WO2013018160A1 - Valuation assistance system and valuation assistance program - Google Patents
Valuation assistance system and valuation assistance program Download PDFInfo
- Publication number
- WO2013018160A1 WO2013018160A1 PCT/JP2011/067468 JP2011067468W WO2013018160A1 WO 2013018160 A1 WO2013018160 A1 WO 2013018160A1 JP 2011067468 W JP2011067468 W JP 2011067468W WO 2013018160 A1 WO2013018160 A1 WO 2013018160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evaluation
- value
- data
- statistical
- survey
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
Definitions
- the present invention relates to a technology for trading systems for products and services using a computer, and in particular, when there are a plurality of compatible products and services, provides information related to the difference in values as judgment materials to a user.
- the present invention relates to an effective technology applied to a value evaluation support system and a value evaluation support program.
- the value of a specific evaluation target is calculated and evaluated from parametric data (data assuming a specific distribution such as a normal distribution with respect to the distribution of the population) using a dedicated system or program. That is also done.
- Patent Document 1 describes a system for quantitatively evaluating a corporate brand value by statistical calculation (average, variance, trend, etc.) using parametric data such as sales. Yes.
- Patent Document 2 describes a system that calculates an evaluation value indicating the value of an evaluation target article based on a deviation in the number of appearances of words included in the evaluation target article.
- Patent Document 3 describes a system that quantitatively evaluates the value of a photovoltaic power generation facility based on performance values such as the amount of solar radiation and power generation cost.
- Patent Document 4 Japanese Patent Laid-Open No. 10-260995 (Patent Document 4) inputs rank data provided by a plurality of testers to a plurality of samples, and a Friedman test for determining the consistency of the input rank data. If it is determined that there is a significant difference in the consistency of rank data, Wilcoxon's signed rank sum test is performed to determine the rank relationship of each sample.
- a rank evaluation system is described that quantifies and clarifies significant differences in relationships.
- the difference in value among the individual products etc. exists in various viewpoints, and the value evaluation standard varies depending on the user to be evaluated. Accordingly, for example, a method in which the user estimates the value of a product or the like extracted by a search or the like by a product trading system cannot be judged with high accuracy. Therefore, in reality, the user may understand the original value of the purchased product at the time of use rather than at the time of purchase. For example, when using it, the user notices that the product was worse than expected. There is also a case.
- the computer system it is possible to use the computer system to calculate, evaluate and present the value difference of the product, etc., so that the user can use it as a judgment material for selection when purchasing the product.
- the evaluation criteria (indicators) for the value of products and the like vary depending on the user, and there are some that are greatly influenced by human senses such as appearance, satisfaction, and likability.
- Some of these indicators include, for example, metric values according to normal distribution, count values according to binomial distribution, defect number data according to Poisson distribution, and classification data and rank data with unknown distribution. To do.
- Patent Document 4 it is conceivable to calculate / evaluate the difference in the value of goods etc. by statistical calculation using nonparametric data.
- the technique described in Patent Document 4 and the like it is possible to surely perform statistical calculation, but the disclosure is only up to the point of obtaining statistical calculation result information, and how to obtain the obtained information. It is not disclosed up to the point of use / utilization. That is, the prior art is merely a statistical calculation system. For example, based on information on the difference in value of products obtained as a result of statistical calculation, what kind of recommendation is recommended when a user selects a product, etc. It does not disclose specific contents of subsequent useful information processing such as whether to go and support.
- an object of the present invention is to enable a user to more accurately, accurately, and easily determine a difference in value of goods and services that are widely sold and sold at the time of purchase. It is to provide a value evaluation support system and a value evaluation support program that support the above.
- a value evaluation support system provides statistics on a difference in value between a plurality of survey objects whose values are represented by one or more evaluation indexes including ambiguous data.
- a value evaluation support system having a value evaluation server that determines a significant difference and outputs a determination result, and a user terminal connected to the value evaluation server via a network, having the following features It is.
- the value evaluation server receives an input of evaluation data that is an evaluation result of the value for each evaluation index related to each survey target, and stores the evaluation data in an evaluation history database, and the use An evaluation history information acquisition unit that extracts the evaluation data from the evaluation history database for each of the plurality of investigation targets selected based on conditions specified by the user via a user terminal Have.
- rank data is calculated according to a predetermined procedure, and statistical significance between the respective survey targets is calculated by statistical calculation based on the rank data.
- the statistical calculation unit to be determined and the statistical calculation result by the statistical calculation unit are combined with the information of the statistical calculation result, and are defined in advance based on the statistically significant difference information determined by the statistical calculation unit.
- An evaluation result output unit that outputs the recommended information related to the determination criteria for the difference in value between the survey targets to the user terminal. is there.
- the present invention can also be applied to a program that causes a computer to function as the above-described value evaluation support system.
- (A), (b) is the figure which showed the example which represented the relationship between the average value and price of a significant evaluation index with respect to each investigation object in Embodiment 1 of this invention with the graph. It is the flowchart which showed the outline
- Embodiment 2 of this invention For every investigation object in Embodiment 2 of this invention with a tabular form and a graph. It is the flowchart which showed the outline
- the evaluation indicators that indicate the value of products that are widely sold and sold generally include, for example, appearance quality, initial quality, freshness, condition, performance, durability, reliability, rarity, satisfaction, popularity, and favorable sensitivity. There are various things such as comfort, name recognition, brand power, safety, and compliance rate.
- indicators that indicate the value of products, etc. are indicators that are greatly influenced by human senses, such as appearance quality, satisfaction, and favorable sensitivity.
- indicators such as the quality of service provided by flight attendants and the deliciousness of in-flight meals that may be taken into consideration when purchasing an air ticket have different evaluation criteria. For this reason, such a value index is not presented to the user in the air ticket trading system using a computer.
- it is possible to make a reservation for the same seat on multiple competing routes, and to determine which ticket is more valuable if the prices are the same. The current situation is that it is not possible to provide appropriate information.
- the value of goods, etc. is expressed by various types of indicators.
- these indicators include metric values such as length according to normal distribution, count values such as defect rate according to binomial distribution, Poisson, etc.
- parametric data such as count values such as the number of defects according to the distribution, and non-parametric data such as classification data and rank data whose distribution is unknown.
- index data there are variations in the index data, as well as the reliability of the numerical value itself because the accuracy of the data measurement method is low.
- the value evaluation support system is a non-standard method for handling rank data as a statistical processing technique.
- Use parametric method Among many evaluation indexes, an evaluation index determined to have a significant difference by a test using a non-parametric method can be determined as a factor indicating a difference in value of a product or the like. Therefore, the total value of these factors is considered to indicate the difference in value of the product etc., and the user selects the product etc. more accurately from the relationship between the value difference and the price. It becomes possible.
- the value evaluation support system since each user has various value standards, in the value evaluation support system according to an embodiment of the present invention, a significant evaluation index, price, It is recommended to select the most suitable product from the relationship. Also, users who place importance on insignificant evaluation indices are encouraged to select products etc. from price alone. In this way, the user evaluates the difference in the value of the product etc. based on the dialogue between the user and the computer, such as the presentation of the evaluation index that the user places importance on and the recommendation of the selection criteria for the optimum product etc. This provides a method for selecting optimal products and the like.
- evaluation index data used for statistical calculation is obtained by conducting a questionnaire survey to users who use computer system trading after using, using or consuming goods or services. It can also be obtained by a questionnaire survey for a third party who does not use the product or the like or a seller who sells the product or the like.
- a method other than a questionnaire may be used, and for example, it can be obtained by a questionnaire or an experience report.
- the user inputs, for example, evaluation points (0 to 100 points) and the like for a plurality of evaluation indexes representing the value of the product or the like.
- parametric data such as evaluation points are converted into rank data that is non-parametric data during statistical processing, and then a significant difference is determined.
- the value evaluation support system uses a computer system as an example for buying and selling airline tickets, and when the airline tickets are bought and sold between a seller and a user, The difference in the value of each air ticket (airline company) that meets the conditions is evaluated, and based on this, a standard for selecting an airline company that purchases the airline ticket is recommended to the user.
- the buying and selling of an air ticket is taken as an example, but the product to be sold is not limited to an air ticket, and the seller is naturally not limited to an airline.
- an accommodation facility management company such as a hotel may sell accommodation services.
- various products such as electrical appliances, automobiles, precious metals, daily goods clothes, and other various services are sold.
- Wilcoxon's of two survey subjects is compared with one evaluation index (for example, satisfaction) to determine whether or not there is a statistically significant difference.
- the test method shall be used.
- Wilcoxon's signed rank test shall be used.
- the Kruskal-Wallis test is used when comparing one evaluation index for three or more survey targets.
- the Friedman test shall be used when comparing multiple evaluation indices for three or more survey targets.
- FIG. 1 is a diagram showing an outline of a configuration example of a value evaluation support system 1 according to the first embodiment of the present invention.
- the value evaluation support system 1 is configured such that a value evaluation server 10, a plurality of product etc. providing systems 20 (20a to 20d in the example of FIG. 1), and a user terminal 30 are connected to a network 40 and can communicate with each other. have.
- the product etc. providing system 20 is an information processing system for sellers of products etc. to sell products etc. In this embodiment, for example, it is a computer system for selling airline tickets at each airline. is there.
- the product etc. providing system 20 stores information for selling products etc. (air tickets) in a product etc. content database (DB) 201 (201a to 201d in the example of FIG. 1).
- the product content DB 201 includes, for example, various information necessary for sales of products such as an airline name, departure place, departure time, arrival place, arrival time, seat number, model, price, passenger personal information, and the like.
- the value evaluation server 10 is composed of a server device or the like that is operated and managed by a business operator or an information search service provider that mediates sales of goods and the like (air ticket) between a user and a seller (airline company). It is a computer system that stores information about users and sellers and information evaluated by users or sellers regarding products and the like. In addition, when a product or the like is traded between a user and a seller, information on the product etc. that meets the conditions specified by the user is collected from each product etc. providing system 20, and the difference in their values Based on this, a standard for selecting a product or the like (or a seller who sells the product or the like) is recommended to the user.
- the value evaluation server 10 includes a server device having a general configuration. For example, a product etc. information acquisition unit 11, an evaluation history information acquisition unit 12, a statistical calculation unit 13, and an evaluation result output unit 14 implemented by a software program. And each part such as a questionnaire processing part 15.
- Each of these units can be implemented as, for example, a web application that runs on a web server program (not shown).
- the storage device such as an HDD or a memory on the value evaluation server 10 or the value evaluation server 10 can read the unit. It is stored in a storage medium such as an optical disk. You may hold
- the value evaluation server 10 has data such as a seller DB 101, a user DB 102, a product etc. DB 103, an evaluation history DB 104, and a questionnaire DB 105, which are made up of databases and file tables.
- the seller DB 101 is a table that holds information related to the seller (airline company) and the merchandise provision system 20 of the seller. For example, account information such as IDs and passwords used in the value evaluation support system 1, sales, etc. Various information such as a person's name, location and other attribute information, and seller's characteristic information (for example, in the case of an airline, information related to airports, hotels, land traffic, accident insurance, etc.) are included.
- the information in the seller DB 101 is registered in advance by, for example, the administrator of the value evaluation server 10.
- the user DB 102 is a table that holds information related to users, and includes, for example, various information such as account information such as IDs and passwords used in the value evaluation support system 1 and attribute information such as user names. .
- the information in the user DB 102 is assumed to be registered in advance by each user or the administrator of the value evaluation server 10.
- the product etc. DB 103 is a table that holds information related to the product etc. extracted from each product etc. providing system 20, for example, attribute information such as product name, model, spec, release date, price, product image, description, etc. Various information such as sentences is included.
- the evaluation history DB 104 is a table that accumulates and holds information related to questionnaire results (value evaluation results) for products and the like evaluated and input by the user. For example, each question (evaluation index) of the questionnaire and Response results (evaluation data), response reception date (entry date), respondent (entrant), information on the respondent's user terminal 30, various information such as the product subject to the questionnaire, seller, manufacturer name, etc. Is included.
- the questionnaire DB 105 is a table that holds information related to the contents of a questionnaire to be filled in when a user purchases or uses a product, for example, various questions associated with a product, a seller, or a manufacturer name. And various questions for entering information such as the respondent, the reply date, the information on the user terminal 30 of the respondent, and the like.
- the information in the questionnaire DB 105 is registered in advance by the administrator of the value evaluation server 10 or the like.
- the product etc. information acquisition unit 11 requests each product etc. providing system 20 based on the conditions specified by the user to obtain information on the relevant products etc., or from each product etc. providing system 20. A suitable product etc. is searched and extracted, and information relating to the obtained product etc. is stored in the product etc. DB 103.
- the evaluation history information acquisition unit 12 extracts, for each evaluation index, history information of corresponding evaluation data (questionnaire results) from the evaluation history DB 104 for each product held in the product etc. DB 103.
- the statistical calculation unit 13 implements calculation formulas and algorithms for performing various statistical calculations including a non-parametric method, and calculates a difference in value for each product held in the product etc.
- DB 103 This includes data such as various test tables and random number tables for performing statistical calculations. In mounting, for example, a statistical calculation function or various libraries included in an existing application program such as spreadsheet software can be used as appropriate.
- the evaluation result output unit 14 compiles and outputs the statistical results calculated and evaluated by the statistical calculation unit 13 and information on the value difference of the product, etc., and determines the selection criteria for the appropriate product etc. It is output to the user as recommended information related to selection criteria for products and the like.
- the questionnaire processing unit 15 acquires the corresponding questionnaire information from the questionnaire DB 105 and presents it to the user to carry out the questionnaire.
- evaluation information is input by acquiring information related to a questionnaire result (evaluation data) input by the user and storing it in the evaluation history DB 104.
- the user terminal 30 is an information processing terminal that is operated by a user who purchases a product such as an airline ticket, and includes, for example, a personal computer, a mobile terminal such as a mobile phone or a smartphone. A digital TV, game machine, karaoke machine, or the like capable of bidirectional communication may be used.
- the user terminal 30 can execute various functions by accessing a web server program (not shown) on the value evaluation server 10 or the product providing system 20 via a web browser (not shown), for example.
- the network 40 is a communication network composed of, for example, a wired / wireless LAN (Local Area Network) line, a satellite line, a telephone line, an optical line, and the like. A typical example is the Internet network.
- FIG. 2 is a flowchart showing an outline of an example of the flow of main processing in the value evaluation server 10.
- an initial registration process for registering seller and user information is performed (S01).
- the administrator or operator of the value evaluation server 10 may initially register such information with respect to each DB, or a seller who does not have a user ID used in the value evaluation support system 1 or uses it.
- Initial registration may be performed when there is an access from a person.
- registration information input to the DB such as personal information other than the user ID is received from the seller or user who performs registration, and after the information is officially registered in the DB, the user ID is issued. Register a password.
- a price survey process is performed to obtain information including prices related to products that meet the conditions by inquiring each product etc. providing system 20 (S02).
- historical information of past value evaluation is extracted and statistically processed, thereby statistically determining whether or not there is a significant difference in the value of these products.
- a selection criterion for an appropriate product or the like is determined based on the result, and a value evaluation process recommended to the user is performed (S03).
- a questionnaire survey on the value of the purchased product etc. is performed, and an evaluation history information recording process for recording information related to the result is performed (S04). The process ends.
- FIG. 3 is a flowchart showing an outline of an example of the flow of the price survey process (step S02 in FIG. 2) in the value evaluation server 10.
- a user who wants to purchase a product etc. operates a homepage screen such as a Web browser on the user terminal 30, a service menu screen, a standby screen, etc., and accesses the value evaluation server 10 to make a usage request.
- Perform (S201).
- the value evaluation server 10 Upon receiving the use request, the value evaluation server 10 outputs a menu screen for selecting or inputting a product or the like to the user terminal 30 by the product etc. information acquisition unit 11 or the like (S202).
- FIG. 4 is a diagram showing an example of a menu screen for the user to select or input a product or the like.
- a site for purchasing a ticket for using a transportation means is taken as an example.
- the user selects a desired transportation means such as an airplane, a ship, a train, etc. from a pull-down menu of the transportation means.
- the name of the company or organization having the selected means of transportation is displayed in the pull-down menu of the transportation facility name, and the user selects the target company or organization.
- the flight name of the selected company or group is displayed in the pull-down menu, and the user selects the target flight.
- Travel options are displayed on the pull-down menu for items such as round trip, one-way, and round trip, and are selected by the user. For example, if the user selects a round trip, as shown in the example of FIG. 4, whether the departure place (departure airport), departure date, departure time, and arrival place (arrival airport) for the outbound route and the return route are selected from the pull-down menu. A field to be specified by direct input is displayed. When tour is selected as the travel mode, it is possible to input a plurality of routes such as routes 1, 2, 3,.
- Fare class can be selected from the pull-down menu such as first, business, economy, etc., and the number of travelers can be selected from the pull-down menu or directly enter the desired number.
- Search options include search options such as non-stop flights and cheapest order.For example, if you select non-stop flights, only non-stop flights will be searched, and if you select the cheapest order, the search results will be displayed in order from the cheapest. Is displayed. It is possible to select multiple options. When no option is selected, for example, flights other than non-stop flights are displayed in order from the highest to the lowest.
- the user terminal 30 requests the value evaluation server 10 for information such as a product that satisfies the condition ( S203).
- the value evaluation server 10 transmits a search request for a product or the like satisfying the condition to the product etc. providing system 20 of all the sellers registered in advance by the product etc. information acquisition unit 11 (S204). ).
- the merchandise providing system 20 of each seller that has received the search request extracts information on the merchandise that satisfies the condition from the merchandise content DB 201 and responds to the value evaluation server 10 (S205).
- the product etc. information acquisition unit 11 of the value evaluation server 10 is configured to be able to directly access the product etc. content DB 20 of each product etc. providing system 20, and the product etc. information acquisition unit 11 meets the conditions. May be directly searched and extracted.
- the product etc. information acquisition unit 11 that has acquired or extracted information on the product etc. that meets the conditions stores the acquired product etc. information in the product etc. DB 103 (S206), and ends the price survey process.
- the product information stored in the product etc. DB 103 includes, for example, departure place (departure airport), departure date, scheduled departure time, arrival place (arrival airport), arrival date, estimated arrival time, required time, aircraft name, model It includes items such as airline name, flight number, number of remaining seats, number of remaining seats, meal menu, passenger information input form, and fare.
- departure place departure airport
- departure date scheduled departure time
- arrival place arrival airport
- arrival date estimated arrival time
- required time aircraft name
- model model
- the above-described transportation means searching method is a known means that has already been carried out by airline ticket sales etc. on the Internet, and the same method can be used in this embodiment.
- FIG. 5 is a flowchart showing an outline of an example of the flow of value evaluation processing (step S03 in FIG. 2) in the value evaluation server 10.
- the value evaluation server 10 is each survey object extracted in the price survey process of FIG. 3 by the evaluation history information acquisition unit 12 (that is, each product acquired in step S206 of FIG. 3).
- the evaluation history information is extracted from the evaluation history DB 104 (S301).
- the evaluation history information is information in which the purchaser's evaluation for each survey target (product or the like) is recorded, and is information recorded in the evaluation history DB 104 in an evaluation history information recording process (step S04 in FIG. 2) described later. Therefore, the evaluation history information acquisition unit 12 searches the evaluation history information recorded in the evaluation history DB 104 in the past, thereby evaluating the evaluation history associated with each product acquired in step S206 of FIG. Information will be extracted.
- Evaluation history information is evaluation information evaluated by a user who purchased a product after purchasing, using, or consuming the product, and includes various evaluation indexes.
- Evaluation indicators include, for example, overall satisfaction, comfort, luxury of in-flight meals, attitudes of cabin attendants, ease of use of in-flight audio, etc., satisfaction of video / music provided, etc. It is.
- Each evaluation index is expressed by, for example, evaluation points (0 to 100 points).
- the value evaluation server 10 determines whether or not the number of survey targets is 2 or more (S302), and if it is less than 2, the process directly proceeds to step S340.
- the number of survey targets is the number of types of airline tickets acquired in step S206 of FIG. 3 in the case of the present embodiment, and one type of all airlines in step S205 of FIG.
- the number of airlines may be used in place of the number of types of airline tickets (that is, the survey target may be each airline).
- step S302 when the number of investigation targets is 2 or more, next, a loop process for repeatedly performing the process for each of all the evaluation indexes included in the evaluation history information acquired in step S301 is started.
- each loop process first, the number of data of evaluation indexes to be processed in the loop is counted for each investigation object, and it is determined for each investigation object whether or not it is equal to or more than a preset lower limit value (S303). If it is less than the lower limit, it is determined that there is no significant difference because there is not enough data for the evaluation index, and the process proceeds to the next evaluation index in a loop process.
- the lower limit value is a value obtained by adding two or more numbers to the number of data generally determined that sufficient accuracy cannot be obtained at the time of statistical calculation, and does not exceed the upper limit value described later. Set a value (eg 6).
- step S303 If it is determined in step S303 that the number of data for all survey targets is equal to or greater than the lower limit value, it is next determined whether or not each counted data number is equal to or less than a preset upper limit value (S304).
- the upper limit value for example, a value obtained by subtracting 1 from the minimum number that is generally recognized to be equivalent to the number of populations (the number of populations) (for example, 600,000) is set. If the number of data is less than or equal to the upper limit value, the process proceeds to step S306 with all data as processing targets (that is, all data is extracted as samples).
- the upper limit number of data is extracted as a sample in order from the latest data among the target evaluation index data (S305), and the process proceeds to step S306.
- the sample is extracted in order from the latest one, but other extraction methods may be used.
- the upper limit number is used as the number to be extracted, an appropriate number can be appropriately determined as long as it is a number equal to or less than the upper limit number (and a number equal to or greater than the lower limit value).
- step S306 a random number table or the like held in advance in the value evaluation server 10 is used, and the target evaluation index is smaller than a predetermined number, for example, the number of data extracted from the sample data extracted for each survey target.
- a number of (lower limit value-1) or more data is randomly extracted as samples (S306).
- the method of extracting the sample for statistical calculation is not limited to the method of steps S303 to S306, but instead, for example, the number of evaluation index data to be processed in each loop processing is counted for each survey target. Randomly extract the number of data less than the counted data and less than the minimum number recognized as a population and more than the statistically inferior accuracy from the counted data by survey target It is also possible. In this method, if the number of counted data is less than the minimum value that can be recognized as a population, the sample is substantially a random extraction from the sample, and the counted number of data is greater than or equal to the minimum value that is recognized as a population. Is essentially a random extraction from the population. Thus, if two samples with different extraction sources are equally treated as randomly extracted samples and used for statistical calculation, the statistical accuracy may be lowered.
- the value evaluation server 10 uses the statistical calculation unit 13 to perform a statistical process for performing a predetermined statistical calculation on the processing target data of the target evaluation index to determine a significant difference between the evaluation indexes (S320).
- 6 and 7 are flowcharts showing an overview of an example of the flow of statistical processing in step S320 of FIG.
- the statistical calculation unit 13 first determines whether or not the number of survey targets is 2 (S3201). When the number of survey targets is not 2 (that is, the number of survey targets is 3 or more), as will be described later, an estimation regarding each population is performed by Kruskal-Wallis test. On the other hand, when the number of objects to be investigated is two, the two populations are estimated by the Wilcoxon test.
- FIG. 8 is a diagram showing an example in which a significant difference is determined by statistical calculation from the values of the evaluation indices for each of the two survey targets.
- the evaluation data conversion rules (hereinafter referred to as “evaluation”) defined in the table shown in the example of FIG. Satisfaction level (0 to 100 points), which is an evaluation index that has been converted (hereinafter may be described as “evaluation data conversion”) based on “data conversion rules”) Has been. That is, the evaluation points in FIG. 8 are evaluation points for use in the analysis by statistical calculation.
- the evaluation data conversion rule defined in the definition table in FIG. 28 for example, “100 ⁇ (Original evaluation score) "is converted.
- FIG. 8 shows an example in which data of the same value does not exist for all the evaluation data.
- the minimum value of the number n i of evaluation data possessed by each survey object is a predetermined threshold (for example, it is determined whether it is less than 15) (S3203).
- the threshold 15
- the rank in the set of the entire evaluation data for each evaluation data and the sum (rank rank) of the ranks for each survey target are calculated (S3204).
- information on ranks and rank sums calculated for each evaluation data is also written in the table.
- the amount of W is calculated based on the ranking data (S3205).
- the rank sum of the survey targets with the smaller number of evaluation data among the survey targets is set as the W amount.
- the rank sum 25 of the airline 2 is set as the W amount.
- the rank sum of any one of the survey targets is the W amount. It is not always necessary to use the sum of ranks of the survey targets with the smaller number of evaluation data as the amount of W, and the rank sum of the survey targets with the larger number may be used. In this case, not W amount but W ′ amount is described.
- the lower limit value W L ( ⁇ / 2) and the upper limit value W U ( ⁇ / 2) of the predetermined significance level ⁇ are identified from the Wilcoxon test table held in advance by the statistical calculation unit 16 and the like.
- step S3206 based on the comparison result in step S3206, it is determined whether or not there is a significant difference between the survey targets (S3207), and the statistical processing is terminated.
- W L ( ⁇ / 2) ⁇ W amount ⁇ W U ( ⁇ / 2)
- W amount ⁇ W L ( ⁇ / 2) or W U it is determined that there is a significant difference.
- step S3210 and later described below may be performed instead of the process of step S3206 and subsequent steps.
- step S3203 if the minimum value of the number of evaluation data is greater than or equal to the threshold (15) in step S3203, the rank of each evaluation data and the rank sum for each survey target are calculated by the same process as in steps S3204 and S3205 described above. Then, the amount of W is calculated (S3208, S3209). Further, the u 0 amount is calculated by the following equation (S3210).
- FIG. 9 is a diagram illustrating another example in which a significant difference is determined by statistical calculation from the values of the evaluation indices for each of two survey targets.
- the evaluation data conversion is performed for the two airlines (airlines 1 and 2) to be investigated based on the evaluation data conversion rule shown in FIG. Satisfaction as an evaluation index is indicated by evaluation points (0 to 100 points).
- the rank calculated about each evaluation data and the information of the rank sum for every investigation object are written together in the table
- the limit value u ( ⁇ ) is specified from the predetermined significance level ⁇ of the normal distribution table held in advance by the statistical calculation unit 16 or the like, and the obtained u ( ⁇ ) and u 0 obtained in step S3210.
- the normal distribution table includes a type that handles one-side rejection area and a type that handles both-side rejection areas. In the present embodiment, the normal distribution table that handles the latter-side rejection areas is used.
- the normal distribution table includes a type for obtaining a significance point (limit value) from the significance level ⁇ and a type for obtaining a significance probability (P value) from the absolute value of the u 0 quantity.
- the former table is used for comparison.
- the latter table is used when calculating the P value in the selection of supplementary explanation items to be described later.
- step S3211 it is determined whether or not there is a significant difference between the survey targets (S3212), and the statistical processing is terminated.
- the rank of each evaluation data is calculated in the same manner as in steps S3204 and S3208 described above (S3213). Since the same rank is calculated, an average rank is assigned to the same rank (S3214). The average rank is also called an intermediate rank.
- the average rank is calculated by the equation ⁇ (a + 1) + (a + t j ) ⁇ / 2.
- a is the previous rank of the same rank
- j is a group number when the ranks of evaluation data groups having the same rank are numbered in ascending order.
- T j is the number of evaluation data of the j-th group.
- FIG. 10 is a diagram showing another example in which a significant difference is determined by statistical calculation from the values of evaluation indexes for two survey targets.
- satisfaction that is an evaluation index obtained by performing evaluation data conversion based on the evaluation data conversion rule shown in FIG. Degrees are indicated by evaluation points (0 to 100 points).
- FIG. 10 shows an example in the case where data of the same value exists among all the evaluation data, and the rank calculated for each evaluation data and the information of the rank sum for each survey target are also shown in the table. .
- the average rank of the group ranked first is 1.5
- the average rank of the group ranked fifth is 6.
- the table of FIG. 10 also shows the average rank including these calculation results and the rank sum information.
- the amount of W is calculated by the same processing as in steps S3205 and S3209 described above. For distinction, this is referred to as W * amount (S3215). Further, the u 0 * amount is calculated by the following equation. (S3216).
- the limit value u ( ⁇ ) is specified from the predetermined significance level ⁇ in the normal distribution table by the same processing as in step S3211 described above, and u ( ⁇ ) obtained is obtained, and u 0 * obtained in step S3216.
- the absolute value of the quantity is compared (S3217). Next, based on the comparison result in step S3217, it is determined whether or not there is a significant difference between the survey targets (S3218), and the statistical processing is terminated.
- a predetermined threshold for example, m ⁇ 5, which is generally considered to be inferior in the accuracy of statistical calculation
- a predetermined threshold for example, m ⁇ 5, which is generally considered to be inferior in the accuracy of statistical calculation
- the maximum value of the ratio ⁇ t j / (m + n) ⁇ of the number t j of evaluation data in each group and the total number of data m + n is equal to or greater than a predetermined threshold (for example, the maximum that the statistical calculation accuracy is generally inferior)
- value ⁇ 0.7 it is not necessary to perform statistical calculation because sufficient accuracy cannot be ensured. In this case, it may be determined that there is no significant difference because there is not enough data.
- a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Further, after executing the statistical calculation, for example, a message such as “the accuracy of the result of the statistical calculation is not high” may be added.
- step S3201 in FIG. 6 If the number of survey objects in step S3201 in FIG. 6 is 3 or more, the process proceeds to FIG. 7 to perform Kruskal-Wallis test. First, as in step S3202 in FIG. It is determined whether there is an evaluation data having the same value in the entire set (S3219 in FIG. 7). Instead of determining the presence or absence of the same value, the presence or absence of the same rank may be determined for the rank data calculated from the evaluation data by the process described later.
- FIG. 11 is a diagram showing an example in which a significant difference is determined by statistical calculation from the values of evaluation indices for each of three survey targets.
- satisfaction that is an evaluation index obtained by performing evaluation data conversion on the three airlines (airlines 1 to 3) to be investigated based on the evaluation data conversion rule shown in FIG. 28 described later. Degrees are indicated by evaluation points (0 to 100 points).
- FIG. 11 shows an example of the case where there is no data having the same value for all evaluation data. In this case, the total number N of evaluation data in each survey target is less than a predetermined threshold (for example, 15). It is determined whether or not (S3220).
- the minimum value n MIN is specified for the number n i of the evaluation data of each investigation target (S3221). Then, it is judged whether the investigation with evaluation data for the number above the minimum value n MIN of the specified number of data in step S3221 (S3222).
- a minimum number of evaluation data is randomly extracted from the evaluation data of the survey object using a random number table or the like held in advance in the value evaluation server 10 (S3223).
- the number n i of evaluation data for each survey target is unified to the minimum value n MIN .
- step S3224 the rank in the set of the entire evaluation data for each evaluation data and the sum (rank sum) of the ranks for each survey target are calculated (S3224).
- information on ranks and rank sums calculated for each evaluation data is also written in the table.
- the KW amount is calculated by the following equation (S3225).
- i is an integer from 1 to the number of survey targets k
- R i is the sum of ranks in each survey target.
- the number of evaluation data of the investigation object unified to a predetermined significance level ⁇ , the number of investigation objects k, and the minimum value A significant point kw ( ⁇ ) corresponding to n MIN is specified, and the obtained kw ( ⁇ ) is compared with the KW amount calculated in step S3225 (S3226).
- the processing in steps S3221 to S3223 in FIG. 7 is not necessary, and the number of evaluation data for each survey target
- the KW amount can be calculated in step S3225 without unifying the minimum values.
- significant point kw (alpha) is significance level alpha, chosen from those corresponding to the survey number k and evaluation data number n i of each study.
- the Kruskal-Wallis test table includes a type that obtains a significant point (limit value) from the number k of survey targets, the number of data n MIN or ni , and the significance level ⁇ , the number of survey targets k, and the number of data n MIN.
- a significance probability (P value) from the n i and the KW amount, but the former test table is used for comparison here. The latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
- step S3226 it is determined whether there is a significant difference between the survey targets (S3227), and the statistical processing is terminated.
- step S3220 in FIG. 7 when the total number N of data is equal to or greater than a predetermined threshold (for example, 15), the rank of each evaluation data and the rank sum for each survey target are calculated by the same processing as in steps S3224 and S3225 described above.
- a predetermined threshold for example, 15
- the rank of each evaluation data and the rank sum for each survey target are calculated by the same processing as in steps S3224 and S3225 described above.
- the KW amount S3228, S3229.
- FIG. 12 is a diagram showing another example in which a significant difference is determined by statistical calculation from the values of the evaluation indices for each of three survey targets.
- satisfaction is an evaluation index obtained by performing evaluation data conversion for the three airlines (airlines 1 to 3) to be investigated based on the evaluation data conversion rule shown in FIG. Degrees are indicated by evaluation points (0 to 100 points).
- FIG. 12 is a diagram showing another example in which a significant difference is determined by statistical calculation from the values of the evaluation indices for each of three survey targets.
- the obtained ⁇ 2 ( ⁇ , ⁇ ) is compared with the KW amount calculated in step S 3229 (S 3230).
- the chi-square distribution table includes a type that obtains a significant point (limit value) from a degree of freedom ⁇ and a significance level ⁇ , and a significance probability (P value) from statistically calculated values such as the degree of freedom ⁇ and the amount of KW.
- the former test table is used for comparison here.
- the latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
- step S3230 it is determined whether there is a significant difference between the survey targets (S3231), and the statistical processing is terminated.
- step S3232 If there is an evaluation data having the same value in step S3219 in FIG. 7, the ranking of each evaluation data is calculated (S3232) as in steps S3224 and S3228 described above, and the evaluation data having the same value is further calculated. Since the same rank is calculated, an average rank is assigned to the same rank by the same process as step S3214 in FIG. 6 (S3233).
- FIG. 13 is a diagram showing another example in which a significant difference is determined by statistical calculation from the values of evaluation indexes for each of three survey targets.
- the satisfaction is an evaluation index obtained by performing evaluation data conversion on the three airlines (airlines 1 to 3) to be investigated based on the evaluation data conversion rule shown in FIG. Degrees are indicated by evaluation points (0 to 100 points).
- FIG. 13 shows an example in the case where data of the same value exists among all the evaluation data, and the rank calculated for each evaluation data and the information of the rank sum for each survey target are also shown in the table. .
- the average rank of the group ranked third is 4, and the average rank of the group ranked seventh is 7. 5
- the table of FIG. 13 also shows the average rank including these calculation results and the rank sum information.
- the KW amount is calculated by the same processing as in steps S3225 and S3229 described above. For distinction, this is described as KW * amount (S3234). Further, the KW ′ amount is calculated by the following equation. (S3235).
- j is an integer from 1 to the number g of evaluation data groups having the same rank.
- KW ′ amount 1.48 from the equation 5.
- step S3236 it is determined whether there is a significant difference between the survey targets (S3237), and the statistical processing is terminated.
- the number of survey targets k in the Kruskal-Wallis test with the same value or the minimum value n MIN of the number of evaluation data n i of each survey target is less than a predetermined threshold (for example, generally the accuracy of statistical calculation is When k ⁇ 3, which is considered inferior, or the minimum value n MIN ⁇ 6), it is not necessary to perform statistical calculation because sufficient accuracy cannot be secured. In this case, it may be determined that there is no significant difference because there is not enough data.
- a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Further, after executing the statistical calculation, for example, a message such as “the accuracy of the result of the statistical calculation is not high” may be added.
- step S320 in FIG. 5 When the statistical processing in step S320 in FIG. 5 is completed through the above processing, the series of processing in steps S303 to S320 is repeated for the next evaluation index by loop processing in the processing flow in FIG.
- the loop processing is terminated, and then it is determined whether all the evaluation indexes have a significant difference (whether there is a significant evaluation index). (S307) If it cannot be said that all the evaluation indices are significantly different (there is no significant evaluation index), the process proceeds to step S340.
- the evaluation result output unit 14 of the value evaluation server 10 can compare the price of the product etc. with the value of the significant evaluation index for each survey target. Is created (S308).
- FIG. 14 is a diagram illustrating an example in which the price of a product and a significant evaluation index are represented in a tabular format for each survey target.
- a significant difference is determined for each index in the evaluation history information recorded in the evaluation history DB 104 by the statistical processing in step S320.
- An example is shown in which there is a significant difference in indicators (“quality of AV equipment”, “attitude of CA”, “luxury of meals”).
- the price of the ticket on the desired route and the average value of the evaluation points of each evaluation index in the evaluation history information are displayed in a list so that they can be compared.
- the average value for example, the evaluation in the table of FIG.
- a value obtained by performing inverse conversion based on an evaluation data conversion rule shown in FIG. 28 described later that is, an average value of values of original evaluation data that is not subjected to evaluation data conversion
- FIG. 14 shows a case where the evaluation index is a metric value called an evaluation point.
- the evaluation index is not a metric value but a count value such as a probability or the number of defects, before calculating the average value.
- a conversion for approximating the measured value may be performed.
- logit transformation or inverse sine transformation can be used for probability
- square root transformation or logarithmic transformation can be used for the number of defects. Since the percentage (probability) or the number of defects follows a binomial distribution or a Poisson distribution, respectively, data may be converted to a normal distribution. Thereby, it can be regarded as data according to a normal distribution like the measurement value.
- the percentage can be normalized by using a logit transform or an inverse sine transform after being expressed as a probability.
- P is a probability
- L (P) is a logit.
- the inverse sine transformation is represented by Sin ⁇ 1 ⁇ P.
- the square root transformation is represented by ⁇
- the logarithmic transformation is represented by ln ⁇ .
- ⁇ is the number of defects. If x and n in x / n (where x is the total number of occurrences or defects and n is the number of trials or the number of trials) are known, continuous correction is performed as a data conversion formula. Add to the normal approximation better.
- FIG. 15 is a diagram showing an example of a graph representing the relationship between the average value of the significant evaluation index and the price for each survey target.
- FIG. 15A shows an example in which each airline is represented as a radar chart with three evaluation indexes and prices as axes.
- the values after the evaluation data conversion are ranked by processing such as step S3204 in FIG. Later averages may be used. For example, an average value of ranks in the table of FIG. 11 can be used.
- the values of the three significant evaluation indices are all evaluation points, and the unit or sign of the values are indicated by the same value evaluation standard. Either of the average values of ranks may be used. However, when the value of the evaluation index is not indicated by the same value evaluation standard (for example, two evaluation points and one defect number), an average value rank is used.
- the evaluation data is an original evaluation point that is not subjected to evaluation data conversion
- it is necessary to convert the evaluation data in ascending order because the evaluation is performed in descending order with respect to the original evaluation point.
- 100 points are ranked first (ranked minimum value) and 0 points are ranked lowest (ranked maximum value), so the center side in the radar chart of FIG. Since it becomes a point, it converts in order to correct
- the scale display of the radar chart may be changed from ascending to descending order.
- the ranking is performed in ascending order with respect to the original number of defects that does not perform evaluation data conversion.
- the scale display of is the same as the ranking of the evaluation points, when displaying the value of the number of defects on the radar chart, the scale display is reversed from that of the evaluation points (that is, the same scale display as that of the ranking).
- the scale display of the radar chart can be determined using a table in which rules for ranking for each evaluation index are determined in advance as shown in FIG.
- FIG. 15 (b) shows an example in which the relationship between the average value of the evaluation points for each of the three evaluation indices for each airline and the price is shown in a scatter diagram.
- the horizontal axis is the evaluation point average value by survey object and the vertical axis is the price, and the relationship between the average evaluation point value by survey object and the price ($) shown in FIG. 14 is shown.
- the average value by evaluation target for the evaluation score average value of each evaluation index that became significant can be interpreted as the total value by evaluation target of the evaluation index that became significant. This is considered to indicate a difference in value.
- Note that other statistical values such as a median value or a mode value may be used in place of the average value of the evaluation points (or the rank in which the evaluation points are ranked) and the average value of the evaluation points by survey object.
- the average value and the average value of the evaluation indices for each survey target Is considered appropriate.
- the interval scale indicates, for example, a numerical value having no absolute zero point such as the year and the temperature in degrees Celsius
- the proportional scale indicates, for example, a numerical value having an absolute zero point, such as length or absolute temperature.
- the median ranking and the median ranking of the evaluation index by survey object are appropriate. Therefore, the statistical calculation unit 13 determines whether or not the evaluation index that has become significant from the evaluation index numerical type is the same type by using a table as shown in FIG. 28 described later. May be determined whether or not is an interval or proportional, and a process of selecting a suitable statistical value may be performed.
- the value evaluation server 10 determines whether or not there are a plurality of significant evaluation indexes (S309). If there are no more than one, proceed to step S340. When there are a plurality of evaluation indexes that are significant, the statistical calculation unit 13 determines whether there is a statistically significant difference directly between the survey targets from the statistical values after the evaluation data conversion for the evaluation data of these evaluation indexes. A process for determining a significant difference between survey targets to be comprehensively determined is performed (S330).
- the statistical calculation unit 13 calculates all of the survey target i (i is an integer from 1 to the number of survey targets k) and a significant evaluation index j (j is an integer from 1 to the number m of the significant evaluation indexes). It is determined whether or not the number k to be investigated is 2 for the combination (S3301). When the number of survey targets is 2, as will be described later, Wilcoxon signed rank test is performed. On the other hand, if the number of survey targets is not 2 (that is, the number of survey targets is 3 or more), Friedman test is performed.
- the statistical value of the value after the evaluation data conversion in each survey target is ranked for each evaluation index (S3302). For example, when the evaluation index is an evaluation score, the average value of the scores after the evaluation data conversion is ranked. In addition, when the scale level of evaluation data is neither an interval scale nor a proportional scale, other statistical values such as a median value may be appropriately used instead of the average value.
- step S3303 it is determined whether or not the number k to be investigated is equal to or greater than a predetermined threshold (for example, 5) (S3304).
- a predetermined threshold for example, 5
- the FR amount is calculated by the following formula (S3305).
- i is an integer of 1 to survey the number k
- R i is the rank sum for each evaluation index in each study.
- FIG. 18 is a diagram illustrating an example in which a significant difference between three survey targets is determined by statistical calculation from the value of a significant evaluation index.
- three significant evaluation indices quality of AV equipment”, “attitude of CA”, “luxury of meal” for the three airlines under investigation (airlines 1 to 3)
- the average value of the evaluation points after conversion of the evaluation data is shown.
- the limit value fr ( ⁇ ) specified by the predetermined significance level ⁇ , the number k of survey targets, and the number m of significant evaluation indexes is specified from the Friedman test table held in advance by the statistical calculation unit 16 or the like.
- the obtained fr ( ⁇ ) is compared with the FR amount calculated in step S3305 (S3306).
- the Friedman test table includes the number of survey targets k, the number m of significant evaluation indexes, and the type that obtains a significant point (limit value) from the significance level ⁇ , the number of survey targets k, and the number of significant evaluation indexes.
- the latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
- step S3306 it is determined whether there is a significant difference between the survey targets (S3307), and the inter-survey target significant difference determination process is terminated.
- FR amount ⁇ fr ( ⁇ ) it is determined that there is a significant difference when FR amount ⁇ fr ( ⁇ )
- FR amount ⁇ fr ( ⁇ ) 6 ⁇
- FIG. 19 is a diagram illustrating an example in which a significant difference between five survey targets is determined by statistical calculation from the value of a significant evaluation index.
- a significant evaluation indicator (“quality of AV equipment”, “attitude of CA”, “luxury of meal”) for the five airlines (airlines 1 to 5) to be surveyed The average value of the evaluation points after conversion of the evaluation data is shown.
- the rank calculated for the average value of the evaluation points after the evaluation data conversion in each survey target for each evaluation index, and information on the rank sum obtained by summing the ranks for each survey target are also shown.
- the obtained ⁇ 2 ( ⁇ , ⁇ ) is compared with the FR amount calculated in step S3308 (S3309).
- step S3309 it is determined whether there is a significant difference between the survey targets (S3310), and the inter-survey target significant difference determination process is terminated.
- FIG. 20 is a diagram illustrating another example in which a significant difference between three survey targets is determined by statistical calculation from the value of a significant evaluation index.
- three significant evaluation indicators (“quality of AV equipment”, “attitude of CA”, “luxury of meal”) for the three airlines under investigation (airlines 1 to 3)
- the average value of the evaluation points after conversion of the evaluation data is shown.
- rank information calculated for the average value of evaluation points after conversion of evaluation data in each survey target is written together for each evaluation index.
- the average rank of this group is 1.5.
- the table in FIG. 20 also includes information on the average rank including the calculation result and rank sum obtained by summing up the average rank for each survey target.
- the FR * amount is calculated by the following equation. (S3312).
- FR is the FR value obtained by the equation (6), wherein the calculated information rank sum obtained by summing the average rank as R i.
- j is an integer from 1 to the number m of significant evaluation indexes
- i is an integer of the number e j of different ranks in the average rank data of the 1st to j-th evaluation indexes.
- FR * amount 1.27 from Equation 7 above.
- step S3314 it is determined whether there is a significant difference between the survey targets (S3314), and the inter-survey target significant difference determination process is terminated.
- FR * amount ⁇ ⁇ 2 ( ⁇ , ⁇ ) it is determined that there is a significant difference when FR * amount ⁇ ⁇ 2 ( ⁇ , ⁇ ), and it cannot be said that there is a significant difference when FR * amount ⁇ 2 ( ⁇ , ⁇ ). judge.
- FR * amount 1.27)
- ⁇ 2 (2,0.05) 5.99 ⁇ Judge that you can not say. That is, it is determined that there is no significant difference in value in the graph of FIG.
- the product of the number of survey targets k and the number m of significant evaluation indices in the Friedman test with the same rank is less than a predetermined threshold (for example, less than 30 which is generally considered to be inferior in accuracy of statistical calculations). It is not necessary to perform statistical calculation because it is impossible to secure a high accuracy. In this case, it may be determined that there is no significant difference because there is not enough data.
- a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Further, after executing the statistical calculation, for example, a message such as “the accuracy of the result of the statistical calculation is not high” may be added.
- a statistical significance difference between two survey targets (for example, airlines A and B) among the survey targets that become significant may be determined. Such a determination is also performed on the other two combinations in the survey target that become significant, and for example, a significant difference between all combinations of the two airlines is determined.
- the data used at this time is the data used in the Friedman test, and the Wilcoxon signed rank test described later is performed. Based on this result, it is possible to determine a significant difference between two specific survey targets among the survey targets determined to have a significant difference by the Friedman test. Can be provided.
- FIG. 21 is a diagram showing an example in which a significant difference between two survey targets is determined by statistical calculation from the value of a significant evaluation index.
- the average value of the evaluation points after conversion of the evaluation data of the seven evaluation indexes for the two airlines (airlines 1 and 2) to be investigated is shown.
- the absolute value of the difference between the average values of the evaluation points after the evaluation data conversion between the two airlines calculated in step S3315 and the positive / negative information of the difference are also shown.
- information on the rank calculated in step S3316 for the absolute value of the difference is also shown.
- the WS amount is calculated (S3320).
- the WS + amount and the WS ⁇ amount are respectively calculated based on the rank order of the difference values and the positive / negative information of the differences obtained in steps S3315 and S3316 of FIG.
- the WS + amount is a sum of ranks obtained by summing the ranks of the evaluation indexes calculated in steps S3315 and S3316, and the difference between the average values of the evaluation points is positive.
- the WS ⁇ amount is the average value of the evaluation points.
- t L ( ⁇ / 2) given by a predetermined significance level ⁇ and N number was specified from the Wilcoxon signed rank test table held in advance by the statistical calculation unit 16 or the like, and obtained.
- t U (P) is a value obtained by the equation N (N + 1) / 2 ⁇ t L (P), P is a significance level assigned to the limit value, and in the example of FIG. Equivalent to.
- Wilcoxon signed rank test tables There are two types of Wilcoxon signed rank test tables: a type for obtaining a significant point (limit value) from N number and significance level ⁇ , and a type for obtaining a significance probability (P value) from N number and WS amount. For comparison, the former test table is used. The latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
- step S3321 it is determined whether there is a significant difference between the survey targets (S3322), and the statistical processing is terminated.
- t L ( ⁇ / 2) ⁇ WS amount ⁇ t U ( ⁇ / 2)
- ( ⁇ / 2) ⁇ WS amount it is determined that there is a significant difference.
- step S3319 in FIG. 17 when the number N of absolute values of the differences is not zero, the WS amount is calculated (S3323).
- the WS + amount is the WS amount.
- the u 0 amount is calculated by the following equation (S3324).
- FIG. 22 is a diagram illustrating another example in which a significant difference between two survey targets is determined by statistical calculation from the value of a significant evaluation index.
- the average value of the evaluation points after the evaluation data conversion of 25 evaluation indexes is shown for the two airlines (airlines 1 and 2) to be surveyed, as in FIG. Yes.
- the absolute value of the difference between the average values of the evaluation points after the evaluation data conversion between the two airlines calculated in step S3315 and the positive / negative information of the difference are also shown.
- information on the rank calculated in step S3316 for the absolute value of the difference is also shown.
- the limit value u ( ⁇ ) is specified from the predetermined significance level ⁇ of the normal distribution table held in advance by the statistical calculation unit 16 or the like, and the obtained u ( ⁇ ) is obtained in step S3324.
- step S3325 it is determined whether there is a significant difference between the survey targets (S3326), and the inter-survey target significant difference determination process is terminated.
- FIG. 23 is a diagram illustrating another example in which a significant difference between two survey targets is determined by statistical calculation from the value of a significant evaluation index.
- the average value of the evaluation points after the evaluation data conversion of the seven evaluation indexes is shown for the two airlines (airlines 1 and 2) to be investigated.
- the absolute value of the difference between the average values of the evaluation points after the evaluation data conversion between the two airlines calculated in step S3315 and the positive / negative information of the difference are also shown.
- information on the rank calculated in step S2316 for the absolute value of the difference is also shown.
- the WS + amount is calculated as the WS amount by the same method as in step S3323.
- these are described as WS + * amount and WS * amount, respectively (S3328).
- WS + * amount 20.5
- WS * amount 20.5
- the u 0 * amount is calculated by the following equation. (S3329).
- j is an integer from 1 to the number g of evaluation index groups having the same rank.
- WS * amount 20.5
- the total number N of evaluation indexes whose difference is not zero 7
- u 0 * amount 1.10 from Equation 10.
- the limit value u ( ⁇ ) is specified from the predetermined significance level ⁇ of the normal distribution table by the same processing as in step S3325 described above, and u ( ⁇ ) obtained is obtained and u 0 * obtained in step S3329.
- the absolute value of the quantity is compared (S3330).
- step S3330 it is determined whether or not there is a significant difference between survey targets (S3331), and the inter-survey target significant difference determination process is terminated.
- a predetermined threshold for example, less than 25, which is generally considered to be inferior in statistical calculation accuracy. Since sufficient accuracy cannot be secured, statistical calculation may not be performed. In this case, it may be determined that there is no significant difference because there is not enough data.
- a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Further, after executing the statistical calculation, for example, a message such as “the accuracy of the result of the statistical calculation is not high” may be added.
- step S330 statistical calculation for comprehensively determining whether or not there is a significant difference between survey targets using the statistical value after the evaluation data conversion of the evaluation index determined to have a significant difference in step S320.
- the statistical calculation is performed based on the data including the statistical value after the evaluation data conversion of the evaluation index that cannot be said to have a significant difference, and the overall significant difference between the survey targets is determined. It may be. Alternatively, the difference in value between the survey targets may be evaluated based only on information about the evaluation index determined to have a significant difference without performing the processing.
- the evaluation result output unit 14 of the value evaluation server 10 specifies the statistical result including the graph to be provided to the user and the comment information attached thereto, and the product obtained in step S206 of FIG. A result output process is performed by attaching to the content information (S340).
- FIG. 24 is a flowchart showing an outline of an example of the flow of the result output process in step S340 of FIG.
- the evaluation result output unit 14 first determines the statistical results for each evaluation index in step S320 of FIG. 5 and the table or graph created in step S308, the result of the significant difference determination between the survey targets in step S330, and the sufficient Since there is no significant number of data, information on the result of the significant difference determination without statistical calculation is specified (S3401).
- the evaluation index that becomes significant is, for example, an evaluation index that is determined to have a significant difference in the statistical processing in step S320 of FIG. There is a significant difference in the number of evaluation data, etc., such as an evaluation index (for example, “the accuracy of the result of this statistical calculation is not high”) It is also possible to use a non-added one).
- step S3409 a comment that recommends selecting a product or the like only by price (that is, selecting a product or the like with a low price) is selected (S3409).
- a comment for example, “We recommend that you select a cheap product that is not statistically different in value. (If the number of products and services to be compared is 1, "We recommend the product.)”
- step S3402 if there is a significant evaluation index, it is determined whether the number is 1 (S3403). If there is one significant evaluation index, it is determined whether the user attaches importance to the significant evaluation index (S3404). For this, for example, a screen for inquiring the user via the user terminal 30 may be output and an answer may be input, or in advance when selecting or inputting a product or the like in step S203 of FIG. You may make it designate the evaluation index to attach importance.
- step S3404 if the user attaches importance to one evaluation index that is significant, the user selects a comment that recommends selecting a product with a low price and a high evaluation of the significant evaluation index (S3410). .
- the user selects a comment that recommends selecting a product with a low price and a high evaluation of the significant evaluation index (S3410).
- the evaluation index that the customer emphasizes is highly evaluated and the price in the lower right area of the graph is high. It is recommended to select a service.
- step S3404 If it is determined in step S3404 that the user does not place importance on one evaluation index that has become significant, it is further determined whether or not an evaluation index other than the evaluation index is emphasized (S3405).
- an evaluation index other than the evaluation index similarly to step S3404, for example, a screen for inquiring the user via the user terminal 30 may be output and an answer may be input, or a product or the like is selected / input in step S203 of FIG. It is also possible to specify an evaluation index to be prioritized when performing the process.
- step S3405 If it is determined in step S3405 that the user attaches importance to an evaluation index that is not significant, the process proceeds to step S3409 described above to select a comment that recommends a product with a low price. Alternatively, it may be recommended that the evaluation and price of an insignificant evaluation index emphasized by the user are shown as reference information and a product or the like is selected at the user's discretion.
- An example of a comment in this case is, for example, “If the evaluation index that the customer places importance on is statistically not significantly different between the target products / services, As long as it is used as a reference indicator in the selection of products and services, "
- step S3405 If it is determined in step S3405 that the user does not attach importance to any evaluation index that is not significant, the process proceeds to step S3410 described above, and a product with a low price and a high evaluation of a significant evaluation index (see FIG. 15B).
- a comment that recommends that you select a product or the like plotted in the lower right area.
- “Since an evaluation index having a statistically significant difference was found between the target products / services, a product / service in the lower right area of the graph that has a high evaluation and a low price is selected. It is recommended that the message "
- step S3403 it is determined whether the user places importance on any of the evaluation indexes that become significant as in step S3404 (S3406).
- a screen for inquiring the user via the user terminal 30 may be output and an answer may be input, or a product or the like is selected / input in step S203 of FIG. It is also possible to specify an evaluation index to be prioritized when performing the process.
- step S3406 if any of the evaluation indexes that the user has made significant is valued, a product with a low price and a high evaluation (evaluation point average value is high) for the evaluation index emphasized by the user is selected.
- a comment recommended to be selected is selected (S3411). Specifically, for example, in the radar chart centered on the price and each evaluation index as shown in FIG. 15A created in step S308 of FIG. It is recommended to select products with high average values and low prices. As a comment, for example, “Since it can be said that there is a statistically significant difference in the evaluation index that the customer emphasizes, select a product / service with a high average evaluation score and a low price on the radar chart. It ’s recommended that you do this. ”
- step S3406 If it is determined in step S3406 that neither of the evaluation indexes that have become significant is emphasized by the user, it is further determined whether or not the evaluation indexes other than the evaluation index that has become significant are emphasized (S3407).
- a screen for inquiring the user via the user terminal 30 may be output and an answer may be input, or a product or the like is selected / input in step S203 of FIG. It is also possible to specify an evaluation index to be prioritized when performing the process.
- step S3407 If it is determined in step S3407 that the user attaches importance to an evaluation index that is not significant, the process proceeds to step S3409 described above, and a comment that recommends that a product or the like with a low price is selected. Alternatively, it may be recommended that the evaluation and price of an insignificant evaluation index emphasized by the user are shown as reference information and a product or the like is selected at the user's discretion.
- An example of a comment in this case is, for example, “If the evaluation index that the customer places importance on is statistically not significantly different between the target products / services, As long as it is used as a reference indicator in the selection of products and services, "
- step S3407 If it is determined in step S3407 that the user does not place importance on any evaluation index that is not significant, the result of the comprehensive significant difference determination between the survey targets in step S330 in FIG. It is determined whether or not there is a significant difference (S3408). If there is a significant difference overall, the process proceeds to step S3410 described above, and a comment that recommends that a product or the like with a low price and a high evaluation of a significant evaluation index is selected. That is, for example, it is recommended to select a product or the like plotted in the lower right area in the graph shown in FIG.
- step S3408 If it is determined in step S3408 that there is no comprehensive difference between the survey targets, the process proceeds to step S3409, and a comment that recommends a product with a low price is selected.
- the statistical result information including the graph as shown in FIG. 15 and the selected comment are collected in a predetermined format, and the result Information is transmitted and output to the user terminal 30 together with information such as the product acquired in step S206 of FIG. 3 (S3412).
- the user can refer to and check the result of the value evaluation of the product etc. (step of FIG. 5) S310).
- the evaluation result output unit 14 of the value evaluation server 10 inquires about the evaluation index information to be emphasized to the user via the user terminal 30 and comments as necessary. Although selected, a program for executing a result output process and selecting a comment may be transmitted as a client program to the user terminal 30 and processed locally on the user terminal 30 side.
- FIG. 25 is a diagram illustrating an example of a table expressing the determination contents of the result output process. Users can grasp the recommended content as selection criteria for products, etc., by referring to a combination of such judgment patterns in a tabular format and statistical results. It is possible to select a product or the like more accurately after understanding the overall image of the selection criteria.
- a comment for recommending relative value judgment to the user may be added.
- An example of such a comment is, “Value evaluation data is inherently non-parametric data, and thus may not accurately represent a difference in values. It is recommended to make a reasonable decision ”.
- the user when the user determines a product to be purchased or the like, the user refers to and confirms the result output by the value evaluation server 10 by the above-described series of processing, so that the statistical data existing between the survey targets can be obtained.
- the evaluation index having a significant difference, the average value of the evaluation points, and the price can be grasped at the same time, and the relationship between the value of the product etc. and the price can be recognized more accurately.
- other evaluation indexes having no significant difference can be excluded from the value determination indexes of products and the like, and the value of products and the like can be grasped more clearly and simply.
- the quality of AV equipment there are three significant evaluation indexes: the quality of AV equipment, the attitude of CA, and the luxury of meals.
