[go: up one dir, main page]

WO2014200140A1 - Method for computer-aided simulation of atomic-resolution scanning thermoelectric microscope - Google Patents

Method for computer-aided simulation of atomic-resolution scanning thermoelectric microscope Download PDF

Info

Publication number
WO2014200140A1
WO2014200140A1 PCT/KR2013/006267 KR2013006267W WO2014200140A1 WO 2014200140 A1 WO2014200140 A1 WO 2014200140A1 KR 2013006267 W KR2013006267 W KR 2013006267W WO 2014200140 A1 WO2014200140 A1 WO 2014200140A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
probe
atomic
thermoelectric
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2013/006267
Other languages
French (fr)
Korean (ko)
Inventor
김용현
여호기
이의섭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of WO2014200140A1 publication Critical patent/WO2014200140A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/14STP [Scanning Tunnelling Potentiometry]

Definitions

  • the present invention relates to a computer aided simulation method of atomic level-resolution scanning thermoelectric microscopes.
  • Scanning tunneling microscopy is a technique for displaying atomic-resolution images of the surface of a material based on a vacuum tunneling current generated locally by applying an external voltage between the material and the probe.
  • an external voltage since an external voltage must be applied, Fermi electrons may be disturbed by the voltage, and the scanable area is narrow.
  • a sharp probe must be made to generate a localized current, and the difficulty of this process is that the yield is not high.
  • a scanning thermoelectric microscope may be considered as an alternative to supplement the disadvantages of the scanning tunneling microscope, but in general, heat is known to be difficult to localize in space, so it is not practical to implement.
  • the present invention relates to a computer-aided simulation method of atomic-resolution scanning thermoelectric microscope, which aims to provide a method of knowing the surface morphology of a material through simulation without using the actual scanning thermoelectric microscope.
  • the present invention relates to a computer-aided simulation method of atomic-resolution scanning thermoelectric microscopy, wherein a predetermined local region of a material Computer simulations of the thermoelectric voltage V for atomic level image display for
  • Seebeck coefficient Is the intrinsic property of the material expressed as electrical conductivity as Seebeck coefficient for the local area.
  • a Seebeck coefficient defined as follows may be used.
  • the temperature change between the probe and the material surface is displayed. Is preferably defined by the following equation.
  • the present invention provides a method for simulating atomic-resolution scanning thermoelectric microscopes.
  • FIG. 1 is a conceptual diagram of a scanning thermoelectric microscope to which the method according to the present invention is applied.
  • FIG. 2 is a view showing a simulation result image according to the present invention.
  • FIG. 3 is a view showing an image displayed through an experiment according to the prior art.
  • the probe 10 of the scanning thermoelectric microscope is in contact with the graphene material 20 (graphene) at a first temperature T 1 and the graphene material is at a second temperature T 2 . It is desirable for the environment to maintain an ultra-high vacuum.
  • the drawings and the specification are described as graphene, but the simulation method of the present invention should not be construed as being limited to graphene.
  • thermoelectric voltage is generated by the difference between the first temperature and the second temperature, which can be accurately measured by a high-impedance voltmeter in an actual scanning thermoelectric microscope.
  • is the electrical conductivity, Is the local Seebeck coefficient.
  • This diffusion driving force serves as a basis for generating thermal voltage.
  • the temperature gradient ⁇ T is determined by heat transfer properties such as the intrinsic thermal conductivity of the material and the interfacial conductance between the probe and the material.
  • Equation 1 is represented by Equation 2 as follows.
  • Equation 4 may be simplified to Equation 5 as follows.
  • the local Seebeck coefficient may be derived or obtained by defining electric conductivity, electron transmission function, local state density, etc. by other methods other than the following methods. do.
  • the local Seebeck coefficient in the structure shown in FIG. 1 is the energy-and position-dependent electron transmission function between the probe and the material from the Landauer formula. It can be represented by the following equation (6).
  • T is the absolute temperature
  • f is the Fermi-Dirac distribution function at temperature T.
  • means a delta function
  • Equation 6 may be rewritten as Equation 8 as follows.
  • Equation 8 It can be seen from Equation 8 that the Seebeck coefficient is strongly related to the electrical state near the Fermi level.
  • thermoelectric image simulation with atomic resolution a step function temperature change is required at the interface between the spherical probe and the material surface, and the spherical temperature profile is assumed to be expressed as
  • Is the temperature of the probe Is the temperature of the material
  • R is the tip radius of the probe
  • Center of tip of probe : Refers to Gaussian broadening, which indicates the degree of sudden change in temperature change.
  • the contact distance z 0 between the tip of the probe and the workpiece is kept constant on the workpiece surface.
  • Equation 9 is not the only temperature profile to which the present invention is applied.
  • FIG. 2 (a) shows the Seebeck coefficient displayed by the computer-aided simulation method according to the present invention
  • FIG. 2 (b) shows the simulated thermoelectric voltage image. Simulation of the images shown in (a) and (b) of FIG. 2 was performed on n-doped pure graphene. A part shown in white in FIG. 2B is an atom, and a part shown in black is a void. 3 shows an image of a defect-free region of bilayer graphene on silicon carbide (SiC) as an image tested by the method disclosed in the above-described S. Cho paper. have. Notable identity is found between FIGS. 2B and 3.
  • SiC silicon carbide
  • T 315K
  • z 0 3 ms
  • ⁇ T 3K
  • R 0.75 ms
  • 0.3 ms, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The present invention relates to a method for the computer-aided simulation of an atomic-resolution scanning thermoelectric microscope and, more particularly, to a simulation method in which a computer calculates a thermoelectric voltage V for displaying an atomic-level image of a predetermined local area of a material.

