, the input stroke is specified by the specific gesture It is possible to determine whether the input stroke is included in the range specified by the specific gesture, and the input stroke may be set as a stroke corresponding to one of the character string and the mathematical expression.
本発明によれば、文字列(又は数式)を筆記してから特定ジェスチャを筆記する場合であっても、特定ジェスチャを筆記してから文字列(又は数式)を筆記する場合であっても、文字列と数式とを区分することができ、ユーザの利便性を向上することができる。 According to the present invention, even when writing a specific gesture after writing a character string (or mathematical expression), even when writing a character string (or mathematical expression) after writing a specific gesture, Character strings and mathematical formulas can be distinguished, and user convenience can be improved.
(3)また本発明に係るプログラム、情報記憶媒体及び認識装置では、前記区分部は、入力されたストロークのうち、前記特定ジェスチャで指定される範囲に含まれるストロークを文字列に対応するストロークとして設定し、前記特定ジェスチャで指定される範囲に含まれないストロークを数式に対応するストロークとして設定し、前記認識部は、1つの前記特定ジェスチャで指定される範囲に含まれるストロークを1つのシンボルとして扱って、数式認識エンジンにより数式を認識してもよい。 (3) In the program, the information storage medium, and the recognition device according to the present invention, the sorting unit sets a stroke included in a range specified by the specific gesture as a stroke corresponding to a character string. And set a stroke that is not included in the range specified by the specific gesture as a stroke corresponding to the mathematical expression, and the recognition unit uses a stroke included in the range specified by the one specific gesture as one symbol. It may be handled and a mathematical expression is recognized by a mathematical expression recognition engine.
本発明によれば、1つの特定ジェスチャで指定される範囲に含まれるストローク(文字列に対応するストロークとして設定されたストローク)を1つのシンボルとして扱って数式認識エンジンにより数式を認識することで、文字列を認識できない数式認識エンジンを用いて文字列を含む数式を認識することができる。 According to the present invention, a stroke included in a range specified by one specific gesture (a stroke set as a stroke corresponding to a character string) is treated as one symbol, and a mathematical expression is recognized by a mathematical expression recognition engine. A mathematical expression including a character string can be recognized using a mathematical expression recognition engine that cannot recognize the character string.
(4)また本発明に係るプログラム及び情報記憶媒体では、入力されたストローク列を表示部に表示させる制御を行う表示制御部として更にコンピュータを機能させ、前記表示制御部は、前記特定ジェスチャに該当すると判定されたストローク又はストローク列を、前記特定ジェスチャに対応する形状を表す画像として表示させる制御を行ってもよい。 (4) In the program and the information storage medium according to the present invention, the computer further functions as a display control unit that performs control to display the input stroke sequence on the display unit, and the display control unit corresponds to the specific gesture. Then, control may be performed to display the determined stroke or stroke sequence as an image representing a shape corresponding to the specific gesture.
また本発明に係る認識装置では、入力されたストローク列を表示部に表示させる制御を行う表示制御部を更に含み、前記表示制御部は、前記特定ジェスチャに該当すると判定されたストローク又はストローク列を、前記特定ジェスチャに対応する形状を表す画像として表示させる制御を行ってもよい。 The recognition apparatus according to the present invention further includes a display control unit that performs control to display the input stroke sequence on the display unit, and the display control unit displays the stroke or the stroke sequence determined to correspond to the specific gesture. The image may be displayed as an image representing the shape corresponding to the specific gesture.
本発明によれば、特定ジェスチャに該当すると判定されたストロークを、特定ジェスチャに対応する形状を表す画像として表示させることで、特定ジェスチャが正しく判定されたことをユーザに認識させることができ、ユーザの利便性を向上することができる。 According to the present invention, it is possible to cause the user to recognize that the specific gesture has been correctly determined by displaying the stroke determined to correspond to the specific gesture as an image representing the shape corresponding to the specific gesture. Convenience can be improved.
(5)また本発明に係るプログラム、情報記憶媒体及び認識装置では、前記表示制御部は、前記特定ジェスチャで指定される範囲に含まれるストロークを、前記特定ジェスチャで指定される範囲に含まれないストロークとは異なる色で表示させる制御を行ってもよい。 (5) In the program, the information storage medium, and the recognition device according to the present invention, the display control unit does not include a stroke included in a range specified by the specific gesture within a range specified by the specific gesture. You may control to display with a color different from a stroke.
本発明によれば、特定ジェスチャで指定される範囲に含まれるストロークを、特定ジェスチャで指定される範囲に含まれないストロークとは異なる色で表示させることで、特定ジェスチャにより文字列と数式とが正しく区分されたことをユーザに認識させることができ、ユーザの利便性を向上することができる。 According to the present invention, the stroke included in the range specified by the specific gesture is displayed in a color different from the stroke not included in the range specified by the specific gesture, whereby the character string and the mathematical expression are displayed by the specific gesture. It is possible to make the user recognize that it is correctly classified, and to improve the convenience for the user.
(6)また本発明に係るプログラム、情報記憶媒体及び認識装置では、前記登録部は、入力されたストローク又はストローク列が略矩形を形成する場合に、当該ストローク又はストローク列が前記特定ジェスチャに該当すると判定してもよい。 (6) In the program, the information storage medium, and the recognition device according to the present invention, when the input stroke or stroke sequence forms a substantially rectangular shape, the registration unit corresponds to the specific gesture. Then, it may be determined.
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。 Hereinafter, this embodiment will be described. In addition, this embodiment demonstrated below does not unduly limit the content of this invention described in the claim. In addition, all the configurations described in the present embodiment are not necessarily essential configuration requirements of the present invention.
1.構成
図1に本実施形態の認識装置の機能ブロック図の一例を示す。なお本実施形態の認識装置は図1の構成要素(各部)の一部を省略した構成としてもよい。
1. Configuration FIG. 1 shows an example of a functional block diagram of the recognition apparatus of the present embodiment. In addition, the recognition apparatus of this embodiment is good also as a structure which abbreviate | omitted a part of component (each part) of FIG.