- users who place emphasis on indicators other than these three value indicators are not significant, and therefore between airlines 1 to 3 Then, it can be considered that there is no big difference, and it becomes possible to select based on the price alone.
- the average score of the three evaluation indices is calculated for each airline. From the graph as shown in FIG. 15B in which the numerical value obtained by simple averaging and the price are compared, the relationship between the value of the product and the price can be grasped. In the graph of FIG. 15B, it can be seen that the products and the like in the high-value and low-price area (the lower right area of the graph) are generally bargain products.
- the horizontal axis is a value obtained by simply averaging the evaluation score average values of the indicators that became significant for each survey target, and it cannot be said that the accuracy is high as a value indicator. Therefore, in the significant difference determination process between the survey targets in step S330 of FIG. 5, there is a statistically significant difference directly between the survey targets from the average value of the evaluation data converted of the plurality of significant evaluation indexes. Whether or not is comprehensively determined. If it cannot be said that there is a significant difference overall, it is recommended not to use the graph but to select products by price alone, and if there is a significant difference, it is recommended to select products by referring to the graph.
- step S330 the significant difference determination process between investigation object of step S330 is performed when there are a plurality of evaluation indexes that are significant by the determination in step S309, and when there is one significant index, step S320 is performed. This is not done because it can be substituted with the result of significant difference determination in the statistical processing. However, it may be carried out when the significant difference between the survey targets is comprehensively determined by performing the significant difference determination process between the survey targets in step S330 including the evaluation index that is not significant in step S320.
- FIG. 26 is a flowchart showing an outline of an example of the flow of the evaluation history information recording process (step S04 in FIG. 2) in the value evaluation server 10.
- the user outputs information indicating the relationship between the price difference between the value of the product such as the graph and the price, the statistical result, the product information, and the like,
- the recommended method for selecting a product or the like is referred to or confirmed via the user terminal 30 to determine a product or the like to be purchased.
- the user uses the user terminal 30 to make a payment for the product, etc., for which purchase has been decided by a predetermined method such as Internet banking, credit card, electronic money, etc.
- the user terminal 30 inputs necessary information such as information related to the payment such as the option made, and transmits the purchase payment information related to the determined product to the value evaluation server 10 (S401).
- the value evaluation server 10 Upon receiving the purchase settlement information, the value evaluation server 10 transfers a copy of the purchase settlement information to the product providing system 20 of the sales destination of the target product or the like (S402).
- the product etc. providing system 20 that has received the purchase settlement information performs sales and settlement processing on the target product etc. based on the contents of the received purchase settlement information, and transmits the processing result including the sales settlement information to the value evaluation server 10. (S403).
- the sales settlement information includes, for example, the contents of the target product, seller information, sales amount, purchased user information, and the like.
- the value evaluation server 10 Upon receiving the sales settlement information, the value evaluation server 10 confirms that the target product etc., price, and other sales conditions are the same for the sales settlement information and the purchase settlement information received in step S402. Further, the questionnaire processing unit 15 specifies and extracts information on a questionnaire for inputting an evaluation for the target product or the like from the questionnaire DB 105 (S404).
- the contents of the questionnaire may include, for example, a plurality of uniform question items corresponding to any product. However, in this case, all respondents may not be able to fill in an appropriate answer to a special question focused on individual products, or no answer may be entered. If these are used for statistical calculations, accuracy will be reduced. Result. Further, in the determination process of the lower limit value in step S303 in FIG. 5 (and step S6201 in FIG. 32 in the second embodiment to be described later), value index data less than the lower limit value is increased, which increases the calculation load of the computer and the calculation speed. To slow down. Therefore, it is desirable that the contents of the questionnaire include a plurality of suitable question items in association with the type of product or the like.
- the questionnaire processing unit 15 transmits the extracted questionnaire information and the sales settlement information received from the product providing system 20 to the user terminal 30 (S405).
- the information to be transmitted may include help information related to a questionnaire input method and the like.
- the user terminal 30 receives the information and outputs it to the user, so that the user inputs, uses, uses, or consumes the purchased product, etc., and then inputs an evaluation of the product, etc. into the questionnaire can do.
- the input time of the questionnaire may be before or during use, use, consumption, etc., as long as it is a timing at which the purchased products can be evaluated appropriately.
- the inputted questionnaire information is transmitted from the user terminal 30 to the value evaluation server 10 (S406).
- the value evaluation server 10 extracts the contents of the questionnaire input by the questionnaire processing unit 15 and records it in the evaluation history DB 104 in association with the product etc. as evaluation information for the target product etc. (S407).
- the questionnaire processing unit 15 transmits the questionnaire again to the user terminal 30 when the questionnaire input result cannot be received even after a predetermined period of time has elapsed since the transmission of the questionnaire in step S405. You may ask for a reminder.
- a questionnaire file in which the contents of a question and an answer column for evaluating each evaluation index are described is transmitted from the value evaluation server 10 to the user terminal 30, and the user
- the file can be configured to be returned to the value evaluation server 10.
- an HTML that displays the contents of the question on a web browser (not shown) on the user terminal 30 and receives input answer data
- the questionnaire information may be configured as a file or the like. Further, a configuration may be adopted in which a questionnaire is conducted by telephone, FAX, mail, etc., and an answer content is input to the evaluation history DB 104 of the value evaluation server 10 by an operator or the like.
- FIG. 27 is a diagram showing an example of the contents of a questionnaire presented to the user.
- a questionnaire input screen is displayed on the Web browser on the user terminal 30 and the response content input by the user is acquired.
- a method for inputting evaluation data etc., for example, a method of directly inputting numerical values such as evaluation points and satisfaction within a predetermined range (such as “0 to 100”), or a suitable expression (representing the degree and state)
- Method of selecting an evaluation by selecting a radio button corresponding to a phrase, numerical range, etc. a method of directly inputting a count value such as the number of defects or a probability, a method of directly inputting a measurement value such as time or length, etc. Is included.
- the meanings of the numerical values are different for each evaluation index, for example, 80 evaluation points (points) and 80 measurement values (minutes, etc.). Therefore, for example, when analyzing statistical calculation or the like in the processing of steps S320 and S330 in FIG. 5, evaluation data conversion is performed to convert the evaluation index into a value having a unified magnitude relationship with respect to value. Further, when calculating the rank, a unified rank is calculated for the value after the evaluation data conversion.
- ascending order is used in which the order is given in ascending order of values.
- the original evaluation data in the present embodiment, by performing inverse conversion of the evaluation data conversion, etc.
- FIG. 28 is a diagram showing an example of a table in which evaluation data conversion rules and ranking rules are defined for each type of numerical value of the evaluation index.
- the evaluation data conversion rule a method of converting the evaluation data in association with each type of evaluation index is defined. For example, since the numerical value originally inputted to the questionnaire takes a value of 0 to 100, for example, if the conversion formula of “100 ⁇ (original evaluation score value)” is used as the evaluation data conversion rule, the original evaluation score When the point is 80, the converted value is 20. When the evaluation data conversion rule is “10 times”, the original value is multiplied by 10. In the case of “no conversion”, the original values are ranked as they are without conversion. In the case of “sign inversion”, the original value is inverted by multiplying the sign of the converted value by ( ⁇ 1) or the like.
- the ranking rules are defined in association with each type of evaluation index.
- the ascending order is a rule in which the smallest value among the numerical values entered in the questionnaire is ranked first
- the descending order is a rule in which the largest value among the numerical values entered in the questionnaire is ranked first.
- the value evaluation server 10 holds the information of such a table in the form of a file or the like in advance, so that the statistical calculation unit 13 is based on, for example, a unified ranking rule (ascending order in the present embodiment).
- a rule is defined for each evaluation index numerical type, but there are also cases where the same type has different rules. For example, some measured values are not necessarily in ascending order. For example, the waiting time (minutes) from the completion of boarding at the departure airport to the actual takeoff is higher in evaluation value as the value is smaller and is in ascending order. Even with the same count value, the pass rate is in descending order, but the defect rate is in ascending order. Therefore, rules are defined for each evaluation index.
- a product sold at a retail store such as a supermarket is purchased and settled by a user at home via the Internet, and the product is actually received at the store or delivered to the user by a sales agent.
- the value of goods and services is influenced by retail stores and sales agents. Therefore, in the present embodiment, the business operators involved in the sales of these products are targeted for investigation.
- an evaluation index indicating value satisfaction with retailers and sales agents, i.e. satisfaction with all products sold by retailers and sales agents or all services performed, is an example. Instead, a more specific evaluation index such as the freshness of the product may be used.
- the present invention can also be applied to other combinations such as a manufacturer and a retail store, or a retail store and its sales products.
- two groups of a survey target group A for example, retail store 1, 2, etc And a survey target group B (for example, sales agent 1, 2,8) Each having a plurality of survey targets.
- a survey target group A for example, retail store 1, 2,
- a survey target group B for example, sales agent 1, 2,
- one evaluation index is compared for each combination of survey targets between survey target groups, and it is determined whether there is a statistically significant difference between the survey targets.
- three or more survey target groups exist for example, two survey target groups selected based on conditions specified by the user can be targeted.
- the Friedman test described above is used.
- FIG. 29 is a diagram showing an outline of a configuration example of the value evaluation support system according to the second embodiment of the present invention.
- the value evaluation support system 1 basically has the same configuration as the system configuration of the first embodiment shown in FIG.
- the seller having the product providing system 20 (20a, b in the example of FIG. 29) and the product content DB 201 (201a, b in the example of FIG. 29) is a retail store such as a supermarket.
- the sales agent has a plurality of sales agent systems 21 (21a, b in the example of FIG. 29), which is an information processing system for providing a product sales agent service on behalf of the supermarket. Yes.
- Each sales agent system 21 stores information for performing sales agent in the agent content DB 211 (211a, b in the example of FIG. 29).
- the value evaluation server 10 basically has the same functional blocks as the functional blocks of the first embodiment shown in FIG.
- the seller DB 101 is a table that holds information related to the seller (supermarket) and the merchandise providing system 20 of the seller. For example, the seller DB, the name of the person in charge, the address, the telephone number, the FAX number, This includes personal information such as an e-mail address, user ID, and password, and sales information such as payment terms.
- the user DB 102 is a table that holds information related to users. For example, name, age, date of birth, address, gender, telephone number, FAX number, e-mail address, ID used in the value evaluation support system 1 And personal information such as account information such as passwords.
- a list of retailers and sales agents that the user wants to request for quotations a list of priorities for requesting sellers / representatives with a priority order, a request for quotations schedule that indicates the user's plan to request a quotation, and usage
- Purchased product history that shows the actual purchase history of the user, list of requested products that the user wants to request a quote for, quote request service list that lists the agency services that the user wants to request for a quote, and value for the user
- a comparative value evaluation index used for comparison, purchase information such as a payment method, and the like are included.
- the product etc. DB 103 is a table that holds information related to the product etc. extracted from each product etc. providing system 20, for example, product name, grade, number of pieces, contents, production area, product image, description, etc. Information etc. are included.
- information related to the sales agent is added to the contents of the evaluation history DB 104 and the questionnaire DB 105 in the first embodiment.
- the value evaluation server 10 further includes an agent DB 106.
- the agent DB is a table that holds information related to the sales agent and the sales agent system 21 of the sales agent. For example, the sales agent name, address, telephone number, person in charge name, telephone number, FAX number, Personal information such as e-mail address, account information such as ID and password used in the value evaluation support system 1, contents and conditions of agency services, service information such as range, time zone, handling amount, sales information such as payment conditions, etc. Is included.
- FIG. 30 is a flowchart showing an overview of an example of the flow of main processing in the value evaluation server 10.
- an initial registration process for registering information of a seller, a sales agent, and a user is performed (S05).
- an administrator, an operator, or the like may initially register these pieces of information in each DB of the value evaluation server 10, or a seller who does not have a user ID used in the value evaluation support system 1 or a sales agent.
- Initial registration may be performed when there is an access from a user or a user.
- the seller information including personal information other than the user ID
- the registration information input to the DB of the sales agent information or the user information is received, After these information is formally registered in the DB, a user ID is issued and a password is registered.
- the quotation request seller / agent priority order list, and the quotation request commodity list information including the price related to the target product for the quotation request, It is obtained by inquiring the product providing system 20 or each sales agent system 21 and obtaining statistical information by extracting evaluation history information about the target investigation object (seller and sales agent) from the evaluation history DB 104.
- a price / value survey process is performed to survey (S06).
- S07 we conduct a survey on the value of purchased products, etc., sellers, and sales agents for users who select and purchase products, sellers, and sales agents, and record information related to the results
- the evaluation history information recording process is performed (S07), and the series of processes is terminated.
- FIG. 31 is a flowchart showing an overview of an example of the flow of price / value survey processing (step S06 in FIG. 30) in the value evaluation server 10.
- the value evaluation server 10 uses the product etc. information acquisition unit 11 according to the estimate request schedule for each user by periodically referring to the information of the estimate request schedule registered in the user DB 102 by each user.
- the estimate request process is automatically started (S601). Instead of automatic activation based on the quotation request schedule, the user may manually request a quotation request from the value evaluation server 10 via the user terminal 30, and may be activated as a trigger.
- the product etc. information acquiring unit 11 specifies the seller and the sales agent registered in the quotation request seller / representative priority list registered in the user DB 102 by the target user as the survey target (S602). ).
- the evaluation history information acquisition unit 12 extracts evaluation data related to the evaluation index associated with the investigation target specified in step S602 from the evaluation history DB 104 (S603).
- the evaluation history information acquisition unit 12 extracts evaluation data related to the evaluation index associated with the investigation target specified in step S602 from the evaluation history DB 104 (S603).
- the evaluation history information acquisition unit 12 extracts evaluation data related to the evaluation index associated with the investigation target specified in step S602 from the evaluation history DB 104 (S603).
- the evaluation history information acquisition unit 12 extracts evaluation data related to the evaluation index associated with the investigation target specified in step S602 from the evaluation history DB 104 (S603).
- FIG. 32 is a flowchart showing an overview of an example of the flow of matrix creation processing in step S620 of FIG.
- the statistical calculation unit 13 first starts a loop process that repeats the process for each of all combinations of the two types of survey targets (seller and sales agent) identified in step S602. .
- each loop process first, the number of evaluation data (satisfaction with the combination of the seller and the sales agent) to be processed in the loop is counted, and a predetermined lower limit is set. It is determined whether or not the value is greater than or equal to the value (S6201). If it is less than the lower limit value, the process proceeds to the process for the next combination to be investigated in the loop process.
- the lower limit value a minimum number (for example, 2) that can be randomly extracted, which will be described later, is set.
- step S6201 If it is determined in step S6201 that the number of data is greater than or equal to the lower limit, it is next determined whether the number of data is less than or equal to a preset upper limit (S6202).
- the upper limit value is, for example, a value obtained by subtracting 1 from the minimum number that is generally recognized as the number of populations (the number of populations), as in step S304 of FIG. 5 of the first embodiment. (For example, 600,000) is set. If the number of data is less than or equal to the upper limit value, the process advances to step S6204 for all data as processing targets. On the other hand, if the number of data exceeds the upper limit, the upper limit several pieces of data are extracted from the latest evaluation data in order from the latest, and are processed (S6203), and the process proceeds to step S6204.
- step S6204 a predetermined number is randomly extracted from the data to be processed using a random number table or the like previously stored in the value evaluation server 10 (S6204). That is, a predetermined number of evaluation data of 1 or more and (the number of evaluation data to be processed ⁇ 1) or less is randomly extracted. Note that if the number of data is less than the lower limit in step S6201, random extraction cannot be performed in this step, and as a result, the number of data extraction is zero (ie, missing data) for the survey target combination. Become. Thereafter, the process proceeds to the process for the next combination to be investigated in a loop process.
- a matrix table of evaluation data for two types of survey targets is created (S6205).
- the value converted by the evaluation data conversion rule shown in FIG. 28 is used as the evaluation data used in the matrix table.
- the average value of these evaluation data is set at a corresponding position on the matrix table.
- Other statistical values such as a median value and a mode value may be used instead of the average value. If there is one randomly extracted value after evaluation data conversion, the value of the evaluation data is set at a corresponding position on the matrix table. If random data cannot be extracted and the data is missing, the missing data (for example, a NULL value) is set at a corresponding position on the matrix table.
- step S6205 the number of missing data is counted for each row and column of the matrix table created in step S6205 (S6206).
- step S6206 it is determined whether or not there is missing data in the result counted in step S6206 (S6207). If there is missing data, the row or column with the most missing data in the matrix table (sales agent or seller). Is deleted (S6208). At this time, if there are a plurality of corresponding rows or columns, the row or column corresponding to the seller or sales agent having a low priority is deleted.
- the priority order for the seller and the sales agent is determined based on the quotation request seller / agent priority list registered in the user DB 102 in the initial registration process in step S05 of FIG.
- 33 and 34 are diagrams showing an example of deleting a row or column with missing data from the matrix table of the combination of the seller and the sales agent created in step S6205 of FIG.
- an example of the order in which rows or columns with missing data are deleted in a matrix table composed of combinations of seven sellers (sellers A to G) and seven sales agents (agents a to g) Shows about.
- the upper table of FIG. 33 shows an example of the matrix table created in step S6205 of FIG. 32.
- the representatives ag are each row, the sellers Ag are each column, and the rows and columns are shown.
- Each combination (combination of each seller and sales agent) has an average value of satisfaction after conversion of evaluation data for these.
- the priorities in the table are priorities for sellers and sales agents set in the quotation request seller / agent priority list registered in the user DB 102. In the example of FIGS. 33 and 34, the priority is set in order from the first place for the sales agent and the entire seller (row and column).
- the matrix table also includes information on the number of missing data in each row and each column counted in step S6206 in FIG.
- step S6208 A table obtained by counting the number of missing data in step S6206 of FIG. 32 with respect to the deleted matrix table is shown in the lower table of FIG.
- a table obtained by counting the number of missing data in the deleted matrix table is shown in the upper table of FIG.
- a table in the middle of FIG. 34 shows the number of missing data counted in the deleted matrix table.
- the matrix table of the deleted result is shown in the lower part of FIG. Since there is no missing data in this matrix table, this is the final matrix table.
- the order of priority is set in order from the first place for the sales agent and the seller (row and column) as a whole, but each sales agent and each seller (each row and each column). ) May be set individually in order from the first. That is, the priority order may be set in order from the first place for each sales agent, and the priority order may be set in order from the first place for each seller.
- the sales agent (row) and the seller (column) may have the same value with the lowest priority. Come. Therefore, in this case, one row or column is selected according to a predetermined rule set in advance.
- a rule such as deleting sellers (columns) preferentially (treating sellers with lower priority than agents) is set, and in the initial registration process of step S05 in FIG.
- the information is registered in advance in the user DB 102, for example, by adding the information to the estimate request seller / agent priority list.
- step S6207 if there is no missing data (has been lost), that is, if all the rows and columns with missing data have been deleted, the deleted columns and rows (seller or sales agent).
- the deletion rate is calculated, and it is determined whether or not the deletion rate is less than a predetermined threshold (S6209).
- the deletion rate is a percentage of the number of columns or rows deleted in the matrix table divided by the number of columns or rows before deletion. Alternatively, a percentage obtained by dividing the total of deleted columns and rows by the total of columns and rows before deletion may be used.
- the predetermined threshold is a percentage at which the minimum number of survey targets to be evaluated can be secured.
- step S6209 half of the number of sellers or sales agents registered in the quotation request seller / agent priority list of the user DB 102 A value indicating 50% is used. If the deletion rate is less than the threshold value in step S6209, the matrix creation process ends. In this case, Friedman's test or Wilcoxon's signed rank test is performed in the statistical processing in step S630 in FIG.
- the statistical calculation unit 13 is equal to or higher than the lower limit value of the number of data used for the Kruskal-Wallis test or the Wilcoxon test (for example, the lower limit value similar to that set in step S303 in FIG. 5 of the first embodiment).
- the number S of survey targets having the number of data is counted for each survey target group (S6210). Specifically, among the survey targets extracted in step S603 of FIG. 31, the number of items whose total number of evaluation index data possessed by the survey target is equal to or greater than the above lower limit value is counted.
- step S6210 it is determined whether or not the number of survey targets in the corresponding survey target group in the matrix table from which all missing values are deleted is less than the number S of survey targets calculated in step S6210 (S6211). If it is less than S, the matrix creation process ends. In this case, for each survey target that is counted in step S6210, for example, a predetermined number of samples are extracted by the process shown in steps S304 to S306 in FIG. The Kruskal-Wallis test or Wilcoxon test is performed in the statistical processing of S630.
- step S6211 if the number of survey targets in the corresponding survey target group in the matrix table from which all missing values are deleted in step S6211 is greater than or equal to the number S of survey targets calculated in step S6210, the table is further displayed on the matrix table. It is determined whether there is data, that is, whether there are any remaining rows or columns (S6212). If there is data on the matrix table, that is, if there are remaining rows or columns, the matrix processing is terminated. In this case, Friedman test or Wilcoxon signed rank test is performed in the statistical processing in step S630 in FIG.
- step S6212 If there is no data on the matrix table in step S6212, that is, if all the rows and columns of the matrix table have been deleted by the series of processing in steps S6206 to S6208, a message to stop the processing is displayed.
- the data is output to the user terminal 30, and the entire process is terminated (S6213). Examples of such messages include a message such as "Cannot be calculated due to lack of recorded data. Please review the contents of the quotation request seller / substitute priority list and request a quotation again.” can do.
- the user terminal 30 notifies the user by outputting the message by screen display or voice.
- the matrix creation process may be ended, and the process may proceed to an estimate request in step S604 in FIG.
- the statistical processing in step S630 after the request for quotation in step S604 in FIG. 31 is not performed, the statistical result regarding the value evaluation is not output to the user.
- An estimate request is transmitted to (S604).
- the quote request to be transmitted is, for example, the product etc. information acquisition unit 11 based on the quote request product list or the quote request service list registered in advance in the user DB 102 in the initial registration process in step S05 of FIG. Can be created.
- the product etc. providing system 20 or the sales agent system 21 to which the quotation request is transmitted have an interface for accepting the quotation request online, a file including the contents of the quotation request is transmitted. Instead, an estimate request may be input automatically or manually using the interface.
- FIG. 35 is a diagram showing an example of an estimate request transmitted to the seller's product etc. providing system 20.
- each item for which an estimate request is made is set in the estimate request item list registered in the user DB 102 in advance.
- attribute information of the target product such as the product name, production area, grade, and size
- purchase information such as the planned number of purchases and the planned purchase date and time are set.
- the scheduled purchase date and time may be specified by a relative date and time such as “after the estimated date and time”, for example, instead of the absolute date and time.
- FIG. 36 is a diagram showing an example of an estimate request transmitted to the sales agent system 21.
- identification information such as IDs of sales agents and users to which a quote request is transmitted, based on contents set in a quote request service list registered in advance in the user DB 102.
- Information such as the purchase date / time, delivery date / time, and delivery destination, and a list of sellers to be subjected to the agency service are set.
- the IDs and names of the sellers and sales agents are set based on the contents registered in the seller DB 101 and the agent DB 106.
- the purchase date / time and delivery date / time are not specified by the absolute date / time, for example, relative to each other such as “after XX hours after the estimated date / time” or “after XX hours after the purchase date / time”. It may be specified by date and time. Further, the list of sellers may be limited to the seller who has transmitted the request for quotation in step S604 of FIG.
- the product providing system 20 or the sales agent system 21 that has received the request for quotation specifies the target product from the content of the request for quotation, and includes the price of the target product or agent service from the product content DB 201 or the agent content DB 211. Is extracted and transmitted to the value evaluation server 10 as an estimate (S605).
- the processing may be manually performed by a seller or a sales agent.
- the merchandise provision system 20 of the seller who has received the quote request identifies the target product etc. from the contents of the quote request, and extracts price and inventory information of the merchandise etc. from the merchandise content DB 201. . Thereafter, based on the planned number of purchases specified in the estimate request and the unit price extracted from the product etc. content DB 201, a subtotal, an estimated total amount, a consumption tax, and the like are calculated. In addition, information such as sales products that are not subject to estimation, advertisements / sale / feature products, products selected based on the purchase history of the target user, and the like are attached and transmitted to the value evaluation server 10 as an estimate.
- the selection of the product based on the purchase history may be performed using the purchase information of the user in the past recorded in the product etc. content DB 201, or the value evaluation server 10 uses the product information acquisition unit 11 to provide the product etc. providing system.
- the product selected using the purchased product history information in the user DB 102 may be added to the quote request in advance.
- FIG. 37 is a diagram showing an example of an estimate created by the seller's product etc. providing system 20.
- the information of the estimate request in FIG. 35 received from the value evaluation server 10 and information such as the number of items for sale, unit price, subtotal, estimated total amount (bold frame in the figure) Item) is added for estimation.
- the product providing system 20 does not add information to the column of the planned purchase number and purchase date and time of unquoted products.
- the sales agent system 21 of the sales agent who has received the quotation request specifies the content of the sales agent service of the agent or the like acting on the basis of the content of the quotation request, and extracts the corresponding service fee from the agent content DB 211. Based on the extracted information, the content of the portion related to the charge (the item in the thick frame in the figure) is supplemented to the content of the request for quotation in FIG. 36 received from the value evaluation server 10, and the value evaluation server 10 is estimated. Send to.
- the value evaluation server 10 transmits an estimate request to the product etc. providing system 20 or the sales agent system 21 in step S604 to obtain an estimate, while the statistical calculation unit 13 creates the matrix table created in step S620.
- Statistical processing is performed to test whether there is a significant difference for each of the above survey targets (seller and sales agent) (S630).
- the statistical calculation method is the same as that in FIGS. 16 and 17 of the first embodiment when the Friedman test or Wilcoxon signed rank test is performed. That is, when comparing a plurality of evaluation indexes for three or more survey targets, the same as the Friedman test performed in step S3302 and subsequent steps in FIG. 16, and for the two survey targets, Wilcoxon performed in step S3315 and subsequent steps in FIG. This is the same as the signed rank test.
- FIG. 38 is a diagram showing an example in which a significant difference between two types of survey target groups each having five survey targets is determined by statistical calculation from the value of the evaluation index.
- the evaluation data is converted into a matrix table of combinations of five sellers (sellers A to E) and five sales agents (agents a to e) to be investigated. Average values of satisfaction (0 to 100 points) are shown.
- the sales agent group is calculated, and in the middle right table, the seller group is calculated with respect to the ranking calculated for the average value of satisfaction after conversion of the evaluation data (same sales agent).
- FIG. 38 shows an example in which the Friedman test is performed on both the seller and the sales agent.
- FIG. 38 shows an example in the case where there is no same rank in the ranks calculated for the survey target.
- the FR amount is calculated by the same process as step S3308 in FIG.
- the number of survey targets for example, the number of sellers
- k 5
- the number of evaluation data in each survey target for example, the number of sales agents for the seller
- the FR amount is 10.72 in the case of determining the significant difference between the agents in the left table.
- the FR amount 3.20.
- step S3310 of FIG. 16 it is determined whether there is a significant difference between the investigation targets based on the comparison result, and the statistical process is terminated.
- each survey target in a survey target group different from the survey target group subjected to the significant difference test corresponds to each evaluation index in the first embodiment.
- the number k of the investigation objects to be tested for significance is 1, the statistical calculation is not performed, and it is determined that there is no significant difference because there is no investigation object to be compared.
- a message such as “There is no investigation target to be compared, and it cannot be said that there is a significant difference as a result” may be added.
- the Wilcoxon signed rank test is used as a significant difference test between any two survey subjects in the survey target group that becomes significant as in the first embodiment. You may go further.
- the significance test is performed by the same processing as the statistical processing shown in FIGS. 6 and 7 of the first embodiment. That is, when comparing three or more survey targets, a significant difference test is performed by the same process as the Kruskal-Wallis test performed in step S3219 and subsequent steps in FIG. For the two survey targets, a significant difference test is performed by the same process as the Wilcoxon signed rank test performed in step S3202 and subsequent steps in FIG. In addition, when performing the same statistical calculation for the two types of survey target groups, it is performed for each group.
- FIG. 39 is a diagram showing an example of combinations of test means when the deletion rate exceeds the threshold and the number S of survey targets is larger than the number of survey targets in the matrix table after all missing values are deleted.
- the row and column in the initial matrix table created in step S6205 the number (the number of surveyed) S p and a series of steps S6206 ⁇ S6208 Survey with the number of survey targets S a in the matrix table after deleting rows and columns with missing data by processing, the deletion rate calculated in step S6209, and the number of data greater than or equal to the predetermined lower limit calculated in step S6210
- the method of the test corresponding to the combination of the number S of objects is shown.
- the threshold value of the deletion rate in step S6209 in FIG. 32 is 50%, for the combination of the number of survey targets before and after deletion of rows and columns with missing data in the matrix table.
- the corresponding Kruskal-Wallis test or Wilcoxon test is shown.
- the deletion rate is greater than or equal to the threshold in step S6209 in FIG. 32, and the number of survey targets in the matrix table after deletion of rows and columns with missing data is smaller than S in step S6211. In some cases, it can be determined whether to perform Kruskal-Wallis test or Wilcoxon test.
- step S6209 to S6211 of FIG. 32 is not provided, and it is also possible to perform dedicated processing for the Friedman test and Wilcoxon signed rank test, or the Kruskal-Wallis test and Wilcoxon test, respectively. is there.
- the evaluation result output unit 14 of the value evaluation server 10 receives the product etc. from the merchandise providing system 20 of the seller or the sales agent sales agent system 21 that transmitted the request for quotation in step S ⁇ b> 604.
- Estimate information including information on the price, inventory, etc., and based on this information and the result of statistical calculation in step S630, the price and value for each survey target (evaluated based on the target evaluation index)
- a table or graph in which the values can be compared is created (S606).
- the rank of the statistical value of the value after the evaluation data conversion, the statistical value of the value before the conversion of the evaluation data, or the statistical value of the value after the conversion of the evaluation data can be used. .
- step S630 If there is insufficient information in the received estimate information, or if the estimate information is not received within a predetermined time, the row or column including the sender (seller or sales agent) of the estimate is changed to the step of FIG. Delete from the matrix table created in S620, and re-execute the statistical processing in step S630. Then, the graph creation of step S606 is performed. In order to avoid re-execution of such statistical processing, the value evaluation server 10 targets the sender of the estimated information included in the matrix table created in step S620 after receiving the estimated information in step S605. As described above, the statistical processing in step S630 may be performed.
- FIG. 40 is a diagram showing an example of the relationship between the price (estimated price) and the value (value evaluated based on the target evaluation index) for each survey target in a tabular format and a graph.
- estimated price information and evaluation indices are obtained.
- This shows an example in which information on the sum of ranks based on (degree) (for example, the rank sum shown in the middle table of FIG. 38) is represented in a table format.
- the table also includes information on the significant difference between the survey targets determined by the statistical processing in step S630 in FIG. 31 and information on the presence or absence of graph display. Note that the graph may be created only when it is determined that there is a significant difference between the survey targets.
- FIG. 40B since it is determined that there is a significant difference in evaluation index between sellers in FIG. 40A, this is based on price (estimated price) and value (target evaluation index (satisfaction)).
- the example shows the relationship of (evaluated value) in a scatter diagram.
- the estimated price is on the vertical axis
- the value of the sum of ranks based on the satisfaction after the evaluation data conversion is on the horizontal axis.
- a scatter diagram for the two survey targets may be shown.
- a scatter diagram of one three-dimensional for example, the estimated price is Z-axis, the seller's rank sum value is the X-axis, the sales agent rank sum value is the Y-axis) for the two survey target groups is shown. Also good.
- FIG. 41 is a flowchart showing an overview of an example of the flow of the result output process in step S640 of FIG.
- the evaluation result output unit 14 first identifies the result of the statistical processing in step S630 or the information of the table or graph created in step S606, and based on these, there is a significant difference in evaluation index between sellers. It is determined whether or not (S6401).
- step S6401 if there is a significant difference in evaluation index between sellers, the price is low and the value of the rank sum is small, that is, the seller with the highest degree of satisfaction and the highest evaluation (FIG. 41 (b).
- the comment that recommends the selection of sellers plotted in the lower left area in the graph shown in FIG. 6) is selected from those defined in advance (S6402).
- a comment in this case for example, a message such as “It is recommended to select a seller in the lower left area of the graph that is highly evaluated and cheap because there is a significant difference between sellers” be able to.
- step S6401 if there is no significant difference in evaluation index between sellers, a comment that recommends that a seller be selected only by price (that is, a seller with a low estimated price) is selected (S6403).
- the comment can be, for example, a message such as “There is no statistical difference in value and it is recommended to select an inexpensive seller”.
- a comment is selected for the sales agent on the basis of the information on the significant difference in the evaluation index by the same processing as the above steps S6401 to S6403 (S6404 to S6406).
- a comment to be presented to the user is selected by the above-described series of processing, the result of processing without performing statistical calculation due to statistical information including a table or graph as shown in FIG. .
- the selected comment, and the received estimate information are collected in a predetermined format, and transmitted and output as result information to the user terminal 30 (S6407), and the result output process is terminated.
- step S6401 a step of determining based on information emphasized by the user can be added between steps S6401 and S6402 or between S6404 and S6405.
- step S6401 a step of determining whether or not the user attaches importance to a significant difference between sellers can be added. If it is important, the process proceeds to step S6402. If it is not important, the process proceeds to step S6403.
- the information that is emphasized by the user may be stored in the user DB 102 at the time of user information registration in the initial registration process of S05 in FIG.
- the requested program may be attached and transmitted, and the information may be obtained by local processing in the user terminal 30.
- the evaluation result output unit 14 of the value evaluation server 10 selects a comment.
- a program for executing a result output process and selecting a comment is It may be transmitted to the user terminal 30 as a client program and processed locally on the user terminal 30 side.
- FIG. 42 is a diagram illustrating an example of a table expressing the determination contents of the result output process. Users can grasp the recommended content as a selection criterion for sellers or sales agents by referring to a combination of such judgment patterns in a tabular format and statistical results. It is possible to select a seller or a sales agent more accurately after understanding the overall picture of recommended selection criteria.
- the user terminal 30 outputs the result information including the statistical result and the comment output from the value evaluation server 10 by screen display or voice, so that the user can receive the result of the value evaluation between the survey targets.
- Reference / confirmation is made (S607).
- a message prompting reconfirmation of a product or service to be estimated and determination of a purchased product may be displayed.
- it is determined whether or not the content of the estimation target by the user has been modified by the user (S608).
- the user has made corrections such as adding a product other than the target product of the request for quotation as a purchased product, etc., recalculate the estimate contents and correct the estimated total amount, etc. (S609).
- the user terminal 30 recalculates the fields such as “subtotal” and “total charge”. Accordingly, the contents of the estimated price in the statistical result table or graph presented to the user shown in FIG. 40 may be updated.
- the recalculation process may be performed by the evaluation result output unit 14 of the value evaluation server 10 that has received a recalculation request from the user terminal 30, or the user terminal 30 may be executed by a client program or spreadsheet software. Local processing may be performed on the side.
- the estimated purchase date and time of the unquoted product accepts the date and time after the estimated purchase date and time of the estimate request product, and if it is not the same as the estimated purchase date and time of the estimate request product, it is temporarily stored in the estimate request schedule of the user DB 102. Then, a temporary automatic quotation request process may be activated a predetermined time before the scheduled purchase date and time. At this time, target quotation request commodity information is also temporarily stored in the quotation request commodity list of the user DB 102 and associated with the date and time. After the temporary automatic quotation request process is activated, the temporary storage information is deleted from the user DB 102.
- step S ⁇ b> 608 if there is no correction to the content of the estimation target by the user, the user can determine the final estimation content or the content of the comment recommending the statistical result and selection criteria by the value evaluation server 10.
- the sales agent who purchases the merchandise or the like or requests the sales agent service is determined (S610).
- step S07 of FIG. 30 The processing flow of the evaluation history information recording process in step S07 of FIG. 30 is substantially the same as the processing flow shown in FIG. 26 of the first embodiment. That is, in step S610 of FIG. 31, the user selects the relationship between the value and price of the seller and the sales agent and the seller and the sales agent that are output by the value evaluation server 10 in advance. Information on recommended methods and the like are referred to and confirmed via the user terminal 30, and a combination of a seller and a sales agent is selected and a product to be purchased is determined.
- the user uses the user terminal 30 to make a payment for the product, etc., for which purchase has been decided by a predetermined method such as Internet banking, credit card, electronic money, etc.
- the user terminal 30 inputs necessary information such as information relating to payment, such as the option that has been selected, and transmits the purchase payment information related to the selected seller, sales agent, and the determined product to the value evaluation server 10. (S401).
- the value evaluation server 10 Upon receiving the purchase settlement information, the value evaluation server 10 transfers a copy of the purchase settlement information to the merchandise provision system 20 of the seller selected by the user and the sales agency system 21 of the selected sales agent. (S402).
- the product provision system 20 and the sales agent system 21 that have received the purchase settlement information perform sales and settlement processing on the target product based on the contents of the received purchase settlement information, and value evaluation is performed on the processing result including the sales settlement information. It transmits to the server 10 (S403).
- the sales settlement information includes, for example, the contents of the target product, information on the seller and the sales agent, the sales amount, and information on the user who has purchased.
- the value evaluation server 10 that has received the sales settlement information from both the merchandise providing system 20 of the target seller and the sales agent system 21 of the target sales agent, the sales settlement information and the purchase settlement information received in step S402. Confirm that the target product, price, and other sales conditions are the same. Further, the questionnaire processing unit 15 specifies and extracts information on a questionnaire for inputting evaluations on the target seller and sales agent (or products sold by them) from the questionnaire DB 105 (S404). This questionnaire can be obtained by adding a question item related to a sales agent to the one shown in the example of FIG. 27 of the first embodiment, for example. The questionnaire preferably includes a plurality of questions associated with the type of seller, sales agent, product, or the like.
- the questionnaire processing unit 15 transmits the extracted questionnaire information and the sales settlement information received from the product providing system 20 and the sales agent system 21 to the user terminal 30 (S405).
- the information to be transmitted may include help information related to a questionnaire input method and the like.
- the user terminal 30 receives the information and outputs it to the user, so that the user can receive the product or the like purchased from the sales agent according to the information, Evaluations for agents, purchased products, etc. can be entered into the questionnaire.
- the inputted questionnaire information is transmitted from the user terminal 30 to the value evaluation server 10 (S406).
- the value evaluation server 10 extracts the contents of the questionnaire input by the questionnaire processing unit 15 and evaluates it as evaluation information for the target seller, sales agent, purchased product, etc. Record in the history DB 104 (S407).
- the questionnaire processing unit 15 transmits the questionnaire again to the user terminal 30 when the questionnaire input result cannot be received even after a predetermined period of time has elapsed since the transmission of the questionnaire in step S405. You may ask for a reminder.
- various methods can be used for exchanging questionnaire information between the value evaluation server 10 and the user (user terminal 30).
- a questionnaire file in which the contents of a question and an answer column for evaluating each evaluation index are described is transmitted from the value evaluation server 10 to the user terminal 30, and the user
- the file can be configured to be returned to the value evaluation server 10.
- an HTML that displays the contents of the question on a web browser (not shown) on the user terminal 30 and receives input answer data
- the questionnaire information may be configured as a file or the like. Further, a configuration may be adopted in which a questionnaire is conducted by telephone, FAX, mail, etc., and an answer content is input to the evaluation history DB 104 of the value evaluation server 10 by an operator or the like.
- the number of survey target groups related to the evaluation of value is set to 1, so there is no need for a matrix table for two types of survey target groups, and therefore significant without reducing the number of survey targets.
- the difference can be tested. For example, whether or not there is a statistically significant difference between sellers by randomly extracting and ranking a predetermined number of information evaluated by each user for each of a plurality of sellers and performing statistical calculations Can be determined. Further, by performing the same calculation for each user, a significant difference between users can be determined.
- the conditions such as the number of data necessary for the calculation are the same as those described in the first embodiment.
- the Kruskal-Wallis test or the Wilcoxon test is used in a situation where the two companies (the seller and the sales agent) mutually affect the value of the evaluation index as in the example of the present embodiment described above. And the evaluation data obtained for each combination of survey targets (between two operators) in the matrix table cannot be statistically calculated. Therefore, the statistical accuracy is compared to the Friedman test or Wilcoxon signed rank test. It will be inferior.
- the value evaluation support system has the same configuration and function as the value evaluation support system 1 according to the first or second embodiment, and further uses evaluation for statistical calculation. It has a function of selecting an appropriate supplementary explanation for the result of the statistical calculation from the combination of the property of the data and the information related to the statistical calculation, and outputting and notifying it via the user terminal 30.
- This supplementary explanation can be output when the evaluation result output unit 14 of the value evaluation server 10 outputs the processing result to the user terminal 30, for example.
- a client program that performs such processing may be transmitted to the user terminal 30 and an appropriate supplementary explanation may be selected and displayed by local processing on the user terminal 30 side. Thereby, even when there is no knowledge about statistical calculation, the user can understand easily and in detail about the degree of reliability of the statistical result output by the value evaluation server 10.
- FIG. 43 to 44 are diagrams showing examples of supplementary explanation setting tables that hold supplementary explanation contents corresponding to combinations of properties of evaluation data used for statistical calculation and statistical calculation information.
- FIG. 43 is a diagram showing an example of a part in the supplementary explanation setting table that defines the property of the evaluation data and the combination of statistical calculation information for each of a plurality of investigation objects (survey objects A, B,).
- the nature of the evaluation data in each survey target is defined by items such as the number of samples of evaluation data, the number of abnormal values, the acquisition period, the number of evaluators, as shown in the figure.
- the number of abnormal values indicates, for example, the number of evaluation data outside the range of a predetermined threshold (for example, average value of evaluation data ⁇ 4 ⁇ , etc.).
- the number of evaluators indicates, for example, the number of persons who have evaluated the evaluation index (provided evaluation data). In the first embodiment and the second embodiment described above, this corresponds to the number of writers who have filled in an answer to the questionnaire that is the basis for obtaining the evaluation data.
- acquisition period indicates the period of the entry date entered by the entrant in the questionnaire.
- the nature of evaluation data used for statistical calculation is defined for each survey target.
- the evaluation data included in one survey target may be a value determined by a combination of a plurality of evaluation indexes or other survey targets.
- the target evaluation data for example, a value that compares the values for each combination with another evaluation index or another survey target and that most deteriorates the accuracy of statistical calculation is used.
- the number of samples is the number of data in the combination with the smallest number of data among the plurality of combinations of the survey target A.
- the number of abnormal values the number of abnormal values in the combination having the largest number of abnormal values among a plurality of combinations of the investigation target A is used.
- the acquisition period the acquisition period in the combination having the shortest data acquisition period among the plurality of combinations of the survey target A is used.
- the number of evaluators uses the number of evaluators in the combination having the smallest number of evaluators among the plurality of combinations of the survey target A.
- Statistic calculation information is information on values and conditions used for statistical calculation, and is defined by items such as significance level, test method, P value range, average rank, approximate distribution, as shown in the figure.
- the P value is not a type for obtaining a significant point (limit value) when using various test tables or distribution tables in statistical calculation, but P value (significant). It is a numerical value specified using a test table or a distribution table of a type for obtaining a probability.
- the P value is specified from the FR amount, the number k of survey targets, and the number m of significant evaluation indexes using a Friedman test table of a type for obtaining the P value.
- the P value is specified from the FR amount and the degree of freedom ⁇ using a chi-square distribution table of a type for obtaining the P value.
- the range of the P value is shown as a percentage.
- the average rank indicates information on whether or not the average rank used when the evaluation data has the same value or the same rank in step S3214 in FIG.
- the approximate distribution indicates information on whether or not the approximate distribution used when the number of data is large or the average ranking is used, such as a chi-square distribution or a normal distribution.
- No. 1 is sequentially applied from 1 for each combination pattern of the evaluation data property and statistical calculation information for each survey target. Can be identified.
- FIG. 44 is a diagram showing an example of a part in the supplementary explanation setting table that defines the contents of the supplementary explanation corresponding to the combination of the evaluation data property and the statistical calculation information for each survey target.
- the contents of supplementary explanations such as comments, conclusions, and advice to be presented to the user are defined.
- the contents of each supplementary explanation are expressed by symbols (C1, D1, A1, etc.) instead of the explanatory text, and the specific explanatory text may be held as another table or data.
- FIG. 45 is a diagram showing an example of a table defining a pattern of explanatory text for supplementary explanation.
- the evaluation result output unit 14 performs step S340 in FIG. 5 or step S640 in FIG.
- the statistical calculation information in the statistical calculation in steps S320 and S330 and step S630 in FIG. 31 and the nature of the evaluation data used for the test are specified.
- the contents of each item of the supplementary explanation are extracted from the supplementary explanation setting table shown in FIGS. 43 and 44 and the table defining the explanatory text pattern of the supplementary explanation of FIG. .
- the content of the extracted supplementary explanation is transmitted to the user terminal 30 together with the result of the statistical processing or the like in step S340 of FIG. 5 or step S640 of FIG.
- step S401 in FIG. 26 the user refers to the explanatory text such as comments, conclusions, and advice in the supplementary explanation transmitted from the value evaluation server 10 via the user terminal 30 when determining the product to be purchased. To do. This makes it possible to understand the degree of reliability of the statistical calculation results and to make a purchase decision more accurately.
- the evaluation result output unit 14 selects the contents of supplementary explanation for each test, The user is notified of the result of the test and the corresponding supplementary explanation. Thereby, the user can grasp
- the process of selecting supplementary explanation can be made to correspond to various tests in the first and second embodiments.
- corresponding supplementary explanation items may be extracted from the statistical calculation information obtained by the test and the nature of the evaluation data used for the test.
- it may be performed after the Friedman test, Kruskal-Wallis test, or Wilcoxon test.
- a supplementary explanation can be selected by the same method as described above after the statistical calculation.
- the evaluation result output unit 14 may perform processing such as directly selecting recommended products instead of selecting supplementary explanations. For example, instead of selecting the supplementary explanation of “D8” in the example of FIG. 45, the product having the highest value and the lowest price shown in FIG. 15B is specified, and this information is used as the recommended product. You may transmit to the terminal 30. Alternatively, both the supplementary explanation of “D8” and the information on the specified product may be transmitted to the user terminal 30. Thereby, the user can be notified of the statistically most valuable product or the like. Further, for example, in the result output process of step S340 in FIG. 5, by notifying the user of the product specified when performing the process of step S3410 or S3411 in FIG. 24, the optimal product etc. for the user is recommended. can do.
- various evaluation indexes indicating the value of a product or the like are presented in the first to third embodiments of the present invention.
- an evaluation index having a statistically significant difference By presenting an evaluation index having a statistically significant difference to the user, it is possible to exclude an evaluation index having no significant difference from the judgment materials at the time of purchasing the product. Thereby, it is possible to support the determination of the difference in value when the user purchases a product or the like, and to improve the value determination power.
- the statistical calculation is performed directly on the nonparametric data. It is possible to improve the accuracy of statistical calculation by solving the above problem.
- the parametric data is statistically calculated as non-parametric data, whereby all evaluation indexes can be evaluated by a unified calculation method and criteria. Therefore, if a significant difference is determined for all necessary evaluation indexes, it is possible to determine a difference in value existing between products and the like.
- a statistically significant difference between sellers is determined by using a Wilcoxon signed rank test or a Friedman test to determine a significant difference from a combination of a statistically significant evaluation index and multiple sellers. And provide information to support the seller's choice.
- the user can receive recommendation of an appropriate selection criterion such as a product from the combination with the calculated statistical result by showing the evaluation index that the user attaches importance to the value evaluation server 10.
- an evaluation index of the value of a product etc. affected by two types of businesses (for example, a seller and a sales agent) (the influence of the two businesses is entangled)
- the evaluation index data by the two types of combinations do not exist in many combinations, the Kruskal-Wallis test is used to make a significant difference, but the accuracy is slightly inferior to the Friedman test, but the value for more survey subjects It can be evaluated and can be judged accurately, clearly and easily.
- the significant difference existing between any two operators is determined by Wilcoxon signed rank test or Wilcoxon test.
- the significant difference between the operators in all combinations can be further determined.
- the user can receive the recommendation of the operator's selection criteria from the combination with the calculated statistical result by indicating the type of the operator that the user attaches importance to the value evaluation server 10.
- the properties and statistics of evaluation data used for statistical calculation An appropriate supplementary explanation for the result of the statistical calculation is selected and notified from the combination with the information related to the calculation.
- the user can easily and in detail understand the degree of reliability of the statistical result.
- the recommended product etc. using the selected supplementary explanation information, it is possible to recommend a product that is statistically most valuable to the user or optimal for the user.
- the present invention is not limited to this.
- the value of a survey object whose value is expressed by an evaluation index such as sensory evaluation data where the data itself is ambiguous (large variation) or an evaluation index where data is ambiguous due to low measurement accuracy.
- an evaluation index such as sensory evaluation data where the data itself is ambiguous (large variation) or an evaluation index where data is ambiguous due to low measurement accuracy.
- surveys of products, services, brands, companies, political parties, talents, characters, mascots, etc. and surveys on the value evaluated by evaluation indexes with many ambiguous data such as popularity, support rate, and favorableness.
- the present invention can be applied to a system that performs prediction and the like.
- evaluation data accumulated for each survey target for a certain evaluation index is extracted, converted into rank data, and then statistically significant difference is determined.
- the Wilcoxon test is used for comparison between two persons, and the Kruskal-Wallis test is used for three or more persons.
- Wilcoxon's signed rank test is performed. Use Friedman's test for more than 3 persons. Using the obtained test result, a comment or the like set in advance is selected and a survey result is created.
- a prediction based on various evaluation indices for example, even when predicting CD ranking or land value, etc., it is possible to test the significant difference between survey subjects and create a prediction result. it can.
- the robot CPU may be applied to a system that converts a person's emotion into rank data, causes the robot CPU to statistically calculate the difference in emotion, and selects an action to be taken by the robot. it can. More specifically, for example, the loudness of a person's speaking voice is measured and recorded multiple times in advance, and compared with the loudness of the voice measured and recorded multiple times at the present time, the human emotion is valued. Can be implemented as a program.
- n MIN when the number of evaluation data n MIN ⁇ 15, W amount ⁇ W L ( ⁇ ) when the W amount consists of a past sample, and W amount ⁇ W when the W amount consists of the current sample. If U ( ⁇ ), it is determined that the current voice is stronger at the significance level ⁇ . Further, n MIN if the case of ⁇ 15 or have the same value, the W content is u 0 weight ⁇ when consisting of past samples ⁇ -u (2 ⁇ ) ⁇ , u 0 when the W content consists current sample When the amount ⁇ u (2 ⁇ ), it is determined that the current voice is stronger at the significance level ⁇ .
- the present invention can be applied to a program that analyzes an image or video of an indefinite person or an object and determines whether or not a predetermined condition is met. For example, for cells with normal shape and cancer cells with slightly distorted shape, the shape such as the diameter of the cell is measured and stored from multiple angles, and is expressed by the shape between the cancer cell and the normal cell. It can be determined whether there is a significant difference in value.
- a Wilcoxon signed rank test is used to determine whether or not there is a difference in shape of the cells at the significance level ⁇ (that is, whether or not cancer cells can be distinguished by shape) and set in advance. You can select the conclusions of the survey you have made.
- the length measured and recorded several times in the past and the length measured and recorded several times in the past are converted into rank data, and Wilcoxon test is used. Compare. Thereby, it is possible to determine whether or not the current length of the lips in the horizontal direction is longer (whether or not a person is smiling).
- the number of survey targets number of people
- record the length for each survey target (people) and tense current or past
- rank average length for each combination. Conversion to data may be performed using Wilcoxon signed rank test. This evaluates the difference in value represented by the horizontal length of the lips (the degree to which multiple people are smiling). For example, whether or not the audience was smiling at a performance such as a comedy or a laugh. It is also possible to determine whether or not you are pleased.
- Parametric data such as the degree of distortion of the shape of the cancer cell and the horizontal length of the lips when a person is smiling, even if an image measurement device with high measurement accuracy is used, the measurement object itself varies greatly. If the statistical calculation is performed as it is, the determination accuracy may decrease. In such a case, by using the mechanism as shown in the first to third embodiments of the present invention, by converting these parametric data into rank data that is nonparametric data, statistical calculation is performed. Reasonable and appropriate statistical significance can be determined.
- the evaluation index is not particularly limited as long as it can represent the value of the product or the like.
- various indicators such as a nominal scale, an order scale, an interval scale, or a proportional scale can be used.
- the nominal scale includes, for example, three colors of red, blue, and yellow, which are the three primary colors of light, but these are noun information and do not represent the magnitude relationship.
- a magnitude relationship is created in the order of blue, yellow, and red.
- the radio button displays the color of the heater (stove) as blue (3), yellow (2), red (1), etc.
- the evaluation of the value of the heating appliance can be performed as an evaluation index of “the effect of feeling warmth”.
- processing procedure described in each of the above-described embodiments particularly processing related to statistical calculation (for example, statistical processing in step S320 in FIG. 5 or step S630 in FIG. 31 and between survey targets in step S330 in FIG. 5).
- the processing procedure in the (significant difference determination process) is merely an example. Needless to say, as long as the same processing result can be obtained, optimization or the like by appropriately changing the order of some processes is possible.
- steps S3204, S3208, and S3213 in FIG. 6 and steps S3224, S3228, and S3232 in FIG. 7 that are ranking processes are performed in the same manner.
- the processing branches such as before step S3201 immediately after the start of statistical processing
- the processing may be performed in common.
- determination of the same rank is performed instead of determination of the same value.
- steps S3305 and S3308 in FIG. 16 perform the same FR amount calculation processing. Therefore, these processings may be integrated and placed in common between steps S3303 and S3304. .
- the value evaluation support system 1 includes a price survey process (for example, step S02 in FIG. 2) in which the value evaluation server 10 acquires information on a product such as a price, and the value of the product etc.
- a price survey process for example, step S02 in FIG. 2
- the value evaluation server 10 may be configured to cause a price survey process to be performed by another server (price survey process dedicated server not shown).
- the server dedicated to price survey processing receives a request from the user, performs price survey processing, and requests the value evaluation server 10 to calculate value evaluation information regarding the specified product.
- the value evaluation server 10 that has received the request identifies the target product or the like from the received request information, and performs value evaluation processing by the same processing as described above.
- the processing result is returned together with the questionnaire information including the questionnaire entry request to the price survey processing dedicated server that transmitted the request.
- the value evaluation server 10 receives the information that the user wrote in the questionnaire and sent it, records it in the evaluation history DB 104, and ends the evaluation history information recording process in step S04 of FIG.
- the product etc. providing system 20 or the sales agent system 21 may have the function of the above-described price survey dedicated server, or may further have the function of the value evaluation server 10. Further, the product providing system 20, the sales agent system 21, and the value evaluation server 10 may have the functions of the user terminal 30, respectively.
- a significance level is set in advance and the presence or absence of a significant difference is determined.
- the degree of significant difference may be indicated depending on the size.
- the P value is obtained by the above-described method. You may transmit to the user terminal 30 with the message to the effect of determining with it being small.
- a significance level is used as the threshold value for determination, it is possible to determine a significant difference as in the first to third embodiments.
- the seller is not particularly limited as long as it is an entity capable of selling products and the like.
- an entity other than a person Computer systems etc.
- the sales agent is not particularly limited as long as it is an entity that can receive the product from the seller on behalf of the user and deliver it to the user.
- subjects other than humans can be widely applicable when possible.
- the user is not particularly limited as long as it is an entity capable of requesting a value evaluation survey.
- an entity other than a person may be widely applicable.
- the present invention can be used in a value evaluation support system and a value evaluation support program that provide information related to a difference in value as a judgment material to a user when there are a plurality of compatible products and services.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
The invention is a valuation assistance system that enables a user to more precisely, accurately and simply assess a value disparity between products or services before purchase. The invention is provided with: a valuation server that determines the statistically significant difference for a value disparity between items to investigate, and outputs a result; and a user terminal. The valuation server comprises: a valuation information input unit that receives input of valuation data related to the items to investigate, and stores said data in a valuation history database; a valuation history information acquisition unit that extracts valuation data from the valuation history database, for each valuation indicator, for each of multiple user-selected items to investigate; a statistical calculator that determines the statistically significant difference between the items to investigate, using a statistical calculation based on ranking data computed by a predetermined procedure on the basis of extracted valuation data; and a valuation result output unit that outputs statistical calculation result information to the user terminal, along with recommendation information related to a value disparity assessment standard selected on the basis of information indicating the statistically significant difference between the items to investigate.
Description
本発明は、コンピュータを用いた商品やサービスの売買システムの技術に関し、特に、適合する商品やサービスが複数存在する場合に、利用者に対して判断資料としてそれぞれの価値の差に係る情報を提供する価値評価支援システムおよび価値評価支援プログラムに適用して有効な技術に関するものである。
The present invention relates to a technology for trading systems for products and services using a computer, and in particular, when there are a plurality of compatible products and services, provides information related to the difference in values as judgment materials to a user. The present invention relates to an effective technology applied to a value evaluation support system and a value evaluation support program.
コンピュータを用いた商品やサービス(以下では「商品等」と記載する場合がある)の売買システムは数多く存在するが、このようなシステムで取り扱われる商品等は、その価値において個体差がない、または、商品等に添付して提示される詳細情報から利用者が価値の差異を推測して購入する商品等を決定することができるものであるのが通常である。
There are many trading systems for products and services using computers (hereinafter sometimes referred to as “products, etc.”), but there are no individual differences in the value of products handled by such systems, or In general, a user can determine a product to be purchased by estimating a difference in value from detailed information presented attached to the product.
例えば、インターネット販売を介してある種のノートパソコンを購入するような場合、どのシリアル番号のノートパソコンも個体差がなく、同じ価値である事が前提である。機種によっては長期間在庫となっていて付属するバッテリーの寿命が短いものなどがある場合もあり得るが、このような個体差は一般的にはないことが前提となっている。
For example, in the case of purchasing a certain kind of notebook computer through Internet sales, it is assumed that the notebook PC with any serial number has no individual difference and has the same value. Depending on the model, there may be cases where the battery has been in stock for a long time and the battery life of the attached battery is short, but it is assumed that such individual differences are not common.
従って、利用者が要望する条件に合致するノートパソコンが複数種類存在する場合などは、それらの詳細情報と価格を提示することで、モデル間などに存在する価値の差異を利用者に理解させる方法がとられている。例えば、メーカー名を比較表示することで、メーカー間にある品質や人気度、ブランド力等の価値の差異を理解させたり、CPUの性能やHDDの容量、ディスプレイの解像度等を表示することで、利用者に性能や品質等における価値の差異を推測させたりする方法をとっている。
Therefore, when there are multiple types of notebook computers that meet the user's requirements, a method for making the user understand the difference in value that exists between models, etc. by presenting their detailed information and price. Has been taken. For example, by comparing and displaying manufacturer names, you can understand the difference in value such as quality, popularity, brand power, etc. among manufacturers, by displaying CPU performance, HDD capacity, display resolution, etc. The method is to make the user guess the value difference in performance and quality.