Description

원자수준-해상도 주사 열전 현미경의 컴퓨터 원용 시뮬레이션 방법Computer aided simulation method of atomic-resolution scanning thermoelectric microscope

본 발명은 원자수준-해상도 주사 열전 현미경의 컴퓨터 원용 시뮬레이션 방법에 관한 것이다.The present invention relates to a computer aided simulation method of atomic level-resolution scanning thermoelectric microscopes.

소재의 표면을 원자수준-해상도로 볼 수 있는 방법으로 미국특허 제4,343,993호에 개시되어 있는 주사 터널링 현미경(Scanning Tunneling Microscope) 기술이 있다. 주사 터널링 현미경은 소재와 탐침 사이에 외부 전압을 인가하여 국지적으로(localized) 발생하는 진공 터널링 전류에 기초하여 소재 표면의 원자수준-해상도 이미지를 표시하는 기술이다. 그런데 외부 전압을 인가해야 하기 때문에 전압에 의해 페르미 전자가 방해받을 가능성이 있고 스캔할 수 있는 영역이 좁은 단점이 있다. 그리고 국지화된 전류를 발생시키기 위해 날카로운 탐침을 만들어야 하는데, 이 과정의 어려움 때문에 생산성(yield)도 높지 않은 단점이 존재한다.One way to view the surface of a material in atomic-resolution is the Scanning Tunneling Microscope technology disclosed in US Pat. No. 4,343,993. Scanning tunneling microscopy is a technique for displaying atomic-resolution images of the surface of a material based on a vacuum tunneling current generated locally by applying an external voltage between the material and the probe. However, since an external voltage must be applied, Fermi electrons may be disturbed by the voltage, and the scanable area is narrow. In addition, a sharp probe must be made to generate a localized current, and the difficulty of this process is that the yield is not high.

이러한 주사 터널링 현미경의 단점을 보완할 수 있는 대안으로 주사 열전 현미경(scanning thermoelectric microscope)이 고려될 수 있지만 일반적으로 열은 공간에서 국지화되기(localization)가 어려운 것으로 알려져 있어서 실제로 구현하기가 여의치 않다.A scanning thermoelectric microscope may be considered as an alternative to supplement the disadvantages of the scanning tunneling microscope, but in general, heat is known to be difficult to localize in space, so it is not practical to implement.

최근에 주사 열전 현미경을 이용하여 원자수준-해상도로 소재의 표면을 볼 수 있는 기술이 2013년에 공개된 논문 S. Cho, S. D. Kang, W. Kim, E.-S. Lee, S.-J. Woo, K.-J. Kong, I. Kim, H.-D. Kim, T. Zhang, J. A. Stroscio, Y.-H. Kim, and H.-K. Lyeo, "Thermoelectric imaging of structural disorder in epitaxial graphene" arXiv: 1305.2845 (http://arxiv.org/abs/1305.2845) 에 개시되어 있다.Recently, a technique for scanning the surface of a material in atomic-resolution using scanning thermoelectric microscope was published in 2013. S. Cho, S. D. Kang, W. Kim, E.-S. Lee, S.-J. Woo, K.-J. Kong, I. Kim, H.-D. Kim, T. Zhang, J. A. Stroscio, Y.-H. Kim, and H.-K. Lyeo, "Thermoelectric imaging of structural disorder in epitaxial graphene" arXiv: 1305.2845 (http://arxiv.org/abs/1305.2845).

그러나 이 논문에 의하더라도 실제 장치를 구현하여 주사 열전 현미경으로 소재의 표면을 관찰해야 하며 그러한 장치 없이 미리 소재의 표면 형상을 시뮬레이션하는 기술은 아직 개발되지 않고 있다.However, even with this paper, a real device must be implemented to observe the surface of the material with a scanning thermoelectric microscope, and a technique for simulating the surface shape of the material without such a device has not been developed yet.