文字入力部160は、ユーザが筆記媒体(ペン、指先等)で手書き文字を入力するためのものであり、その機能は、タブレット、タッチパネル等の筆記面などにより実現できる。文字入力部160は、筆記媒体が筆記面に触れてから離れるまでの筆記媒体の位置を表す座標データを一定時間間隔で検出し、検出された座標データ列(座標点系列)をストローク(筆画)のデータとして処理部100に出力する。なお、ストロークの終点から次のストロークの始点までのベクトルをオフストローク(運筆ベクトル)と呼び、ストロークとオフストロークの連続する系列をストローク列と呼ぶ。
The
記憶部170は、処理部100の各部としてコンピュータを機能させるためのプログラムや各種データを記憶するとともに、処理部100のワーク領域として機能し、その機能はハードディスク、RAMなどにより実現できる。
The
表示部190は、処理部100で生成された画像を出力するものであり、その機能は、文字入力部160としても機能するタッチパネル、LCD或いはCRTなどのディスプレイにより実現できる。
The
処理部100(プロセッサ)は、文字入力部160からの座標データやプログラムなどに基づいて、認識処理、表示制御などの処理を行う。この処理部100は記憶部170内の主記憶部をワーク領域として各種処理を行う。処理部100の機能は各種プロセッサ(CPU、DSP等)、ASIC(ゲートアレイ等)などのハードウェアや、プログラムにより実現できる。処理部100は、登録部110、区分部112、認識部114、表示制御部120を含む。
The processing unit 100 (processor) performs processing such as recognition processing and display control based on the coordinate data and program from the
登録部110は、入力されたストローク又はストローク列が、文字列と数式とを区分するための特定ジェスチャに該当するか否かを判定し、前記特定ジェスチャに該当すると判定した場合に、前記特定ジェスチャで指定される範囲(領域)に関する情報を登録する処理を行う。登録された情報は記憶部170に記憶される。ここで、登録部110は、入力されたストローク又はストローク列が略矩形を形成する場合に、当該ストローク又はストローク列が前記特定ジェスチャに該当すると判定してもよい。
The
区分部112は、入力されたストロークのうち、前記特定ジェスチャで指定される範囲に含まれるストロークを文字列及び数式の一方に対応するストロークとして設定し、前記特定ジェスチャで指定される範囲に含まれないストロークを文字列及び数式の他方に対応するストロークとして設定する。すなわち、区分部112は、入力されたストロークのうち、前記特定ジェスチャで指定される範囲に含まれるストロークを文字列に対応するストロークとして設定し、前記特定ジェスチャで指定される範囲に含まれないストロークを数式に対応するストロークとして設定してもよいし、その逆でも良い。
The
認識部114は、区分部112により文字列に対応するストロークとして設定されたストロークから文字列認識エンジンにより文字列を認識し、区分部112により数式に対応するストロークとして設定されたストロークから数式認識エンジンにより数式を認識する処理を行う。ここで、区分部112が、前記特定ジェスチャで指定される範囲に含まれるストロークを文字列に対応するストロークとして設定する場合、認識部114は、1つの前記特定ジェスチャ及び当該特定ジェスチャで指定される範囲に含まれるストロークを1つのシンボルとして扱って、数式認識エンジンにより数式を認識してもよい。例えば、図2Aに示す例において、文字列「area」、「height」、「width」を、それぞれ「x」、「y」、「z」のような1つのシンボルとして扱って、数式認識エンジンにかけて認識させてもよい。
The
表示制御部120は、入力されたストローク列を表示部190に表示させる制御を行う。ここで、表示制御部120は、前記特定ジェスチャに該当すると判定されたストローク又はストローク列を、前記特定ジェスチャに対応する形状を表す画像(例えば、矩形を表す画像)として表示させる制御を行ってもよい。また、表示制御部120は、前記特定ジェスチャで指定される範囲に含まれるストロークを、前記特定ジェスチャで指定される範囲に含まれないストロークとは異なる色で表示させる制御を行ってもよい。また、表示制御部120は、認識部114により認識された文字列を含む数式(認識結果)を表示部190に表示させる制御を行う。
The
2.本実施形態の手法
次に本実施形態の手法について図面を用いて説明する。
2. Next, the method of this embodiment will be described with reference to the drawings.
手書き入力された文字列を含む数式をコンピュータに認識させる場合、理想的には、入力されたストローク列(手書きパターン)から自動的に数式と文字列を分離(区分)し、それぞれを認識することが好ましい。しかしながら、そもそも自動的に数式と文字列を区分することは困難であり、不完全な区分のうえに数式と文字列をそれぞれ認識させようとすると認識率が著しく低下する恐れがある。 When letting a computer recognize mathematical formulas containing handwritten character strings, ideally, the mathematical formulas and character strings are automatically separated from the input stroke sequence (handwritten pattern) and recognized. Is preferred. However, in the first place, it is difficult to automatically classify mathematical formulas and character strings, and if an attempt is made to recognize mathematical formulas and character strings on incomplete classification, the recognition rate may be significantly reduced.
そこで、本実施形態の手法では、文字列と数式とを区分するためのジェスチャを導入する。これを特定ジェスチャと呼ぶ。ここで、特定ジェスチャとは、認識対象となる文字や数式以外の記号を筆記すると、当該ジェスチャで指定される範囲に含まれるストロークを特定して、それに応じた処理を行う操作を意味する。 Therefore, in the method of this embodiment, a gesture for distinguishing a character string and a mathematical expression is introduced. This is called a specific gesture. Here, the specific gesture means an operation of specifying a stroke included in a range specified by the gesture and performing a process corresponding to the stroke other than a character to be recognized or a symbol other than a mathematical expression.
本実施形態の手法では、特定ジェスチャとして、文字列を囲む矩形を採用する。すなわち、手書き入力されたストローク(又はストローク列)が略矩形を形成する場合に、当該ストロークが特定ジェスチャに該当すると判定し、当該特定ジェスチャで指定される範囲に含まれるストロークから文字列を認識し、当該特定ジェスチャで指定される範囲に含まれないストロークから数式を認識する。特定ジェスチャの形状として矩形を採用するのは、矩形が普通の数式には現れず、また、範囲を指定するために矩形を筆記することが人間にとって自然だからである。なお、数学のある種の領域では、正方形や長方形がシンボルとして使われることがあるが、その場合は、矩形の代わりに別の形状のシンボルを特定ジェスチャとして採用すればよい。すなわち、特定ジェスチャは、形状がユニークで(他のシンボルや記号と区別がつき易く)、それが指示する範囲が明確であればどのようなものでもよい。例えば、特定ジェスチャの形状は、矩形の対角線の片方或いは両方を右から左に筆記する(左から右に筆記すると「X」と区別がつかなくなるため)ものでもよいし、矩形の対角線の両方を続けて筆記するもの(「α」を逆さにした形状)でもよい。また、ここでは、数式に含まれる文字列を区分するために特定ジェスチャを用いるが、文字列に含まれる数式を区分するために特定ジェスチャ(例えば、数式を囲む矩形等)を用いてもよい。 In the method of this embodiment, a rectangle surrounding a character string is adopted as the specific gesture. That is, when a stroke (or stroke sequence) input by handwriting forms a substantially rectangular shape, it is determined that the stroke corresponds to the specific gesture, and the character string is recognized from the stroke included in the range specified by the specific gesture. The mathematical expression is recognized from the stroke not included in the range specified by the specific gesture. The reason for adopting the rectangle as the shape of the specific gesture is that the rectangle does not appear in an ordinary mathematical formula, and it is natural for humans to write the rectangle to specify the range. Note that squares and rectangles may be used as symbols in certain areas of mathematics. In this case, symbols having a different shape may be adopted as specific gestures instead of rectangles. In other words, the specific gesture may be any shape as long as the shape is unique (easily distinguishable from other symbols and symbols) and the range indicated by the specific gesture is clear. For example, the shape of the specific gesture may be one that writes one or both of the diagonal lines of the rectangle from right to left (because writing from left to right makes it indistinguishable from “X”), or both of the diagonal lines of the rectangle What is continuously written (a shape in which “α” is inverted) may be used. Here, a specific gesture is used to distinguish a character string included in a mathematical expression, but a specific gesture (for example, a rectangle surrounding the mathematical expression) may be used to distinguish a mathematical expression included in the character string.