一方で一部の分野では、専用のシステムやプログラム等により、特定の評価対象の価値をパラメトリックデータ(母集団の分布に関して正規分布等の特定の分布に従うことを仮定したデータ)から計算・評価するということも行なわれている。
On the other hand, in some fields, the value of a specific evaluation target is calculated and evaluated from parametric data (data assuming a specific distribution such as a normal distribution with respect to the distribution of the population) using a dedicated system or program. That is also done.
例えば、特開2005-322089号公報(特許文献1)には、企業ブランド価値を、売上等のパラメトリックデータを用いて、統計計算(平均、分散、傾向等)により定量評価するシステムが記載されている。また、特開2010-286997号公報(特許文献2)には、評価対象記事に含まれる語句の出現回数の偏差に基づいて、当該評価対象記事の価値を示す評価値を算出するシステムが記載されている。また、特開2002-299668号公報(特許文献3)には、太陽光発電設備の価値を、日射量や発電コスト等の性能値に基づいて定量的に評価するシステムが記載されている。
For example, Japanese Patent Laying-Open No. 2005-322089 (Patent Document 1) describes a system for quantitatively evaluating a corporate brand value by statistical calculation (average, variance, trend, etc.) using parametric data such as sales. Yes. Japanese Patent Laying-Open No. 2010-286997 (Patent Document 2) describes a system that calculates an evaluation value indicating the value of an evaluation target article based on a deviation in the number of appearances of words included in the evaluation target article. ing. Japanese Patent Laid-Open No. 2002-299668 (Patent Document 3) describes a system that quantitatively evaluates the value of a photovoltaic power generation facility based on performance values such as the amount of solar radiation and power generation cost.
一方、評価対象の価値等の差異について、ノンパラメトリックデータ(母集団の分布に関して特定の分布に従うことを仮定しないデータ)を用いた統計計算により計算・評価する手法も提案されている。例えば、特開平10-260995号公報(特許文献4)には、複数個のサンプルに対して複数の試験者が付与した順位データを入力し、入力された順位データの一致性を判定するフリードマン検定を行い、順位データの一致性について有意差があると判定された場合に、各サンプルの順位の関係を判定するためにウィルコクソンの符号付順位和検定を行うことで、各順位データの順位付けの関係の有意差を定量化して明確にする順位評価システムが記載されている。
On the other hand, a method for calculating and evaluating a difference in value to be evaluated by statistical calculation using non-parametric data (data that does not assume that a population distribution follows a specific distribution) has been proposed. For example, Japanese Patent Laid-Open No. 10-260995 (Patent Document 4) inputs rank data provided by a plurality of testers to a plurality of samples, and a Friedman test for determining the consistency of the input rank data. If it is determined that there is a significant difference in the consistency of rank data, Wilcoxon's signed rank sum test is performed to determine the rank relationship of each sample. A rank evaluation system is described that quantifies and clarifies significant differences in relationships.
利用者が商品等を購入しようとする場面では、個々の商品等の間でその価値の差は様々な観点において存在し、価値評価基準は評価する利用者により異なる。従って、例えば商品等の売買システムによって検索等により抽出された商品等の価値を、利用者が、表示された情報のみから推測するという方法では、精度のよい判断はできない。このため現実には、利用者が、購入した商品等の本来の価値を、購入時ではなく使用時に理解することがあり、例えば、使ってみたら想像より悪い商品であったということに気付かされるケースもある。
When a user tries to purchase a product etc., the difference in value among the individual products etc. exists in various viewpoints, and the value evaluation standard varies depending on the user to be evaluated. Accordingly, for example, a method in which the user estimates the value of a product or the like extracted by a search or the like by a product trading system cannot be judged with high accuracy. Therefore, in reality, the user may understand the original value of the purchased product at the time of use rather than at the time of purchase. For example, when using it, the user notices that the product was worse than expected. There is also a case.
例えば、上述したノートパソコンの例では、購入3年後にバッテリー寿命を迎え、最寄りのパソコンショップでバッテリー寿命について尋ねると、通常5年以上であることを知らされるなどのケースがある。商品等の本来の価値は、購入時により的確に理解される事が望ましい。同様のケースとしては、例えば、インターネット販売で衣服を購入したが、生地の質感や色合いが説明文や写真からイメージしたものとは異なっていたり、インターネットで歯科医院や弁護士事務所等を検索したところ、沢山ヒットしたが、掲載されている写真や文字情報(利用者のレビュー記事なども含む)等では優劣を付けられなかったりというようなこともある。コンピュータを使った商品等の紹介・販売では、利用者が購入前に現場で実物を確認できないため、この様な不都合が生じる場合が多い。
For example, in the case of the above-described notebook computer, there is a case where the battery life reaches 3 years after purchase, and when it is asked about the battery life at the nearest computer shop, it is usually informed that it is over 5 years. It is desirable that the original value of a product etc. be understood more accurately at the time of purchase. As a similar case, for example, you bought clothes through internet sales, but the texture and color of the fabric is different from what you imagined from the description or photo, or you searched for a dental clinic or lawyer office on the internet. There were a lot of hits, but there are cases where the photos and text information (including user reviews) are not good or bad. Introducing and selling products using a computer often causes such inconvenience because the user cannot confirm the actual product on site before purchase.
これに対し、コンピュータシステムにより、商品等の価値の差異を計算・評価して提示することにより、利用者が商品等を購入する際の選択のための判断資料とすることが考えられる。ここで、商品等に対する価値の評価基準(指標)は利用者により異なり、見栄えや満足度、好感度など、人の感覚によって大きく左右されるものもある。また、これらの指標の中には、例えば、正規分布に従う計量値や、二項分布に従う計数値、ポアソン分布に従う欠点数データなどもあれば、従う分布が不明な分類データや順位データなども混在する。また、指標のデータには個々にバラツキがあることはもちろん、データ測定方法の精度が低いため数値自体の信頼性が低いものもある。
On the other hand, it is possible to use the computer system to calculate, evaluate and present the value difference of the product, etc., so that the user can use it as a judgment material for selection when purchasing the product. Here, the evaluation criteria (indicators) for the value of products and the like vary depending on the user, and there are some that are greatly influenced by human senses such as appearance, satisfaction, and likability. Some of these indicators include, for example, metric values according to normal distribution, count values according to binomial distribution, defect number data according to Poisson distribution, and classification data and rank data with unknown distribution. To do. In addition, there is variation in the index data individually, and some of the numerical values themselves have low reliability due to the low accuracy of the data measurement method.
このような多種多様なデータをある一定の統一した基準で統計処理することが必要となる。しかしながら、例えば特許文献1~3等に記載されたようなパラメトリックデータを用いて価値等を計算・評価する従来技術では、いずれも、ノンパラメトリックな情報については、ある仮定の下でパラメトリックな指標値に置換または変換された上で、パラメトリックデータに対する統計計算の手法が適用されている。
It is necessary to statistically process such a wide variety of data according to certain uniform standards. However, in the conventional techniques for calculating and evaluating the value etc. using the parametric data described in Patent Documents 1 to 3, for example, the parametric index value is assumed under certain assumptions for the nonparametric information. The method of statistical calculation is applied to the parametric data after being replaced with or converted into.
ここで、情報量の少ないノンパラメトリックデータを情報量の多いパラメトリックデータに正しく変換することは本来数学的に不可能であり、不適切な情報が追加されてしまうことになる。このため、たとえコンピュータによる正確な情報処理を行っても、得られる結果の精度や信頼性が不足するという課題を有する。また、それぞれのシステムでは特殊な仮定の下でパラメトリックデータへの置換・変換を行っているため、それぞれの仮定に対応する特定の評価対象にしか適用できないものである。
Here, it is mathematically impossible to correctly convert non-parametric data with a small amount of information into parametric data with a large amount of information, and inappropriate information will be added. For this reason, even if accurate information processing is performed by a computer, there is a problem that accuracy and reliability of a result obtained are insufficient. In addition, since each system performs replacement / conversion to parametric data under special assumptions, it can be applied only to specific evaluation objects corresponding to the respective assumptions.
一方、例えば特許文献4に記載された技術のように、ノンパラメトリックデータを用いた統計計算により、商品等の価値の差異を計算・評価することが考えられる。ここで、特許文献4等に記載された技術では、確かに統計計算を行うことは可能であるが、統計計算の結果情報を得るところまでのみの開示であり、得られた情報をどのように利用・活用するのかというところまでは開示されていない。すなわち、従来技術はあくまで単なる統計計算システムであり、例えば、統計計算の結果として得られた商品等の価値の差異の情報に基づいて、利用者が商品等を選択する際にどのような推奨を行って支援するのかというような、その後の有用な情報処理について具体的な内容を開示するものではない。
On the other hand, as in the technique described in Patent Document 4, for example, it is conceivable to calculate / evaluate the difference in the value of goods etc. by statistical calculation using nonparametric data. Here, with the technique described in Patent Document 4 and the like, it is possible to surely perform statistical calculation, but the disclosure is only up to the point of obtaining statistical calculation result information, and how to obtain the obtained information. It is not disclosed up to the point of use / utilization. That is, the prior art is merely a statistical calculation system. For example, based on information on the difference in value of products obtained as a result of statistical calculation, what kind of recommendation is recommended when a user selects a product, etc. It does not disclose specific contents of subsequent useful information processing such as whether to go and support.
そこで本発明の目的は、上記の問題に鑑み、利用者が、広く一般に売買されている商品やサービスの価値の差異を、購入時に、より正確、的確、かつ容易に判断することが可能となるよう支援する価値評価支援システムおよび価値評価支援プログラムを提供することにある。
In view of the above problems, an object of the present invention is to enable a user to more accurately, accurately, and easily determine a difference in value of goods and services that are widely sold and sold at the time of purchase. It is to provide a value evaluation support system and a value evaluation support program that support the above.
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
本発明の代表的な実施の形態による価値評価支援システムは、曖昧なデータを含む1つ以上の評価指標により価値が表される複数の調査対象について、前記調査対象間の価値の差異についての統計的な有意差を判定して判定結果を出力する価値評価サーバと、前記価値評価サーバにネットワークを介して接続された利用者端末とを有する価値評価支援システムであって、以下の特徴を有するものである。
A value evaluation support system according to a representative embodiment of the present invention provides statistics on a difference in value between a plurality of survey objects whose values are represented by one or more evaluation indexes including ambiguous data. A value evaluation support system having a value evaluation server that determines a significant difference and outputs a determination result, and a user terminal connected to the value evaluation server via a network, having the following features It is.
すなわち、前記価値評価サーバは、前記各調査対象に係る前記評価指標毎の価値の評価結果である評価データの入力を受け、前記評価データを評価履歴データベースに蓄積する評価情報入力部と、前記利用者端末を介して前記利用者から指定された条件に基づいて選択された複数の前記調査対象について、それぞれ前記評価指標毎に前記評価履歴データベースから前記評価データを抽出する評価履歴情報取得部とを有する。
That is, the value evaluation server receives an input of evaluation data that is an evaluation result of the value for each evaluation index related to each survey target, and stores the evaluation data in an evaluation history database, and the use An evaluation history information acquisition unit that extracts the evaluation data from the evaluation history database for each of the plurality of investigation targets selected based on conditions specified by the user via a user terminal Have.
また、前記評価履歴情報取得部によって抽出された前記評価データに基づいて、所定の手順により順位データを算出し、前記順位データに基づく統計計算により、前記各調査対象間の統計的な有意差を判定する統計計算部と、前記統計計算部による統計計算の結果の情報と合わせて、前記統計計算部によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、予め定義されている中から選択した、前記各調査対象間の価値の差異についての判断の基準に係る推奨情報を、前記利用者端末に対して出力する評価結果出力部とを有することを特徴とするものである。
Further, based on the evaluation data extracted by the evaluation history information acquisition unit, rank data is calculated according to a predetermined procedure, and statistical significance between the respective survey targets is calculated by statistical calculation based on the rank data. The statistical calculation unit to be determined and the statistical calculation result by the statistical calculation unit are combined with the information of the statistical calculation result, and are defined in advance based on the statistically significant difference information determined by the statistical calculation unit. An evaluation result output unit that outputs the recommended information related to the determination criteria for the difference in value between the survey targets to the user terminal. is there.
また、本発明は、コンピュータを上記のような価値評価支援システムとして機能させるプログラムにも適用することができる。
The present invention can also be applied to a program that causes a computer to function as the above-described value evaluation support system.
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
本発明の代表的な実施の形態によれば、利用者が、広く一般に売買されている商品やサービスの価値の差異を、購入時に、より正確、的確、かつ容易に判断することが可能となる。
According to a typical embodiment of the present invention, it becomes possible for a user to more accurately, accurately, and easily determine a difference in value of goods and services that are widely sold and sold at the time of purchase. .
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
<概要>
広く一般に売買されている商品等について、その価値を示す評価指標には、例えば、見栄え品質や初期品質、鮮度、コンディション、性能、耐久性、信頼性、希少性、満足度、人気度、好感度、快適性、知名度、ブランド力、安全性、納期遵守率など様々なものがある。 <Overview>
The evaluation indicators that indicate the value of products that are widely sold and sold generally include, for example, appearance quality, initial quality, freshness, condition, performance, durability, reliability, rarity, satisfaction, popularity, and favorable sensitivity. There are various things such as comfort, name recognition, brand power, safety, and compliance rate.
広く一般に売買されている商品等について、その価値を示す評価指標には、例えば、見栄え品質や初期品質、鮮度、コンディション、性能、耐久性、信頼性、希少性、満足度、人気度、好感度、快適性、知名度、ブランド力、安全性、納期遵守率など様々なものがある。 <Overview>
The evaluation indicators that indicate the value of products that are widely sold and sold generally include, for example, appearance quality, initial quality, freshness, condition, performance, durability, reliability, rarity, satisfaction, popularity, and favorable sensitivity. There are various things such as comfort, name recognition, brand power, safety, and compliance rate.
一般に、新品の工業製品などは、所定の高い品質規格に合格した個体間のバラツキの小さい商品が販売されているものの、一部には品質規格外の商品や、規格内ではあるが品質の良くない商品が存在している。
In general, new industrial products, etc., are sold with products with small variations between individuals that have passed a predetermined high quality standard, but some of them are out of quality standards, or within the standard but with good quality. There are no products.
一方、例えば、農作物等の一次産業品や、人や天候などが関係するサービス等では、工業製品と異なり品質のバラツキが大きく、販売に際しては、価値を左右するいくつかの指標のうち一部のみを用いて価格等の条件が決定されるのが一般的である。例えば、キャベツは、重さ(大きさ)や品種などを指標に用いて価格が決定されている。しかしながら、農作物において重要な価値指標である鮮度や傷、色艶等については個体毎に異なることから、利用者は、店頭でそれらの指標をチェックして購入するのが一般的である。従って、これらの商品等については、コンピュータシステムを利用した売買には不向きであるということが言える。
On the other hand, for example, primary industrial products such as agricultural products and services related to people and weather, etc., have a large variation in quality unlike industrial products. Generally, conditions such as price are determined by using. For example, the price of cabbage is determined by using the weight (size), product type, and the like as indicators. However, since freshness, scratches, color gloss, and the like, which are important value indicators in agricultural products, differ from individual to individual, users generally check and purchase those indicators at a store. Therefore, it can be said that these products are not suitable for buying and selling using a computer system.
また、商品等の価値を示す指標の中には、見栄え品質や満足度、好感度などのように、人の感覚よって大きく左右される指標もある。例えば、航空チケットの購入の際に考慮する可能性のある、フライトアテンダントの行うサービスの質や機内食のおいしさ等と言った指標は、人によって評価の基準が異なる。このため、コンピュータを利用した航空券売買システムでは、このような価値指標は利用者に対して提示されない。従って、例えば、複数の航空会社間で、競合する同一の路線で同様な座席の予約が可能であり、かつ価格が同一であった場合に、どちらの航空券の価値が高いかを判断可能とするための適切な情報を提供できないのが現状である。
Also, some indicators that indicate the value of products, etc., are indicators that are greatly influenced by human senses, such as appearance quality, satisfaction, and favorable sensitivity. For example, indicators such as the quality of service provided by flight attendants and the deliciousness of in-flight meals that may be taken into consideration when purchasing an air ticket have different evaluation criteria. For this reason, such a value index is not presented to the user in the air ticket trading system using a computer. Thus, for example, it is possible to make a reservation for the same seat on multiple competing routes, and to determine which ticket is more valuable if the prices are the same. The current situation is that it is not possible to provide appropriate information.
このように、商品等の価値は様々な種類の指標により表現されており、これらの指標には例えば、正規分布に従う長さなどの計量値や、二項分布に従う不良率などの計数値、ポアソン分布に従う欠点数などの計数値などのパラメトリックデータもあれば、従う分布が不明な分類データや順位データなどのノンパラメトリックデータも混在する。また、上述したように、指標のデータには個々にバラツキがあることはもちろん、データ測定方法の精度が低いため数値自体の信頼性が低いものもある。
In this way, the value of goods, etc. is expressed by various types of indicators. For example, these indicators include metric values such as length according to normal distribution, count values such as defect rate according to binomial distribution, Poisson, etc. There are parametric data such as count values such as the number of defects according to the distribution, and non-parametric data such as classification data and rank data whose distribution is unknown. Further, as described above, there are variations in the index data, as well as the reliability of the numerical value itself because the accuracy of the data measurement method is low.
このような多種多様な評価指標のデータをある一定の統一した基準で統計処理するために、本発明の一実施の形態である価値評価支援システムでは、統計処理の手法として、順位データを取り扱うノンパラメトリック法を用いる。多数の評価指標の中で、ノンパラメトリック法を用いた検定により有意差があると判定された評価指標は、商品等の価値の差を示すファクターであると判断できる。従って、これらのファクターを総合して集計した値は、商品等の価値の差を示すものと考えられ、利用者は、この価値の差と価格との関係から、より的確に商品等を選択することが可能となる。
In order to statistically process such a wide variety of evaluation index data according to a certain standard, the value evaluation support system according to an embodiment of the present invention is a non-standard method for handling rank data as a statistical processing technique. Use parametric method. Among many evaluation indexes, an evaluation index determined to have a significant difference by a test using a non-parametric method can be determined as a factor indicating a difference in value of a product or the like. Therefore, the total value of these factors is considered to indicate the difference in value of the product etc., and the user selects the product etc. more accurately from the relationship between the value difference and the price. It becomes possible.
さらに、利用者はそれぞれ様々な価値基準を持っているので、本発明の一実施の形態である価値評価支援システムでは、有意な評価指標を重視する利用者には、有意な評価指標と価格との関係から最適な商品等を選択するよう勧める。また、有意でない評価指標を重視する利用者には、価格のみから商品等を選択するよう勧める。このように、利用者が重視する評価指標の提示と、これに対する最適な商品等の選択基準の推奨という、利用者とコンピュータとの対話に基づいて、利用者が商品等の価値の差異を評価することを支援し、これにより、最適な商品等を選択する方法を提供するものである。
Furthermore, since each user has various value standards, in the value evaluation support system according to an embodiment of the present invention, a significant evaluation index, price, It is recommended to select the most suitable product from the relationship. Also, users who place importance on insignificant evaluation indices are encouraged to select products etc. from price alone. In this way, the user evaluates the difference in the value of the product etc. based on the dialogue between the user and the computer, such as the presentation of the evaluation index that the user places importance on and the recommendation of the selection criteria for the optimum product etc. This provides a method for selecting optimal products and the like.
従来の技術では、価値を表す評価指標は多数存在するので、商品等の価値を理解するには、全ての評価指標を加味した上で判断する必要があった。しかし、本発明の一実施の形態である価値評価支援システムでは、統計的な検定手法を用いて、多数の評価指標の中から有意差のある評価指標を取り出すことができる。従って、利用者は、絞り込まれた少数の評価指標に基づいて商品等の価値の差異をより的確に理解することができる。また、利用者は、統計計算によって絞り込まれた評価指標と価格とから、どのように商品等を選択すればよいのかについてコンピュータと対話し、例えば選択肢の中から特定することができるため、選択方法に迷うことがない。
In the conventional technology, there are a large number of evaluation indexes representing value, and in order to understand the value of products, etc., it was necessary to make a judgment after taking into account all evaluation indexes. However, in the value evaluation support system which is one embodiment of the present invention, an evaluation index having a significant difference can be extracted from a large number of evaluation indices using a statistical test method. Therefore, the user can more accurately understand the difference in the value of the product etc. based on the small number of evaluation indexes that have been narrowed down. In addition, the user can interact with the computer on how to select a product etc. from the evaluation index and price narrowed down by the statistical calculation, and can specify from among the options, for example. Never get lost.
統計計算に用いる評価指標のデータは、原則として、コンピュータシステムによる売買を利用した利用者に対して、商品やサービスの使用や利用または消費後に、アンケート調査を行うことにより得る。商品等を利用しない第三者や商品等を販売する販売者などに対するアンケート調査により得ることも可能である。また、アンケート以外の方法であってもよく、例えば、質問票や体験レポート等により得ることも可能である。アンケート調査等の手段により、利用者は、商品等の価値を表す複数の評価指標について、例えば、評価点(0~100点)などを入力する。ここで、評価点のようなパラメトリックデータは、統計処理の際にノンパラメトリックデータである順位データに変換された上で有意差の判定が行われる。
* In principle, evaluation index data used for statistical calculation is obtained by conducting a questionnaire survey to users who use computer system trading after using, using or consuming goods or services. It can also be obtained by a questionnaire survey for a third party who does not use the product or the like or a seller who sells the product or the like. In addition, a method other than a questionnaire may be used, and for example, it can be obtained by a questionnaire or an experience report. By means of a questionnaire survey or the like, the user inputs, for example, evaluation points (0 to 100 points) and the like for a plurality of evaluation indexes representing the value of the product or the like. Here, parametric data such as evaluation points are converted into rank data that is non-parametric data during statistical processing, and then a significant difference is determined.
<実施の形態1>
本発明の実施の形態1である価値評価支援システムは、航空券の売買を例として、コンピュータシステムを用いて販売者と利用者との間で航空券の売買が行われる際に、利用者の条件に適合する各航空券(航空会社)の価値の差異を評価して、これに基づいて、利用者に対して航空券を購入する航空会社を選択する際の基準を推奨するものである。 <Embodiment 1>
The value evaluation support system according to the first embodiment of the present invention uses a computer system as an example for buying and selling airline tickets, and when the airline tickets are bought and sold between a seller and a user, The difference in the value of each air ticket (airline company) that meets the conditions is evaluated, and based on this, a standard for selecting an airline company that purchases the airline ticket is recommended to the user.
本発明の実施の形態1である価値評価支援システムは、航空券の売買を例として、コンピュータシステムを用いて販売者と利用者との間で航空券の売買が行われる際に、利用者の条件に適合する各航空券(航空会社)の価値の差異を評価して、これに基づいて、利用者に対して航空券を購入する航空会社を選択する際の基準を推奨するものである。 <
The value evaluation support system according to the first embodiment of the present invention uses a computer system as an example for buying and selling airline tickets, and when the airline tickets are bought and sold between a seller and a user, The difference in the value of each air ticket (airline company) that meets the conditions is evaluated, and based on this, a standard for selecting an airline company that purchases the airline ticket is recommended to the user.
なお、本実施の形態では航空券の売買を例とするが、販売する商品は航空券に限るものではなく、販売者は航空会社に限るものではないことは当然である。例えば、ホテル等の宿泊施設経営会社が宿泊サービスを販売するケースであってもよい。また、電化製品や、自動車、貴金属、日用雑貨衣服等の各種商品や、他の各種サービスを販売するケースであってもよい。
In this embodiment, the buying and selling of an air ticket is taken as an example, but the product to be sold is not limited to an air ticket, and the seller is naturally not limited to an airline. For example, an accommodation facility management company such as a hotel may sell accommodation services. In addition, it may be a case in which various products such as electrical appliances, automobiles, precious metals, daily goods clothes, and other various services are sold.
本実施の形態では、2つの調査対象(例えば、航空会社1と2)について、ある一つの評価指標(例えば、満足度)を比較し、統計的有意差があるか否かを判定するウィルコクソンの検定法を用いるものとする。また、2つの調査対象について、複数の評価指標を比較する場合は、ウィルコクソンの符合付順位検定を用いるものとする。また、3つ以上の調査対象について、ある一つの評価指標を比較する場合は、クラスカル・ウォリス検定を用いるものとする。また、3つ以上の調査対象について、複数の評価指標を比較する場合は、フリードマン検定を用いるものとする。
In the present embodiment, Wilcoxon's of two survey subjects (for example, airlines 1 and 2) is compared with one evaluation index (for example, satisfaction) to determine whether or not there is a statistically significant difference. The test method shall be used. In addition, when comparing a plurality of evaluation indices for two survey subjects, Wilcoxon's signed rank test shall be used. In addition, the Kruskal-Wallis test is used when comparing one evaluation index for three or more survey targets. In addition, the Friedman test shall be used when comparing multiple evaluation indices for three or more survey targets.
[システム構成]
図1は、本発明の実施の形態1である価値評価支援システム1の構成例について概要を示した図である。価値評価支援システム1は、ネットワーク40に対して価値評価サーバ10、複数の商品等提供システム20(図1の例では20a~20d)、および利用者端末30が接続され、相互に通信可能な構成を有している。 [System configuration]
FIG. 1 is a diagram showing an outline of a configuration example of a valueevaluation support system 1 according to the first embodiment of the present invention. The value evaluation support system 1 is configured such that a value evaluation server 10, a plurality of product etc. providing systems 20 (20a to 20d in the example of FIG. 1), and a user terminal 30 are connected to a network 40 and can communicate with each other. have.
図1は、本発明の実施の形態1である価値評価支援システム1の構成例について概要を示した図である。価値評価支援システム1は、ネットワーク40に対して価値評価サーバ10、複数の商品等提供システム20(図1の例では20a~20d)、および利用者端末30が接続され、相互に通信可能な構成を有している。 [System configuration]
FIG. 1 is a diagram showing an outline of a configuration example of a value
商品等提供システム20は、商品等の販売者が商品等の販売を行うための情報処理システムであり、本実施の形態では、例えば、各航空会社における航空券の販売を行うためのコンピュータシステムである。商品等提供システム20は、それぞれ、商品等(航空券)の販売を行うための情報を商品等内容データベース(DB)201(図1の例では201a~201d)に保管している。商品等内容DB201には、例えば、航空便名、出発地、出発時間、到着地、到着時間、座席番号、機種、価格、乗客個人情報などの商品等の販売に必要な各種情報が含まれる。
The product etc. providing system 20 is an information processing system for sellers of products etc. to sell products etc. In this embodiment, for example, it is a computer system for selling airline tickets at each airline. is there. The product etc. providing system 20 stores information for selling products etc. (air tickets) in a product etc. content database (DB) 201 (201a to 201d in the example of FIG. 1). The product content DB 201 includes, for example, various information necessary for sales of products such as an airline name, departure place, departure time, arrival place, arrival time, seat number, model, price, passenger personal information, and the like.
価値評価サーバ10は、利用者と販売者(航空会社)との間で商品等(航空券)の販売の仲介を行う事業者または情報検索サービス提供者等によって運用管理されるサーバ機器等からなるコンピュータシステムであり、利用者と販売者に関する情報、および利用者または販売者が商品等について評価した情報を保管する。また、利用者と販売者との間で商品等の売買が行われる際に、利用者が指定した条件に適合する商品等の情報を各商品等提供システム20から収集し、それらの価値の差異を評価して、これに基づいて、利用者に対して商品等(もしくは当該商品等を販売する販売者)を選択する際の基準を推奨する。
The value evaluation server 10 is composed of a server device or the like that is operated and managed by a business operator or an information search service provider that mediates sales of goods and the like (air ticket) between a user and a seller (airline company). It is a computer system that stores information about users and sellers and information evaluated by users or sellers regarding products and the like. In addition, when a product or the like is traded between a user and a seller, information on the product etc. that meets the conditions specified by the user is collected from each product etc. providing system 20, and the difference in their values Based on this, a standard for selecting a product or the like (or a seller who sells the product or the like) is recommended to the user.
価値評価サーバ10は、一般的な構成を有するサーバ機器等からなり、例えば、ソフトウェアプログラムによって実装された商品等情報取得部11、評価履歴情報取得部12、統計計算部13、評価結果出力部14、およびアンケート処理部15などの各部を有する。これらの各部は、例えば、図示しないWebサーバプログラム上で稼働するWebアプリケーションとして実装することができ、例えば、価値評価サーバ10上のHDDやメモリ等の記憶装置や、価値評価サーバ10が読取可能な光ディスク等の記憶媒体などに保持する。インターネット等のネットワークを介してアクセス可能な他のファイルサーバ等に保持していてもよい。
The value evaluation server 10 includes a server device having a general configuration. For example, a product etc. information acquisition unit 11, an evaluation history information acquisition unit 12, a statistical calculation unit 13, and an evaluation result output unit 14 implemented by a software program. And each part such as a questionnaire processing part 15. Each of these units can be implemented as, for example, a web application that runs on a web server program (not shown). For example, the storage device such as an HDD or a memory on the value evaluation server 10 or the value evaluation server 10 can read the unit. It is stored in a storage medium such as an optical disk. You may hold | maintain in the other file server etc. which can be accessed via networks, such as the internet.
また、価値評価サーバ10は、データベースやファイルテーブル等からなる、販売者DB101、利用者DB102、商品等DB103、評価履歴DB104、およびアンケートDB105などの各データを有する。
Further, the value evaluation server 10 has data such as a seller DB 101, a user DB 102, a product etc. DB 103, an evaluation history DB 104, and a questionnaire DB 105, which are made up of databases and file tables.
販売者DB101は、販売者(航空会社)および当該販売者の商品等提供システム20に係る情報を保持するテーブルであり、例えば、価値評価支援システム1で用いられるIDやパスワード等のアカウント情報、販売者の名称や所在地その他の属性情報、販売者の特性情報(例えば、航空会社の場合、空港やホテル、陸上交通、傷害保険等の関連情報など)などの各種情報が含まれる。販売者DB101の情報については、例えば、価値評価サーバ10の管理者等により予め登録されているものとする。
The seller DB 101 is a table that holds information related to the seller (airline company) and the merchandise provision system 20 of the seller. For example, account information such as IDs and passwords used in the value evaluation support system 1, sales, etc. Various information such as a person's name, location and other attribute information, and seller's characteristic information (for example, in the case of an airline, information related to airports, hotels, land traffic, accident insurance, etc.) are included. The information in the seller DB 101 is registered in advance by, for example, the administrator of the value evaluation server 10.
利用者DB102は、利用者に係る情報を保持するテーブルであり、例えば、価値評価支援システム1で用いられるIDやパスワード等のアカウント情報、利用者の氏名等の属性情報などの各種情報が含まれる。利用者DB102の情報については、各利用者または価値評価サーバ10の管理者等により予め登録されているものとする。商品等DB103は、各商品等提供システム20から抽出した商品等に係る情報を保持するテーブルであり、例えば、商品名やモデル、スペック、発売日、価格などの属性情報や、商品の画像、説明文などの各種情報が含まれる。
The user DB 102 is a table that holds information related to users, and includes, for example, various information such as account information such as IDs and passwords used in the value evaluation support system 1 and attribute information such as user names. . The information in the user DB 102 is assumed to be registered in advance by each user or the administrator of the value evaluation server 10. The product etc. DB 103 is a table that holds information related to the product etc. extracted from each product etc. providing system 20, for example, attribute information such as product name, model, spec, release date, price, product image, description, etc. Various information such as sentences is included.
評価履歴DB104は、利用者によって評価・入力された商品等に対するアンケートの結果(価値についての評価結果)に係る情報を蓄積して保持するテーブルであり、例えば、アンケートの各質問(評価指標)およびこれに対する回答結果(評価データ)、回答受信日(記入日)、回答者(記入者)、回答者の利用者端末30の情報、アンケートの対象の商品等や販売者、メーカー名などの各種情報が含まれる。
The evaluation history DB 104 is a table that accumulates and holds information related to questionnaire results (value evaluation results) for products and the like evaluated and input by the user. For example, each question (evaluation index) of the questionnaire and Response results (evaluation data), response reception date (entry date), respondent (entrant), information on the respondent's user terminal 30, various information such as the product subject to the questionnaire, seller, manufacturer name, etc. Is included.
アンケートDB105は、利用者が商品等を購入、使用等した際に記入してもらうアンケートの内容に係る情報を保持するテーブルであり、例えば、商品等や販売者、メーカー名に関連付けられた各種質問や、回答者、回答日、回答者の利用者端末30の情報等を記入するための各種質問などが含まれる。アンケートDB105の情報については、価値評価サーバ10の管理者等により予め登録されているものとする。
The questionnaire DB 105 is a table that holds information related to the contents of a questionnaire to be filled in when a user purchases or uses a product, for example, various questions associated with a product, a seller, or a manufacturer name. And various questions for entering information such as the respondent, the reply date, the information on the user terminal 30 of the respondent, and the like. The information in the questionnaire DB 105 is registered in advance by the administrator of the value evaluation server 10 or the like.
また、商品等情報取得部11は、利用者から指定された条件に基づいて、各商品等提供システム20に依頼して適合する商品等に係る情報を取得し、もしくは各商品等提供システム20から適合する商品等を検索・抽出し、得られた商品等に係る情報を商品等DB103に格納する。評価履歴情報取得部12は、商品等DB103に保持された各商品等について、評価履歴DB104から対応する評価データ(アンケートの結果)の履歴情報を評価指標毎に抽出する。
In addition, the product etc. information acquisition unit 11 requests each product etc. providing system 20 based on the conditions specified by the user to obtain information on the relevant products etc., or from each product etc. providing system 20. A suitable product etc. is searched and extracted, and information relating to the obtained product etc. is stored in the product etc. DB 103. The evaluation history information acquisition unit 12 extracts, for each evaluation index, history information of corresponding evaluation data (questionnaire results) from the evaluation history DB 104 for each product held in the product etc. DB 103.
統計計算部13は、ノンパラメトリック法を含む各種の統計計算を行う計算式やアルゴリズムを実装し、商品等DB103に保持された各商品等について価値の差異を計算する。これには統計計算を行うための各種検定表や乱数表等のデータも含まれる。なお、実装に際しては、例えば、表計算ソフトウェアなどの既存のアプリケーションプログラムが有する統計計算機能や各種ライブラリなどを適宜利用することができる。
The statistical calculation unit 13 implements calculation formulas and algorithms for performing various statistical calculations including a non-parametric method, and calculates a difference in value for each product held in the product etc. DB 103. This includes data such as various test tables and random number tables for performing statistical calculations. In mounting, for example, a statistical calculation function or various libraries included in an existing application program such as spreadsheet software can be used as appropriate.
評価結果出力部14は、統計計算部13によって計算・評価された統計結果および商品等の価値の差異の情報を取りまとめて出力するとともに、適切な商品等の選択基準を決定して、コメント等により商品等の選択基準に係る推奨情報として利用者に出力する。アンケート処理部15は、利用者が商品等を購入し使用等した際に、アンケートDB105から対応するアンケートの情報を取得して利用者に提示してアンケートを実施する。また、利用者が入力したアンケートの結果(評価データ)に係る情報を取得して評価履歴DB104に格納することで評価情報を入力する。
The evaluation result output unit 14 compiles and outputs the statistical results calculated and evaluated by the statistical calculation unit 13 and information on the value difference of the product, etc., and determines the selection criteria for the appropriate product etc. It is output to the user as recommended information related to selection criteria for products and the like. When the user purchases a product or the like and uses it, the questionnaire processing unit 15 acquires the corresponding questionnaire information from the questionnaire DB 105 and presents it to the user to carry out the questionnaire. In addition, evaluation information is input by acquiring information related to a questionnaire result (evaluation data) input by the user and storing it in the evaluation history DB 104.
利用者端末30は、航空券などの商品等を購入する利用者が操作する情報処理端末であり、例えば、パーソナルコンピュータ、携帯電話やスマートフォン等の携帯端末などによって構成される。双方向通信が可能なデジタルテレビ、ゲーム機、カラオケ機等を利用してもよい。利用者端末30は、例えば、図示しないWebブラウザを介して価値評価サーバ10や商品等提供システム20上の図示しないWebサーバプログラムにアクセスし、各種機能を実行することができる。ネットワーク40は、例えば、有線/無線のLAN(Local Area Network)回線、衛星回線、電話回線、光回線などから構成される通信網であり、代表的なものとしてインターネット網が挙げられる。
The user terminal 30 is an information processing terminal that is operated by a user who purchases a product such as an airline ticket, and includes, for example, a personal computer, a mobile terminal such as a mobile phone or a smartphone. A digital TV, game machine, karaoke machine, or the like capable of bidirectional communication may be used. The user terminal 30 can execute various functions by accessing a web server program (not shown) on the value evaluation server 10 or the product providing system 20 via a web browser (not shown), for example. The network 40 is a communication network composed of, for example, a wired / wireless LAN (Local Area Network) line, a satellite line, a telephone line, an optical line, and the like. A typical example is the Internet network.
[処理フロー(主要処理)]
図2は、価値評価サーバ10における主要処理の流れの例について概要を示したフロー図である。まず、販売者、および利用者の情報を登録する初期登録処理を行う(S01)。ここでは、例えば、これらの情報を価値評価サーバ10の管理者やオペレータ等が各DBに対して初期登録してもよいし、価値評価支援システム1において用いるユーザIDを持たない販売者、もしくは利用者からアクセスがあった場合に初期登録を行うようにしてもよい。このとき例えば、登録を行う販売者、もしくは利用者から、ユーザID以外の個人情報などのDBへの登録情報の入力を受け付け、これらの情報をDBに正式に登録した後にユーザIDを発行してパスワードを登録する。 [Processing flow (main processing)]
FIG. 2 is a flowchart showing an outline of an example of the flow of main processing in thevalue evaluation server 10. First, an initial registration process for registering seller and user information is performed (S01). Here, for example, the administrator or operator of the value evaluation server 10 may initially register such information with respect to each DB, or a seller who does not have a user ID used in the value evaluation support system 1 or uses it. Initial registration may be performed when there is an access from a person. At this time, for example, registration information input to the DB such as personal information other than the user ID is received from the seller or user who performs registration, and after the information is officially registered in the DB, the user ID is issued. Register a password.
図2は、価値評価サーバ10における主要処理の流れの例について概要を示したフロー図である。まず、販売者、および利用者の情報を登録する初期登録処理を行う(S01)。ここでは、例えば、これらの情報を価値評価サーバ10の管理者やオペレータ等が各DBに対して初期登録してもよいし、価値評価支援システム1において用いるユーザIDを持たない販売者、もしくは利用者からアクセスがあった場合に初期登録を行うようにしてもよい。このとき例えば、登録を行う販売者、もしくは利用者から、ユーザID以外の個人情報などのDBへの登録情報の入力を受け付け、これらの情報をDBに正式に登録した後にユーザIDを発行してパスワードを登録する。 [Processing flow (main processing)]
FIG. 2 is a flowchart showing an outline of an example of the flow of main processing in the
次に、利用者からの利用要求を受けて、条件に適合する商品等に係る価格を含む情報を、各商品等提供システム20に問い合せて取得する価格調査処理を行う(S02)。次に、ステップS02で得られた商品等に対して、過去の価値評価の履歴情報を抽出して統計処理することで、これらの商品等の価値の差に有意差があるか否かを統計的に判定し、その結果に基づいて適切な商品等の選択基準を決定して、利用者に推奨する価値評価処理を行う(S03)。さらに、商品等を選択して購入した利用者に対して、購入した商品等の価値に関するアンケート調査を実施し、その結果に係る情報を記録する評価履歴情報記録処理を行い(S04)、一連の処理を終了する。
Next, in response to a usage request from the user, a price survey process is performed to obtain information including prices related to products that meet the conditions by inquiring each product etc. providing system 20 (S02). Next, for the products obtained in step S02, historical information of past value evaluation is extracted and statistically processed, thereby statistically determining whether or not there is a significant difference in the value of these products. In accordance with the result, a selection criterion for an appropriate product or the like is determined based on the result, and a value evaluation process recommended to the user is performed (S03). Further, for a user who selects and purchases a product etc., a questionnaire survey on the value of the purchased product etc. is performed, and an evaluation history information recording process for recording information related to the result is performed (S04). The process ends.
[処理フロー(価格調査処理)]
図3は、価値評価サーバ10における価格調査処理(図2のステップS02)の流れの例について概要を示したフロー図である。まず、商品等の購入を行おうとする利用者は、利用者端末30上のWebブラウザ等のホームページ画面や、サービスメニュー画面、待ち受け画面等を操作して価値評価サーバ10にアクセスして利用要求を行う(S201)。利用要求を受けた価値評価サーバ10は、商品等情報取得部11等により、商品等を選択または入力するためのメニュー画面を利用者端末30に対して出力する(S202)。 [Processing flow (price survey processing)]
FIG. 3 is a flowchart showing an outline of an example of the flow of the price survey process (step S02 in FIG. 2) in thevalue evaluation server 10. First, a user who wants to purchase a product etc. operates a homepage screen such as a Web browser on the user terminal 30, a service menu screen, a standby screen, etc., and accesses the value evaluation server 10 to make a usage request. Perform (S201). Upon receiving the use request, the value evaluation server 10 outputs a menu screen for selecting or inputting a product or the like to the user terminal 30 by the product etc. information acquisition unit 11 or the like (S202).
図3は、価値評価サーバ10における価格調査処理(図2のステップS02)の流れの例について概要を示したフロー図である。まず、商品等の購入を行おうとする利用者は、利用者端末30上のWebブラウザ等のホームページ画面や、サービスメニュー画面、待ち受け画面等を操作して価値評価サーバ10にアクセスして利用要求を行う(S201)。利用要求を受けた価値評価サーバ10は、商品等情報取得部11等により、商品等を選択または入力するためのメニュー画面を利用者端末30に対して出力する(S202)。 [Processing flow (price survey processing)]
FIG. 3 is a flowchart showing an outline of an example of the flow of the price survey process (step S02 in FIG. 2) in the
図4は、利用者が商品等を選択または入力するためのメニュー画面の例を示した図である。図4の例では、交通手段を利用するためのチケットを購入するサイトを例としており、例えば、利用者は、交通手段のプルダウンメニューから、航空機、船舶、列車等、希望の交通手段を選択する。またこれにより、選択した交通手段を持つ会社や団体等の名称が交通機関名のプルダウンメニューに表示され、利用者は目的の会社や団体等を選択する。便名も同様に、選択された会社や団体の持つ便名がプルダウンメニューに表示され、利用者は目的の便を選択する。
FIG. 4 is a diagram showing an example of a menu screen for the user to select or input a product or the like. In the example of FIG. 4, a site for purchasing a ticket for using a transportation means is taken as an example. For example, the user selects a desired transportation means such as an airplane, a ship, a train, etc. from a pull-down menu of the transportation means. . In addition, the name of the company or organization having the selected means of transportation is displayed in the pull-down menu of the transportation facility name, and the user selects the target company or organization. Similarly, the flight name of the selected company or group is displayed in the pull-down menu, and the user selects the target flight.
旅行形態は、往復、片道、周遊等の選択項目がプルダウンメニューに表示され、利用者が選択する。例えば、利用者が往復を選択した場合、図4の例に示すように、さらに往路と復路の出発地(出発空港)、出発日、出発時刻、到着地(到着空港)をプルダウンメニューによる選択か直接入力により指定する欄が表示される。旅行形態として周遊を選択した場合は、往路・復路に代えて路線1、2、3、…と複数路線の入力を可能とする。
Travel options are displayed on the pull-down menu for items such as round trip, one-way, and round trip, and are selected by the user. For example, if the user selects a round trip, as shown in the example of FIG. 4, whether the departure place (departure airport), departure date, departure time, and arrival place (arrival airport) for the outbound route and the return route are selected from the pull-down menu. A field to be specified by direct input is displayed. When tour is selected as the travel mode, it is possible to input a plurality of routes such as routes 1, 2, 3,.
運賃クラスは、ファースト、ビジネス、エコノミー等のクラスをプルダウンメニューから選択でき、旅行者数は、プルダウンメニューから選択するか、直接希望する数字を入力することができる。検索条件は、ノンストップフライトや最安順等の検索のオプションが表示され、例えば、ノンストップフライトを選択するとノンストップ便のみが検索され、最安順を選択すると最も料金の安いものから順に検索結果が表示される。複数のオプションを選択する事も可能である。オプションを何も選択しない場合は、例えば、料金の高い順にノンストップ便以外の便も含めて表示される。
Fare class can be selected from the pull-down menu such as first, business, economy, etc., and the number of travelers can be selected from the pull-down menu or directly enter the desired number. Search options include search options such as non-stop flights and cheapest order.For example, if you select non-stop flights, only non-stop flights will be searched, and if you select the cheapest order, the search results will be displayed in order from the cheapest. Is displayed. It is possible to select multiple options. When no option is selected, for example, flights other than non-stop flights are displayed in order from the highest to the lowest.
利用者が、図4に示すようなメニュー画面を介して必要情報を選択または入力することで、利用者端末30は、価値評価サーバ10に対して条件に該当する商品等の情報を要求する(S203)。要求を受信した価値評価サーバ10は、商品等情報取得部11によって、条件に該当する商品等の検索要求を予め登録されている全ての販売者の商品等提供システム20に対して送信する(S204)。
When the user selects or inputs necessary information via the menu screen as shown in FIG. 4, the user terminal 30 requests the value evaluation server 10 for information such as a product that satisfies the condition ( S203). Upon receiving the request, the value evaluation server 10 transmits a search request for a product or the like satisfying the condition to the product etc. providing system 20 of all the sellers registered in advance by the product etc. information acquisition unit 11 (S204). ).
検索要求を受信した各販売者の商品等提供システム20は、商品等内容DB201から条件に該当する商品等の情報を抽出して価値評価サーバ10に応答する(S205)。なお、価値評価サーバ10の商品等情報取得部11が各商品等提供システム20の商品等内容DB20に直接アクセスすることが可能なように構成し、商品等情報取得部11が条件に該当する商品等を直接検索して抽出するようにしてもよい。
The merchandise providing system 20 of each seller that has received the search request extracts information on the merchandise that satisfies the condition from the merchandise content DB 201 and responds to the value evaluation server 10 (S205). The product etc. information acquisition unit 11 of the value evaluation server 10 is configured to be able to directly access the product etc. content DB 20 of each product etc. providing system 20, and the product etc. information acquisition unit 11 meets the conditions. May be directly searched and extracted.
条件に該当する商品等の情報を取得または抽出した商品等情報取得部11は、取得した商品等の情報を商品等DB103に格納して(S206)、価格調査処理を終了する。商品等DB103に格納する商品等の情報には、例えば、出発地(出発空港)、出発日、出発予定時刻、到着地(到着空港)、到着日、到着予定時刻、所要時間、航空機名、型式、航空会社名、便名、残席数、残席番号、食事メニュー、乗客情報入力フォーム、運賃等の項目が含まれる。なお、上記のような交通手段の検索方法は既にインターネット上での航空券販売等で行われている公知の手段であり、本実施の形態でもこれらと同様のものを利用することができる。
The product etc. information acquisition unit 11 that has acquired or extracted information on the product etc. that meets the conditions stores the acquired product etc. information in the product etc. DB 103 (S206), and ends the price survey process. The product information stored in the product etc. DB 103 includes, for example, departure place (departure airport), departure date, scheduled departure time, arrival place (arrival airport), arrival date, estimated arrival time, required time, aircraft name, model It includes items such as airline name, flight number, number of remaining seats, number of remaining seats, meal menu, passenger information input form, and fare. Note that the above-described transportation means searching method is a known means that has already been carried out by airline ticket sales etc. on the Internet, and the same method can be used in this embodiment.
[処理フロー(価値評価処理)]
図5は、価値評価サーバ10における価値評価処理(図2のステップS03)の流れの例について概要を示したフロー図である。まず、価値評価サーバ10は、評価履歴情報取得部12により、図3の価格調査処理において抽出された各調査対象(すなわち、図3のステップS206において取得した各商品等であり、本実施の形態では航空チケット)について、評価履歴DB104から評価履歴情報を抽出する(S301)。 [Processing flow (value evaluation processing)]
FIG. 5 is a flowchart showing an outline of an example of the flow of value evaluation processing (step S03 in FIG. 2) in thevalue evaluation server 10. First, the value evaluation server 10 is each survey object extracted in the price survey process of FIG. 3 by the evaluation history information acquisition unit 12 (that is, each product acquired in step S206 of FIG. 3). Then, the evaluation history information is extracted from the evaluation history DB 104 (S301).
図5は、価値評価サーバ10における価値評価処理(図2のステップS03)の流れの例について概要を示したフロー図である。まず、価値評価サーバ10は、評価履歴情報取得部12により、図3の価格調査処理において抽出された各調査対象(すなわち、図3のステップS206において取得した各商品等であり、本実施の形態では航空チケット)について、評価履歴DB104から評価履歴情報を抽出する(S301)。 [Processing flow (value evaluation processing)]
FIG. 5 is a flowchart showing an outline of an example of the flow of value evaluation processing (step S03 in FIG. 2) in the
評価履歴情報は、各調査対象(商品等)に対する購入者による評価を記録した情報であり、後述する評価履歴情報記録処理(図2のステップS04)において評価履歴DB104に記録される情報である。従って、評価履歴情報取得部12は、過去に評価履歴DB104に記録された評価履歴情報を検索することで、調査対象である図3のステップS206において取得した各商品等に関連付けられている評価履歴情報を抽出することになる。
The evaluation history information is information in which the purchaser's evaluation for each survey target (product or the like) is recorded, and is information recorded in the evaluation history DB 104 in an evaluation history information recording process (step S04 in FIG. 2) described later. Therefore, the evaluation history information acquisition unit 12 searches the evaluation history information recorded in the evaluation history DB 104 in the past, thereby evaluating the evaluation history associated with each product acquired in step S206 of FIG. Information will be extracted.
評価履歴情報は、商品等を購入した利用者が当該商品等を購入、使用、または消費後に評価した評価情報であり、様々な評価指標を含む。評価指標としては、例えば、全体的な満足度や、快適性、機内食の豪華さ、キャビンアテンダントの態度、機内のオーディオ等の使い易さ、提供される映像・音楽等の満足度などが含まれる。各評価指標は、例えば、評価点(0~100点)などによって表現される。
Evaluation history information is evaluation information evaluated by a user who purchased a product after purchasing, using, or consuming the product, and includes various evaluation indexes. Evaluation indicators include, for example, overall satisfaction, comfort, luxury of in-flight meals, attitudes of cabin attendants, ease of use of in-flight audio, etc., satisfaction of video / music provided, etc. It is. Each evaluation index is expressed by, for example, evaluation points (0 to 100 points).
次に、価値評価サーバ10は、調査対象の数が2以上であるか否かを判定し(S302)、2未満である場合は、そのままステップS340に進む。ここで、調査対象の数とは、上述したとおり、本実施の形態の場合、図3のステップS206において取得した航空チケットの種類数であり、図3のステップS205において全ての航空会社が1種類のチケットのみを抽出して価値評価サーバ10に送信した場合は、航空チケットの種類数に代えて航空会社数を用いてもよい(すなわち、調査対象を各航空会社としてもよい)。
Next, the value evaluation server 10 determines whether or not the number of survey targets is 2 or more (S302), and if it is less than 2, the process directly proceeds to step S340. Here, as described above, the number of survey targets is the number of types of airline tickets acquired in step S206 of FIG. 3 in the case of the present embodiment, and one type of all airlines in step S205 of FIG. When the ticket is extracted and transmitted to the value evaluation server 10, the number of airlines may be used in place of the number of types of airline tickets (that is, the survey target may be each airline).
ステップS302において、調査対象数が2以上の場合は、次に、ステップS301で取得した評価履歴情報に含まれる全ての評価指標のそれぞれを対象として処理を繰り返し行うループ処理を開始する。各ループ処理では、まず、当該ループでの処理対象の評価指標のデータ数を調査対象別にカウントし、予め設定された下限値以上であるか否かを調査対象別にそれぞれ判定する(S303)。下限値未満である場合は、当該評価指標について十分なデータがないために有意差があるとは言えないとする判定をし、ループ処理にて次の評価指標に対する処理に移る。このとき例えば、後述する処理により結果を表示する際に「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。ここで、下限値としては、例えば、統計計算の際に十分な精度が得られないと一般的に判断されるデータ数に2以上の数を加えた値で、かつ後述する上限値を超えない値(例えば6など)を設定する。
In step S302, when the number of investigation targets is 2 or more, next, a loop process for repeatedly performing the process for each of all the evaluation indexes included in the evaluation history information acquired in step S301 is started. In each loop process, first, the number of data of evaluation indexes to be processed in the loop is counted for each investigation object, and it is determined for each investigation object whether or not it is equal to or more than a preset lower limit value (S303). If it is less than the lower limit, it is determined that there is no significant difference because there is not enough data for the evaluation index, and the process proceeds to the next evaluation index in a loop process. At this time, for example, when displaying the result by the process described later, a message such as “There is not enough data because there is not enough data” may be added. Here, for example, the lower limit value is a value obtained by adding two or more numbers to the number of data generally determined that sufficient accuracy cannot be obtained at the time of statistical calculation, and does not exceed the upper limit value described later. Set a value (eg 6).
ステップS303で、全ての調査対象別のデータ数が下限値以上である場合は、次に、カウントしたそれぞれのデータ数が予め設定された上限値以下であるか否かを判定する(S304)。ここで、上限値としては、例えば、一般的にデータ数が母集団の数(母数)と同等と認められる最小の数から1を減じた値(例えば60万個など)を設定する。データ数が上限値以下である場合は、全てのデータを処理対象として(すなわち、全てのデータをサンプルとして抽出して)ステップS306に進む。
If it is determined in step S303 that the number of data for all survey targets is equal to or greater than the lower limit value, it is next determined whether or not each counted data number is equal to or less than a preset upper limit value (S304). Here, as the upper limit value, for example, a value obtained by subtracting 1 from the minimum number that is generally recognized to be equivalent to the number of populations (the number of populations) (for example, 600,000) is set. If the number of data is less than or equal to the upper limit value, the process proceeds to step S306 with all data as processing targets (that is, all data is extracted as samples).
一方、ステップS303で、データ数が上限値を超えている場合は、対象の評価指標のデータのうち、最新のものから順に上限数個のデータをサンプルとして抽出し(S305)、ステップS306に進む。なお、ここでは最新のものから順にサンプルとして抽出するものとしているが、他の抽出方法であってもよい。また、抽出する数を上限数個としているが、上限数以下の数(かつ下限値以上の数)であれば適当な数を適宜決定することができる。
On the other hand, if the number of data exceeds the upper limit value in step S303, the upper limit number of data is extracted as a sample in order from the latest data among the target evaluation index data (S305), and the process proceeds to step S306. . Here, the sample is extracted in order from the latest one, but other extraction methods may be used. Moreover, although the upper limit number is used as the number to be extracted, an appropriate number can be appropriately determined as long as it is a number equal to or less than the upper limit number (and a number equal to or greater than the lower limit value).
ステップS306では、価値評価サーバ10に予め保持している乱数表等を用い、対象の評価指標について調査対象別に抽出されているサンプルのデータから所定の数、例えば、抽出されているデータ数より小さい数でかつ(下限値-1)個以上の数のデータをサンプルとしてそれぞれランダムに抽出する(S306)。ステップS303~S306の処理によって、後述するステップS320で行われる統計計算の精度を落とさずに有意差判定を行える範囲のデータ数に処理対象を制限し、また、統計計算のサンプルとして不適当な評価指標データを抽出することを防止する。これらにより、価値評価サーバ10の計算負荷を減らし、十分な精度を確保しつつ統計計算の処理速度を向上させることができる。
In step S306, a random number table or the like held in advance in the value evaluation server 10 is used, and the target evaluation index is smaller than a predetermined number, for example, the number of data extracted from the sample data extracted for each survey target. A number of (lower limit value-1) or more data is randomly extracted as samples (S306). By the processing in steps S303 to S306, the processing target is limited to the number of data within a range in which significant difference determination can be performed without reducing the accuracy of statistical calculation performed in step S320, which will be described later, and inappropriate evaluation as a sample of statistical calculation Preventing extraction of index data. As a result, the calculation load of the value evaluation server 10 can be reduced, and the processing speed of statistical calculation can be improved while ensuring sufficient accuracy.
統計計算のためのサンプルを抽出する手法としては、ステップS303~S306の処理によるものに限らず、これに代えて例えば、各ループ処理での処理対象の評価指標のデータ数を調査対象別にカウントし、カウントされたデータ数未満で、かつ母集団と認められる最小の数未満で、かつ統計的に精度が劣るとされる数より多い数をカウントされた調査対象別のデータからそれぞれランダム抽出するということも可能である。なお、この手法は、カウントしたデータ数が母集団と認められる最小値未満である場合は、実質的にサンプルからのランダム抽出となり、カウントしたデータ数が母集団と認められる最小値以上である場合は、実質的に母集団からのランダム抽出となる。このように抽出元が異なる2つのサンプルをともに無作為抽出したサンプルとして同等に扱って統計計算に用いると、統計精度を低下させる可能性もある。
The method of extracting the sample for statistical calculation is not limited to the method of steps S303 to S306, but instead, for example, the number of evaluation index data to be processed in each loop processing is counted for each survey target. Randomly extract the number of data less than the counted data and less than the minimum number recognized as a population and more than the statistically inferior accuracy from the counted data by survey target It is also possible. In this method, if the number of counted data is less than the minimum value that can be recognized as a population, the sample is substantially a random extraction from the sample, and the counted number of data is greater than or equal to the minimum value that is recognized as a population. Is essentially a random extraction from the population. Thus, if two samples with different extraction sources are equally treated as randomly extracted samples and used for statistical calculation, the statistical accuracy may be lowered.
次に、価値評価サーバ10は、統計計算部13により、対象の評価指標の処理対象のデータに対して所定の統計計算を行って評価指標の有意差を判定する統計処理を行う(S320)。図6および図7は、図5のステップS320の統計処理の流れの例について概要を示したフロー図である。統計計算部13は、まず、調査対象の数が2であるか否かを判定する(S3201)。調査対象の数が2ではない(すなわち調査対象の数が3以上である)場合は、後述するように、クラスカル・ウォリス検定により各母集団に関する推測を行う。一方、調査対象の数が2である場合は、ウィルコクソン検定により2つの母集団に関する推測を行う。
Next, the value evaluation server 10 uses the statistical calculation unit 13 to perform a statistical process for performing a predetermined statistical calculation on the processing target data of the target evaluation index to determine a significant difference between the evaluation indexes (S320). 6 and 7 are flowcharts showing an overview of an example of the flow of statistical processing in step S320 of FIG. The statistical calculation unit 13 first determines whether or not the number of survey targets is 2 (S3201). When the number of survey targets is not 2 (that is, the number of survey targets is 3 or more), as will be described later, an estimation regarding each population is performed by Kruskal-Wallis test. On the other hand, when the number of objects to be investigated is two, the two populations are estimated by the Wilcoxon test.