본 발명은, 원자수준-해상도의 주사 열전 현미경의 컴퓨터 원용 시뮬레이션 방법에 관한 것으로서, 실제 주사 열전 현미경에 의하지 않고도 시뮬레이션을 통해 소재의 표면 형태를 알 수 있는 방법을 제공하는 것을 목적으로 한다.The present invention relates to a computer-aided simulation method of atomic-resolution scanning thermoelectric microscope, which aims to provide a method of knowing the surface morphology of a material through simulation without using the actual scanning thermoelectric microscope.

본 발명은 원자수준-해상도 주사 열전 현미경의 컴퓨터 원용 시뮬레이션 방법에 관한 것으로서, 소재의 소정의 국지 영역

Figure PCTKR2013006267-appb-I000001
에 대한 원자 레벨 이미지 표시를 위한 열전압(thermoelectric voltage) V를 아래 수학식에 의해서 컴퓨터가 계산하는 시뮬레이션 방법에 관한 것이다.FIELD OF THE INVENTION The present invention relates to a computer-aided simulation method of atomic-resolution scanning thermoelectric microscopy, wherein a predetermined local region of a material
Figure PCTKR2013006267-appb-I000001
Computer simulations of the thermoelectric voltage V for atomic level image display for

Figure PCTKR2013006267-appb-I000002
Figure PCTKR2013006267-appb-I000002

여기에서,From here,

Figure PCTKR2013006267-appb-I000003
: 적분변수
Figure PCTKR2013006267-appb-I000003
: Integral variable

S: 지벡 계수(Seebeck Coefficient)S: Seebeck Coefficient

Figure PCTKR2013006267-appb-I000004
: 국지 영역의 온도 그래디언트(temperature gradient)
Figure PCTKR2013006267-appb-I000004
: Temperature gradient of the local area

Figure PCTKR2013006267-appb-I000005
은 국지 영역에 대한 지벡 계수(Seebeck coefficient)로서 전기전도도로 표현되는 소재의 고유 특성이다. 본 발명에서는 다음과 같이 정의되는 지벡 계수를 사용할 수 있다.
Figure PCTKR2013006267-appb-I000005
Is the intrinsic property of the material expressed as electrical conductivity as Seebeck coefficient for the local area. In the present invention, a Seebeck coefficient defined as follows may be used.

Figure PCTKR2013006267-appb-I000006
Figure PCTKR2013006267-appb-I000006

Figure PCTKR2013006267-appb-I000007
Figure PCTKR2013006267-appb-I000007

여기에서,From here,

e: 전자 전하량e: amount of electron charge

T: 절대 온도T: absolute temperature

EF: 페르미 에너지E F : Fermi Energy

f: 온도 T에서의 페르미-디랙 분포 함수(Fermi-Dirac distribution function)f: Fermi-Dirac distribution function at temperature T

Figure PCTKR2013006267-appb-I000008
: 소재의 브릴루앙 영역(Brillouin zone)의 k 번째 지점에서 i번째 고유상태(eigenstate)
Figure PCTKR2013006267-appb-I000008
: I-eigenstate at the k-th point of the Brillouin zone of the material

Figure PCTKR2013006267-appb-I000009
: 소재의 브릴루앙 영역(Brillouin zone)의 k 번째 지점에서 i번째 고유값(eigenvalue)
Figure PCTKR2013006267-appb-I000009
Is the i th eigenvalue at the k th point of the Brillouin zone of the material.

δ: 델타 함수(delta function)δ: delta function

본 발명에 의한 시뮬레이션 방법에 있어서, 탐침과 소재 표면 사이의 온도 변화를 표시하는

Figure PCTKR2013006267-appb-I000010
는 아래 수학식에 의해서 정의되는 것이 바람직하다.In the simulation method according to the present invention, the temperature change between the probe and the material surface is displayed.
Figure PCTKR2013006267-appb-I000010
Is preferably defined by the following equation.

Figure PCTKR2013006267-appb-I000011
Figure PCTKR2013006267-appb-I000011

Figure PCTKR2013006267-appb-I000012
: 탐침의 온도
Figure PCTKR2013006267-appb-I000012
: Probe temperature

Figure PCTKR2013006267-appb-I000013
: 소재의 온도
Figure PCTKR2013006267-appb-I000013
Material temperature

Figure PCTKR2013006267-appb-I000014
: 누적 분포 함수(cumulative distribution function; CDF)
Figure PCTKR2013006267-appb-I000014
Cumulative distribution function (CDF)

R: 탐침의 팁 반경R: Tip radius of the probe

Figure PCTKR2013006267-appb-I000015
: 탐침의 팁 중앙
Figure PCTKR2013006267-appb-I000015
: Center of tip of probe

Figure PCTKR2013006267-appb-I000016
: 온도변화의 급작성 정도를 표시하는 가우시안 확장(Gaussian broadening)
Figure PCTKR2013006267-appb-I000016
: Gaussian broadening indicating the degree of sudden change in temperature change

본 발명에 의하면 원자수준-해상도의 주사 열전 현미경의 시뮬레이션 방법이 제공된다.The present invention provides a method for simulating atomic-resolution scanning thermoelectric microscopes.

