[go: up one dir, main page]

WO2014066871A1 - Sporadic collection of mobile affect data - Google Patents

Sporadic collection of mobile affect data Download PDF

Info

Publication number
WO2014066871A1
WO2014066871A1 PCT/US2013/066991 US2013066991W WO2014066871A1 WO 2014066871 A1 WO2014066871 A1 WO 2014066871A1 US 2013066991 W US2013066991 W US 2013066991W WO 2014066871 A1 WO2014066871 A1 WO 2014066871A1
Authority
WO
WIPO (PCT)
Prior art keywords
mental state
state data
data
analysis
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2013/066991
Other languages
French (fr)
Inventor
Daniel Bender
Rana El Kaliouby
Evan Kodra
Oliver Ernst NOWAK
Richard Scott Sadowsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affectiva Inc
Original Assignee
Affectiva Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affectiva Inc filed Critical Affectiva Inc
Publication of WO2014066871A1 publication Critical patent/WO2014066871A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/011Emotion or mood input determined on the basis of sensed human body parameters such as pulse, heart rate or beat, temperature of skin, facial expressions, iris, voice pitch, brain activity patterns
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism

Definitions

  • This application relates generally to analysis of mental states and more particularly to analysis of non-continuous collection of mental states.
  • the human-computer interaction can take the form of a person performing a task using a software-based tool running on a computer. Examples include filling out a tax form, creating a document, editing a video, and/or doing one or more of the numerous other activities performable by a modern computer.
  • the person can find the execution of certain activities interesting or even exciting, and may be surprised at how easy it is to perform the activity. The person may become excited, happy, or content as he or she performs such an interesting or exciting activity. On the other hand, the person can find some activities difficult to perform, and may become frustrated or even angry with the computer or software tool.
  • users are surveyed in an attempt to determine where a computer or computer program may be functioning well, and where it may need improvement. However, such survey results are often unreliable because the surveys are often competed well after the activity was performed. In addition, survey participation rates may be low, and people may not provide accurate and honest answers to the survey.
  • a user interacts with a computer and this interaction may entail one of a variety of tasks and/or activities.
  • the user may react to the interaction with the reaction being a mental state.
  • a mental state can express itself in one or more of many ways, such as facial expressions, electrodermal activity, movements, or other externally detectable manifestations.
  • a camera or other monitoring device can be used to capture one or more of the externally detectable manifestations of the user's mental state, but there may be conditions where the monitoring device may not be able to detect the manifestation continually.
  • various methods, computer program products, apparatus, and systems are described wherein mental state data is collected on an intermittent basis, analyzed, and an output rendered based on the analysis of the mental state data.
  • a computer- implemented method for mental state analysis is disclosed comprising: collecting mental state data of an individual on an intermittent basis; obtaining analysis of the mental state data on the individual; and rendering an output based on the analysis of the mental state data.
  • the method may further comprise interpolating mental state data in between the collecting which is intermittent.
  • the method may further comprise interpolating mental state analysis in between the collecting which is intermittent.
  • the method may further comprise collecting other mental state data from the individual on a continuous basis.
  • the other mental state data may include electrodermal activity data.
  • the method may further comprise imputing additional mental state data where the mental state data is missing.
  • the collecting may be accomplished with a mobile device.
  • the mobile device may include a forward facing camera.
  • the mobile device may include one of a cell phone, a tablet computer, a wrist-based device, or a laptop computer.
  • the method may further comprise interpolating mental state analysis in between the collecting which is intermittent; collecting other mental state data, including electrodermal activity data, from the individual on a continuous basis; imputing additional mental state data where the mental state data is missing; filtering out faces of one or more other people to determine when an individual is looking in a direction of a camera; determining contextual information based on
  • the collecting may be accomplished for one type of mental state data.
  • the one type of mental state data may include facial data.
  • the facial data may be collected with a webcam.
  • the facial data may be collected intermittently when the individual is looking in a direction of a camera.
  • the method may further comprise performing face detection to determine when the individual is looking in the direction of the camera.
  • the method may further comprise filtering out faces of one or more other people to determine when the individual is looking in the direction of the camera.
  • the method may further comprise determining contextual information.
  • the contextual information may be based on one or more of skin temperature or accelerometer data.
  • the contextual information may be based on one or more of a photograph, an email, a text message, a phone log, or GPS information.
  • the intermittent basis may be occasional.
  • the intermittent basis may be periodic.
  • the method may further comprise sending a request to a web service for the analysis.
  • the analysis of the mental state data may be received from a web service.
  • the method may further comprise sending one or more of the mental state data, a subset of the mental state data, or an initial analysis of the mental state data to the web service.
  • the sending may be accomplished on a periodic basis.
  • the method may further comprise generating the analysis by the web service through cloud computation.
  • the analysis of the mental state data may be performed locally.
  • the method may further comprise inferring mental states based on the mental state data which was collected.
  • the inferring of mental states may include one or more of a group including enjoyment, happiness, anger, sadness, stress, frustration, confusion, disappointment, hesitation, cognitive overload, focusing, being engaged, attending, boredom, exploration, confidence, trust, delight, or satisfaction.
  • the mental state data may include one or more of smiles, laughter, smirks, or grimaces.
  • the mental state data may include one or more of head position, up/down head motion, side-to-side head motion, tilting head motion, body leaning motion, or gaze direction.
  • the method may further comprise posting the analysis to a social network.
  • the mental state data may include one or more of a group including physiological data, facial data, or accelerometer data.
  • the physiological data may include one or more of
  • the individual may be exposed to a media presentation.
  • the media presentation may include one or more of a group consisting of a movie, a television show, a web series, a webisode, a video, a video clip, an electronic game, an e-book, and an e-magazine.
  • the method may further comprise analyzing the mental state data to produce mental state information.
  • a computer-implemented method for mental state analysis comprises: receiving analysis of mental state data collected from an individual on an intermittent basis; and rendering an output based on the analysis that was received.
  • a computer implemented method for mental state analysis comprises: receiving mental state data collected from an individual on an intermittent basis; analyzing the mental state data from the individual; and sending an output related to analyzing that was performed.
  • a computer program product embodied in a computer readable medium for mental state analysis comprises: code for collecting mental state data of an individual on an intermittent basis; code for obtaining analysis of the mental state data on the individual; and code for rendering an output based on the analysis of the mental state data.
  • a system for mental state analysis may comprise: a memory for storing instructions; one or more processors attached to the memory wherein the one or more processors are configured to: collect mental state data of an individual on an intermittent basis; obtain analysis of the mental state data on the individual; and render an output based on the analysis of the mental state data.
  • Fig. 6 is a system diagram for mental state analysis.
  • the user's mental state can provide valuable insight into the nature of the human-computer interaction.
  • the mental state of the user can include such emotions as enjoyment, happiness, anger, sadness, stress, frustration, confusion, disappointment, hesitation, cognitive overload, fear, exhaustion, focus, engagement, attention, boredom, exploration, confidence, trust, delight, satisfaction, excitement, happiness, contentment, or one of many other human emotions.
  • Understanding a user's mental state as he or she interacts with the computer may be valuable for a variety of reasons, such as determining which aspects of a computer program may be working well and which aspects need improvement, determining aspects of a computer game that may be too difficult or two easy for some users, measuring effectiveness of advertisements, determining which parts of a video most please a specific user, or determining a user's preferences in order to better suggest what other media, games, or applications the specific user may find appealing, just to name a few.
  • the user While consuming media, the user may exhibit physical manifestations of his or her mental state, such as facial expressions, physiological reactions, and movement.
  • Sensors coupled to a computer in some embodiments, the same computer the user is interacting with, in other embodiments, one or more other computers— may be able to detect, capture, and/or measure one or more external manifestations of the user's mental state.
  • a still camera may be able to capture images of the user's face
  • a video camera may be able to capture images of the user's movements
  • a heart rate monitor may be able to measure the user's heart rate
  • a skin resistance sensor may be able to detect changes in the user's galvanic skin response
  • an accelerometer may be able to measure such movements as gestures, foot tapping, or head tilts, to name a few.
  • a skin resistance sensor embedded in an armrest of the user's chair can only measure a galvanic skin response if the user's arm is resting on the armrest.
  • it may be possible to continuously capture the data from a sensor but it may not be practical or desirable to do so due to the volume of data capture, or due to the relative slowness of measurable change that may be expected from the manifestation of a particular mental state.
  • data from at least some of the sensors which measure manifestations of mental state may be captured, collected, and/or stored, on an intermittent basis.
  • the intermittent basis may be sporadic, opportunistic, periodic, random, or any other non-continuous basis.
  • Data from the sensors may be captured from the sensor based on the ability of the sensor to capture valid data, based on the usefulness of the data captured from the sensor, based on a schedule, or based on indications from other sensors, depending on the embodiment.
  • a skin resistance meter may only provide collectable data if it detects that the user's skin is in contact with the meter.
  • an image from a camera may be saved for further analysis perhaps only if some form of pre-processing detects that the user's face is visible in the image, or a video of a user's body (used for movement analysis) may be taken only when triggered by a change in heart rate detected by a heart rate monitor.
  • a wide variety of techniques may be used to intermittently collect, capture, and/or store sensor data related to a mental state of an individual. In one example, when a pattern of motion predicts a high probability of a physiological condition occurring, other sensors may be activated to provide greater contextual information and increase predictive abilities.
  • an analysis of the mental state data collected from the sensors is obtained.
  • the analysis may take place on the computer with which the user is interacting, the computer(s) that captured the sensor data, and/or from one or more other computers that may be local or remote to the user.
  • the analysis may provide mental states of the user over time based on the sensor data. In some cases the mental state of the user may be estimated for the periods where data from one or more sensors was not collected.
  • an output is rendered based on the analysis of the mental state data.
  • the rendered output may include text, icons, pictures, graphs, binary data, or any other form or output that may be interpreted by a person or another computer, depending on the embodiment.
  • the rendered output may include a graph showing the prevalence of a particular mental state over time.
  • the rendered output may include an icon that changes based on the user's mental state.
  • the rendered output may include a file containing numerical data based on the analysis obtained.
  • the sporadic collection of mental state data can be used in evaluating well-being of a person or in the generation of a personal emotional profile.
  • Fig. 1 is a flow diagram for sporadic collection.
  • the flow 100 comprises a computer- implemented method for mental state analysis.
  • the flow 100 includes collecting the mental state data 1 10 of an individual on an intermittent basis 112. Any non-continuous collection of mental state data may be considered collection on an intermittent basis 1 12, but in some embodiments the intermittent basis 1 12 may be opportunistic. That is, the intermittent basis 1 12 may either be sporadic or occasional; the intermittent basis 1 12 may mean the capture of images at random intervals or at times that the individual takes certain actions or happens to look at the camera. In other embodiments, the intermittent basis 1 12 can be periodic, and may occur on a regular schedule, such as once every 30 seconds.
  • the intermittent basis is a combination of occasional and periodic collection; for example, collecting mental state data once every minute plus additional collection each time the user clicks the mouse button or hits the 'Enter' key.
  • the collecting may be accomplished for one type of mental state data and this mental state data may include facial data.
  • the flow 100 may further comprise collecting other mental state data 120 from the individual on a continuous basis.
  • the mental state data may include one or more of a group including physiological data, facial data, or accelerometer data.
  • the collecting of the mental state data may be accomplished using a variety of different sensors, depending on the type of mental state data being collected, but in at least one embodiment, a camera coupled to the computer may be used to capture facial expression that may function as mental state data. Facial expressions that may function as mental state data may include one or more of smiles, laughter, smirks, or grimaces.