[ウィルコクソン検定]
まず、対象の評価指標について調査対象毎に記録されているデータに同じ値があるか否かを判定する(S3202)。すなわち、2つの調査対象のそれぞれが有する評価指標のデータ(評価データ)の全体の集合の中で同一値のものがあるか否かを判定する。なお、同一値の有無を判定するのに代えて、後述する処理により評価データから算出した順位データについて同一順位の有無を判定するようにしてもよい。 [Wilcoxon test]
First, it is determined whether or not the data recorded for each survey target for the target evaluation index has the same value (S3202). That is, it is determined whether there is an identical value in the entire set of evaluation index data (evaluation data) possessed by each of the two survey targets. Instead of determining the presence or absence of the same value, the presence or absence of the same rank may be determined for the rank data calculated from the evaluation data by the process described later.
まず、対象の評価指標について調査対象毎に記録されているデータに同じ値があるか否かを判定する(S3202)。すなわち、2つの調査対象のそれぞれが有する評価指標のデータ(評価データ)の全体の集合の中で同一値のものがあるか否かを判定する。なお、同一値の有無を判定するのに代えて、後述する処理により評価データから算出した順位データについて同一順位の有無を判定するようにしてもよい。 [Wilcoxon test]
First, it is determined whether or not the data recorded for each survey target for the target evaluation index has the same value (S3202). That is, it is determined whether there is an identical value in the entire set of evaluation index data (evaluation data) possessed by each of the two survey targets. Instead of determining the presence or absence of the same value, the presence or absence of the same rank may be determined for the rank data calculated from the evaluation data by the process described later.
図8は、2つの調査対象毎の評価指標の値から統計計算により有意差を判定する例について示した図である。図8の表では、調査対象である2つの航空会社(航空会社1、2)に対して、後述する図28の例に示すようなテーブルに定義された評価データの変換ルール(以下では「評価データ変換ルール」と記載する場合がある)に基づいて変換(以下では「評価データ変換」と記載する場合がある)を行った評価指標である満足度が評価点(0~100点)で示されている。つまり、図8の評価点は統計計算による解析に用いるための評価点であり、例えば、図28の定義テーブルに定義された評価データ変換ルール(例えば、満足度の評価点の場合は「100-(本来の評価点)」の変換式)により変換されたものである。
FIG. 8 is a diagram showing an example in which a significant difference is determined by statistical calculation from the values of the evaluation indices for each of the two survey targets. In the table of FIG. 8, the evaluation data conversion rules (hereinafter referred to as “evaluation”) defined in the table shown in the example of FIG. Satisfaction level (0 to 100 points), which is an evaluation index that has been converted (hereinafter may be described as “evaluation data conversion”) based on “data conversion rules”) Has been. That is, the evaluation points in FIG. 8 are evaluation points for use in the analysis by statistical calculation. For example, the evaluation data conversion rule defined in the definition table in FIG. 28 (for example, “100− (Original evaluation score) "is converted.
図8では、全評価データについて同一値のデータが存在しない場合の例を示しており、この場合は、図6において、各調査対象が有する評価データの数niの最小値が所定の閾値(例えば15)未満であるか否かを判定する(S3203)。図8の例では、航空会社1の評価データの数n1=6、航空会社2の評価データの数n2=5であり、最小値はn2=5であることから、閾値(15)未満である。
FIG. 8 shows an example in which data of the same value does not exist for all the evaluation data. In this case, in FIG. 6, the minimum value of the number n i of evaluation data possessed by each survey object is a predetermined threshold ( For example, it is determined whether it is less than 15) (S3203). In the example of FIG. 8, since the number n 1 = 6 of the evaluation data of the airline 1 and the number n 2 = 5 of the evaluation data of the airline 2 and the minimum value is n 2 = 5, the threshold (15) Is less than.
この場合は、次に、各評価データについての評価データ全体の集合における順位、および調査対象毎の順位の合計(順位和)を算出する(S3204)。図8の例では、各評価データについて算出した順位および順位和の情報が表に併記されている。次に、この順位データに基づいてW量を計算する(S3205)。本実施の形態では、各調査対象のうち、評価データの個数の少ない方の調査対象の順位和をW量とする。図8の例では、n1>n2であるため、航空会社2の順位和25をW量とする。評価データの個数が同数の場合は、任意の一方の調査対象の順位和をW量とする。なお、必ずしも評価データの個数の少ない方の調査対象の順位和をW量とする必要はなく、多い方の調査対象の順位和を用いてもよい。この場合はW量ではなくW’量と表記するものとする。
In this case, next, the rank in the set of the entire evaluation data for each evaluation data and the sum (rank rank) of the ranks for each survey target are calculated (S3204). In the example of FIG. 8, information on ranks and rank sums calculated for each evaluation data is also written in the table. Next, the amount of W is calculated based on the ranking data (S3205). In the present embodiment, the rank sum of the survey targets with the smaller number of evaluation data among the survey targets is set as the W amount. In the example of FIG. 8, since n 1 > n 2 , the rank sum 25 of the airline 2 is set as the W amount. When the number of evaluation data is the same, the rank sum of any one of the survey targets is the W amount. It is not always necessary to use the sum of ranks of the survey targets with the smaller number of evaluation data as the amount of W, and the rank sum of the survey targets with the larger number may be used. In this case, not W amount but W ′ amount is described.
次に、統計計算部16等が予め保持しているウィルコクソン検定表から所定の有意水準αの下方限界値WL(α/2)および上方限界値WU(α/2)を特定し、得られたWL(α/2)およびWU(α/2)と、ステップS3205で計算したW量とを比較する(S3206)。なお、ウィルコクソン検定表のαは、有意水準5%の両側検定で有意差判定する場合はα/2=0.025をとる。また、データ数(m,n)におけるmは、評価データの個数が小さい方の値であり、図8の例ではn2=5となる。またnは、評価データの個数が大きい方の値であり、図8の例ではn1=6となる。従って、ウィルコクソン検定表より、WL(0.025)=18、WU(0.025)=42が得られる。
Next, the lower limit value W L (α / 2) and the upper limit value W U (α / 2) of the predetermined significance level α are identified from the Wilcoxon test table held in advance by the statistical calculation unit 16 and the like. W and L (α / 2) and W U (α / 2) that is, compares the W amount calculated in step S3205 (S3206). Note that α in the Wilcoxon test table is α / 2 = 0.025 when a significant difference is determined by a two-sided test with a significance level of 5%. Further, m in the number of data (m, n) is a value with the smaller number of evaluation data, and n 2 = 5 in the example of FIG. Further, n is a value with the larger number of evaluation data, and n 1 = 6 in the example of FIG. Therefore, W L (0.025) = 18 and W U (0.025) = 42 are obtained from the Wilcoxon test table.
ウィルコクソン検定表には、データ数(m,n)および有意水準αから有意点(限界値)を求めるタイプのものと、データ数(m,n)およびW量から有意確率(P値)を求めるタイプのものがあるが、ここでの比較には前者の検定表を用いる。後者の検定表は、後述する補足説明項目の選択においてP値を計算する際に用いる。
In the Wilcoxon test table, a type that obtains a significant point (limit value) from the number of data (m, n) and the significance level α and a significance probability (P value) from the number of data (m, n) and the amount of W are obtained. There are types, but the former test table is used for comparison here. The latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
次に、ステップS3206での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3207)、統計処理を終了する。ここでは、WL(α/2)<W量<WU(α/2)であるときは有意差があるとは言えないと判定し、W量≦WL(α/2)またはWU(α/2)≦W量であるときは有意差があると判定する。図8の例では、{WL(0.025)=18}<(W量=25)<{WU(0.025)=42}であるため、有意差があるとは言えないと判定する。
Next, based on the comparison result in step S3206, it is determined whether or not there is a significant difference between the survey targets (S3207), and the statistical processing is terminated. Here, when W L (α / 2) <W amount <W U (α / 2), it is determined that there is no significant difference, and W amount ≦ W L (α / 2) or W U When (α / 2) ≦ W amount, it is determined that there is a significant difference. In the example of FIG. 8, since {W L (0.025) = 18} <(W amount = 25) <{W U (0.025) = 42}, it is determined that there is no significant difference. To do.
なお、各調査対象における評価データの数niの値が小さい等の理由で、ウィルコクソン検定表に比較する値が存在しない場合は、十分なデータがないために有意差があるとは言えないとする判定をする。またこのとき、後述する処理により結果を表示する際に、例えば「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。これにより、検定表に比較する値が存在しない場合でも有意差判定を可能とする。また、nの値が非常に大きいためウィルコクソン検定表に比較する値が存在しない場合は、ステップS3206以下の処理に代えて、後述するステップS3210以下の処理を行ってもよい。
If there is no value to compare in the Wilcoxon test table because the number of evaluation data n i in each survey target is small, it cannot be said that there is a significant difference because there is not enough data. Make a decision. At this time, when the result is displayed by the processing described later, for example, a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Thereby, even when there is no value to be compared in the test table, a significant difference can be determined. In addition, since the value of n is very large, if there is no value to be compared with the Wilcoxon test table, the process of step S3210 and later described below may be performed instead of the process of step S3206 and subsequent steps.
一方、ステップS3203で評価データ数の最小値が閾値(15)以上である場合は、上述のステップS3204、S3205と同様な処理により、各評価データの順位および調査対象毎の順位和の計算を行ってW量を計算する(S3208、S3209)。さらに以下の式によりu0量を計算する(S3210)。
On the other hand, if the minimum value of the number of evaluation data is greater than or equal to the threshold (15) in step S3203, the rank of each evaluation data and the rank sum for each survey target are calculated by the same process as in steps S3204 and S3205 described above. Then, the amount of W is calculated (S3208, S3209). Further, the u 0 amount is calculated by the following equation (S3210).
統計精度を向上させる連続修正と呼ばれる補正を行った以下の式を用いてもよい。
You may use the following formula | equation which performed the correction called continuous correction which improves statistical accuracy.
図9は、2つの調査対象毎の評価指標の値から統計計算により有意差を判定する別の例について示した図である。図9の表では、図8と同様に、調査対象である2つの航空会社(航空会社1、2)に対して、後述する図28に示した評価データ変換ルールに基づいて評価データ変換を行った評価指標である満足度が評価点(0~100点)で示されている。図9では、全評価データについて同一値のデータが存在せず、また、評価データの数の最小値は航空会社1の評価データの数n1=15であり、閾値(15)以上となっている。また、各評価データについて算出した順位、および調査対象毎の順位和の情報が表に併記されている。このとき、評価データの個数の少ない方である航空会社1の順位和より、W量=292であり、データ数(m,n)=(15,16)であることから、上記数1式より、u0量=2.06となる。
FIG. 9 is a diagram illustrating another example in which a significant difference is determined by statistical calculation from the values of the evaluation indices for each of two survey targets. In the table of FIG. 9, as in FIG. 8, the evaluation data conversion is performed for the two airlines (airlines 1 and 2) to be investigated based on the evaluation data conversion rule shown in FIG. Satisfaction as an evaluation index is indicated by evaluation points (0 to 100 points). In FIG. 9, there is no data having the same value for all evaluation data, and the minimum number of evaluation data is the number n 1 = 15 of evaluation data of the airline 1, which is equal to or greater than the threshold (15). Yes. Moreover, the rank calculated about each evaluation data and the information of the rank sum for every investigation object are written together in the table | surface. At this time, the amount of W = 292 and the number of data (m, n) = (15,16) from the sum of ranks of the airline 1 which has the smaller number of evaluation data. , U 0 amount = 2.06.
その後、統計計算部16等が予め保持している正規分布表の所定の有意水準αから限界値u(α)を特定し、得られたu(α)と、ステップS3210で得られたu0量の絶対値とを比較する(S3211)。有意水準5%の両側検定で有意差判定する場合は、正規分布表より、限界値u(0.05)=1.96が得られる。
After that, the limit value u (α) is specified from the predetermined significance level α of the normal distribution table held in advance by the statistical calculation unit 16 or the like, and the obtained u (α) and u 0 obtained in step S3210. The absolute value of the quantity is compared (S3211). When a significant difference is determined by a two-sided test with a significance level of 5%, a limit value u (0.05) = 1.96 is obtained from the normal distribution table.
正規分布表には、片側の棄却域を扱うタイプのものと両側の棄却域を扱うタイプのものがあるが、本実施の形態では後者の両側の棄却域を扱うタイプの正規分布表を用いる。また、正規分布表には、有意水準αから有意点(限界値)を求めるタイプのものと、u0量の絶対値から有意確率(P値)を求めるタイプのものがあるが、ここでの比較には前者の表を用いる。後者の表は、後述する補足説明項目の選択においてP値を計算する際に用いる。
The normal distribution table includes a type that handles one-side rejection area and a type that handles both-side rejection areas. In the present embodiment, the normal distribution table that handles the latter-side rejection areas is used. The normal distribution table includes a type for obtaining a significance point (limit value) from the significance level α and a type for obtaining a significance probability (P value) from the absolute value of the u 0 quantity. The former table is used for comparison. The latter table is used when calculating the P value in the selection of supplementary explanation items to be described later.
次に、ステップS3211での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3212)、統計処理を終了する。ここでは、u0量の絶対値が限界値u(α)以上であるときは有意差があると判定し、限界値u(α)未満であるときは有意差があるとは言えないと判定する。図9の例では、{|u0|=2.06}>{u(0.05)=1.96}であるため、有意差があると判定する。
Next, based on the comparison result in step S3211, it is determined whether or not there is a significant difference between the survey targets (S3212), and the statistical processing is terminated. Here, it is determined that there is a significant difference when the absolute value of the u 0 quantity is not less than the limit value u (α), and it is determined that there is no significant difference when the absolute value is less than the limit value u (α). To do. In the example of FIG. 9, since {| u 0 | = 2.06}> {u (0.05) = 1.96}, it is determined that there is a significant difference.
図6のステップS3202で評価データに同一の値のものがある場合は、上述のステップS3204、S3208と同様に、各評価データの順位を算出するが(S3213)、同一の値の評価データには同一の順位が算出されるため、同一順位に対しては平均順位を割り当てる(S3214)。なお、平均順位は、中間順位とも呼ばれる。平均順位は、{(a+1)+(a+tj)}/2の式によって計算する。ここで、aは同一順位の1つ前の順位であり、jは同一順位を持つ評価データのグループの順位を小さい順に付番したときのグループ番号である。また、tjは、第j番目のグループの持つ評価データの個数である。
If there are evaluation data having the same value in step S3202 in FIG. 6, the rank of each evaluation data is calculated in the same manner as in steps S3204 and S3208 described above (S3213). Since the same rank is calculated, an average rank is assigned to the same rank (S3214). The average rank is also called an intermediate rank. The average rank is calculated by the equation {(a + 1) + (a + t j )} / 2. Here, a is the previous rank of the same rank, and j is a group number when the ranks of evaluation data groups having the same rank are numbered in ascending order. T j is the number of evaluation data of the j-th group.
図10は、2つの調査対象毎の評価指標の値から統計計算により有意差を判定する別の例について示した図である。図10の表では、調査対象である2つの航空会社(航空会社1、2)に対して、後述する図28に示した評価データ変換ルールに基づいて評価データ変換を行った評価指標である満足度が評価点(0~100点)で示されている。図10では、全評価データのうち同一値のデータが存在する場合の例を示しており、また、各評価データについて算出した順位、および調査対象毎の順位和の情報が表に併記されている。
FIG. 10 is a diagram showing another example in which a significant difference is determined by statistical calculation from the values of evaluation indexes for two survey targets. In the table of FIG. 10, satisfaction that is an evaluation index obtained by performing evaluation data conversion based on the evaluation data conversion rule shown in FIG. Degrees are indicated by evaluation points (0 to 100 points). FIG. 10 shows an example in the case where data of the same value exists among all the evaluation data, and the rank calculated for each evaluation data and the information of the rank sum for each survey target are also shown in the table. .
ここで、図10の表では、順位が1位の評価データが2つあり、順位が5位の評価データが3つ存在する(t1=2、t2=3)。これらの2つのグループに対して、上記の式により平均順位を計算すると、順位が1位のグループの平均順位は1.5となり、順位が5位のグループの平均順位は6となる。図10の表にはこれらの計算結果を含む平均順位およびその順位和の情報も併記されている。
Here, in the table of FIG. 10, there are two pieces of evaluation data having the first rank, and three pieces of evaluation data having the fifth rank (t 1 = 2 and t 2 = 3). When the average rank is calculated for these two groups by the above formula, the average rank of the group ranked first is 1.5, and the average rank of the group ranked fifth is 6. The table of FIG. 10 also shows the average rank including these calculation results and the rank sum information.
次に、ステップS3214で算出した平均順位のデータに基づいて、上述のステップS3205、S3209と同様の処理によりW量を計算する。なお、区別のためにこれをW*量と記載する(S3215)。さらに、以下の式によりu0*量を計算する。(S3216)。
Next, based on the average rank data calculated in step S3214, the amount of W is calculated by the same processing as in steps S3205 and S3209 described above. For distinction, this is referred to as W * amount (S3215). Further, the u 0 * amount is calculated by the following equation. (S3216).
ここで、jは1~同一順位を持つ評価データのグループの数gの整数である。
J where j is an integer of 1 to the number g of evaluation data groups having the same rank.
図10の例では、W*量=12であり、数3式より、u0*量=-2.00となる。その後、上記のステップS3211と同様の処理により、正規分布表の所定の有意水準αから限界値u(α)を特定し、得られたu(α)と、ステップS3216で得られたu0*量の絶対値とを比較する(S3217)。次に、ステップS3217での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3218)、統計処理を終了する。ここでは、u0*量の絶対値が限界値u(α)以上であるときは有意差があると判定し、限界値u(α)未満であるときは有意差があるとは言えないと判定する。図10の例では、有意水準5%の両側検定において、{|u0*|=2.00}>{u(0.05)=1.96}であるため、有意差があると判定する。
In the example of FIG. 10, the W * amount = 12, and from Equation 3, u 0 * amount = −2.00. Thereafter, the limit value u (α) is specified from the predetermined significance level α in the normal distribution table by the same processing as in step S3211 described above, and u (α) obtained is obtained, and u 0 * obtained in step S3216. The absolute value of the quantity is compared (S3217). Next, based on the comparison result in step S3217, it is determined whether or not there is a significant difference between the survey targets (S3218), and the statistical processing is terminated. Here, it is determined that there is a significant difference when the absolute value of the u 0 * quantity is equal to or greater than the limit value u (α), and it cannot be said that there is a significant difference when the absolute value is less than the limit value u (α). judge. In the example of FIG. 10, in a two-sided test with a significance level of 5%, {| u 0 * | = 2.00}> {u (0.05) = 1.96}, so it is determined that there is a significant difference. .
なお、同一値のあるウィルコクソン検定におけるデータ数(m,n)のmの数が所定の閾値未満(例えば一般的に統計計算の精度が劣るとされるm<5)の時、または同一順位を持つ各グループ内の評価データの数tjと総データ数m+nとの比率{tj/(m+n)}の最大値が所定の閾値以上(例えば一般的に統計計算の精度が劣るとされる最大値≧0.7)の時は、十分な精度が確保できないとして、統計計算を行わなくてもよい。この場合、十分なデータがないために有意差があるとは言えないとする判定をしてもよい。またこのとき、後述する処理により結果を表示する際に、例えば「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。また、統計計算を実行した上で、例えば、「この統計計算の結果の精度は高くありません」等のメッセージを付加するようにしてもよい。
When the number of data (m, n) in the Wilcoxon test with the same value is less than a predetermined threshold (for example, m <5, which is generally considered to be inferior in the accuracy of statistical calculation), or the same rank The maximum value of the ratio {t j / (m + n)} of the number t j of evaluation data in each group and the total number of data m + n is equal to or greater than a predetermined threshold (for example, the maximum that the statistical calculation accuracy is generally inferior) When value ≧ 0.7), it is not necessary to perform statistical calculation because sufficient accuracy cannot be ensured. In this case, it may be determined that there is no significant difference because there is not enough data. At this time, when the result is displayed by the processing described later, for example, a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Further, after executing the statistical calculation, for example, a message such as “the accuracy of the result of the statistical calculation is not high” may be added.
[クラスカル・ウォリス検定]
図6のステップS3201で調査対象の数が3以上である場合は、図7へ移り、クラスカル・ウォリス検定を行うため、まず、図6のステップS3202と同様に、各調査対象が有する評価データの全体の集合の中で評価データに同一値のものがあるか否かを判定する(図7のS3219)。なお、同一値の有無を判定するのに代えて、後述する処理により評価データから算出した順位データについて同一順位の有無を判定するようにしてもよい。 [Kruskal Wallis test]
If the number of survey objects in step S3201 in FIG. 6 is 3 or more, the process proceeds to FIG. 7 to perform Kruskal-Wallis test. First, as in step S3202 in FIG. It is determined whether there is an evaluation data having the same value in the entire set (S3219 in FIG. 7). Instead of determining the presence or absence of the same value, the presence or absence of the same rank may be determined for the rank data calculated from the evaluation data by the process described later.
図6のステップS3201で調査対象の数が3以上である場合は、図7へ移り、クラスカル・ウォリス検定を行うため、まず、図6のステップS3202と同様に、各調査対象が有する評価データの全体の集合の中で評価データに同一値のものがあるか否かを判定する(図7のS3219)。なお、同一値の有無を判定するのに代えて、後述する処理により評価データから算出した順位データについて同一順位の有無を判定するようにしてもよい。 [Kruskal Wallis test]
If the number of survey objects in step S3201 in FIG. 6 is 3 or more, the process proceeds to FIG. 7 to perform Kruskal-Wallis test. First, as in step S3202 in FIG. It is determined whether there is an evaluation data having the same value in the entire set (S3219 in FIG. 7). Instead of determining the presence or absence of the same value, the presence or absence of the same rank may be determined for the rank data calculated from the evaluation data by the process described later.
図11は、3つの調査対象毎の評価指標の値から統計計算により有意差を判定する例について示した図である。図11の表では、調査対象である3つの航空会社(航空会社1~3)に対して、後述する図28に示した評価データ変換ルールに基づいて評価データ変換を行った評価指標である満足度が評価点(0~100点)で示されている。図11では、全評価データについて同一値のデータが存在しない場合の例を示しており、この場合は次に、各調査対象での評価データの総数Nが所定の閾値(例えば15)未満であるか否かを判定する(S3220)。調査対象の数が3以上の場合は、データ総数Nは、各調査対象の評価データの数の総和として、n1+n2+n3+…+ni+…nkで表される(kは調査対象の数)。
FIG. 11 is a diagram showing an example in which a significant difference is determined by statistical calculation from the values of evaluation indices for each of three survey targets. In the table of FIG. 11, satisfaction that is an evaluation index obtained by performing evaluation data conversion on the three airlines (airlines 1 to 3) to be investigated based on the evaluation data conversion rule shown in FIG. 28 described later. Degrees are indicated by evaluation points (0 to 100 points). FIG. 11 shows an example of the case where there is no data having the same value for all evaluation data. In this case, the total number N of evaluation data in each survey target is less than a predetermined threshold (for example, 15). It is determined whether or not (S3220). For the number of surveyed 3 above, the data the total number N as the sum of the number of evaluation data of each study is represented by n 1 + n 2 + n 3 + ... + n i + ... n k (k is investigated Number of objects).
図11の例では、航空会社1の評価データの数n1=4、航空会社2の評価データの数n2=4、航空会社3の評価データの数n3=4であり、データ総数N=12であることから、閾値(15)未満である。この場合は、次に、各調査対象の評価データの数niについてその最小値nMINを特定する(S3221)。その後、ステップS3221で特定したデータ数の最小値nMINを超える数の評価データを有する調査対象の有無を判定する(S3222)。最小値を超える数の評価データを有する調査対象がある場合は、価値評価サーバ10に予め保持している乱数表等を用い、当該調査対象の評価データからランダムに最小値個の評価データを抽出する(S3223)。これにより、各調査対象の評価データの数niを最小値nMINに統一する。
In the example of FIG. 11, the number of evaluation data n 1 = 4 of the airline 1 , the number of evaluation data n 2 = 4 of the airline 2 , the number of evaluation data n 3 = 4 of the airline 3, and the total number of data N Since = 12, it is less than the threshold value (15). In this case, next, the minimum value n MIN is specified for the number n i of the evaluation data of each investigation target (S3221). Then, it is judged whether the investigation with evaluation data for the number above the minimum value n MIN of the specified number of data in step S3221 (S3222). When there is a survey object having a number of evaluation data exceeding the minimum value, a minimum number of evaluation data is randomly extracted from the evaluation data of the survey object using a random number table or the like held in advance in the value evaluation server 10 (S3223). As a result, the number n i of evaluation data for each survey target is unified to the minimum value n MIN .
その後、図6のステップS3204等と同様の処理により、各評価データについての評価データ全体の集合における順位、および調査対象毎の順位の合計(順位和)を算出する(S3224)。図11の例では、各評価データについて算出した順位および順位和の情報が表に併記されている。次に、この順位データに基づいて以下の式によりKW量を計算する(S3225)。
Thereafter, by the same processing as in step S3204 in FIG. 6 and the like, the rank in the set of the entire evaluation data for each evaluation data and the sum (rank sum) of the ranks for each survey target are calculated (S3224). In the example of FIG. 11, information on ranks and rank sums calculated for each evaluation data is also written in the table. Next, based on this ranking data, the KW amount is calculated by the following equation (S3225).
ここで、iは1~調査対象数kの整数であり、Riは各調査対象における順位和である。
Here, i is an integer from 1 to the number of survey targets k, and R i is the sum of ranks in each survey target.
次に、統計計算部16等が予め保持しているクラスカル・ウォリス検定表(繰り返し数が等しい場合)から所定の有意水準α、調査対象数kおよび最小値に統一された調査対象の評価データ数nMINに対応する有意点kw(α)を特定し、得られたkw(α)と、ステップS3225で計算したKW量とを比較する(S3226)。図11の例では、上記の数4式によりKW量は6.62となり、また、有意水準5%の両側検定で有意差判定する場合は、k=3、nMIN=4より、繰り返し数が等しい場合(各調査対象の評価データの数が等しい場合)のクラスカル・ウォリス検定表からkw(0.05)=5.69が得られる。
Next, from the Kruskal-Wallis test table (when the number of repetitions is the same) held in advance by the statistical calculation unit 16 or the like, the number of evaluation data of the investigation object unified to a predetermined significance level α, the number of investigation objects k, and the minimum value A significant point kw (α) corresponding to n MIN is specified, and the obtained kw (α) is compared with the KW amount calculated in step S3225 (S3226). In the example of FIG. 11, the KW amount is 6.62 according to the above equation 4, and when the significant difference is determined by the two-sided test with the significance level of 5%, the number of repetitions is k = 3 and n MIN = 4. Kw (0.05) = 5.69 is obtained from the Kruskal-Wallis test table in the case of being equal (when the number of evaluation data of each investigation object is equal).
なお、繰り返し数が等しくない場合のクラスカル・ウォリス検定表を統計計算部16等に予め保持している場合は、図7のステップS3221~S3223の処理は必要なく、各調査対象の評価データの数を最小値に統一せずにKW量をステップS3225で計算可能となる。これにより、サンプルの数を減らすことなくKW量を計算でき、統計結果の信頼性向上と計算ステップの簡素化によるコンピュータ計算負荷軽減を同時に実現することが可能となる。なお、この場合有意点kw(α)は、有意水準α、調査対象数kおよび各調査対象の評価データ数niに対応するものから選択する。
If the Kruskal-Wallis test table when the number of repetitions is not equal is stored in advance in the statistical calculation unit 16 or the like, the processing in steps S3221 to S3223 in FIG. 7 is not necessary, and the number of evaluation data for each survey target The KW amount can be calculated in step S3225 without unifying the minimum values. As a result, the amount of KW can be calculated without reducing the number of samples, and it is possible to simultaneously improve the reliability of statistical results and reduce the computer calculation load by simplifying the calculation steps. In this case significant point kw (alpha) is significance level alpha, chosen from those corresponding to the survey number k and evaluation data number n i of each study.
また、クラスカル・ウォリス検定表には、調査対象数k、データ数nMINまたはni、および有意水準αから有意点(限界値)を求めるタイプのものと、調査対象数k、データ数nMINまたはni、およびKW量から有意確率(P値)を求めるタイプのものがあるが、ここでの比較には前者の検定表を用いる。後者の検定表は、後述する補足説明項目の選択においてP値を計算する際に用いる。
In addition, the Kruskal-Wallis test table includes a type that obtains a significant point (limit value) from the number k of survey targets, the number of data n MIN or ni , and the significance level α, the number of survey targets k, and the number of data n MIN. Alternatively, there is a type that obtains a significance probability (P value) from the n i and the KW amount, but the former test table is used for comparison here. The latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
次に、ステップS3226での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3227)、統計処理を終了する。ここでは、KW量≧kw(α)であるときは有意差があると判定し、KW量<kw(α)であるときは有意差があるとは言えないと判定する。図11の例では、(KW量=6.62)>{kw(0.05)=5.69}であるため、有意差があると判定する。
Next, based on the comparison result in step S3226, it is determined whether there is a significant difference between the survey targets (S3227), and the statistical processing is terminated. Here, it is determined that there is a significant difference when the KW amount ≧ kw (α), and it is determined that there is no significant difference when the KW amount <kw (α). In the example of FIG. 11, since (KW amount = 6.62)> {kw (0.05) = 5.69}, it is determined that there is a significant difference.
なお、各調査対象における評価データの数niの値が小さい等の理由でクラスカル・ウォリス検定表に比較する値が存在しない場合は、十分なデータがないために有意差があるとは言えないとする判定をする。またこのとき、後述する処理により結果を表示する際に、例えば「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。これにより、検定表に比較する値が存在しない場合でも有意差判定を可能とする。
If there is no value to be compared in the Kruskal-Wallis test table because the number n i of the evaluation data in each survey target is small, it cannot be said that there is a significant difference because there is not enough data. Judgment is made. At this time, when the result is displayed by the processing described later, for example, a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Thereby, even when there is no value to be compared in the test table, a significant difference can be determined.
図7のステップS3220で、データ総数Nが所定の閾値(例えば15)以上である場合は、上述のステップS3224、S3225と同様な処理により、各評価データの順位および調査対象毎の順位和の計算を行ってKW量を計算する(S3228、S3229)。図12は、3つの調査対象毎の評価指標の値から統計計算により有意差を判定する別の例について示した図である。図12の表では、調査対象である3つの航空会社(航空会社1~3)に対して、後述する図28に示した評価データ変換ルールに基づいて評価データ変換を行った評価指標である満足度が評価点(0~100点)で示されている。図12では、全評価データについて同一値のデータが存在せず、また、評価データの総数N=16であり、閾値(15)以上となっている。また、各評価データについて算出した順位、および調査対象毎の順位和の情報が表に併記されている。このとき、上記の数4式より、KW量は5.11となる。
In step S3220 in FIG. 7, when the total number N of data is equal to or greater than a predetermined threshold (for example, 15), the rank of each evaluation data and the rank sum for each survey target are calculated by the same processing as in steps S3224 and S3225 described above. To calculate the KW amount (S3228, S3229). FIG. 12 is a diagram showing another example in which a significant difference is determined by statistical calculation from the values of the evaluation indices for each of three survey targets. In the table of FIG. 12, satisfaction is an evaluation index obtained by performing evaluation data conversion for the three airlines (airlines 1 to 3) to be investigated based on the evaluation data conversion rule shown in FIG. Degrees are indicated by evaluation points (0 to 100 points). In FIG. 12, there is no data having the same value for all evaluation data, and the total number of evaluation data N = 16, which is equal to or greater than the threshold (15). Moreover, the rank calculated about each evaluation data and the information of the rank sum for every investigation object are written together in the table | surface. At this time, the amount of KW is 5.11 from the above equation (4).
次に、統計計算部16等が予め保持しているカイ二乗分布表から所定の有意水準α、および自由度φ=k-1で与えられる限界値χ2(φ,α)を特定し、得られたχ2(φ,α)と、ステップS3229で計算したKW量とを比較する(S3230)。図12の例では、有意水準α=0.05、自由度φ=3-1=2より、カイ二乗分布表から限界値χ2(2,0.05)=5.99が得られる。なお、カイ二乗分布表には、自由度φおよび有意水準αから有意点(限界値)を求めるタイプのものと、自由度φおよびKW量等の統計計算された値から有意確率(P値)を求めるタイプのものがあるが、ここでの比較には前者の検定表を用いる。後者の検定表は、後述する補足説明項目の選択においてP値を計算する際に用いる。
Next, a predetermined significance level α and a limit value χ 2 (φ, α) given with a degree of freedom φ = k−1 are specified from the chi-square distribution table previously held by the statistical calculation unit 16 and the like. The obtained χ 2 (φ, α) is compared with the KW amount calculated in step S 3229 (S 3230). In the example of FIG. 12, the limit value χ 2 (2,0.05) = 5.99 is obtained from the chi-square distribution table from the significance level α = 0.05 and the degree of freedom φ = 3-1 = 2. The chi-square distribution table includes a type that obtains a significant point (limit value) from a degree of freedom φ and a significance level α, and a significance probability (P value) from statistically calculated values such as the degree of freedom φ and the amount of KW. However, the former test table is used for comparison here. The latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
次に、ステップS3230での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3231)、統計処理を終了する。ここでは、KW量≧χ2(φ,α)であるときは有意差があると判定し、KW量<χ2(φ,α)であるときは有意差があるとは言えないと判定する。図12の例では、(KW量=5.11)<{χ2(2,0.05)=5.99}であるため、有意差があるとは言えないと判定する。
Next, based on the comparison result in step S3230, it is determined whether there is a significant difference between the survey targets (S3231), and the statistical processing is terminated. Here, it is determined that there is a significant difference when the KW amount ≧ χ 2 (φ, α), and it is determined that there is no significant difference when the KW amount <χ 2 (φ, α). . In the example of FIG. 12, since (KW amount = 5.11) <{χ 2 (2,0.05) = 5.99}, it is determined that there is no significant difference.
図7のステップS3219で評価データに同一の値のものがある場合は、上述のステップS3224、S3228と同様に、各評価データの順位を算出し(S3232)、さらに、同一の値の評価データには同一の順位が算出されるため、図6のステップS3214と同様の処理により、同一順位に対して平均順位を割り当てる(S3233)。
If there is an evaluation data having the same value in step S3219 in FIG. 7, the ranking of each evaluation data is calculated (S3232) as in steps S3224 and S3228 described above, and the evaluation data having the same value is further calculated. Since the same rank is calculated, an average rank is assigned to the same rank by the same process as step S3214 in FIG. 6 (S3233).
図13は、3つの調査対象毎の評価指標の値から統計計算により有意差を判定する別の例について示した図である。図13の表では、調査対象である3つの航空会社(航空会社1~3)に対して、後述する図28に示した評価データ変換ルールに基づいて評価データ変換を行った評価指標である満足度が評価点(0~100点)で示されている。図13では、全評価データのうち同一値のデータが存在する場合の例を示しており、また、各評価データについて算出した順位、および調査対象毎の順位和の情報が表に併記されている。
FIG. 13 is a diagram showing another example in which a significant difference is determined by statistical calculation from the values of evaluation indexes for each of three survey targets. In the table of FIG. 13, the satisfaction is an evaluation index obtained by performing evaluation data conversion on the three airlines (airlines 1 to 3) to be investigated based on the evaluation data conversion rule shown in FIG. Degrees are indicated by evaluation points (0 to 100 points). FIG. 13 shows an example in the case where data of the same value exists among all the evaluation data, and the rank calculated for each evaluation data and the information of the rank sum for each survey target are also shown in the table. .
ここで、図13の表では、順位が3位の評価データが3つ存在し、順位が7位の評価データが2つ存在する(t1=3、t2=2)。これらの2つのグループに対して、図6のステップS3214で用いた式により平均順位を計算すると、順位が3位のグループの平均順位は4となり、順位が7位のグループの平均順位は7.5となる。図13の表にはこれらの計算結果を含む平均順位およびその順位和の情報も併記されている。
Here, in the table of FIG. 13, there are three pieces of evaluation data having the third rank, and two pieces of evaluation data having the seventh rank (t 1 = 3, t 2 = 2). When the average rank is calculated for these two groups by the formula used in step S3214 of FIG. 6, the average rank of the group ranked third is 4, and the average rank of the group ranked seventh is 7. 5 The table of FIG. 13 also shows the average rank including these calculation results and the rank sum information.
次に、ステップS3233で算出した平均順位のデータに基づいて、上述のステップS3225、S3229と同様の処理によりKW量を計算する。なお、区別のためにこれをKW*量と記載する(S3234)。さらに、以下の式によりKW’量を計算する。(S3235)。
Next, based on the average rank data calculated in step S3233, the KW amount is calculated by the same processing as in steps S3225 and S3229 described above. For distinction, this is described as KW * amount (S3234). Further, the KW ′ amount is calculated by the following equation. (S3235).
ここで、jは1~同一順位を持つ評価データのグループの数gの整数である。
Here, j is an integer from 1 to the number g of evaluation data groups having the same rank.
図13の例では、上記数4式より、KW*量=1.42となり、数5式より、KW’量=1.48となる。その後、上記のステップS3230と同様の処理により、カイ二乗分布表の所定の有意水準α、および自由度φ=k-1から限界値χ2(φ,α)を特定し、得られたχ2(φ,α)と、ステップS3235で得られたKW’量とを比較する(S3236)。次に、ステップS3236での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3237)、統計処理を終了する。ここでは、KW’量≧χ2(φ,α)であるときは有意差があると判定し、KW’量<χ2(φ,α)であるときは有意差があるとは言えないと判定する。図13の例では、有意水準5%の両側検定において、(KW’量=1.48)<{χ2(2,0.05)=5.99}であるため、有意差があるとは言えないと判定する。
In the example of FIG. 13, KW * amount = 1.42 from the above equation 4, and KW ′ amount = 1.48 from the equation 5. Thereafter, the limit value χ 2 (φ, α) is specified from the predetermined significance level α of the chi-square distribution table and the degree of freedom φ = k−1 by the same processing as in step S3230, and the obtained χ 2 (Φ, α) is compared with the amount of KW ′ obtained in step S3235 (S3236). Next, based on the comparison result in step S3236, it is determined whether there is a significant difference between the survey targets (S3237), and the statistical processing is terminated. Here, it is determined that there is a significant difference when KW ′ amount ≧ χ 2 (φ, α), and it cannot be said that there is a significant difference when KW ′ amount <χ 2 (φ, α). judge. In the example of FIG. 13, in the two-sided test with a significance level of 5%, (KW ′ amount = 1.48) <{χ 2 (2,0.05) = 5.99}. Judge that you can not say.
なお、同一値のあるクラスカル・ウォリス検定における調査対象数k、または各調査対象の評価データの数niの最小値nMINの値が、所定の閾値未満(例えば一般的に統計計算の精度が劣るとされるk<3、または最小値nMIN<6)の時は、十分な精度が確保できないとして、統計計算を行わなくてもよい。この場合、十分なデータがないために有意差があるとは言えないとする判定をしてもよい。またこのとき、後述する処理により結果を表示する際に、例えば「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。また、統計計算を実行した上で、例えば、「この統計計算の結果の精度は高くありません」等のメッセージを付加するようにしてもよい。
Note that the number of survey targets k in the Kruskal-Wallis test with the same value or the minimum value n MIN of the number of evaluation data n i of each survey target is less than a predetermined threshold (for example, generally the accuracy of statistical calculation is When k <3, which is considered inferior, or the minimum value n MIN <6), it is not necessary to perform statistical calculation because sufficient accuracy cannot be secured. In this case, it may be determined that there is no significant difference because there is not enough data. At this time, when the result is displayed by the processing described later, for example, a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Further, after executing the statistical calculation, for example, a message such as “the accuracy of the result of the statistical calculation is not high” may be added.
また、上述した統計計算においては、クラスカル・ウォリス検定は、調査対象数k≧3の場合に用いるものとしたが、k=2の場合に適用した場合は、両側検定のウィルコクソン検定と一致する。従って、本実施の形態では、k=2の場合にもクラスカル・ウォリス検定を適用することが可能である。ただし、カイ二乗分布表を用いる検定の場合、精度が劣る。また、後述する片側検定のウィルコクソン検定には一致しない。
In the statistical calculation described above, the Kruskal-Wallis test is used when the number of survey targets k ≧ 3. However, when applied when k = 2, it matches the Wilcoxon test of the two-sided test. Therefore, in this embodiment, the Kruskal-Wallis test can be applied even when k = 2. However, the accuracy of the test using the chi-square distribution table is inferior. Moreover, it does not agree with the Wilcoxon test of the one-sided test described later.
以上の処理により、図5のステップS320の統計処理を終了すると、図5の処理フローにおいて、ループ処理により次の評価指標についてステップS303~S320の一連の処理を繰り返す。全ての評価指標に対してステップS303~S320の一連の処理を繰り返すとループ処理を終了し、次に、全ての評価指標について、有意差があるか(有意な評価指標があるか)を判定し(S307)、全ての評価指標に有意差があるとは言えない(有意な評価指標がない)場合は、ステップS340に進む。
When the statistical processing in step S320 in FIG. 5 is completed through the above processing, the series of processing in steps S303 to S320 is repeated for the next evaluation index by loop processing in the processing flow in FIG. When the series of processing in steps S303 to S320 is repeated for all evaluation indexes, the loop processing is terminated, and then it is determined whether all the evaluation indexes have a significant difference (whether there is a significant evaluation index). (S307) If it cannot be said that all the evaluation indices are significantly different (there is no significant evaluation index), the process proceeds to step S340.
ステップS307で、有意な評価指標が1つでもある場合は、価値評価サーバ10の評価結果出力部14は、調査対象毎に商品等の価格と有意な評価指標の値を比較可能な表またはグラフを作成する(S308)。図14は、調査対象毎に商品等の価格と有意な評価指標を表形式で表した例を示した図である。図14では、3つの調査対象(航空会社1~3)について、評価履歴DB104に記録された評価履歴情報内の各指標について、ステップS320の統計処理により有意差判定を行ったところ、3つの評価指標(「AV機器の質」「CAの態度」「食事の豪華さ」)について有意差が存在した場合の例を示している。航空会社別に、希望路線のチケットの価格と、評価履歴情報における各評価指標の評価点の平均値を比較可能なように一覧表示しており、平均値としては、例えば、図11の表における評価点の平均値を、後述する図28に示した評価データ変換ルールに基づいて逆変換を行った値(すなわち、評価データ変換を行わない本来の評価データの値の平均値)を用いることができる。
If there is at least one significant evaluation index in step S307, the evaluation result output unit 14 of the value evaluation server 10 can compare the price of the product etc. with the value of the significant evaluation index for each survey target. Is created (S308). FIG. 14 is a diagram illustrating an example in which the price of a product and a significant evaluation index are represented in a tabular format for each survey target. In FIG. 14, for each of the three survey targets (airlines 1 to 3), a significant difference is determined for each index in the evaluation history information recorded in the evaluation history DB 104 by the statistical processing in step S320. An example is shown in which there is a significant difference in indicators (“quality of AV equipment”, “attitude of CA”, “luxury of meals”). For each airline, the price of the ticket on the desired route and the average value of the evaluation points of each evaluation index in the evaluation history information are displayed in a list so that they can be compared. As the average value, for example, the evaluation in the table of FIG. As the average value of the points, a value obtained by performing inverse conversion based on an evaluation data conversion rule shown in FIG. 28 described later (that is, an average value of values of original evaluation data that is not subjected to evaluation data conversion) can be used. .
図14の例では、評価指標が評価点という計量値の場合を示しているが、評価指標が計量値ではなく、確率や欠点数等の計数値である場合は、平均値を計算する前に、計量値に近似するための変換を行ってもよい。例えば、確率については、ロジット変換や逆正弦変換を用い、欠点数については、平方根変換または対数変換を用いて変換を行うことができる。百分率(確率)または欠点数は、それぞれ二項分布またはポアソン分布に従うため、正規分布に従うデータに変換することがある。これにより、計量値と同様に正規分布に従うデータとみなすことができる。百分率については、確率で表現された後、ロジット変換や逆正弦変換を用いて正規化することができる。
The example of FIG. 14 shows a case where the evaluation index is a metric value called an evaluation point. However, if the evaluation index is not a metric value but a count value such as a probability or the number of defects, before calculating the average value. A conversion for approximating the measured value may be performed. For example, logit transformation or inverse sine transformation can be used for probability, and square root transformation or logarithmic transformation can be used for the number of defects. Since the percentage (probability) or the number of defects follows a binomial distribution or a Poisson distribution, respectively, data may be converted to a normal distribution. Thereby, it can be regarded as data according to a normal distribution like the measurement value. The percentage can be normalized by using a logit transform or an inverse sine transform after being expressed as a probability.
ロジット変換はL(P)=ln{P/(1-P)}で表される。ここで、Pは確率、L(P)はロジットである。また、逆正弦変換はSin-1√Pで表される。また、平方根変換は√λで表され、対数変換はlnλで表される。ここで、λは欠点数である。なお、確率または欠点数の計算式であるx/n(xは出現数または欠点の数の合計、nは試行数または検数)におけるxとnが既知の場合は、連続修正をデータ変換式に加えると、よりよく正規近似する。ロジット変換または逆正弦変換の連続修修正は、P*=(x+0.5)/(n+1)で表され、上記のロジット変換または逆正弦変換の式のPに代えてこのP*の値を用いればよい。また、平方根変換または対数変換の連続修正は、λ*=(x+0.5)/nで表され、上記の平方根変換または対数変換の式のλに代えてλ*を用いればよい。
The logit transformation is represented by L (P) = ln {P / (1-P)}. Here, P is a probability and L (P) is a logit. The inverse sine transformation is represented by Sin −1 √P. The square root transformation is represented by √λ, and the logarithmic transformation is represented by lnλ. Here, λ is the number of defects. If x and n in x / n (where x is the total number of occurrences or defects and n is the number of trials or the number of trials) are known, continuous correction is performed as a data conversion formula. Add to the normal approximation better. The logistic transformation or inverse sine transformation continuous correction is expressed by P * = (x + 0.5) / (n + 1), and the value of P * is used in place of P in the above-mentioned logit transformation or inverse sine transformation expression. That's fine. Further, continuous correction of square root transformation or logarithmic transformation is represented by λ * = (x + 0.5) / n, and λ * may be used in place of λ in the above square root transformation or logarithmic transformation formula.
図15は、各調査対象について有意な評価指標の平均値と価格との関係をグラフで表した例を示した図である。図15(a)では、各航空会社について、3つの評価指標および価格を軸としたレーダーチャートとして表した例を示している。なお、図14および図15の評価データ(ここでは評価データ変換を行わない本来の評価点)の平均値に代えて、図6のステップS3204などの処理により評価データ変換後の値を順位付けした後の平均値を用いてもよい。例えば、図11の表における順位の平均値を用いることができる。図14および図15の例では、3つの有意な評価指標の値が全て評価点であり、値の単位または符号等が同一の価値評価基準で示されているため、値の平均値または値の順位の平均値のどちらを用いてもよい。しかし、評価指標の値が同一の価値評価基準で示されていない場合(例えば、2つの評価点と1つの欠点数である場合)は、値の順位の平均値を用いる。
FIG. 15 is a diagram showing an example of a graph representing the relationship between the average value of the significant evaluation index and the price for each survey target. FIG. 15A shows an example in which each airline is represented as a radar chart with three evaluation indexes and prices as axes. In addition, instead of the average value of the evaluation data in FIG. 14 and FIG. 15 (in this case, the original evaluation score that is not subjected to the evaluation data conversion), the values after the evaluation data conversion are ranked by processing such as step S3204 in FIG. Later averages may be used. For example, an average value of ranks in the table of FIG. 11 can be used. In the examples of FIGS. 14 and 15, the values of the three significant evaluation indices are all evaluation points, and the unit or sign of the values are indicated by the same value evaluation standard. Either of the average values of ranks may be used. However, when the value of the evaluation index is not indicated by the same value evaluation standard (for example, two evaluation points and one defect number), an average value rank is used.
ただし、評価データが評価データ変換を行わない本来の評価点である場合は、順位付けの際には本来の評価点に対して降順で評価されるため、これを昇順に変換する必要がある。降順のままでは、評価点100点が順位1位(順位最小値)となり、評価点0点が順位最下位(順位最大値)となるため、図15(a)のレーダーチャートにおいて中心側が高評価点となってしまうことから、これを補正するために変換する。順位を降順から昇順に変換する方法に代えて、レーダーチャートの目盛り表示を昇順から降順に変更してもよい。
However, if the evaluation data is an original evaluation point that is not subjected to evaluation data conversion, it is necessary to convert the evaluation data in ascending order because the evaluation is performed in descending order with respect to the original evaluation point. In descending order, 100 points are ranked first (ranked minimum value) and 0 points are ranked lowest (ranked maximum value), so the center side in the radar chart of FIG. Since it becomes a point, it converts in order to correct | amend this. Instead of converting the rank from descending to ascending order, the scale display of the radar chart may be changed from ascending to descending order.
例えば、欠点数など、評価点と異なる順位付けルールを持つ評価指標の場合は、評価データ変換を行わない本来の欠点数に対して昇順で順位付けされるため、順位をレーダーチャートに表示する時の目盛り表示は評価点の順位と同じであるものの、欠点数の値をレーダーチャートに表示する時は目盛り表示を評価点の時とは逆(つまり順位の時と同じ目盛表示)にする。例えば、後述する図28に示すような、評価指標毎に順位付けするルールを予め定めたテーブルを利用してレーダーチャートの目盛り表示を決定することができる。
For example, in the case of an evaluation index that has a ranking rule different from the evaluation score, such as the number of defects, the ranking is performed in ascending order with respect to the original number of defects that does not perform evaluation data conversion. Although the scale display of is the same as the ranking of the evaluation points, when displaying the value of the number of defects on the radar chart, the scale display is reversed from that of the evaluation points (that is, the same scale display as that of the ranking). For example, the scale display of the radar chart can be determined using a table in which rules for ranking for each evaluation index are determined in advance as shown in FIG.
図15(b)では、3つの評価指標の評価点の平均値を航空会社毎に平均した調査対象別評価点平均値と価格との関係を散布図で表した例を示している。ここでは、調査対象別評価点平均値を横軸、価格を縦軸としており、図14で示される調査対象別評価点平均値と価格($)の関係を示している。有意となった各評価指標の評価点平均値についての調査対象別平均値は、有意となった評価指標の調査対象別の総合値と解することができ、調査対象間に存在する商品等の価値の差を示すものと考えられる。なお、評価点(または評価点を順位付けした順位)の平均値、および調査対象別評価点の平均値に代えて、中央値または最頻値等の他の統計値を用いてもよい。
FIG. 15 (b) shows an example in which the relationship between the average value of the evaluation points for each of the three evaluation indices for each airline and the price is shown in a scatter diagram. Here, the horizontal axis is the evaluation point average value by survey object and the vertical axis is the price, and the relationship between the average evaluation point value by survey object and the price ($) shown in FIG. 14 is shown. The average value by evaluation target for the evaluation score average value of each evaluation index that became significant can be interpreted as the total value by evaluation target of the evaluation index that became significant. This is considered to indicate a difference in value. Note that other statistical values such as a median value or a mode value may be used in place of the average value of the evaluation points (or the rank in which the evaluation points are ranked) and the average value of the evaluation points by survey object.
なお一般には、有意となった全ての評価指標が同じ種類で、尺度水準が間隔尺度または比例尺度である場合(例えば全て評価点である場合)は、平均値および調査対象別評価指標の平均値が適当とされている。間隔尺度は、例えば、西暦年号、摂氏表示の温度等の絶対ゼロ点を持たない数値を指し、比例尺度は、例えば、長さ、絶対温度等の絶対ゼロ点を持つ数値を指す。それ以外の場合は、順位中央値及び調査対象別評価指標の順位中央値が適当とされている。よって、統計計算部13は、後述する図28に示すようなテーブルを用い、評価指標数値種別から有意となった評価指標が同一の種別であるか否か判定し、同一の場合はさらに尺度水準が間隔または比例であるか否か判定し、適する統計値を選択する処理を行えばよい。
In general, when all the evaluation indicators that are significant are of the same type and the scale level is an interval scale or a proportional scale (for example, all are evaluation points), the average value and the average value of the evaluation indices for each survey target Is considered appropriate. The interval scale indicates, for example, a numerical value having no absolute zero point such as the year and the temperature in degrees Celsius, and the proportional scale indicates, for example, a numerical value having an absolute zero point, such as length or absolute temperature. In other cases, the median ranking and the median ranking of the evaluation index by survey object are appropriate. Therefore, the statistical calculation unit 13 determines whether or not the evaluation index that has become significant from the evaluation index numerical type is the same type by using a table as shown in FIG. 28 described later. May be determined whether or not is an interval or proportional, and a process of selecting a suitable statistical value may be performed.
図5に戻り、次に、価値評価サーバ10は、有意となった評価指標が複数あるか否かを判定する(S309)。複数ない場合は、ステップS340へ進む。有意となった評価指標が複数ある場合は、統計計算部13によって、これらの評価指標の評価データについての評価データ変換後の統計値から、調査対象間に直接に統計的有意差があるかを総合的に判定する調査対象間有意差判定処理を行う(S330)。
Returning to FIG. 5, next, the value evaluation server 10 determines whether or not there are a plurality of significant evaluation indexes (S309). If there are no more than one, proceed to step S340. When there are a plurality of evaluation indexes that are significant, the statistical calculation unit 13 determines whether there is a statistically significant difference directly between the survey targets from the statistical values after the evaluation data conversion for the evaluation data of these evaluation indexes. A process for determining a significant difference between survey targets to be comprehensively determined is performed (S330).
図16および図17は、図5のステップS330の調査対象間有意差判定処理の流れの例について概要を示したフロー図である。統計計算部13は、まず、各調査対象i(iは1~調査対象数kの整数)と、有意な評価指標j(jは1~有意な評価指標の数mの整数)との全ての組み合わせに対して、調査対象の数kが2であるか否かを判定する(S3301)。調査対象の数が2である場合は、後述するように、ウィルコクソンの符号付順位検定を行う。一方、調査対象の数が2ではない(すなわち調査対象の数が3以上である)場合は、フリードマン検定を行う。
16 and 17 are flowcharts showing an outline of an example of the flow of the significant difference determination process between the investigation targets in step S330 of FIG. First, the statistical calculation unit 13 calculates all of the survey target i (i is an integer from 1 to the number of survey targets k) and a significant evaluation index j (j is an integer from 1 to the number m of the significant evaluation indexes). It is determined whether or not the number k to be investigated is 2 for the combination (S3301). When the number of survey targets is 2, as will be described later, Wilcoxon signed rank test is performed. On the other hand, if the number of survey targets is not 2 (that is, the number of survey targets is 3 or more), Friedman test is performed.
[フリードマン検定]
まず、評価指標毎に各調査対象における評価データ変換後の値の統計値を順位付けする(S3302)。例えば評価指標が評価点である場合は、評価データ変換後の点数の平均値を順位付けする。なお、評価データの尺度水準が間隔尺度および比例尺度のいずれでもない場合は、平均値に代えて中央値などの他の統計値を適宜用いてもよい。次に、評価指標内で同一順位があるか否かを判定する(S3303)。なお、ステップS3303による同一順位の判定処理に代えて、ステップS3302の前に、ウィルコクソン検定またはクラスカル・ウォリス検定で行った同一値の判定処理(図6のステップS3202や図7のS3219)を行ってもよい。 [Friedman test]
First, the statistical value of the value after the evaluation data conversion in each survey target is ranked for each evaluation index (S3302). For example, when the evaluation index is an evaluation score, the average value of the scores after the evaluation data conversion is ranked. In addition, when the scale level of evaluation data is neither an interval scale nor a proportional scale, other statistical values such as a median value may be appropriately used instead of the average value. Next, it is determined whether or not there is the same rank in the evaluation index (S3303). Instead of the same rank determination process in step S3303, the same value determination process (step S3202 in FIG. 6 or S3219 in FIG. 7) performed in the Wilcoxon test or the Kruskal-Wallis test is performed before step S3302. Also good.
まず、評価指標毎に各調査対象における評価データ変換後の値の統計値を順位付けする(S3302)。例えば評価指標が評価点である場合は、評価データ変換後の点数の平均値を順位付けする。なお、評価データの尺度水準が間隔尺度および比例尺度のいずれでもない場合は、平均値に代えて中央値などの他の統計値を適宜用いてもよい。次に、評価指標内で同一順位があるか否かを判定する(S3303)。なお、ステップS3303による同一順位の判定処理に代えて、ステップS3302の前に、ウィルコクソン検定またはクラスカル・ウォリス検定で行った同一値の判定処理(図6のステップS3202や図7のS3219)を行ってもよい。 [Friedman test]
First, the statistical value of the value after the evaluation data conversion in each survey target is ranked for each evaluation index (S3302). For example, when the evaluation index is an evaluation score, the average value of the scores after the evaluation data conversion is ranked. In addition, when the scale level of evaluation data is neither an interval scale nor a proportional scale, other statistical values such as a median value may be appropriately used instead of the average value. Next, it is determined whether or not there is the same rank in the evaluation index (S3303). Instead of the same rank determination process in step S3303, the same value determination process (step S3202 in FIG. 6 or S3219 in FIG. 7) performed in the Wilcoxon test or the Kruskal-Wallis test is performed before step S3302. Also good.
ステップS3303で同一順位がない場合は、調査対象の数kが所定の閾値(例えば5)以上であるか否かを判定する(S3304)。調査対象の数kが5未満である場合は、以下の式によりFR量を計算する(S3305)。
If there is no same rank in step S3303, it is determined whether or not the number k to be investigated is equal to or greater than a predetermined threshold (for example, 5) (S3304). When the number k to be investigated is less than 5, the FR amount is calculated by the following formula (S3305).
ここで、iは1~調査対象数kの整数であり、Riは各調査対象における各評価指標についての順位和である。
Here, i is an integer of 1 to survey the number k, R i is the rank sum for each evaluation index in each study.