도 1은 본 발명에 의한 방법이 적용되는 주사 열전 현미경의 개념도를 도시한 도면.1 is a conceptual diagram of a scanning thermoelectric microscope to which the method according to the present invention is applied.

도 2는 본 발명에 의한 시뮬레이션 결과 이미지를 표시한 도면.2 is a view showing a simulation result image according to the present invention.

도 3은 선행 기술에 따른 실험을 통해 표시되는 이미지를 도시한 도면.3 is a view showing an image displayed through an experiment according to the prior art.

이하에서는 첨부 도면을 참조하여 본 발명에 대해 구체적으로 설명한다. 주사 열전 현미경의 탐침(10)이 제1 온도(T1)으로 그래핀 소재(20; graphene)에 접촉하고 그래핀 소재는 제2 온도(T2)에 놓여 있다. 주위 환경은 초고진공 상태(ultra-high vacuum)를 유지하는 것이 바람직하다. 편의를 위해 도면과 본 명세서에서는 그래핀으로 설명하지만 본 발명의 시뮬레이션 방법이 그래핀에 제한되는 것으로 해석되어서는 아니된다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. The probe 10 of the scanning thermoelectric microscope is in contact with the graphene material 20 (graphene) at a first temperature T 1 and the graphene material is at a second temperature T 2 . It is desirable for the environment to maintain an ultra-high vacuum. For the sake of convenience, the drawings and the specification are described as graphene, but the simulation method of the present invention should not be construed as being limited to graphene.

제1 온도와 제2 온도 차이에 의해서 열전압(thermoelectric voltage)이 발생하며 이 열전압은 실제 주사 열전 현미경에서는 고임피던스 전압계(high-impedance voltmeter)에 의해서 정확하게 측정될 수 있다.The thermoelectric voltage is generated by the difference between the first temperature and the second temperature, which can be accurately measured by a high-impedance voltmeter in an actual scanning thermoelectric microscope.

전기 전도 시스템에 온도 구배(▽T; temperature gradient)가 존재하면 정전계(

Figure PCTKR2013006267-appb-I000017
)와 온도 구배(▽T)하의 입자 확산 구동력에 따라 전자 또는 대전 입자가 흐르게 된다. 국지 영역(
Figure PCTKR2013006267-appb-I000018
)에서 전체 전류 밀도
Figure PCTKR2013006267-appb-I000019
는 다음과 같이 표현된다.If there is a temperature gradient (▽ T) in the electrically conducting system,
Figure PCTKR2013006267-appb-I000017
And charged particles flow in accordance with the particle diffusion driving force under the " Local area (
Figure PCTKR2013006267-appb-I000018
Total current density
Figure PCTKR2013006267-appb-I000019
Is expressed as

수학식 1

Figure PCTKR2013006267-appb-M000001
Equation 1
Figure PCTKR2013006267-appb-M000001

σ는 전기전도도이고,

Figure PCTKR2013006267-appb-I000020
은 국지 지벡 계수(local Seebeck coefficient)이다.σ is the electrical conductivity,
Figure PCTKR2013006267-appb-I000020
Is the local Seebeck coefficient.

Figure PCTKR2013006267-appb-I000021
이 확산 구동력으로서 열전압 발생의 기초가 된다. 온도 구배(▽T)는 소재의 고유 열전도도(thermal conductivity)와 탐침-소재간의 경계면 열전도율(interfacial conductance) 등 열전달 성질에 의해서 결정된다.
Figure PCTKR2013006267-appb-I000021
This diffusion driving force serves as a basis for generating thermal voltage. The temperature gradient ▽ T is determined by heat transfer properties such as the intrinsic thermal conductivity of the material and the interfacial conductance between the probe and the material.

도 1의 측정 환경에서 열전압은 개방 회로 조건이며, 개방 회로 조건에서는 전체 전류 밀도가 0이기 때문에 수학식 1은 다음과 같은 수학식 2로 된다.In the measurement environment of FIG. 1, the thermal voltage is an open circuit condition, and in the open circuit condition, since the total current density is 0, Equation 1 is represented by Equation 2 as follows.

수학식 2

Figure PCTKR2013006267-appb-M000002
Equation 2
Figure PCTKR2013006267-appb-M000002

외부 전기장이 인가되지 않는 상태에서는,

Figure PCTKR2013006267-appb-I000022
은 단지 열-유도 대전 분포
Figure PCTKR2013006267-appb-I000023
으로부터 야기되는 전기장이다. 가우스 법칙을 이 전기장과 대전 밀도 사이에 적용하면
Figure PCTKR2013006267-appb-I000024
가 되며, 따라서 다음과 같은 수학식 3이 도출된다.In the absence of an external electric field,
Figure PCTKR2013006267-appb-I000022
Is just a heat-induced charging distribution
Figure PCTKR2013006267-appb-I000023
Electric field resulting from Applying Gaussian law between this electric field and the charge density
Figure PCTKR2013006267-appb-I000024
Therefore, the following equation (3) is derived.

수학식 3

Figure PCTKR2013006267-appb-M000003
Equation 3
Figure PCTKR2013006267-appb-M000003

열유도 대전 밀도의 분포

Figure PCTKR2013006267-appb-I000025
는 국지 지벡 계수
Figure PCTKR2013006267-appb-I000026
와 공간 온도 프로파일
Figure PCTKR2013006267-appb-I000027
로부터 정확하게 추적될 수 있다.Distribution of heat induced charge density
Figure PCTKR2013006267-appb-I000025
The local Seebeck coefficient
Figure PCTKR2013006267-appb-I000026
And space temperature profiles
Figure PCTKR2013006267-appb-I000027
Can be accurately tracked from

Figure PCTKR2013006267-appb-I000028
에 대한 포아송 방정식으로부터 유도되는 하트리 정전 포텐셜(Hartree electrostatic potential)
Figure PCTKR2013006267-appb-I000029
은 열전압과 등가이며, 위 수학식 3에 의해서 다음과 같은 수학식 4가 도출된다.
Figure PCTKR2013006267-appb-I000028
Hartree electrostatic potential derived from the Poisson equation for
Figure PCTKR2013006267-appb-I000029
Is equivalent to the thermal voltage, and the following Equation 4 is derived from Equation 3 above.

수학식 4

Figure PCTKR2013006267-appb-M000004
Equation 4
Figure PCTKR2013006267-appb-M000004

여기에서

Figure PCTKR2013006267-appb-I000030
은 적분변수이다. 온도 구배(▽T)는 무한대에서 0이기 때문에 수학식 4는 다음과 같은 수학식 5로 단순화될 수 있다.From here
Figure PCTKR2013006267-appb-I000030
Is an integral variable. Since the temperature gradient ▽ T is 0 at infinity, Equation 4 may be simplified to Equation 5 as follows.

수학식 5

Figure PCTKR2013006267-appb-M000005
Equation 5
Figure PCTKR2013006267-appb-M000005

다음으로 원자 수준의 해상도를 위한 국부 지벡 계수

Figure PCTKR2013006267-appb-I000031
을 구하는 방법에 대해서 살펴 본다. 국부 지벡 계수는 이하의 방법 이외에 공지되어 있는 다른 방법으로 전기전도도, 전자투과함수, 국부상태밀도 등을 정의하여 도출하거나 구할 수 있으며, 이하의 내용에 국부 지벡 계수 정의가 제한되는 것으로 해석되어서는 아니된다. Next, a local Seebeck coefficient for atomic resolution
Figure PCTKR2013006267-appb-I000031
Let's look at how to obtain. The local Seebeck coefficient may be derived or obtained by defining electric conductivity, electron transmission function, local state density, etc. by other methods other than the following methods. do.

도 1에 도시된 구조에서 국부 지벡 계수는 란다우어 공식(Landauer formula)로부터 탐침과 소재 사이의 에너지-위치 의존 전자 투과 함수(energy-and position-dependent electron transmission function)

Figure PCTKR2013006267-appb-I000032
로 다음과 같은 수학식 6으로 표현될 수 있다.The local Seebeck coefficient in the structure shown in FIG. 1 is the energy-and position-dependent electron transmission function between the probe and the material from the Landauer formula.
Figure PCTKR2013006267-appb-I000032
It can be represented by the following equation (6).

수학식 6

Figure PCTKR2013006267-appb-M000006
Equation 6
Figure PCTKR2013006267-appb-M000006

여기에서 e는 전자 전하량이고, T는 절대온도,

Figure PCTKR2013006267-appb-I000033
는 페르미 에너지, f는 온도 T에서의 페르미-디랙 분포 함수(Fermi-Dirac distribution function)이다.Where e is the amount of electron charge, T is the absolute temperature,
Figure PCTKR2013006267-appb-I000033
Is the Fermi energy, f is the Fermi-Dirac distribution function at temperature T.

금속으로 되어 있는 탐침과 전기전도성 소재 양쪽의 전자 파동 함수는 접촉을 통해서 중첩된다. 이 파동함수 중첩이 미미할 때

Figure PCTKR2013006267-appb-I000034
은 국부 상태 밀도
Figure PCTKR2013006267-appb-I000035
로 근사화될 수 있고 이를 수학식 7에 표시하면 다음과 같다.The electromagnetic wave functions of both the metal probe and the electrically conductive material overlap by contact. When this wave function overlap is insignificant
Figure PCTKR2013006267-appb-I000034
Silver local state density
Figure PCTKR2013006267-appb-I000035
It can be approximated by and represented in Equation 7 as follows.