  • the mental state data may also include one or more of head position, up/down head motion, side-to-side head motion, tilting head motion, body leaning motion, or gaze direction, which may be captured using a camera, an accelerometer, eye-tracking glasses, or other types of sensors.
  • the collecting of mental state data is accomplished with a mobile device in some embodiments.
  • the flow 100 may include performing face detection 114 to determine when the individual is looking in the direction of a camera and may also include filtering out faces 116 of one or more other people to determine when the individual is looking in the direction of a camera.
  • the flow 100 includes data processing and analysis that may occur locally or remotely 130 from the individual.
  • the flow 100 may further comprise analyzing 132 the mental state data to produce mental state information.
  • the analysis 132 of the mental state data may be performed locally, such as on the computer that is coupled to the sensors collecting the mental state data or on the computer with which the individual is interacting.
  • the flow 100 may further comprise sending 134 one or more of the mental state data, a subset of the mental state data, or an initial analysis of the mental state data to a web service for further analysis, storage, or other purposes.
  • the sending 134 may be accomplished on a periodic or an occasional basis, and may be sent using a different time basis than the one used in the data collection.
  • the mental state data may be collected on an opportunistic or random intermittent basis, but the mental state data may be sent on either a periodic or occasional basis.
  • the flow 100 may further comprise sending a request 136 to a web service for the analysis or other activities related to the mental state data sent, and may include generating the analysis 138 by the web service through cloud computation.
  • the flow 100 may include obtaining analysis 150 of the mental state data on the individual. This obtaining analysis 150 may include diverse methods, including, but not limited to, analyzing the mental state data locally, having the mental state data analyzed remotely, receiving an analysis of the mental state data directly from a smart sensor, or generating the analysis on a co-processor or dedicated subsystem.
  • the flow 100 may further comprise interpolating 140 mental state data in between the intermittent collecting.
  • Interpolating 140 may be done using any suitable algorithm including piecewise constant interpolation, linear interpolation, polynomial interpolation, bicubic interpolation, a Gaussian process, one of the numerous and various curve fitting algorithms known in the art, or any other algorithm.
  • the interpolating 140 is of mental state analysis, in between the collecting which is intermittent.
  • the flow 100 may include imputing 142 additional mental state data where the mental state data is missing. When the mental state data is collected 110 on an intermittent basis, there will be times when the mental state data is not collected and thus is missing. This missing mental state data may be imputed, or predicted, based on other data.
  • the imputation may be based on other data collected from the individual on whom the data is missing. In other cases, the imputation may be based on mental state data collected from other individuals around the individual on whom the data is missing. These other individuals may be geographically nearby or may be part of the individual's social network. Thus, the missing mental state data may be imputed based on mental state data for other people in the individual's social network.
  • the flow 100 may further comprise inferring mental states 144 based on the mental state data which was collected.
  • Mental states that may be inferred may include one or more of a group including enjoyment, happiness, anger, sadness, stress, frustration, confusion, disappointment, hesitation, cognitive overload, focusing, being engaged, attending, boredom, exploration, confidence, trust, delight, and satisfaction.
  • the flow 100 may further comprise determining contextual information 146 which may be based on one or more of skin temperature or accelerometer data, or other types of data such as the application being used on the computer, the time of day, or any other type of contextual information.
  • the flow 100 may include output usage 150.
  • An output may be rendered 152 based on the mental state data and/or the mental state.
  • the output may include text, icons, pictures, graphs, binary data, or any other form or output that may be interpreted by a person or another computer.
  • the rendered output may be used in various ways, including presenting the rendered output to the individual, storing the rendered output, sending the rendered output to a central collection point, or printing the rendered output.
  • the flow 100 may further comprise posting the analysis 154 to a social network page.
  • the posting to the social network page may be the rendered output or may be at least a portion of the mental state data or information regarding the mental state.
  • Fig. 2 is a timeline 210 with information tracks 200 relating to mental states.
  • a first track 260 shows events that may be related to the individual's use of a computer.
  • a first event 220 may indicate an action that the individual took (such as launching an application); an action initiated by the computer (such as the presentation of a dialog box); an external event (such as a new global positioning system (GPS) coordinate); or receiving an e-mail, a phone call, a text message, or any other type of event.
  • a photograph may be used to document an event or simply save contextual information in the first track 260.
  • a second event 222 may indicate another action or event.
  • Such events may be used to provide contextual information and may also include such things as copies of emails, text messages, phone logs, file names, or other information that may be useful in understanding the context of a user's actions.
  • contextual information is based on one or more of a photograph, an email, a text message, a phone log, or GPS information.
  • a second track 262 may include continuously collected mental state data such as electrodermal activity data 230.
  • a third track 264 may include facial data 240, which may be a type of mental state data that is collected on an intermittent basis by a first camera, such as the room camera (although in some embodiments the facial data may be collected continuously). The facial data may be collected intermittently when the individual is looking toward a camera.
  • the facial data 240 may include one or more still photographs, videos, or abstracted facial expressions which may be collected when the user looks in the direction of the camera.
  • a fourth track 266 may include facial data 242 that is collected on an intermittent or continuous basis by a second camera, such as the mobile phone camera.
  • the facial data 242 may include one or more still photographs, videos, or abstracted facial expressions which may be collected when the user looks in the direction of that camera.
  • a fifth track 268 may include facial data that is collected from a third camera, such as the webcam.
  • the fifth track 268 includes first facial data 244, second facial data 246, and third facial data 248 which may be any type of facial data including data that may be used for determining mental state information. Any number of samples of facial data may be collected in any track.
  • the mental state data from the various tracks may be collected simultaneously, collected on one track exclusive of other tracks, collected where mental state data overlaps between the tracks, and so on. When mental state data from multiple tracks overlaps, one track's data may take precedence or the data from the multiple tracks may be combined.
  • Additional tracks, through the n" 1 track 270, of mental state data of any type may be collected.
  • the additional tracks 270 may be collected on a continuous or on an intermittent basis.
  • the intermittent basis may be either occasional or periodic.
  • Analysis may further comprise interpolating mental state data when the mental state data collected is intermittent, and/or imputing additional mental state data where the mental state data is missing.
  • One or more interpolated tracks 272 may be included and may be associated with mental state data that is collected on an intermittent basis, such as the facial data of the fifth track 268.
  • Interpolated data 250 and interpolated data 252 may contain interpolations of the facial data of the fifth track 268 for the time periods where no facial data was collected in that track. Other embodiments interpolate data for periods where no track includes facial data.
  • analysis includes interpolating mental state analysis when the mental state data collected is intermittent.
  • the mental state data such as the continuous mental state data 230 and/or any of the collected facial data 240, 242, 244, 246, and 248 may be tagged.
  • the tags may include metadata related to the mental state data, including, but not limited to, the device that collected the mental state data; the individual from whom the mental state data was collected; the task being performed by the individual; the media being viewed by the individual; and the location, environmental conditions, time, date, or any other contextual information.
  • the tags may be used to locate pertinent mental state data; for example, the tags may be used to retrieve the mental state data from a database.
  • the tags may be included with the mental state data that is sent over the internet to cloud or web-based storage and/or services so that the tags may be used locally on the machine where the mental state data was collected and/or remotely on a remote server or a cloud/web service.
  • Fig. 3 is a diagram for facial analysis 300.
  • An individual 310 may view 370 an electronic display 320 while mental state data on the individual 310 may be collected and analyzed.
  • the electronic display 320 may show an output of a computer application that the individual 310 is using, or the electronic display 320 may show a media presentation in a manner which exposes the individual 310 to the media presentation.
  • the media presentation may include one of a group consisting of a movie, a television show, a web series, a webisode, a video, a video clip, an electronic game, an e-book, or an e-magazine.
  • the electronic display 320 may be a part of, or may be driven from, the device collecting the mental state data.
  • the electronic display may only be loosely coupled to, or may be unrelated to, the device collecting the mental state data.
  • the collecting is accomplished with a mobile device 360, such as a cell phone, a tablet computer, or a laptop computer, and the mobile device may include a forward facing camera 362 when the user views 372 the mobile device 360.
  • the facial data may be collected with a camera such as the forward facing camera 362 of the mobile device 360 and/or by a webcam 330.
  • the facial data may be collected intermittently when the individual 310 is looking in the direction of a camera 362/330.
  • the camera may also capture images of the setting. These images may be used in determining contextual information.
  • the webcam 330 may be used to collect one or more of facial data and physiological data.
  • the facial data may include, in various embodiments, information on facial expressions, action units, head gestures, smiles, smirks, brow furrows, squints, lowered eyebrows, raised eyebrows, or attention.
  • the webcam 330 may capture video, audio, and/or still images of the individual 310.
  • a webcam as the term is used herein, may include a video camera, still camera, thermal imager, CCD device, phone camera, three-dimensional camera, a depth camera, multiple webcams used to show different views of a person, or any other type of image capture apparatus that may allow data captured to be used in an electronic system.
  • the images of the person 310 from the webcam 330 may be captured by a video capture unit 340.
  • video may be captured, while in others, one or more still images may be captured.
  • the captured video or still images may be used in facial analysis 350 or for determining gestures, actions, or other movements.
  • Analysis of facial expressions, gestures, and mental states may be accomplished using the captured images of the person 310.
  • the facial expressions may be used to identify smiles, frowns, and other facial indicators of mental states.
  • the gestures including head gestures, may indicate interest or curiosity. For example, a head gesture of moving toward the electronic display 320 may indicate increased interest in the media or desire for clarification.
  • analysis of physiological data may be performed. Respiration, heart rate, heart rate variability, perspiration, temperature, and other physiological indicators of mental state may be determined by analyzing the images.
  • FIG. 4 is a diagram representing physiological analysis.
  • a system 400 may analyze data collected from a person 410 as he or she interacts with a computer.
  • the person 410 may have a biosensor 412 attached to him or her for the purpose of collecting mental state data.
  • the biosensor 412 may be placed on the wrist, palm, hand, head, or other part of the body. In some embodiments, multiple biosensors may be placed on the body in multiple locations.
  • the biosensor 412 may include detectors for physiological data such as electrodermal activity, skin temperature, accelerometer readings, and the like. Other detectors for physiological data may be included as well, such as heart rate, blood pressure, EKG, EEG, further brain waves, and other physiological detectors.
  • the biosensor 412 may transmit information collected to a receiver 420 using wireless technology such as Wi-Fi, Bluetooth, 802.1 1, cellular, or other bands. In other embodiments, the biosensor 412 may communicate with the receiver 420 by other methods such as a wired interface or an optical interface. The receiver may provide the data to one or more components in the system 400. In some embodiments, the biosensor 412 may record multiple types of physiological information in memory for later download and analysis. In some embodiments, the download of recorded physiological data may be accomplished through a USB port or other wired or wireless connection.
  • wireless technology such as Wi-Fi, Bluetooth, 802.1 1, cellular, or other bands.
  • the biosensor 412 may communicate with the receiver 420 by other methods such as a wired interface or an optical interface.
  • the receiver may provide the data to one or more components in the system 400.
  • the biosensor 412 may record multiple types of physiological information in memory for later download and analysis. In some embodiments, the download of recorded physiological data may be accomplished through a USB port or other wired or wireless connection.
  • Mental states may be inferred based on physiological data, such as physiological data from the sensor 412.
  • Mental states may also be inferred based on facial expressions and head gestures observed by a webcam, or a combination of data from the webcam and data from the sensor 412.
  • the mental states may be analyzed based on arousal and valence.
  • Arousal can range from being highly activated— such as when someone is agitated— to being entirely passive— such as when someone is bored.
  • Valence can range from being very positive— such as when someone is happy— to being very negative— such as when someone is angry.