図18は、3つの調査対象間の有意差を有意な評価指標の値から統計計算により判定する例について示した図である。図18の表では、調査対象である3つの航空会社(航空会社1~3)に対して、3つの有意な評価指標(「AV機器の質」「CAの態度」「食事の豪華さ」)の評価データ変換後の評価点の平均値が示されている。また、評価指標毎に各調査対象における評価データ変換後の評価点の平均値について算出した順位、および、調査対象毎に順位を合計した順位和の情報(数6式におけるRiに相当)が併記されている。図18では、評価指標内で同一順位の調査対象がない場合の例を示しており、この場合は調査対象の数k=3、有意な評価指標の数m=3であることから、上記の数6式により、FR量=2となる。
FIG. 18 is a diagram illustrating an example in which a significant difference between three survey targets is determined by statistical calculation from the value of a significant evaluation index. In the table of FIG. 18, three significant evaluation indices (“quality of AV equipment”, “attitude of CA”, “luxury of meal”) for the three airlines under investigation (airlines 1 to 3) The average value of the evaluation points after conversion of the evaluation data is shown. In addition, the rank calculated for the average value of the evaluation points after the evaluation data conversion for each survey target for each evaluation index, and information on the sum of ranks for each survey target (corresponding to R i in Equation 6) It is written together. FIG. 18 shows an example where there are no survey targets of the same rank in the evaluation index. In this case, the number of survey targets k = 3 and the number m of significant evaluation indexes m = 3. From the formula 6, the FR amount = 2.
次に、統計計算部16等が予め保持しているフリードマン検定表から所定の有意水準α、調査対象数k、および有意な評価指標の数mで特定される限界値fr(α)を特定し、得られたfr(α)と、ステップS3305で計算したFR量とを比較する(S3306)。図18の例では、有意水準α=0.05、調査対象数k=3、および有意な評価指標の数m=3より、フリードマン検定表から限界値fr(0.05)=6が得られる。なお、フリードマン検定表には、調査対象数k、有意な評価指標の数m、および有意水準αから有意点(限界値)を求めるタイプのものと、調査対象数k、有意な評価指標の数m、およびFR量から有意確率(P値)を求めるタイプのものがあるが、ここでの比較には前者の検定表を用いる。後者の検定表は、後述する補足説明項目の選択においてP値を計算する際に用いる。
Next, the limit value fr (α) specified by the predetermined significance level α, the number k of survey targets, and the number m of significant evaluation indexes is specified from the Friedman test table held in advance by the statistical calculation unit 16 or the like. The obtained fr (α) is compared with the FR amount calculated in step S3305 (S3306). In the example of FIG. 18, the limit value fr (0.05) = 6 is obtained from the Friedman test table based on the significance level α = 0.05, the number of survey targets k = 3, and the number m of significant evaluation indexes. . Note that the Friedman test table includes the number of survey targets k, the number m of significant evaluation indexes, and the type that obtains a significant point (limit value) from the significance level α, the number of survey targets k, and the number of significant evaluation indexes. There is a type that obtains a significance probability (P value) from m and the FR amount, but the former test table is used for comparison here. The latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
次に、ステップS3306での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3307)、調査対象間有意差判定処理を終了する。ここでは、FR量≧fr(α)であるときは有意差があると判定し、FR量<fr(α)であるときは有意差があるとは言えないと判定する。図18の例では、(FR量=2)<{fr(0.05)=6}であるため、有意差があるとは言えないと判定する。すなわち、図15(b)のグラフにおいて価値に有意差があるとは言えないと判定する。
Next, based on the comparison result in step S3306, it is determined whether there is a significant difference between the survey targets (S3307), and the inter-survey target significant difference determination process is terminated. Here, it is determined that there is a significant difference when FR amount ≧ fr (α), and it is determined that there is no significant difference when FR amount <fr (α). In the example of FIG. 18, since (FR amount = 2) <{fr (0.05) = 6}, it is determined that there is no significant difference. That is, it is determined that there is no significant difference in value in the graph of FIG.
なお、調査対象数kまたは有意な評価指標の数mが小さい等の理由で、フリードマン検定表に比較する値が存在しない場合は、十分なデータがないために有意差があるとは言えないとする判定をする。またこのとき、後述する処理により結果を表示する際に、例えば「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。これにより、検定表に比較する値が存在しない場合でも有意差判定を可能とする。
If there is no value to be compared in the Friedman test table because the number of survey targets k or the number m of significant evaluation indices is small, it cannot be said that there is a significant difference because there is not enough data. Make a decision. At this time, when the result is displayed by the processing described later, for example, a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Thereby, even when there is no value to be compared in the test table, a significant difference can be determined.
一方、図16のステップS3304で、調査対象の数kが所定の閾値(例えば5)以上である場合は、上述のステップS3305と同様な処理により、FR量を計算する(S3308)。図19は、5つの調査対象間の有意差を有意な評価指標の値から統計計算により判定する例について示した図である。図19の表では、調査対象である5つの航空会社(航空会社1~5)に対して、3つの有意な評価指標(「AV機器の質」「CAの態度」「食事の豪華さ」)の評価データ変換後の評価点の平均値が示されている。また、評価指標毎に各調査対象における評価データ変換後の評価点の平均値について算出した順位、および、調査対象毎に順位を合計した順位和の情報が併記されている。
On the other hand, if the number k to be investigated is greater than or equal to a predetermined threshold (for example, 5) in step S3304 in FIG. 16, the FR amount is calculated by the same process as in step S3305 described above (S3308). FIG. 19 is a diagram illustrating an example in which a significant difference between five survey targets is determined by statistical calculation from the value of a significant evaluation index. In the table of FIG. 19, three significant evaluation indicators (“quality of AV equipment”, “attitude of CA”, “luxury of meal”) for the five airlines (airlines 1 to 5) to be surveyed The average value of the evaluation points after conversion of the evaluation data is shown. In addition, the rank calculated for the average value of the evaluation points after the evaluation data conversion in each survey target for each evaluation index, and information on the rank sum obtained by summing the ranks for each survey target are also shown.
図19では、評価指標内に同一順位の調査対象がない場合の例を示しており、調査対象の数k=5、有意な評価指標の数m=3であることから、上記の数6式により、FR量=9.6となる。
FIG. 19 shows an example in which there are no survey targets of the same rank in the evaluation index. Since the number of survey targets k = 5 and the number of significant evaluation indexes m = 3, the above formula 6 Therefore, the FR amount = 9.6.
次に、統計計算部16等が予め保持しているカイ二乗分布表から所定の有意水準α、および自由度φ=k-1で与えられる限界値χ2(φ,α)を特定し、得られたχ2(φ,α)と、ステップS3308で計算したFR量とを比較する(S3309)。図19の例では、有意水準α=0.05、自由度φ=5-1=4より、カイ二乗分布表から限界値χ2(4,0.05)=9.49が得られる。
Next, a predetermined significance level α and a limit value χ 2 (φ, α) given with a degree of freedom φ = k−1 are specified from the chi-square distribution table previously held by the statistical calculation unit 16 and the like. The obtained χ 2 (φ, α) is compared with the FR amount calculated in step S3308 (S3309). In the example of FIG. 19, the limit value χ 2 (4,0.05) = 9.49 is obtained from the chi-square distribution table from the significance level α = 0.05 and the degree of freedom φ = 5-1 = 4.
次に、ステップS3309での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3310)、調査対象間有意差判定処理を終了する。ここでは、FR量≧χ2(φ,α)であるときは有意差があると判定し、FR量<χ2(φ,α)であるときは有意差があるとは言えないと判定する。図19の例では、(FR量=9.6)>{χ2(4,0.05)=9.49}であるため、有意差があると判定する。すなわち、図15(b)のグラフにおいて価値の有意差があると判定する。
Next, based on the comparison result in step S3309, it is determined whether there is a significant difference between the survey targets (S3310), and the inter-survey target significant difference determination process is terminated. Here, it is determined that there is a significant difference when the FR amount ≧ χ 2 (φ, α), and it is determined that there is no significant difference when the FR amount <χ 2 (φ, α). . In the example of FIG. 19, since (FR amount = 9.6)> {χ 2 (4,0.05) = 9.49}, it is determined that there is a significant difference. That is, it is determined that there is a significant difference in value in the graph of FIG.
ステップS3303で、評価指標内で同一順位がある場合は、図6のステップS3214と同様な処理により、同一順位に対して平均順位を割り当てる(S3311)。図20は、3つの調査対象間の有意差を有意な評価指標の値から統計計算により判定する別の例について示した図である。図20の表では、調査対象である3つの航空会社(航空会社1~3)に対して、3つの有意な評価指標(「AV機器の質」「CAの態度」「食事の豪華さ」)の評価データ変換後の評価点の平均値が示されている。また、評価指標毎に各調査対象における評価データ変換後の評価点の平均値について算出した順位の情報が併記されている。
In step S3303, when there is the same rank in the evaluation index, an average rank is assigned to the same rank by the same process as step S3214 in FIG. 6 (S3311). FIG. 20 is a diagram illustrating another example in which a significant difference between three survey targets is determined by statistical calculation from the value of a significant evaluation index. In the table of FIG. 20, three significant evaluation indicators (“quality of AV equipment”, “attitude of CA”, “luxury of meal”) for the three airlines under investigation (airlines 1 to 3) The average value of the evaluation points after conversion of the evaluation data is shown. In addition, rank information calculated for the average value of evaluation points after conversion of evaluation data in each survey target is written together for each evaluation index.
ここで、図20の表では、評価指標が「AV機器の質」について、順位が1位の調査対象が2つ存在する(t1=2)。このグループに対して、図6のステップS3214で用いた式により平均順位を計算すると、このグループの平均順位は1.5となる。図20の表にはこの計算結果を含む平均順位、および調査対象毎に平均順位を合計した順位和の情報も併記されている。
Here, in the table of FIG. 20, there are two survey targets with the ranking of “AV device quality” as the evaluation index (t 1 = 2). When the average rank is calculated for this group using the formula used in step S3214 in FIG. 6, the average rank of this group is 1.5. The table in FIG. 20 also includes information on the average rank including the calculation result and rank sum obtained by summing up the average rank for each survey target.
次に、ステップS3311で算出した平均順位のデータに基づいて、以下の式によりFR*量を計算する。(S3312)。
Next, based on the average rank data calculated in step S3311, the FR * amount is calculated by the following equation. (S3312).
ここで、FRは、上記数6式により得られるFR値であり、ここでは平均順位を合計した順位和の情報をRiとして計算される。また、jは1~有意な評価指標数mの整数であり、iは1~j番目の評価指標の平均順位データにおける異なる順位の個数ejの整数である。また、tijは、j番目の評価指標の平均順位データにおける異なる順位の中でi番目に小さい順位の個数である。例えば、j番目の評価指標の3つの平均順位が、1.5、1.5、3の場合は、ej=2となり、t1j=2、t2j=1となる。
Here, FR is the FR value obtained by the equation (6), wherein the calculated information rank sum obtained by summing the average rank as R i. Further, j is an integer from 1 to the number m of significant evaluation indexes, and i is an integer of the number e j of different ranks in the average rank data of the 1st to j-th evaluation indexes. T ij is the number of the i-th smallest rank among the different ranks in the average rank data of the j-th evaluation index. For example, when the three average ranks of the j-th evaluation index are 1.5, 1.5 and 3, e j = 2, t 1j = 2 and t 2j = 1.
図20の例では、上記数7式より、FR*量=1.27となる。その後、上記のステップS3309と同様の処理により、カイ二乗分布表の所定の有意水準α、および自由度φ=k-1から限界値χ2(φ,α)を特定し、得られたχ2(φ,α)と、ステップS3312で得られたFR*量とを比較する(S3313)。
In the example of FIG. 20, FR * amount = 1.27 from Equation 7 above. Thereafter, the limit value χ 2 (φ, α) is specified from the predetermined significance level α of the chi-square distribution table and the degree of freedom φ = k−1 by the same processing as in step S3309, and the obtained χ 2 (Φ, α) is compared with the amount of FR * obtained in step S3312 (S3313).
次に、ステップS3313での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3314)、調査対象間有意差判定処理を終了する。ここでは、FR*量≧χ2(φ,α)であるときは有意差があると判定し、FR*量<χ2(φ,α)であるときは有意差があるとは言えないと判定する。図20の例では、有意水準5%の両側検定において、(FR*量=1.27)<{χ2(2,0.05)=5.99}であるため、有意差があるとは言えないと判定する。すなわち、図15(b)のグラフにおいて価値に有意差があるとは言えないと判定する。
Next, based on the comparison result in step S3313, it is determined whether there is a significant difference between the survey targets (S3314), and the inter-survey target significant difference determination process is terminated. Here, it is determined that there is a significant difference when FR * amount ≧ χ 2 (φ, α), and it cannot be said that there is a significant difference when FR * amount <χ 2 (φ, α). judge. In the example of FIG. 20, in the two-sided test with a significance level of 5%, (FR * amount = 1.27) <{χ 2 (2,0.05) = 5.99} Judge that you can not say. That is, it is determined that there is no significant difference in value in the graph of FIG.
なお、同一順位のあるフリードマン検定における調査対象数kと有意な評価指標の数mの積が所定の閾値未満(例えば一般的に統計計算の精度が劣るとされる30未満)の場合は、十分な精度が確保できないとして、統計計算を行わなくてもよい。この場合、十分なデータがないために有意差があるとはいえないとする判定をしてもよい。またこのとき、後述する処理により結果を表示する際に、例えば「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。また、統計計算を実行した上で、例えば、「この統計計算の結果の精度は高くありません」等のメッセージを付加するようにしてもよい。
It is sufficient if the product of the number of survey targets k and the number m of significant evaluation indices in the Friedman test with the same rank is less than a predetermined threshold (for example, less than 30 which is generally considered to be inferior in accuracy of statistical calculations). It is not necessary to perform statistical calculation because it is impossible to secure a high accuracy. In this case, it may be determined that there is no significant difference because there is not enough data. At this time, when the result is displayed by the processing described later, for example, a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Further, after executing the statistical calculation, for example, a message such as “the accuracy of the result of the statistical calculation is not high” may be added.
また、フリードマン検定で調査対象が有意となった場合、有意となった調査対象の中のある2つ調査対象(例えば航空会社AとB)の間の統計的有意差判定を行ってもよい。このような判定を、有意となった調査対象の中の他の2つの組み合わせに対しても行い、例えば2つの航空会社の全ての組み合わせ間の有意差を判定する。このとき用いるデータは、フリードマン検定で使用したものを用い、後述するウィルコクソンの符号付順位検定を行う。この結果により、フリードマン検定で有意差があると判定された調査対象の中の特定の2つの調査対象間の有意差を判定することができ、利用者により詳しい統計的有意差判定に係る情報を提供することができる。
In addition, when the survey target becomes significant by the Friedman test, a statistical significance difference between two survey targets (for example, airlines A and B) among the survey targets that become significant may be determined. Such a determination is also performed on the other two combinations in the survey target that become significant, and for example, a significant difference between all combinations of the two airlines is determined. The data used at this time is the data used in the Friedman test, and the Wilcoxon signed rank test described later is performed. Based on this result, it is possible to determine a significant difference between two specific survey targets among the survey targets determined to have a significant difference by the Friedman test. Can be provided.
[ウィルコクソンの符号付順位検定]
図16のステップS3301で調査対象の数が3未満(すなわち調査対象の数が2)である場合は、図17へ移り、ウィルコクソンの符号付順位検定を行うため、まず、各評価指標について調査対象の組み合わせ毎に評価データ変換後の値の平均値などの統計値の差およびその絶対値を計算する(S3315)。次に、ステップS3315で算出した差の絶対値について、値が小さい順に順位を算出する(S3316)。なお、ステップS3315で算出した差の値にゼロが含まれる場合は、当該データ(差がゼロのデータ)に対しては順位を付けない。次に、算出した順位に同一順位のものがあるか否かを判定する(S3317)。同一順位がない場合は、調査対象の組み合わせ毎にN数を計算する(S3318)。ここで、N数は、ステップS3315で評価指標毎に算出した、調査対象間での評価データ変換後の統計値の差の絶対値のうち、値がゼロではないものの数である。 [Wilcoxon signed rank test]
If the number of survey targets is less than 3 (ie, the number of survey targets is 2) in step S3301 in FIG. 16, the process proceeds to FIG. 17 to perform Wilcoxon signed rank test. For each combination, a difference between statistical values such as an average value after conversion of evaluation data and an absolute value thereof are calculated (S3315). Next, the rank is calculated in ascending order of the absolute value of the difference calculated in step S3315 (S3316). If zero is included in the difference value calculated in step S3315, no ranking is assigned to the data (data with zero difference). Next, it is determined whether or not the calculated ranks have the same rank (S3317). If there is no order, N is calculated for each combination to be investigated (S3318). Here, the N number is the number of non-zero values among the absolute values of the difference between the statistical values after the evaluation data conversion between the survey targets calculated for each evaluation index in step S3315.
図16のステップS3301で調査対象の数が3未満(すなわち調査対象の数が2)である場合は、図17へ移り、ウィルコクソンの符号付順位検定を行うため、まず、各評価指標について調査対象の組み合わせ毎に評価データ変換後の値の平均値などの統計値の差およびその絶対値を計算する(S3315)。次に、ステップS3315で算出した差の絶対値について、値が小さい順に順位を算出する(S3316)。なお、ステップS3315で算出した差の値にゼロが含まれる場合は、当該データ(差がゼロのデータ)に対しては順位を付けない。次に、算出した順位に同一順位のものがあるか否かを判定する(S3317)。同一順位がない場合は、調査対象の組み合わせ毎にN数を計算する(S3318)。ここで、N数は、ステップS3315で評価指標毎に算出した、調査対象間での評価データ変換後の統計値の差の絶対値のうち、値がゼロではないものの数である。 [Wilcoxon signed rank test]
If the number of survey targets is less than 3 (ie, the number of survey targets is 2) in step S3301 in FIG. 16, the process proceeds to FIG. 17 to perform Wilcoxon signed rank test. For each combination, a difference between statistical values such as an average value after conversion of evaluation data and an absolute value thereof are calculated (S3315). Next, the rank is calculated in ascending order of the absolute value of the difference calculated in step S3315 (S3316). If zero is included in the difference value calculated in step S3315, no ranking is assigned to the data (data with zero difference). Next, it is determined whether or not the calculated ranks have the same rank (S3317). If there is no order, N is calculated for each combination to be investigated (S3318). Here, the N number is the number of non-zero values among the absolute values of the difference between the statistical values after the evaluation data conversion between the survey targets calculated for each evaluation index in step S3315.
図21は、2つの調査対象間の有意差を有意な評価指標の値から統計計算により判定する例について示した図である。図21の表では、調査対象である2つの航空会社(航空会社1、2)に対して7つの評価指標の評価データ変換後の評価点の平均値が示されている。また、ステップS3315で算出した2つの航空会社間での評価データ変換後の評価点の平均値の差の絶対値、および差の正負の情報も合わせて示されている。また、差の絶対値についてステップS3316で算出した順位の情報も併記されている。図21では、差の絶対値について同一順位の評価指標が存在しない場合の例を示しており、7つの評価指標のうち1つで差の絶対値がゼロであることから、N数=6となる。
FIG. 21 is a diagram showing an example in which a significant difference between two survey targets is determined by statistical calculation from the value of a significant evaluation index. In the table of FIG. 21, the average value of the evaluation points after conversion of the evaluation data of the seven evaluation indexes for the two airlines (airlines 1 and 2) to be investigated is shown. In addition, the absolute value of the difference between the average values of the evaluation points after the evaluation data conversion between the two airlines calculated in step S3315 and the positive / negative information of the difference are also shown. In addition, information on the rank calculated in step S3316 for the absolute value of the difference is also shown. FIG. 21 shows an example where there is no evaluation index of the same rank for the absolute value of the difference. Since the absolute value of the difference is zero in one of the seven evaluation indices, N number = 6. Become.
次に、このN数が所定の閾値(例えば25)未満であるか否かを判定する(S3319)。図21の例では、N数=6が所定の閾値(25)未満であるため、次にWS量を計算する(S3320)。ここではまず、図17のステップS3315及びS3316の処理で得られた差の絶対値の順位および差の正負の情報に基づいて、WS+量とWS-量をそれぞれ計算する。ここで、WS+量は、ステップS3315、S3316で算出した、評価点の平均値の差が正であった評価指標の順位を合計した順位和であり、WS-量は、評価点の平均値の差が負であった評価指標の順位を合計した順位和である。図21の例では、WS+量=13、WS-量=8となる。次に、WS+量とWS-量を比較し、小さい方をWS量とする。値が等しい場合はどちらか一方をWS量とする。
Next, it is determined whether or not the N number is less than a predetermined threshold (for example, 25) (S3319). In the example of FIG. 21, since the N number = 6 is less than the predetermined threshold (25), the WS amount is calculated (S3320). Here, first, the WS + amount and the WS− amount are respectively calculated based on the rank order of the difference values and the positive / negative information of the differences obtained in steps S3315 and S3316 of FIG. Here, the WS + amount is a sum of ranks obtained by summing the ranks of the evaluation indexes calculated in steps S3315 and S3316, and the difference between the average values of the evaluation points is positive. The WS− amount is the average value of the evaluation points. This is the sum of ranks obtained by summing up the ranks of evaluation indexes having negative differences. In the example of FIG. 21, WS + amount = 13 and WS−amount = 8. Next, the WS + amount and the WS− amount are compared, and the smaller one is set as the WS amount. If the values are equal, either one is taken as the WS amount.
次に、統計計算部16等が予め保持しているウィルコクソンの符号付順位検定表から、所定の有意水準αおよびN数で与えられる有意点tL(α/2)を特定し、得られたtL(α/2)、およびtL(α/2)から算出されるtU(α/2)の値と、ステップS3320で計算したWS量とを比較する(S3321)。ここで、tU(P)は、N(N+1)/2-tL(P)の式により求められる値で、Pは限界値に割り当てる有意水準であり、図21の例ではα/2が相当する。有意水準5%の両側検定で有意差判定する場合はα/2=0.025をとることから、図21の例では、ウィルコクソンの符号付順位検定表からtL(0.025)=0が得られ、上記の式よりtU(0.025)=21となる。
Next, the significance point t L (α / 2) given by a predetermined significance level α and N number was specified from the Wilcoxon signed rank test table held in advance by the statistical calculation unit 16 or the like, and obtained. The value of t U (α / 2) calculated from t L (α / 2) and t L (α / 2) is compared with the WS amount calculated in step S3320 (S3321). Here, t U (P) is a value obtained by the equation N (N + 1) / 2−t L (P), P is a significance level assigned to the limit value, and in the example of FIG. Equivalent to. Since α / 2 = 0.025 is used when a significant difference is determined by a two-sided test with a significance level of 5%, t L (0.025) = 0 is calculated from the Wilcoxon signed rank test table in the example of FIG. As a result, t U (0.025) = 21 from the above formula.
ウィルコクソンの符号付順位検定表には、N数および有意水準αから有意点(限界値)を求めるタイプのものと、N数およびWS量から有意確率(P値)を求めるタイプのものがあるが、ここでの比較には前者の検定表を用いる。後者の検定表は、後述する補足説明項目の選択においてP値を計算する際に用いる。
There are two types of Wilcoxon signed rank test tables: a type for obtaining a significant point (limit value) from N number and significance level α, and a type for obtaining a significance probability (P value) from N number and WS amount. For comparison, the former test table is used. The latter test table is used when calculating the P value in the selection of supplementary explanation items to be described later.
次に、ステップS3321での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3322)、統計処理を終了する。ここでは、tL(α/2)<WS量<tU(α/2)であるときは有意差があるとは言えないと判定し、WS量≦tL(α/2)またはtU(α/2)≦WS量であるときは有意差があると判定する。図21の例では、{tL(0.025)=0}<(WS量=8)<{tU(0.025)=21}であるため、有意差があるとは言えないと判定する。すなわち、図15(b)のグラフにおいて価値に有意差があるとは言えないと判定する。
Next, based on the comparison result in step S3321, it is determined whether there is a significant difference between the survey targets (S3322), and the statistical processing is terminated. Here, when t L (α / 2) <WS amount <t U (α / 2), it is determined that there is no significant difference, and WS amount ≦ t L (α / 2) or t U When (α / 2) ≦ WS amount, it is determined that there is a significant difference. In the example of FIG. 21, since {t L (0.025) = 0} <(WS amount = 8) <{t U (0.025) = 21}, it is determined that there is no significant difference. To do. That is, it is determined that there is no significant difference in value in the graph of FIG.
なお、N数が小さい等の理由で、ウィルコクソンの符号付順位検定表に比較する値が存在しない場合は、十分なデータがないために有意差があるとは言えないとする判定をする。またこのとき、後述する処理により結果を表示する際に、例えば「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。これにより、検定表に比較する値が存在しない場合でも有意差判定を可能とする。
If there is no value to be compared in Wilcoxon's signed rank test table for reasons such as the N number being small, it is determined that there is no significant difference because there is not enough data. At this time, when the result is displayed by the processing described later, for example, a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Thereby, even when there is no value to be compared in the test table, a significant difference can be determined.
図17のステップS3319で、差の絶対値の値がゼロではないものの数Nが所定の閾値(例えば25)以上である場合は、WS量を計算する(S3323)。ここでは、ステップS3320と異なり、WS+量をWS量とする。さらに、以下の式によりu0量を計算する(S3324)。
In step S3319 in FIG. 17, when the number N of absolute values of the differences is not zero, the WS amount is calculated (S3323). Here, unlike step S3320, the WS + amount is the WS amount. Further, the u 0 amount is calculated by the following equation (S3324).
統計精度を向上させる連続修正を行った以下の式を用いてもよい。
You may use the following formula | equation which performed the continuous correction which improves a statistical precision.
図22は、2つの調査対象間の有意差を有意な評価指標の値から統計計算により判定する別の例について示した図である。図22の表では、図21と同様に、調査対象である2つの航空会社(航空会社1、2)に対して25個の評価指標の評価データ変換後の評価点の平均値が示されている。また、ステップS3315で算出した、2つの航空会社間での評価データ変換後の評価点の平均値の差の絶対値、および差の正負の情報も合わせて示されている。また、差の絶対値についてステップS3316で算出した順位の情報も併記されている。
FIG. 22 is a diagram illustrating another example in which a significant difference between two survey targets is determined by statistical calculation from the value of a significant evaluation index. In the table of FIG. 22, the average value of the evaluation points after the evaluation data conversion of 25 evaluation indexes is shown for the two airlines (airlines 1 and 2) to be surveyed, as in FIG. Yes. In addition, the absolute value of the difference between the average values of the evaluation points after the evaluation data conversion between the two airlines calculated in step S3315 and the positive / negative information of the difference are also shown. In addition, information on the rank calculated in step S3316 for the absolute value of the difference is also shown.
図22では、差の絶対値について同一順位の評価指標が存在せず、また、差の絶対値の値がゼロではない評価指標の数Nが25であり、閾値(25)以上となっている。このとき、WS+量=237であることから、WS量=237であり、上記数8式より、u0量=2.00となる。
In FIG. 22, there is no evaluation index of the same rank with respect to the absolute value of the difference, and the number N of evaluation indexes whose absolute value of the difference is not zero is 25, which is equal to or greater than the threshold (25). . At this time, since WS + amount = 237, WS amount = 237, and u 0 amount = 2.00 from the above equation (8).
その後、図17において、統計計算部16等が予め保持している正規分布表の所定の有意水準αから限界値u(α)を特定し、得られたu(α)と、ステップS3324で得られたu0量の絶対値とを比較する(S3325)。有意水準5%の両側検定で有意差判定する場合は、正規分布表より、限界値u(0.05)=1.96が得られる。
After that, in FIG. 17, the limit value u (α) is specified from the predetermined significance level α of the normal distribution table held in advance by the statistical calculation unit 16 or the like, and the obtained u (α) is obtained in step S3324. The absolute value of the obtained u 0 quantity is compared (S3325). When a significant difference is determined by a two-sided test with a significance level of 5%, a limit value u (0.05) = 1.96 is obtained from the normal distribution table.
次に、ステップS3325での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3326)、調査対象間有意差判定処理を終了する。ここでは、u0量の絶対値が限界値u(α)以上であるときは有意差があると判定し、限界値u(α)未満であるときは有意差があるとは言えないと判定する。図22の例では、{|u0|=2.00}>{u(0.05)=1.96}であるため、有意差があると判定する。すなわち、図15(b)のグラフにおいて価値の有意差があると判定する。
Next, based on the comparison result in step S3325, it is determined whether there is a significant difference between the survey targets (S3326), and the inter-survey target significant difference determination process is terminated. Here, it is determined that there is a significant difference when the absolute value of the u 0 quantity is not less than the limit value u (α), and it is determined that there is no significant difference when the absolute value is less than the limit value u (α). To do. In the example of FIG. 22, {| u 0 | = 2.00}> {u (0.05) = 1.96}, so it is determined that there is a significant difference. That is, it is determined that there is a significant difference in value in the graph of FIG.
図17のステップS3317で、差の絶対値について同一順位の評価指標が存在する場合は、図6のステップS3214と同様の方法により、同一順位に対して平均順位を割り当てる(S3327)。図23は、2つの調査対象間の有意差を有意な評価指標の値から統計計算により判定する別の例について示した図である。図23の表では、図21と同様に、調査対象である2つの航空会社(航空会社1、2)に対して7つ評価指標の評価データ変換後の評価点の平均値が示されている。また、ステップS3315で算出した、2つの航空会社間での評価データ変換後の評価点の平均値の差の絶対値、および差の正負の情報も合わせて示されている。また、差の絶対値についてステップS2316で算出した順位の情報も併記されている。
In step S3317 in FIG. 17, if there is an evaluation index having the same rank with respect to the absolute value of the difference, an average rank is assigned to the same rank in the same manner as in step S3214 in FIG. 6 (S3327). FIG. 23 is a diagram illustrating another example in which a significant difference between two survey targets is determined by statistical calculation from the value of a significant evaluation index. In the table of FIG. 23, as in FIG. 21, the average value of the evaluation points after the evaluation data conversion of the seven evaluation indexes is shown for the two airlines (airlines 1 and 2) to be investigated. . In addition, the absolute value of the difference between the average values of the evaluation points after the evaluation data conversion between the two airlines calculated in step S3315 and the positive / negative information of the difference are also shown. In addition, information on the rank calculated in step S2316 for the absolute value of the difference is also shown.
ここで、図23の表では、順位が2位の評価指標が2つ存在し、順位が5位の評価指標が2つ存在する(t1=2、t2=2)。これら2つのグループに対して、図6のステップS3214で用いた式により平均順位を計算すると、順位が2位のグループの平均順位は2.5となり、順位が5位のグループの平均順位は5.5となる。図23の表にはこれらの計算結果を含む平均順位の情報も併記されている。
Here, in the table of FIG. 23, there are two evaluation indexes with the second rank, and there are two evaluation indexes with the fifth rank (t 1 = 2 and t 2 = 2). When the average rank is calculated for these two groups by the formula used in step S3214 in FIG. 6, the average rank of the group ranked second is 2.5, and the average rank of the group ranked fifth is 5 .5. In the table of FIG. 23, information on the average rank including these calculation results is also shown.
次に、ステップS3327で算出した差の絶対値の平均順位のデータおよび差の正負の情報に基づいて、ステップS3323と同様な方法により、WS+量を計算しWS量とする。なお、区別のためにこれらをそれぞれWS+*量、WS*量と記載する(S3328)。図23の例では、WS+*量=20.5であることから、WS*量=20.5となる。さらに、以下の式によりu0*量を計算する。(S3329)。
Next, based on the data of the average rank of the absolute value of the difference calculated in step S3327 and the positive / negative information of the difference, the WS + amount is calculated as the WS amount by the same method as in step S3323. For distinction, these are described as WS + * amount and WS * amount, respectively (S3328). In the example of FIG. 23, since WS + * amount = 20.5, WS * amount = 20.5. Further, the u 0 * amount is calculated by the following equation. (S3329).
ここで、jは1~同一順位を持つ評価指標のグループの数gの整数である。
Here, j is an integer from 1 to the number g of evaluation index groups having the same rank.
図23の例では、WS*量=20.5、差がゼロではない評価指標の総数N=7であり、数10式より、u0*量=1.10となる。その後、上記のステップS3325と同様の処理により、正規分布表の所定の有意水準αから限界値u(α)を特定し、得られたu(α)と、ステップS3329で得られたu0*量の絶対値とを比較する(S3330)。
In the example of FIG. 23, WS * amount = 20.5, the total number N of evaluation indexes whose difference is not zero is 7, and u 0 * amount = 1.10 from Equation 10. Thereafter, the limit value u (α) is specified from the predetermined significance level α of the normal distribution table by the same processing as in step S3325 described above, and u (α) obtained is obtained and u 0 * obtained in step S3329. The absolute value of the quantity is compared (S3330).
次に、ステップS3330での比較結果に基づいて調査対象間に有意差があるか否かを判定し(S3331)、調査対象間有意差判定処理を終了する。ここでは、u0*量の絶対値が限界値u(α)以上であるときは有意差があると判定し、限界値u(α)未満であるときは有意差があるとは言えないと判定する。図23の例では、有意水準5%の両側検定において、{|u0*|=1.10}<{u(0.05)=1.96}であるため、有意差があるとは言えないと判定する。すなわち、図15(b)のグラフにおいて価値に有意差があるとは言えないと判定する。
Next, based on the comparison result in step S3330, it is determined whether or not there is a significant difference between survey targets (S3331), and the inter-survey target significant difference determination process is terminated. Here, it is determined that there is a significant difference when the absolute value of the u 0 * quantity is equal to or greater than the limit value u (α), and it cannot be said that there is a significant difference when the absolute value is less than the limit value u (α). judge. In the example of FIG. 23, in a two-sided test with a significance level of 5%, {| u 0 * | = 1.10} <{u (0.05) = 1.96}, it can be said that there is a significant difference. Judge that there is no. That is, it is determined that there is no significant difference in value in the graph of FIG.
なお、同一順位のあるウィルコクソンの符号付順位検定における差がゼロではない評価指標の総数Nの値が、所定の閾値未満(例えば一般的に統計計算の精度が劣るとされる25未満)の時は、十分な精度が確保できないとして、統計計算を行わなくてもよい。この場合、十分なデータがないために有意差があるとは言えないとする判定をしてもよい。またこのとき、後述する処理により結果を表示する際に、例えば「十分なデータがないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。また、統計計算を実行した上で、例えば、「この統計計算の結果の精度は高くありません」等のメッセージを付加するようにしてもよい。
When the value of the total number N of evaluation indexes whose difference is not zero in Wilcoxon signed rank test with the same rank is less than a predetermined threshold (for example, less than 25, which is generally considered to be inferior in statistical calculation accuracy). Since sufficient accuracy cannot be secured, statistical calculation may not be performed. In this case, it may be determined that there is no significant difference because there is not enough data. At this time, when the result is displayed by the processing described later, for example, a message such as “There is not enough data and it cannot be said that there is a significant difference as a result” may be added. Further, after executing the statistical calculation, for example, a message such as “the accuracy of the result of the statistical calculation is not high” may be added.
以上の処理により、図5のステップS330の調査対象間有意差判定処理を終了する。なお、ステップS330では、ステップS320において有意差があると判定された評価指標の評価データ変換後の統計値を用いて、調査対象間に有意差があるか否かを総合的に判定する統計計算を行っているが、有意差があるとは言えない評価指標の評価データ変換後の統計値も含めたデータに基づいて統計計算を行って、調査対象間の総合的な有意差を判定するようにしてもよい。また、当該処理を行わず、有意差があると判定された評価指標についての情報のみにより調査対象間の価値の差異を評価するようにしてもよい。
With the above processing, the inter-survey target significant difference determination processing in step S330 of FIG. 5 is completed. In step S330, statistical calculation for comprehensively determining whether or not there is a significant difference between survey targets using the statistical value after the evaluation data conversion of the evaluation index determined to have a significant difference in step S320. The statistical calculation is performed based on the data including the statistical value after the evaluation data conversion of the evaluation index that cannot be said to have a significant difference, and the overall significant difference between the survey targets is determined. It may be. Alternatively, the difference in value between the survey targets may be evaluated based only on information about the evaluation index determined to have a significant difference without performing the processing.
図5において、次に、価値評価サーバ10の評価結果出力部14は、利用者に提供するグラフを含む統計結果とこれに添付するコメントの情報を特定し、図3のステップS206で得た商品等の内容情報に添付して結果出力処理を行う(S340)。図24は、図5のステップS340の結果出力処理の流れの例について概要を示したフロー図である。評価結果出力部14は、まず、図5のステップS320における各評価指標についての統計結果およびステップS308で作成された表もしくはグラフ、ステップS330での調査対象間での有意差判定の結果、および十分なデータ数がないために統計計算せずに有意差判定した結果の情報を特定する(S3401)。
5, next, the evaluation result output unit 14 of the value evaluation server 10 specifies the statistical result including the graph to be provided to the user and the comment information attached thereto, and the product obtained in step S206 of FIG. A result output process is performed by attaching to the content information (S340). FIG. 24 is a flowchart showing an outline of an example of the flow of the result output process in step S340 of FIG. The evaluation result output unit 14 first determines the statistical results for each evaluation index in step S320 of FIG. 5 and the table or graph created in step S308, the result of the significant difference determination between the survey targets in step S330, and the sufficient Since there is no significant number of data, information on the result of the significant difference determination without statistical calculation is specified (S3401).
次に、ステップS3401で特定した情報に基づいて、各評価指標のうち有意となった評価指標があるか否かを判定する(S3402)。ここで、有意となった評価指標とは、例えば、図5のステップS320の統計処理において有意差があると判定された評価指標である。有意差があり、かつ、評価データ数等が統計計算において十分な精度が確保できる程度にある評価指標(例えば、統計計算の結果に「この統計計算の結果の精度は高くありません」等のメッセージが付加されていないもの)とすることもできる。
Next, based on the information specified in step S3401, it is determined whether there is a significant evaluation index among the evaluation indices (S3402). Here, the evaluation index that becomes significant is, for example, an evaluation index that is determined to have a significant difference in the statistical processing in step S320 of FIG. There is a significant difference in the number of evaluation data, etc., such as an evaluation index (for example, “the accuracy of the result of this statistical calculation is not high”) It is also possible to use a non-added one).
ステップS3402で、有意となった評価指標がない場合は、価格のみによって商品等を選択する(すなわち、価格が安い商品等を選択する)よう推奨するコメントを選択する(S3409)。コメントとしては、例えば、「統計的に価値の差はあるとは言えず、安価な商品を選択することをお勧めします。(なお、比較すべき商品・サービスの数が1の時は、当該品をお勧めします。)」などのメッセージとすることができる。
If there is no significant evaluation index in step S3402, a comment that recommends selecting a product or the like only by price (that is, selecting a product or the like with a low price) is selected (S3409). As a comment, for example, “We recommend that you select a cheap product that is not statistically different in value. (If the number of products and services to be compared is 1, "We recommend the product.)"
ステップS3402で、有意となった評価指標がある場合は、その数が1であるか否かを判定する(S3403)。有意となった評価指標が1つである場合は、利用者が当該有意となった評価指標を重視しているかを判定する(S3404)。これには、例えば、利用者端末30を介して利用者に問い合せる画面を出力し、回答を入力させるようにしてもよいし、図3のステップS203において商品等を選択・入力する際に事前に重視する評価指標を指定させるようにしてもよい。
In step S3402, if there is a significant evaluation index, it is determined whether the number is 1 (S3403). If there is one significant evaluation index, it is determined whether the user attaches importance to the significant evaluation index (S3404). For this, for example, a screen for inquiring the user via the user terminal 30 may be output and an answer may be input, or in advance when selecting or inputting a product or the like in step S203 of FIG. You may make it designate the evaluation index to attach importance.
ステップS3404で、利用者が有意となった1つの評価指標を重視している場合は、価格が安く、有意な評価指標の評価が高い商品等を選択するよう推奨するコメントを選択する(S3410)。具体的には、例えば、図5のステップS308で作成された、図15(b)に示したような価格と商品等の価値との関係を示すグラフにおいて、右下の領域にプロットされる商品等を選択するよう推奨する。コメントとしては、例えば、「お客様が重視している評価指標は統計的に対象商品・サービスの間で有意差があると言えるため、評価が高くかつ価格の安い、グラフ右下の領域の商品・サービスを選択することをお勧めします」などのメッセージとすることができる。
In step S3404, if the user attaches importance to one evaluation index that is significant, the user selects a comment that recommends selecting a product with a low price and a high evaluation of the significant evaluation index (S3410). . Specifically, for example, in the graph created in step S308 of FIG. 5 and showing the relationship between the price and the value of the product as shown in FIG. 15B, the product plotted in the lower right area It is recommended to select etc. As a comment, for example, “Since it can be said that there is a statistically significant difference between the target products and services, the evaluation index that the customer emphasizes is highly evaluated and the price in the lower right area of the graph is high. It is recommended to select a service. "
ステップS3404で、利用者が有意となった1つの評価指標を重視していない場合は、さらに、当該評価指標以外の有意でない評価指標を重視しているかを判定する(S3405)。ここでも、ステップS3404と同様に、例えば、利用者端末30を介して利用者に問い合せる画面を出力し、回答を入力させるようにしてもよいし、図3のステップS203において商品等を選択・入力する際に事前に重視する評価指標を指定させるようにしてもよい。
If it is determined in step S3404 that the user does not place importance on one evaluation index that has become significant, it is further determined whether or not an evaluation index other than the evaluation index is emphasized (S3405). Here, similarly to step S3404, for example, a screen for inquiring the user via the user terminal 30 may be output and an answer may be input, or a product or the like is selected / input in step S203 of FIG. It is also possible to specify an evaluation index to be prioritized when performing the process.
ステップS3405で、利用者が有意でない評価指標を重視している場合は、上述したステップS3409に進んで、価格が安い商品等を選択するよう推奨するコメントを選択する。または、利用者が重視する有意でない評価指標の評価と価格を参考情報として示し、利用者の判断で商品等を選択するよう推奨してもよい。この場合のコメントとしては、例えば、「お客様が重視している評価指標は統計的に対象商品・サービスの間で有意差があるとは言えないため、当該評価指標を強く重視している場合に限り、商品・サービスの選択において参考指標としてお使い下さい」などのメッセージとすることができる。
If it is determined in step S3405 that the user attaches importance to an evaluation index that is not significant, the process proceeds to step S3409 described above to select a comment that recommends a product with a low price. Alternatively, it may be recommended that the evaluation and price of an insignificant evaluation index emphasized by the user are shown as reference information and a product or the like is selected at the user's discretion. An example of a comment in this case is, for example, “If the evaluation index that the customer places importance on is statistically not significantly different between the target products / services, As long as it is used as a reference indicator in the selection of products and services, "
ステップS3405で、利用者が有意でない評価指標のいずれも重視していない場合は、上述したステプS3410に進んで、価格が安く、有意な評価指標の評価が高い商品等(図15(b)に示したグラフにおいて右下の領域にプロットされる商品等)を選択するよう推奨するコメントを選択する。この場合のコメントとしては、例えば、「対象商品・サービスの間で統計的に有意差がある評価指標が見つかったため、評価が高くかつ価格の安い、グラフ右下の領域の商品・サービスを選択することをお勧めします」などのメッセージとすることができる。
If it is determined in step S3405 that the user does not attach importance to any evaluation index that is not significant, the process proceeds to step S3410 described above, and a product with a low price and a high evaluation of a significant evaluation index (see FIG. 15B). In the graph shown, select a comment that recommends that you select a product or the like plotted in the lower right area. As a comment in this case, for example, “Since an evaluation index having a statistically significant difference was found between the target products / services, a product / service in the lower right area of the graph that has a high evaluation and a low price is selected. It is recommended that the message "
ステップS3403で、有意となった評価指標が複数である場合は、ステップS3404と同様に、利用者が有意となった評価指標のいずれかを重視しているかを判定する(S3406)。ここでも、ステップS3404と同様に、例えば、利用者端末30を介して利用者に問い合せる画面を出力し、回答を入力させるようにしてもよいし、図3のステップS203において商品等を選択・入力する際に事前に重視する評価指標を指定させるようにしてもよい。
If there are a plurality of significant evaluation indexes in step S3403, it is determined whether the user places importance on any of the evaluation indexes that become significant as in step S3404 (S3406). Here, similarly to step S3404, for example, a screen for inquiring the user via the user terminal 30 may be output and an answer may be input, or a product or the like is selected / input in step S203 of FIG. It is also possible to specify an evaluation index to be prioritized when performing the process.
ステップS3406で、利用者が有意となった評価指標のいずれかを重視している場合は、価格が安く、利用者が重視する評価指標の評価が高い(評価点平均値が高い)商品等を選択するよう推奨するコメントを選択する(S3411)。具体的には、例えば、図5のステップS308で作成された、図15(a)に示したような価格と各評価指標を軸としたレーダーチャートにおいて、利用者が重視する評価指標の評価点平均値が高くかつ価格の安い商品等を選択するよう推奨する。コメントとしては、例えば、「お客様が重視している評価指標は統計的に有意差があると言えるため、レーダーチャートにおいて、当該評価指標の評価点平均値が高くかつ価格の安い商品・サービスを選択することをお勧めします」などのメッセージとすることができる。
In step S3406, if any of the evaluation indexes that the user has made significant is valued, a product with a low price and a high evaluation (evaluation point average value is high) for the evaluation index emphasized by the user is selected. A comment recommended to be selected is selected (S3411). Specifically, for example, in the radar chart centered on the price and each evaluation index as shown in FIG. 15A created in step S308 of FIG. It is recommended to select products with high average values and low prices. As a comment, for example, “Since it can be said that there is a statistically significant difference in the evaluation index that the customer emphasizes, select a product / service with a high average evaluation score and a low price on the radar chart. It ’s recommended that you do this. ”
ステップS3406で、利用者が有意となった評価指標のいずれも重視していない場合は、さらに、有意となった評価指標以外の評価指標を重視しているかを判定する(S3407)。ここでも、ステップS3404と同様に、例えば、利用者端末30を介して利用者に問い合せる画面を出力し、回答を入力させるようにしてもよいし、図3のステップS203において商品等を選択・入力する際に事前に重視する評価指標を指定させるようにしてもよい。
If it is determined in step S3406 that neither of the evaluation indexes that have become significant is emphasized by the user, it is further determined whether or not the evaluation indexes other than the evaluation index that has become significant are emphasized (S3407). Here, similarly to step S3404, for example, a screen for inquiring the user via the user terminal 30 may be output and an answer may be input, or a product or the like is selected / input in step S203 of FIG. It is also possible to specify an evaluation index to be prioritized when performing the process.
ステップS3407で、利用者が有意でない評価指標を重視している場合は、上述したステップS3409に進んで、価格が安い商品等を選択するよう推奨するコメントを選択する。または、利用者が重視する有意でない評価指標の評価と価格を参考情報として示し、利用者の判断で商品等を選択するよう推奨してもよい。この場合のコメントとしては、例えば、「お客様が重視している評価指標は統計的に対象商品・サービスの間で有意差があるとは言えないため、当該評価指標を強く重視している場合に限り、商品・サービスの選択において参考指標としてお使い下さい」などのメッセージとすることができる。
If it is determined in step S3407 that the user attaches importance to an evaluation index that is not significant, the process proceeds to step S3409 described above, and a comment that recommends that a product or the like with a low price is selected. Alternatively, it may be recommended that the evaluation and price of an insignificant evaluation index emphasized by the user are shown as reference information and a product or the like is selected at the user's discretion. An example of a comment in this case is, for example, “If the evaluation index that the customer places importance on is statistically not significantly different between the target products / services, As long as it is used as a reference indicator in the selection of products and services, "
ステップS3407で、利用者が有意でない評価指標のいずれも重視していない場合は、図5のステップS330での調査対象間での総合的な有意差判定の結果において、調査対象間に総合的に有意差があるか否かを判定する(S3408)。総合的に有意差がある場合は、上述したステップS3410に進んで、価格が安く、有意な評価指標の評価が高い商品等を選択するよう推奨するコメントを選択する。すなわち、例えば、図15(b)に示したグラフにおいて右下の領域にプロットされる商品等を選択するよう推奨する。この場合のコメントとしては、例えば、「対象商品・サービスの間で統計的に有意差がある評価指標が見つかったため、評価が高くかつ価格の安い、グラフ右下の領域の商品・サービスを選択することをお勧めします」などのメッセージとすることができる。
If it is determined in step S3407 that the user does not place importance on any evaluation index that is not significant, the result of the comprehensive significant difference determination between the survey targets in step S330 in FIG. It is determined whether or not there is a significant difference (S3408). If there is a significant difference overall, the process proceeds to step S3410 described above, and a comment that recommends that a product or the like with a low price and a high evaluation of a significant evaluation index is selected. That is, for example, it is recommended to select a product or the like plotted in the lower right area in the graph shown in FIG. As a comment in this case, for example, “Since an evaluation index having a statistically significant difference was found between the target products / services, a product / service in the lower right area of the graph that has a high evaluation and a low price is selected. It is recommended that the message "
ステップS3408で、調査対象間に総合的に有意差がない場合は、ステップS3409に進んで、価格が安い商品等を選択するよう推奨するコメントを選択する。上述した一連の処理により、利用者に提示するコメントが選択されると、図15に示したようなグラフを含む統計結果の情報などと、選択されたコメントとを所定のフォーマットに取りまとめて、結果情報として、図3のステップS206で取得した商品等の情報と共に利用者端末30に対して送信・出力する(S3412)。利用者端末30によって、価値評価サーバ10から出力された結果情報を画面表示や音声によって出力することで、利用者が商品等の価値評価の結果を参照・確認することができる(図5のステップS310)。
If it is determined in step S3408 that there is no comprehensive difference between the survey targets, the process proceeds to step S3409, and a comment that recommends a product with a low price is selected. When a comment to be presented to the user is selected by the series of processes described above, the statistical result information including the graph as shown in FIG. 15 and the selected comment are collected in a predetermined format, and the result Information is transmitted and output to the user terminal 30 together with information such as the product acquired in step S206 of FIG. 3 (S3412). By outputting the result information output from the value evaluation server 10 by screen display or voice by the user terminal 30, the user can refer to and check the result of the value evaluation of the product etc. (step of FIG. 5) S310).
なお、上述した図24の結果出力処理フローでは、価値評価サーバ10の評価結果出力部14が、必要に応じて利用者端末30を介して利用者に重視する評価指標の情報を問い合わせてコメントを選択するものとしているが、結果出力処理を実行してコメントを選択するプログラムを、クライアントプログラムとして利用者端末30に送信し、利用者端末30側でローカルに処理を行うようにしてもよい。
In the result output processing flow of FIG. 24 described above, the evaluation result output unit 14 of the value evaluation server 10 inquires about the evaluation index information to be emphasized to the user via the user terminal 30 and comments as necessary. Although selected, a program for executing a result output process and selecting a comment may be transmitted as a client program to the user terminal 30 and processed locally on the user terminal 30 side.
また、上記の結果出力処理によって選択されたコメントや、結果出力処理を実行してコメントを選択するプログラムを利用者端末30に対して出力するのではなく、例えば、結果出力処理の判定内容を表現した表を、統計結果とともに利用者端末30に送信するようにしてもよい。図25は、結果出力処理の判定内容を表現した表の例を示した図である。利用者は、このような判定パターンの組み合わせを表形式で表した表と統計結果とを合わせて参照することによっても、商品等の選択基準として推奨される内容を把握することができ、推奨する選択基準の全体像を理解した上でより的確に商品等を選択することが可能となる。
Also, instead of outputting the comment selected by the result output process or the program for executing the result output process and selecting a comment to the user terminal 30, for example, the determination contents of the result output process are expressed. The table may be transmitted to the user terminal 30 together with the statistical result. FIG. 25 is a diagram illustrating an example of a table expressing the determination contents of the result output process. Users can grasp the recommended content as selection criteria for products, etc., by referring to a combination of such judgment patterns in a tabular format and statistical results. It is possible to select a product or the like more accurately after understanding the overall image of the selection criteria.
また、図24の結果出力処理による場合、および図25の表を利用者に提示する場合のいずれであっても、利用者に対して相対的な価値判断を勧めるコメントを付加してもよい。このようなコメントとしては、例えば、「価値評価データは本来ノンパラメトリックデータであるため、値の差を確からしく表していない場合があり、グラフから読み取れる評価値の間の小さな差異を重視せず相対的な判断をする事をお勧めします」などのメッセージとすることができる。
Further, in either case of the result output process of FIG. 24 or the case of presenting the table of FIG. 25 to the user, a comment for recommending relative value judgment to the user may be added. An example of such a comment is, “Value evaluation data is inherently non-parametric data, and thus may not accurately represent a difference in values. It is recommended to make a reasonable decision ”.
このように、利用者は、購入する商品等を決定する際に、上述した一連の処理により価値評価サーバ10によって出力された結果を参照・確認することで、調査対象の間に存在する統計的有意差のある評価指標とその評価点平均値および価格を同時に把握することができ、商品等の価値と価格との関係をより正確に認識することができる。また、同時に、有意差のない他の評価指標を商品等の価値判断の指標から除いて考えることができ、商品等の価値をより明確かつシンプルに把握することができる。
As described above, when the user determines a product to be purchased or the like, the user refers to and confirms the result output by the value evaluation server 10 by the above-described series of processing, so that the statistical data existing between the survey targets can be obtained. The evaluation index having a significant difference, the average value of the evaluation points, and the price can be grasped at the same time, and the relationship between the value of the product etc. and the price can be recognized more accurately. At the same time, other evaluation indexes having no significant difference can be excluded from the value determination indexes of products and the like, and the value of products and the like can be grasped more clearly and simply.
例えば、図15(a)に示したレーダーチャートの例では、有意な評価指標は、AV機器の質、CAの態度、および食事の豪華さの3つであり、これらは当該商品やサービスの選択に影響を与える価値指標であると理解することができる。従って、例えば、食事の豪華さを重視する利用者は、価格が同程度であれば食事の豪華さに関して評価点平均値の高い商品等を選択することで利用者の考える価値ある商品等を選択できる。また、これら3つの価値指標以外の指標(例えば、座席の座り心地等)を重視する利用者は、自身が重視する指標(座席の座り心地)が有意でないことから、航空会社1~3の間では大きな違いがないと考えることができ、価格だけを基準に選択することが可能となる。
For example, in the example of the radar chart shown in FIG. 15A, there are three significant evaluation indexes: the quality of AV equipment, the attitude of CA, and the luxury of meals. Can be understood as a value index that affects Therefore, for example, a user who places emphasis on the luxury of a meal selects a product that is worth considering by the user by selecting a product with a high evaluation score average value for the luxury of the meal if the price is about the same. it can. In addition, users who place emphasis on indicators other than these three value indicators (for example, seating comfort) are not significant, and therefore between airlines 1 to 3 Then, it can be considered that there is no big difference, and it becomes possible to select based on the price alone.
また、重視する評価指標を特に持たない利用者、または有意な評価指標と有意でない評価指標の両者を重視している利用者であっても、3つの評価指標の評価点平均値を航空会社毎に単純平均した数値と、価格とを比較した図15(b)のようなグラフから、商品等の価値と価格との関係を把握することができる。図15(b)のグラフでは、価値が高く価格が安い領域(グラフの右下の領域)にある商品等が、総合的にお買い得な商品等であることがわかる。
In addition, even for users who do not have a particular evaluation index to be emphasized, or users who place importance on both a significant evaluation index and a non-significant evaluation index, the average score of the three evaluation indices is calculated for each airline. From the graph as shown in FIG. 15B in which the numerical value obtained by simple averaging and the price are compared, the relationship between the value of the product and the price can be grasped. In the graph of FIG. 15B, it can be seen that the products and the like in the high-value and low-price area (the lower right area of the graph) are generally bargain products.
なお、図15(b)のグラフにおいて、横軸は、有意となった指標の評価点平均値を調査対象毎に単純平均した値であり、価値指標として精度が高いとは言えない。そこで、図5のステップS330の調査対象間有意差判定処理では、複数の有意となった評価指標の評価データ変換後の値の平均値から、調査対象間に直接に統計的な有意差があるか否かを総合的に判定している。総合的に有意差があるとは言えない場合は当該グラフを使わず、価格だけで商品選択するよう勧め、有意差がある場合は当該グラフを参照して商品選択するよう勧める。
In the graph of FIG. 15 (b), the horizontal axis is a value obtained by simply averaging the evaluation score average values of the indicators that became significant for each survey target, and it cannot be said that the accuracy is high as a value indicator. Therefore, in the significant difference determination process between the survey targets in step S330 of FIG. 5, there is a statistically significant difference directly between the survey targets from the average value of the evaluation data converted of the plurality of significant evaluation indexes. Whether or not is comprehensively determined. If it cannot be said that there is a significant difference overall, it is recommended not to use the graph but to select products by price alone, and if there is a significant difference, it is recommended to select products by referring to the graph.
なお、ステップS330の調査対象間有意差判定処理は、ステップS309での判定により、有意となった評価指標が複数ある場合に行われ、有意となった指標が1つである場合は、ステップS320の統計処理で有意差判定した結果で代用できるため行わない。ただし、ステップS320で有意とならなかった評価指標も含めて、ステップS330の調査対象間有意差判定処理を行って総合的に調査対象間の有意差を判定する場合は実施してもよい。
In addition, the significant difference determination process between investigation object of step S330 is performed when there are a plurality of evaluation indexes that are significant by the determination in step S309, and when there is one significant index, step S320 is performed. This is not done because it can be substituted with the result of significant difference determination in the statistical processing. However, it may be carried out when the significant difference between the survey targets is comprehensively determined by performing the significant difference determination process between the survey targets in step S330 including the evaluation index that is not significant in step S320.
[処理フロー(評価履歴情報記録処理)]
図26は、価値評価サーバ10における評価履歴情報記録処理(図2のステップS04)の流れの例について概要を示したフロー図である。事前に、図5のステップS310において、利用者が、価値評価サーバ10によって出力された、グラフ等の商品等の価値の差異と価格との関係を示す情報、統計結果、商品等の情報、および商品等を選択する際の推奨方法の情報などを、利用者端末30を介して参照・確認し、購入する商品等を決定する。 [Processing flow (evaluation history information recording process)]
FIG. 26 is a flowchart showing an outline of an example of the flow of the evaluation history information recording process (step S04 in FIG. 2) in thevalue evaluation server 10. In advance in step S310 of FIG. 5, the user outputs information indicating the relationship between the price difference between the value of the product such as the graph and the price, the statistical result, the product information, and the like, The recommended method for selecting a product or the like is referred to or confirmed via the user terminal 30 to determine a product or the like to be purchased.
図26は、価値評価サーバ10における評価履歴情報記録処理(図2のステップS04)の流れの例について概要を示したフロー図である。事前に、図5のステップS310において、利用者が、価値評価サーバ10によって出力された、グラフ等の商品等の価値の差異と価格との関係を示す情報、統計結果、商品等の情報、および商品等を選択する際の推奨方法の情報などを、利用者端末30を介して参照・確認し、購入する商品等を決定する。 [Processing flow (evaluation history information recording process)]
FIG. 26 is a flowchart showing an outline of an example of the flow of the evaluation history information recording process (step S04 in FIG. 2) in the
その後、利用者は、利用者端末30により、購入を決定した商品等について、インターネットバンキングやクレジットカード、電子マネー等の所定の方法で決済を行うとともに、商品の送付先等の個人情報や、選択したオプション等、決済に関する情報等の必要情報を入力し、利用者端末30は、決定された商品等に関するこれらの購入決済情報を、価値評価サーバ10に送信する(S401)。
After that, the user uses the user terminal 30 to make a payment for the product, etc., for which purchase has been decided by a predetermined method such as Internet banking, credit card, electronic money, etc. The user terminal 30 inputs necessary information such as information related to the payment such as the option made, and transmits the purchase payment information related to the determined product to the value evaluation server 10 (S401).