図2Aは、数式と文字列及び特定ジェスチャが混在した筆記の一例を示す図である。登録部110は、ストロークが入力される毎に、そのストロークが特定ジェスチャであるか否かを監視し、特定ジェスチャであると判定した場合に、当該特定ジェスチャの筆順(特定ジェスチャに該当する筆画の順番)と座標(矩形の4角の座標、或いは矩形の対向する2角の座標)を、特定ジェスチャテーブルに登録する。図2Bは、図2Aの筆記例に対応する特定ジェスチャテーブルを示す図である。例えば、図2Bに示す特定ジェスチャテーブルでは、特定ジェスチャBG1について、4画の文字列「area」の後の5画目に筆記されたことと、その左上角及び右下角の座標(特定ジェスチャで指定される範囲に関する情報の一例)が登録され、特定ジェスチャBG2について、1番目の「×」の後の13画目に筆記されたことと、その左上角及び右下角の座標が登録され、特定ジェスチャBG3について、2番目の「×」の後の18画目に筆記されたことと、その左上角及び右下角の座標が登録されている。区分部112は、図2Bに示すような特定ジェスチャテーブルを参照して、いずれかの特定ジェスチャに囲まれたストロークを文字列の一部(文字列に対応するストローク)として区分し、それ以外のストロークを数式の一部(数式に対応するストローク)として区分する。
FIG. 2A is a diagram illustrating an example of writing in which mathematical expressions, character strings, and specific gestures are mixed. Each time a stroke is input, the
図2Aに示す例では、特定ジェスチャを1画で筆記した場合を示しているが、特定ジェスチャを複数画で筆記することを許容してもよい。この場合には、処理の都合上、特定ジェスチャを筆記する最大画数(例えば、4画)を規定し、また、特定ジェスチャを筆記し始めてから筆記し終わるまでは、数式或いは文字に対応するストロークを筆記しないことを条件とする。この程度の条件であれば、ユーザにとって大きな制約とはならない。また、特定ジェスチャを複数画で筆記することを許容する場合には、特定ジェスチャを構成する最初のストロークの筆順と最後のストロークの筆順の2つを特定ジェスチャテーブルに登録する。なお、図2Bの特定ジェスチャテーブルにおける「調整後筆順」については後述する。 In the example shown in FIG. 2A, the case where the specific gesture is written in one stroke is shown, but it may be allowed to write the specific gesture in multiple strokes. In this case, for the convenience of processing, the maximum number of strokes (for example, 4 strokes) in which a specific gesture is written is specified, and the stroke corresponding to a mathematical expression or character is written from the start of writing the specific gesture to the end of writing. Subject to not writing. Under such a condition, there is no big restriction for the user. When it is allowed to write a specific gesture in a plurality of strokes, the stroke order of the first stroke and the stroke order of the last stroke constituting the specific gesture are registered in the specific gesture table. The “adjusted stroke order” in the specific gesture table of FIG. 2B will be described later.
本実施形態の手法では、特定ジェスチャがどのタイミングで筆記されても、文字列と数式とを区分する処理が実行されるようにしている。特定ジェスチャを筆記する順番を指定すると、ユーザにとって大きな制約となり、使い勝手が悪くなるからである。図3に示すように、特定ジェスチャが筆記される順番には4つの場合が考えられる。図3Aは、最初に特定ジェスチャBGを筆記して、その次に、特定ジェスチャBGの中に文字列を筆記する場合を示し、図3Bは、最初に文字列を筆記して、その次に、当該文字列を囲む特定ジェスチャBGを筆記する場合を示し、図3Cは、最初に文字列を筆記して、その後他の筆画を筆記した後に、当該文字列を囲む特定ジェスチャBGを筆記する場合を示し、図3Dは、既に筆記された文字列を囲む特定ジェスチャBGの中に文字列を書き足す場合を示す。 In the method according to the present embodiment, a process for distinguishing a character string from a mathematical expression is executed regardless of the timing at which a specific gesture is written. This is because if the order in which the specific gesture is written is specified, it becomes a great restriction for the user, and the usability becomes poor. As shown in FIG. 3, there are four cases in which the specific gesture is written. FIG. 3A shows a case where a specific gesture BG is first written, and then a character string is written in the specific gesture BG. FIG. 3B first writes a character string, and then, FIG. 3C shows a case where a specific gesture BG surrounding the character string is written, and FIG. 3C shows a case where the character string is first written and then another stroke is written, and then the specific gesture BG surrounding the character string is written. FIG. 3D shows a case where a character string is added to a specific gesture BG surrounding a character string already written.
図4に、矩形の特定ジェスチャの筆記の一例を示す。ユーザは特定ジェスチャBGを筆記する場合、矩形の左上角から書き始めて、時計周り(図4A参照)、或いは反時計回り(図4B参照)に書き進めて左上角に戻る。区分部112は、入力されたストロークを構成する筆点の少なくとも一部(例えば、1/3以上)が特定ジェスチャに含まれる場合に、当該ストロークが当該特定ジェスチャに囲まれる(当該特定ジェスチャで指定される範囲に含まれる)と判定する。これは、ユーザが筆記した特定ジェスチャが他のストロークと交差する場合がある(図3参照)ことを考慮したものである。
Fig. 4 shows an example of writing a rectangular specific gesture. When writing the specific gesture BG, the user starts writing from the upper left corner of the rectangle, proceeds clockwise (see FIG. 4A) or counterclockwise (see FIG. 4B), and returns to the upper left corner. When the specific gesture includes at least a part (for example, 1/3 or more) of brushstrokes constituting the input stroke, the
本実施形態の手法では、特定ジェスチャを高精度に認識するために、ストロークの時系列情報を使うオンライン認識手法と、ストロークの画像としての特徴を使うオフライン認識手法を併用して特定ジェスチャを認識する。特定ジェスチャを認識する際の認識対象は、数式(英文字などのシンボル、四則演算子、分数記号、ルート、積分記号などの演算子、括弧)と特定ジェスチャ(囲み矩形)となる。 In the method of this embodiment, in order to recognize a specific gesture with high accuracy, an online recognition method that uses time-series information of a stroke and an offline recognition method that uses a feature as an image of a stroke are used together to recognize the specific gesture. . The recognition target when recognizing a specific gesture is a mathematical expression (a symbol such as an English character, an arithmetic operator, an operator such as a fractional symbol, a root or an integral symbol, a parenthesis) and a specific gesture (a surrounding rectangle).
オンライン認識手法では、MRF(Markov Random Field)モデルを用いる。まず、入力パターンを標準サイズに正規化し、Ramer-Douglas-Peucker法によって、端点や角などの特徴点を抽出する。そして、MRFモデルの特徴点と伸縮マッチングを行う。スコアの評価には、閾値を用いて、閾値より小さい場合はリジェクトする。 In the online recognition method, MRF (Markov Random Field) model is used. First, the input pattern is normalized to a standard size, and feature points such as end points and corners are extracted by the Ramer-Douglas-Peucker method. Then, expansion / contraction matching is performed with the feature points of the MRF model. For the score evaluation, a threshold is used, and if it is smaller than the threshold, the score is rejected.
オフライン認識手法では、MQDF(Modified Quadratic Discriminant Function)を用いる。ストロークは、時系列順に筆点列をつなぐことで、容易に画像に変換することができる。ストロークを画像に変換すると時系列情報を失うものの、画像に変換することで筆順違いや重ね書き等による影響を排除することができる。この画像に対して、Sobelフィルタにより勾配特徴を抽出して8方向に射影する。元画像が64×64ピクセルとして、これを同一サイズの8×8の区画に分割する。これに対して18×18ピクセルのガウスフィルタを適用してぼかす。このようにすると、中心に近い方向特徴は大きく寄与し、周辺の寄与は小さくなり、隣の区画からも多少の寄与を受け、これにより位置ずれに強くなる。その結果、8×8区画ごとに8方向の特徴が抽出され、全体で512次元の特徴が得られる。更に、フィッシャーの判別分析により次元を圧縮して、256次元の特徴を得る。識別にはMQDFを使う。更に、閾値を設定し、入力パターンの矩形への距離が最短でも、閾値より大きい場合はリジェクトする。 In the offline recognition method, MQDF (Modified Quadrantic Discriminant Function) is used. The stroke can be easily converted into an image by connecting the strokes in chronological order. Although the time-series information is lost when the stroke is converted into an image, the influence of the stroke order difference, overwriting, or the like can be eliminated by converting it into an image. Gradient features are extracted from this image by the Sobel filter and projected in eight directions. The original image is 64 × 64 pixels and is divided into 8 × 8 sections of the same size. On the other hand, a Gaussian filter of 18 × 18 pixels is applied to blur. In this way, the direction feature close to the center greatly contributes, the contribution of the periphery becomes small, and some contribution is also received from the adjacent section, which makes it strong against misalignment. As a result, features in 8 directions are extracted for each 8 × 8 section, and 512-dimensional features are obtained as a whole. Furthermore, dimensions are compressed by Fisher's discriminant analysis to obtain 256-dimensional features. MQDF is used for identification. Furthermore, a threshold value is set, and if the distance to the rectangle of the input pattern is the shortest, it is rejected if it is larger than the threshold value.