  • Physiological data may include one or more of electrodermal activity (EDA), heart rate, heart rate variability, skin temperature, respiration, accelerometer readings, and other types of analysis of a human being.
  • EDA electrodermal activity
  • heart rate heart rate variability
  • skin temperature respiration
  • accelerometer readings and other types of analysis of a human being.
  • physiological information can be obtained either by biosensor 412 or by facial observation via the webcam 330.
  • Facial data may include facial actions and head gestures used to infer mental states. Further, the data may include information on hand gestures or body language and body movements such as visible fidgets. In some embodiments, these movements may be captured by cameras, while in other embodiments, these movements may be captured by sensor readings.
  • Facial data may include the tilting the head to the side, leaning forward, smiling, frowning, and many other gestures or expressions.
  • Electrodermal activity may be collected in some embodiments. It may either be collected continuously, every second, four times per second, eight times per second, 32 times per second, or on some other periodic basis. Or, in some embodiments, electrodermal activity may be collected on an intermittent basis. The electrodermal activity may be recorded and stored onto a disk, a tape, flash memory, a computer system, or streamed to a server. The electrodermal activity may be analyzed 430 to indicate arousal, excitement, boredom, or other mental states based on observed changes in skin conductance. Skin temperature may be collected and/or recorded on a periodic basis. In turn, the skin temperature may be analyzed 432. Changes in skin temperature may indicate arousal, excitement, boredom, or other mental states.
  • Heart rate may be collected and recorded, and may also be analyzed 434.
  • a high heart rate may indicate excitement, arousal, or other mental states.
  • Accelerometer data may be collected and used to track one, two, or three dimensions of motion.
  • the accelerometer data may be recorded.
  • the accelerometer data may be used to create an actigraph showing an individual's activity level over time.
  • the accelerometer data may be analyzed 436 and may indicate a sleep pattern, a state of high activity, a state of lethargy, or other states.
  • the various data collected by the biosensor 412 may be used along with the facial data captured by the webcam in the analysis of mental state. Contextual information may be based on one or more of skin temperature and/or accelerometer data.
  • Fig. 5 is a diagram 500 showing mental state data, including facial data, collection from multiple devices.
  • Mental state data can be collected sporadically from a group of different devices.
  • a user 510 may be performing a task, viewing a media presentation on an electronic display 512, or doing something else where it may be useful to determine the user's mental state.
  • the electronic display 512 may be on a laptop computer 520 as shown, a tablet computer 550, a cell phone 540, a desktop computer monitor, a television, or any other type of electronic device.
  • the mental state data may be collected on a mobile device such as a cell phone 540, a tablet computer 550, or a laptop computer 520.
  • the multiple sources may include at least one mobile device, such as a phone 540, a tablet 550, or a wearable device such as glasses 560.
  • a mobile device may include a forward facing camera and/or rear facing camera that may be used to collect mental state data.
  • the at least two sources of facial data may include one or more of a webcam 522, a phone camera 542, a tablet camera 552, a wearable camera 562, and a room camera 530.
  • a wearable camera may be a wrist camera, a wristwatch camera, or other wearable camera device.
  • the user 510 may move due to the nature of the task, boredom, distractions, or for another reason.
  • the user's face may be visible from one or more of the multiple sources.
  • the line of sight 524 from the webcam 522 may be able to observe the individual's face, but if the user is looking in a second direction, the line of sight 534 from the room camera 530 may be able to observe the individual's face.
  • the line of sight 544 from the phone camera 542 may be able to observe the individual's face.
  • the line of sight 554 from the tablet camera 552 may be able to observe the individual's face.
  • the line of sight 564 from the wearable camera 562 may be able to observe the individual's face.
  • the wearable device such as the glasses 560 may be worn by another user or an observer.
  • the wearable device is a device other than glasses, such as an earpiece with a camera, a helmet or hat with a camera, a clip-on camera attached to clothing, or any other type of wearable device with a camera or other sensor for collecting mental state data.
  • the individual 510 may also wear a wearable device including a camera that may be used for gathering contextual information and/or collecting mental state data on other users. Because the individual 510 may move their head, the facial data may be collected intermittently when the individual is looking in a direction of a camera. In some cases, multiple people may be included in the view from one or more cameras, and some embodiments include filtering out faces of one or more other people to determine whether the individual 510 is looking toward a camera. All or some of the mental state data can be sporadically available from these various devices.
  • FIG. 6 is a system diagram for mental state analysis.
  • a system 600 may include a mental state data collection machine 620 and an analysis server 650.
  • the mental state data collection machine 620 may be configured to collect the mental state data of an individual on an intermittent basis.
  • the mental state data collection machine 620 may include a display 622, one or more processors 624, a memory 626 designed to store mental state data, instructions, and the like, and a webcam 628.
  • the display 622 may be any electronic display, including but not limited to, a computer display, a laptop screen, a net- book screen, a tablet computer screen, a cell phone display, a mobile device display, a remote with a display, a television, a projector, or the like.
  • the webcam 628 may comprise a camera on a computer (such as a laptop, a net-book, a tablet, or the like), a video camera, a still camera, a cell phone camera, a mobile device camera (including, but not limited to, a forward facing camera), a thermal imager, a CCD device, a three-dimensional camera, a depth camera, and multiple webcams used to capture different views of viewers or any other type of image capture apparatus that may allow image data captured to be used by an electronic system.
  • the mental state data collection machine 620 may be configured to transmit mental state information 630 to a server 650 via the Internet 610 or other network.
  • the analysis server 650 may be configured to obtain analysis of the mental state data on the individual and render an output based on the analysis of the mental state data.
  • the analysis server 650 may obtain mental state information 640 from the internet and may be configured as a web service.
  • the analysis server 650 may send the analysis of the mental state data to another machine, such as the mental state data collection machine, so that the analysis of the mental state data may be received from a web service.
  • the analysis server 650 may include a display 622, one or more processors 654, and a memory 656 designed to store system information, instructions, and the like.
  • the display 652 may be any electronic display, including but not limited to, a computer display, a laptop screen, a net-book screen, a tablet computer screen, a cell phone display, a mobile device display, a remote with a display, a television, a projector, or the like.
  • the one or more processors 654 when executing the instructions which are stored, may be configured to analyze mental state information 640 that may be received from the mental state data collection machine 620.
  • the mental state data collection machine 620 and the analysis server 650 functions may be combined into a single computer.
  • the rendering of mental state analysis can occur on a different computer than the collection machine 620 or the analysis server 650.
  • This computer may be a rendering machine 670 which receives data or information 630, mental state information 640 from the analysis machine 650, or both and may be considered mental state rendering information 660.
  • the rendering machine 670 includes one or more processors 674 coupled to a memory 676, and a display 672.
  • the rendering may include generation and display of emoticons.
  • the system 600 may include computer program product comprising code for collecting mental state data of an individual on an intermittent basis, code for obtaining analysis of the mental state data on the individual, and code for rendering an output based on the analysis of the mental state data.
  • a computer- implemented method for mental state analysis, from a server perspective may comprise receiving mental state data collected from an individual on an intermittent basis, analyzing the mental state data from the individual, and sending an output related to analyzing that was performed.
  • Each of the above methods may be executed on one or more processors on one or more computer systems.
  • Embodiments may include various forms of distributed computing, client/server computing, and cloud based computing.
  • the depicted steps or boxes contained in this disclosure's flow charts are solely illustrative and explanatory. The steps may be modified, omitted, repeated, or reordered without departing from the scope of this disclosure. Further, each step may contain one or more sub-steps. While the foregoing drawings and description set forth functional aspects of the disclosed systems, no particular implementation or arrangement of software and/or hardware should be inferred from these descriptions unless explicitly stated or otherwise clear from the context. All such arrangements of software and/or hardware are intended to fall within the scope of this disclosure.
  • FIG. 1 The block diagrams and flowchart illustrations depict methods, apparatus, systems, and computer program products.
  • the elements and combinations of elements in the block diagrams and flow diagrams show functions, steps, or groups of steps of the methods, apparatus, systems, computer program products and/or computer-implemented methods. Any and all such functions— generally referred to herein as a "circuit,” “module,” or “system”— may be implemented by computer program instructions, by special-purpose hardware-based computer systems, by combinations of special purpose hardware and computer instructions, by combinations of general purpose hardware and computer instructions, and so on.
  • a programmable apparatus which executes any of the above mentioned computer program products or computer-implemented methods may include one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors, programmable devices, programmable gate arrays, programmable array logic, memory devices, application specific integrated circuits, or the like. Each may be suitably employed or configured to process computer program instructions, execute computer logic, store computer data, and so on.
  • a computer may include a computer program product from a computer-readable storage medium and that this medium may be internal or external, removable and replaceable, or fixed.
  • a computer may include a Basic Input/Output System (BIOS), firmware, an operating system, a database, or the like that may include, interface with, or support the software and hardware described herein.
  • BIOS Basic Input/Output System
  • Embodiments of the present invention are neither limited to conventional computer applications nor the programmable apparatus that run them.
  • the embodiments of the presently claimed invention could include an optical computer, quantum computer, analog computer, mobile device, tablet, wearable computer, or the like.
  • a computer program may be loaded onto a computer to produce a particular machine that may perform any and all of the depicted functions. This particular machine provides a means for carrying out any and all of the depicted functions.
  • Any combination of one or more computer readable media may be utilized including but not limited to: a computer readable medium for storage; an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor computer readable storage medium or any suitable combination of the foregoing; a portable computer diskette; a hard disk; a random access memory (RAM); a read-only memory (ROM), an erasable
  • a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer program instructions may include computer executable code.
  • languages for expressing computer program instructions may include without limitation C, C++, Java, JavaScriptTM, ActionScriptTM, assembly language, Lisp, Perl, Tel, Python, Ruby, hardware description languages, database programming languages, functional programming languages, imperative programming languages, and so on.
  • computer program instructions may be stored, compiled, or interpreted to run on a computer, a programmable data processing apparatus, a heterogeneous combination of processors or processor architectures, and so on.
  • embodiments of the present invention may take the form of web-based computer software, which includes client/server software, software-as-a-service, peer-to-peer software, or the like.
  • a computer may enable execution of computer program instructions including multiple programs or threads.
  • the multiple programs or threads may be processed approximately simultaneously to enhance utilization of the processor and to facilitate substantially simultaneous functions.
  • any and all methods, program codes, program instructions, and the like described herein may be implemented in one or more threads which may in turn spawn other threads, which may themselves have priorities associated with them.
  • a computer may process these threads based on priority or other order.
  • the verbs "execute” and “process” may be used interchangeably to indicate execute, process, interpret, compile, assemble, link, load, or a combination of the foregoing.
  • embodiments that execute or process computer program instructions, computer-executable code, or the like may act upon the instructions or code in any and all of the ways described.
  • the method steps shown are intended to include any suitable method of causing one or more parties or entities to perform the steps.
  • the parties performing a step, or portion of a step need not be located within a particular geographic location or country boundary. For instance, if an entity located within the United States causes a method step, or portion thereof, to be performed outside of the United States then the method is considered to be performed in the United States by virtue of the causal entity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A user may react to an interaction by exhibiting a mental state. A camera or other monitoring device can be used to capture one or more manifestations of the user's mental state, such as facial expressions, electrodermal activity, or movements. However, there may be conditions where the monitoring device is not able to detect the manifestation continually. Thus, various capabilities and implementations are described where the mental state data is collected on an intermittent basis, analyzed, and an output rendered based on the analysis of the mental state data.