購入決済情報を受信した価値評価サーバ10は、当該購入決済情報の複製を対象の商品等の販売先の商品等提供システム20に転送する(S402)。購入決済情報を受信した商品等提供システム20は、受信した購入決済情報の内容に基づいて対象の商品等について販売および決済処理を行い、販売決済情報を含む処理結果を価値評価サーバ10に送信する(S403)。販売決済情報には、例えば、対象の商品等の内容、販売者の情報、販売金額、購入した利用者の情報などが含まれる。
Upon receiving the purchase settlement information, the value evaluation server 10 transfers a copy of the purchase settlement information to the product providing system 20 of the sales destination of the target product or the like (S402). The product etc. providing system 20 that has received the purchase settlement information performs sales and settlement processing on the target product etc. based on the contents of the received purchase settlement information, and transmits the processing result including the sales settlement information to the value evaluation server 10. (S403). The sales settlement information includes, for example, the contents of the target product, seller information, sales amount, purchased user information, and the like.
販売決済情報を受信した価値評価サーバ10は、当該販売決済情報と、ステップS402で受信した購入決済情報について、対象の商品等や価格、その他の販売条件が同一であることを確認する。さらに、アンケート処理部15によって、アンケートDB105から対象の商品等に対する評価を入力するためのアンケートの情報を特定して抽出する(S404)。
Upon receiving the sales settlement information, the value evaluation server 10 confirms that the target product etc., price, and other sales conditions are the same for the sales settlement information and the purchase settlement information received in step S402. Further, the questionnaire processing unit 15 specifies and extracts information on a questionnaire for inputting an evaluation for the target product or the like from the questionnaire DB 105 (S404).
なお、アンケートの内容は、例えば、どの商品等にも対応したある統一した複数の質問項目を備えたものであってもよい。しかしこの場合、全ての回答者が個々の商品等に的を絞った特殊な質問に対し、適切な回答を記入できない、または無回答とする場合があり、これらを統計計算に用いると精度を落とす結果となる。また、図5のステップS303(および後述する実施の形態2における図32のステップS6201)の下限値の判定処理で、下限値未満の価値指標データが増えることとなり、コンピュータの計算負荷を高め計算スピードを遅くする。よって、アンケートの内容は、商品等の種別などに関連付けて、適する複数の質問項目を備えているものが望ましい。
It should be noted that the contents of the questionnaire may include, for example, a plurality of uniform question items corresponding to any product. However, in this case, all respondents may not be able to fill in an appropriate answer to a special question focused on individual products, or no answer may be entered. If these are used for statistical calculations, accuracy will be reduced. Result. Further, in the determination process of the lower limit value in step S303 in FIG. 5 (and step S6201 in FIG. 32 in the second embodiment to be described later), value index data less than the lower limit value is increased, which increases the calculation load of the computer and the calculation speed. To slow down. Therefore, it is desirable that the contents of the questionnaire include a plurality of suitable question items in association with the type of product or the like.
その後、アンケート処理部15は、抽出したアンケートの情報と、商品等提供システム20から受信した販売決済情報を利用者端末30に送信する(S405)。送信する情報には、アンケートの入力方法等に関するヘルプ情報を含んでいてもよい。利用者端末30が、これらの情報を受信して利用者に対して出力することで、利用者は、購入した商品等を使用、利用または消費等した後に、当該商品等に対する評価をアンケートに入力することができる。なお、アンケートの入力時期は、購入した商品等の評価を適切に行なえるタイミングであれば、使用、利用または消費等の前や途中であっても構わない。
Thereafter, the questionnaire processing unit 15 transmits the extracted questionnaire information and the sales settlement information received from the product providing system 20 to the user terminal 30 (S405). The information to be transmitted may include help information related to a questionnaire input method and the like. The user terminal 30 receives the information and outputs it to the user, so that the user inputs, uses, uses, or consumes the purchased product, etc., and then inputs an evaluation of the product, etc. into the questionnaire can do. The input time of the questionnaire may be before or during use, use, consumption, etc., as long as it is a timing at which the purchased products can be evaluated appropriately.
入力されたアンケートの情報は、利用者端末30から価値評価サーバ10に送信される(S406)。アンケートの入力結果を受信した価値評価サーバ10は、アンケート処理部15により、アンケートの入力内容を抽出し、対象の商品等に対する評価情報として商品等に関連付けて評価履歴DB104に記録する(S407)。なお、アンケート処理部15は、ステップS405でのアンケートの送信から所定の期間が経過してもアンケートの入力結果を受信できなかった場合は、利用者端末30に対して再度アンケートを送信するなどにより督促を行ってもよい。
The inputted questionnaire information is transmitted from the user terminal 30 to the value evaluation server 10 (S406). Upon receiving the questionnaire input result, the value evaluation server 10 extracts the contents of the questionnaire input by the questionnaire processing unit 15 and records it in the evaluation history DB 104 in association with the product etc. as evaluation information for the target product etc. (S407). The questionnaire processing unit 15 transmits the questionnaire again to the user terminal 30 when the questionnaire input result cannot be received even after a predetermined period of time has elapsed since the transmission of the questionnaire in step S405. You may ask for a reminder.
なお、価値評価サーバ10と利用者(利用者端末30)との間のアンケートの情報の授受については種々の方法をとることができる。例えば、上述した処理フローの通りに、各評価指標に対して評価を行うための質問内容と回答欄等が記載されたアンケートファイルを価値評価サーバ10から利用者端末30に送信し、利用者がこれに対して評価を入力した上で、当該ファイルを価値評価サーバ10に返信するように構成することができる。
It should be noted that various methods can be used for exchanging questionnaire information between the value evaluation server 10 and the user (user terminal 30). For example, as in the processing flow described above, a questionnaire file in which the contents of a question and an answer column for evaluating each evaluation index are described is transmitted from the value evaluation server 10 to the user terminal 30, and the user On the other hand, after inputting an evaluation, the file can be configured to be returned to the value evaluation server 10.
また、利用者端末30を介した利用者からのアンケートの入力要求に対して、質問内容を利用者端末30上の図示しないWebブラウザに表示し、入力された回答のデータを受信するようなHTMLファイル等としてアンケート情報を構成してもよい。また、電話やFAX、郵送等によりアンケートを実施し、回答内容をオペレータ等が価値評価サーバ10の評価履歴DB104に入力するような構成であってもよい。
In addition, in response to a questionnaire input request from the user via the user terminal 30, an HTML that displays the contents of the question on a web browser (not shown) on the user terminal 30 and receives input answer data The questionnaire information may be configured as a file or the like. Further, a configuration may be adopted in which a questionnaire is conducted by telephone, FAX, mail, etc., and an answer content is input to the evaluation history DB 104 of the value evaluation server 10 by an operator or the like.
図27は、利用者に提示されるアンケートの内容について例を示した図である。ここでは、利用者端末30上のWebブラウザにアンケート入力画面を表示して、利用者により入力された回答内容を取得する場合を例としている。評価データ等の入力方法としては、例えば、決められた範囲内(「0~100」等)で、評価点や満足度などの数値を直接入力する方法や、適した表現(程度や状態を表す語句や数値範囲等)に対応するラジオボタンを選択することで評価を選択する方法、欠点数または確率等の計数値を直接入力する方法、時間や長さ等の計量値を直接入力する方法などが含まれる。
FIG. 27 is a diagram showing an example of the contents of a questionnaire presented to the user. Here, an example is shown in which a questionnaire input screen is displayed on the Web browser on the user terminal 30 and the response content input by the user is acquired. As a method for inputting evaluation data, etc., for example, a method of directly inputting numerical values such as evaluation points and satisfaction within a predetermined range (such as “0 to 100”), or a suitable expression (representing the degree and state) Method of selecting an evaluation by selecting a radio button corresponding to a phrase, numerical range, etc., a method of directly inputting a count value such as the number of defects or a probability, a method of directly inputting a measurement value such as time or length, etc. Is included.
なお、例えば、ラジオボタン等により適した表現や語句を選択して評価する場合は、選択された語句等に関連付けられた数値(図27の例では、「非常に良い」=0、「良い」=2.5など)を、図5のステップS320などにおける統計計算に用いる。ここで、同じ数値であっても、例えば、評価点の80(点)と計量値の80(分など)のように、評価指標毎に数値の意味はそれぞれ異なる。従って、例えば図5のステップS320やS330の処理において統計計算などの解析を行う際には、評価データ変換を行い、どの評価指標においても価値に対し統一した大小関係を持つ値に変換する。また、順位を計算する際には、評価データ変換後の値に対して統一した順位を算出する。
For example, when selecting and evaluating a suitable expression or phrase using a radio button or the like, numerical values associated with the selected phrase or the like (in the example of FIG. 27, “very good” = 0, “good”). = 2.5) is used for the statistical calculation in step S320 of FIG. Here, even if the numerical values are the same, the meanings of the numerical values are different for each evaluation index, for example, 80 evaluation points (points) and 80 measurement values (minutes, etc.). Therefore, for example, when analyzing statistical calculation or the like in the processing of steps S320 and S330 in FIG. 5, evaluation data conversion is performed to convert the evaluation index into a value having a unified magnitude relationship with respect to value. Further, when calculating the rank, a unified rank is calculated for the value after the evaluation data conversion.
本実施の形態では、例えば、値の小さい順に順序を付ける昇順を用いている。なお、例えば図14または図15の表やグラフなどで利用者またはオペレータに評価データを表示する際には、評価データ変換の逆変換を行うなどにより本来の評価データ(本実施の形態においては、評価データ変換を行わない本来の評価点)を用いてもよい。これにより利用者またはオペレータは、より明確に価値の差異を理解できる。
In this embodiment, for example, ascending order is used in which the order is given in ascending order of values. For example, when displaying the evaluation data to the user or operator in the table or graph of FIG. 14 or FIG. 15, the original evaluation data (in the present embodiment, by performing inverse conversion of the evaluation data conversion, etc.) You may use the original evaluation score which does not perform evaluation data conversion. As a result, the user or operator can more clearly understand the difference in value.
図28は、評価指標の数値の種別毎に評価データ変換ルールと順位付けのルールを定義したテーブルの例について示した図である。ここで、評価データ変換ルールは、評価指標の種別毎に関連付けて変換する方法が定められている。例えば評価点は、本来、アンケートに入力された数値は0~100の値をとるため、評価データ変換ルールとして“100-(本来の評価点の値)”の変換式を用いると、本来の評価点が80の場合は変換後の値が20となる。また、評価データ変換ルールが“10倍”の場合は、本来の値に対して10を乗じる。また、“無変換”の場合は、変換を行わず本来の値をそのまま順位付けする。また、“符号逆転”の場合は、本来の値に対して変換後の値の符号を(-1)を乗じるなどして逆転させる。
FIG. 28 is a diagram showing an example of a table in which evaluation data conversion rules and ranking rules are defined for each type of numerical value of the evaluation index. Here, as the evaluation data conversion rule, a method of converting the evaluation data in association with each type of evaluation index is defined. For example, since the numerical value originally inputted to the questionnaire takes a value of 0 to 100, for example, if the conversion formula of “100− (original evaluation score value)” is used as the evaluation data conversion rule, the original evaluation score When the point is 80, the converted value is 20. When the evaluation data conversion rule is “10 times”, the original value is multiplied by 10. In the case of “no conversion”, the original values are ranked as they are without conversion. In the case of “sign inversion”, the original value is inverted by multiplying the sign of the converted value by (−1) or the like.
また、順位付けルールは、同様に、評価指標の種別毎に関連付けて定義されている。昇順は、アンケートに入力された数値のうち最も小さな値が順位1位となるルールであり、降順は、アンケートに入力された数値のうち最も大きな値が順位1位となるルールである。価値評価サーバ10が、このようなテーブルの情報をファイル等の形式で予め保持しておくことで、統計計算部13は、例えば統一された順位付けルール(本実施の形態においては昇順)を基に、評価データ変換を行わない本来の評価指標の種別毎に使われている価値の表現方法を識別し、図15のグラフの目盛り表示を決定することができる。例えば、図15(a)のレーダーチャートにおいて、本来の評価点の高い値を外側、低い値を中心側に置く目盛り表示を選択する。
Also, the ranking rules are defined in association with each type of evaluation index. The ascending order is a rule in which the smallest value among the numerical values entered in the questionnaire is ranked first, and the descending order is a rule in which the largest value among the numerical values entered in the questionnaire is ranked first. The value evaluation server 10 holds the information of such a table in the form of a file or the like in advance, so that the statistical calculation unit 13 is based on, for example, a unified ranking rule (ascending order in the present embodiment). In addition, it is possible to identify the value expression method used for each type of original evaluation index that is not subjected to evaluation data conversion, and to determine the scale display of the graph of FIG. For example, in the radar chart of FIG. 15A, a scale display is selected in which the high value of the original evaluation score is on the outside and the low value is on the center side.
なお、図28の例では、評価指標数値種別毎にルールを定義しているが、同じ種別でも異なるルールを持つものもある。例えば、計量値には、必ずしも昇順とならない評価指標もある。例えば、出発空港での搭乗完了後から実際の離陸までの待ち時間(分)は、値が小さいほど評価価値が高く、昇順となる。また同じ計数値でも、合格率は降順であるが、不良率は昇順である。よって、これらに対しては評価指標毎にルールを定義する。
In the example of FIG. 28, a rule is defined for each evaluation index numerical type, but there are also cases where the same type has different rules. For example, some measured values are not necessarily in ascending order. For example, the waiting time (minutes) from the completion of boarding at the departure airport to the actual takeoff is higher in evaluation value as the value is smaller and is in ascending order. Even with the same count value, the pass rate is in descending order, but the defect rate is in ascending order. Therefore, rules are defined for each evaluation index.
<実施の形態2>
本発明の実施の形態2である価値評価支援システムは、小売店による商品の売買を例として、コンピュータシステムを用いて販売者と利用者との間で購入代行サービスを介して商品の売買が行われる際に、利用者が購入を希望する商品等を販売する小売店および販売代行者の価値の差異を評価して、これに基づいて、利用者に対して商品を購入する小売店および販売代行者を選択する際の基準を推奨するものである。 <Embodiment 2>
In the value evaluation support system according to the second embodiment of the present invention, for example, buying and selling of a product is performed between a seller and a user via a purchase agent service using a computer system as an example. The retailer that sells the product that the user wants to purchase and the sales agent evaluate the difference in value, and based on this, the retailer and the sales agent that purchase the product to the user The criteria for selecting a person are recommended.
本発明の実施の形態2である価値評価支援システムは、小売店による商品の売買を例として、コンピュータシステムを用いて販売者と利用者との間で購入代行サービスを介して商品の売買が行われる際に、利用者が購入を希望する商品等を販売する小売店および販売代行者の価値の差異を評価して、これに基づいて、利用者に対して商品を購入する小売店および販売代行者を選択する際の基準を推奨するものである。 <
In the value evaluation support system according to the second embodiment of the present invention, for example, buying and selling of a product is performed between a seller and a user via a purchase agent service using a computer system as an example. The retailer that sells the product that the user wants to purchase and the sales agent evaluate the difference in value, and based on this, the retailer and the sales agent that purchase the product to the user The criteria for selecting a person are recommended.
例えば、スーパーマーケット等の小売店で販売される商品を、利用者がインターネットを介して自宅等で購入決済し、商品は実際に店頭で受け取るか、販売代行者により利用者の元へ配送されるようなケースである。この場合、商品やサービスの価値は、小売店と販売代行者の影響を受ける。従って、本実施の形態では、これらの商品等の販売に関わる事業者を調査対象とする。また、価値を示す評価指標として、小売店および販売代行者に対する満足度、すなわち、小売店および販売代行者が販売する全ての商品もしくは行う全てのサービスに対する満足度を例とするが、満足度の代わりに商品の鮮度等のより具体的な評価指標を用いてもよい。また、小売店と販売代行者に代えて、メーカーと小売店、または小売店とその販売商品等、他の組み合せにも適用することが可能である。
For example, a product sold at a retail store such as a supermarket is purchased and settled by a user at home via the Internet, and the product is actually received at the store or delivered to the user by a sales agent. Case. In this case, the value of goods and services is influenced by retail stores and sales agents. Therefore, in the present embodiment, the business operators involved in the sales of these products are targeted for investigation. In addition, as an evaluation index indicating value, satisfaction with retailers and sales agents, i.e. satisfaction with all products sold by retailers and sales agents or all services performed, is an example. Instead, a more specific evaluation index such as the freshness of the product may be used. Further, instead of a retail store and a sales agent, the present invention can also be applied to other combinations such as a manufacturer and a retail store, or a retail store and its sales products.
本実施の形態では、それぞれ複数の調査対象を持つ調査対象グループA(例えば、小売店1、2、…)と、調査対象グループB(例えば、販売代行者1、2、…)の2つのグループが存在する環境において、調査対象グループ間の各調査対象の組み合わせ毎に1つの評価指標について比較し、調査対象間に統計的有意差があるか否かを判定するものである。3つ以上の調査対象グループが存在する環境では、例えば、利用者により指定された条件等に基づいて選択された2つの調査対象グループを対象とすることができる。統計的有意差を判定するためには、上述したフリードマン検定などを用いる。
In the present embodiment, two groups of a survey target group A (for example, retail store 1, 2,...) And a survey target group B (for example, sales agent 1, 2,...) Each having a plurality of survey targets. In an environment in which there is a survey, one evaluation index is compared for each combination of survey targets between survey target groups, and it is determined whether there is a statistically significant difference between the survey targets. In an environment in which three or more survey target groups exist, for example, two survey target groups selected based on conditions specified by the user can be targeted. In order to determine a statistically significant difference, the Friedman test described above is used.
なお、上述した実施の形態1では、2つのステップで統計計算を行った。すなわち、第1のステップとして、図5のS320において、評価指標毎に調査対象間の有意差の検定を行い、第2のステップとして、図5のステップS330において、有意となった評価指標の評価点平均値から、調査対象間の総合的な有意差の判定を行った。これに対し、本実施の形態では、第1のステップを行わず、第2のステップにて調査対象間での総合的な有意差の判定を行うものである。
In the first embodiment described above, statistical calculation is performed in two steps. That is, as a first step, in S320 of FIG. 5, a significant difference between the survey targets is tested for each evaluation index, and as a second step, evaluation of the evaluation index that becomes significant in step S330 of FIG. Based on the point average value, the overall significant difference between the subjects was determined. On the other hand, in this Embodiment, the 1st step is not performed but the comprehensive significant difference between investigation object is determined in a 2nd step.
[システム構成]
図29は、本発明の実施の形態2である価値評価支援システムの構成例について概要を示した図である。価値評価支援システム1は、基本的には図1に示した実施の形態1のシステム構成と同様の構成を有している。 [System configuration]
FIG. 29 is a diagram showing an outline of a configuration example of the value evaluation support system according to the second embodiment of the present invention. The valueevaluation support system 1 basically has the same configuration as the system configuration of the first embodiment shown in FIG.
図29は、本発明の実施の形態2である価値評価支援システムの構成例について概要を示した図である。価値評価支援システム1は、基本的には図1に示した実施の形態1のシステム構成と同様の構成を有している。 [System configuration]
FIG. 29 is a diagram showing an outline of a configuration example of the value evaluation support system according to the second embodiment of the present invention. The value
本実施の形態では、商品等提供システム20(図29の例では20a、b)および商品等内容DB201(図29の例では201a、b)を有する販売者は、スーパーマーケット等の小売店である。また、これらとは別に、販売代行者がスーパーマーケットに代わって商品の販売の代行サービスを行うための情報処理システムである複数の販売代行システム21(図29の例では21a、b)を有している。各販売代行システム21は、それぞれ、販売の代行を行うための情報を代行内容DB211(図29の例では211a、b)に保管している。
In the present embodiment, the seller having the product providing system 20 (20a, b in the example of FIG. 29) and the product content DB 201 (201a, b in the example of FIG. 29) is a retail store such as a supermarket. Apart from these, the sales agent has a plurality of sales agent systems 21 (21a, b in the example of FIG. 29), which is an information processing system for providing a product sales agent service on behalf of the supermarket. Yes. Each sales agent system 21 stores information for performing sales agent in the agent content DB 211 (211a, b in the example of FIG. 29).
価値評価サーバ10についても、基本的には図1に示した実施の形態1の機能ブロックと同様の機能ブロックを有している。なお、販売者DB101は、販売者(スーパーマーケット)および当該販売者の商品等提供システム20に係る情報を保持するテーブルであり、例えば、販売者名、担当者名、住所、電話番号、FAX番号、電子メールアドレス、ユーザID、パスワード等の個人情報、支払条件等の販売情報などが含まれる。
The value evaluation server 10 basically has the same functional blocks as the functional blocks of the first embodiment shown in FIG. The seller DB 101 is a table that holds information related to the seller (supermarket) and the merchandise providing system 20 of the seller. For example, the seller DB, the name of the person in charge, the address, the telephone number, the FAX number, This includes personal information such as an e-mail address, user ID, and password, and sales information such as payment terms.
利用者DB102は、利用者に係る情報を保持するテーブルであり、例えば、氏名、年齢、生年月日、住所、性別、電話番号、FAX番号、電子メールアドレス、価値評価支援システム1で用いられるIDやパスワード等のアカウント情報などの個人情報などが含まれる。また、利用者が見積依頼したい小売店と販売代行者を優先順位付きで示したリストである見積依頼販売者・代行者優先順位リスト、利用者が見積依頼する予定を示した見積依頼スケジュール、利用者が実際に購入した履歴を示す購入商品履歴、利用者が見積依頼したい商品をリストアップした見積依頼商品リスト、利用者が見積依頼したい代行サービスをリストアップした見積依頼サービスリスト、利用者が価値比較に用いる比較価値評価指標、および支払方法等の購入情報などが含まれる。
The user DB 102 is a table that holds information related to users. For example, name, age, date of birth, address, gender, telephone number, FAX number, e-mail address, ID used in the value evaluation support system 1 And personal information such as account information such as passwords. In addition, a list of retailers and sales agents that the user wants to request for quotations, a list of priorities for requesting sellers / representatives with a priority order, a request for quotations schedule that indicates the user's plan to request a quotation, and usage Purchased product history that shows the actual purchase history of the user, list of requested products that the user wants to request a quote for, quote request service list that lists the agency services that the user wants to request for a quote, and value for the user A comparative value evaluation index used for comparison, purchase information such as a payment method, and the like are included.
商品等DB103は、各商品等提供システム20から抽出した商品等に係る情報を保持するテーブルであり、例えば、商品名やグレード、入り数、内容量、産地、商品の画像や説明文等の商品情報などが含まれる。評価履歴DB104およびアンケートDB105の内容については、実施の形態1における評価履歴DB104およびアンケートDB105の内容に、販売代行者に関する情報がそれぞれ追加される。
The product etc. DB 103 is a table that holds information related to the product etc. extracted from each product etc. providing system 20, for example, product name, grade, number of pieces, contents, production area, product image, description, etc. Information etc. are included. Regarding the contents of the evaluation history DB 104 and the questionnaire DB 105, information related to the sales agent is added to the contents of the evaluation history DB 104 and the questionnaire DB 105 in the first embodiment.
本実施の形態では、価値評価サーバ10は、さらに代行者DB106を有している。代行者DBは、販売代行者および当該販売代行者の販売代行システム21に係る情報を保持するテーブルであり、例えば、販売代行者名、住所、電話番号、担当者名、電話番号、FAX番号、電信メールアドレス、価値評価支援システム1で用いられるIDやパスワード等のアカウント情報などの個人情報、代行サービスの内容や条件、範囲、時間帯、取扱量等のサービス情報、支払条件等の販売情報などが含まれる。
In the present embodiment, the value evaluation server 10 further includes an agent DB 106. The agent DB is a table that holds information related to the sales agent and the sales agent system 21 of the sales agent. For example, the sales agent name, address, telephone number, person in charge name, telephone number, FAX number, Personal information such as e-mail address, account information such as ID and password used in the value evaluation support system 1, contents and conditions of agency services, service information such as range, time zone, handling amount, sales information such as payment conditions, etc. Is included.
[処理フロー(主要処理)]
図30は、価値評価サーバ10における主要処理の流れの例について概要を示したフロー図である。まず、販売者、販売代行者および利用者の情報を登録する初期登録処理を行う(S05)。ここでは、例えば、これらの情報を管理者やオペレータ等が価値評価サーバ10の各DBに対して初期登録してもよいし、価値評価支援システム1において用いるユーザIDを持たない販売者、販売代行者もしくは利用者からアクセスがあった場合に初期登録を行うようにしてもよい。このとき例えば、登録を行う販売者、販売代行者もしくは利用者から、ユーザID以外の個人情報などからなる販売者情報、販売代行者情報もしくは利用者情報のDBへの登録情報の入力を受け付け、これらの情報をDBに正式に登録した後にユーザIDを発行してパスワードを登録する。 [Processing flow (main processing)]
FIG. 30 is a flowchart showing an overview of an example of the flow of main processing in thevalue evaluation server 10. First, an initial registration process for registering information of a seller, a sales agent, and a user is performed (S05). Here, for example, an administrator, an operator, or the like may initially register these pieces of information in each DB of the value evaluation server 10, or a seller who does not have a user ID used in the value evaluation support system 1 or a sales agent. Initial registration may be performed when there is an access from a user or a user. At this time, for example, from the seller, the sales agent or the user who performs registration, the seller information including personal information other than the user ID, the registration information input to the DB of the sales agent information or the user information is received, After these information is formally registered in the DB, a user ID is issued and a password is registered.
図30は、価値評価サーバ10における主要処理の流れの例について概要を示したフロー図である。まず、販売者、販売代行者および利用者の情報を登録する初期登録処理を行う(S05)。ここでは、例えば、これらの情報を管理者やオペレータ等が価値評価サーバ10の各DBに対して初期登録してもよいし、価値評価支援システム1において用いるユーザIDを持たない販売者、販売代行者もしくは利用者からアクセスがあった場合に初期登録を行うようにしてもよい。このとき例えば、登録を行う販売者、販売代行者もしくは利用者から、ユーザID以外の個人情報などからなる販売者情報、販売代行者情報もしくは利用者情報のDBへの登録情報の入力を受け付け、これらの情報をDBに正式に登録した後にユーザIDを発行してパスワードを登録する。 [Processing flow (main processing)]
FIG. 30 is a flowchart showing an overview of an example of the flow of main processing in the
次に、利用者が利用者DB102に登録した見積依頼スケジュール、見積依頼販売者・代行者優先順位リスト、および見積依頼商品リストに従って、見積依頼の対象の商品等に係る価格を含む情報を、各商品等提供システム20もしくは各販売代行システム21に問い合せて取得するとともに、評価履歴DB104から対象の調査対象(販売者および販売代行者)についての評価履歴情報を抽出して統計処理を行うことで価値を調査する価格・価値調査処理を行う(S06)。さらに、商品等および販売者、販売代行者を選択して購入した利用者に対して、購入した商品等や販売者、販売代行者の価値に関するアンケート調査を実施し、その結果に係る情報を記録する評価履歴情報記録処理を行い(S07)、一連の処理を終了する。
Next, in accordance with the quotation request schedule registered by the user in the user DB 102, the quotation request seller / agent priority order list, and the quotation request commodity list, information including the price related to the target product for the quotation request, It is obtained by inquiring the product providing system 20 or each sales agent system 21 and obtaining statistical information by extracting evaluation history information about the target investigation object (seller and sales agent) from the evaluation history DB 104. A price / value survey process is performed to survey (S06). In addition, we conduct a survey on the value of purchased products, etc., sellers, and sales agents for users who select and purchase products, sellers, and sales agents, and record information related to the results The evaluation history information recording process is performed (S07), and the series of processes is terminated.
[処理フロー(価格・価値調査処理)]
図31は、価値評価サーバ10における価格・価値調査処理(図30のステップS06)の流れの例について概要を示したフロー図である。まず、価値評価サーバ10は、各利用者により利用者DB102に登録されている見積依頼スケジュールの情報を定期的に参照する等により、利用者毎の見積依頼スケジュールに従って、商品等情報取得部11による見積依頼処理を自動で起動する(S601)。なお、見積依頼スケジュールによる自動起動ではなく、利用者が利用者端末30を介して価値評価サーバ10に対して見積依頼を手動で要求し、これをトリガとして起動するようにしてもよい。 [Processing flow (price / value survey processing)]
FIG. 31 is a flowchart showing an overview of an example of the flow of price / value survey processing (step S06 in FIG. 30) in thevalue evaluation server 10. First, the value evaluation server 10 uses the product etc. information acquisition unit 11 according to the estimate request schedule for each user by periodically referring to the information of the estimate request schedule registered in the user DB 102 by each user. The estimate request process is automatically started (S601). Instead of automatic activation based on the quotation request schedule, the user may manually request a quotation request from the value evaluation server 10 via the user terminal 30, and may be activated as a trigger.
図31は、価値評価サーバ10における価格・価値調査処理(図30のステップS06)の流れの例について概要を示したフロー図である。まず、価値評価サーバ10は、各利用者により利用者DB102に登録されている見積依頼スケジュールの情報を定期的に参照する等により、利用者毎の見積依頼スケジュールに従って、商品等情報取得部11による見積依頼処理を自動で起動する(S601)。なお、見積依頼スケジュールによる自動起動ではなく、利用者が利用者端末30を介して価値評価サーバ10に対して見積依頼を手動で要求し、これをトリガとして起動するようにしてもよい。 [Processing flow (price / value survey processing)]
FIG. 31 is a flowchart showing an overview of an example of the flow of price / value survey processing (step S06 in FIG. 30) in the
商品等情報取得部11は、対象の利用者により利用者DB102に登録されている見積依頼販売者・代行者優先順位リストに登録されている販売者と販売代行者を調査対象として特定する(S602)。次に、評価履歴情報取得部12は、ステップS602で特定した調査対象に関連付けられた評価指標に係る評価データを評価履歴DB104から抽出する(S603)。ここで、後述する利用者に対するアンケート内の質問が複数ある場合は、評価指標も複数存在するため、どの評価指標の評価データを抽出するのか予め設定しておく必要がある。これは例えば、利用者が図30のステップS05の初期登録処理において、価値比較に用いる比較価値評価指標の情報を利用者DB102に登録することで行う。本実施の形態では、利用者が比較価値評価指標として満足度(0~100点)を利用者DB102に登録したとものとして説明する。
The product etc. information acquiring unit 11 specifies the seller and the sales agent registered in the quotation request seller / representative priority list registered in the user DB 102 by the target user as the survey target (S602). ). Next, the evaluation history information acquisition unit 12 extracts evaluation data related to the evaluation index associated with the investigation target specified in step S602 from the evaluation history DB 104 (S603). Here, when there are a plurality of questions in the questionnaire for the user, which will be described later, since there are a plurality of evaluation indexes, it is necessary to set in advance which evaluation index to extract the evaluation data. This is performed, for example, by the user registering information of the comparative value evaluation index used for value comparison in the user DB 102 in the initial registration process in step S05 of FIG. In the present embodiment, it is assumed that the user has registered satisfaction (0 to 100 points) in the user DB 102 as a comparative value evaluation index.
次に、統計計算部13は、ステップS602で特定した2種類の調査対象(販売者、販売代行者)についてステップS603で抽出した評価データのマトリクス表を作成するマトリクス作成処理を行う(S620)。図32は、図31のステップS620のマトリクス作成処理の流れの例について概要を示したフロー図である。マトリクス作成処理を開始すると、統計計算部13は、まず、ステップS602で特定した2種類の調査対象(販売者、販売代行者)の全組み合せのそれぞれを対象として処理を繰り返し行うループ処理を開始する。
Next, the statistical calculation unit 13 performs matrix creation processing for creating a matrix table of the evaluation data extracted in step S603 for the two types of survey targets (seller and sales agent) identified in step S602 (S620). FIG. 32 is a flowchart showing an overview of an example of the flow of matrix creation processing in step S620 of FIG. When the matrix creation process is started, the statistical calculation unit 13 first starts a loop process that repeats the process for each of all combinations of the two types of survey targets (seller and sales agent) identified in step S602. .
各ループ処理では、まず、当該ループでの処理対象の調査対象の組み合わせについての評価データ(処理対象の販売者と販売代行者の組み合わせについての満足度)の数をカウントし、予め設定された下限値以上であるか否かを判定する(S6201)。下限値未満である場合は、ループ処理にて次の調査対象の組み合わせに対する処理に移る。ここで、下限値としては、後述するランダム抽出ができる最低限の数(例えば2など)を設定する。
In each loop process, first, the number of evaluation data (satisfaction with the combination of the seller and the sales agent) to be processed in the loop is counted, and a predetermined lower limit is set. It is determined whether or not the value is greater than or equal to the value (S6201). If it is less than the lower limit value, the process proceeds to the process for the next combination to be investigated in the loop process. Here, as the lower limit value, a minimum number (for example, 2) that can be randomly extracted, which will be described later, is set.
ステップS6201で、データ数が下限値以上である場合は、次に、データ数が予め設定された上限値以下であるか否かを判定する(S6202)。ここで、上限値としては、実施の形態1の図5のステップS304と同様に、例えば、一般的にデータ数が母集団の数(母数)と認められる最小の数から1を減じた値(例えば60万個など)を設定する。データ数が上限値以下である場合は、全てのデータを処理対象としてステップS6204に進む。一方、データ数が上限値を超えている場合は、対象の評価データのうち、最新のものから順に上限数個のデータを抽出して処理対象のデータとし(S6203)、ステップS6204に進む。
If it is determined in step S6201 that the number of data is greater than or equal to the lower limit, it is next determined whether the number of data is less than or equal to a preset upper limit (S6202). Here, the upper limit value is, for example, a value obtained by subtracting 1 from the minimum number that is generally recognized as the number of populations (the number of populations), as in step S304 of FIG. 5 of the first embodiment. (For example, 600,000) is set. If the number of data is less than or equal to the upper limit value, the process advances to step S6204 for all data as processing targets. On the other hand, if the number of data exceeds the upper limit, the upper limit several pieces of data are extracted from the latest evaluation data in order from the latest, and are processed (S6203), and the process proceeds to step S6204.
ステップS6204では、価値評価サーバ10に予め保持している乱数表等を用い、処理対象のデータから所定の数をランダムに抽出する(S6204)。すなわち、1個以上かつ(処理対象の評価データの数-1)個以下の所定の数の評価データをランダムに抽出する。なお、ステップS6201でデータ数が下限値未満であった場合は、当該ステップでランダム抽出することができないため、結果として当該調査対象の組み合わせについては、データの抽出個数はゼロ(すなわち欠損データ)となる。その後、ループ処理にて次の調査対象の組み合わせに対する処理に移る。
In step S6204, a predetermined number is randomly extracted from the data to be processed using a random number table or the like previously stored in the value evaluation server 10 (S6204). That is, a predetermined number of evaluation data of 1 or more and (the number of evaluation data to be processed −1) or less is randomly extracted. Note that if the number of data is less than the lower limit in step S6201, random extraction cannot be performed in this step, and as a result, the number of data extraction is zero (ie, missing data) for the survey target combination. Become. Thereafter, the process proceeds to the process for the next combination to be investigated in a loop process.
全ての調査対象の組み合わせに対するループ処理を終了すると、2種類の調査対象についての評価データのマトリクス表を作成する(S6205)。マトリクス表に用いる評価データは、実施の形態1と同様に、図28に示した評価データ変換ルールにより変換された値を用いる。このとき、各調査対象の組み合わせについて、上述のループ処理によってランダム抽出された評価データ変換後の値が複数ある場合は、これらの評価データの平均値をマトリクス表上の対応する位置に設定する。平均値に代えて中央値や最頻値等の他の統計値を用いてもよい。ランダム抽出された評価データ変換後の値が1つの場合は、当該評価データの値をマトリクス表上の対応する位置に設定する。ランダム抽出ができずに欠損データとなっている場合は、欠損データ(例えばNULL値等)をマトリクス表上の対応する位置に設定する。
When the loop processing for all combinations of survey targets is completed, a matrix table of evaluation data for two types of survey targets is created (S6205). As in the first embodiment, the value converted by the evaluation data conversion rule shown in FIG. 28 is used as the evaluation data used in the matrix table. At this time, when there are a plurality of values after the evaluation data conversion randomly extracted by the loop processing described above for each combination to be investigated, the average value of these evaluation data is set at a corresponding position on the matrix table. Other statistical values such as a median value and a mode value may be used instead of the average value. If there is one randomly extracted value after evaluation data conversion, the value of the evaluation data is set at a corresponding position on the matrix table. If random data cannot be extracted and the data is missing, the missing data (for example, a NULL value) is set at a corresponding position on the matrix table.
次に、ステップS6205で作成したマトリクス表の行および列毎に欠損データの数をカウントする(S6206)。次に、ステップS6206でカウントした結果において欠損データがあるか否かを判定し(S6207)、欠損データがある場合は、マトリクス表において最も欠損データが多い行または列(販売代行者または販売者)を削除する(S6208)。このとき、該当する行または列が複数存在する場合は、優先順位の低い販売者または販売代行者に対応する行または列を削除する。なお、販売者および販売代行者に対する優先順位は、利用者が図30のステップS05の初期登録処理において利用者DB102に登録した見積依頼販売者・代行者優先順位リストに基づいて判断する。
Next, the number of missing data is counted for each row and column of the matrix table created in step S6205 (S6206). Next, it is determined whether or not there is missing data in the result counted in step S6206 (S6207). If there is missing data, the row or column with the most missing data in the matrix table (sales agent or seller). Is deleted (S6208). At this time, if there are a plurality of corresponding rows or columns, the row or column corresponding to the seller or sales agent having a low priority is deleted. The priority order for the seller and the sales agent is determined based on the quotation request seller / agent priority list registered in the user DB 102 in the initial registration process in step S05 of FIG.
図33、図34は、図32のステップS6205にて作成された販売者と販売代行業者の組み合わせのマトリクス表から欠損データのある行または列を削除する場合の例を示した図である。ここでは、7つの販売者(販売者A~G)と7つの販売代行者(代行者a~g)の組み合わせからなるマトリクス表において、欠損データのある行または列を削除する場合の順序の例について示している。
33 and 34 are diagrams showing an example of deleting a row or column with missing data from the matrix table of the combination of the seller and the sales agent created in step S6205 of FIG. Here, an example of the order in which rows or columns with missing data are deleted in a matrix table composed of combinations of seven sellers (sellers A to G) and seven sales agents (agents a to g) Shows about.
図33の上段の表は、図32のステップS6205にて作成されたマトリクス表の例を示しており、代行者a~gを各行とし、販売者A~Gを各列として、行と列の組み合わせ(各販売者と販売代行者の組み合わせ)毎に、これらに対する評価データ変換後の満足度の平均値を有している。表中の優先順位は、利用者DB102に登録されている見積依頼販売者・代行者優先順位リストに設定された、販売者および販売代行者についての優先順位である。なお、図33、図34の例では、販売代行者と販売者(行と列)全体で優先順位を1位から順に設定した場合を示している。また、マトリクス表には、図32のステップS6206にてカウントした、各行および各列の欠損データの数の情報を併記している。
The upper table of FIG. 33 shows an example of the matrix table created in step S6205 of FIG. 32. The representatives ag are each row, the sellers Ag are each column, and the rows and columns are shown. Each combination (combination of each seller and sales agent) has an average value of satisfaction after conversion of evaluation data for these. The priorities in the table are priorities for sellers and sales agents set in the quotation request seller / agent priority list registered in the user DB 102. In the example of FIGS. 33 and 34, the priority is set in order from the first place for the sales agent and the entire seller (row and column). The matrix table also includes information on the number of missing data in each row and each column counted in step S6206 in FIG.
図33の上段の表では、欠損データが存在し、最も欠損データが多いのは代行者gの行と、販売者Fの列(欠損データ数=3)である。ここで、これらの行および列のうち優先順位が最も低いのは代行者gの行(優先順位=14)であることから、図32のステップS6208の処理によりこの行を削除する。削除した結果のマトリクス表に対してさらに図32のステップS6206にて欠損データの数をカウントしたものを図33の下段の表に示している。ここでも依然欠損データが存在し、最も欠損データが多いのは代行者fの行と、販売者Fの列(欠損データ数=2)である。ここで、これらの行および列のうち優先順位が最も低いのは代行者fの行(優先順位=12)であることから、この行を削除する。削除した結果のマトリクス表に対して欠損データの数をカウントしたものを図34の上段の表に示している。
33. In the upper table of FIG. 33, missing data exists, and the most missing data is the row of the agent g and the column of the seller F (number of missing data = 3). Here, since the row with the lowest priority among these rows and columns is the row of the substitute g (priority = 14), this row is deleted by the processing of step S6208 in FIG. A table obtained by counting the number of missing data in step S6206 of FIG. 32 with respect to the deleted matrix table is shown in the lower table of FIG. Here, there is still missing data, and the rows with the most missing data are the row of the agent f and the column of the seller F (number of missing data = 2). Here, the row having the lowest priority among these rows and columns is the row of the substitute f (priority = 12), so this row is deleted. A table obtained by counting the number of missing data in the deleted matrix table is shown in the upper table of FIG.
図34の上段の表では、依然欠損データが存在し、最も欠損データが多いのは代行者c、eの行と、販売者F、Gの列(欠損データ数=1)である。ここで、これらの行および列のうち優先順位が最も低いのは販売者Gの列(優先順位=13)であることから、この列を削除する。削除した結果のマトリクス表に対して欠損データの数をカウントしたものを図34の中段の表に示している。ここでも依然欠損データが存在し、最も欠損データが多いのは代行者eの行と、販売者Fの列(欠損データ数=1)である。ここで、これらの行および列のうち優先順位が最も低いのは販売者Fの列(優先順位=11)であることから、この列を削除する。削除した結果のマトリクス表を図34の下段に示している。このマトリクス表では欠損データがないことから、これが最終的なマトリクス表となる。
In the upper table of FIG. 34, missing data still exists, and the most missing data are the rows of agents c and e and the columns of sellers F and G (number of missing data = 1). Here, the column of the seller G (priority = 13) has the lowest priority among these rows and columns, so this column is deleted. A table in the middle of FIG. 34 shows the number of missing data counted in the deleted matrix table. Here, the missing data still exists, and the rows with the most missing data are the row of the agent e and the column of the seller F (number of missing data = 1). Here, among these rows and columns, the column with the lowest priority is the column of seller F (priority = 11), so this column is deleted. The matrix table of the deleted result is shown in the lower part of FIG. Since there is no missing data in this matrix table, this is the final matrix table.
このように、欠損データの数の情報と、優先順位の情報とに基づいて削除する行または列を決定することで、評価の対象としたい調査対象を可能な限り残しつつ、欠損データをマトリクス表から取り除くことが可能となる。なお、図33、図34の例では、販売代行者と販売者(行と列)全体で優先順位を1位から順に設定しているが、各販売代行者および各販売者(各行と各列)について、それぞれ個別に優先順位を1位から順に設定するようにしてもよい。すなわち、各販売代行者について優先順位を1位から順に設定するとともに、各販売者についても優先順位を1位から順に設定するようにしてもよい。
In this way, by determining the rows or columns to be deleted based on the information on the number of missing data and the priority information, the missing data is displayed in a matrix table while leaving as many survey targets as possible to be evaluated. It becomes possible to remove from. In the examples of FIGS. 33 and 34, the order of priority is set in order from the first place for the sales agent and the seller (row and column) as a whole, but each sales agent and each seller (each row and each column). ) May be set individually in order from the first. That is, the priority order may be set in order from the first place for each sales agent, and the priority order may be set in order from the first place for each seller.
この場合、上記と同様の手順にて欠損データのある行または列を削除しようとすると、販売代行者(行)と販売者(列)で最も低い優先順位が同じ値のものが生じる場合が出てくる。そこで、この場合は予め設定した所定のルールに従って一方の行もしくは列を選択するものとする。本実施の形態では、例えば、販売者(列)を優先的に削除する(販売者の優先順位を代行者より低く取り扱う)等のルールを設定し、図30のステップS05の初期登録処理において、見積依頼販売者・代行者優先順位リストに当該情報を追加する等により利用者DB102に予め登録しておく。
In this case, if you try to delete a row or column with missing data using the same procedure as above, the sales agent (row) and the seller (column) may have the same value with the lowest priority. Come. Therefore, in this case, one row or column is selected according to a predetermined rule set in advance. In the present embodiment, for example, a rule such as deleting sellers (columns) preferentially (treating sellers with lower priority than agents) is set, and in the initial registration process of step S05 in FIG. The information is registered in advance in the user DB 102, for example, by adding the information to the estimate request seller / agent priority list.
図32に戻り、ステップS6207で、欠損データがない(なくなった)場合、すなわち、欠損データのある行および列が全て削除された場合は、削除された列および行(販売者または販売代行者)の数をそれぞれカウントし、削除率を計算して、当該削除率が所定の閾値未満であるか否かを判定する(S6209)。削除率は、マトリクス表において削除した列または行の数を削除する前の列または行の数でそれぞれ除したものの百分率である。または、削除した列と行の合計を削除する前の列と行の合計で除してた百分率を用いてもよい。所定の閾値は、価値評価したい調査対象の最低数を確保できる百分率で、例えば、利用者DB102の見積依頼販売者・代行者優先順位リストに登録されている販売者または販売代行者の数の半数を示す値(50%)を用いる。ステップS6209で削除率が閾値未満である場合は、マトリクス作成処理を終了する。なお、この場合は、後述する図31のステップS630の統計処理では、フリードマン検定またはウィルコクソンの符合付順位検定を行う。
Returning to FIG. 32, in step S6207, if there is no missing data (has been lost), that is, if all the rows and columns with missing data have been deleted, the deleted columns and rows (seller or sales agent). The deletion rate is calculated, and it is determined whether or not the deletion rate is less than a predetermined threshold (S6209). The deletion rate is a percentage of the number of columns or rows deleted in the matrix table divided by the number of columns or rows before deletion. Alternatively, a percentage obtained by dividing the total of deleted columns and rows by the total of columns and rows before deletion may be used. The predetermined threshold is a percentage at which the minimum number of survey targets to be evaluated can be secured. For example, half of the number of sellers or sales agents registered in the quotation request seller / agent priority list of the user DB 102 A value indicating 50% is used. If the deletion rate is less than the threshold value in step S6209, the matrix creation process ends. In this case, Friedman's test or Wilcoxon's signed rank test is performed in the statistical processing in step S630 in FIG.
一方、ステップS6209で削除率が閾値以上である場合は、後述する図31のステップS630の統計処理では、フリードマン検定またはウィルコクソンの符合付順位検定に代えてクラスカル・ウォリス検定またはウィルコクソン検定を行う。このため、統計計算部13は、まず、クラスカル・ウォリス検定またはウィルコクソン検定に用いるデータ数の下限値(例えば、実施の形態1の図5のステップS303で設定したものと同様な下限値)以上のデータ数を持つ調査対象の数Sを調査対象グループ毎にカウントする(S6210)。具体的には、図31のステップS603で抽出された各調査対象のうち、調査対象が有する評価指標データの総数が上記の下限値以上であるものの数をカウントする。
On the other hand, if the deletion rate is greater than or equal to the threshold value in step S6209, the Kruskal-Wallis test or Wilcoxon test is performed in place of the Friedman test or Wilcoxon signed rank test in the statistical processing in step S630 of FIG. For this reason, first, the statistical calculation unit 13 is equal to or higher than the lower limit value of the number of data used for the Kruskal-Wallis test or the Wilcoxon test (for example, the lower limit value similar to that set in step S303 in FIG. 5 of the first embodiment). The number S of survey targets having the number of data is counted for each survey target group (S6210). Specifically, among the survey targets extracted in step S603 of FIG. 31, the number of items whose total number of evaluation index data possessed by the survey target is equal to or greater than the above lower limit value is counted.
次に、欠損値を全て削除したマトリクス表における対応する調査対象グループ内の調査対象の数が、ステップS6210で算出した調査対象の数S未満であるか否かを判定する(S6211)。S未満である場合は、マトリクス作成処理を終了する。この場合は、ステップS6210でカウント対象となった各調査対象について、例えば、図5のステップS304~S306に示したような処理により所定の数のサンプルを抽出した上で、後述する図31のステップS630の統計処理でクラスカル・ウォリス検定またはウィルコクソン検定を行う。
Next, it is determined whether or not the number of survey targets in the corresponding survey target group in the matrix table from which all missing values are deleted is less than the number S of survey targets calculated in step S6210 (S6211). If it is less than S, the matrix creation process ends. In this case, for each survey target that is counted in step S6210, for example, a predetermined number of samples are extracted by the process shown in steps S304 to S306 in FIG. The Kruskal-Wallis test or Wilcoxon test is performed in the statistical processing of S630.
一方、ステップS6211で、欠損値を全て削除したマトリクス表における対応する調査対象グループ内の調査対象の数が、ステップS6210で算出した調査対象の数S以上である場合は、さらに、マトリクス表上にデータがあるか否か、すなわち、残っている行または列があるか否かを判定する(S6212)。マトリクス表上にデータがある、すなわち、残っている行または列がある場合は、マトリクス処理を終了する。この場合は、後述する図31のステップS630の統計処理では、フリードマン検定またはウィルコクソンの符合付順位検定を行う。
On the other hand, if the number of survey targets in the corresponding survey target group in the matrix table from which all missing values are deleted in step S6211 is greater than or equal to the number S of survey targets calculated in step S6210, the table is further displayed on the matrix table. It is determined whether there is data, that is, whether there are any remaining rows or columns (S6212). If there is data on the matrix table, that is, if there are remaining rows or columns, the matrix processing is terminated. In this case, Friedman test or Wilcoxon signed rank test is performed in the statistical processing in step S630 in FIG.
ステップS6212で、マトリクス表上にデータがない、すなわち、上記のステップS6206~S6208の一連の処理により、マトリクス表の全ての行および列が削除されている場合は、処理を中止する旨のメッセージを利用者端末30に対して出力し、全体の処理を終了する(S6213)。このようなメッセージとしては、例えば、「記録されたデータの不足により、計算できません。見積依頼販売者・代行者優先順位リストの内容を見直した後、再度見積依頼を行って下さい」などのメッセージとすることができる。利用者端末30は、当該メッセージを画面表示や音声によって出力することで利用者に通知する。
If there is no data on the matrix table in step S6212, that is, if all the rows and columns of the matrix table have been deleted by the series of processing in steps S6206 to S6208, a message to stop the processing is displayed. The data is output to the user terminal 30, and the entire process is terminated (S6213). Examples of such messages include a message such as "Cannot be calculated due to lack of recorded data. Please review the contents of the quotation request seller / substitute priority list and request a quotation again." can do. The user terminal 30 notifies the user by outputting the message by screen display or voice.
または、全体の処理を終了する代わりに、マトリクス作成処理を終了し、図31のステップS604の見積依頼に進んでもよい。この場合、図31においてステップS604の見積依頼の後のステップS630の統計処理は行わないため、利用者に対して価値評価に関する統計結果は出力されない。
Alternatively, instead of ending the entire process, the matrix creation process may be ended, and the process may proceed to an estimate request in step S604 in FIG. In this case, since the statistical processing in step S630 after the request for quotation in step S604 in FIG. 31 is not performed, the statistical result regarding the value evaluation is not output to the user.
図31に戻り、ステップS620のマトリクス作成処理が終了し、マトリクス表にデータがある、すなわち、残っている行または列がある場合は、次に、マトリクス表の行および列に対応する各調査対象に対して見積依頼を送信する(S604)。送信する見積依頼は、例えば、利用者が図30のステップS05の初期登録処理において予め利用者DB102に登録しておいた見積依頼商品リストまたは見積依頼サービスリストに基づいて、商品等情報取得部11が作成することができる。なお、見積依頼を送信する対象の商品等提供システム20や、販売代行システム21が、オンラインで見積依頼を受け付けるようなインタフェースを有している場合は、見積依頼の内容を含むファイル等を送信する代わりに当該インタフェースを利用して見積依頼を自動もしくは手動により入力するようにしてもよい。
Returning to FIG. 31, when the matrix creation processing in step S620 is completed and there is data in the matrix table, that is, when there are remaining rows or columns, each investigation object corresponding to the rows and columns of the matrix table is next. An estimate request is transmitted to (S604). The quote request to be transmitted is, for example, the product etc. information acquisition unit 11 based on the quote request product list or the quote request service list registered in advance in the user DB 102 in the initial registration process in step S05 of FIG. Can be created. In addition, when the product etc. providing system 20 or the sales agent system 21 to which the quotation request is transmitted have an interface for accepting the quotation request online, a file including the contents of the quotation request is transmitted. Instead, an estimate request may be input automatically or manually using the interface.
図35は、販売者の商品等提供システム20に送信する見積依頼の例について示した図である。図35の例では、見積依頼を送信する対象の販売者および利用者のIDなどの識別情報に加え、見積依頼を行う各商品について、利用者DB102に予め登録されている見積依頼商品リストに設定されている内容に基づいて商品名や産地、グレード、サイズ等の対象商品の属性情報、購入予定数や購入予定日時などの購入情報が設定される。なお、見積依頼を自動で行うため、購入予定日時については、例えば、絶対日時による指定ではなく「見積日時の○○時間後」などの相対日時による指定としてもよい。
FIG. 35 is a diagram showing an example of an estimate request transmitted to the seller's product etc. providing system 20. In the example of FIG. 35, in addition to identification information such as the IDs of sellers and users to whom an estimate request is transmitted, each item for which an estimate request is made is set in the estimate request item list registered in the user DB 102 in advance. Based on the contents, attribute information of the target product such as the product name, production area, grade, and size, and purchase information such as the planned number of purchases and the planned purchase date and time are set. In addition, since the estimate request is automatically performed, the scheduled purchase date and time may be specified by a relative date and time such as “after the estimated date and time”, for example, instead of the absolute date and time.
また、図36は、販売代行者の販売代行システム21に送信する見積依頼の例について示した図である。図36の例では、見積依頼を送信する対象の販売代行者および利用者のIDなどの識別情報に加え、利用者DB102に予め登録されている見積依頼サービスリストに設定されている内容に基づいて購入日時や納品日時、納品先などの情報や、代行サービスの対象の販売者のリストが設定される。販売者や販売代行者のIDや名称等は、販売者DB101や代行者DB106に登録されている内容に基づいて設定される。なお、見積依頼を自動で行うため、購入日時および納品日時については、例えば、絶対日時による指定ではなく、それぞれ「見積日時の○○時間後」や「購入日時の○○時間後」などの相対日時による指定としてもよい。また、販売者のリストは、図31のステップS604で見積依頼を送信した販売者に限定してもよい。
FIG. 36 is a diagram showing an example of an estimate request transmitted to the sales agent system 21. In the example of FIG. 36, in addition to identification information such as IDs of sales agents and users to which a quote request is transmitted, based on contents set in a quote request service list registered in advance in the user DB 102. Information such as the purchase date / time, delivery date / time, and delivery destination, and a list of sellers to be subjected to the agency service are set. The IDs and names of the sellers and sales agents are set based on the contents registered in the seller DB 101 and the agent DB 106. Since the request for quotation is made automatically, the purchase date / time and delivery date / time are not specified by the absolute date / time, for example, relative to each other such as “after XX hours after the estimated date / time” or “after XX hours after the purchase date / time”. It may be specified by date and time. Further, the list of sellers may be limited to the seller who has transmitted the request for quotation in step S604 of FIG.
見積依頼を受信した商品等提供システム20もしくは販売代行システム21は、見積依頼の内容から対象の商品等を特定し、商品等内容DB201もしくは代行内容DB211から対象の商品や代行サービスの価格を含む情報を抽出して、見積として価値評価サーバ10に送信する(S605)。なお、当該処理は販売者もしくは販売代行者が手動で行ってもよい。
The product providing system 20 or the sales agent system 21 that has received the request for quotation specifies the target product from the content of the request for quotation, and includes the price of the target product or agent service from the product content DB 201 or the agent content DB 211. Is extracted and transmitted to the value evaluation server 10 as an estimate (S605). The processing may be manually performed by a seller or a sales agent.
具体的には、見積依頼を受信した販売者の商品等提供システム20は、見積依頼の内容から対象の商品等を特定し、当該商品等の価格および在庫の情報を商品等内容DB201から抽出する。その後、見積依頼に指定されている購入予定数と、商品等内容DB201から抽出した単価とに基づいて、小計、見積合計金額および消費税等を計算する。また、見積対象外の販売商品や広告・特売・目玉商品、対象の利用者の購入履歴に基づいて選択された商品等の情報などを添付し、見積として価値評価サーバ10に送信する。購入履歴に基づく商品の選択は、商品等内容DB201内に記録した過去の当該利用者の購入情報を用いて行なってもよいし、価値評価サーバ10が、商品情報取得部11によって商品等提供システム20に見積依頼を送信する際に、利用者DB102内の購入商品履歴情報を用いて選択した商品を見積依頼に予め付加しておいてもよい。
Specifically, the merchandise provision system 20 of the seller who has received the quote request identifies the target product etc. from the contents of the quote request, and extracts price and inventory information of the merchandise etc. from the merchandise content DB 201. . Thereafter, based on the planned number of purchases specified in the estimate request and the unit price extracted from the product etc. content DB 201, a subtotal, an estimated total amount, a consumption tax, and the like are calculated. In addition, information such as sales products that are not subject to estimation, advertisements / sale / feature products, products selected based on the purchase history of the target user, and the like are attached and transmitted to the value evaluation server 10 as an estimate. The selection of the product based on the purchase history may be performed using the purchase information of the user in the past recorded in the product etc. content DB 201, or the value evaluation server 10 uses the product information acquisition unit 11 to provide the product etc. providing system. When transmitting the quote request to 20, the product selected using the purchased product history information in the user DB 102 may be added to the quote request in advance.
図37は、販売者の商品等提供システム20が作成する見積の例について示した図である。図37の例では、価値評価サーバ10から受信した図35の見積依頼の内容に対して、見積外商品の情報や、在庫数、単価、小計、見積合計金額などの情報(図中の太枠の項目)を付加して見積としている。なお、商品等提供システム20は、見積外商品の購入予定数および購入予定日時の欄には情報を付加しない。
FIG. 37 is a diagram showing an example of an estimate created by the seller's product etc. providing system 20. In the example of FIG. 37, the information of the estimate request in FIG. 35 received from the value evaluation server 10 and information such as the number of items for sale, unit price, subtotal, estimated total amount (bold frame in the figure) Item) is added for estimation. It should be noted that the product providing system 20 does not add information to the column of the planned purchase number and purchase date and time of unquoted products.