最後に、オンライン認識手法とオフライン認識手法の結果を統合する。ここで、オンライン認識手法は確率値の対数値(負値であるが、大きいほど良い)を出し、オフライン認識手法は距離(小さいほど良い)を出すため、これらの尺度を合わせる必要がある。そこで、オンライン認識のスコアに-1を乗じることで正値にして(従って、小さいほどよい)、重み付の和をとることで統合スコアを算出する。統合スコアscorecombinationは、次式により算出される。 Finally, we integrate the results of the online and offline recognition methods. Here, the online recognition method gives a logarithmic value of a probability value (a negative value, but a larger value is better), and the offline recognition method gives a distance (a smaller value is better). Therefore, it is necessary to match these scales. Therefore, the integrated score is calculated by multiplying the online recognition score by −1 to make it a positive value (thus, the smaller the better) and taking the weighted sum. The integrated score score combination is calculated by the following equation.
ここで、scoreonline、scoreofflineは、それぞれオンライン認識手法のスコア、オフライン認識手法のスコアである。また、w1、w2は、統合の重みであり、これらは訓練パターンを用いて最適化される。より詳細には、通常、scoreonlineは、-10程度から0までの値をとり、scoreofflineは、0以上1024未満の値をとる。すなわち、-scoreonlineはscoreofflineの100分の1程度なので、現実には、0<w1<0.1、w2=1-w1の条件を満たすときに最適な値が得られる。登録部110は、認識対象のなかで、scorecombinationが最も小さいものを特定ジェスチャとして認識する。
Here, score online and score offline are the score of the online recognition method and the score of the offline recognition method, respectively. Further, w 1 and w 2 are integration weights, and these are optimized using a training pattern. More specifically, usually, score online takes a value from about −10 to 0, and score offline takes a value of 0 or more and less than 1024. That is, -score online is about 1 / 100th of the score offline , and in reality, an optimal value is obtained when the conditions of 0 <w 1 <0.1 and w 2 = 1-w 1 are satisfied. The
3.処理
次に、本実施形態の認識装置の処理の流れについて説明する。認識装置には、タブレット型PCのように、時系列の筆点を実時間で表示して認識のフィードバックを筆画(ストローク)毎に行える対話型装置と、時系列の筆点をメモリを備えたタブレットや電子ペンで記録し、そのデータの読み込みと処理はPC等で一括してなされる非対話型装置がある。
3. Processing Next, a processing flow of the recognition apparatus of the present embodiment will be described. The recognition device is equipped with an interactive device that displays time-series writing points in real time and provides recognition feedback for each stroke (stroke), as in a tablet PC, and a memory for time-series writing points. There is a non-interactive device in which recording is performed with a tablet or an electronic pen, and reading and processing of the data is performed collectively by a PC or the like.
3-1.逐次方式の処理
対話型装置で採用される逐次方式では、ユーザは、文字列を認識する言語(例えば、英語か日本語)を指定してシステム(プログラム)を立ち上げ、タッチパネル等の入力部に数式や文字列を筆記し始める。システムは、特定ジェスチャの認識、文字列及び数式の区分をストロークが筆記される毎に行い、筆記終了後に、文字列及び数列の認識と認識結果の表示を行う。図5は、逐次方式における処理の一例を示すフローチャートである。
3-1. Sequential processing In the sequential method adopted in interactive devices, the user designates the language (for example, English or Japanese) for recognizing the character string, starts up the system (program), and enters the input section such as a touch panel. Start writing mathematical formulas and strings. The system recognizes a specific gesture and classifies a character string and a mathematical expression each time a stroke is written, and recognizes a character string and a numerical string and displays a recognition result after writing. FIG. 5 is a flowchart illustrating an example of processing in the sequential method.
まず、処理部100は、文字入力部160に入力されたストロークを取得する(ステップS10)。このとき、表示制御部120は、取得されたストロークを表示部190に表示させる制御を行う。次に、登録部110は、取得されたストロークから遡って特定ジェスチャの最大画数(例えば、4画)までの最近のストロークが特定ジェスチャに該当(特定ジェスチャを構成)するか否かを判断する(ステップS12)。例えば、登録部110は、最近の1画分のストローク、2画分のストローク列、3画分のストローク列、4画(最大画数)分のストローク列のそれぞれについて統合スコアscorecombinationを算出し、認識対象のなかで、特定ジェスチャが一番小さいscorecombinationを与えるとき、特定ジェスチャと認識する。但し、オンライン認識手法とオフライン認識手法のいずれかでリジェクトされたストロークについては、scorecombinationを算出せず、いずれのストロークもリジェクトされた場合には、特定ジェスチャに該当しないと判断する。
First, the
特定ジェスチャに該当する場合(ステップS12のY)には、登録部110は、特定ジェスチャに該当すると判断されたストロークの情報から、特定ジェスチャの情報(筆順と、対向する2角の座標)を特定ジェスチャテーブルに登録する(ステップS14)。ここで、登録部110は、特定ジェスチャに該当すると判断されたストロークが、以前に数式に対応するストロークとして設定されていた場合には、その設定を取り消す。また、表示制御部120は、特定ジェスチャに該当すると判断されたストロークの画像を、他のストロークとは異なる色(例えば、赤色)の矩形(特定ジェスチャに対応する形状)を表す画像として表示させる制御を行う。これにより、特定ジェスチャが正しく認識されたことをユーザにフィードバックすることができる。
In the case of corresponding to the specific gesture (Y in step S12), the
次に、区分部112は、特定ジェスチャテーブルを参照して、登録された特定ジェスチャで指定される範囲に含まれるストロークを、文字列に対応するストロークとして設定する(ステップS16)。このとき、表示制御部120は、特定ジェスチャで指定される範囲に含まれるストロークの色を変化(例えば、黒色から青色に変化)させる制御を行う。これにより、特定ジェスチャによって文字列が正しく区分されたことをユーザにフィードバックすることができる。なお、特定ジェスチャで指定される範囲に含まれるストロークが存在しない場合には、ステップS16の処理をスキップする。
Next, the
特定ジェスチャに該当しない場合(ステップS12のN)には、区分部112は、特定ジェスチャテーブルを参照して、取得されたストロークが、いずれかの特定ジェスチャで指定される範囲に含まれるか否かを判断する(ステップS18)。取得されたストロークがいずれかの特定ジェスチャで指定される範囲に含まれる場合(ステップS18のY)には、区分部112は、取得されたストロークを、文字列に対応するストロークとして設定し(ステップS20)、表示制御部120は、取得されたストロークの色を変化(例えば、黒色から青色に変化)させる制御を行う。一方、取得されたストロークが、特定ジェスチャで指定される範囲に含まれない場合(ステップS18のN)には、区分部112は、取得されたストロークを、数式に対応するストロークとして設定する(ステップS22)。
When it does not correspond to the specific gesture (N in Step S12), the
次に、処理部100は、ストロークの入力があるか否かを判断し(ステップS24)、入力がある場合(ステップS24のY)には、ステップS10の処理に移行し、ユーザによる筆記が終了するまで、ステップS10以降の処理を繰り返す。
Next, the
ストロークの入力がないと判断した場合(ステップS24のN)には、認識部114は、ステップS16、S20で文字列に対応するストロークとして設定されたストロークから文字列認識エンジンにより文字列を認識し、ステップS22で数式に対応するストロークとして設定されたストロークから数式認識エンジンにより数式を認識する(ステップS26)。そして、表示制御部120は、認識結果(文字列を含む数式)を表示部190に表示させる制御を行う。
If it is determined that no stroke is input (N in step S24), the
ここで、数式認識エンジンは、特定ジェスチャに対応するストロークも文字列に対応するストロークも理解しないが、特定ジェスチャで囲まれた文字列の情報がないと(すなわち、数式に対応するストロークの情報からのみでは)、数式の構造を解析することができない。そこで、本実施形態の手法では、1つの特定ジェスチャと当該特定ジェスチャに囲まれる文字列を1つのシンボル(数式における1つの記号)として扱って、当該シンボルとして扱う特定ジェスチャの座標情報と数式に対応するストロークの情報から数式を認識する。そのために、特定ジェスチャの筆順を調整する。具体的には、特定ジェスチャを構成する最初のストロークと当該特定ジェスチャで囲まれる文字列に対応する最初のストロークの筆順のうちより筆順の早い方を、当該特定ジェスチャの調整後筆順として特定ジェスチャテーブルに登録する。図2に示す例では、特定ジェスチャBG1、BG2、BG3の調整後筆順として、それぞれ、「1」、「9」、「12」が登録されている。この場合、認識部114(数式認識エンジン)は、特定ジェスチャテーブルを参照することで、特定ジェスチャBG1とこれに含まれる文字列「area」を1画目に筆記された1つのシンボルとして扱い、特定ジェスチャBG2とこれに含まれる文字列「height」を9画目に筆記された1つのシンボルとして扱い、特定ジェスチャBG3とこれに含まれる文字列「width」を12画目に筆記された1つのシンボルとして扱って、これらシンボルと、数式に対応するストロークとの位置や大きさの関係から、数式の構造解析を行うことができる。 Here, the mathematical expression recognition engine does not understand the stroke corresponding to the specific gesture or the stroke corresponding to the character string, but there is no information on the character string surrounded by the specific gesture (that is, from the stroke information corresponding to the mathematical expression). Alone), the structure of the formula cannot be analyzed. Therefore, in the method of the present embodiment, one specific gesture and a character string surrounded by the specific gesture are treated as one symbol (one symbol in the mathematical expression), and the coordinate information and mathematical expression of the specific gesture handled as the symbol are supported. Recognize mathematical formulas from stroke information. Therefore, the stroke order of the specific gesture is adjusted. Specifically, of the first stroke constituting the specific gesture and the stroke order of the first stroke corresponding to the character string surrounded by the specific gesture, the earlier stroke order of the specific gesture is set as the stroke order after adjustment of the specific gesture. Register with. In the example illustrated in FIG. 2, “1”, “9”, and “12” are registered as the adjusted stroke order of the specific gestures BG 1 , BG 2 , and BG 3 , respectively. In this case, the recognition unit 114 (the mathematical expression recognition engine) treats the specific gesture BG 1 and the character string “area” included in the specific gesture BG 1 as one symbol written in the first stroke by referring to the specific gesture table, The specific gesture BG 2 and the character string “height” included therein are treated as one symbol written in the ninth stroke, and the specific gesture BG 3 and the character string “width” included therein are written in the 12th stroke. Treated as one symbol, the structure of the mathematical formula can be analyzed from the relationship between the position and size of these symbols and the stroke corresponding to the mathematical formula.
逐次方式では、ユーザが書き間違いをすることがあるため、Undo機能を備えることが望ましい。この場合、ユーザがUndoコマンドを入力したときに、Undoされた最新のストロークが特定ジェスチャである場合には、当該特定ジェスチャとその登録情報を削除し、当該特定ジェスチャで指定される範囲に含まれるストローク(文字列に対応するストロークとして設定されたストローク)を数式に対応するストロークとして設定し直す。一方、Undoされた最新のストロークが文字列或いは数式に対応するストロークである場合には、単に当該ストロークを削除する。 In the sequential method, the user may make a mistake in writing, so it is desirable to have an Undo function. In this case, when the user inputs an Undo command and the latest undo stroke is a specific gesture, the specific gesture and its registration information are deleted and included in the range specified by the specific gesture. The stroke (the stroke set as the stroke corresponding to the character string) is reset as the stroke corresponding to the mathematical expression. On the other hand, if the latest undo stroke is a stroke corresponding to a character string or a mathematical expression, the stroke is simply deleted.
図6は、逐次方式における具体的な表示例を示す図である。図6に示す例では、ユーザは、まず、文字列「value」と数式を筆記し、文字列「value」を囲む特定ジェスチャBG1を筆記する(図6A)。すると、登録部110は、特定ジェスチャBG1を認識し、表示制御部120は、特定ジェスチャBG1を、赤色で特定ジェスチャBG1と同等の大きさの矩形を表す画像BI1(特定ジェスチャ画像)に置換し、特定ジェスチャBG1で囲まれた文字列「value」の色を青色に変化させる(図6B)。次に、ユーザは、新たな特定ジェスチャBG2を筆記する(図6C)。すると、登録部110は、特定ジェスチャBG2を認識し、表示制御部120は、特定ジェスチャBG2を特定ジェスチャ画像BI2に置換する(図6D)。次に、ユーザが、特定ジェスチャ画像BI2の中に文字列「result」を筆記すると、表示制御部120は、この文字列「result」を、ストロークを取得する毎に青色で表示させる(図6E)。最後に、ユーザが認識の実行を指示する操作を行うと、認識部114は、文字列と数式の認識を行い、表示制御部120は、認識結果を表示させる(図6F)。なお、ここでは特定ジェスチャ画像BI1、BI2を除去して認識結果を表示している。
FIG. 6 is a diagram illustrating a specific display example in the sequential method. In the example shown in FIG. 6, the user first writes a character string “value” and a mathematical expression, and then writes a specific gesture BG 1 surrounding the character string “value” (FIG. 6A). Then, the
3-2.一括方式の処理
非対話型装置で採用される一括方式では、ユーザは、システムを立ち上げ、タブレット等のインターフェースに数式や文字列を筆記する。そして、筆記後に、ストローク列のデータをPC等(認識装置)に読み込ませ、その際に、文字列を認識する言語を指定する。一括方式では、特定ジェスチャの認識、文字列及び数式の区分、文字列及び数列の認識と認識結果の表示の3つの処理は、全てのストローク列のデータがPC等に送られてから実行される。このとき、入力されたストロークを順次処理する際に、逐次方式と同様の処理を行うこともできる。また、一括方式では、特定ジェスチャの認識と、文字列及び数式の区分とを実時間で行う必要がないことから、全ての特定ジェスチャを認識した後に、それ以外のストロークについて文字列と数式とに区分し、最後にそれらを認識する方法を採用してもよい。図7は、一括方式における後者の方法の処理の一例を示すフローチャートである。
3-2. Batch Processing In the batch method employed in non-interactive devices, the user starts up the system and writes mathematical formulas and character strings on an interface such as a tablet. Then, after writing, the data of the stroke string is read by a PC or the like (recognition device), and the language for recognizing the character string is designated at that time. In the collective method, the three processes of recognition of specific gestures, classification of character strings and mathematical expressions, recognition of character strings and numerical sequences, and display of recognition results are executed after all stroke data is sent to a PC or the like. . At this time, when the input stroke is sequentially processed, the same processing as the sequential method can be performed. In the batch method, since it is not necessary to perform recognition of specific gestures and classification of character strings and mathematical expressions in real time, after recognizing all the specific gestures, character strings and mathematical expressions for other strokes are used. A method of dividing and finally recognizing them may be adopted. FIG. 7 is a flowchart showing an example of processing of the latter method in the batch method.
まず、処理部100は、文字入力部160に入力されたストローク列を取得する(ステップS30)。次に、処理部100は、変数iに1をセットする(ステップS32)。次に、登録部110は、i番目(i画目)のストロークから遡って特定ジェスチャの最大画数(例えば、4画)までの最近のストロークが特定ジェスチャに該当するか否かを判断する(ステップS34)。
First, the
特定ジェスチャに該当する場合(ステップS34のY)には、登録部110は、特定ジェスチャに該当すると判断されたストロークの情報から、特定ジェスチャの情報(筆順と、対向する2角の座標)を特定ジェスチャテーブルに登録する(ステップS36)。特定ジェスチャに該当しない場合(ステップS34のN)には、i番目のストロークを、非ジェスチャストローク(特定ジェスチャに該当しないストローク)として設定する(ステップS38)。
In the case of corresponding to the specific gesture (Y in step S34), the
次に、処理部100は、変数iの値を1だけ増加させ(ステップS40)、変数iの値がn(nは、取得されたストローク列に含まれるストロークの総数)以下であるか否かを判断する(ステップS42)。変数iの値がn以下である場合(ステップS42のY)には、ステップS34に移行し、変数iの値がnを超えるまで、ステップS34以降の処理を繰り返す。
Next, the
変数iの値がnを超えた場合(ステップS42のN)には、処理部100は、変数iに1をセットする(ステップS44)。次に、区分部112は、特定ジェスチャテーブルを参照して、ステップS38で設定されたi番目の非ジェスチャストロークが、いずれかの特定ジェスチャで指定される範囲に含まれるか否かを判断する(ステップS46)。i番目の非ジェスチャストロークがいずれかの特定ジェスチャで指定される範囲に含まれる場合(ステップS46のY)には、区分部112は、i番目の非ジェスチャストロークを、文字列に対応するストロークとして設定する(ステップS48)。一方、i番目の非ジェスチャストロークが特定ジェスチャで指定される範囲に含まれない場合(ステップS46のN)には、区分部112は、i番目の非ジェスチャストロークを、数式に対応するストロークとして設定する(ステップS50)。
When the value of the variable i exceeds n (N in step S42), the
次に、処理部100は、変数iの値を1だけ増加させ(ステップS52)、変数iの値がm(mは、非ジェスチャストロークの総数)以下であるか否かを判断する(ステップS54)。変数iの値がm以下である場合(ステップS54のY)には、ステップS46に移行し、変数iの値がmを超えるまで、ステップS46以降の処理を繰り返す。
Next, the
変数iの値がmを超えた場合(ステップS54のN)には、認識部114は、ステップS48で文字列に対応するストロークとして設定されたストロークから文字列認識エンジンにより文字列を認識し、特定ジェスチャテーブル(シンボルとして扱う特定ジェスチャの座標情報)とステップS50で数式に対応するストロークとして設定されたストロークから数式認識エンジンにより数式を認識する(ステップS56)。そして、表示制御部120は、認識結果(文字列を含む数式)を表示部190に表示させる制御を行う。
If the value of the variable i exceeds m (N in step S54), the
図8は、一括方式における具体的な表示例を示す図である。一括方式では、ユーザにより筆記され認識装置に取り込まれた全てのストロークが表示され(図8A)、ユーザが認識の実行を指示する操作を行うと、特定ジェスチャの認識、文字列及び数式の区分、文字列及び数列の認識が実行され、認識結果が表示される(図8C)。なお、特定ジェスチャの認識と、文字列及び数式の区分を実行した後、文字列及び数列の認識を実行する前に、図8Bに示すように、特定ジェスチャの認識結果と数式及び文字列の区分の結果を表示してもよい。図8Bに示す例では、特定ジェスチャBG1、BG2、BG3を、それぞれ特定ジェスチャ画像BI1、BI2、BI3に置換し、特定ジェスチャBG1、BG2、BG3で囲まれた文字列「area」、「height」、「width」の色をそれぞれ青色に変更している。 FIG. 8 is a diagram illustrating a specific display example in the batch method. In the collective method, all strokes written by the user and taken into the recognition device are displayed (FIG. 8A), and when the user performs an operation to instruct execution of recognition, recognition of a specific gesture, classification of character strings and mathematical expressions, The recognition of the character string and the numerical sequence is executed, and the recognition result is displayed (FIG. 8C). In addition, after performing recognition of a specific gesture and classification of a character string and a mathematical expression, and before performing recognition of a character string and a numerical sequence, as shown in FIG. 8B, the recognition result of the specific gesture and the classification of the mathematical expression and the character string The result may be displayed. In the example illustrated in FIG. 8B, the specific gestures BG 1 , BG 2 , and BG 3 are replaced with the specific gesture images BI 1 , BI 2 , and BI 3 , respectively, and the characters surrounded by the specific gestures BG 1 , BG 2 , and BG 3 are used. The colors of the columns “area”, “height”, and “width” are changed to blue.
本実施形態によれば、文字列と数式とを区分するための特定ジェスチャを導入して、特定ジェスチャで囲まれるストロークを文字列に区分し、特定ジェスチャで囲まれないストロークを数式に区分し、文字列認識エンジンと数式認識エンジンによりそれぞれを認識することで、数式に含まれる文字列と数式とを明確に区分してそれぞれを認識することができる。また、数式を認識する際に、特定ジェスチャと当該特定ジェスチャで囲まれるストロークを1つのシンボルとして扱うことで、数式認識エンジンを用いて、文字列を含む数式の構造解析を行うことができる。 According to this embodiment, a specific gesture for dividing a character string and a mathematical expression is introduced, a stroke surrounded by the specific gesture is divided into a character string, and a stroke not surrounded by the specific gesture is divided into a mathematical expression, By recognizing each by the character string recognition engine and the mathematical expression recognition engine, it is possible to clearly distinguish the character string and the mathematical expression included in the mathematical expression. Further, when recognizing a mathematical expression, by treating the specific gesture and the stroke surrounded by the specific gesture as one symbol, the structural analysis of the mathematical expression including the character string can be performed using the mathematical expression recognition engine.
また、本実施形態によれば、逐次方式において、特定ジェスチャが筆記されたときに当該特定ジェスチャで囲まれるストロークを文字列に区分する処理を行い(図5のステップS16)、また、筆記されたストロークが特定ジェスチャで囲まれる場合に当該ストロークを文字列に区分する処理を行う(図5のステップS20)ことで、特定ジェスチャがどのタイミングで筆記されても、文字列と数式とを区分することができ、ユーザの利便性を向上することができる。すなわち、本実施形態によれば、特定ジェスチャを筆記してから文字列を筆記する場合(図3A)や、文字列を筆記してから特定ジェスチャを筆記する場合(図3B、図3C)や、特定ジェスチャの中に文字列を書き足す場合(図3D)であっても、文字列と数式とを区分する処理を行うことができる。 Further, according to the present embodiment, in the sequential method, when a specific gesture is written, the stroke surrounded by the specific gesture is processed into a character string (step S16 in FIG. 5), and the stroke is also written. When the stroke is surrounded by a specific gesture, the process of dividing the stroke into a character string is performed (step S20 in FIG. 5), so that the character string and the mathematical expression are divided regardless of the timing at which the specific gesture is written. It is possible to improve user convenience. That is, according to the present embodiment, when writing a character string after writing a specific gesture (FIG. 3A), writing a specific gesture after writing a character string (FIG. 3B, FIG. 3C), Even when a character string is added to the specific gesture (FIG. 3D), the process of dividing the character string and the mathematical expression can be performed.
なお、本発明は、上述の実施の形態に限定されるものではなく、種々の変更が可能である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。 In addition, this invention is not limited to the above-mentioned embodiment, A various change is possible. The present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
100 処理部、110 登録部、112 区分部、114 認識部、120 表示制御部、160 文字入力部、170 記憶部、190 表示部 100 processing unit, 110 registration unit, 112 sorting unit, 114 recognition unit, 120 display control unit, 160 character input unit, 170 storage unit, 190 display unit
Claims (8)
入力されたストローク又はストローク列が、文字列と数式とを区分するための特定ジェスチャに該当するか否かを判定し、前記特定ジェスチャに該当すると判定した場合に、前記特定ジェスチャで指定される範囲に関する情報を登録する登録部と、
入力されたストロークのうち、前記特定ジェスチャで指定される範囲に含まれるストロークを文字列及び数式の一方に対応するストロークとして設定し、前記特定ジェスチャで指定される範囲に含まれないストロークを文字列及び数式の他方に対応するストロークとして設定する区分部と、
文字列に対応するストロークとして設定されたストロークから文字列認識エンジンにより文字列を認識し、数式に対応するストロークとして設定されたストロークから数式認識エンジンにより数式を認識する認識部としてコンピュータを機能させることを特徴とするプログラム。 A program for recognizing a mathematical expression including a character string from a stroke sequence input by handwriting,
It is determined whether or not the input stroke or stroke sequence corresponds to a specific gesture for distinguishing a character string from a mathematical expression, and when it is determined to correspond to the specific gesture, a range specified by the specific gesture A registration unit that registers information about
Among the input strokes, a stroke included in the range specified by the specific gesture is set as a stroke corresponding to one of the character string and the mathematical expression, and a stroke not included in the range specified by the specific gesture is set as a character string. And a section to be set as a stroke corresponding to the other of the formulas;
Recognizing a character string from a stroke set as a stroke corresponding to a character string by a character string recognition engine, and causing the computer to function as a recognition unit for recognizing a mathematical formula from a stroke set as a stroke corresponding to a mathematical expression A program characterized by
前記区分部は、
入力されたストローク又はストローク列が前記特定ジェスチャに該当すると判定された場合に、当該特定ジェスチャで指定される範囲に含まれるストロークを文字列及び数式の一方に対応するストロークとして設定し、入力されたストロークが前記特定ジェスチャに該当しないと判定された場合に、当該入力されたストロークが前記特定ジェスチャで指定される範囲に含まれるか否かを判定し、前記特定ジェスチャで指定される範囲に含まれる場合に、当該入力されたストロークを文字列及び数式の一方に対応するストロークとして設定することを特徴とするプログラム。 In claim 1,
The section is
When it is determined that the input stroke or stroke sequence corresponds to the specific gesture, the stroke included in the range specified by the specific gesture is set as a stroke corresponding to one of the character string and the mathematical expression, and the input When it is determined that the stroke does not correspond to the specific gesture, it is determined whether or not the input stroke is included in the range specified by the specific gesture, and is included in the range specified by the specific gesture. In this case, the input stroke is set as a stroke corresponding to one of the character string and the mathematical expression.
前記区分部は、
入力されたストロークのうち、前記特定ジェスチャで指定される範囲に含まれるストロークを文字列に対応するストロークとして設定し、前記特定ジェスチャで指定される範囲に含まれないストロークを数式に対応するストロークとして設定し、
前記認識部は、
1つの前記特定ジェスチャで指定される範囲に含まれるストロークを1つのシンボルとして扱って、数式認識エンジンにより数式を認識することを特徴とするプログラム。 In claim 1 or 2,
The section is
Among the input strokes, strokes included in the range specified by the specific gesture are set as strokes corresponding to the character string, and strokes not included in the range specified by the specific gesture are set as strokes corresponding to the mathematical expression. Set,
The recognition unit
A program which recognizes a mathematical expression by a mathematical expression recognition engine, treating a stroke included in a range specified by one specific gesture as one symbol.
入力されたストローク列を表示部に表示させる制御を行う表示制御部として更にコンピュータを機能させ、
前記表示制御部は、
前記特定ジェスチャに該当すると判定されたストローク又はストローク列を、前記特定ジェスチャに対応する形状を表す画像として表示させる制御を行うことを特徴とするプログラム。 In any one of Claims 1 thru | or 3,
Further causing the computer to function as a display control unit that performs control to display the input stroke sequence on the display unit,
The display control unit
A program for performing control to display a stroke or a stroke sequence determined to correspond to the specific gesture as an image representing a shape corresponding to the specific gesture.
前記表示制御部は、
前記特定ジェスチャで指定される範囲に含まれるストロークを、前記特定ジェスチャで指定される範囲に含まれないストロークとは異なる色で表示させる制御を行うことを特徴とするプログラム。 In claim 4,
The display control unit
A program for performing control to display a stroke included in a range specified by the specific gesture in a color different from a stroke not included in the range specified by the specific gesture.
前記登録部は、
入力されたストローク又はストローク列が略矩形を形成する場合に、当該ストローク又はストローク列が前記特定ジェスチャに該当すると判定することを特徴とするプログラム。 In any one of Claims 1 thru | or 5,
The registration unit
When the input stroke or stroke sequence forms a substantially rectangular shape, it is determined that the stroke or stroke sequence corresponds to the specific gesture.
入力されたストローク又はストローク列が、文字列と数式とを区分するための特定ジェスチャに該当するか否かを判定し、前記特定ジェスチャに該当すると判定した場合に、前記特定ジェスチャで指定される範囲に関する情報を登録する登録部と、
入力されたストロークのうち、前記特定ジェスチャで指定される範囲に含まれるストロークを文字列及び数式の一方に対応するストロークとして設定し、前記特定ジェスチャで指定される範囲に含まれないストロークを文字列及び数式の他方に対応するストロークとして設定する区分部と、
文字列に対応するストロークとして設定されたストロークから文字列認識エンジンにより文字列を認識し、数式に対応するストロークとして設定されたストロークから数式認識エンジンにより数式を認識する認識部とを含むことを特徴とする認識装置。 A recognition device for recognizing a mathematical expression including a character string from a stroke sequence input by handwriting,
It is determined whether or not the input stroke or stroke sequence corresponds to a specific gesture for distinguishing a character string from a mathematical expression, and when it is determined to correspond to the specific gesture, a range specified by the specific gesture A registration unit that registers information about
Among the input strokes, a stroke included in the range specified by the specific gesture is set as a stroke corresponding to one of the character string and the mathematical expression, and a stroke not included in the range specified by the specific gesture is set as a character string. And a section to be set as a stroke corresponding to the other of the formulas;
A recognition unit that recognizes a character string by a character string recognition engine from a stroke set as a stroke corresponding to the character string, and recognizes a mathematical expression by a mathematical expression recognition engine from a stroke set as a stroke corresponding to the mathematical expression. A recognition device.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020177018253A KR101909485B1 (en) | 2015-01-21 | 2016-01-19 | Program, information storage medium and recognition device |
| JP2016570658A JP6694638B2 (en) | 2015-01-21 | 2016-01-19 | Program, information storage medium, and recognition device |
| CN201680006635.XA CN107209862B (en) | 2015-01-21 | 2016-01-19 | Identification device and information storage medium |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015-009207 | 2015-01-21 | ||
| JP2015009207 | 2015-01-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016117564A1 true WO2016117564A1 (en) | 2016-07-28 |
Family
ID=56417105
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2016/051457 Ceased WO2016117564A1 (en) | 2015-01-21 | 2016-01-19 | Program, information storage medium, and recognition device |
Country Status (4)
| Country | Link |
|---|---|
| JP (1) | JP6694638B2 (en) |
| KR (1) | KR101909485B1 (en) |
| CN (1) | CN107209862B (en) |
| WO (1) | WO2016117564A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019191815A (en) * | 2018-04-23 | 2019-10-31 | 国立大学法人東京農工大学 | Program, information storage medium and clustering apparatus |
| CN111539383A (en) * | 2020-05-22 | 2020-08-14 | 浙江蓝鸽科技有限公司 | Formula knowledge point identification method and device |
| JP2023510904A (en) * | 2020-01-28 | 2023-03-15 | マイスクリプト | Mathematics detection in handwriting |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111079622A (en) * | 2019-12-10 | 2020-04-28 | 黄淮学院 | A method for miniaturizing handwritten text recognizer under a unified recognition framework |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11203412A (en) * | 1998-01-16 | 1999-07-30 | Toshiba Corp | Document image processing apparatus, document image processing method, and computer readable recording medium storing document image processing program |
| JP2009080615A (en) * | 2007-09-26 | 2009-04-16 | Univ Of Tokyo | Online handwritten mathematical expression recognition method and apparatus |
| JP2014127188A (en) * | 2012-12-27 | 2014-07-07 | Toshiba Corp | Shaping device and method |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3150468B2 (en) * | 1993-01-07 | 2001-03-26 | 株式会社東芝 | Online character recognition device |
| JPH09319828A (en) * | 1996-05-30 | 1997-12-12 | Nec Corp | On-line character recognition device |
| JP3827453B2 (en) * | 1998-09-07 | 2006-09-27 | 積水樹脂株式会社 | Sound absorbing structure |
| US20060001667A1 (en) * | 2004-07-02 | 2006-01-05 | Brown University | Mathematical sketching |
| JP5098504B2 (en) * | 2007-08-09 | 2012-12-12 | 富士通株式会社 | Character recognition program, character recognition device, and character recognition method |
| CN101388068B (en) * | 2007-09-12 | 2011-06-22 | 汉王科技股份有限公司 | Mathematical formula identifying and coding method |
| CN101685497B (en) * | 2008-09-28 | 2011-10-12 | 汉王科技股份有限公司 | Method and device for processing hand-written information |
| JP2011053986A (en) * | 2009-09-02 | 2011-03-17 | Sharp Corp | Computing device, computing program, and recording medium recording the program |
| CN103679164A (en) * | 2012-09-21 | 2014-03-26 | 阿里巴巴集团控股有限公司 | A method and a system for identifying and processing a mark based on a mobile terminal |
| CN103295008B (en) * | 2013-05-22 | 2017-04-05 | 华为终端有限公司 | A character recognition method and user terminal |
| CN104063063B (en) * | 2014-06-05 | 2018-10-09 | 北京搜狗科技发展有限公司 | The mathematical computations input method and input method system of input method |
| CN104268118A (en) * | 2014-09-23 | 2015-01-07 | 赵方 | Mathematical formula calculator including touch screen and method for identifying mathematical formulas |
-
2016
- 2016-01-19 WO PCT/JP2016/051457 patent/WO2016117564A1/en not_active Ceased
- 2016-01-19 JP JP2016570658A patent/JP6694638B2/en not_active Expired - Fee Related
- 2016-01-19 CN CN201680006635.XA patent/CN107209862B/en not_active Expired - Fee Related
- 2016-01-19 KR KR1020177018253A patent/KR101909485B1/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11203412A (en) * | 1998-01-16 | 1999-07-30 | Toshiba Corp | Document image processing apparatus, document image processing method, and computer readable recording medium storing document image processing program |
| JP2009080615A (en) * | 2007-09-26 | 2009-04-16 | Univ Of Tokyo | Online handwritten mathematical expression recognition method and apparatus |
| JP2014127188A (en) * | 2012-12-27 | 2014-07-07 | Toshiba Corp | Shaping device and method |
Non-Patent Citations (4)
| Title |
|---|
| ATSUSHI MURASE ET AL.: "A System for Recognizing Handwritten Mathematical Expressions", IPSJ SIG NOTES, vol. 91, no. 34, 9 May 1991 (1991-05-09), pages 1 - 8 * |
| KEISUKE MOCHIDA ET AL.: "A Method for Recognizing On-line Handwritten Patterns mixed of Text and Formulas", IEICE TECHNICAL REPORT, vol. 104, no. 741, 10 March 2005 (2005-03-10), pages 43 - 48 * |
| MASAKI NAKAGAWA ET AL.: "Fast Algorithms to Determine Object Inclusion within a Pen Movement Enclosure on a Display Integrated Tablet", IEICE TECHNICAL REPORT, vol. J77-D-II, 25 August 1994 (1994-08-25), pages 1630 - 1639 * |
| SO I ET AL.: "On Line Recognition of Handwritten Mathematical Formulae Using Stroke Relations", IEICE TECHNICAL REPORT, vol. 98, no. 489, 17 December 1998 (1998-12-17), pages 9 - 16 * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019191815A (en) * | 2018-04-23 | 2019-10-31 | 国立大学法人東京農工大学 | Program, information storage medium and clustering apparatus |
| JP7104965B2 (en) | 2018-04-23 | 2022-07-22 | 国立大学法人東京農工大学 | Program and clustering device |
| JP2023510904A (en) * | 2020-01-28 | 2023-03-15 | マイスクリプト | Mathematics detection in handwriting |
| JP7573246B2 (en) | 2020-01-28 | 2024-10-25 | マイスクリプト | Mathematics detection in handwriting |
| CN111539383A (en) * | 2020-05-22 | 2020-08-14 | 浙江蓝鸽科技有限公司 | Formula knowledge point identification method and device |
| CN111539383B (en) * | 2020-05-22 | 2023-05-05 | 浙江蓝鸽科技有限公司 | Formula knowledge point identification method and device |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101909485B1 (en) | 2018-10-18 |
| KR20170100541A (en) | 2017-09-04 |
| JP6694638B2 (en) | 2020-05-20 |
| CN107209862A (en) | 2017-09-26 |
| JPWO2016117564A1 (en) | 2017-10-26 |
| CN107209862B (en) | 2021-03-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110837403B (en) | Robot process automation | |
| CN110232311B (en) | Method and device for segmenting hand image and computer equipment | |
| US10360473B2 (en) | User interface creation from screenshots | |
| US8542928B2 (en) | Information processing apparatus and control method therefor | |
| CN113223025B (en) | Image processing method and device, neural network training method and device | |
| US20140143721A1 (en) | Information processing device, information processing method, and computer program product | |
| US10769427B1 (en) | Detection and definition of virtual objects in remote screens | |
| US9099007B1 (en) | Computerized processing of pictorial responses in evaluations | |
| KR20180064371A (en) | System and method for recognizing multiple object inputs | |
| US20130155026A1 (en) | New kind of multi-touch input device | |
| CN114365075A (en) | Method for selecting a graphical object and corresponding device | |
| JP4712613B2 (en) | Information processing apparatus, information processing method, and program | |
| JP6694638B2 (en) | Program, information storage medium, and recognition device | |
| JP2023153238A (en) | Digital ink generation device, method and program | |
| CN104094283B (en) | Character cutting method, character recognition device using the method | |
| CN111062377A (en) | A problem number detection method, system, storage medium and electronic device | |
| CN114241486A (en) | Method for improving accuracy rate of identifying student information of test paper | |
| Suganya et al. | Detection and recognition of hand gestures to control the system Applications by neural networks | |
| CN112183253B (en) | Data processing method, device, electronic device and computer readable storage medium | |
| JP5674535B2 (en) | Image processing apparatus, method, and program | |
| Dey et al. | Algorithm For Multi-Hand Finger Counting: An Easy Approach | |
| KR100983779B1 (en) | Book information service device and method | |
| US20240184494A1 (en) | Method, electronic device, and storage medium for adjusting document style | |
| US20150142784A1 (en) | Retrieval device and method and computer program product | |
| Chen et al. | Design of Interactive Teaching System Based on Computer Vision Technology |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16740171 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 20177018253 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2016570658 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16740171 Country of ref document: EP Kind code of ref document: A1 |