Description

SPORADIC COLLECTION OF MOBILE AFFECT DATA
RELATED APPLICATIONS
[0001] This application claims priority to U.S. provisional patent applications "Sporadic Collection of Affect Data" Ser. No. 61/719,383, filed October 27, 2012,
"Optimizing Media Based on Mental State Analysis" Ser. No. 61/747,651, filed December 31, 2012, "Collection of Affect Data from Multiple Mobile Devices" Ser. No. 61/747,810, filed December 31, 2012, "Mental State Analysis Using Heart Rate Collection Based on Video Imagery" Ser. No. 61/793,761, filed March 15, 2013, "Mental State Data Tagging for Data Collected from Multiple Sources" Ser. No. 61/790,461, filed March 15, 2013, "Mental State Analysis Using Blink Rate" Ser. No. 61/789,038, filed March 15, 2013, "Mental State Well Being Monitoring" Ser. No. 61/798,731, filed March 15, 2013, and "Personal Emotional Profile Generation" Ser. No. 61/844,478, filed July 10, 2013. The foregoing applications are hereby incorporated by reference in their entirety in jurisdictions where allowable.
FIELD OF ART
[0002] This application relates generally to analysis of mental states and more particularly to analysis of non-continuous collection of mental states.
BACKGROUND
[0003] People increasingly spend a tremendous amount of time interacting with computers; this interaction includes a copious amount of media consumption using these computers. This interaction may be for many different reasons such as education, entertainment, social media interaction, document creation, and gaming, to name a few.
[0004] In some cases the human-computer interaction can take the form of a person performing a task using a software-based tool running on a computer. Examples include filling out a tax form, creating a document, editing a video, and/or doing one or more of the numerous other activities performable by a modern computer. The person can find the execution of certain activities interesting or even exciting, and may be surprised at how easy it is to perform the activity. The person may become excited, happy, or content as he or she performs such an interesting or exciting activity. On the other hand, the person can find some activities difficult to perform, and may become frustrated or even angry with the computer or software tool. In some cases, users are surveyed in an attempt to determine where a computer or computer program may be functioning well, and where it may need improvement. However, such survey results are often unreliable because the surveys are often competed well after the activity was performed. In addition, survey participation rates may be low, and people may not provide accurate and honest answers to the survey.
[0005] In other cases of human-computer interaction, the person is using a software tool to accomplish a task, but instead may be consuming computer-accessed content or media such as news, pictures, music, or video. Currently, while or after consuming computer-driven content, viewers may tediously self-rate the media to communicate personal preferences. In some cases, viewers may enter a specific number of stars corresponding to a level of like or dislike, while in other cases, users may be asked to answer a list of questions. While this system of evaluation is a helpful metric to evaluate media and other products or services, such evaluation may be tedious and challenging. Thus, in many cases, this type of subjective evaluation is neither a reliable nor practical way to evaluate personal response to media. Recommendations based on such a system of star rating or other self-reporting are imprecise, subjective, unreliable, and are further limited by sample size: often, only a small number of viewers actually rate the media they have consumed.
SUMMARY
[0006] A user interacts with a computer and this interaction may entail one of a variety of tasks and/or activities. The user may react to the interaction with the reaction being a mental state. Such a mental state can express itself in one or more of many ways, such as facial expressions, electrodermal activity, movements, or other externally detectable manifestations. A camera or other monitoring device can be used to capture one or more of the externally detectable manifestations of the user's mental state, but there may be conditions where the monitoring device may not be able to detect the manifestation continually. Thus, various methods, computer program products, apparatus, and systems are described wherein mental state data is collected on an intermittent basis, analyzed, and an output rendered based on the analysis of the mental state data. A computer- implemented method for mental state analysis is disclosed comprising: collecting mental state data of an individual on an intermittent basis; obtaining analysis of the mental state data on the individual; and rendering an output based on the analysis of the mental state data.
[0007] The method may further comprise interpolating mental state data in between the collecting which is intermittent. The method may further comprise interpolating mental state analysis in between the collecting which is intermittent. The method may further comprise collecting other mental state data from the individual on a continuous basis. The other mental state data may include electrodermal activity data. The method may further comprise imputing additional mental state data where the mental state data is missing. The collecting may be accomplished with a mobile device. The mobile device may include a forward facing camera. The mobile device may include one of a cell phone, a tablet computer, a wrist-based device, or a laptop computer. The method may further comprise interpolating mental state analysis in between the collecting which is intermittent; collecting other mental state data, including electrodermal activity data, from the individual on a continuous basis; imputing additional mental state data where the mental state data is missing; filtering out faces of one or more other people to determine when an individual is looking in a direction of a camera; determining contextual information based on
accelerometer data; and sending a request to a web service for the analysis where the analysis of the mental state data is received from a web service. The collecting may be accomplished for one type of mental state data. The one type of mental state data may include facial data.
[0008] The facial data may be collected with a webcam. The facial data may be collected intermittently when the individual is looking in a direction of a camera. The method may further comprise performing face detection to determine when the individual is looking in the direction of the camera. The method may further comprise filtering out faces of one or more other people to determine when the individual is looking in the direction of the camera. The method may further comprise determining contextual information. The contextual information may be based on one or more of skin temperature or accelerometer data. The contextual information may be based on one or more of a photograph, an email, a text message, a phone log, or GPS information. The intermittent basis may be occasional. The intermittent basis may be periodic. The method may further comprise sending a request to a web service for the analysis. The analysis of the mental state data may be received from a web service. The method may further comprise sending one or more of the mental state data, a subset of the mental state data, or an initial analysis of the mental state data to the web service. The sending may be accomplished on a periodic basis. The method may further comprise generating the analysis by the web service through cloud computation. The analysis of the mental state data may be performed locally. The method may further comprise inferring mental states based on the mental state data which was collected. The inferring of mental states may include one or more of a group including enjoyment, happiness, anger, sadness, stress, frustration, confusion, disappointment, hesitation, cognitive overload, focusing, being engaged, attending, boredom, exploration, confidence, trust, delight, or satisfaction. The mental state data may include one or more of smiles, laughter, smirks, or grimaces. The mental state data may include one or more of head position, up/down head motion, side-to-side head motion, tilting head motion, body leaning motion, or gaze direction. The method may further comprise posting the analysis to a social network. The mental state data may include one or more of a group including physiological data, facial data, or accelerometer data. The physiological data may include one or more of
electrodermal activity, heart rate, heart rate variability, skin temperature, or respiration. The individual may be exposed to a media presentation. The media presentation may include one or more of a group consisting of a movie, a television show, a web series, a webisode, a video, a video clip, an electronic game, an e-book, and an e-magazine. The method may further comprise analyzing the mental state data to produce mental state information.
[0009] In embodiments, a computer-implemented method for mental state analysis comprises: receiving analysis of mental state data collected from an individual on an intermittent basis; and rendering an output based on the analysis that was received. In embodiments, a computer implemented method for mental state analysis comprises: receiving mental state data collected from an individual on an intermittent basis; analyzing the mental state data from the individual; and sending an output related to analyzing that was performed. In some embodiments, a computer program product embodied in a computer readable medium for mental state analysis comprises: code for collecting mental state data of an individual on an intermittent basis; code for obtaining analysis of the mental state data on the individual; and code for rendering an output based on the analysis of the mental state data. In embodiments, a system for mental state analysis may comprise: a memory for storing instructions; one or more processors attached to the memory wherein the one or more processors are configured to: collect mental state data of an individual on an intermittent basis; obtain analysis of the mental state data on the individual; and render an output based on the analysis of the mental state data.
[0010] Various features, aspects, and advantages of various embodiments will become more apparent from the following further description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] The following detailed description of certain embodiments may be understood by reference to the following figures wherein: [0012] Fij
[0013] Fij
[0014] Fij
[0015] Fij
[0016] Fij
collection from multiple devices.
[0017] Fig. 6 is a system diagram for mental state analysis.
DETAILED DESCRIPTION
[0018] As a user interacts with a computer, the user's mental state can provide valuable insight into the nature of the human-computer interaction. The mental state of the user can include such emotions as enjoyment, happiness, anger, sadness, stress, frustration, confusion, disappointment, hesitation, cognitive overload, fear, exhaustion, focus, engagement, attention, boredom, exploration, confidence, trust, delight, satisfaction, excitement, happiness, contentment, or one of many other human emotions. Understanding a user's mental state as he or she interacts with the computer may be valuable for a variety of reasons, such as determining which aspects of a computer program may be working well and which aspects need improvement, determining aspects of a computer game that may be too difficult or two easy for some users, measuring effectiveness of advertisements, determining which parts of a video most please a specific user, or determining a user's preferences in order to better suggest what other media, games, or applications the specific user may find appealing, just to name a few.