また、見積依頼を受信した販売代行者の販売代行システム21は、見積依頼の内容から代行する販売者等の販売代行サービスの内容を特定し、代行内容DB211から対応するサービス料金を抽出する。抽出した情報に基づいて、価値評価サーバ10から受信した図36の見積依頼の内容に対して、料金に係る部分(図中の太枠の項目)の内容を補充し、見積として価値評価サーバ10に送信する。
Also, the sales agent system 21 of the sales agent who has received the quotation request specifies the content of the sales agent service of the agent or the like acting on the basis of the content of the quotation request, and extracts the corresponding service fee from the agent content DB 211. Based on the extracted information, the content of the portion related to the charge (the item in the thick frame in the figure) is supplemented to the content of the request for quotation in FIG. 36 received from the value evaluation server 10, and the value evaluation server 10 is estimated. Send to.
図31に戻り、価値評価サーバ10は、ステップS604で見積依頼を商品等提供システム20または販売代行システム21に送信して見積を取得する一方、統計計算部13により、ステップS620で作成したマトリクス表上の調査対象(販売者と販売代行者)のそれぞれについて有意差があるか否かを検定する統計処理を行う(S630)。統計計算の方法は、フリードマン検定またはウィルコクソンの符合付順位検定を行う場合は、上述の実施の形態1の図16、図17と同様である。すなわち、3つ以上の調査対象について、複数の評価指標を比較する場合は、図16のステップS3302以下で行うフリードマン検定と同様であり、2つの調査対象ついては、図17のステップS3315以下で行うウィルコクソンの符号付順位検定と同様である。
Returning to FIG. 31, the value evaluation server 10 transmits an estimate request to the product etc. providing system 20 or the sales agent system 21 in step S604 to obtain an estimate, while the statistical calculation unit 13 creates the matrix table created in step S620. Statistical processing is performed to test whether there is a significant difference for each of the above survey targets (seller and sales agent) (S630). The statistical calculation method is the same as that in FIGS. 16 and 17 of the first embodiment when the Friedman test or Wilcoxon signed rank test is performed. That is, when comparing a plurality of evaluation indexes for three or more survey targets, the same as the Friedman test performed in step S3302 and subsequent steps in FIG. 16, and for the two survey targets, Wilcoxon performed in step S3315 and subsequent steps in FIG. This is the same as the signed rank test.
図38は、それぞれ5つの調査対象を持つ2種類の調査対象グループ間の有意差を評価指標の値から統計計算により判定する例について示した図である。図38の上段の表では、調査対象である5つの販売者(販売者A~E)と5つの販売代行者(代行者a~e)の組み合わせのマトリクス表に対して、評価データ変換後の満足度(0~100点)の平均値が示されている。また、図38の中段の左側の表では販売代行者グループについて、また中段の右側の表では販売者グループについて、それぞれ、評価データ変換後の満足度の平均値について算出した順位(同一販売代行者における各販売者の順位、および同一販売者における各販売代行者の順位)、および調査対象毎に順位を合計した順位和の情報が示されている。なお、図38では、販売者と販売代行者の両者に対してフリードマン検定を行う場合の例を示している。
FIG. 38 is a diagram showing an example in which a significant difference between two types of survey target groups each having five survey targets is determined by statistical calculation from the value of the evaluation index. In the upper table of FIG. 38, the evaluation data is converted into a matrix table of combinations of five sellers (sellers A to E) and five sales agents (agents a to e) to be investigated. Average values of satisfaction (0 to 100 points) are shown. In the middle left table of FIG. 38, the sales agent group is calculated, and in the middle right table, the seller group is calculated with respect to the ranking calculated for the average value of satisfaction after conversion of the evaluation data (same sales agent). The ranking of each seller and the ranking of each sales agent in the same seller), and information on the sum of ranks obtained by summing the rankings for each survey target. FIG. 38 shows an example in which the Friedman test is performed on both the seller and the sales agent.
図38では、調査対象に対して算出された順位に同一順位のものがない場合の例を示しており、この場合は、図16のステップS3308と同様な処理により、FR量を計算する。図38の例では、販売者および販売代行者のいずれについても、調査対象の数(例えば販売者の数)k=5、各調査対象における評価データの数(例えば販売者に対する販売代行者の数)m=5であることから、上記の数6式により、販売者間の有意差を判定する場合(左側の表)ではFR量=10.72となり、代行者間の有意差を判定する場合(右側の表)ではFR量=3.20となる。
FIG. 38 shows an example in the case where there is no same rank in the ranks calculated for the survey target. In this case, the FR amount is calculated by the same process as step S3308 in FIG. In the example of FIG. 38, the number of survey targets (for example, the number of sellers) k = 5 and the number of evaluation data in each survey target (for example, the number of sales agents for the seller) for both the seller and the sales agent. ) Since m = 5, when the significant difference between the sellers is determined by the above equation (6), the FR amount is 10.72 in the case of determining the significant difference between the agents in the left table. In the right table, the FR amount = 3.20.
次に、図16のステップS3309と同様な処理により、統計計算部16等が予め保持しているカイ二乗分布表から所定の有意水準α、および自由度φ=k-1で与えられる限界値χ2(φ,α)を特定し、得られたχ2(φ,α)と、上記で計算したFR量とを比較する。図38の例では、販売者間および販売代行者間のいずれの有意差判定の場合も、有意水準α=0.05、自由度φ=5-1=4より、カイ二乗分布表から限界値χ2(4,0.05)=9.49が得られる。
Next, the limit value χ given by the predetermined significance level α and the degree of freedom φ = k−1 from the chi-square distribution table previously held by the statistical calculation unit 16 and the like by the same processing as step S3309 in FIG. 2 (φ, α) is specified, and the obtained χ 2 (φ, α) is compared with the FR amount calculated above. In the example of FIG. 38, in the case of any significant difference determination between sellers and sales agents, the limit value is obtained from the chi-square distribution table based on the significance level α = 0.05 and the degree of freedom φ = 5-1 = 4. χ 2 (4,0.05) = 9.49 is obtained.
次に、図16のステップS3310と同様な処理により、上記の比較結果に基づいて調査対象間に有意差があるか否かを判定し、統計処理を終了する。ここでは、FR量≧χ2(φ,α)であるときは有意差があると判定し、FR量<χ2(φ,α)であるときは有意差があるとは言えないと判定する。図38の例では、販売者間の有意差の判定(左側の図)では、(FR量=10.7)>{χ2(4,0.05)=9.49}であるため、有意差があると判定する。また、販売代行者間の有意差の判定(右側の図)では、(FR量=3.20)<{χ2(4,0.05)=9.49}であるため、有意差があるとは言えないと判定する。
Next, by the same process as step S3310 of FIG. 16, it is determined whether there is a significant difference between the investigation targets based on the comparison result, and the statistical process is terminated. Here, it is determined that there is a significant difference when the FR amount ≧ χ 2 (φ, α), and it is determined that there is no significant difference when the FR amount <χ 2 (φ, α). . In the example of FIG. 38, in the determination of the significant difference between the sellers (the figure on the left side), (FR amount = 10.7)> {χ 2 (4,0.05) = 9.49}. Judge that there is a difference. In the determination of a significant difference between sales agents (right figure), there is a significant difference because (FR amount = 3.20) <{χ 2 (4,0.05) = 9.49}. It is determined that it cannot be said.
なお、上述したように、有意差検定する調査対象の数kが2の場合は、ウィルコクソンの符号付順位検定を用い、実施の形態1の図17に示す方法と同様な方法で検定する。この際、有意差検定する調査対象グループとは別の調査対象グループの中の各調査対象が実施の形態1における各評価指標に相当する。有意差検定する調査対象の数kが1の場合は、統計計算せず、比較する調査対象がないために有意差があるとは言えないとする判定をする。またこのとき、後述する処理により結果を表示する際に、例えば「比較する調査対象がないため結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。また、フリードマン検定で有意差があった場合、実施の形態1と同様に、有意となった調査対象グループの中の任意の2つ調査対象間の有意差検定をウィルコクソンの符号付順位検定を用いてさらに行ってもよい。
Note that, as described above, when the number of survey targets k to be significant is 2, the Wilcoxon signed rank test is used and the test is performed in the same manner as the method shown in FIG. At this time, each survey target in a survey target group different from the survey target group subjected to the significant difference test corresponds to each evaluation index in the first embodiment. When the number k of the investigation objects to be tested for significance is 1, the statistical calculation is not performed, and it is determined that there is no significant difference because there is no investigation object to be compared. At this time, when the result is displayed by the processing described later, for example, a message such as “There is no investigation target to be compared, and it cannot be said that there is a significant difference as a result” may be added. If there is a significant difference in the Friedman test, the Wilcoxon signed rank test is used as a significant difference test between any two survey subjects in the survey target group that becomes significant as in the first embodiment. You may go further.
一方、クラスカル・ウォリス検定またはウィルコクソン検定を行う場合は、上述の実施の形態1の図6、図7に示した統計処理と同様の処理により有意差検定を行う。すなわち、3つ以上の調査対象について比較する場合は、図7のステップS3219以下で行うクラスカル・ウォリス検定と同様の処理により有意差検定を行う。また、2つの調査対象ついては、図6のステップS3202以下で行うウィルコクソンの符号付順位検定と同様の処理により有意差検定を行う。なお、2種類の調査対象グループに対して同様の統計計算を行う場合は、それぞれのグループ毎に行う。
On the other hand, when the Kruskal-Wallis test or the Wilcoxon test is performed, the significance test is performed by the same processing as the statistical processing shown in FIGS. 6 and 7 of the first embodiment. That is, when comparing three or more survey targets, a significant difference test is performed by the same process as the Kruskal-Wallis test performed in step S3219 and subsequent steps in FIG. For the two survey targets, a significant difference test is performed by the same process as the Wilcoxon signed rank test performed in step S3202 and subsequent steps in FIG. In addition, when performing the same statistical calculation for the two types of survey target groups, it is performed for each group.
また、調査対象の数kが1であった場合は、統計計算せず、比較する調査対象がないために有意差があるとは言えないとする判定をする。またこのとき、後述する処理により結果を表示する際に、例えば「比較する調査対象がなく結果的に有意差があるとは言えません」等のメッセージを付加するようにしてもよい。クラスカル・ウォリス検定で調査対象が有意となった場合は、さらに有意となった調査対象グループの中の2つの事業者間(例えば販売者AとBの間、または利用者aとbの間)の統計的有意差をウィルコクソン検定で判定することも可能である。これにより、実施の形態1で説明したような、フリードマン検定後のウィルコクソンの符号付順位検定で得られる結果に相当する情報が得られる。
Also, if the number of survey targets k is 1, statistical calculation is not performed, and it is determined that there is no significant difference because there is no survey target to be compared. At this time, when displaying the result by the processing described later, for example, a message such as “There is no investigation target to be compared and it cannot be said that there is a significant difference as a result” may be added. If the survey target becomes significant by the Kruskal-Wallis test, between the two businesses in the survey target group that became more significant (for example, between sellers A and B, or between users a and b) It is also possible to determine a statistically significant difference by using the Wilcoxon test. As a result, information corresponding to the result obtained by Wilcoxon signed rank test after Friedman test as described in the first embodiment is obtained.
図39は、削除率が閾値を超え、調査対象の数Sが欠損値を全て削除した後のマトリクス表の調査対象の数より多い場合の検定手段の組合せの例を示した図である。ここでは、図32に示した一連の処理によって作成するマトリクス表において、ステップS6205で作成した初期のマトリクス表における行および列の数(調査対象の数)Spと、ステップS6206~S6208の一連の処理によって欠損データのある行および列を削除した後のマトリクス表における調査対象の数Sa、ステップS6209で算出した削除率、およびステップS6210で算出した、所定の下限値以上のデータ数を持つ調査対象の数Sの組み合わせに対して、それぞれ対応する検定の手法を示している。
FIG. 39 is a diagram showing an example of combinations of test means when the deletion rate exceeds the threshold and the number S of survey targets is larger than the number of survey targets in the matrix table after all missing values are deleted. Here, in the matrix table to create a series of processing shown in FIG. 32, the row and column in the initial matrix table created in step S6205 the number (the number of surveyed) S p and a series of steps S6206 ~ S6208 Survey with the number of survey targets S a in the matrix table after deleting rows and columns with missing data by processing, the deletion rate calculated in step S6209, and the number of data greater than or equal to the predetermined lower limit calculated in step S6210 The method of the test corresponding to the combination of the number S of objects is shown.
図39の例では、図32のステップS6209における削除率の閾値を50%とした場合に、マトリクス表での欠損データのある行および列の削除の前後における調査対象の数の組み合わせに対して、対応するクラスカル・ウォリス検定またはウィルコクソン検定を示している。この組合せ情報を定義情報として用いて、図32のステップS6209で削除率が閾値以上となり、かつ、ステップS6211で欠損データのある行および列の削除後のマトリクス表における調査対象の数がSより小さい場合に、クラスカル・ウォリス検定またはウィルコクソン検定のいずれを行うかを判断することもできる。
In the example of FIG. 39, when the threshold value of the deletion rate in step S6209 in FIG. 32 is 50%, for the combination of the number of survey targets before and after deletion of rows and columns with missing data in the matrix table, The corresponding Kruskal-Wallis test or Wilcoxon test is shown. Using this combination information as definition information, the deletion rate is greater than or equal to the threshold in step S6209 in FIG. 32, and the number of survey targets in the matrix table after deletion of rows and columns with missing data is smaller than S in step S6211. In some cases, it can be determined whether to perform Kruskal-Wallis test or Wilcoxon test.
なお、図32のステップS6209~S6211における判定処理を有さず、フリードマン検定およびウィルコクソンの符合付順位検定、またはクラスカル・ウォリス検定およびウィルコクソン検定のそれぞれに専用の処理を行うようにすることも可能である。
Note that the determination processing in steps S6209 to S6211 of FIG. 32 is not provided, and it is also possible to perform dedicated processing for the Friedman test and Wilcoxon signed rank test, or the Kruskal-Wallis test and Wilcoxon test, respectively. is there.
図31に戻り、次に、価値評価サーバ10の評価結果出力部14は、ステップS604で見積依頼を送信した販売者の商品等提供システム20、または販売代行者の販売代行システム21から、商品等の価格や在庫等の情報を含む見積情報を受信し、この情報と、ステップS630での統計計算の結果とに基づいて、調査対象毎に価格と価値(対象の評価指標に基づいて評価された価値)を比較可能な表またはグラフを作成する(S606)。価値については、実施の形態1と同様に、評価データ変換後の値の統計値の順位、評価データ変換前の値の統計値、または評価データ変換後の値の統計値などを用いることができる。
Returning to FIG. 31, next, the evaluation result output unit 14 of the value evaluation server 10 receives the product etc. from the merchandise providing system 20 of the seller or the sales agent sales agent system 21 that transmitted the request for quotation in step S <b> 604. Estimate information including information on the price, inventory, etc., and based on this information and the result of statistical calculation in step S630, the price and value for each survey target (evaluated based on the target evaluation index) A table or graph in which the values can be compared is created (S606). As for the value, as in the first embodiment, the rank of the statistical value of the value after the evaluation data conversion, the statistical value of the value before the conversion of the evaluation data, or the statistical value of the value after the conversion of the evaluation data can be used. .
なお、受信した見積情報に不足情報がある場合、または見積情報を所定時間以内に受信しない場合は、当該見積の送信者(販売者または販売代行者)を含む行または列を、図31のステップS620で作成したマトリクス表から削除し、ステップS630の統計処理を再実施する。その後、ステップS606のグラフ作成を行う。価値評価サーバ10は、このような統計処理の再実施を避けるため、ステップS605での見積情報の受信後に、ステップS620で作成したマトリクス表に含まれ、かつ得られた見積情報の送信者を対象として、ステップS630の統計処理を行うようにしてもよい。
If there is insufficient information in the received estimate information, or if the estimate information is not received within a predetermined time, the row or column including the sender (seller or sales agent) of the estimate is changed to the step of FIG. Delete from the matrix table created in S620, and re-execute the statistical processing in step S630. Then, the graph creation of step S606 is performed. In order to avoid re-execution of such statistical processing, the value evaluation server 10 targets the sender of the estimated information included in the matrix table created in step S620 after receiving the estimated information in step S605. As described above, the statistical processing in step S630 may be performed.
図40は、調査対象毎に価格(見積価格)と価値(対象の評価指標に基づいて評価された価値)との関係を表形式およびグラフで表した例を示した図である。図40(a)では、2種類の調査対象(販売者A~E)および販売代行者(代行者a~e)毎に、それぞれ、見積価格の情報と、評価指標(評価データ変換後の満足度)に基づく順位和の情報(例えば、図38の中段の表に示された順位合計)を表形式で表した例を示している。また、当該表には、図31のステップS630の統計処理により判定された調査対象間の有意差の情報、およびグラフ表示の有無の情報も併記されている。なお、調査対象間で有意差があると判定された場合のみグラフを作成するようにしてもよい。
FIG. 40 is a diagram showing an example of the relationship between the price (estimated price) and the value (value evaluated based on the target evaluation index) for each survey target in a tabular format and a graph. In FIG. 40 (a), for each of the two types of survey subjects (sellers A to E) and sales agents (agents a to e), estimated price information and evaluation indices (satisfaction after conversion of evaluation data) are obtained. This shows an example in which information on the sum of ranks based on (degree) (for example, the rank sum shown in the middle table of FIG. 38) is represented in a table format. The table also includes information on the significant difference between the survey targets determined by the statistical processing in step S630 in FIG. 31 and information on the presence or absence of graph display. Note that the graph may be created only when it is determined that there is a significant difference between the survey targets.
図40(b)では、図40(a)において販売者間で評価指標における有意差があると判定されたため、これについて価格(見積価格)と価値(対象の評価指標(満足度)に基づいて評価された価値)の関係を散布図で表した例を示している。ここでは、見積価格を縦軸とし、評価データ変換後の満足度に基づく順位和の値を横軸としている。なお、2つの調査対象間に有意差がある場合は、2つの調査対象についての散布図を示してもよい。また、2つの調査対象グループについての1つの3次元(例えば見積価格をZ軸、販売者の順位和の値をX軸、販売代行者の順位和の値をY軸)の散布図を示してもよい。
In FIG. 40B, since it is determined that there is a significant difference in evaluation index between sellers in FIG. 40A, this is based on price (estimated price) and value (target evaluation index (satisfaction)). The example shows the relationship of (evaluated value) in a scatter diagram. Here, the estimated price is on the vertical axis, and the value of the sum of ranks based on the satisfaction after the evaluation data conversion is on the horizontal axis. When there is a significant difference between the two survey targets, a scatter diagram for the two survey targets may be shown. In addition, a scatter diagram of one three-dimensional (for example, the estimated price is Z-axis, the seller's rank sum value is the X-axis, the sales agent rank sum value is the Y-axis) for the two survey target groups is shown. Also good.
図31に戻り、次に、価値評価サーバ10の評価結果出力部14は、利用者に提供する統計結果と、これに添付するコメントを含む情報を取りまとめて出力する結果出力処理を行う(S640)。図41は、図31のステップS640の結果出力処理の流れの例について概要を示したフロー図である。評価結果出力部14は、まず、ステップS630の統計処理の結果、もしくはステップS606で作成された表もしくはグラフの情報などを特定し、これらに基づいて、販売者間に評価指標における有意差があるか否かを判定する(S6401)。
Returning to FIG. 31, next, the evaluation result output unit 14 of the value evaluation server 10 performs a result output process in which the statistical result provided to the user and the information including the comment attached thereto are collected and output (S640). . FIG. 41 is a flowchart showing an overview of an example of the flow of the result output process in step S640 of FIG. The evaluation result output unit 14 first identifies the result of the statistical processing in step S630 or the information of the table or graph created in step S606, and based on these, there is a significant difference in evaluation index between sellers. It is determined whether or not (S6401).
ステップS6401で、販売者間に評価指標における有意差がある場合は、価格が安く、順位和の値が小さい、すなわち、満足度が高順位のものが多く評価が高い販売者(図41(b)に示したグラフにおいて左下の領域にプロットされる販売者)を選択するよう推奨するコメントを、予め定義されているものの中から選択する(S6402)。この場合のコメントとしては、例えば、「販売者間に有意差があるため、評価が高くかつ価格の安い、グラフ左下の領域の販売者を選択することをお勧めします」などのメッセージとすることができる。
In step S6401, if there is a significant difference in evaluation index between sellers, the price is low and the value of the rank sum is small, that is, the seller with the highest degree of satisfaction and the highest evaluation (FIG. 41 (b The comment that recommends the selection of sellers plotted in the lower left area in the graph shown in FIG. 6) is selected from those defined in advance (S6402). As a comment in this case, for example, a message such as “It is recommended to select a seller in the lower left area of the graph that is highly evaluated and cheap because there is a significant difference between sellers” be able to.
ステップS6401で、販売者間に評価指標における有意差がない場合は、価格のみによって販売者を選択する(すなわち、見積価格が安い販売者を選択する)よう推奨するコメントを選択する(S6403)。コメントとしては、例えば、「統計的に価値の差はあるとは言えず、安価な販売者を選択することをお勧めします」などのメッセージとすることができる。
In step S6401, if there is no significant difference in evaluation index between sellers, a comment that recommends that a seller be selected only by price (that is, a seller with a low estimated price) is selected (S6403). The comment can be, for example, a message such as “There is no statistical difference in value and it is recommended to select an inexpensive seller”.
その後さらに、上記のステップS6401~S6403と同様な処理により、販売代行者についても、評価指標における有意差の情報に基づいてコメントを選択する(S6404~S6406)。上述した一連の処理により、利用者に提示するコメントが選択されると、図40に示したような表やグラフを含む統計結果の情報、データ不足等により統計計算を行わずに処理された結果の情報、選択されたコメント、および受信した見積情報とを所定のフォーマットに取りまとめて、結果情報として利用者端末30に対して送信・出力し(S6407)、結果出力処理を終了する。
After that, further, a comment is selected for the sales agent on the basis of the information on the significant difference in the evaluation index by the same processing as the above steps S6401 to S6403 (S6404 to S6406). When a comment to be presented to the user is selected by the above-described series of processing, the result of processing without performing statistical calculation due to statistical information including a table or graph as shown in FIG. , The selected comment, and the received estimate information are collected in a predetermined format, and transmitted and output as result information to the user terminal 30 (S6407), and the result output process is terminated.
なお、上述した図41の結果出力処理フローの例では、実施の形態1と異なり、利用者の重視する情報(実施の形態1では、重視する評価指標情報)をコメント選択プロセスに含めていないが、ステップS6401とS6402の間、またはS6404とS6405の間に、利用者の重視する情報を基に判定するステップを加える事ができる。例えば、ステップS6401の後に、販売者の間の有意差を利用者が重視しているか否か判定するステップを付加することができる。重視している場合はステップS6402へ進み、重視していない場合はステップS6403に進めばよい。利用者の重視する情報は、実施の形態1と同様に、図30のS05の初期登録処理で利用者情報登録時に利用者DB102に記憶してもよいし、また結果出力時に重要性に関する情報を要求するプログラム添付して送信し、利用者端末30におけるローカルな処理により当該情報を得てもよい。
In the example of the result output processing flow of FIG. 41 described above, unlike the first embodiment, information emphasized by the user (evaluation index information emphasized in the first embodiment) is not included in the comment selection process. In addition, a step of determining based on information emphasized by the user can be added between steps S6401 and S6402 or between S6404 and S6405. For example, after step S6401, a step of determining whether or not the user attaches importance to a significant difference between sellers can be added. If it is important, the process proceeds to step S6402. If it is not important, the process proceeds to step S6403. As in the first embodiment, the information that is emphasized by the user may be stored in the user DB 102 at the time of user information registration in the initial registration process of S05 in FIG. The requested program may be attached and transmitted, and the information may be obtained by local processing in the user terminal 30.
また、図41の例では、価値評価サーバ10の評価結果出力部14がコメントを選択するものとしているが、実施の形態1と同様に、結果出力処理を実行してコメントを選択するプログラムを、クライアントプログラムとして利用者端末30に送信し、利用者端末30側でローカルに処理を行うようにしてもよい。
In the example of FIG. 41, the evaluation result output unit 14 of the value evaluation server 10 selects a comment. However, as in the first embodiment, a program for executing a result output process and selecting a comment is It may be transmitted to the user terminal 30 as a client program and processed locally on the user terminal 30 side.
また、実施の形態1と同様に、上記の結果出力処理によって選択されたコメントや、結果出力処理を実行してコメントを選択するプログラムを利用者端末30に対して出力するのではなく、例えば、結果出力処理の判定内容を表現した表を、統計結果とともに利用者端末30に送信するようにしてもよい。図42は、結果出力処理の判定内容を表現した表の例を示した図である。利用者は、このような判定パターンの組み合わせを表形式で表した表と統計結果とを合わせて参照することによっても、販売者もしくは販売代行者の選択基準として推奨される内容を把握することができ、推奨する選択基準の全体像を理解した上でより的確に販売者もしくは販売代行者を選択することが可能となる。
Further, as in the first embodiment, instead of outputting the comment selected by the result output process or the program for selecting the comment by executing the result output process to the user terminal 30, for example, You may make it transmit the table | surface expressing the determination content of the result output process to the user terminal 30 with a statistical result. FIG. 42 is a diagram illustrating an example of a table expressing the determination contents of the result output process. Users can grasp the recommended content as a selection criterion for sellers or sales agents by referring to a combination of such judgment patterns in a tabular format and statistical results. It is possible to select a seller or a sales agent more accurately after understanding the overall picture of recommended selection criteria.
また、実施の形態1と同様に、図41の結果出力処理による場合、および図42の表を利用者に提示する場合のいずれであっても、利用者に対して相対的な価値判断を勧めるコメントを付加してもよい。このようなコメントとしては、例えば、「価値評価データは本来ノンパラメトリックデータであるため、値の差を確からしく表していない場合があり、グラフから読み取れる評価値の間の小さな差異を重視せず相対的な判断をする事をお勧めします」などのメッセージとすることができる。
As in the first embodiment, relative value judgment is recommended to the user regardless of whether the result output process of FIG. 41 is used or the table of FIG. 42 is presented to the user. Comments may be added. An example of such a comment is, “Value evaluation data is inherently non-parametric data, and thus may not accurately represent a difference in values. It is recommended to make a reasonable decision ”.
図31に戻り、利用者端末30は、価値評価サーバ10から出力された統計結果やコメントを含む結果情報を画面表示や音声によって出力することで、利用者に調査対象間の価値評価の結果を参照・確認させる(S607)。このとき、見積対象の商品やサービスの再確認と購入商品等の決定を促すメッセージを表示するようにしてもよい。その後、利用者による見積対象の内容が利用者により修正されているか否かを判定する(S608)。ここで、例えば、利用者が見積依頼の対象商品等以外の商品等を購入商品等として追加するなどの修正を行っている場合は、見積内容の再計算を行い、見積合計金額等を修正する(S609)。
Returning to FIG. 31, the user terminal 30 outputs the result information including the statistical result and the comment output from the value evaluation server 10 by screen display or voice, so that the user can receive the result of the value evaluation between the survey targets. Reference / confirmation is made (S607). At this time, a message prompting reconfirmation of a product or service to be estimated and determination of a purchased product may be displayed. Thereafter, it is determined whether or not the content of the estimation target by the user has been modified by the user (S608). Here, for example, if the user has made corrections such as adding a product other than the target product of the request for quotation as a purchased product, etc., recalculate the estimate contents and correct the estimated total amount, etc. (S609).
具体的には、例えば、図37に示したような販売者の商品等提供システムが作成する見積の例では、右側の「見積外商品」欄の「購入予定数」、「購入予定日時」欄を利用者が追加・修正し、これに対して、利用者端末30が、「小計」や「料金合計」などの欄を再計算する。また、これに伴い、図40に示した利用者に提示する統計結果の表やグラフにおける見積価格の内容を更新してもよい。なお、再計算の処理は、利用者端末30からの再計算の要求を受けた価値評価サーバ10の評価結果出力部14が行ってもよいし、クライアントプログラムや表計算ソフトなどにより利用者端末30側でローカル処理を行ってもよい。
Specifically, for example, in the example of the quotation created by the seller's product provision system as shown in FIG. 37, the “planned purchase number” and “planned purchase date and time” fields in the “unquoted product” field on the right side. The user terminal 30 recalculates the fields such as “subtotal” and “total charge”. Accordingly, the contents of the estimated price in the statistical result table or graph presented to the user shown in FIG. 40 may be updated. The recalculation process may be performed by the evaluation result output unit 14 of the value evaluation server 10 that has received a recalculation request from the user terminal 30, or the user terminal 30 may be executed by a client program or spreadsheet software. Local processing may be performed on the side.
なお、例えば見積外商品の購入予定日時は、見積依頼商品の購入予定日時以降の日時を受付け、見積依頼商品の購入予定日時と同一でない場合は、利用者DB102の見積依頼スケジュールに一時的に記憶し、購入予定日時の所定時間前に臨時の自動見積依頼処理を起動するようにしてもよい。このとき、対象となる見積依頼商品情報も利用者DB102の見積依頼商品リストに一時的に記憶し、当該日時と関連付けておく。臨時の自動見積依頼処理起動後は、この一時的記憶情報を利用者DB102から消去する。
For example, the estimated purchase date and time of the unquoted product accepts the date and time after the estimated purchase date and time of the estimate request product, and if it is not the same as the estimated purchase date and time of the estimate request product, it is temporarily stored in the estimate request schedule of the user DB 102. Then, a temporary automatic quotation request process may be activated a predetermined time before the scheduled purchase date and time. At this time, target quotation request commodity information is also temporarily stored in the quotation request commodity list of the user DB 102 and associated with the date and time. After the temporary automatic quotation request process is activated, the temporary storage information is deleted from the user DB 102.
図31に戻り、ステップS608で、利用者による見積対象の内容に対する修正がない場合は、利用者は、最終的な見積内容や、価値評価サーバ10による統計結果と選択基準を推奨するコメントの内容等を参照して、商品等を購入する販売者または販売代行サービスを依頼する販売代行者を決定する(S610)。
Returning to FIG. 31, in step S <b> 608, if there is no correction to the content of the estimation target by the user, the user can determine the final estimation content or the content of the comment recommending the statistical result and selection criteria by the value evaluation server 10. The sales agent who purchases the merchandise or the like or requests the sales agent service is determined (S610).
[処理フロー(評価履歴情報記録処理)]
図30のステップS07の評価履歴情報記録処理の処理フローは、実施の形態1の図26に示した処理フローと概ね同じである。すなわち、事前に、図31のステップS610において、利用者が、価値評価サーバ10によって出力された、販売者と販売代行者についての価値と価格の関係および販売者と販売代行者を選択する際の推奨方法の情報などを、利用者端末30を介して参照・確認し、販売者と販売代行者の組み合わせを選択するとともに、購入する商品等を決定する。 [Processing flow (evaluation history information recording process)]
The processing flow of the evaluation history information recording process in step S07 of FIG. 30 is substantially the same as the processing flow shown in FIG. 26 of the first embodiment. That is, in step S610 of FIG. 31, the user selects the relationship between the value and price of the seller and the sales agent and the seller and the sales agent that are output by thevalue evaluation server 10 in advance. Information on recommended methods and the like are referred to and confirmed via the user terminal 30, and a combination of a seller and a sales agent is selected and a product to be purchased is determined.
図30のステップS07の評価履歴情報記録処理の処理フローは、実施の形態1の図26に示した処理フローと概ね同じである。すなわち、事前に、図31のステップS610において、利用者が、価値評価サーバ10によって出力された、販売者と販売代行者についての価値と価格の関係および販売者と販売代行者を選択する際の推奨方法の情報などを、利用者端末30を介して参照・確認し、販売者と販売代行者の組み合わせを選択するとともに、購入する商品等を決定する。 [Processing flow (evaluation history information recording process)]
The processing flow of the evaluation history information recording process in step S07 of FIG. 30 is substantially the same as the processing flow shown in FIG. 26 of the first embodiment. That is, in step S610 of FIG. 31, the user selects the relationship between the value and price of the seller and the sales agent and the seller and the sales agent that are output by the
その後、利用者は、利用者端末30により、購入を決定した商品等について、インターネットバンキングやクレジットカード、電子マネー等の所定の方法で決済を行うとともに、商品の送付先等の個人情報や、選択したオプション等、決済に関する情報等の必要情報を入力し、利用者端末30は、選択された販売者や販売代行者、決定された商品等に関するこれらの購入決済情報を、価値評価サーバ10に送信する(S401)。
After that, the user uses the user terminal 30 to make a payment for the product, etc., for which purchase has been decided by a predetermined method such as Internet banking, credit card, electronic money, etc. The user terminal 30 inputs necessary information such as information relating to payment, such as the option that has been selected, and transmits the purchase payment information related to the selected seller, sales agent, and the determined product to the value evaluation server 10. (S401).
購入決済情報を受信した価値評価サーバ10は、当該購入決済情報の複製を、利用者に選択された販売者の商品等提供システム20、および選択された販売代行者の販売代行システム21に転送する(S402)。購入決済情報を受信した商品等提供システム20および販売代行システム21は、受信した購入決済情報の内容に基づいて対象の商品等について販売および決済処理を行い、販売決済情報を含む処理結果を価値評価サーバ10に送信する(S403)。販売決済情報には、例えば、対象の商品等の内容、販売者および販売代行者の情報、販売金額、購入した利用者の情報などが含まれる。
Upon receiving the purchase settlement information, the value evaluation server 10 transfers a copy of the purchase settlement information to the merchandise provision system 20 of the seller selected by the user and the sales agency system 21 of the selected sales agent. (S402). The product provision system 20 and the sales agent system 21 that have received the purchase settlement information perform sales and settlement processing on the target product based on the contents of the received purchase settlement information, and value evaluation is performed on the processing result including the sales settlement information. It transmits to the server 10 (S403). The sales settlement information includes, for example, the contents of the target product, information on the seller and the sales agent, the sales amount, and information on the user who has purchased.
対象の販売者の商品等提供システム20および対象の販売代行者の販売代行システム21の双方から販売決済情報を受信した価値評価サーバ10は、当該販売決済情報と、ステップS402で受信した購入決済情報について、対象の商品等や価格、その他の販売条件が同一であることを確認する。さらに、アンケート処理部15によって、アンケートDB105から対象の販売者と販売代行者(もしくはこれらが販売する商品等)に対する評価を入力するためのアンケートの情報を特定して抽出する(S404)。このアンケートは、例えば、実施の形態1の図27の例に示したようなものに、販売代行者に係る質問項目を追加したものとすることができる。なお、アンケートには、販売者、販売代行者、または商品等の種別に関連付けた複数の質問を備えていることが望ましい。
The value evaluation server 10 that has received the sales settlement information from both the merchandise providing system 20 of the target seller and the sales agent system 21 of the target sales agent, the sales settlement information and the purchase settlement information received in step S402. Confirm that the target product, price, and other sales conditions are the same. Further, the questionnaire processing unit 15 specifies and extracts information on a questionnaire for inputting evaluations on the target seller and sales agent (or products sold by them) from the questionnaire DB 105 (S404). This questionnaire can be obtained by adding a question item related to a sales agent to the one shown in the example of FIG. 27 of the first embodiment, for example. The questionnaire preferably includes a plurality of questions associated with the type of seller, sales agent, product, or the like.
その後、アンケート処理部15は、抽出したアンケートの情報と、商品等提供システム20および販売代行システム21から受信した販売決済情報を利用者端末30に送信する(S405)。送信する情報には、アンケートの入力方法等に関するヘルプ情報を含んでいてもよい。利用者端末30が、これらの情報を受信して利用者に対して出力することで、利用者は、当該情報に従って販売代行者から購入した商品等が届けられた後に、対象の販売者や販売代行者、購入した商品等に対する評価をアンケートに入力することができる。
Thereafter, the questionnaire processing unit 15 transmits the extracted questionnaire information and the sales settlement information received from the product providing system 20 and the sales agent system 21 to the user terminal 30 (S405). The information to be transmitted may include help information related to a questionnaire input method and the like. The user terminal 30 receives the information and outputs it to the user, so that the user can receive the product or the like purchased from the sales agent according to the information, Evaluations for agents, purchased products, etc. can be entered into the questionnaire.
入力されたアンケートの情報は、利用者端末30から価値評価サーバ10に送信される(S406)。アンケートの入力結果を受信した価値評価サーバ10は、アンケート処理部15により、アンケートの入力内容を抽出し、対象の販売者や販売代行者、購入した商品等に対する評価情報として、これらに関連付けて評価履歴DB104に記録する(S407)。なお、アンケート処理部15は、ステップS405でのアンケートの送信から所定の期間が経過してもアンケートの入力結果を受信できなかった場合は、利用者端末30に対して再度アンケートを送信するなどにより督促を行ってもよい。
The inputted questionnaire information is transmitted from the user terminal 30 to the value evaluation server 10 (S406). Upon receiving the questionnaire input result, the value evaluation server 10 extracts the contents of the questionnaire input by the questionnaire processing unit 15 and evaluates it as evaluation information for the target seller, sales agent, purchased product, etc. Record in the history DB 104 (S407). The questionnaire processing unit 15 transmits the questionnaire again to the user terminal 30 when the questionnaire input result cannot be received even after a predetermined period of time has elapsed since the transmission of the questionnaire in step S405. You may ask for a reminder.
なお、実施の形態1と同様に、価値評価サーバ10と利用者(利用者端末30)との間のアンケートの情報の授受については種々の方法をとることができる。例えば、上述した処理フローの通りに、各評価指標に対して評価を行うための質問内容と回答欄等が記載されたアンケートファイルを価値評価サーバ10から利用者端末30に送信し、利用者がこれに対して評価を入力した上で、当該ファイルを価値評価サーバ10に返信するように構成することができる。
As in the first embodiment, various methods can be used for exchanging questionnaire information between the value evaluation server 10 and the user (user terminal 30). For example, as in the processing flow described above, a questionnaire file in which the contents of a question and an answer column for evaluating each evaluation index are described is transmitted from the value evaluation server 10 to the user terminal 30, and the user On the other hand, after inputting an evaluation, the file can be configured to be returned to the value evaluation server 10.
また、利用者端末30を介した利用者からのアンケートの入力要求に対して、質問内容を利用者端末30上の図示しないWebブラウザに表示し、入力された回答のデータを受信するようなHTMLファイル等としてアンケート情報を構成してもよい。また、電話やFAX、郵送等によりアンケートを実施し、回答内容をオペレータ等が価値評価サーバ10の評価履歴DB104に入力するような構成であってもよい。
In addition, in response to a questionnaire input request from the user via the user terminal 30, an HTML that displays the contents of the question on a web browser (not shown) on the user terminal 30 and receives input answer data The questionnaire information may be configured as a file or the like. Further, a configuration may be adopted in which a questionnaire is conducted by telephone, FAX, mail, etc., and an answer content is input to the evaluation history DB 104 of the value evaluation server 10 by an operator or the like.
本実施の形態では、2種類の調査対象グループ(販売者グループおよび販売代行者グループ)が価値の評価に関係するケースについて、主にフリードマン検定またはウィルコクソンの符号付順位検定を用いて有意差を判定する場合について説明したが、それぞれの調査対象グループが価値の評価に単独で関係するケースについては、フリードマン検定に代えてクラスカル・ウォリス検定を、またウィルコクソンの符号付順位検定に代えてウィルコクソン検定を用いて有意差を判定することができる。
In this embodiment, significant differences are determined using the Friedman test or Wilcoxon signed rank test mainly in cases where two types of survey target groups (seller group and sales agent group) are related to value evaluation. However, in cases where each surveyed group is solely involved in value assessment, Kruskal-Wallis test is used instead of Friedman test, and Wilcoxon test is used instead of Wilcoxon signed rank test. Significant difference can be determined.
例えば、インターネットオークションで、複数の販売者と複数の利用者が存在し、両者それぞれが取引を行なった相手方を評価するようなケース(この場合、販売者グループと利用者グループの2種類が調査対象グループとなり、実際には両者が価値の評価に関係する)では、ほとんどの利用者がごく一部の販売者としか取引を行わない状況が生じる。この場合、フリードマン検定では、2種類の調査対象グループに関して、図32のステップS6205で作成されるマトリクス表の欠損データが多くなり、図32のステップS6206~S6208の処理により欠損データを含む行および列を削除した結果のマトリクス表では調査対象の数が大きく減り、目的としていた比較ができない場合も生じ得る。
For example, in an Internet auction, there are a plurality of sellers and a plurality of users, and each of them evaluates the other party with whom the transactions were conducted (in this case, two types of seller groups and user groups are subject to investigation) In a group, where both parties are actually involved in value evaluation), there will be situations where most users will only deal with a small number of sellers. In this case, in the Friedman test, the missing data in the matrix table created in step S6205 in FIG. 32 increases for the two types of survey target groups, and the rows and columns containing the missing data are obtained by the processing in steps S6206 to S6208 in FIG. In the matrix table as a result of deleting, the number of investigation objects is greatly reduced, and the intended comparison may not be possible.
一方、クラスカル・ウォリス検定では、価値の評価に関係する調査対象グループの数を1とするため、2種類の調査対象グループに関するマトリクス表を必要とせず、従って、調査対象の数を減らすことなく有意差を検定することができる。例えば、複数の販売者それぞれに対して各利用者が評価した情報を、所定の数だけランダム抽出して順位付けし、統計計算することで、販売者間に統計的有意差があるか否かを判定することができる。また、同様の計算を各利用者についても行うことで、利用者間の有意差を判定することもできる。なお、計算に必要なデータ数等の条件は実施の形態1の記載と同様である。
On the other hand, in the Kruskal-Wallis test, the number of survey target groups related to the evaluation of value is set to 1, so there is no need for a matrix table for two types of survey target groups, and therefore significant without reducing the number of survey targets. The difference can be tested. For example, whether or not there is a statistically significant difference between sellers by randomly extracting and ranking a predetermined number of information evaluated by each user for each of a plurality of sellers and performing statistical calculations Can be determined. Further, by performing the same calculation for each user, a significant difference between users can be determined. The conditions such as the number of data necessary for the calculation are the same as those described in the first embodiment.
なお、上述した本実施の形態の例のように、2つの事業者(販売者および販売代行者)が相互に評価指標の値に影響を与えるような状況においてクラスカル・ウォリス検定またはウィルコクソン検定を用いると、マトリクス表における調査対象間(2つの事業者間)の組み合せ毎に得られる評価データを統計計算することができず、従って、統計的精度はフリードマン検定またはウィルコクソンの符号付順位検定に比べて劣ることになる。
Note that the Kruskal-Wallis test or the Wilcoxon test is used in a situation where the two companies (the seller and the sales agent) mutually affect the value of the evaluation index as in the example of the present embodiment described above. And the evaluation data obtained for each combination of survey targets (between two operators) in the matrix table cannot be statistically calculated. Therefore, the statistical accuracy is compared to the Friedman test or Wilcoxon signed rank test. It will be inferior.
<実施の形態3>
上述した実施の形態1および実施の形態2で用いる統計計算を含む一般的な統計計算においては、統計計算に用いるサンプルが母集団を的確に代表しているものであることが前提となっている。しかし、価値評価サーバ10の評価履歴DB104に蓄積された評価履歴情報から抽出された評価データのサンプルが必ずしも的確に母集団を代表していない場合も考えられる。 <Embodiment 3>
In general statistical calculations including the statistical calculation used in the first embodiment and the second embodiment described above, it is assumed that the sample used for the statistical calculation accurately represents the population. . However, there may be a case where the sample of evaluation data extracted from the evaluation history information accumulated in theevaluation history DB 104 of the value evaluation server 10 does not necessarily accurately represent the population.
上述した実施の形態1および実施の形態2で用いる統計計算を含む一般的な統計計算においては、統計計算に用いるサンプルが母集団を的確に代表しているものであることが前提となっている。しかし、価値評価サーバ10の評価履歴DB104に蓄積された評価履歴情報から抽出された評価データのサンプルが必ずしも的確に母集団を代表していない場合も考えられる。 <
In general statistical calculations including the statistical calculation used in the first embodiment and the second embodiment described above, it is assumed that the sample used for the statistical calculation accurately represents the population. . However, there may be a case where the sample of evaluation data extracted from the evaluation history information accumulated in the
そこで、本発明の実施の形態3である価値評価支援システムは、実施の形態1もしくは実施の形態2の価値評価支援システム1と同様な構成、機能を有しつつ、さらに、統計計算に用いる評価データの性質と統計計算に係る情報との組み合わせから、統計計算の結果に対する適切な補足説明を選択し、利用者端末30を介して出力し通知する機能を有する。
Therefore, the value evaluation support system according to the third embodiment of the present invention has the same configuration and function as the value evaluation support system 1 according to the first or second embodiment, and further uses evaluation for statistical calculation. It has a function of selecting an appropriate supplementary explanation for the result of the statistical calculation from the combination of the property of the data and the information related to the statistical calculation, and outputting and notifying it via the user terminal 30.
この補足説明は、例えば、価値評価サーバ10の評価結果出力部14が処理結果を利用者端末30に対して出力する際などに合わせて出力することができる。または、このような処理を行うクライアントプログラムを利用者端末30に送信し、利用者端末30側でのローカル処理により適切な補足説明を選択して表示するようにしてもよい。これにより、利用者は、統計計算に対する知識がない場合でも、価値評価サーバ10により出力された統計結果の信頼性の程度について容易かつ詳細に理解することができる。
This supplementary explanation can be output when the evaluation result output unit 14 of the value evaluation server 10 outputs the processing result to the user terminal 30, for example. Alternatively, a client program that performs such processing may be transmitted to the user terminal 30 and an appropriate supplementary explanation may be selected and displayed by local processing on the user terminal 30 side. Thereby, even when there is no knowledge about statistical calculation, the user can understand easily and in detail about the degree of reliability of the statistical result output by the value evaluation server 10.
図43~図44は、統計計算に用いる評価データの性質と統計計算情報との組み合わせに対応する補足説明の内容を保持する補足説明設定表の例を示した図である。図43は、補足説明設定表のうち、複数の調査対象(調査対象A、B、…)毎の評価データの性質および統計計算情報の組み合わせを定義した部分の例を示した図である。表において、各調査対象における評価データの性質は、図示するように、例えば、評価データのサンプル数、異常値数、取得期間、評価者数などの項目で定義される。
43 to 44 are diagrams showing examples of supplementary explanation setting tables that hold supplementary explanation contents corresponding to combinations of properties of evaluation data used for statistical calculation and statistical calculation information. FIG. 43 is a diagram showing an example of a part in the supplementary explanation setting table that defines the property of the evaluation data and the combination of statistical calculation information for each of a plurality of investigation objects (survey objects A, B,...). In the table, the nature of the evaluation data in each survey target is defined by items such as the number of samples of evaluation data, the number of abnormal values, the acquisition period, the number of evaluators, as shown in the figure.
ここで、異常値数とは、例えば、所定の閾値(例えば、評価データの平均値±4σ等)の範囲外にある評価データの数を示す。また、評価者数とは、例えば、評価指標について評価した(評価データを提供した)人数を示す。上述した実施の形態1および実施の形態2では、当該評価データを取得する基礎となったアンケートに回答を記入した記入者の数に相当する。また取得期間とは、記入者がアンケートに記入した記入日の期間を示す。
Here, the number of abnormal values indicates, for example, the number of evaluation data outside the range of a predetermined threshold (for example, average value of evaluation data ± 4σ, etc.). The number of evaluators indicates, for example, the number of persons who have evaluated the evaluation index (provided evaluation data). In the first embodiment and the second embodiment described above, this corresponds to the number of writers who have filled in an answer to the questionnaire that is the basis for obtaining the evaluation data. The term “acquisition period” indicates the period of the entry date entered by the entrant in the questionnaire.
図43に示すように、統計計算に用いる評価データの性質は、調査対象毎に定義される。ここで、例えば、1つの調査対象(例えば調査対象A)に含まれる評価データが、複数の評価指標または他の調査対象との組み合わせによって決定される値である場合がある。この場合は、対象の評価データについて、例えば、他の評価指標または他の調査対象との組み合わせ毎に値を比較し、統計計算の精度を最も悪化させるものを用いるものとする。
43. As shown in FIG. 43, the nature of evaluation data used for statistical calculation is defined for each survey target. Here, for example, the evaluation data included in one survey target (for example, survey target A) may be a value determined by a combination of a plurality of evaluation indexes or other survey targets. In this case, for the target evaluation data, for example, a value that compares the values for each combination with another evaluation index or another survey target and that most deteriorates the accuracy of statistical calculation is used.
具体的には、例えばサンプル数は、調査対象Aの持つ複数の組み合わせのうち、データ数が最も少ない組み合わせにおけるデータ数を用いる。同様に、異常値数は、調査対象Aの持つ複数の組み合わせのうち、異常値数が最も多い組み合わせにおける異常値数を用いる。同様に、取得期間については、調査対象Aの持つ複数の組み合わせのうち、データ取得期間が最も短い組み合わせにおける取得期間を用いる。同様に、評価者数は、調査対象Aの持つ複数の組み合わせのうち、評価者数が最も少ない組み合わせにおける評価者数を用いる。
Specifically, for example, the number of samples is the number of data in the combination with the smallest number of data among the plurality of combinations of the survey target A. Similarly, as the number of abnormal values, the number of abnormal values in the combination having the largest number of abnormal values among a plurality of combinations of the investigation target A is used. Similarly, for the acquisition period, the acquisition period in the combination having the shortest data acquisition period among the plurality of combinations of the survey target A is used. Similarly, the number of evaluators uses the number of evaluators in the combination having the smallest number of evaluators among the plurality of combinations of the survey target A.
また、統計計算情報は、統計計算に用いる値や条件の情報であり、図示するように、例えば、有意水準、検定方法、P値範囲、平均順位、近似分布などの項目で定義される。ここで、P値は、実施の形態1において前述したように、統計計算において各種の検定表または分布表を用いる際に、有意点(限界値)を求めるタイプのものではなく、P値(有意確率)を求めるタイプの検定表または分布表を用いて特定される数値である。例えば、P値を求めるタイプのフリードマン検定表を用いて、FR量と調査対象の数kおよび有意な評価指標の数mからP値を特定する。または、P値を求めるタイプのカイ二乗分布表を用いて、FR量と自由度φからP値を特定する。なお、図43の例では、P値の範囲を百分率で示している。
Statistic calculation information is information on values and conditions used for statistical calculation, and is defined by items such as significance level, test method, P value range, average rank, approximate distribution, as shown in the figure. Here, as described above in the first embodiment, the P value is not a type for obtaining a significant point (limit value) when using various test tables or distribution tables in statistical calculation, but P value (significant). It is a numerical value specified using a test table or a distribution table of a type for obtaining a probability. For example, the P value is specified from the FR amount, the number k of survey targets, and the number m of significant evaluation indexes using a Friedman test table of a type for obtaining the P value. Alternatively, the P value is specified from the FR amount and the degree of freedom φ using a chi-square distribution table of a type for obtaining the P value. In the example of FIG. 43, the range of the P value is shown as a percentage.
また、平均順位は、図6のステップS3214等で、評価データに同一値または同一順位のものがある場合に用いた平均順位について、その使用の有無の情報を示す。また、近似分布は、例えば、カイ二乗分布や正規分布などの、データ数が多い場合や平均順位を用いる場合に利用する近似分布について、その使用の有無の情報を示す。なお、図43の表において、調査対象毎の評価データの性質および統計計算情報の組み合わせのパターン毎に1から順にNo.を割り当てて識別可能としている。
Further, the average rank indicates information on whether or not the average rank used when the evaluation data has the same value or the same rank in step S3214 in FIG. In addition, the approximate distribution indicates information on whether or not the approximate distribution used when the number of data is large or the average ranking is used, such as a chi-square distribution or a normal distribution. In the table of FIG. 43, No. 1 is sequentially applied from 1 for each combination pattern of the evaluation data property and statistical calculation information for each survey target. Can be identified.
図44は、補足説明設定表のうち、調査対象毎の評価データの性質および統計計算情報の組み合わせに対応する補足説明の内容を定義した部分の例を示した図である。図44の表では、図43における調査対象毎の評価データの性質および統計計算情報の組み合わせのパターンを識別する各No.に対して、利用者に提示するコメント、結論、アドバイスなどの補足説明の内容を定義している。図44の表に示すように、各補足説明の内容を説明文ではなく記号(C1、D1、A1など)で表し、具体的な説明文については別のテーブルやデータとして保持するようにしてもよい。図45は、補足説明の説明文のパターンを定義した表の例を示した図である。
FIG. 44 is a diagram showing an example of a part in the supplementary explanation setting table that defines the contents of the supplementary explanation corresponding to the combination of the evaluation data property and the statistical calculation information for each survey target. In the table of FIG. 44, each No. identifying the nature of the evaluation data and the combination pattern of the statistical calculation information for each survey object in FIG. In contrast, the contents of supplementary explanations such as comments, conclusions, and advice to be presented to the user are defined. As shown in the table of FIG. 44, the contents of each supplementary explanation are expressed by symbols (C1, D1, A1, etc.) instead of the explanatory text, and the specific explanatory text may be held as another table or data. Good. FIG. 45 is a diagram showing an example of a table defining a pattern of explanatory text for supplementary explanation.
以下では、補足説明を選択し出力する際の処理の流れの例について説明する。まず、上述の実施の形態1または実施の形態2と同様な機能、構成を有する価値評価サーバ10において、評価結果出力部14は、図5のステップS340または図31のステップS640で、図5のステップS320、S330や図31のステップS630での統計計算における統計計算情報と、検定に用いた評価データの性質を特定する。次に、特定した情報に基づいて、図43、図44に示した補足説明設定表、および図45の補足説明の説明文のパターンを定義した表から、補足説明の各項目の内容を抽出する。抽出した補足説明の内容は、図5のステップS340または図31のステップS640において、統計処理の結果等とともに利用者端末30に送信する。
In the following, an example of the flow of processing when selecting and outputting a supplementary explanation will be described. First, in the value evaluation server 10 having the same function and configuration as those of the first embodiment or the second embodiment described above, the evaluation result output unit 14 performs step S340 in FIG. 5 or step S640 in FIG. The statistical calculation information in the statistical calculation in steps S320 and S330 and step S630 in FIG. 31 and the nature of the evaluation data used for the test are specified. Next, based on the specified information, the contents of each item of the supplementary explanation are extracted from the supplementary explanation setting table shown in FIGS. 43 and 44 and the table defining the explanatory text pattern of the supplementary explanation of FIG. . The content of the extracted supplementary explanation is transmitted to the user terminal 30 together with the result of the statistical processing or the like in step S340 of FIG. 5 or step S640 of FIG.
利用者は、図26のステップS401において、購入する商品等を決定する際に、価値評価サーバ10から送信された補足説明におけるコメント、結論、アドバイス等の説明文を利用者端末30を介して参照する。これにより、統計計算の結果の信頼性の程度を理解し、購入の決定をより的確に行うことができる。
In step S401 in FIG. 26, the user refers to the explanatory text such as comments, conclusions, and advice in the supplementary explanation transmitted from the value evaluation server 10 via the user terminal 30 when determining the product to be purchased. To do. This makes it possible to understand the degree of reliability of the statistical calculation results and to make a purchase decision more accurately.
なお、上述した実施の形態2では、販売者に関する検定と販売代行者に関する検定の2種類の検定を行っているので、評価結果出力部14は、それぞれの検定について補足説明の内容を選択し、検定の結果と対応する補足説明の内容とを関連付けて利用者に通知する。これにより、利用者は、補足説明が複数あった場合でも混乱することなく、いずれの検定に対する補足説明であるかを把握することができる。
In the above-described second embodiment, since two types of tests, ie, a test for a seller and a test for a sales agent, are performed, the evaluation result output unit 14 selects the contents of supplementary explanation for each test, The user is notified of the result of the test and the corresponding supplementary explanation. Thereby, the user can grasp | ascertain the supplementary explanation with respect to which test, without being confused even when there are a plurality of supplementary explanations.
また、補足説明を選択する処理は、実施の形態1や実施の形態2における各種の検定に対応させることができる。例えば、ウィルコクソンの符号付順位検定の後に、当該検定で得られた統計計算情報と、当該検定に用いた評価データの性質から、対応する補足説明項目を抽出するようにしてもよい。また、同様に、フリードマン検定や、クラスカル・ウォリス検定、ウィルコクソン検定の後に行ってもよい。さらに、検定が両側検定の場合だけでなく、片側検定の場合でも、統計計算の後に上記と同様の方法で補足説明を選択することができる。
Further, the process of selecting supplementary explanation can be made to correspond to various tests in the first and second embodiments. For example, after Wilcoxon signed rank test, corresponding supplementary explanation items may be extracted from the statistical calculation information obtained by the test and the nature of the evaluation data used for the test. Similarly, it may be performed after the Friedman test, Kruskal-Wallis test, or Wilcoxon test. Furthermore, not only when the test is a two-sided test, but also when the test is a one-sided test, a supplementary explanation can be selected by the same method as described above after the statistical calculation.
また、評価結果出力部14は、補足説明を選択する代わりに、推奨する商品を直接選択する等の処理を行ってもよい。例えば、図45の例における“D8”の補足説明を選択する代わりに、図15(b)に示される価値が最も高く価格が最も安い商品等を特定し、この情報を推奨商品等として利用者端末30に送信してもよい。または、“D8”の補足説明と特定した商品等の情報の両者を利用者端末30に送信してもよい。これにより、統計的に最も価値のある商品等を利用者に通知することができる。また、例えば、図5のステップS340の結果出力処理において、図24のステップS3410またはS3411の処理を行う場合に特定した商品等を利用者に通知することで、利用者に最適な商品等を推奨することができる。
Also, the evaluation result output unit 14 may perform processing such as directly selecting recommended products instead of selecting supplementary explanations. For example, instead of selecting the supplementary explanation of “D8” in the example of FIG. 45, the product having the highest value and the lowest price shown in FIG. 15B is specified, and this information is used as the recommended product. You may transmit to the terminal 30. Alternatively, both the supplementary explanation of “D8” and the information on the specified product may be transmitted to the user terminal 30. Thereby, the user can be notified of the statistically most valuable product or the like. Further, for example, in the result output process of step S340 in FIG. 5, by notifying the user of the product specified when performing the process of step S3410 or S3411 in FIG. 24, the optimal product etc. for the user is recommended. can do.
以上に説明したように、本発明の実施の形態1~3に示した価値評価支援システム1によれば、例えば、実施の形態1に示したように、商品等の価値を示す様々な評価指標の中から、統計的に有意差のある評価指標を利用者に対して提示することで、有意差のない評価指標を商品購入時の判断材料から除外することができる。これにより、利用者が商品等を購入する際の価値の差異の判断を支援し、価値判断力を向上させることができる。
As described above, according to the value evaluation support system 1 described in the first to third embodiments of the present invention, for example, as illustrated in the first embodiment, various evaluation indexes indicating the value of a product or the like. By presenting an evaluation index having a statistically significant difference to the user, it is possible to exclude an evaluation index having no significant difference from the judgment materials at the time of purchasing the product. Thereby, it is possible to support the determination of the difference in value when the user purchases a product or the like, and to improve the value determination power.