수학식 7

Figure PCTKR2013006267-appb-M000007
Equation 7
Figure PCTKR2013006267-appb-M000007

Figure PCTKR2013006267-appb-I000036
은 소재의 브릴루앙 영역(Brillouin zone)의 k 번째 지점에서 i번째 고유상태(eigenstate)이고,
Figure PCTKR2013006267-appb-I000037
는 소재의 브릴루앙 영역(Brillouin zone)의 k 번째 지점에서 i번째 고유값(eigenvalue)이다. 여기에서 δ는 델타 함수(delta function)를 의미한다.
Figure PCTKR2013006267-appb-I000036
Is the i th eigenstate at the k th point of the Brillouin zone of the material,
Figure PCTKR2013006267-appb-I000037
Is the i th eigenvalue at the k th point of the Brillouin zone of the material. Here, δ means a delta function.

수학식 6은 다음과 같은 수학식 8로 고쳐쓸 수 있다.Equation 6 may be rewritten as Equation 8 as follows.

수학식 8

Figure PCTKR2013006267-appb-M000008
Equation 8
Figure PCTKR2013006267-appb-M000008

수학식 8로부터 지벡 계수가 페르미 준위 근처에서의 전기적 상태에 강력하게 관련되어 있음을 알 수 있다.It can be seen from Equation 8 that the Seebeck coefficient is strongly related to the electrical state near the Fermi level.

원자 수준의 해상도를 가지는 열전 이미지 시뮬레이션을 위해서 구형 탐침과 소재 표면 사이의 경계면에서 스텝 함수형 온도 변화가 필요하고, 구형 온도 프로파일(spherical temperature profile)을 다음의 수학식 9로 가정한다.For thermoelectric image simulation with atomic resolution, a step function temperature change is required at the interface between the spherical probe and the material surface, and the spherical temperature profile is assumed to be expressed as

수학식 9

Figure PCTKR2013006267-appb-M000009
Equation 9
Figure PCTKR2013006267-appb-M000009

Figure PCTKR2013006267-appb-I000038
는 탐침의 온도,
Figure PCTKR2013006267-appb-I000039
는 소재의 온도,
Figure PCTKR2013006267-appb-I000040
는 누적 분포 함수(cumulative distribution function; CDF), R는 탐침의 팁 반경,
Figure PCTKR2013006267-appb-I000041
: 탐침의 팁 중앙,
Figure PCTKR2013006267-appb-I000042
: 온도 변화의 급작성 정도를 표시하는 가우시안 확장(Gaussian broadening)을 가리킨다. 그리고 탐침의 팁과 소재의 접촉 거리(z0)는 소재면 상에서 일정하게 유지된다.
Figure PCTKR2013006267-appb-I000038
Is the temperature of the probe,
Figure PCTKR2013006267-appb-I000039
Is the temperature of the material,
Figure PCTKR2013006267-appb-I000040
Is the cumulative distribution function (CDF), R is the tip radius of the probe,
Figure PCTKR2013006267-appb-I000041
: Center of tip of probe,
Figure PCTKR2013006267-appb-I000042
: Refers to Gaussian broadening, which indicates the degree of sudden change in temperature change. And the contact distance z 0 between the tip of the probe and the workpiece is kept constant on the workpiece surface.

본 발명에 의한 시뮬레이션 방법의 적용에 있어서 온도 프로파일은 위 수학식 9와 다른 프로파일이 사용될 수도 있으며, 수학식 9가 본 발명이 적용되기 위한 유일한 온도 프로파일은 아니다.In the application of the simulation method according to the present invention, a temperature profile different from Equation 9 may be used, and Equation 9 is not the only temperature profile to which the present invention is applied.

도 2의 (a)에는 본 발명에 의한 컴퓨터 원용 시뮬레이션 방법에 의해서 표시되는 지벡 계수가 도시되어 있고, 도 2의 (b)에는 시뮬레이션된 열전 전압 이미지가 표시되어 있다. 도 2의 (a)와 (b)에 표시된 이미지의 시뮬레이션은 n 도핑된 순수 그래핀에 대해서 수행되었다. 도 2의 (b)에 흰색으로 보이는 부분이 원자, 검정색으로 보이는 부분이 보이드(void)이다. 도 3에는 전술한 S. Cho의 논문에 개시되어 있는 방법으로 실험한 이미지로서 실리콘 카바이드(SiC) 상의 2층 그래핀(bilayer graphene)의 결함이 없는 영역(defect-free region)의 이미지가 표시되어 있다. 도 2의 (b)와 도3 사이에는 주목할만한 동일성이 발견된다.FIG. 2 (a) shows the Seebeck coefficient displayed by the computer-aided simulation method according to the present invention, and FIG. 2 (b) shows the simulated thermoelectric voltage image. Simulation of the images shown in (a) and (b) of FIG. 2 was performed on n-doped pure graphene. A part shown in white in FIG. 2B is an atom, and a part shown in black is a void. 3 shows an image of a defect-free region of bilayer graphene on silicon carbide (SiC) as an image tested by the method disclosed in the above-described S. Cho paper. have. Notable identity is found between FIGS. 2B and 3.

도 2에 도시된 시뮬레이션의 조건은, 각각 T = 315K, z0 = 3Å, △T = 3K, R = 0.75Å, δ = 0.3Å이다.The conditions of the simulation shown in FIG. 2 are T = 315K, z 0 = 3 ms, ΔT = 3K, R = 0.75 ms, δ = 0.3 ms, respectively.

이상 첨부 도면을 참조하여 본 발명에 대해서 설명하였지만 본 발명의 권리범위는 후술하는 특허청구범위에 의해서 결정되며 전술한 설명에 제한되는 것으로 해석되어서는 아니된다. 그리고 특허청구범위에 기재된 발명의, 당업자에게 자명한 개량, 변경 및/또는 수정도 본 발명의 권리범위에 포함된다는 점이 이해되어야 한다.Although the present invention has been described above with reference to the accompanying drawings, the scope of the present invention is determined by the claims below and should not be construed as limited to the foregoing description. And it should be understood that improvements, changes, and / or modifications apparent to those skilled in the art of the invention described in the claims are included in the scope of the present invention.

Claims (3)

원자수준-해상도 주사 열전 현미경의 컴퓨터 원용 시뮬레이션 방법에 있어서,In the computer-aided simulation method of atomic-resolution scanning thermoelectric microscope, 소재의 소정의 국지 영역
Figure PCTKR2013006267-appb-I000043
에 대한 원자 레벨 이미지 표시를 위한 열전압(thermoelectric voltage; V)을 아래 수학식에 의해서 컴퓨터가 계산하는 시뮬레이션 방법.
Predetermined local area of the material
Figure PCTKR2013006267-appb-I000043
Computer simulation of the thermoelectric voltage (V) for atomic level image display for
Figure PCTKR2013006267-appb-I000044
Figure PCTKR2013006267-appb-I000044
여기에서,From here,
Figure PCTKR2013006267-appb-I000045
: 적분변수
Figure PCTKR2013006267-appb-I000045
: Integral variable
S: 지벡 계수(Seebeck Coefficient)S: Seebeck Coefficient
Figure PCTKR2013006267-appb-I000046
: 국지 영역의 온도 그래디언트(temperature gradient)
Figure PCTKR2013006267-appb-I000046
: Temperature gradient of the local area
청구항 1에 있어서,The method according to claim 1, 상기 지벡 계수는 다음의 수학식에 의해서 정의되는,The Seebeck coefficient is defined by the following equation, 시뮬레이션 방법.Simulation method.
Figure PCTKR2013006267-appb-I000047
Figure PCTKR2013006267-appb-I000047
Figure PCTKR2013006267-appb-I000048
Figure PCTKR2013006267-appb-I000048
e: 전자 전하량e: amount of electron charge T: 절대 온도T: absolute temperature EF: 페르미 에너지E F : Fermi Energy f: 온도 T에서의 페르미-디랙 분포 함수(Fermi-Dirac distribution function)f: Fermi-Dirac distribution function at temperature T
Figure PCTKR2013006267-appb-I000049
: 소재의 브릴루앙 영역(Brillouin zone)의 k 번째 지점에서 i번째 고유상태(eigenstate)
Figure PCTKR2013006267-appb-I000049
: I-eigenstate at the k-th point of the Brillouin zone of the material
Figure PCTKR2013006267-appb-I000050
: 소재의 브릴루앙 영역(Brillouin zone)의 k 번째 지점에서 i번째 고유값(eigenvalue)
Figure PCTKR2013006267-appb-I000050
Is the i th eigenvalue at the k th point of the Brillouin zone of the material.
Figure PCTKR2013006267-appb-I000051
: 델타 함수(delta function)
Figure PCTKR2013006267-appb-I000051
Delta function
청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 탐침과 소재 표면 사이의 온도 변화를 표시하는
Figure PCTKR2013006267-appb-I000052
는 아래 수학식에 의해서 정의되는 시뮬레이션 방법.
To indicate the temperature change between the probe and the material surface
Figure PCTKR2013006267-appb-I000052
Is a simulation method defined by the following equation.
Figure PCTKR2013006267-appb-I000053
Figure PCTKR2013006267-appb-I000053
Figure PCTKR2013006267-appb-I000054
: 탐침의 온도
Figure PCTKR2013006267-appb-I000054
: Probe temperature
Figure PCTKR2013006267-appb-I000055
: 소재의 온도
Figure PCTKR2013006267-appb-I000055
Material temperature
Figure PCTKR2013006267-appb-I000056
: 누적 분포 함수(cumulative distribution function; CDF)
Figure PCTKR2013006267-appb-I000056
Cumulative distribution function (CDF)
R: 탐침의 팁 반경R: Tip radius of the probe
Figure PCTKR2013006267-appb-I000057
: 탐침의 팁 중앙
Figure PCTKR2013006267-appb-I000057
: Center of tip of probe
Figure PCTKR2013006267-appb-I000058
: 가우시안 확장(Gaussian broadening)
Figure PCTKR2013006267-appb-I000058
Gaussian broadening
PCT/KR2013/006267 2013-06-10 2013-07-12 Method for computer-aided simulation of atomic-resolution scanning thermoelectric microscope Ceased WO2014200140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0066020 2013-06-10
KR20130066020 2013-06-10

Publications (1)

Publication Number Publication Date
WO2014200140A1 true WO2014200140A1 (en) 2014-12-18

Family

ID=52022419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006267 Ceased WO2014200140A1 (en) 2013-06-10 2013-07-12 Method for computer-aided simulation of atomic-resolution scanning thermoelectric microscope

Country Status (2)

Country Link
KR (1) KR101575955B1 (en)
WO (1) WO2014200140A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030169798A1 (en) * 2001-12-17 2003-09-11 Cordes Steven Alan Scanning heat flow probe
US20030186471A1 (en) * 2002-03-28 2003-10-02 International Business Machines Corporation Method and apparatus for measuring dopant profile of a semiconductor
KR20090115426A (en) * 2008-05-02 2009-11-05 고려대학교 산학협력단 Thermal Physics Measurement Method Using Scanning Probe Microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030169798A1 (en) * 2001-12-17 2003-09-11 Cordes Steven Alan Scanning heat flow probe
US20030186471A1 (en) * 2002-03-28 2003-10-02 International Business Machines Corporation Method and apparatus for measuring dopant profile of a semiconductor
KR20090115426A (en) * 2008-05-02 2009-11-05 고려대학교 산학협력단 Thermal Physics Measurement Method Using Scanning Probe Microscope

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIAN ET AL.: "Three-dimensional modeling of nanoscale Seebeck measurements by scanning thermoelectric microscopy", APPLIED PHYSICS LETTERS, vol. 87, 29 July 2005 (2005-07-29), pages 053115 - 053118 *
LI, SHI: "Scanning Thermal and Thermoelectric Microscopy", HANDBOOK OF MICROSCOPY FOR NANOTECHNOLOGY, 14 June 2005 (2005-06-14), pages 183 - 205 *

Also Published As

Publication number Publication date
KR101575955B1 (en) 2015-12-10
KR20140144133A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
Bing et al. Measurement of coefficient of thermal expansion of films using digital image correlation method
Chui et al. Phase transition in the two-dimensional Coulomb gas, and the interfacial roughening transition
Van Tuan et al. Scaling properties of charge transport in polycrystalline graphene
Retinò et al. Solar wind test of the de Broglie-Proca massive photon with Cluster multi-spacecraft data
Haney et al. Depletion region surface effects in electron beam induced current measurements
Du et al. Study on the performance of temperature‐stabilised flexible strain sensors based on silver nanowires
Yi et al. Conductor surface conditions effects on the ion-flow field of long-term operating conductors of the HVDC transmission line
WO2014200140A1 (en) Method for computer-aided simulation of atomic-resolution scanning thermoelectric microscope
Yamakoshi et al. Multicrystalline informatics applied to multicrystalline silicon for unraveling the microscopic root cause of dislocation generation
US9081030B2 (en) Computer-aided simulation method for atomic-resolution scanning seebeck microscope (SSM) images
Hellesø et al. Simplified model for heat transport for cables in pipes
Campione et al. Multipole-based cable braid electromagnetic penetration model: Electric penetration case
Corey et al. On computation of electromagnetic fields on planar surfaces from fields specified on nearby surfaces
EP3510414B1 (en) Electric current imaging system
US20200373388A1 (en) Crystal orientation engineering to achieve consistent nanowire shapes
Xu et al. A universal framework for determining the effect of operating parameters on piezoionic voltage generation
Cao et al. Combining 4D Scanning Transmission Electron Microscopy and Electron Precession for Mapping of Electric Field at the Nanoscale Over Large Field of View
Zhao et al. Near-field-based array failure diagnosis using sparse source reconstruction
Chen et al. A reconstruction method for electrical impedance tomography using particle swarm optimization
Jiang et al. A flexible and stackable 3D interconnect system using growth-engineered carbon nanotube scaffolds
Li et al. Electromagnetic field in the presence of a three-layered spherical region
Carpenter et al. Directed self-assembly of diblock copolymers in multi-VIA configurations: effect of chemopatterned substrates on defectivity
CN109239127A (en) A kind of low-dimensional materials heat conduction property in-situ measurement device
Aissa et al. Design and fabrication of fluidic patch antenna based liquid metal alloy (EGaIn) and single wall carbon nanotubes nanocomposites
Shen et al. Electron analysis of a deep sub-micrometer MOSFET device based on spectral element method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886801

Country of ref document: EP

Kind code of ref document: A1