[0019] While consuming media, the user may exhibit physical manifestations of his or her mental state, such as facial expressions, physiological reactions, and movement. Sensors coupled to a computer— in some embodiments, the same computer the user is interacting with, in other embodiments, one or more other computers— may be able to detect, capture, and/or measure one or more external manifestations of the user's mental state. For example, a still camera may be able to capture images of the user's face, a video camera may be able to capture images of the user's movements, a heart rate monitor may be able to measure the user's heart rate, a skin resistance sensor may be able to detect changes in the user's galvanic skin response, and an accelerometer may be able to measure such movements as gestures, foot tapping, or head tilts, to name a few. [0020] Depending on the user and/or the sensor, however, it may not be possible to continuously capture all of the manifestations of mental states under observation. For example, if the user looks away from the camera, it may not be possible to capture an image of their face until they look back at the camera. As a further example, a skin resistance sensor embedded in an armrest of the user's chair can only measure a galvanic skin response if the user's arm is resting on the armrest. In other cases, it may be possible to continuously capture the data from a sensor, but it may not be practical or desirable to do so due to the volume of data capture, or due to the relative slowness of measurable change that may be expected from the manifestation of a particular mental state.
[0021] To accommodate such circumstances, data from at least some of the sensors which measure manifestations of mental state (which may also be referred to as mental state data), such as data from a camera, biosensor, or accelerometer, may be captured, collected, and/or stored, on an intermittent basis. The intermittent basis may be sporadic, opportunistic, periodic, random, or any other non-continuous basis. Data from the sensors may be captured from the sensor based on the ability of the sensor to capture valid data, based on the usefulness of the data captured from the sensor, based on a schedule, or based on indications from other sensors, depending on the embodiment. For example, a skin resistance meter may only provide collectable data if it detects that the user's skin is in contact with the meter. Similarly, an image from a camera may be saved for further analysis perhaps only if some form of pre-processing detects that the user's face is visible in the image, or a video of a user's body (used for movement analysis) may be taken only when triggered by a change in heart rate detected by a heart rate monitor. A wide variety of techniques may be used to intermittently collect, capture, and/or store sensor data related to a mental state of an individual. In one example, when a pattern of motion predicts a high probability of a physiological condition occurring, other sensors may be activated to provide greater contextual information and increase predictive abilities.
[0022] Once the intermittent sensor data has been collected, an analysis of the mental state data collected from the sensors is obtained. The analysis may take place on the computer with which the user is interacting, the computer(s) that captured the sensor data, and/or from one or more other computers that may be local or remote to the user. The analysis may provide mental states of the user over time based on the sensor data. In some cases the mental state of the user may be estimated for the periods where data from one or more sensors was not collected. [0023] After the analysis of the mental state data has been obtained, an output is rendered based on the analysis of the mental state data. The rendered output may include text, icons, pictures, graphs, binary data, or any other form or output that may be interpreted by a person or another computer, depending on the embodiment. In at least one embodiment, the rendered output may include a graph showing the prevalence of a particular mental state over time. In some embodiments, the rendered output may include an icon that changes based on the user's mental state. In some embodiments, the rendered output may include a file containing numerical data based on the analysis obtained. In embodiments, the sporadic collection of mental state data can be used in evaluating well-being of a person or in the generation of a personal emotional profile.
[0024] Fig. 1 is a flow diagram for sporadic collection. The flow 100 comprises a computer- implemented method for mental state analysis. The flow 100 includes collecting the mental state data 1 10 of an individual on an intermittent basis 112. Any non-continuous collection of mental state data may be considered collection on an intermittent basis 1 12, but in some embodiments the intermittent basis 1 12 may be opportunistic. That is, the intermittent basis 1 12 may either be sporadic or occasional; the intermittent basis 1 12 may mean the capture of images at random intervals or at times that the individual takes certain actions or happens to look at the camera. In other embodiments, the intermittent basis 1 12 can be periodic, and may occur on a regular schedule, such as once every 30 seconds. In some embodiments, the intermittent basis is a combination of occasional and periodic collection; for example, collecting mental state data once every minute plus additional collection each time the user clicks the mouse button or hits the 'Enter' key. The collecting may be accomplished for one type of mental state data and this mental state data may include facial data. In addition to the mental state data collected on an intermittent basis, the flow 100 may further comprise collecting other mental state data 120 from the individual on a continuous basis.
[0025] Many different types of mental state data may be collected. For example, the mental state data may include one or more of a group including physiological data, facial data, or accelerometer data. The collecting of the mental state data may be accomplished using a variety of different sensors, depending on the type of mental state data being collected, but in at least one embodiment, a camera coupled to the computer may be used to capture facial expression that may function as mental state data. Facial expressions that may function as mental state data may include one or more of smiles, laughter, smirks, or grimaces. The mental state data may also include one or more of head position, up/down head motion, side-to-side head motion, tilting head motion, body leaning motion, or gaze direction, which may be captured using a camera, an accelerometer, eye-tracking glasses, or other types of sensors. In some embodiments, the collecting of mental state data is accomplished with a mobile device in some embodiments. The flow 100 may include performing face detection 114 to determine when the individual is looking in the direction of a camera and may also include filtering out faces 116 of one or more other people to determine when the individual is looking in the direction of a camera.
[0026] In addition to collecting mental state data 110, the flow 100 includes data processing and analysis that may occur locally or remotely 130 from the individual. The flow 100 may further comprise analyzing 132 the mental state data to produce mental state information. In some embodiments, the analysis 132 of the mental state data may be performed locally, such as on the computer that is coupled to the sensors collecting the mental state data or on the computer with which the individual is interacting. The flow 100 may further comprise sending 134 one or more of the mental state data, a subset of the mental state data, or an initial analysis of the mental state data to a web service for further analysis, storage, or other purposes. The sending 134 may be accomplished on a periodic or an occasional basis, and may be sent using a different time basis than the one used in the data collection. So, for example, the mental state data may be collected on an opportunistic or random intermittent basis, but the mental state data may be sent on either a periodic or occasional basis. The flow 100 may further comprise sending a request 136 to a web service for the analysis or other activities related to the mental state data sent, and may include generating the analysis 138 by the web service through cloud computation. The flow 100 may include obtaining analysis 150 of the mental state data on the individual. This obtaining analysis 150 may include diverse methods, including, but not limited to, analyzing the mental state data locally, having the mental state data analyzed remotely, receiving an analysis of the mental state data directly from a smart sensor, or generating the analysis on a co-processor or dedicated subsystem.
[0027] The flow 100 may further comprise interpolating 140 mental state data in between the intermittent collecting. Interpolating 140 may be done using any suitable algorithm including piecewise constant interpolation, linear interpolation, polynomial interpolation, bicubic interpolation, a Gaussian process, one of the numerous and various curve fitting algorithms known in the art, or any other algorithm. In some embodiments, the interpolating 140 is of mental state analysis, in between the collecting which is intermittent. The flow 100 may include imputing 142 additional mental state data where the mental state data is missing. When the mental state data is collected 110 on an intermittent basis, there will be times when the mental state data is not collected and thus is missing. This missing mental state data may be imputed, or predicted, based on other data. The imputation may be based on other data collected from the individual on whom the data is missing. In other cases, the imputation may be based on mental state data collected from other individuals around the individual on whom the data is missing. These other individuals may be geographically nearby or may be part of the individual's social network. Thus, the missing mental state data may be imputed based on mental state data for other people in the individual's social network.
[0028] The flow 100 may further comprise inferring mental states 144 based on the mental state data which was collected. Mental states that may be inferred may include one or more of a group including enjoyment, happiness, anger, sadness, stress, frustration, confusion, disappointment, hesitation, cognitive overload, focusing, being engaged, attending, boredom, exploration, confidence, trust, delight, and satisfaction. The flow 100 may further comprise determining contextual information 146 which may be based on one or more of skin temperature or accelerometer data, or other types of data such as the application being used on the computer, the time of day, or any other type of contextual information.
[0029] The flow 100 may include output usage 150. An output may be rendered 152 based on the mental state data and/or the mental state. Depending on the embodiment, the output may include text, icons, pictures, graphs, binary data, or any other form or output that may be interpreted by a person or another computer. The rendered output may be used in various ways, including presenting the rendered output to the individual, storing the rendered output, sending the rendered output to a central collection point, or printing the rendered output. The flow 100 may further comprise posting the analysis 154 to a social network page. The posting to the social network page may be the rendered output or may be at least a portion of the mental state data or information regarding the mental state. Various steps in the flow 100 may be changed in order, repeated, omitted, or the like without departing from the disclosed concepts. Various embodiments of the flow 100 may be included in a computer program product embodied in a computer readable medium that includes code executable by one or more processors. [0030] Fig. 2 is a timeline 210 with information tracks 200 relating to mental states. A first track 260 shows events that may be related to the individual's use of a computer. A first event 220 may indicate an action that the individual took (such as launching an application); an action initiated by the computer (such as the presentation of a dialog box); an external event (such as a new global positioning system (GPS) coordinate); or receiving an e-mail, a phone call, a text message, or any other type of event. In some embodiments, a photograph may be used to document an event or simply save contextual information in the first track 260. A second event 222 may indicate another action or event. Such events may be used to provide contextual information and may also include such things as copies of emails, text messages, phone logs, file names, or other information that may be useful in understanding the context of a user's actions. Thus, in embodiments, contextual information is based on one or more of a photograph, an email, a text message, a phone log, or GPS information.
[0031] A second track 262 may include continuously collected mental state data such as electrodermal activity data 230. A third track 264 may include facial data 240, which may be a type of mental state data that is collected on an intermittent basis by a first camera, such as the room camera (although in some embodiments the facial data may be collected continuously). The facial data may be collected intermittently when the individual is looking toward a camera. The facial data 240 may include one or more still photographs, videos, or abstracted facial expressions which may be collected when the user looks in the direction of the camera. A fourth track 266 may include facial data 242 that is collected on an intermittent or continuous basis by a second camera, such as the mobile phone camera. The facial data 242 may include one or more still photographs, videos, or abstracted facial expressions which may be collected when the user looks in the direction of that camera. A fifth track 268 may include facial data that is collected from a third camera, such as the webcam. In the example shown, the fifth track 268 includes first facial data 244, second facial data 246, and third facial data 248 which may be any type of facial data including data that may be used for determining mental state information. Any number of samples of facial data may be collected in any track. The mental state data from the various tracks may be collected simultaneously, collected on one track exclusive of other tracks, collected where mental state data overlaps between the tracks, and so on. When mental state data from multiple tracks overlaps, one track's data may take precedence or the data from the multiple tracks may be combined. [0032] Additional tracks, through the n"1 track 270, of mental state data of any type may be collected. The additional tracks 270 may be collected on a continuous or on an intermittent basis. The intermittent basis may be either occasional or periodic. Analysis may further comprise interpolating mental state data when the mental state data collected is intermittent, and/or imputing additional mental state data where the mental state data is missing. One or more interpolated tracks 272 may be included and may be associated with mental state data that is collected on an intermittent basis, such as the facial data of the fifth track 268. Interpolated data 250 and interpolated data 252 may contain interpolations of the facial data of the fifth track 268 for the time periods where no facial data was collected in that track. Other embodiments interpolate data for periods where no track includes facial data. In other embodiments, analysis includes interpolating mental state analysis when the mental state data collected is intermittent.
[0033] The mental state data, such as the continuous mental state data 230 and/or any of the collected facial data 240, 242, 244, 246, and 248 may be tagged. The tags may include metadata related to the mental state data, including, but not limited to, the device that collected the mental state data; the individual from whom the mental state data was collected; the task being performed by the individual; the media being viewed by the individual; and the location, environmental conditions, time, date, or any other contextual information. The tags may be used to locate pertinent mental state data; for example, the tags may be used to retrieve the mental state data from a database. The tags may be included with the mental state data that is sent over the internet to cloud or web-based storage and/or services so that the tags may be used locally on the machine where the mental state data was collected and/or remotely on a remote server or a cloud/web service.
[0034] Fig. 3 is a diagram for facial analysis 300. An individual 310 may view 370 an electronic display 320 while mental state data on the individual 310 may be collected and analyzed. The electronic display 320 may show an output of a computer application that the individual 310 is using, or the electronic display 320 may show a media presentation in a manner which exposes the individual 310 to the media presentation. The media presentation may include one of a group consisting of a movie, a television show, a web series, a webisode, a video, a video clip, an electronic game, an e-book, or an e-magazine. The electronic display 320 may be a part of, or may be driven from, the device collecting the mental state data. Or, depending on the embodiment, the electronic display may only be loosely coupled to, or may be unrelated to, the device collecting the mental state data. The collecting, in some embodiments, is accomplished with a mobile device 360, such as a cell phone, a tablet computer, or a laptop computer, and the mobile device may include a forward facing camera 362 when the user views 372 the mobile device 360. The facial data may be collected with a camera such as the forward facing camera 362 of the mobile device 360 and/or by a webcam 330. The facial data may be collected intermittently when the individual 310 is looking in the direction of a camera 362/330. The camera may also capture images of the setting. These images may be used in determining contextual information.
[0035] The webcam 330 may be used to collect one or more of facial data and physiological data. The facial data may include, in various embodiments, information on facial expressions, action units, head gestures, smiles, smirks, brow furrows, squints, lowered eyebrows, raised eyebrows, or attention. The webcam 330 may capture video, audio, and/or still images of the individual 310. A webcam, as the term is used herein, may include a video camera, still camera, thermal imager, CCD device, phone camera, three-dimensional camera, a depth camera, multiple webcams used to show different views of a person, or any other type of image capture apparatus that may allow data captured to be used in an electronic system. The images of the person 310 from the webcam 330 may be captured by a video capture unit 340. In some embodiments, video may be captured, while in others, one or more still images may be captured. The captured video or still images may be used in facial analysis 350 or for determining gestures, actions, or other movements.
[0036] Analysis of facial expressions, gestures, and mental states may be accomplished using the captured images of the person 310. The facial expressions may be used to identify smiles, frowns, and other facial indicators of mental states. The gestures, including head gestures, may indicate interest or curiosity. For example, a head gesture of moving toward the electronic display 320 may indicate increased interest in the media or desire for clarification. Based on the captured images, analysis of physiological data may be performed. Respiration, heart rate, heart rate variability, perspiration, temperature, and other physiological indicators of mental state may be determined by analyzing the images.
[0037] Fig. 4 is a diagram representing physiological analysis. A system 400 may analyze data collected from a person 410 as he or she interacts with a computer. The person 410 may have a biosensor 412 attached to him or her for the purpose of collecting mental state data. The biosensor 412 may be placed on the wrist, palm, hand, head, or other part of the body. In some embodiments, multiple biosensors may be placed on the body in multiple locations. The biosensor 412 may include detectors for physiological data such as electrodermal activity, skin temperature, accelerometer readings, and the like. Other detectors for physiological data may be included as well, such as heart rate, blood pressure, EKG, EEG, further brain waves, and other physiological detectors. The biosensor 412 may transmit information collected to a receiver 420 using wireless technology such as Wi-Fi, Bluetooth, 802.1 1, cellular, or other bands. In other embodiments, the biosensor 412 may communicate with the receiver 420 by other methods such as a wired interface or an optical interface. The receiver may provide the data to one or more components in the system 400. In some embodiments, the biosensor 412 may record multiple types of physiological information in memory for later download and analysis. In some embodiments, the download of recorded physiological data may be accomplished through a USB port or other wired or wireless connection.
[0038] Mental states may be inferred based on physiological data, such as physiological data from the sensor 412. Mental states may also be inferred based on facial expressions and head gestures observed by a webcam, or a combination of data from the webcam and data from the sensor 412. The mental states may be analyzed based on arousal and valence. Arousal can range from being highly activated— such as when someone is agitated— to being entirely passive— such as when someone is bored. Valence can range from being very positive— such as when someone is happy— to being very negative— such as when someone is angry. Physiological data may include one or more of electrodermal activity (EDA), heart rate, heart rate variability, skin temperature, respiration, accelerometer readings, and other types of analysis of a human being. It will be understood that both here and elsewhere in this document, physiological information can be obtained either by biosensor 412 or by facial observation via the webcam 330. Facial data may include facial actions and head gestures used to infer mental states. Further, the data may include information on hand gestures or body language and body movements such as visible fidgets. In some embodiments, these movements may be captured by cameras, while in other embodiments, these movements may be captured by sensor readings. Facial data may include the tilting the head to the side, leaning forward, smiling, frowning, and many other gestures or expressions.
[0039] Electrodermal activity may be collected in some embodiments. It may either be collected continuously, every second, four times per second, eight times per second, 32 times per second, or on some other periodic basis. Or, in some embodiments, electrodermal activity may be collected on an intermittent basis. The electrodermal activity may be recorded and stored onto a disk, a tape, flash memory, a computer system, or streamed to a server. The electrodermal activity may be analyzed 430 to indicate arousal, excitement, boredom, or other mental states based on observed changes in skin conductance. Skin temperature may be collected and/or recorded on a periodic basis. In turn, the skin temperature may be analyzed 432. Changes in skin temperature may indicate arousal, excitement, boredom, or other mental states. Heart rate may be collected and recorded, and may also be analyzed 434. A high heart rate may indicate excitement, arousal, or other mental states. Accelerometer data may be collected and used to track one, two, or three dimensions of motion. The accelerometer data may be recorded. The accelerometer data may be used to create an actigraph showing an individual's activity level over time. The accelerometer data may be analyzed 436 and may indicate a sleep pattern, a state of high activity, a state of lethargy, or other states. The various data collected by the biosensor 412 may be used along with the facial data captured by the webcam in the analysis of mental state. Contextual information may be based on one or more of skin temperature and/or accelerometer data.
[0040] Fig. 5 is a diagram 500 showing mental state data, including facial data, collection from multiple devices. Mental state data can be collected sporadically from a group of different devices. A user 510 may be performing a task, viewing a media presentation on an electronic display 512, or doing something else where it may be useful to determine the user's mental state. The electronic display 512 may be on a laptop computer 520 as shown, a tablet computer 550, a cell phone 540, a desktop computer monitor, a television, or any other type of electronic device. The mental state data may be collected on a mobile device such as a cell phone 540, a tablet computer 550, or a laptop computer 520. Thus, the multiple sources may include at least one mobile device, such as a phone 540, a tablet 550, or a wearable device such as glasses 560. A mobile device may include a forward facing camera and/or rear facing camera that may be used to collect mental state data. The at least two sources of facial data may include one or more of a webcam 522, a phone camera 542, a tablet camera 552, a wearable camera 562, and a room camera 530. A wearable camera may be a wrist camera, a wristwatch camera, or other wearable camera device.
[0041] As the user 510 is monitored, the user 510 may move due to the nature of the task, boredom, distractions, or for another reason. As the user moves, the user's face may be visible from one or more of the multiple sources. Thus if the user 510 is looking in a first direction, the line of sight 524 from the webcam 522 may be able to observe the individual's face, but if the user is looking in a second direction, the line of sight 534 from the room camera 530 may be able to observe the individual's face. Further, if the user is looking in a third direction, the line of sight 544 from the phone camera 542 may be able to observe the individual's face. If the user is looking in a fourth direction, the line of sight 554 from the tablet camera 552 may be able to observe the individual's face. If the user is looking in a fifth direction, the line of sight 564 from the wearable camera 562 may be able to observe the individual's face. The wearable device such as the glasses 560 may be worn by another user or an observer. In other embodiments, the wearable device is a device other than glasses, such as an earpiece with a camera, a helmet or hat with a camera, a clip-on camera attached to clothing, or any other type of wearable device with a camera or other sensor for collecting mental state data. The individual 510 may also wear a wearable device including a camera that may be used for gathering contextual information and/or collecting mental state data on other users. Because the individual 510 may move their head, the facial data may be collected intermittently when the individual is looking in a direction of a camera. In some cases, multiple people may be included in the view from one or more cameras, and some embodiments include filtering out faces of one or more other people to determine whether the individual 510 is looking toward a camera. All or some of the mental state data can be sporadically available from these various devices.
[0042] Fig. 6 is a system diagram for mental state analysis. A system 600 may include a mental state data collection machine 620 and an analysis server 650. The mental state data collection machine 620 may be configured to collect the mental state data of an individual on an intermittent basis. The mental state data collection machine 620 may include a display 622, one or more processors 624, a memory 626 designed to store mental state data, instructions, and the like, and a webcam 628. The display 622 may be any electronic display, including but not limited to, a computer display, a laptop screen, a net- book screen, a tablet computer screen, a cell phone display, a mobile device display, a remote with a display, a television, a projector, or the like. The webcam 628 may comprise a camera on a computer (such as a laptop, a net-book, a tablet, or the like), a video camera, a still camera, a cell phone camera, a mobile device camera (including, but not limited to, a forward facing camera), a thermal imager, a CCD device, a three-dimensional camera, a depth camera, and multiple webcams used to capture different views of viewers or any other type of image capture apparatus that may allow image data captured to be used by an electronic system. The mental state data collection machine 620 may be configured to transmit mental state information 630 to a server 650 via the Internet 610 or other network.
[0043] The analysis server 650 may be configured to obtain analysis of the mental state data on the individual and render an output based on the analysis of the mental state data. The analysis server 650 may obtain mental state information 640 from the internet and may be configured as a web service. In some embodiments the analysis server 650 may send the analysis of the mental state data to another machine, such as the mental state data collection machine, so that the analysis of the mental state data may be received from a web service. The analysis server 650 may include a display 622, one or more processors 654, and a memory 656 designed to store system information, instructions, and the like. The display 652 may be any electronic display, including but not limited to, a computer display, a laptop screen, a net-book screen, a tablet computer screen, a cell phone display, a mobile device display, a remote with a display, a television, a projector, or the like. The one or more processors 654, when executing the instructions which are stored, may be configured to analyze mental state information 640 that may be received from the mental state data collection machine 620. In some embodiments, the mental state data collection machine 620 and the analysis server 650 functions may be combined into a single computer. In some embodiments, the rendering of mental state analysis can occur on a different computer than the collection machine 620 or the analysis server 650. This computer may be a rendering machine 670 which receives data or information 630, mental state information 640 from the analysis machine 650, or both and may be considered mental state rendering information 660. In embodiments, the rendering machine 670 includes one or more processors 674 coupled to a memory 676, and a display 672. The rendering may include generation and display of emoticons.
[0044] The system 600 may include computer program product comprising code for collecting mental state data of an individual on an intermittent basis, code for obtaining analysis of the mental state data on the individual, and code for rendering an output based on the analysis of the mental state data. A computer- implemented method for mental state analysis, from a server perspective, may comprise receiving mental state data collected from an individual on an intermittent basis, analyzing the mental state data from the individual, and sending an output related to analyzing that was performed.
[0045] Each of the above methods may be executed on one or more processors on one or more computer systems. Embodiments may include various forms of distributed computing, client/server computing, and cloud based computing. Further, it will be understood that the depicted steps or boxes contained in this disclosure's flow charts are solely illustrative and explanatory. The steps may be modified, omitted, repeated, or reordered without departing from the scope of this disclosure. Further, each step may contain one or more sub-steps. While the foregoing drawings and description set forth functional aspects of the disclosed systems, no particular implementation or arrangement of software and/or hardware should be inferred from these descriptions unless explicitly stated or otherwise clear from the context. All such arrangements of software and/or hardware are intended to fall within the scope of this disclosure.
[0046] The block diagrams and flowchart illustrations depict methods, apparatus, systems, and computer program products. The elements and combinations of elements in the block diagrams and flow diagrams, show functions, steps, or groups of steps of the methods, apparatus, systems, computer program products and/or computer-implemented methods. Any and all such functions— generally referred to herein as a "circuit," "module," or "system"— may be implemented by computer program instructions, by special-purpose hardware-based computer systems, by combinations of special purpose hardware and computer instructions, by combinations of general purpose hardware and computer instructions, and so on.
[0047] A programmable apparatus which executes any of the above mentioned computer program products or computer-implemented methods may include one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors, programmable devices, programmable gate arrays, programmable array logic, memory devices, application specific integrated circuits, or the like. Each may be suitably employed or configured to process computer program instructions, execute computer logic, store computer data, and so on.
[0048] It will be understood that a computer may include a computer program product from a computer-readable storage medium and that this medium may be internal or external, removable and replaceable, or fixed. In addition, a computer may include a Basic Input/Output System (BIOS), firmware, an operating system, a database, or the like that may include, interface with, or support the software and hardware described herein.
[0049] Embodiments of the present invention are neither limited to conventional computer applications nor the programmable apparatus that run them. To illustrate: the embodiments of the presently claimed invention could include an optical computer, quantum computer, analog computer, mobile device, tablet, wearable computer, or the like. A computer program may be loaded onto a computer to produce a particular machine that may perform any and all of the depicted functions. This particular machine provides a means for carrying out any and all of the depicted functions.
[0050] Any combination of one or more computer readable media may be utilized including but not limited to: a computer readable medium for storage; an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor computer readable storage medium or any suitable combination of the foregoing; a portable computer diskette; a hard disk; a random access memory (RAM); a read-only memory (ROM), an erasable
programmable read-only memory (EPROM, Flash, MRAM, FeRAM, or phase change memory); an optical fiber; a portable compact disc; an optical storage device; a magnetic storage device; or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
[0051] It will be appreciated that computer program instructions may include computer executable code. A variety of languages for expressing computer program instructions may include without limitation C, C++, Java, JavaScript™, ActionScript™, assembly language, Lisp, Perl, Tel, Python, Ruby, hardware description languages, database programming languages, functional programming languages, imperative programming languages, and so on. In embodiments, computer program instructions may be stored, compiled, or interpreted to run on a computer, a programmable data processing apparatus, a heterogeneous combination of processors or processor architectures, and so on. Without limitation, embodiments of the present invention may take the form of web-based computer software, which includes client/server software, software-as-a-service, peer-to-peer software, or the like.
[0052] In embodiments, a computer may enable execution of computer program instructions including multiple programs or threads. The multiple programs or threads may be processed approximately simultaneously to enhance utilization of the processor and to facilitate substantially simultaneous functions. By way of implementation, any and all methods, program codes, program instructions, and the like described herein may be implemented in one or more threads which may in turn spawn other threads, which may themselves have priorities associated with them. In some embodiments, a computer may process these threads based on priority or other order. [0053] Unless explicitly stated or otherwise clear from the context, the verbs "execute" and "process" may be used interchangeably to indicate execute, process, interpret, compile, assemble, link, load, or a combination of the foregoing. Therefore, embodiments that execute or process computer program instructions, computer-executable code, or the like may act upon the instructions or code in any and all of the ways described. Further, the method steps shown are intended to include any suitable method of causing one or more parties or entities to perform the steps. The parties performing a step, or portion of a step, need not be located within a particular geographic location or country boundary. For instance, if an entity located within the United States causes a method step, or portion thereof, to be performed outside of the United States then the method is considered to be performed in the United States by virtue of the causal entity.
[0054] While the invention has been disclosed in connection with preferred embodiments shown and described in detail, various modifications and improvements thereon will become apparent to those skilled in the art. Accordingly, the forgoing examples should not limit the spirit and scope of the present invention; rather it should be understood in the broadest sense allowable by law.

Claims

CLAIMS CLAIMS What is claimed is:
1. A computer-implemented method for mental state analysis comprising:
collecting mental state data of an individual on an intermittent basis;
obtaining analysis of the mental state data on the individual; and
rendering an output based on the analysis of the mental state data.
2. The method of claim 1 further comprising interpolating mental state data in between the collecting which is intermittent.
3. The method of claim 1 further comprising interpolating mental state analysis in between the collecting which is intermittent.
4. The method of claim 1 further comprising collecting other mental state data from the individual on a continuous basis.
5. The method of claim 4 wherein the other mental state data includes electrodermal activity data.
6. The method of claim 1 further comprising imputing additional mental state data where the mental state data is missing.
7. The method of claim 1 wherein the collecting is accomplished with a mobile device.
8. The method of claim 7 wherein the mobile device includes a forward facing camera.
9. The method of claim 7 wherein the mobile device includes one of a cell phone, a tablet computer, a wrist-based device, or a laptop computer.
10. The method of claim 1 further comprising interpolating mental state analysis in between the collecting which is intermittent; collecting other mental state data, including electrodermal activity data, from the individual on a continuous basis; imputing additional mental state data where the mental state data is missing; filtering out faces of one or more other people to determine when an individual is looking in a direction of a camera;
determining contextual information based on accelerometer data; and sending a request to a web service for the analysis where the analysis of the mental state data is received from a web service.
11. The method of claim 1 wherein the collecting is accomplished for one type of mental state data.
12. The method of claim 1 1 wherein the one type of mental state data includes facial data.
13. The method of claim 12 wherein the facial data is collected with a webcam.
14. The method of claim 12 wherein the facial data is collected intermittently when the individual is looking in a direction of a camera.
15. The method of claim 14 further comprising performing face detection to determine when the individual is looking in the direction of the camera.
16. The method of claim 14 further comprising filtering out faces of one or more other people to determine when the individual is looking in the direction of the camera.
17. The method of claim 1 further comprising determining contextual information.
18. The method of claim 17 wherein the contextual information is based on one or more of skin temperature or accelerometer data.
19. The method of claim 17 wherein the contextual information is based on one or more of a photograph, an email, a text message, a phone log, or GPS information.
20. The method of claim 1 wherein the intermittent basis is occasional.
21. The method of claim 1 wherein the intermittent basis is periodic.
22. The method of claim 1 further comprising sending a request to a web service for the analysis.
23. The method of claim 1 wherein the analysis of the mental state data is received from a web service.
24. The method of claim 23 further comprising sending one or more of the mental state data, a subset of the mental state data, or an initial analysis of the mental state data to the web service.
25. The method of claim 24 wherein the sending is accomplished on a periodic basis.
26. The method of claim 25 further comprising generating the analysis by the web service through cloud computation.
27. The method of claim 1 wherein the analysis of the mental state data is performed locally.
28. The method of claim 1 further comprising inferring mental states based on the mental state data which was collected.
29. The method of claim 28 wherein the inferring of mental states further includes one or more of a group including enjoyment, happiness, anger, sadness, stress, frustration, confusion, disappointment, hesitation, cognitive overload, focusing, being engaged, attending, boredom, exploration, confidence, trust, delight, or satisfaction.
30. The method of claim 1 wherein the mental state data includes one or more of smiles, laughter, smirks, or grimaces.
31. The method of claim 1 wherein the mental state data includes one or more of head position, up/down head motion, side-to-side head motion, tilting head motion, body leaning motion, or gaze direction.
32. The method of claim 1 further comprising posting the analysis to a social network.
33. The method of claim 1 wherein the mental state data includes one or more of a group including physiological data, facial data, or accelerometer data.
34. The method of claim 33 wherein the physiological data includes one or more of electrodermal activity, heart rate, heart rate variability, skin temperature, or respiration.
35. The method of claim 1 wherein the individual is exposed to a media presentation.
36. The method of claim 35 wherein the media presentation includes one or more of a group consisting of a movie, a television show, a web series, a webisode, a video, a video clip, an electronic game, an e-book, and an e-magazine.
37. The method of claim 1 further comprising analyzing the mental state data to produce mental state information.
38. A computer implemented method for mental state analysis comprising:
receiving mental state data collected from an individual on an intermittent basis; analyzing the mental state data from the individual; and
sending an output related to analyzing that was performed.
39. A computer-implemented method for mental state analysis comprising:
receiving analysis of mental state data collected from an individual on an intermittent basis; and
rendering an output based on the analysis that was received.
40. A computer program product embodied in a computer readable medium for mental state analysis, the computer program product comprising: code for collecting mental state data of an individual on an intermittent basis;
code for obtaining analysis of the mental state data on the individual; and
code for rendering an output based on the analysis of the mental state data.
41. The computer program product of claim 40 further comprising code for interpolating mental state data in between the collecting which is intermittent.
42. The computer program product of claim 40 further comprising code for interpolating mental state analysis in between the collecting which is intermittent.
43. The computer program product of claim 40 further comprising code for collecting other mental state data from the individual on a continuous basis.
44. The computer program product of claim 40 further comprising code for imputing additional mental state data where the mental state data is missing.
45. The computer program product of claim 40 wherein the collecting is accomplished for facial data using a camera, as part of the mental state data.
46. The computer program product of claim 45 further comprising code for performing face detection to determine when the individual is looking in a direction of the camera.
47. The computer program product of claim 45 further comprising code for filtering out faces of one or more other people to determine when the individual is looking in the direction of the camera.
48. The computer program product of claim 40 further comprising code for determining contextual information.
49. A system for mental state analysis comprising:
a memory for storing instructions;
one or more processors attached to the memory wherein the one or more processors are configured to: collect mental state data of an individual on an intermittent basis;
obtain analysis of the mental state data on the individual; and render an output based on the analysis of the mental state data.
50. The system of claim 49 wherein the one or more processors are further configured to interpolate mental state data in between the collecting which is intermittent.
51. The system of claim 49 wherein the one or more processors are further configured to interpolate mental state analysis in between the collecting which is intermittent.
52. The system of claim 49 wherein the one or more processors are further configured to collect other mental state data from the individual on a continuous basis.
53. The system of claim 49 wherein the one or more processors are further configured to impute additional mental state data where the mental state data is missing.
54. The system of claim 49 wherein collection is accomplished for facial data, using a camera, where mental state data comprises the facial data.
55. The system of claim 54 wherein the one or more processors are further configured to perform face detection to determine when the individual is looking in a direction of the camera.
56. The system of claim 54 wherein the one or more processors are further configured to filter out faces of one or more other people to determine when the individual is looking in the direction of the camera.
57. The system of claim 49 wherein the one or more processors are further configured to determine contextual information.
PCT/US2013/066991 2012-10-27 2013-10-26 Sporadic collection of mobile affect data Ceased WO2014066871A1 (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US201261719383P 2012-10-27 2012-10-27
US61/719,383 2012-10-27
US201261747651P 2012-12-31 2012-12-31
US201261747810P 2012-12-31 2012-12-31
US61/747,651 2012-12-31
US61/747,810 2012-12-31
US201361789038P 2013-03-15 2013-03-15
US201361793761P 2013-03-15 2013-03-15
US201361798731P 2013-03-15 2013-03-15
US201361790461P 2013-03-15 2013-03-15
US61/793,761 2013-03-15
US61/798,731 2013-03-15
US61/790,461 2013-03-15
US61/789,038 2013-03-15
US201361844478P 2013-07-10 2013-07-10
US61/844,478 2013-07-10

Publications (1)

Publication Number Publication Date
WO2014066871A1 true WO2014066871A1 (en) 2014-05-01

Family

ID=50545375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/066991 Ceased WO2014066871A1 (en) 2012-10-27 2013-10-26 Sporadic collection of mobile affect data

Country Status (1)

Country Link
WO (1) WO2014066871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11568166B1 (en) 2018-07-27 2023-01-31 Verily Life Sciences Llc Suggesting behavioral adjustments based on physiological responses to stimuli on electronic devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050289582A1 (en) * 2004-06-24 2005-12-29 Hitachi, Ltd. System and method for capturing and using biometrics to review a product, service, creative work or thing
KR20070122012A (en) * 2006-06-23 2007-12-28 대전보건대학 산학협력단 Diagnosis system and method through biometric information recognition and analysis
WO2008064431A1 (en) * 2006-12-01 2008-06-05 Latrobe University Method and system for monitoring emotional state changes
US20090024050A1 (en) * 2007-03-30 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational user-health testing
US20110301433A1 (en) * 2010-06-07 2011-12-08 Richard Scott Sadowsky Mental state analysis using web services

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050289582A1 (en) * 2004-06-24 2005-12-29 Hitachi, Ltd. System and method for capturing and using biometrics to review a product, service, creative work or thing
KR20070122012A (en) * 2006-06-23 2007-12-28 대전보건대학 산학협력단 Diagnosis system and method through biometric information recognition and analysis
WO2008064431A1 (en) * 2006-12-01 2008-06-05 Latrobe University Method and system for monitoring emotional state changes
US20090024050A1 (en) * 2007-03-30 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational user-health testing
US20110301433A1 (en) * 2010-06-07 2011-12-08 Richard Scott Sadowsky Mental state analysis using web services

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11568166B1 (en) 2018-07-27 2023-01-31 Verily Life Sciences Llc Suggesting behavioral adjustments based on physiological responses to stimuli on electronic devices
US12299976B1 (en) 2018-07-27 2025-05-13 Verily Life Sciences Llc Suggesting behavioral adjustments based on physiological responses to stimuli on electronic devices

Similar Documents

Publication Publication Date Title
US9204836B2 (en) Sporadic collection of mobile affect data
US9723992B2 (en) Mental state analysis using blink rate
US9646046B2 (en) Mental state data tagging for data collected from multiple sources
US9934425B2 (en) Collection of affect data from multiple mobile devices
US10960173B2 (en) Recommendation based on dominant emotion using user-specific baseline emotion and emotion analysis
US9569986B2 (en) System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US20130245396A1 (en) Mental state analysis using wearable-camera devices
US20170238859A1 (en) Mental state data tagging and mood analysis for data collected from multiple sources
US20120124122A1 (en) Sharing affect across a social network
US20140323817A1 (en) Personal emotional profile generation
US20140200463A1 (en) Mental state well being monitoring
CN102933136A (en) Mental state analysis using web services
US20120083675A1 (en) Measuring affective data for web-enabled applications
US11914784B1 (en) Detecting emotions from micro-expressive free-form movements
US20160081607A1 (en) Sporadic collection with mobile affect data
US20150215412A1 (en) Social network service queuing using salience
US12204958B2 (en) File system manipulation using machine learning
US20130189661A1 (en) Scoring humor reactions to digital media
WO2014145228A1 (en) Mental state well being monitoring
US20130218663A1 (en) Affect based political advertisement analysis
WO2020058942A1 (en) System and method to integrate emotion data into social network platform and share the emotion data over social network platform
US20130052621A1 (en) Mental state analysis of voters
Hopfgartner et al. User interaction templates for the design of lifelogging systems
WO2014106216A1 (en) Collection of affect data from multiple mobile devices
WO2014066871A1 (en) Sporadic collection of mobile affect data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849652

Country of ref document: EP

Kind code of ref document: A1