このとき、従来技術のようにノンパラメトリックデータをある一定ルールの下でパラメトリックデータである指標や指数に変換して統計計算を行うのではなく、ノンパラメトリックデータを直接統計計算することで、従来技術の問題を解決して統計計算の精度を向上させることができる。また、パラメトリックデータもノンパラメトリックデータとして統計計算することにより、全ての評価指標について統一的な計算方法および判断基準によって評価することができる。従って、必要な全ての評価指標について有意差を判定すれば、商品等の間に存在する価値の差を判断することができる。
At this time, instead of converting the nonparametric data into an index or index that is parametric data under a certain rule as in the prior art, the statistical calculation is performed directly on the nonparametric data. It is possible to improve the accuracy of statistical calculation by solving the above problem. In addition, the parametric data is statistically calculated as non-parametric data, whereby all evaluation indexes can be evaluated by a unified calculation method and criteria. Therefore, if a significant difference is determined for all necessary evaluation indexes, it is possible to determine a difference in value existing between products and the like.
また、統計的に有意差のある評価指標と複数の販売者の組み合わせから、ウィルコクソンの符号付順位検定またはフリードマン検定により有意差を判定することで、販売者間の統計的有意差を判定することができ、販売者の選択を支援するための情報を提供することができる。また、利用者は、利用者の重視する評価指標を価値評価サーバ10に対して示すことで、計算された統計結果との組み合せから、商品等の適切な選択基準の推奨を受けることができる。
In addition, a statistically significant difference between sellers is determined by using a Wilcoxon signed rank test or a Friedman test to determine a significant difference from a combination of a statistically significant evaluation index and multiple sellers. And provide information to support the seller's choice. In addition, the user can receive recommendation of an appropriate selection criterion such as a product from the combination with the calculated statistical result by showing the evaluation index that the user attaches importance to the value evaluation server 10.
また、例えば、実施の形態2に示したように、2種類の事業者(例えば販売者と販売代行者)によって影響を受ける商品等の価値の評価指標(2つの事業者の影響が交絡している評価指標)について、フリードマン検定を乱塊法を用いた二元配置法として用いることで、それぞれの事業者による影響を分離して販売者または販売代行者それぞれの間の統計的有意差を判定する。これにより、それぞれの事業者による影響をより正確・明確かつ容易に判断する事が可能となる。2種類の組合せによる評価指標データが多くの組合せで存在しない場合は、クラスカル・ウォリス検定で有意差判定することで、精度はフリードマン検定に比べ若干劣るものの、より多くの調査対象に対して価値を評価することができ、正確・明確かつ容易に判断することができる。
Further, for example, as shown in the second embodiment, an evaluation index of the value of a product etc. affected by two types of businesses (for example, a seller and a sales agent) (the influence of the two businesses is entangled) Use the Friedman test as a two-way method using the random block method to separate the influence of each business operator and determine the statistically significant difference between each seller or sales agent To do. Thereby, it becomes possible to judge the influence by each operator more accurately, clearly and easily. If the evaluation index data by the two types of combinations do not exist in many combinations, the Kruskal-Wallis test is used to make a significant difference, but the accuracy is slightly inferior to the Friedman test, but the value for more survey subjects It can be evaluated and can be judged accurately, clearly and easily.
また、フリードマン検定またはクラスカル・ウォリス検定で有意となった事業者内の任意の2事業者(例えば販売者AとB)の間に存在する有意差をウィルコクソンの符号付順位検定またはウィルコクソン検定で判定することで、全ての組合せにおける事業者間の有意差をさらに判断することができる。また、利用者は、利用者の重視する事業者の種類を価値評価サーバ10に対して示すことで、計算された統計結果との組み合せから、事業者の選択基準の推奨を受けることができる。
In addition, the significant difference existing between any two operators (for example, sellers A and B) within the operators that became significant by Friedman test or Kruskal Wallis test is determined by Wilcoxon signed rank test or Wilcoxon test. By doing so, the significant difference between the operators in all combinations can be further determined. In addition, the user can receive the recommendation of the operator's selection criteria from the combination with the calculated statistical result by indicating the type of the operator that the user attaches importance to the value evaluation server 10.
また、例えば、実施の形態3に示したように、統計計算の結果に基づいて利用者に対して商品等や事業者の選択基準を推奨する際に、統計計算に用いる評価データの性質と統計計算に係る情報との組み合わせから、統計計算の結果に対する適切な補足説明を選択して通知する。これにより、利用者は、統計計算に対する知識がない場合でも、統計結果の信頼性の程度について容易かつ詳細に理解することができる。さらに、選択された補足説明情報を用いて推奨商品等の特定を行うことで、利用者にとって統計的に最も価値のある、または利用者にとって最適な商品等を推奨することができる。
In addition, for example, as shown in the third embodiment, when recommending selection criteria for a product or a business to a user based on the result of statistical calculation, the properties and statistics of evaluation data used for statistical calculation An appropriate supplementary explanation for the result of the statistical calculation is selected and notified from the combination with the information related to the calculation. Thereby, even when the user has no knowledge of statistical calculation, the user can easily and in detail understand the degree of reliability of the statistical result. Furthermore, by specifying the recommended product etc. using the selected supplementary explanation information, it is possible to recommend a product that is statistically most valuable to the user or optimal for the user.
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
例えば、上記の実施の形態1~3では、電子商取引により商品等の売買を行う場合を例として説明したが、これに限るものではない。例えば、官能評価データのような、データそのものが曖昧な(バラツキが大きい)評価指標や、計測精度が低いためにデータが曖昧となるような評価指標によって価値が表される調査対象について、価値についての統計的な有意差を判定し、利用者に対して価値の判断に係る基準を推奨するようなシステム等に適用することができる。例えば、商品、サービス、ブランド、企業、政党、タレント、キャラクター、マスコット等を調査対象として、その人気度や、支持率、好感度などの曖昧なデータが多い評価指標により評価される価値の調査や予測などを行うシステム等に適用することができる。
For example, in Embodiments 1 to 3 described above, the case where merchandise is bought and sold by electronic commerce has been described as an example. However, the present invention is not limited to this. For example, the value of a survey object whose value is expressed by an evaluation index such as sensory evaluation data where the data itself is ambiguous (large variation) or an evaluation index where data is ambiguous due to low measurement accuracy. Can be applied to a system or the like in which a statistically significant difference is determined and a standard for determining value is recommended to the user. For example, surveys of products, services, brands, companies, political parties, talents, characters, mascots, etc., and surveys on the value evaluated by evaluation indexes with many ambiguous data such as popularity, support rate, and favorableness. The present invention can be applied to a system that performs prediction and the like.
具体的には、ある評価指標について調査対象毎に蓄積した評価データを抽出し、これを順位データに変換した上で統計的な有意差を判定する。ここで、2者間の比較をする場合はウィルコクソン検定を用い、3者以上の場合はクラスカル・ウォリス検定を用いる。また、評価指標(人気度、誠実さ、支持率、好感度等)と調査対象の組み合わせ毎に蓄積された評価データに対して、2者間の比較をする場合はウィルコクソンの符号付順位検定を用い、3者以上の場合はフリードマン検定を用いる。得られた検定結果を用いて、予め設定してあったコメント等を選択し、調査結果を作成する。また、同様な方法で、様々な評価指標に基づく予測として、例えば、CDランキングや土地の価値等についての予測のような場合でも調査対象間の有意差を検定し、予測結果を作成することができる。
More specifically, evaluation data accumulated for each survey target for a certain evaluation index is extracted, converted into rank data, and then statistically significant difference is determined. Here, the Wilcoxon test is used for comparison between two persons, and the Kruskal-Wallis test is used for three or more persons. In addition, when comparing the evaluation data (popularity, honesty, support rate, favorability, etc.) and the evaluation data accumulated for each combination of survey subjects, Wilcoxon's signed rank test is performed. Use Friedman's test for more than 3 persons. Using the obtained test result, a comment or the like set in advance is selected and a survey result is created. In addition, in the same way, as a prediction based on various evaluation indices, for example, even when predicting CD ranking or land value, etc., it is possible to test the significant difference between survey subjects and create a prediction result. it can.
また、他の利用分野としては、例えば、人の感情や感覚、気分等を示す情報を収集・記憶し、順位データに変換して解析または制御に用いることも可能である。例えば、人との対話型ロボットの制御において、人の感情を順位データに変換してロボットのCPUに感情の差を統計計算させ、ロボットがとるべきアクションを選択させるようなシステムに適用することができる。より具体的には、例えば、予め、ある人の話す声の大きさを複数回測定・記録しておき、現時点で複数回測定・記録した声の大きさと比較する事で、人の感情を価値として判断するプログラムを実装することができる。声の大きさ(例えば、評価指標を音量(デシベル)とする)を小さい順に順位付けした順位データに変換し、統計計算することで、声の大きさに有意差がある場合は感情が変化したと判定することができる。判定結果を用い、予め設定しておいたアクションを選択する。
Also, as other fields of use, for example, it is possible to collect and store information indicating human emotions, sensations, moods, etc., and convert them into rank data for use in analysis or control. For example, in the control of an interactive robot with a person, it may be applied to a system that converts a person's emotion into rank data, causes the robot CPU to statistically calculate the difference in emotion, and selects an action to be taken by the robot. it can. More specifically, for example, the loudness of a person's speaking voice is measured and recorded multiple times in advance, and compared with the loudness of the voice measured and recorded multiple times at the present time, the human emotion is valued. Can be implemented as a program. Emotion changes when there is a significant difference in the volume of the voice by converting it into rank data that ranks the voice loudness (for example, the evaluation index is volume (decibel)) in ascending order and performing statistical calculations. Can be determined. Using the determination result, an action set in advance is selected.
この場合、調査対象は、ある人の現在と過去の音声の2種類なので、ウィルコクソン検定を用いることで判定が可能である。なお、感情を示す評価指標として、音量に加えて他の評価指標を複数設ける場合は、これら複数の評価指標と時制(現在または過去)の組み合わせ毎のデータを、ウィルコクソンの符号付順位検定を用いて検定する。また、感覚差についても同様に判定することができる。例えば、ある一定の光、音、振動、電流等を人に与え、反応スピード(人のある部分が動くまでの反応時間)を測定・記録し、現在と過去の順位データの比較をすることで有意差を判定し、有意差がある場合は感覚が変化したと判定することができる。
In this case, since there are two types of subjects, current and past speech of a person, it can be determined by using the Wilcoxon test. When multiple other evaluation indicators are provided in addition to volume as an evaluation indicator indicating emotion, Wilcoxon's signed rank test is used for the data for each combination of these multiple evaluation indicators and tense (current or past). Test. Moreover, it can determine similarly about a sensory difference. For example, by giving a person certain light, sound, vibration, current, etc., measuring and recording the reaction speed (reaction time until a certain part of the person moves), and comparing the current and past ranking data A significant difference is determined. If there is a significant difference, it can be determined that the sense has changed.
なお、ウィルコクソン検定またはウィルコクソンの符号付順位検定を用いる場合は、過去と現在とで有意差があるか否かだけではなく、過去と現在でどちらが有意に強いと言えるかを判定することもできる。具体的には、例えば、現在の声の大きさが過去に比べて強い(または弱い)と判定することができる。この計算は、上述の実施の形態1の図6や図17で説明した計算方法における有意水準αと有意差の判定式を変更することで可能となる。
When using the Wilcoxon test or the Wilcoxon signed rank test, it is possible to determine not only whether there is a significant difference between the past and the present, but which can be said to be significantly stronger between the past and the present. Specifically, for example, it can be determined that the current voice is stronger (or weaker) than the past. This calculation is made possible by changing the determination formula for the significance level α and the significant difference in the calculation method described with reference to FIGS. 6 and 17 of the first embodiment.
例えば、ウィルコクソン検定では、評価データの数nMIN<15の場合、W量が過去のサンプルからなるときはW量≦WL(α)、W量が現在のサンプルからなるときはW量≧WU(α)である場合に、有意水準αで現在の声の方が強いと判定する。また、nMIN≧15の場合または同一値がある場合は、W量が過去のサンプルからなるときはu0量≦{-u(2α)}、W量が現在のサンプルからなるときはu0量≧u(2α)である場合に、有意水準αで現在の声の方が強いと判定する。
For example, in the Wilcoxon test, when the number of evaluation data n MIN <15, W amount ≦ W L (α) when the W amount consists of a past sample, and W amount ≧ W when the W amount consists of the current sample. If U (α), it is determined that the current voice is stronger at the significance level α. Further, n MIN if the case of ≧ 15 or have the same value, the W content is u 0 weight ≦ when consisting of past samples {-u (2α)}, u 0 when the W content consists current sample When the amount ≧ u (2α), it is determined that the current voice is stronger at the significance level α.
一方、ウィルコクソンの符号付順位検定では、差の計算方法を(現在-過去)とすると、N<25の場合で、WS量=WS+量のときはWS量≧tU(α)、WS量=WS-量のときはWS量≦tL(α)である場合に、有意水準αで現在の声の方が強いと判定する。また、N≧25の場合または同一順位がある場合は、u0量≧u(2α)である場合に、有意水準αで現在の声の方が強いと判定する。なお、現在の声の方が弱いか否かの判定についても、現在と過去の情報を入れ替えて同様の統計計算を行うことで、同様な判定方法を用いて判定することができる。なお、ここでの説明はu0量の計算式を、数1式および数8式を用いて行なうことを前提に説明している。
On the other hand, in the Wilcoxon signed rank test, assuming that the difference calculation method is (present-past), when N <25, and when WS amount = WS + amount, WS amount ≧ t U (α), WS amount = In the case of WS-amount, if WS amount ≦ t L (α), it is determined that the current voice is stronger at the significance level α. Further, when N ≧ 25 or when there is the same order, it is determined that the current voice is stronger at the significance level α when u 0 amount ≧ u (2α). Note that whether or not the current voice is weaker can also be determined using the same determination method by exchanging the current and past information and performing the same statistical calculation. The description here is based on the premise that the calculation formula for the u 0 quantity is performed using Formula 1 and Formula 8.
さらに、例えば、不定形な人や物等の画像または映像を解析し、所定の条件に合致するか否かを二者択一で判定するようなプログラムにも適用することができる。例えば、形状が正常な細胞と形状が多少歪んだガン細胞とについて、細胞の直径等の形状を複数の角度から測定・記憶することで、ガン細胞と正常細胞との間に形状によって表される価値の有意差があるか否かを判定することができる。ここでは、例えば、ウィルコクソンの符号付順位検定を用い、有意水準αで細胞に形状差があるか否か(つまり、ガン細胞を形状で見分けることができるか否か)を判定し、予め設定しておいた調査の結論を選択することができる。
Furthermore, for example, the present invention can be applied to a program that analyzes an image or video of an indefinite person or an object and determines whether or not a predetermined condition is met. For example, for cells with normal shape and cancer cells with slightly distorted shape, the shape such as the diameter of the cell is measured and stored from multiple angles, and is expressed by the shape between the cancer cell and the normal cell. It can be determined whether there is a significant difference in value. Here, for example, a Wilcoxon signed rank test is used to determine whether or not there is a difference in shape of the cells at the significance level α (that is, whether or not cancer cells can be distinguished by shape) and set in advance. You can select the conclusions of the survey you have made.
また、例えば、ある人の唇の水平方向の長さについて、過去に複数回測定・記録した長さと、現時点で複数回測定・記録した長さとをそれぞれ順位データに変換して、ウィルコクソン検定を用いて比較する。これにより、現在の唇の水平方向の長さの方が長いか否か(人が微笑んでいるか否か)を判定することができる。なお、調査対象の数(人の数)を複数に拡張する場合は、調査対象(人)・時制(現在か過去か)毎に長さを記録し、組み合わせ毎の長さの平均値を順位データに変換して、ウィルコクソンの符号付順位検定を用いて判定すればよい。これにより、唇の水平方向の長さによって表される価値(複数の人が微笑んでいる程度)の差異を評価し、例えば、喜劇または笑劇等の興行で観客が微笑んでいたか否か(観客に喜んでもらったか否か)を判定することもできる。
Also, for example, for the horizontal length of a person's lips, the length measured and recorded several times in the past and the length measured and recorded several times in the past are converted into rank data, and Wilcoxon test is used. Compare. Thereby, it is possible to determine whether or not the current length of the lips in the horizontal direction is longer (whether or not a person is smiling). In addition, when expanding the number of survey targets (number of people) to multiple, record the length for each survey target (people) and tense (current or past), and rank the average length for each combination. Conversion to data may be performed using Wilcoxon signed rank test. This evaluates the difference in value represented by the horizontal length of the lips (the degree to which multiple people are smiling). For example, whether or not the audience was smiling at a performance such as a comedy or a laugh. It is also possible to determine whether or not you are pleased.
ガン細胞の形状の歪みの程度や、人が微笑んでいる時の唇の水平方向の長さ等は、測定精度の高い画像計測装置を用いても、測定対象そのもののバラツキが大きいため、パラメトリックデータをそのまま統計計算すると判定精度が落ちる場合がある。このようなケースでは、上述した本発明の実施の形態1~3に示したような仕組みを用いて、これらのパラメトリックデータをノンパラメトリックデータである順位データに変換して統計計算を行うことで、合理的で適切な統計的有意差判定をすることができる。
Parametric data such as the degree of distortion of the shape of the cancer cell and the horizontal length of the lips when a person is smiling, even if an image measurement device with high measurement accuracy is used, the measurement object itself varies greatly. If the statistical calculation is performed as it is, the determination accuracy may decrease. In such a case, by using the mechanism as shown in the first to third embodiments of the present invention, by converting these parametric data into rank data that is nonparametric data, statistical calculation is performed. Reasonable and appropriate statistical significance can be determined.
このように、評価指標は商品等の価値を表すことができるものであれば特に限定されず、例えば、名義尺度、順序尺度、間隔尺度、または比例尺度等、各種のものを利用することができる。名義尺度には、例えば、光の三原色である赤青黄の3色があるが、これらは名詞情報であり大小関係を表していない。しかし、例えば波長の長さを基準とすると、青黄赤の順で大小関係が生まれる。例えば、図27のアンケート入力画面の例において、ラジオボタンで、暖房器具(ストーブ)の色を青(3)、黄(2)、赤(1)などと表示することで、“製品色による人に暖かさを感じさせる効果”なる評価指標として、暖房器具の価値評価を行うことができる。
As described above, the evaluation index is not particularly limited as long as it can represent the value of the product or the like. For example, various indicators such as a nominal scale, an order scale, an interval scale, or a proportional scale can be used. . The nominal scale includes, for example, three colors of red, blue, and yellow, which are the three primary colors of light, but these are noun information and do not represent the magnitude relationship. However, for example, when the length of the wavelength is used as a reference, a magnitude relationship is created in the order of blue, yellow, and red. For example, in the example of the questionnaire input screen shown in FIG. 27, the radio button displays the color of the heater (stove) as blue (3), yellow (2), red (1), etc. The evaluation of the value of the heating appliance can be performed as an evaluation index of “the effect of feeling warmth”.
なお、上記の各実施の形態で説明した各処理手順、特に、統計計算に係る処理(例えば、図5のステップS320や図31のステップS630の統計処理、および図5のステップS330の調査対象間有意差判定処理)での処理手順はあくまで一例であり、同一の処理結果を得られるものであれば、一部の処理の順序を適宜入れ替えるなどによる最適化等が可能であることは言うまでもない。
Each processing procedure described in each of the above-described embodiments, particularly processing related to statistical calculation (for example, statistical processing in step S320 in FIG. 5 or step S630 in FIG. 31 and between survey targets in step S330 in FIG. 5). The processing procedure in the (significant difference determination process) is merely an example. Needless to say, as long as the same processing result can be obtained, optimization or the like by appropriately changing the order of some processes is possible.
例えば、順位付け処理である図6のステップS3204、S3208、S3213、および図7のステップS3224、S3228、S3232は、それぞれ同様の処理を行っているため、これらの処理を統合して順序を前に移動することが可能で、例えば、統計処理開始直後のステップS3201の前など、処理が分岐する前に置いて共通で処理するようにしてもよい。なおこの場合、図6のステップS3202および図7のステップS3219では、上述した通り、同一値の判定ではなく、同一順位の判定を行う。同様に、例えば、図16のステップS3305、S3308は、それぞれ同様なFR量計算処理を行うので、これらの処理を統合してステップS3303とS3304の間に置いて共通で処理するようにしてもよい。
For example, steps S3204, S3208, and S3213 in FIG. 6 and steps S3224, S3228, and S3232 in FIG. 7 that are ranking processes are performed in the same manner. For example, before the processing branches, such as before step S3201 immediately after the start of statistical processing, the processing may be performed in common. In this case, in step S3202 of FIG. 6 and step S3219 of FIG. 7, as described above, determination of the same rank is performed instead of determination of the same value. Similarly, for example, steps S3305 and S3308 in FIG. 16 perform the same FR amount calculation processing. Therefore, these processings may be integrated and placed in common between steps S3303 and S3304. .
また、上記の各実施の形態では、価値評価支援システム1は、価値評価サーバ10が価格等の商品等の情報を取得する価格調査処理(例えば図2のステップS02)と、商品等の価値の差を計算する等の価値評価処理(例えば図2のステップS03)の両方の処理を行う構成としているが、これに限るものではない。例えば、価値評価サーバ10は価格調査処理を他のサーバ(図示しない価格調査処理専用サーバ)等に処理させる構成としてもよい。
Further, in each of the above-described embodiments, the value evaluation support system 1 includes a price survey process (for example, step S02 in FIG. 2) in which the value evaluation server 10 acquires information on a product such as a price, and the value of the product etc. Although both of the value evaluation processes (for example, step S03 in FIG. 2) such as calculating the difference are performed, the present invention is not limited to this. For example, the value evaluation server 10 may be configured to cause a price survey process to be performed by another server (price survey process dedicated server not shown).
例えば、価格調査処理専用サーバは、利用者からの要求を受信して価格調査処理を実施し、特定された商品等に関する価値評価情報の算出を価値評価サーバ10に要求する。要求を受信した価値評価サーバ10は、受信した要求情報から対象の商品等を特定し、上述した内容と同様の処理によって価値評価処理を行う。処理結果は、要求を送信した価格調査処理専用サーバにアンケート記入要求を含むアンケート情報と共に返信する。その後、価値評価サーバ10は、利用者がアンケートに回答を記入し送信した情報を受信し、評価履歴DB104に記録して、図2のステップS04の評価履歴情報記録処理を終了する。
For example, the server dedicated to price survey processing receives a request from the user, performs price survey processing, and requests the value evaluation server 10 to calculate value evaluation information regarding the specified product. The value evaluation server 10 that has received the request identifies the target product or the like from the received request information, and performs value evaluation processing by the same processing as described above. The processing result is returned together with the questionnaire information including the questionnaire entry request to the price survey processing dedicated server that transmitted the request. After that, the value evaluation server 10 receives the information that the user wrote in the questionnaire and sent it, records it in the evaluation history DB 104, and ends the evaluation history information recording process in step S04 of FIG.
また、別の構成例としては、商品等提供システム20または販売代行システム21が上記の価格調査専用サーバの機能を併せ持っていてもよいし、さらに価値評価サーバ10の機能をも併せ持ってもよい。また商品等提供システム20、販売代行システム21、および価値評価サーバ10は、それぞれ利用者端末30の機能を併せ持っていてもよい。
Further, as another configuration example, the product etc. providing system 20 or the sales agent system 21 may have the function of the above-described price survey dedicated server, or may further have the function of the value evaluation server 10. Further, the product providing system 20, the sales agent system 21, and the value evaluation server 10 may have the functions of the user terminal 30, respectively.
また、上記の各実施の形態では、統計計算に係る処理において、有意水準を予め設定して、それに対する有意差の有無を判定していたが、有意差有無の判定に代えてP値の大きさなどにより有意差の程度を示してもよい。この場合は、有意差を判定する処理(例えば図6のステップS3206とS3207、ステップS3211とS3212、およびステップS3217とS3218)において、上述した方法でP値を求め、P値が大きいほど有意差が小さいと判定する旨のメッセージとともに利用者端末30に送信してもよい。なお、判定のための閾値に有意水準を用いる場合は、実施の形態1~3と同様な有意差の判定を行うことができる。
Further, in each of the embodiments described above, in the processing related to statistical calculation, a significance level is set in advance and the presence or absence of a significant difference is determined. The degree of significant difference may be indicated depending on the size. In this case, in the process of determining a significant difference (for example, steps S3206 and S3207, steps S3211 and S3212, and steps S3217 and S3218 in FIG. 6), the P value is obtained by the above-described method. You may transmit to the user terminal 30 with the message to the effect of determining with it being small. In the case where a significance level is used as the threshold value for determination, it is possible to determine a significant difference as in the first to third embodiments.
なお、上記の各実施の形態において、販売者は、商品等を販売する能力のある主体であれば特に限定されず、例えば、個人または法人の他に、可能な場合には人以外の主体(コンピュータシステム等)も広く該当し得る。同様に、販売代行者は、利用者に代わって商品等を販売者から受け取り、利用者に届ける役割を負うことのできる主体であれば特に限定されず、例えば、法人または個人の事業者の他に、可能な場合には人以外の主体も広く該当し得る。同様に、利用者は、価値評価の調査を依頼できる能力のある主体であれば特に限定されず、例えば、個人または法人の他に、可能な場合には人以外の主体も広く該当し得る。
In each of the above embodiments, the seller is not particularly limited as long as it is an entity capable of selling products and the like. For example, in addition to an individual or a corporation, if possible, an entity other than a person ( Computer systems etc.) can also be widely applied. Similarly, the sales agent is not particularly limited as long as it is an entity that can receive the product from the seller on behalf of the user and deliver it to the user. In addition, subjects other than humans can be widely applicable when possible. Similarly, the user is not particularly limited as long as it is an entity capable of requesting a value evaluation survey. For example, in addition to an individual or a corporation, an entity other than a person may be widely applicable.
本発明は、適合する商品やサービスが複数存在する場合に、利用者に対して判断資料としてそれぞれの価値の差に係る情報を提供する価値評価支援システムおよび価値評価支援プログラムに利用可能である。
The present invention can be used in a value evaluation support system and a value evaluation support program that provide information related to a difference in value as a judgment material to a user when there are a plurality of compatible products and services.
1…価値評価支援システム、
10…価値評価サーバ、11…商品等情報取得部、12…評価履歴情報取得部、13…統計計算部、14…評価結果出力部、15…アンケート処理部、101…販売者DB(データベース)、102…利用者DB、103…商品等DB、104…評価履歴DB、105…アンケートDB、106…代行者DB、
20(20a~d)…商品等提供システム、201(201a~d)…商品等内容DB、21(21a、b)…販売代行システム、211(211a、b)…代行内容DB、
30…利用者端末、
40…ネットワーク。 1 ... Value evaluation support system,
DESCRIPTION OFSYMBOLS 10 ... Value evaluation server, 11 ... Product etc. information acquisition part, 12 ... Evaluation history information acquisition part, 13 ... Statistical calculation part, 14 ... Evaluation result output part, 15 ... Questionnaire processing part, 101 ... Seller DB (database), 102 ... User DB, 103 ... Product etc. DB, 104 ... Evaluation History DB, 105 ... Questionnaire DB, 106 ... Agent DB,
20 (20a-d): Product etc. providing system, 201 (201a-d) ... Product etc. content DB, 21 (21a, b) ... Sales agency system, 211 (211a, b) ... Agency content DB,
30 ... user terminal,
40 ... Network.
10…価値評価サーバ、11…商品等情報取得部、12…評価履歴情報取得部、13…統計計算部、14…評価結果出力部、15…アンケート処理部、101…販売者DB(データベース)、102…利用者DB、103…商品等DB、104…評価履歴DB、105…アンケートDB、106…代行者DB、
20(20a~d)…商品等提供システム、201(201a~d)…商品等内容DB、21(21a、b)…販売代行システム、211(211a、b)…代行内容DB、
30…利用者端末、
40…ネットワーク。 1 ... Value evaluation support system,
DESCRIPTION OF
20 (20a-d): Product etc. providing system, 201 (201a-d) ... Product etc. content DB, 21 (21a, b) ... Sales agency system, 211 (211a, b) ... Agency content DB,
30 ... user terminal,
40 ... Network.
Claims (20)
- 曖昧なデータを含む1つ以上の評価指標により価値が表される複数の商品またはサービス、もしくはこれらの販売に関わる事業者を含む調査対象について、前記調査対象間の価値の差異についての統計的な有意差を判定して判定結果を出力する価値評価サーバと、
前記価値評価サーバにネットワークを介して接続された、前記事業者が前記商品またはサービスの販売に関わる業務を行うための情報処理システムと、
前記価値評価サーバに前記ネットワークを介して接続された利用者端末とを有する価値評価支援システムであって、
前記価値評価サーバは、
前記利用者端末を介して前記利用者により価値の差異の評価を希望する前記調査対象を特定する条件の入力を受け、前記調査対象に係る前記商品またはサービスを取り扱う前記事業者の前記情報処理システムから前記条件に該当する前記商品またはサービスの価格を含む情報を取得する商品等情報取得部と、
前記調査対象に係る前記評価指標毎の価値の評価結果である評価データを入力させるためのアンケートを前記利用者端末に対して出力し、前記利用者端末を介して入力された前記アンケートの内容から前記評価指標毎に前記評価データを取得して評価履歴データベースに蓄積する評価情報入力部と、
前記商品等情報取得部によって取得された前記調査対象に係る前記商品またはサービス、もしくは前記事業者について、それぞれ前記評価指標毎に前記評価履歴データベースから前記評価データを抽出する評価履歴情報取得部と、
前記評価履歴情報取得部によって抽出された前記評価データに基づいて、所定の手順により順位データを算出し、前記順位データに基づく統計計算により、前記各調査対象間の統計的な有意差を判定する統計計算部と、
前記統計計算部による統計計算の結果の情報と合わせて、前記統計計算部によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、予め定義されている中から選択した、前記各調査対象間の価値の差異についての判断の基準に係る推奨情報を、前記利用者端末に対して出力する評価結果出力部とを有することを特徴とする価値評価支援システム。 Statistical analysis of the difference in value between surveyed items for multiple products or services whose value is expressed by one or more evaluation indicators including ambiguous data, or for businesses that are involved in sales of these products or services. A value evaluation server that determines a significant difference and outputs a determination result;
An information processing system connected to the value evaluation server via a network for the business to perform the business related to the sale of the product or service;
A value evaluation support system having a user terminal connected to the value evaluation server via the network,
The value evaluation server
The information processing system of the business operator that receives the input of conditions for specifying the survey object for which the user wishes to evaluate the difference in value via the user terminal and handles the product or service related to the survey object A product etc. information acquisition unit for acquiring information including the price of the product or service that meets the conditions from,
From the contents of the questionnaire input via the user terminal, a questionnaire for inputting evaluation data that is an evaluation result of the value for each evaluation index related to the survey target is output to the user terminal. An evaluation information input unit that acquires the evaluation data for each evaluation index and accumulates it in an evaluation history database;
An evaluation history information acquisition unit that extracts the evaluation data from the evaluation history database for each evaluation index for the product or service related to the survey target acquired by the product etc. information acquisition unit, or the business operator, and
Based on the evaluation data extracted by the evaluation history information acquisition unit, rank data is calculated according to a predetermined procedure, and a statistically significant difference between the survey targets is determined by statistical calculation based on the rank data. A statistical calculator;
Along with information on the result of statistical calculation by the statistical calculation unit, based on information on statistically significant differences between the respective survey objects determined by the statistical calculation unit, selected from among predefined, A value evaluation support system, comprising: an evaluation result output unit that outputs recommended information related to a criterion for determination of a difference in value between the survey targets to the user terminal. - 請求項1に記載の価値評価支援システムにおいて、
前記統計計算部は、前記評価履歴情報取得部によって抽出された前記評価データに基づいて、前記評価指標毎に、前記調査対象の前記評価データを対象に前記各評価データについて順位付けして第1の順位データを算出し、前記第1の順位データに基づく統計計算により、前記評価指標毎に前記各調査対象間の統計的な有意差を判定する第1の統計処理を実行可能であり、
前記評価結果出力部は、前記統計計算部での前記第1の統計処理における統計計算の結果の情報、および前記第1の統計処理によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、前記推奨情報を選択することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 1,
The statistical calculation unit ranks the evaluation data for each evaluation index based on the evaluation data extracted by the evaluation history information acquisition unit, and ranks the evaluation data for the evaluation target. The first statistical processing for calculating the statistical data based on the first ranking data and determining a statistically significant difference between the respective survey targets for each of the evaluation indices can be executed.
The evaluation result output unit includes information on a statistical calculation result in the first statistical process in the statistical calculation unit, and a statistically significant difference between the respective survey targets determined by the first statistical process. A value evaluation support system, wherein the recommended information is selected based on information. - 請求項2に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部が実行する前記第1の統計処理では、前記調査対象の数が2の場合は、ウィルコクソン検定により統計的な有意差を判定し、前記調査対象の数が3以上の場合は、クラスカル・ウォリス検定により統計的な有意差を判定することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 2,
In the first statistical processing executed by the statistical calculation unit of the value evaluation server, when the number of survey targets is 2, a statistically significant difference is determined by Wilcoxon test, and the number of survey targets is 3 In this case, the value evaluation support system is characterized in that a statistically significant difference is determined by Kruskal-Wallis test. - 請求項2に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部は、さらに、前記第1の統計処理によって前記調査対象間に有意差があると判定された前記評価指標が複数ある場合に、有意差があると判定された前記複数の評価指標を含む前記評価指標毎に、前記調査対象毎の前記評価データから得られる統計値である評価データ統計値、もしくは前記調査対象間の前記評価指標毎の前記評価データ統計値の差について順位付けして第2の順位データを算出し、前記第2の順位データに基づく統計計算により、前記各調査対象間の統計的な有意差を判定する第2の統計処理を実行可能であり、
前記評価結果出力部は、前記統計計算部での前記第1および前記第2の統計処理における統計計算の結果の情報、および前記第1および前記第2の統計処理によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、前記推奨情報を選択することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 2,
The statistical calculation unit of the value evaluation server is further determined to have a significant difference when there are a plurality of the evaluation indexes determined to have a significant difference between the survey targets by the first statistical processing. For each of the evaluation indexes including the plurality of evaluation indexes, an evaluation data statistical value that is a statistical value obtained from the evaluation data for each survey target, or the evaluation data statistical value for each evaluation index between the survey targets It is possible to execute second statistical processing for ranking the differences, calculating second ranking data, and determining a statistically significant difference between the respective survey objects by statistical calculation based on the second ranking data. Yes,
The evaluation result output unit includes information on a result of statistical calculation in the first and second statistical processing in the statistical calculation unit, and each of the investigation objects determined by the first and second statistical processing. A value evaluation support system, wherein the recommended information is selected based on statistically significant difference information. - 請求項4に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部が実行する前記第2の統計処理では、前記調査対象の数が2の場合は、ウィルコクソンの符号付順位検定により統計的な有意差を判定し、前記調査対象の数が3以上の場合は、フリードマン検定により統計的な有意差を判定することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 4,
In the second statistical processing executed by the statistical calculation unit of the value evaluation server, when the number of survey targets is 2, a statistically significant difference is determined by Wilcoxon signed rank test, and the survey targets When the number of is 3 or more, the value evaluation support system characterized by determining a statistically significant difference by Friedman test. - 請求項4に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部は、さらに、前記第2の統計処理において、前記評価データ統計値について順位付けして得た前記第2の順位データに基づく統計計算により、3つ以上の調査対象間に有意差があると判定された場合に、有意差があると判定された任意の2つの前記調査対象間の前記評価指標毎の前記評価データ統計値の差について順位付けして第3の順位データを算出し、前記第3の順位データに基づく統計計算により、前記各調査対象間の統計的な有意差を判定する第3の統計処理を実行可能であり、
前記評価結果出力部は、前記統計計算部での前記第1~第3の統計処理における統計計算の結果の情報、および前記第1~第3の統計処理によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、前記推奨情報を選択することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 4,
The statistical calculation unit of the value evaluation server further performs three or more investigations by statistical calculation based on the second rank data obtained by ranking the evaluation data statistical values in the second statistical processing. When it is determined that there is a significant difference between the subjects, the difference between the evaluation data statistical values for each of the evaluation indexes between any two of the survey subjects determined to have a significant difference is ranked third. And the third statistical processing for determining a statistically significant difference between the respective survey objects can be executed by statistical calculation based on the third ranking data.
The evaluation result output unit includes information on a result of statistical calculation in the first to third statistical processes in the statistical calculation unit, and between each of the investigation objects determined by the first to third statistical processes. A value evaluation support system, wherein the recommended information is selected based on statistically significant information. - 請求項6に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部が実行する前記第3の統計処理では、ウィルコクソンの符号付順位検定により統計的な有意差を判定することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 6,
In the third statistical processing executed by the statistical calculation unit of the value evaluation server, a statistically significant difference is determined by Wilcoxon signed rank test. - 請求項1~7のいずれか1項に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記評価結果出力部は、前記推奨情報を選択する際に、前記利用者端末を介して、前記利用者に対して前記各評価指標についての重要性を示す情報を問い合わせ、前記利用者によって指定された前記各評価指標についての重要性を示す情報、および前記統計計算部によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、前記推奨情報を選択することを特徴とする価値評価支援システム。 The value evaluation support system according to any one of claims 1 to 7,
The evaluation result output unit of the value evaluation server, when selecting the recommended information, inquires the user about information indicating the importance of each evaluation index via the user terminal, The recommended information is selected based on information indicating the importance of each evaluation index designated by the user and information on statistical significance between the survey targets determined by the statistical calculation unit. A value evaluation support system characterized by this. - 請求項1に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記評価履歴情報取得部は、前記利用者端末を介して前記利用者から指定された条件に基づいて選択された、それぞれ1つ以上の前記調査対象からなる2つの調査対象グループの間の前記各調査対象の組み合わせについて、前記評価履歴データベースから前記利用者により指定された前記評価指標に係る前記評価データを抽出し、
前記統計計算部は、前記評価履歴情報取得部によって抽出された前記評価データに基づいて、2つの前記調査対象グループの一方の前記各調査対象について、他方の前記調査対象グループの前記調査対象毎に、前記各調査対象の組み合わせ毎の前記評価データ、または前記評価データから得られる統計値である評価データ統計値について順位付けして第4の順位データを算出し、前記第4の順位データに基づく統計計算により、前記調査対象間の統計的な有意差を判定する第4の統計処理を実行可能であり、
前記評価結果出力部は、前記統計計算部での前記第4の統計処理における統計計算の結果の情報、および前記第4の統計処理によって判定された前記各調査対象間の統計的な有意差の情報に基づいて前記推奨情報を選択し、
前記評価情報入力部は、前記各調査対象の組み合わせに係る前記評価データの入力を受け、前記評価データを評価履歴データベースに蓄積することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 1,
The evaluation history information acquisition unit of the value evaluation server includes two survey target groups each composed of one or more survey targets, which are selected based on conditions specified by the user via the user terminal. Extracting the evaluation data relating to the evaluation index designated by the user from the evaluation history database for the combination of each survey object during
The statistical calculation unit, for each of the survey targets of one of the two survey target groups, for each of the survey targets of the other survey target group based on the evaluation data extracted by the evaluation history information acquisition unit The fourth ranking data is calculated by ranking the evaluation data for each combination of the survey objects or the evaluation data statistical value which is a statistical value obtained from the evaluation data, and is based on the fourth ranking data. By statistical calculation, it is possible to execute a fourth statistical process for determining a statistically significant difference between the survey targets,
The evaluation result output unit includes information on a result of statistical calculation in the fourth statistical process in the statistical calculation unit, and a statistically significant difference between the respective survey targets determined by the fourth statistical process. Select the recommended information based on the information,
The evaluation information input unit receives the input of the evaluation data relating to the combination of the investigation targets, and accumulates the evaluation data in an evaluation history database. - 請求項9に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部が実行する前記第4の統計処理では、価値の評価に関係する前記調査対象グループの数が2で、前記一方の前記調査対象グループにおける前記各調査対象の数が2の場合は、ウィルコクソンの符号付順位検定により統計的な有意差を判定し、価値の評価に関係する前記調査対象グループの数が2で、前記一方の前記調査対象グループにおける前記各調査対象の数が3以上の場合は、フリードマン検定により統計的な有意差を判定し、価値の評価に関係する前記調査対象グループの数が1で、前記調査対象グループにおける前記各調査対象の数が2の場合は、ウィルコクソン検定により統計的な有意差を判定し、価値の評価に関係する前記調査対象グループの数が1で、前記調査対象グループにおける前記各調査対象の数が3以上の場合は、はクラスカル・ウォリス検定により統計的な有意差を判定することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 9,
In the fourth statistical process executed by the statistical calculation unit of the value evaluation server, the number of the survey target groups related to the evaluation of the value is 2, and the number of each survey target in the one survey target group Is 2, statistically significant difference is determined by Wilcoxon signed rank test, the number of the survey target groups related to the evaluation of the value is 2, and each survey target in the one survey target group is Is 3 or more, the statistical significance is determined by Friedman's test, the number of the survey target groups related to the evaluation of the value is 1, and the number of each survey target in the survey target group is 2 In the case of, the statistically significant difference is determined by the Wilcoxon test, and the number of the survey target groups related to the evaluation of the value is 1, Value assessment support system, wherein the number of surveyed if 3 or more, is to determine the statistically significant difference by Kruskal-Wallis test. - 請求項9に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部は、さらに、前記第4の統計処理において、前記評価データ、または前記評価データから得られる統計値について順位付けして得た前記第4の順位データに基づく統計計算により、3つ以上の前記調査対象を持つ前記調査対象グループに有意差があると判定された場合に、有意差があると判定された前記調査対象グループの任意の2つの前記調査対象間の前記評価指標毎の前記評価データについて、または前記評価データから得られる統計値の差について順位付けして第5の順位データを算出し、前記第5の順位データに基づく統計計算により、前記各調査対象間の統計的な有意差を判定する第5の統計処理を実行可能であり、
前記評価結果出力部は、前記統計計算部での前記第4および前記第5の統計処理における統計計算の結果の情報、および前記第4および前記第5の統計処理によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、前記推奨情報を選択することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 9,
The statistical calculation unit of the value evaluation server further includes a statistic based on the fourth rank data obtained by ranking the evaluation data or a statistical value obtained from the evaluation data in the fourth statistical process. When it is determined by calculation that there is a significant difference in the survey target group having three or more survey targets, between any two of the survey targets of the survey target group determined to have a significant difference The fifth rank data is calculated by ranking the evaluation data for each evaluation index or the difference in statistical values obtained from the evaluation data, and the respective surveys are calculated by statistical calculation based on the fifth rank data. A fifth statistical process for determining a statistically significant difference between subjects can be performed;
The evaluation result output unit includes information on a result of statistical calculation in the fourth and fifth statistical processing in the statistical calculation unit, and each of the investigation objects determined by the fourth and fifth statistical processing. A value evaluation support system, wherein the recommended information is selected based on statistically significant difference information. - 請求項11に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部が実行する前記第5の統計処理では、価値の評価に関係する前記調査対象グループの数が2の場合はウィルコクソンの符号付順位検定により統計的な有意差を判定し、価値の評価に関係する前記調査対象グループの数が1の場合はウィルコクソン検定により統計的な有意差を判定することを特徴とする価値評価支援システム。 In the value evaluation support system according to claim 11,
In the fifth statistical process executed by the statistical calculation unit of the value evaluation server, when the number of the investigation target groups related to the value evaluation is 2, a statistically significant difference is determined by Wilcoxon signed rank test. A value evaluation support system characterized in that, when the number of the investigation target groups related to the evaluation of the value is 1, a statistically significant difference is determined by a Wilcoxon test. - 請求項9~12のいずれか1項に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記評価結果出力部は、前記推奨情報を選択する際に、前記利用者端末を介して、前記利用者に対して前記各調査対象グループについての重要性を示す情報を問い合わせ、前記利用者によって指定された前記各調査対象グループについての重要性を示す情報、および前記統計計算部によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、前記推奨情報を選択することを特徴とする価値評価支援システム。 The value evaluation support system according to any one of claims 9 to 12,
The evaluation result output unit of the value evaluation server, when selecting the recommended information, inquires the user for information indicating the importance of each survey target group via the user terminal, Based on the information indicating the importance of each survey target group specified by the user and the statistically significant difference information between the survey targets determined by the statistical calculation unit, the recommended information A value evaluation support system characterized by selection. - 請求項9~13のいずれか1項に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部は、2つの前記調査対象グループの間の前記各調査対象の組み合わせについて、前記評価データ統計値が存在しない欠損データがある場合に、前記調査対象毎の前記欠損データの数と、利用者端末を介して利用者により指定された、2つの前記調査対象グループ内の前記各調査対象についての優先順位の情報に基づいて、前記欠損データを有する前記調査対象を前記各調査対象間の組み合わせから削除し、前記各調査対象間の組み合わせにおいて前記欠損データがなくなった場合に、前記評価データ統計値についての前記第4の順位データを算出するとともに、前記各調査対象間の組み合わせにおいて全ての前記調査対象が削除された場合は前記第4および前記第5の統計計算の処理を中止することを特徴とする価値評価支援システム。 The value evaluation support system according to any one of claims 9 to 13,
The statistical calculation unit of the value evaluation server has the missing data for each survey target when there is missing data for which the evaluation data statistical value does not exist for each combination of the survey targets between the two survey target groups. Based on the number of data and the priority information for each of the survey targets in the two survey target groups specified by the user via the user terminal, the survey target having the missing data is When the deletion data is deleted from the combination between the survey targets and the missing data disappears in the combination between the survey targets, the fourth rank data for the evaluation data statistical value is calculated, and When all the survey targets are deleted in the combination of the above, the fourth and fifth statistical calculation processes are stopped. Value evaluation support system that. - 請求項1~14のいずれか1項に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部は、前記評価履歴情報取得部によって抽出された前記各評価データから、前記各評価データの数未満であり、かつ統計的に母集団と認められる所定の数からなる上限値未満で、かつ統計的に精度が劣るとされる所定の数からなる下限値より多い数のサンプルをランダム抽出して統計計算を行うことを特徴とする価値評価支援システム。 The value evaluation support system according to any one of claims 1 to 14,
The statistical calculation unit of the value evaluation server, from each evaluation data extracted by the evaluation history information acquisition unit, from a predetermined number that is less than the number of each evaluation data and statistically recognized as a population A value evaluation support system characterized in that statistical calculation is performed by randomly extracting a number of samples that are less than an upper limit value and larger than a lower limit value including a predetermined number that is statistically inferior in accuracy. - 請求項1~14のいずれか1項に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部は、前記評価履歴情報取得部によって抽出された前記各評価データから、所定の下限値より多く、かつ所定の上限値以下の数の第1のサンプルを抽出し、さらに、前記第1のサンプルから、前記下限値以上で前記第1のサンプルの数未満の数の第2のサンプルをランダム抽出することを特徴とする価値評価支援システム。 The value evaluation support system according to any one of claims 1 to 14,
The statistical calculation unit of the value evaluation server extracts, from each of the evaluation data extracted by the evaluation history information acquisition unit, a number of first samples that is greater than a predetermined lower limit value and less than or equal to a predetermined upper limit value. Furthermore, the value evaluation support system characterized by randomly extracting from the first sample a number of second samples that are greater than or equal to the lower limit value and less than the number of the first samples. - 請求項1~16のいずれか1項に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記統計計算部は、前記各調査対象間の統計的な有意差の判定を行う際に、参照する検定表に対応する数値が存在しない場合は、前記各調査対象間に統計的な有意差があるとは言えないと判定することを特徴とする価値評価支援システム。 The value evaluation support system according to any one of claims 1 to 16,
When the statistical calculation unit of the value evaluation server determines a statistically significant difference between the survey targets, if there is no numerical value corresponding to the test table to be referred to, the statistics between the survey targets A value evaluation support system characterized by determining that there is no significant difference. - 請求項1~17のいずれか1項に記載の価値評価支援システムにおいて、
前記価値評価サーバの前記評価結果出力部は、前記統計計算部による統計計算に用いる前記評価データの性質と、統計計算に用いる値や条件、または統計結果の情報である統計計算情報との組み合わせに基づいて、予め定義されている中から選択した、統計計算の結果に対する補足説明を選択し、前記利用者端末に対して出力することを特徴とする価値評価支援システム。 The value evaluation support system according to any one of claims 1 to 17,
The evaluation result output unit of the value evaluation server is a combination of the property of the evaluation data used for the statistical calculation by the statistical calculation unit and the statistical calculation information which is the value and condition used for the statistical calculation, or statistical result information. A value evaluation support system comprising: selecting a supplementary explanation for a result of statistical calculation selected from predefined ones based on the result and outputting the selected supplementary explanation to the user terminal. - 曖昧なデータを含む1つ以上の評価指標により価値が表される複数の調査対象について、前記調査対象間の価値の差異についての統計的な有意差を判定して判定結果を出力する価値評価サーバと、前記価値評価サーバにネットワークを介して接続された利用者端末とを有する価値評価支援システムであって、
前記価値評価サーバは、
前記各調査対象に係る前記評価指標毎の価値の評価結果である評価データの入力を受け、前記評価データを評価履歴データベースに蓄積する評価情報入力部と、
前記利用者端末を介して前記利用者から指定された条件に基づいて選択された複数の前記調査対象について、それぞれ前記評価指標毎に前記評価履歴データベースから前記評価データを抽出する評価履歴情報取得部と、
前記評価履歴情報取得部によって抽出された前記評価データに基づいて、所定の手順により順位データを算出し、前記順位データに基づく統計計算により、前記各調査対象間の統計的な有意差を判定する統計計算部と、
前記統計計算部による統計計算の結果の情報と合わせて、前記統計計算部によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、予め定義されている中から選択した、前記各調査対象間の価値の差異についての判断の基準に係る推奨情報を、前記利用者端末に対して出力する評価結果出力部とを有することを特徴とする価値評価支援システム。 A value evaluation server that determines a statistically significant difference in a value difference between the survey objects and outputs a determination result for a plurality of survey objects whose values are represented by one or more evaluation indexes including ambiguous data And a value evaluation support system having a user terminal connected to the value evaluation server via a network,
The value evaluation server
An evaluation information input unit that receives input of evaluation data that is an evaluation result of value for each evaluation index related to each of the survey targets, and accumulates the evaluation data in an evaluation history database;
An evaluation history information acquisition unit that extracts the evaluation data from the evaluation history database for each of the plurality of investigation targets selected based on the conditions specified by the user via the user terminal. When,
Based on the evaluation data extracted by the evaluation history information acquisition unit, rank data is calculated according to a predetermined procedure, and a statistically significant difference between the survey targets is determined by statistical calculation based on the rank data. A statistical calculator;
Along with information on the result of statistical calculation by the statistical calculation unit, based on information on statistically significant differences between the respective survey objects determined by the statistical calculation unit, selected from among predefined, A value evaluation support system, comprising: an evaluation result output unit that outputs recommended information related to a criterion for determination of a difference in value between the survey targets to the user terminal. - 曖昧なデータを含む1つ以上の評価指標により価値が表される複数の調査対象について、前記調査対象間の価値の差異についての統計的な有意差を判定して判定結果を利用者端末に対して出力する価値評価サーバとしてコンピュータを機能させる価値評価支援プログラムであって、
前記各調査対象に係る前記評価指標毎の価値の評価結果である評価データの入力を受け、前記評価データを評価履歴データベースに蓄積する評価情報入力処理と、
前記利用者端末を介して利用者から指定された条件に基づいて選択された複数の前記調査対象について、それぞれ前記評価指標毎に前記評価履歴データベースから前記評価データを抽出する評価履歴情報取得処理と、
前記評価履歴情報取得処理によって抽出された前記評価データに基づいて、所定の手順により順位データを算出し、前記順位データに基づく統計計算により、前記各調査対象間の統計的な有意差を判定する統計計算処理と、
前記統計計算処理による統計計算の結果の情報と合わせて、前記統計計算処理によって判定された前記各調査対象間の統計的な有意差の情報に基づいて、予め定義されている中から選択した、前記各調査対象間の価値の差異についての判断の基準に係る推奨情報を、前記利用者端末に対して出力する評価結果出力処理とを実行することを特徴とする価値評価支援プログラム。
For a plurality of survey targets whose values are represented by one or more evaluation indexes including ambiguous data, a statistically significant difference in the difference in value between the survey targets is determined, and the determination result is transmitted to the user terminal. A value evaluation support program that allows a computer to function as a value evaluation server
An evaluation information input process that receives input of evaluation data that is an evaluation result of the value for each evaluation index related to each of the survey targets, and accumulates the evaluation data in an evaluation history database;
An evaluation history information acquisition process for extracting the evaluation data from the evaluation history database for each of the evaluation indexes for the plurality of survey targets selected based on conditions specified by the user via the user terminal; ,
Based on the evaluation data extracted by the evaluation history information acquisition process, rank data is calculated according to a predetermined procedure, and a statistically significant difference between the survey targets is determined by statistical calculation based on the rank data. Statistical calculation processing,
Along with the information on the result of statistical calculation by the statistical calculation process, based on the information on the statistically significant difference between the respective survey objects determined by the statistical calculation process, selected from the predefined, A value evaluation support program, which executes an evaluation result output process for outputting recommended information relating to a criterion for determination of a difference in value between each survey target to the user terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/067468 WO2013018160A1 (en) | 2011-07-29 | 2011-07-29 | Valuation assistance system and valuation assistance program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/067468 WO2013018160A1 (en) | 2011-07-29 | 2011-07-29 | Valuation assistance system and valuation assistance program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018160A1 true WO2013018160A1 (en) | 2013-02-07 |
Family
ID=47628733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067468 WO2013018160A1 (en) | 2011-07-29 | 2011-07-29 | Valuation assistance system and valuation assistance program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013018160A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017217242A1 (en) * | 2016-06-15 | 2017-12-21 | ソニー株式会社 | Information processing device, information processing method, and program |
CN114723335A (en) * | 2022-05-16 | 2022-07-08 | 交通运输部规划研究院 | Method for evaluating service efficiency of marine supervision rescue plane |
JP2023138099A (en) * | 2022-03-18 | 2023-09-29 | 株式会社Nttファシリティーズ | Ventilation system and control device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188796A (en) * | 1999-12-28 | 2001-07-10 | Toshiba Corp | System and method for analyzing data and computer readable storage medium stored with program |
JP2003108824A (en) * | 2001-09-28 | 2003-04-11 | Ota Mitsue | Selection examination support system |
JP2007102668A (en) * | 2005-10-07 | 2007-04-19 | Fuji Xerox Co Ltd | Statistic comparison processor |
JP2008217283A (en) * | 2007-03-02 | 2008-09-18 | Otsuka Sensory Laboratories Co Ltd | Evaluation information collection method and server |
-
2011
- 2011-07-29 WO PCT/JP2011/067468 patent/WO2013018160A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188796A (en) * | 1999-12-28 | 2001-07-10 | Toshiba Corp | System and method for analyzing data and computer readable storage medium stored with program |
JP2003108824A (en) * | 2001-09-28 | 2003-04-11 | Ota Mitsue | Selection examination support system |
JP2007102668A (en) * | 2005-10-07 | 2007-04-19 | Fuji Xerox Co Ltd | Statistic comparison processor |
JP2008217283A (en) * | 2007-03-02 | 2008-09-18 | Otsuka Sensory Laboratories Co Ltd | Evaluation information collection method and server |
Non-Patent Citations (1)
Title |
---|
MASAHIKO ISHINO ET AL.: "The proposal about the recommendation system of the goods by a customer's attribute", IPSJ SIG NOTES, vol. 2005, no. 53, 27 May 2005 (2005-05-27), pages 37 - 42 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017217242A1 (en) * | 2016-06-15 | 2017-12-21 | ソニー株式会社 | Information processing device, information processing method, and program |
JPWO2017217242A1 (en) * | 2016-06-15 | 2019-04-04 | ソニー株式会社 | Information processing apparatus, information processing method, and program |
JP2023138099A (en) * | 2022-03-18 | 2023-09-29 | 株式会社Nttファシリティーズ | Ventilation system and control device |
JP7685964B2 (en) | 2022-03-18 | 2025-05-30 | 株式会社Nttファシリティーズ | Ventilation Systems and Control Devices |
CN114723335A (en) * | 2022-05-16 | 2022-07-08 | 交通运输部规划研究院 | Method for evaluating service efficiency of marine supervision rescue plane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12236461B2 (en) | Matching support device, matching support system, and program | |
US10268653B2 (en) | Goal-oriented user matching among social networking environments | |
Alshibly | Customer perceived value in social commerce: An exploration of its antecedents and consequences | |
US20160140168A1 (en) | Apparatuses, methods and Systems For A lead Generating Hub | |
US20110289161A1 (en) | Apparatuses, Methods and Systems For An Intelligent Inbox Coordinating HUB | |
US20200258027A1 (en) | Methods and systems for controlling a display screen with graphical objects for scheduling | |
US10482527B2 (en) | Systems and methods to predict resource availability | |
US20110289009A1 (en) | Apparatuses, methods and systems for an activity tracking and property transaction facilitating hub | |
AU2014200389B2 (en) | Behavior management and expense insight system | |
JP6417002B1 (en) | Generating device, generating method, and generating program | |
US20170337601A1 (en) | Monetization of interactive network-based information objects | |
WO2022090999A1 (en) | System for pre-owned electronic device diagnostics, with sales and operation facilitation features | |
Park et al. | Assessing structure in American online purchase of travel products | |
JP2019032827A (en) | Generating device, generating method, and generating program | |
WO2013018160A1 (en) | Valuation assistance system and valuation assistance program | |
JP4361235B2 (en) | Product specification and related customer information collection system | |
Şanlıöz-Özgen et al. | Direct online booking competence of five-star hotels: Model development on web/mobile sites | |
JP7735776B2 (en) | Information processing device, information processing method, and program | |
Singh et al. | A conceptual study of service quality, tourist satisfaction and revisit intention | |
TW201702971A (en) | User equipment and system of real estate self-selling | |
JP7718411B2 (en) | Information processing device, information processing method, and information processing program | |
Mansurova | Some issues of Big Data application in modeling business processes of e-business systems | |
WO2023062852A1 (en) | Information processing device, information processing method, and program | |
JP7656309B1 (en) | Purchase right grantor determination method, purchase right grantor determination program, and purchase right grantor determination system | |
Guo et al. | A theoretical approach to online review systems: An influence of review components model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11870342 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11870342 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |