[go: up one dir, main page]

WO2012102191A1 - Image data processing apparatus, image data processing method, image data processing program, and computer-readable recording medium - Google Patents

Image data processing apparatus, image data processing method, image data processing program, and computer-readable recording medium Download PDF

Info

Publication number
WO2012102191A1
WO2012102191A1 PCT/JP2012/051168 JP2012051168W WO2012102191A1 WO 2012102191 A1 WO2012102191 A1 WO 2012102191A1 JP 2012051168 W JP2012051168 W JP 2012051168W WO 2012102191 A1 WO2012102191 A1 WO 2012102191A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
mosquito noise
value
standard deviation
deviation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2012/051168
Other languages
French (fr)
Japanese (ja)
Inventor
宮田 英利
上野 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of WO2012102191A1 publication Critical patent/WO2012102191A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness

Definitions

  • the present invention relates to an image data processing device, an image data processing method, an image data processing program, and a computer-readable recording medium that reduce mosquito noise included in an image signal.
  • video data When digital image data and digital video data are stored or transferred, the video data (hereinafter, digital image data and digital video data are collectively referred to as video data) is encoded to reduce the data capacity. Is common.
  • MPEG Motion Picture Experts Group
  • DCT Discrete Cosine Transform
  • the video data is divided into blocks, and it is determined whether each block is an edge region, a texture region, or a flat region, and noise removal processing is performed on the video data using a nonlinear smoothing filter (see Patent Document 1). ).
  • Patent Document 2 A technique is disclosed (Patent Document 2).
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-278185 (Publication Date: November 13, 2008)”
  • Japanese Patent Publication Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2009-225299 (Publication Date: October 1, 2009)”
  • mosquito noise is determined by detecting an edge region from video data and calculating a variance value for data around the pixel.
  • the periphery of the edge is an area where the luminance change is large, the data dispersion value in the area inevitably increases. Therefore, when there is a significant high-frequency component that does not have a large luminance change around the edge, it is difficult to distinguish it from mosquito noise.
  • luminance change is not large and a significant high frequency component is set as a detail part below.
  • the present invention has been made in view of the above problems, and performs mosquito noise determination with high accuracy in the entire area of video data, effectively removing mosquito noise while retaining the detail portion included in the image data,
  • the purpose is to obtain output image data with improved image quality.
  • the image data processing apparatus of the present invention separates input image data into first image data that does not include an edge region and second image data other than the first image data.
  • a standard deviation value calculating means for calculating a standard deviation value of luminance data in each pixel included in the first image data and a peripheral area of the pixel as a first standard deviation value, and using the first standard deviation value.
  • Mosquito noise calculating means for calculating the degree of occurrence of mosquito noise for each pixel of the input image data.
  • the image data processing method of the present invention separates input image data into first image data not including an edge region and second image data other than the first image data.
  • a mosquito noise calculating step for calculating the degree of occurrence of mosquito noise for each pixel of the input image data.
  • the input image data (O data) is divided into first image data (T data) that does not include information related to the edge region by the data separation means (edge separation step), and second data other than the first image data. Separated into image data (C data). Then, the standard deviation value of the first image data is calculated as the first standard deviation value in the standard deviation value calculating means (standard deviation value calculating step), and the image data processing is performed using the first standard deviation value, thereby obtaining the mosquito.
  • the noise calculation means mosquito noise calculation step
  • the degree of occurrence of mosquito noise is calculated.
  • an edge portion is detected from input image data, and numerical processing such as dispersion value detection is performed on the peripheral region of the edge portion to determine a pixel region including mosquito noise.
  • mosquito noise is discriminated by paying attention to the fact that mosquito noise is likely to occur at the edge portion of the input image data due to the principle of encoding.
  • the input image data in the peripheral area of the edge part has a large difference value of luminance data caused by the edge. Therefore, it is difficult to discriminate between mosquito noise and the above-mentioned details when the peripheral area of the edge portion includes significant image data (hereinafter referred to as detail) having a small luminance difference value other than mosquito noise. there were.
  • the standard deviation value calculating means calculates the standard deviation value of the luminance data in each pixel and the peripheral region of the pixel as the first standard deviation value. Further, the mosquito noise calculation means calculates the degree of occurrence of mosquito noise using the first standard deviation value. As a result, it is possible to determine the degree of occurrence of mosquito noise regardless of a large difference value caused by the edge portion of the input image data. Therefore, it is possible to discriminate between fine image data existing in the peripheral area of the edge portion and mosquito noise, which is difficult with the prior art.
  • the data from which the influence of the edge area is removed is separated from the video data, and the mosquito noise determination is performed using the data from which the influence of the edge area has been removed. Is possible. As a result, it is possible to effectively remove mosquito noise while retaining the detail portion included in the image data, and obtain output image data with an improved image quality.
  • FIG. 1 is a block diagram illustrating a configuration of an image data processing apparatus according to an embodiment of the present invention. It is a block diagram which shows the structure of the digital television apparatus using the image data processing apparatus which is one Embodiment of this invention.
  • 3A is a diagram showing an example of image data (alphabet a) that has not been subjected to image data processing, and FIG. 3B encodes the image data of FIG. 3A. It is a figure which shows the image data decoded after having performed.
  • FIG. 4A is a diagram showing decoded image data of the letter a.
  • FIG. 4B is a diagram illustrating image data when edge-considered video smoothing processing is performed on the image data of FIG. FIG.
  • FIG. 4C is a diagram showing image data obtained by decoding a minute pattern (detail) with a small amount of change in luminance.
  • FIG. 4D is a diagram illustrating image data when edge-considered video smoothing processing is performed on the image data in FIG. It is a block diagram which shows the structure of the data separation part with which the image data processing apparatus which is one Embodiment of this invention is provided. It is a block diagram which shows the structure of the mosquito noise detection part with which the image data processing apparatus which is one Embodiment of this invention is provided.
  • FIG. 8 is a figure which shows the general form of the 1st function which calculates the 1st mosquito noise generation degree from a 1st standard deviation value.
  • FIG. 8B is a diagram showing an outline of the second function for calculating the second mosquito noise occurrence degree from the second standard deviation value.
  • 9 (a), 9 (b), and 9 (c) the standard deviation value for each pixel obtained in the standard deviation value calculation unit is stored for all pixels for one frame. It is a figure which shows the histogram obtained every time.
  • FIG. 11A shows an example of a decoded image.
  • FIG. 11B, FIG. 11C, and FIG. 11D are views showing images obtained by enlarging the ⁇ part of FIG. 11A.
  • FIG. 11B shows an image before image processing
  • FIG. 11C shows an image after conventional edge-considered video smoothing processing
  • FIG. 11D shows image data processing of the present invention. It is a figure which shows each subsequent image.
  • FIG. 12A shows an example of a decoded image.
  • FIG. 12B is an image after the mosquito noise is reduced by applying the first mosquito noise detection method to the image of FIG. (C) of FIG. 12 is an image after the mosquito noise is reduced by applying the third mosquito noise detection method to the image of (a) of FIG. FIG.
  • FIG. 12D is an image after the mosquito noise is reduced by applying the conventional bilateral filter to the image of FIG. 1 is a block diagram illustrating a configuration of a PC that performs image data processing of image data distributed via a network, and an image display system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the digital television apparatus 100 using the image data processing apparatus 1.
  • the digital television device 100 includes a receiving device 101, an image data processing device 1, and a display device 110.
  • the receiving device 101 includes an antenna 102, a tuner 103, and a decoder 104
  • the display device 110 includes an image post-processing unit 111 and a display unit 112.
  • the image data processing apparatus 1 includes a data separation unit (data separation unit) 10, a mosquito noise detection unit 20, and a mosquito noise reduction unit (mosquito noise reduction unit) 30.
  • the digital TV apparatus 100 receives digital image data (hereinafter referred to as image data) of digital TV broadcast by the receiving apparatus 101 and displays it on a display unit 112 typified by, for example, a liquid crystal display panel or a plasma display panel. Device.
  • image data digital image data
  • a display unit 112 typified by, for example, a liquid crystal display panel or a plasma display panel. Device.
  • Encoding is to compress image data capacity by making image data into blocks, performing two-dimensional DCT (Discrete Cosine Transform) processing on each block, and assuming that the high-frequency component conversion coefficient is zero.
  • DCT Discrete Cosine Transform
  • the receiving device 101 of the digital television device 100 that has received the encoded image data decodes the encoded image data with the decoder 104, thereby making the image data displayable on the display unit 112.
  • the decoded image data can be displayed on the display unit 112 as it is. However, in order to realize a better appearance, a plurality of image processing such as noise reduction, color management, and enhancement are performed in the image post-processing unit 111.
  • encoding is to perform DCT processing on blocked image data.
  • DCT processing many high-frequency components are generated in a region where there is a rapid luminance change (that is, an edge region), and as a result, many conversion coefficients are regarded as zero.
  • FIG. 3A shows image data before encoding
  • FIG. 3B shows image data after encoding and decoding the image data.
  • wavy noise that is not present in the pre-encoded image data shown in FIG. 3A can be confirmed around the alphabet a. This wavy noise is so-called mosquito noise.
  • LPF low-pass filter
  • the edge-considered video smoothing process here refers to an edge area where the luminance value changes abruptly and an area where the luminance value hardly changes (referred to as a flat area) in a more clearly visible state. It means that image data including high frequency components is removed by applying smoothing.
  • the LPF is exemplified as the edge-considered video smoothing process, but among them, for example, an LPF that considers not only the smoothing according to the distance between pixels but also the luminance difference like the bilateral filter is desirable. Any method other than the LPF can be used as long as the above-described image processing can be realized.
  • the decoded image data is shown in FIG. 4A, and the result of performing edge-considered video smoothing processing on the image data is shown in FIG. 4B.
  • FIG. 4B it can be confirmed that the mosquito noise is reduced and the letter a is easy to see.
  • the mosquito noise is reduced by smoothing the image data including the high-frequency component as described above and blurring the entire image. Therefore, although it is not mosquito noise, the luminance change is not so large and a portion including a high-frequency component (hereinafter referred to as a detail portion) is blurred, and the detail portion is lost. There was a problem.
  • the image data after decoding the detail portion is shown in FIG. 4C, and the result of performing the edge-considered video smoothing process on the image data is shown in FIG. Show. By performing the edge-considered video smoothing process, it can be confirmed that the lattice-like detail portion existing in FIG. 4C is lost in FIG. 4D.
  • the image data processing apparatus 1 is installed between the receiving apparatus 101 and the display apparatus 110 of the digital television apparatus 100 shown in FIG. I have.
  • the configuration of the image data processing apparatus 1 will be described more specifically.
  • the image data processing apparatus 1 includes a data separation unit 10, a mosquito noise detection unit 20, and a mosquito noise reduction unit 30. Then, the image data decoded by the decoder 104 (FIG. 2) of the receiving apparatus 101 (FIG. 2) is sent to the data separation unit 10. This decoded image data is hereinafter referred to as input image data.
  • the input image data sent to the data separation unit 10 is duplicated into three identical data, and one of the input image data is subjected to edge-considered video smoothing processing.
  • the edge-considered video smoothing process means that input image data is processed using a low-pass filter or a bilateral filter.
  • C data Carton data, second image data
  • the C data is image data obtained by removing high frequency components from the input image data, and includes information on the edge region. Then, by taking the difference between the C data and one of the duplicated input image data, image data including high-frequency components such as mosquito noise and detail is generated without including edge region information.
  • the image data created in this way is hereinafter simply referred to as T data (Texture data, first image data). Further, the C data is used to create T data, and at the same time, the C data itself is output from the data separation unit 10.
  • one of the three duplicated input image data is output from the data separation unit 10 as it is.
  • this data is simply referred to as O data (original data).
  • the data separation unit 10 outputs T data that does not include information related to the edge region, C data that includes information related to the edge region, and O data that is input image data.
  • the mosquito noise detector 20 includes a luminance value calculator 21, a standard deviation value calculator (standard deviation value calculator) 22, a mosquito noise calculator (mosquito noise calculator) 23, and a histogram. Is stored in the storage unit 24.
  • a detection method using only T data is a first mosquito noise detection method
  • the detection method using T data and C data is the second mosquito noise detection method
  • a detection method using T data, C data, and O data is defined as a third mosquito noise detection method.
  • T data is input from the data separation unit 10 to the luminance value calculation unit 21 included in the mosquito noise detection unit 20.
  • the mosquito noise detection unit 20 of FIG. 6 as an example of the embodiment, a case where three data of T data, C data, and O data are input to the luminance value calculation unit 21 is illustrated. However, in the first mosquito noise detection method, only T data is input to the luminance value calculation unit 21.
  • the liquid crystal display panel 113 includes pixels including, for example, red (R), green (G), and blue (B) sub-pixels.
  • the luminance value calculation unit 21 calculates luminance data for each pixel in the frame of the liquid crystal display panel 113 from the T data of the sub-pixels as described below.
  • the pixel at the coordinates (i, j) shown in FIG. 7 is P i, j
  • the luminance data obtained from the T data of P i, j is T_Y i, j .
  • the frame size of the liquid crystal display panel 113 is 1920 horizontal pixels and 1080 vertical pixels, 1 ⁇ i ⁇ 1920 and 1 ⁇ j ⁇ 1080.
  • T_R i, j T_G i, j
  • T_B i, j T_B i, j
  • T_Y i, j 0.213 ⁇ T_R i, j + 0.715 ⁇ T_G i, j + 0.072 ⁇ T_B i, j
  • the luminance value calculation unit 21 calculates T_Y i, j for all pixels in the frame as described above
  • the T_Y i, j is sent to the standard deviation value calculation unit 22 which is a standard deviation value calculation unit. It is done.
  • the luminance data (O_Y i, j) of O data and luminance data (c_y i, j) of the C data and T_y i, and the j are listed.
  • the first mosquito noise detection method since the mosquito noise detected by using only the T data, T_y i, only j are input to the standard deviation calculation unit 22.
  • the standard deviation value calculation unit 22 calculates the standard deviation value of the luminance data in each pixel (for example, P i, j ) in the frame and the peripheral region of P i, j as the first standard deviation value.
  • the first standard deviation value is defined as T_STD i, j .
  • the size of the peripheral area of P i, j when calculating T_STD i, j is preferably about the compressed block size at the time of encoding. Specifically, 8 pixels ⁇ 8 pixels is appropriate, but there is no problem if the size is about 3 pixels ⁇ 3 pixels to 11 pixels ⁇ 11 pixels. In this embodiment, for the sake of simplicity, the peripheral area of each pixel is described as 3 pixels ⁇ 3 pixels (see an enlarged view in FIG. 7).
  • T_STD i, j is calculated from the luminance data in each pixel and the surrounding area of each pixel according to the following formula.
  • T_MEAN i, j represents an average value of luminance data in a peripheral region including P i, j
  • T_MEAN2 i, j represents a mean square value.
  • the surrounding area is 3 pixels ⁇ 3 pixels, i ⁇ 1 ⁇ k ⁇ i + 1 and j ⁇ 1 ⁇ l ⁇ j + 1.
  • T_Vari i, j represents the dispersion value of the luminance data in the peripheral area including P i, j .
  • the standard deviation value calculation unit 22 calculates T_STD i, j of all pixels in the frame as described above , and outputs it to the mosquito noise calculation unit 23. In addition, in order to save a histogram (details will be described later) obtained by counting T_STD i, j for each frame, the standard deviation value calculation unit 22 also outputs T_STD i, j to the storage unit 24 (see FIG. 6). ).
  • the mosquito calculation unit 23 which is a mosquito noise calculation means, uses T_STD i, j to calculate the mosquito noise occurrence degree (T_W i, j ) for each pixel in the frame from the following equation and outputs it (FIG. 6). reference).
  • T_W i, j F (
  • the form of the function F (x) corresponding to the first function described in the claims is shown in FIG.
  • the function F (x) shows a local maximum value as an output value when the absolute value of the input value x is minimum, and the output value as the input value x increases.
  • the first predetermined value can also be expressed as an x-intercept of the function F (x), and its value is Tm.
  • Tm is a fixed value
  • the value of Tm is preferably 0.5 ⁇ Tm ⁇ 2.
  • Pt and Pt ′ are defined as follows.
  • the storage unit 24 for storing the histogram shown in FIG. 6 aggregates the first standard deviation values of the previous frame (assumed to be n ⁇ 1 frames) of the frame in which mosquito noise detection is performed (this is assumed to be n frames). Stored as a histogram.
  • FIG. 9A shows a T_STD histogram of n ⁇ 1 frames stored in the storage unit 24 that stores the histogram.
  • Pt is the value of T_STD that maximizes the number of pixels in the T_STD histogram of the (n ⁇ 1) th frame
  • Pt ′ is defined as the following equation as a value that is larger than Pt by ⁇ t.
  • Pt ′ Pt + ⁇ t In this case, it is empirically known that the value of ⁇ t is desirably 0.5 ⁇ ⁇ t ⁇ 1.
  • T_Wi , j is a parameter at the time of calculation
  • Tm and ⁇ t are fixed values.
  • O data By calculating the standard deviation value (O_STD i, j ) of the luminance data in each pixel and the peripheral area of each pixel, it is possible to determine Tm and ⁇ t optimized for each frame.
  • Tm and ⁇ t are fixed values and the degree of occurrence of mosquito noise is simply estimated, it is possible to improve the image quality (to reduce mosquito noise while leaving details).
  • Mosquito noise reduction unit 30 Mosquito noise occurrence rate T_W i for each pixel calculated by the mosquito noise calculating means 23 as described above, j is output to the mosquito noise reduction unit 30 (see FIG. 10).
  • the mosquito noise reduction unit 30 includes a mosquito noise determination unit (mosquito noise determination unit) 31 and an output processing unit 34 which are configured by an occurrence degree total unit 32 and a mosquito function determination unit 33.
  • the average value of the mosquito noise occurrence degree of the entire frame is calculated from the mosquito noise occurrence degree for each pixel calculated by the mosquito noise calculation unit 23, and the average mosquito noise occurrence degree is calculated. From the value, it is judged how much the frame contains mosquito noise. Below, the mosquito noise reduction part 30 is demonstrated.
  • the mosquito noise generation degree T_W i, j for each pixel input to the mosquito noise reduction unit 30 is duplicated into two, and one of them is input to the generation degree totaling unit 32.
  • the generation degree summation unit 32 calculates an integrated value T_Sum of T_Wi , j for all pixels of the frame according to the following equation.
  • the integration range is 1 ⁇ p ⁇ 1920 and 1 ⁇ q ⁇ 1080.
  • the calculated T_Sum is output to the mosquito function determination unit 33, and is divided by the total number of pixels of the frame to calculate the mosquito noise occurrence average value (T_Ave).
  • the threshold is preferably set to about 0.7, but it may be set to a value other than 0.7. Increasing the threshold means reducing the mosquito noise criterion, and conversely decreasing the threshold means stricter mosquito noise criterion.
  • This threshold value may be determined in advance as a value considered optimal by the manufacturer, or may be designed so that the user can change it within a certain range according to his / her preference. By changing the threshold, the mosquito noise criterion can be changed arbitrarily, so that flexible processing is possible depending on the processing capability of the image data processing device and the level of compression during encoding. It becomes.
  • P outi, j is output image data for each pixel in the frame.
  • the input image data for each pixel is used as output image data for each pixel as it is.
  • mosquito noise generated from T data is generated for each pixel of O data as input image data and C data subjected to edge-considered video smoothing processing (for example, LPF processing). Weighting is performed using the degree T_Wi , j , and the O data and the C data are combined.
  • the balance between maintaining the details included in the input image data in the output image data and the effect of reducing the mosquito noise is balanced for each pixel based on the mosquito noise occurrence degree T_Wi , j. It is possible to obtain output image data that can be set appropriately and whose image quality is improved more appropriately.
  • FIG. 11 shows an example of improvement in image quality when image data processing according to one embodiment of the present invention is performed.
  • FIG. 11A shows an example of a decoded image. This decoded image is composed of a portion having a large luminance difference represented by the ⁇ portion and a detail portion in the ⁇ portion.
  • FIG. 11B shows an image obtained by enlarging the ⁇ portion in FIG. 11A
  • FIG. 11E shows an image obtained by enlarging the ⁇ portion.
  • mosquito noise can be confirmed around the letter a.
  • FIG. 11 (c) and FIG. 11 (f) The image data obtained as a result of performing the edge-considered video smoothing process conventionally known for the decoded image data is shown in FIG. 11 (c) and FIG. 11 (f). It can be confirmed from FIG. 11C that the mosquito noise existing around the alphabet a is reduced and the image quality is improved. However, it can be confirmed from FIG. 11F that the detail portion is lost simultaneously with the reduction of the mosquito noise.
  • FIG. 11 (d) and FIG. 11 (g) image data obtained as a result of performing image data processing according to one embodiment of the present invention is shown in FIG. 11 (d) and FIG. 11 (g). From these two figures, it can be confirmed that the reduction of the mosquito noise and the retention of the detail portion are realized at the same time.
  • the first mosquito is that the data separation unit 10 (data separation means) included in the image data processing apparatus 1 receives the decoded input image data and outputs it as three data of T data, C data, and O data. This is the same as the noise detection method.
  • T data and C data are sent to the luminance value calculation unit 21 included in the mosquito noise detection unit 20.
  • the luminance value of T data (T_Y i, j) and likewise, to calculate the luminance value of the C data (C_Y i, j). That is, the C data of R, G, and B of the sub-pixels of P i, j is set to C_R i, j , C_G i, j , and C_B i, j , respectively. i, j are calculated.
  • T_Y i, j 0.213 ⁇ C_R i, j + 0.715 ⁇ C_G i, j + 0.072 ⁇ C_B i, j
  • T_Y i, j and C_Y i, j calculated by the luminance calculating unit 21 are output to the standard deviation value calculating unit 22 which is a standard deviation value calculating unit.
  • T_y i, calculates j, and c_y i, the standard deviation calculating section 22 receives the j, the standard deviation value for each pixel T_std i, j, and C_STD i, a j.
  • T_std i the method for calculating the j are, T_std i in the first mosquito noise detection method is the same as the method of calculating the j.
  • C_STD i the method for calculating the j are, C_Y i, T_STD i, may be calculated as with j with j.
  • T_STD i, j and C_STD i, j obtained by the above method are output to the mosquito noise calculation unit 23, which is a mosquito calculation means, as a first standard deviation value and a second standard deviation value, respectively.
  • mosquito noise calculation unit 23 Mosquito by T_W i, and j as the first mosquito noise occurrence rate, C_W i, is calculated from the following equation and j as the second mosquito occurrence rate, taking each product The degree of noise generation (W i, j ) is obtained.
  • T_W i, j is the same as in the first mosquito noise detection method.
  • T_W i, j F (
  • ) C_W i, j G (
  • ) W i, j T_W i, j ⁇ C_W i, j
  • F (x) corresponding to the first function described in the claims is shown in FIG. 8A
  • ) W i, j T_W i, j ⁇ C_W i, j
  • the form of the function F (x) corresponding to the first function described in the claims is shown in FIG. 8A
  • the form of the function G (x) corresponding to the second function is shown in FIG.
  • the function F (x) is the same as that used in the first mosquito detection method.
  • the other second function, function G (x) is also a function having a form similar to function F (x). That is, the function G (x) shows a maximum value as an output value when the absolute value of the input value x is minimum, and the output value monotonously decreases as the input value x increases.
  • This is a function whose output value is 0 when x is a second predetermined value.
  • the second predetermined value is the x intercept of the function G (x), and this value is Cm.
  • Cm is a fixed value
  • the value of Cm is preferably 0.5 ⁇ Cm ⁇ 2.
  • Pc is the value of C_STD that maximizes the number of pixels in the C_STD histogram (see FIG. 9B), and is considered to be the standard deviation value of the pixels in the edge region. Further, the second standard deviation value in the vicinity of Pc is considered as the standard deviation value of the peripheral pixels in the edge region.
  • Tm and ⁇ t of the first function and Cm of the second function are fixed values.
  • O_STD i, j the standard deviation value of the luminance data in each pixel of O data and the peripheral region of each pixel. It is possible to determine Tm, ⁇ t, and Cm optimized for. Even when these values are fixed values and the degree of occurrence of mosquito noise is simply estimated, the image quality can be improved (the mosquito noise can be reduced while leaving the detail portion).
  • the final mosquito noise is obtained by taking the product of the first mosquito noise occurrence degree (T_W i, j ) and the second mosquito noise occurrence degree (C_W i, j ).
  • the degree of noise generation (W i, j ) is obtained. The significance of this can be explained as follows.
  • the T data that is the first image data is image data that does not include information related to the edge region, but may include high-frequency components such as mosquito noise and details other than mosquito noise. Therefore, as described in the section of the first mosquito noise detection method, the occurrence of the first mosquito noise is calculated using only the first standard deviation value of the first image data, so that it is not affected by the edge. It is possible to discriminate mosquito noise. On the other hand, since the T data is data that can include a detail portion in addition to the mosquito noise as described above, the possibility that the detail portion affects the determination of the mosquito noise cannot be denied.
  • the C data as the second image data includes information related to the edge region.
  • the mosquito noise calculation unit 23 can obtain a more appropriate degree of mosquito noise occurrence.
  • C_STD i, j when C_STD i, j is a value significantly different from Pc, it can be determined that P i, j is a pixel far from the edge region.
  • substituted for G (x) is a large value, from the shape of G (x) , the value of C_W i, j is a small value almost close to 0. I understand that Therefore, C_W i, j acts in the mosquito noise calculation unit 23 as a correction term for further reducing T_W i, j obtained from T_STD i, j of the T data that is not affected by the edge.
  • the second mosquito noise detection method allows more appropriate discrimination of mosquito noise by calculating the degree of occurrence of mosquito noise using C_STD i, j in addition to T_STD i, j. .
  • the mosquito noise calculation unit 23 outputs the calculated degree of mosquito generation to the mosquito noise reduction unit 30. Subsequent image data processing in the mosquito noise reduction unit 30 is performed in the same manner as in the first mosquito noise detection method.
  • the purpose of using the O data for mosquito noise detection is to optimize the first for each pixel by calculating the standard deviation value (O_STD i, j ) of the luminance data in each pixel of the O data and the peripheral area of each pixel. And determining each parameter ( ⁇ t, Tm, and Cm) in the function and the second function.
  • the data separation unit 10 and the mosquito noise reduction unit 30 have the same configurations as those in the first and second mosquito noise detection methods. Therefore, here, the function of the mosquito detection unit 20 in the third mosquito noise detection method will be described.
  • the luminance calculation unit 21 receives three data of T data, C data, and O data from the data separation unit 10 (see FIG. 6).
  • the luminance value of T data T_Y i, j
  • the luminance value of O data O_Y i, j
  • the O data of R, G, and B of the sub-pixels of P i, j are set to O_R i, j , O_G i, j , and O_B i, j , respectively. i, j are calculated.
  • O_Y i, j 0.213 ⁇ O_R i, j + 0.715 ⁇ O_G i, j + 0.072 ⁇ O_B i, j
  • the luminance calculation unit 21 outputs the three luminance values T_Y i, j , C_Y i, j and O_Y i, j calculated in this way to the standard deviation value calculation unit 22 which is a standard deviation value calculation unit.
  • the standard deviation value calculation unit 22 that has received T_Y i, j , C_Y i, j , and O_Y i, j receives T_STD i, j , C_STD i, j , and O_STD i, j that are standard deviation values for each pixel. calculate.
  • T_std i the method for calculating the j are, T_std i in the first mosquito noise detection method is the same as the method of calculating the j.
  • C_STD i, j and O_STD i the method for calculating the j are, c_y i, j and O_Y i, T_STD i with j, may be calculated as with j.
  • Mosquito which is a mosquito calculating means, using T_STD i, j , C_STD i, j and O_STD i, j obtained by the above method as a first standard deviation value, a second standard deviation value, and a third standard deviation value, respectively.
  • T_STD i, j, C_STD i , j, and O_STD i, mosquito calculator 23 having received the j are, T_std i, j, and, C_STD i, from j, the first mosquito noise occurrence rate (T_W i, j ) and the second mosquito noise occurrence degree (C_W i, j ) are calculated, and W i, j is calculated by taking the product of the respective values.
  • This series of image data processing is the same as the second mosquito noise detection method.
  • the difference from the second mosquito noise detection method is that ⁇ t, Tm, which are parameters used when determining the shape of F (x) as the first function and G (x) as the second function, and This is a method for determining Cm. That is, in the second mosquito noise detection method, ⁇ t, Tm, and Cm are treated as fixed values. This is because even when the image data processing of the present invention is performed with each parameter as a fixed value, the detail portion included in the input image data is retained, mosquito noise is effectively reduced, and the image quality is appropriately improved. This is because the effect of obtaining image data can be sufficiently obtained.
  • each parameter can be optimized for each frame by determining ⁇ t, Tm, and Cm using the third standard deviation value O_STD i, j in the mosquito calculating unit 23 that is a mosquito calculating means. This makes it possible to obtain a more precise degree of mosquito generation.
  • a method of dynamically determining ⁇ t, Tm, and Cm using T_STD i, j , C_STD i, j , and O_STD i, j will be described.
  • Pf the peak having the smallest O_STD among a plurality of peaks that can be confirmed is defined as Pf.
  • a and B are empirically obtained constants, and are preferably 0.5 ⁇ A ⁇ 2 and 0 ⁇ B ⁇ 1. Further, A to 1 and B to 0.5 are desirable. This value is obtained from past experimental results and may change depending on the target video.
  • Tm and Cm can be calculated from the following equations.
  • Tm g (
  • ) g (x) 2x + 1.0
  • T_AVE_STD indicates an average value of T_STDi, j in the previous frame.
  • the parameters ⁇ t, Tm, and Cm described above change the shapes of the first function and the second function that determine the first and second mosquito noise generation degrees.
  • Each parameter O_STD i by determining for each frame the results of j, it is possible to calculate more appropriate mosquito noise occurrence rate than the second mosquito noise detection method.
  • the method of determining ⁇ t, Tm, and Cm based on O data for each frame based on the second mosquito noise detection method using T data and C data has been described.
  • the second method uses only T data.
  • a method of determining ⁇ t and Tm based on O data for each frame based on the one mosquito noise detection method is also possible.
  • FIG. 12 shows an example of the decoded image. Then, the image shown in FIG. 12A is output as input image data (O data) to the image data processing apparatus 1 (FIG. 2, etc.), and the first mosquito noise is detected by the mosquito noise detector 20 (FIG. 6). Assume that the detection method is executed.
  • FIG. 12B shows output image data obtained in this case.
  • FIG. 12A is output as input image data (O data) to the image data processing apparatus 1 (FIG. 2, etc.), and the third mosquito noise is detected by the mosquito noise detector 20 (FIG. 6). Assume that the detection method is executed.
  • FIG. 12C shows output image data obtained in this case.
  • FIG. 12A Furthermore, an output image when the conventional mosquito noise detection process is performed on the image shown in FIG. 12A using a bilateral filter is shown in FIG.
  • FIG. 12B and FIG. 12C the images of FIG. 12B and FIG. In the image of (a), the details of the grassland image surrounded by the dashed ellipse are held more clearly than the image of (d) in FIG. Further, in the images of FIG. 12B and FIG. 12C, the mosquito noise related to the image near the back of the zebra surrounded by the solid ellipse in the image of FIG. It is reduced more than the image of (d).
  • the image of FIG. 12C is more than the image of FIG. 12B.
  • the details relating to the grassland image are clearly preserved, and the mosquito noise relating to the image near the back of the zebra is also reduced.
  • the detail of the mosquito noise detection method is higher than that of the conventional method regardless of whether the first mosquito noise detection method or the third mosquito noise detection method is used. Good results can be obtained both in holding and in reducing mosquito noise. Furthermore, the use of the third mosquito noise detection method can maintain clear details and can effectively reduce the mosquito noise, compared to the case of using the first mosquito noise detection method.
  • the third mosquito noise detection method T data, C data, and O data are used for mosquito noise detection, while in the first mosquito noise detection method, only T data is used for mosquito noise detection. That is, the first mosquito noise detection method has an advantage that the amount of calculation is smaller than that of the third mosquito noise detection method.
  • which of the first to third mosquito noise detection methods is used as the mosquito noise detection method may be appropriately selected according to the allowable calculation amount and image accuracy.
  • An image data processing apparatus for reducing mosquito noise generated during reproduction of decoded input image data has been described using the digital television apparatus 100 as an example.
  • An object of the image data processing apparatus of the present invention is to realize output image data in which mosquito noise is effectively reduced while retaining detail portions included in input image data.
  • the input image data is separated into the first image data, the second image data, and the third image data by the data separation means.
  • the first image data is image data not including an edge region
  • the second image data is image data including an edge region
  • the third image data is the same image data as the input image data.
  • the standard deviation value for each pixel is calculated by the standard deviation value calculating means.
  • An important approach of the present invention is to perform image data processing based on the first image data that does not include the edge region. is there. By performing image data processing using the first image data, it is possible to calculate the degree of occurrence of mosquito noise for each pixel by the mosquito noise calculation means without being affected by the edge region having a large luminance difference. .
  • the second image data appropriately weighted for each pixel and the third image data are synthesized to obtain output image data.
  • Improved output image data can be obtained.
  • the mosquito noise calculation means calculates the degree of mosquito noise occurrence in consideration of the second standard deviation value obtained from the second image data in addition to the first standard deviation value obtained from the first image data. It is possible to further improve the image quality.
  • each parameter of the first function and the second function can be determined for each frame using the third standard deviation value obtained from the third image data.
  • the degree of mosquito noise occurrence can be calculated using the first function and the second function optimized for each frame, and it is possible to further improve the image quality.
  • the image data processing apparatus has been mainly described.
  • the present invention can also be expressed as an image data processing method including steps for executing the same processing as each block in the image data processing apparatus.
  • Embodiment of this invention has demonstrated taking the digital television apparatus 100 as an example, it can utilize also in the set top box (STB) in a cable television etc.
  • STB set top box
  • Image data streamed over the Internet, image data downloaded from the Internet and stored in a recording medium 121 such as a PC memory or HDD, etc. are generally encoded and need to be decoded during playback. is there. Therefore, there is a high possibility that mosquito noise is included in the output image data. Therefore, by providing the image data processing device 1 of the present invention between the decoder 122 and the display application 123, it is possible to obtain output image data in which image quality has been improved appropriately.
  • videophone devices using PCs and smartphones have become common. These videophone devices also transmit and receive encoded image data to reduce the data capacity, and display the decoded image data at each terminal. Therefore, also in the videophone device, by providing the image data processing device 1 of the present invention between the decoder and the display device, it is possible to obtain output image data in which the image quality is appropriately improved.
  • each block (data separation unit 10, mosquito noise detection unit 20, mosquito noise reduction unit 30) of the image data processing apparatus 1 may be configured by hardware logic, or a CPU (central processing) as follows. unit), and may be realized by software.
  • the image data processing apparatus 1 includes a CPU that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, a RAM (random access memory) that develops the program, the program,
  • a storage device (recording medium) such as a memory for storing various data is provided.
  • An object of the present invention is to supply a computer with a recording medium in which a program code (execution format program, intermediate code program, source program) of an image data processing program, which is software for realizing the functions described above, is recorded so as to be readable by the computer. However, this can also be achieved by reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
  • Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, and a compact disk-ROM / MO / MD / digital video disk / compact disk-R.
  • the image data processing apparatus 1 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • one aspect of the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • the technical scope of the present invention includes an image data processing program that causes a computer to operate as each block of the image data processing apparatus 1 of the present embodiment, and a computer-readable recording medium that records the image data processing program. .
  • the image data processing device 1 can be realized on a computer by realizing the above-described units with a computer. Further, according to the recording medium, the image data processing program read from the recording medium can be realized on a general-purpose computer.
  • the standard deviation value calculating unit calculates the second standard deviation value of the luminance data in each pixel included in the second image data and the peripheral area of the pixel. It is calculated as a standard deviation value, and it is preferable that the mosquito noise calculating means calculates the degree of occurrence of mosquito noise using at least the first standard deviation value and the second standard deviation value.
  • the first image data does not include the edge region of the input image data, but includes mosquito noise and details other than mosquito noise. As described above, it is possible to determine mosquito noise that is not affected by an edge by calculating the degree of occurrence of mosquito noise using only the first standard deviation value of the first image data. However, the first image data includes details in addition to mosquito noise, and it cannot be denied that the details may affect the determination of mosquito noise.
  • the second image data includes an edge region.
  • the standard deviation calculation means by calculating the second standard deviation value of the second image data, it is possible to determine whether the pixel is close to or away from the edge portion.
  • the pixel When it is determined from the second standard deviation value that the pixel is close to the edge portion, the pixel is taken into the mosquito noise calculation means without affecting the first standard deviation value. That is, the value is the same as when the degree of occurrence of mosquito noise is calculated using only the first standard deviation value of the first image data not including the edge region.
  • the second standard deviation value acts in the mosquito noise calculation means as a correction term for further reducing the value obtained by calculating the degree of occurrence of mosquito noise using only the first standard deviation value not affected by the edge.
  • the standard deviation value calculating means calculates the third standard value of the luminance data in each pixel included in the input image data and the peripheral area of the pixel. It is preferably calculated as a deviation value, and the mosquito noise calculation means preferably calculates the degree of occurrence of mosquito noise using at least the first standard deviation value and the third standard deviation value.
  • the standard deviation value calculation means in addition to the first standard deviation value and the second standard deviation value, the standard deviation value of the luminance data in each pixel of the input image data and the peripheral area of the pixel is added. Is calculated as the third standard deviation value.
  • the mosquito noise calculating means the third standard deviation value is taken into account in both cases of using the first standard deviation value and using the first standard deviation value and the second standard deviation value. By calculating the degree of occurrence of mosquito noise, it becomes possible to determine the mosquito noise more strictly.
  • the mosquito noise calculating means calculates the first mosquito noise occurrence degree by substituting the first standard deviation value into a predetermined first function
  • a second mosquito noise occurrence degree is calculated by substituting the second standard deviation value into a predetermined second function
  • the first function is an absolute value of the first standard deviation value as an input value.
  • This is a function that shows a maximum value as an output value in the case of the minimum, the output value monotonously decreases as the input value increases, and further the output value becomes 0 when the input value is the first predetermined value.
  • the second function shows a maximum value as the output value, and the calculated value decreases monotonously as the input value increases.
  • the first function and the second function include the first predetermined value and the second predetermined value as parameters.
  • the first standard deviation value and the third standard deviation value are used to determine the first predetermined value, and the second standard deviation value and the third standard deviation value are used to determine the second predetermined value.
  • the image data processing apparatus provides, for each frame, the average value of the degree of occurrence of mosquito noise calculated by the mosquito noise calculation unit in the input image data as the average value of mosquito noise occurrence degree.
  • the magnitude relation between the mosquito noise occurrence average value and a predetermined threshold value is compared, and the frame in which the mosquito noise occurrence degree average value is determined to be equal to or greater than the threshold value includes mosquito noise in the frame. While determining that the ratio is high, the frame for which the average mosquito noise occurrence degree is determined to be less than the threshold value includes mosquito noise determination means for determining that the ratio of mosquito noise to the frame is small. preferable.
  • the mosquito noise calculation means calculates an average value of the degree of occurrence of the mosquito noise calculated for each pixel for all pixels of one frame of the input image data. If the average value is equal to or greater than a predetermined threshold, the mosquito noise determination means determines that the frame contains a high proportion of mosquito noise, and needs to perform mosquito noise reduction processing described later on the input image data. Judge that there is.
  • the average value is less than the predetermined threshold, it is determined that the ratio of the mosquito noise is small in the frame, and it is determined that it is not necessary to perform the mosquito noise reduction process on the input image data.
  • the image data processing apparatus uses the degree of mosquito noise generation for the frame that is determined by the mosquito noise determination means to have a high ratio of mosquito noise. It is preferable to provide a mosquito noise reduction unit that outputs the output image data by combining the input image data and the second image data after weighting the image data and the second image data. .
  • the mosquito noise reduction unit determines that the input image data and the first image for each pixel of the input image data.
  • Mosquito noise reduction processing is performed using the two image data and output as output image data.
  • the second image data is image data obtained by processing input image data with a low-pass filter (LPF) or the like.
  • LPF low-pass filter
  • the mosquito noise is reduced, and at the same time, fine image data other than mosquito noise (detail portion). Is also lost image data.
  • the input image data and the second image data are weighted, and the input image data and the second image data are combined to produce an output image. Output data.
  • the input image data is set as output image data.
  • the present invention it is possible to perform mosquito noise removal processing that is not affected by edges. Therefore, for example, it can be applied when decoding and playing back encoded digital video data such as terrestrial digital broadcasting, cable TV, video distributed over a network, and videophones using a personal computer or smartphone as a terminal. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

An image data processing apparatus (1) is provided with: a data separation unit (10) for separating input image data into first image data that does not include edge areas, and data other than the first image data; a standard deviation calculation unit (22) for calculating standard deviation of brightness data of each of the pixels contained within the first image data, and areas surrounding the pixels; and a mosquito-noise calculation unit (23) for calculating the degree that mosquito-noise is produced for each of the pixels of the input image data, using the standard deviation.

Description

画像データ処理装置、画像データ処理方法、画像データ処理プログラム、およびコンピュータ読取可能な記録媒体Image data processing apparatus, image data processing method, image data processing program, and computer-readable recording medium

 本発明は、画像信号に含まれるモスキートノイズを低減する画像データ処理装置、画像データ処理方法、画像データ処理プログラム、およびコンピュータ読取可能な記録媒体に関する。 The present invention relates to an image data processing device, an image data processing method, an image data processing program, and a computer-readable recording medium that reduce mosquito noise included in an image signal.

 デジタル画像データおよびデジタル映像データを、保存や転送する場合、データ容量を小さくするために、その映像データ(以下において、デジタル画像データおよびデジタル映像データを総称して映像データと呼ぶ)をエンコードすることが一般的である。映像データエンコードの標準方式であるMPEG(Moving Picture Experts Group)などにおいては映像データをブロック化し、その各ブロックに2次元のDCT(Discrete Cosine Transform)処理を行い、高周波成分の変換係数を0とみなすことによってエンコードを行う。 When digital image data and digital video data are stored or transferred, the video data (hereinafter, digital image data and digital video data are collectively referred to as video data) is encoded to reduce the data capacity. Is common. In MPEG (Moving Picture Experts Group), which is a standard method of video data encoding, video data is blocked, each block is subjected to two-dimensional DCT (Discrete Cosine Transform) processing, and the high-frequency component conversion coefficient is regarded as 0. Encode by doing.

 一方、エンコードされた映像データを表示または再生するためには、デコードする必要がある。デコードの際、エンコード時に0とみなされた高周波成分の変換係数に起因してモスキートノイズが発生する。 On the other hand, it is necessary to decode in order to display or play back the encoded video data. At the time of decoding, mosquito noise is generated due to a high-frequency component conversion coefficient regarded as 0 at the time of encoding.

 映像データにエッジなどの急激な輝度変化がある場合には、高周波成分が多く発生し、エンコード時に欠落する変換係数が多くなる。そのため、モスキートノイズは輝度変化の急激なエッジ周辺に発生しやすいことが知られている。 When there is a sharp brightness change such as an edge in the video data, a lot of high-frequency components are generated, resulting in an increase in conversion coefficients that are missing during encoding. For this reason, it is known that mosquito noise is likely to occur around the edge where the luminance changes rapidly.

 従来から、映像データを例えばローパスフィルタ(LPF)で処理することにより、モスキートノイズが低減されることが知られている。しかし、この手法ではLPFによって映像データの全体が等しく平滑化されるために、モスキートノイズを低減することと同時に、映像データにおける微細な模様などノイズ以外の高周波成分まで失ってしまう、という問題があった。 Conventionally, it is known that mosquito noise is reduced by processing video data with, for example, a low-pass filter (LPF). However, this method has the problem that the entire video data is smoothed equally by LPF, and at the same time, mosquito noise is reduced, and at the same time, high-frequency components other than noise such as fine patterns in video data are lost. It was.

 この問題を解決するために、次のような技術が開示されている。映像データをブロックに分割し、ブロックごとにエッジ領域、テクスチャ領域、またはフラット領域のうちのいずれであるかを判断し、非線形平滑フィルタを用いて映像データにノイズ除去処理を施す(特許文献1参照)。 In order to solve this problem, the following technology is disclosed. The video data is divided into blocks, and it is determined whether each block is an edge region, a texture region, or a flat region, and noise removal processing is performed on the video data using a nonlinear smoothing filter (see Patent Document 1). ).

 また、モスキートノイズが一般的にエッジ付近に多く生じることに着目し、映像データに対してエッジ検出、分散値検出および差分算出を行い、それらの結果に基づきモスキートノイズが含まれる画素領域を判定する技術が開示されている(特許文献2公報)。 In addition, focusing on the fact that mosquito noise generally occurs near the edges, edge detection, dispersion value detection, and difference calculation are performed on video data, and a pixel region including mosquito noise is determined based on the results. A technique is disclosed (Patent Document 2).

日本国公開特許公報「特開2008-278185号公報(公開日:2008年11月13日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-278185 (Publication Date: November 13, 2008)” 日本国公開特許公報「特開2009-225299号公報(公開日:2009年10月1日)」Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2009-225299 (Publication Date: October 1, 2009)”

 上記のいずれの技術においても、映像データからエッジ領域を検出し、その画素周辺のデータについて分散値を算出するなどしてモスキートノイズの判定を行っている。しかしながら、エッジ周辺は輝度変化の大きな領域であるので、その領域におけるデータの分散値は必然的に大きくなる。よって、エッジ周辺に輝度変化は大きくないが有意な高周波数成分が存在する場合には、モスキートノイズと判別することが困難であった。なお、上記のような輝度変化は大きくなく、かつ有意な高周波成分のことを、以下ではディテール部分とする。 In any of the above techniques, mosquito noise is determined by detecting an edge region from video data and calculating a variance value for data around the pixel. However, since the periphery of the edge is an area where the luminance change is large, the data dispersion value in the area inevitably increases. Therefore, when there is a significant high-frequency component that does not have a large luminance change around the edge, it is difficult to distinguish it from mosquito noise. In addition, the above-mentioned brightness | luminance change is not large and a significant high frequency component is set as a detail part below.

 本発明は、上記課題に鑑みてなされたものであり、映像データの全領域において精度良くモスキートノイズ判定を行い、画像データに含まれるディテール部分は保持しつつ、効果的にモスキートノイズを除去し、適切に画質を改善した出力画像データを得ることを目的としている。 The present invention has been made in view of the above problems, and performs mosquito noise determination with high accuracy in the entire area of video data, effectively removing mosquito noise while retaining the detail portion included in the image data, The purpose is to obtain output image data with improved image quality.

 本発明の画像データ処理装置は、上記課題を解決するため、入力画像データを、エッジ領域を含まない第1画像データと、当該第1画像データ以外の第2画像データとに分離するデータ分離手段と、上記第1画像データ内に含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値を第1標準偏差値として算出する標準偏差値算出手段と、上記第1標準偏差値を用いて、上記入力画像データの画素毎のモスキートノイズ発生度合いを算出するモスキートノイズ算出手段と、を備えている。 In order to solve the above problems, the image data processing apparatus of the present invention separates input image data into first image data that does not include an edge region and second image data other than the first image data. A standard deviation value calculating means for calculating a standard deviation value of luminance data in each pixel included in the first image data and a peripheral area of the pixel as a first standard deviation value, and using the first standard deviation value. Mosquito noise calculating means for calculating the degree of occurrence of mosquito noise for each pixel of the input image data.

 また、本発明の画像データ処理方法は、上記課題を解決するため、入力画像データを、エッジ領域を含まない第1画像データと、当該第1画像データ以外の第2画像データとに分離するデータ分離ステップと、上記第1画像データ内に含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値を第1標準偏差値として算出する標準偏差値算出ステップと、上記第1標準偏差値を用いて、上記入力画像データの画素毎のモスキートノイズ発生度合いを算出するモスキートノイズ算出ステップと、を備えている。 Further, in order to solve the above problems, the image data processing method of the present invention separates input image data into first image data not including an edge region and second image data other than the first image data. A separation step; a standard deviation value calculating step for calculating a standard deviation value of luminance data in each pixel included in the first image data and a peripheral region of the pixel as a first standard deviation value; and the first standard deviation value And a mosquito noise calculating step for calculating the degree of occurrence of mosquito noise for each pixel of the input image data.

 上記構成においては、入力画像データ(Oデータ)を、データ分離手段(エッジ分離ステップ)によりエッジ領域に係わる情報を含まない第1画像データ(Tデータ)と、当該第1画像データ以外の第2画像データ(Cデータ)に分離する。そして、第1画像データの標準偏差値を第1標準偏差値として標準偏差値算出手段(標準偏差値算出ステップ)において算出し、第1標準偏差値を用いて画像データ処理を行うことにより、モスキートノイズ算出手段(モスキートノイズ算出ステップ)においてモスキートノイズの発生度合いを算出する。 In the above configuration, the input image data (O data) is divided into first image data (T data) that does not include information related to the edge region by the data separation means (edge separation step), and second data other than the first image data. Separated into image data (C data). Then, the standard deviation value of the first image data is calculated as the first standard deviation value in the standard deviation value calculating means (standard deviation value calculating step), and the image data processing is performed using the first standard deviation value, thereby obtaining the mosquito. In the noise calculation means (mosquito noise calculation step), the degree of occurrence of mosquito noise is calculated.

 従来技術では、入力画像データよりエッジ部分を検出し、当該エッジ部分の周辺領域に対して分散値検出などの数値処理を行い、モスキートノイズを含む画素領域を判別してきた。上記従来技術では、エンコードの原理上、モスキートノイズが入力画像データのエッジ部分に発生しやすいことに着目し、モスキートノイズの判別を行う。 In the prior art, an edge portion is detected from input image data, and numerical processing such as dispersion value detection is performed on the peripheral region of the edge portion to determine a pixel region including mosquito noise. In the above prior art, mosquito noise is discriminated by paying attention to the fact that mosquito noise is likely to occur at the edge portion of the input image data due to the principle of encoding.

 しかしながら、上記エッジ部分の周辺領域の入力画像データは、エッジに起因する輝度データの差分値が大きい。そのため、上記エッジ部分の周辺領域にモスキートノイズ以外の輝度差分値は小さいが有意な画像データ(以下ではディテールとする)が含まれていた場合に、モスキートノイズと上記ディテールを判別することが困難であった。 However, the input image data in the peripheral area of the edge part has a large difference value of luminance data caused by the edge. Therefore, it is difficult to discriminate between mosquito noise and the above-mentioned details when the peripheral area of the edge portion includes significant image data (hereinafter referred to as detail) having a small luminance difference value other than mosquito noise. there were.

 本発明では、エッジ領域を含まない上記第1画像データについて、標準偏差値算出手段により、各画素および当該画素の周辺領域における輝度データの標準偏差値を第1標準偏差値として算出する。また、上記第1標準偏差値を用いてモスキートノイズ算出手段において、モスキートノイズの発生度合いを算出する。
このことにより、入力画像データのエッジ部分に起因する大きな差分値とは無関係にモスキートノイズの発生度合いを判定することが可能となる。よって、従来技術では困難であった、エッジ部分の周辺領域に存在する微細な画像データと、モスキートノイズとを判別することが可能となる。
In the present invention, with respect to the first image data not including the edge region, the standard deviation value calculating means calculates the standard deviation value of the luminance data in each pixel and the peripheral region of the pixel as the first standard deviation value. Further, the mosquito noise calculation means calculates the degree of occurrence of mosquito noise using the first standard deviation value.
As a result, it is possible to determine the degree of occurrence of mosquito noise regardless of a large difference value caused by the edge portion of the input image data. Therefore, it is possible to discriminate between fine image data existing in the peripheral area of the edge portion and mosquito noise, which is difficult with the prior art.

 本発明によれば、映像データよりエッジ領域の影響を除去したデータを分離し、前記エッジ領域の影響を除去したデータを用いてモスキートノイズ判定を行うので、エッジの影響を受けないモスキートノイズ除去処理が可能となる。その結果、画像データに含まれるディテール部分は保持しつつ、効果的にモスキートノイズを除去し、適切に画質を改善した出力画像データを得ることが可能となる。 According to the present invention, the data from which the influence of the edge area is removed is separated from the video data, and the mosquito noise determination is performed using the data from which the influence of the edge area has been removed. Is possible. As a result, it is possible to effectively remove mosquito noise while retaining the detail portion included in the image data, and obtain output image data with an improved image quality.

本発明の一実施形態である画像データ処理装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an image data processing apparatus according to an embodiment of the present invention. 本発明の一実施形態である画像データ処理装置を用いたデジタルテレビ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the digital television apparatus using the image data processing apparatus which is one Embodiment of this invention. 図3の(a)は、画像データ処理を施されていない画像データの一例(アルファベットのa)を示す図であり、図3の(b)は、図3の(a)の画像データをエンコードした後に、デコードした画像データを示す図である。3A is a diagram showing an example of image data (alphabet a) that has not been subjected to image data processing, and FIG. 3B encodes the image data of FIG. 3A. It is a figure which shows the image data decoded after having performed. 図4の(a)はデコードしたアルファベットのaの画像データを示す図である。図4の(b)は、図4の(a)の画像データに対してエッジ考慮型映像スムージング処理を施した場合の画像データを示す図である。図4の(c)は、輝度変化量が小さく、かつ微細な模様(ディテール)をデコードした画像データを示す図である。図4の(d)は、図4の(c)の画像データに対してエッジ考慮型映像スムージング処理を施した場合の画像データを示す図である。FIG. 4A is a diagram showing decoded image data of the letter a. FIG. 4B is a diagram illustrating image data when edge-considered video smoothing processing is performed on the image data of FIG. FIG. 4C is a diagram showing image data obtained by decoding a minute pattern (detail) with a small amount of change in luminance. FIG. 4D is a diagram illustrating image data when edge-considered video smoothing processing is performed on the image data in FIG. 本発明の一実施形態である、画像データ処理装置が備えるデータ分離部の構成を示すブロック図である。It is a block diagram which shows the structure of the data separation part with which the image data processing apparatus which is one Embodiment of this invention is provided. 本発明の一実施形態である、画像データ処理装置が備えるモスキートノイズ検出部の構成を示すブロック図である。It is a block diagram which shows the structure of the mosquito noise detection part with which the image data processing apparatus which is one Embodiment of this invention is provided. 本発明の一実施形態である、画像データ処理装置が備える標準偏差値算出部において、標準偏差値を算出する場合の注目画素(Pi,j)および注目画素周辺領域を示す図である。It is a figure which shows the attention pixel (P i, j ) and attention pixel surrounding area in the case of calculating the standard deviation value in the standard deviation value calculation unit provided in the image data processing apparatus according to the embodiment of the present invention. 図8の(a)は、第1標準偏差値から第1モスキートノイズ発生度合いを算出する第1関数の概形を示す図である。図8の(b)は、第2標準偏差値から第2モスキートノイズ発生度合いを算出する第2関数の概形を示す図である。(A) of FIG. 8 is a figure which shows the general form of the 1st function which calculates the 1st mosquito noise generation degree from a 1st standard deviation value. FIG. 8B is a diagram showing an outline of the second function for calculating the second mosquito noise occurrence degree from the second standard deviation value. 図9の(a)、図9の(b)、および図9の(c)は、標準偏差値算出部において得られた画素毎の標準偏差値を、1フレーム分の全画素について記憶しておき得られたヒストグラムを示す図である。9 (a), 9 (b), and 9 (c), the standard deviation value for each pixel obtained in the standard deviation value calculation unit is stored for all pixels for one frame. It is a figure which shows the histogram obtained every time. 本発明の一実施形態である、画像データ処理装置が備えるモスキートノイズ低減部の構成を示すブロック図である。It is a block diagram which shows the structure of the mosquito noise reduction part with which the image data processing apparatus which is one Embodiment of this invention is provided. 図11の(a)は、デコードされた画像の一例を示す図である。図11の(b)、図11の(c)および図11の(d)は、図11の(a)のα部を拡大した画像を示す図である。特に、図11の(b)は画像処理前の画像を、図11の(c)は従来のエッジ考慮型映像スムージング処理後の画像を、そして図11の(d)は本発明の画像データ処理後の画像を、それぞれ示す図である。FIG. 11A shows an example of a decoded image. FIG. 11B, FIG. 11C, and FIG. 11D are views showing images obtained by enlarging the α part of FIG. 11A. In particular, FIG. 11B shows an image before image processing, FIG. 11C shows an image after conventional edge-considered video smoothing processing, and FIG. 11D shows image data processing of the present invention. It is a figure which shows each subsequent image.

 図11の(e)、図11の(f)および図11の(g)は、図11の(a)のβ部を拡大した画像を示す図である。図11の(e)は画像処理前の画像を、図11の(f)は従来のエッジ考慮型映像スムージング処理後の画像を、そして図11の(g)は本発明の画像データ処理後の画像を、それぞれ示す図である。
図12の(a)は、デコードされた画像の一例を示す図である。図12の(b)は、図12の(a)の画像に第1モスキートノイズ検出方法を適用してモスキートノイズを低減した後の画像である。図12の(c)は、図12の(a)の画像に第3モスキートノイズ検出方法を適用してモスキートノイズを低減した後の画像である。図12の(d)は、図12の(a)の画像に従来のバイラテラルフィルタを適用してモスキートノイズを低減した後の画像である。 本発明の一実施例である、ネットワークを介して配信される画像データの画像データ処理を行うPC、および画像表示システムの構成を示すブロック図である。
(E) in FIG. 11, (f) in FIG. 11 and (g) in FIG. 11 are images showing an enlarged view of the β portion in (a) in FIG. 11 (e) shows an image before image processing, FIG. 11 (f) shows an image after conventional edge-considered video smoothing processing, and FIG. 11 (g) shows an image after image data processing of the present invention. It is a figure which shows an image, respectively.
FIG. 12A shows an example of a decoded image. FIG. 12B is an image after the mosquito noise is reduced by applying the first mosquito noise detection method to the image of FIG. (C) of FIG. 12 is an image after the mosquito noise is reduced by applying the third mosquito noise detection method to the image of (a) of FIG. FIG. 12D is an image after the mosquito noise is reduced by applying the conventional bilateral filter to the image of FIG. 1 is a block diagram illustrating a configuration of a PC that performs image data processing of image data distributed via a network, and an image display system according to an embodiment of the present invention.

 以下、本発明の一実施形態に係る画像データ処理装置および表示装置の実施形態について、図1~図13を参照して説明する。なお、以下に記述する実施の形態は、本発明の具体的な一例に過ぎず、本発明はこれらによって何ら限定されるものではない。 Hereinafter, embodiments of an image data processing device and a display device according to an embodiment of the present invention will be described with reference to FIGS. The embodiment described below is merely a specific example of the present invention, and the present invention is not limited to these in any way.

 〔1.デジタルテレビ装置100について〕
 図2は、画像データ処理装置1を用いたデジタルテレビ装置100の構成を示すブロック図である。デジタルテレビ装置100は、受信装置101と、画像データ処理装置1と、表示装置110とを備える。受信装置101は、アンテナ102とチューナー103とデコーダ104とから成り、表示装置110は、画像後処理部111と表示部112とから成る。
[1. About Digital TV Device 100]
FIG. 2 is a block diagram showing a configuration of the digital television apparatus 100 using the image data processing apparatus 1. The digital television device 100 includes a receiving device 101, an image data processing device 1, and a display device 110. The receiving device 101 includes an antenna 102, a tuner 103, and a decoder 104, and the display device 110 includes an image post-processing unit 111 and a display unit 112.

 画像データ処理装置1は、データ分離部(データ分離手段)10と、モスキートノイズ検出部20と、モスキートノイズ低減部(モスキートノイズ低減手段)30とからなる。 The image data processing apparatus 1 includes a data separation unit (data separation unit) 10, a mosquito noise detection unit 20, and a mosquito noise reduction unit (mosquito noise reduction unit) 30.

 デジタルテレビ装置100は、デジタルテレビ放送のデジタル画像データ(以下、画像データとする)を受信装置101によって受信し、たとえば液晶ディスプレイパネルや、プラズマディスプレイパネルに代表される表示部112に表示するための装置である。 The digital TV apparatus 100 receives digital image data (hereinafter referred to as image data) of digital TV broadcast by the receiving apparatus 101 and displays it on a display unit 112 typified by, for example, a liquid crystal display panel or a plasma display panel. Device.

 ここで、画像データを転送や保存する場合には、そのデータ容量を小さくするために画像データがエンコードされる。エンコードとは、画像データをブロック化し、その各ブロックに2次元DCT(Discrete Cosine Transform)処理を行い、高周波成分の変換係数を0とみなすことで、画像データ容量を圧縮することである。 Here, when transferring or storing image data, the image data is encoded in order to reduce the data capacity. Encoding is to compress image data capacity by making image data into blocks, performing two-dimensional DCT (Discrete Cosine Transform) processing on each block, and assuming that the high-frequency component conversion coefficient is zero.

 エンコードされた画像データを受信したデジタルテレビ装置100の受信装置101は、エンコードされた画像データをデコータ104によりデコードすることで、当該画像データを表示部112において表示できるデータとする。 The receiving device 101 of the digital television device 100 that has received the encoded image data decodes the encoded image data with the decoder 104, thereby making the image data displayable on the display unit 112.

 なお、デコード後の画像データは表示部112にそのまま表示することが可能である。しかしながら、より良い見映えを実現するためにノイズリダクション、カラーマネージメント、およびエンハンスなど、複数の画像処理が画像後処理部111において実施される。 Note that the decoded image data can be displayed on the display unit 112 as it is. However, in order to realize a better appearance, a plurality of image processing such as noise reduction, color management, and enhancement are performed in the image post-processing unit 111.

 このように、エンコードされた画像データを受信しデコードすることによって、デジタルテレビ放送を視聴することが可能となるが、エンコードの原理上避けることが難しいノイズが存在する。上記のようにエンコードとは、ブロック化した画像データに対してDCT処理を行うものである。そのDCT処理時に、急激な輝度変化がある領域(すなわちエッジ領域)では多くの高周波成分が発生し、その結果、多くの変換係数が0とみなされる。 As described above, by receiving and decoding the encoded image data, it becomes possible to view a digital television broadcast, but there are noises that are difficult to avoid due to the encoding principle. As described above, encoding is to perform DCT processing on blocked image data. During the DCT processing, many high-frequency components are generated in a region where there is a rapid luminance change (that is, an edge region), and as a result, many conversion coefficients are regarded as zero.

 そして、そのように多くの変換係数が0とみなされた画像データをデコードして再生すると、エッジ領域において、多くの変換係数の高周波成分が欠落しているため、波状のノイズが現れる。このような、エンコードのDCT処理に伴い、画像データの変換係数のうち高周波成分が欠落することにより発生するノイズが、いわゆるモスキートノイズと呼ばれ知られている。 Then, when image data in which many conversion coefficients are regarded as 0 is decoded and reproduced, wavy noise appears because many high-frequency components of the conversion coefficients are missing in the edge region. Such a noise caused by missing high-frequency components in the conversion coefficient of image data in accordance with the encoding DCT processing is known as so-called mosquito noise.

 上記モスキートノイズの発生を低減するためには、DCT処理時の変換係数の量子化を細かくする、などの工夫が必要である。しかしながら、その場合、画像データ容量が十分に圧縮されないという弊害が生じる。そのため、一般的なエンコードにおいて、輝度変化の急激なエッジ領域において生じるモスキートノイズは避けがたいものである。 In order to reduce the occurrence of the mosquito noise, it is necessary to devise such as finely quantizing the transform coefficient during the DCT processing. However, in this case, there is a problem that the image data capacity is not sufficiently compressed. For this reason, in general encoding, mosquito noise that occurs in an edge region where the luminance changes rapidly is unavoidable.

 ここで、モスキートノイズについて、図3の(a)および図3の(b)を用いてより具体的に説明する。図3の(a)は、エンコード前の画像データであり、図3の(b)は、当該画像データに対して、エンコードおよびデコードを実施した後の画像データである。図3の(b)に示すエンコードおよびデコード後の画像データにおいては、図3の(a)に示すエンコード前の画像データにはない波状のノイズがアルファベットのaの周辺に確認できる。この波状のノイズが、いわゆるモスキートノイズである。 Here, the mosquito noise will be described more specifically with reference to FIGS. 3A and 3B. FIG. 3A shows image data before encoding, and FIG. 3B shows image data after encoding and decoding the image data. In the encoded and decoded image data shown in FIG. 3B, wavy noise that is not present in the pre-encoded image data shown in FIG. 3A can be confirmed around the alphabet a. This wavy noise is so-called mosquito noise.

 そして、モスキートノイズを低減するために、画像データに対してローパスフィルタ(LPF)に代表されるノイズ処理(以下、エッジ考慮型映像スムージング処理とする)を施すことが従来から知られている。 In order to reduce mosquito noise, it is conventionally known to perform noise processing represented by a low-pass filter (LPF) (hereinafter referred to as edge-considered video smoothing processing) on image data.

 なお、ここでいうエッジ考慮型映像スムージング処理とは、輝度値が急激に変化するエッジ領域と、輝度値がほとんど変化しない領域(フラット領域とする)とを、より明確に見映えの良い状態にし、高周波成分を含んだ画像データに関しては、スムージングをかけることで除去することを意味している。エッジ考慮型映像スムージング処理として、LPFを例示したが、その中でも、例えば、bilateral filterのように画素間の距離による平滑化だけでなく、その輝度差も考慮したLPFが望ましい。また、LPF以外の方法でも上記の画像処理を実現できるものであれば、その方法は問わない。 Note that the edge-considered video smoothing process here refers to an edge area where the luminance value changes abruptly and an area where the luminance value hardly changes (referred to as a flat area) in a more clearly visible state. It means that image data including high frequency components is removed by applying smoothing. The LPF is exemplified as the edge-considered video smoothing process, but among them, for example, an LPF that considers not only the smoothing according to the distance between pixels but also the luminance difference like the bilateral filter is desirable. Any method other than the LPF can be used as long as the above-described image processing can be realized.

 この従来のモスキートノイズ低減処理について説明すべく、デコード後の画像データを図4の(a)に示し、当該画像データにエッジ考慮型映像スムージング処理を施した結果を図4の(b)に示す。図4の(b)においては、モスキートノイズが低減され、アルファベットのaが見やすくなっていることが確認できる。 In order to explain the conventional mosquito noise reduction processing, the decoded image data is shown in FIG. 4A, and the result of performing edge-considered video smoothing processing on the image data is shown in FIG. 4B. . In FIG. 4B, it can be confirmed that the mosquito noise is reduced and the letter a is easy to see.

 しかし、この従来手法は、上記のように高周波成分を含んだ画像データに対してスムージングをかけ、画像全体をぼやかすことによりモスキートノイズの低減を行っている。よって、モスキートノイズではないが、輝度変化があまり大きくなく、かつ高周波成分を含んでいる部分(以下、このような部分をディテール部分とする)もぼやかされることになり、ディテール部分が失われるという問題があった。このディテール部分の喪失について説明するため、ディテール部分のデコード後の画像データを図4の(c)に示し、当該画像データにエッジ考慮型映像スムージング処理を施した結果を図4の(d)に示す。エッジ考慮型映像スムージング処理を施すことによって、図4の(c)に存在している格子状のディテール部分が、図4の(d)において失われていることが確認できる。 However, in this conventional method, the mosquito noise is reduced by smoothing the image data including the high-frequency component as described above and blurring the entire image. Therefore, although it is not mosquito noise, the luminance change is not so large and a portion including a high-frequency component (hereinafter referred to as a detail portion) is blurred, and the detail portion is lost. There was a problem. In order to explain the loss of the detail portion, the image data after decoding the detail portion is shown in FIG. 4C, and the result of performing the edge-considered video smoothing process on the image data is shown in FIG. Show. By performing the edge-considered video smoothing process, it can be confirmed that the lattice-like detail portion existing in FIG. 4C is lost in FIG. 4D.

 〔画像データ処理装置1の概要〕
 本発明では、ディテール部分を失うことなく、モスキートノイズの効果的な低減を実現するために、図2に示すデジタルテレビ装置100の受信装置101と表示装置110の間に、画像データ処理装置1を備えている。以下、画像データ処理装置1の構成について、より具体的に説明する。
[Outline of Image Data Processing Apparatus 1]
In the present invention, in order to effectively reduce mosquito noise without losing detail, the image data processing apparatus 1 is installed between the receiving apparatus 101 and the display apparatus 110 of the digital television apparatus 100 shown in FIG. I have. Hereinafter, the configuration of the image data processing apparatus 1 will be described more specifically.

 画像データ処理装置1は、図1に示すように、データ分離部10とモスキートノイズ検出部20とモスキートノイズ低減部30とから成る。そして、データ分離部10には、受信装置101(図2)のデコーダ104(図2)によってデコードされた画像データが送られる。このデコードされた画像データを、以下では入力画像データとする。 As shown in FIG. 1, the image data processing apparatus 1 includes a data separation unit 10, a mosquito noise detection unit 20, and a mosquito noise reduction unit 30. Then, the image data decoded by the decoder 104 (FIG. 2) of the receiving apparatus 101 (FIG. 2) is sent to the data separation unit 10. This decoded image data is hereinafter referred to as input image data.

 〔2.データ分離部10〕
 次に、図5を用いて、データ分離部10のより具体的な構成について説明する。データ分離部10に送られた入力画像データは3つの同一なデータに複製され、そのうちの1つの入力画像データは、エッジ考慮型映像スムージング処理が施される。ここで、エッジ考慮型映像スムージング処理とは、ローパスフィルタやバイラテラルフィルタを用いて入力画像データを処理することを意味している。このように入力画像データにエッジ考慮型映像スムージング処理を施すことにより、入力画像データからモスキートノイズやディテールなどを含む高周波成分が除去された画像データを得ることができる。なお、この高周波成分が除去された画像データについては、以下では単にCデータ(Cartoonデータ、第2画像データ)と記載する。
[2. Data separation unit 10]
Next, a more specific configuration of the data separation unit 10 will be described with reference to FIG. The input image data sent to the data separation unit 10 is duplicated into three identical data, and one of the input image data is subjected to edge-considered video smoothing processing. Here, the edge-considered video smoothing process means that input image data is processed using a low-pass filter or a bilateral filter. Thus, by performing edge-considered video smoothing processing on the input image data, it is possible to obtain image data from which high-frequency components including mosquito noise and details are removed from the input image data. Note that the image data from which the high-frequency components have been removed is simply referred to as C data (Carton data, second image data) below.

 このCデータは、入力画像データから高周波成分を除去した画像データであるとともに、エッジ領域に関する情報を含んでいる。そして、Cデータと複製した入力画像データの1つとの差分をとることにより、エッジ領域の情報を含まず、モスキートノイズやディテールなど高周波成分を含む画像データが作成される。このように作成された画像データについては、以下では単にTデータ(Textureデータ、第1画像データ)と記載する。また、CデータはTデータの作成に用いられると同時に、Cデータ自体もデータ分離部10から出力される。 The C data is image data obtained by removing high frequency components from the input image data, and includes information on the edge region. Then, by taking the difference between the C data and one of the duplicated input image data, image data including high-frequency components such as mosquito noise and detail is generated without including edge region information. The image data created in this way is hereinafter simply referred to as T data (Texture data, first image data). Further, the C data is used to create T data, and at the same time, the C data itself is output from the data separation unit 10.

 さらに、3つ複製した入力画像データのうちの1つは、そのままデータ分離部10から出力される。このデータを、以下では単にOデータ(オリジナルデータ)と記載する。 Further, one of the three duplicated input image data is output from the data separation unit 10 as it is. Hereinafter, this data is simply referred to as O data (original data).

 上記のように、データ分離部10からは、エッジ領域に関する情報を含まないTデータと、エッジ領域に関する情報を含むCデータと、入力画像データであるOデータとが出力される。 As described above, the data separation unit 10 outputs T data that does not include information related to the edge region, C data that includes information related to the edge region, and O data that is input image data.

 〔3.モスキートノイズ検出部20〕
 次にモスキートノイズ検出部20について説明する。モスキートノイズ検出部20は、図6に示すように、輝度値算出部21と、標準偏差値算出部(標準偏差値算出手段)22と、モスキートノイズ算出部(モスキートノイズ算出手段)23と、ヒストグラムを保存する記憶部24から成る。
[3. Mosquito noise detector 20]
Next, the mosquito noise detection unit 20 will be described. As shown in FIG. 6, the mosquito noise detector 20 includes a luminance value calculator 21, a standard deviation value calculator (standard deviation value calculator) 22, a mosquito noise calculator (mosquito noise calculator) 23, and a histogram. Is stored in the storage unit 24.

 モスキートノイズ検出部20において、モスキートノイズ検出を行うにあたって、
 (1)Tデータのみを用いる場合、
 (2)TデータとCデータとを用いる場合、および
 (3)TデータとCデータとOデータとを用いる場合が考えられる。
In performing mosquito noise detection in the mosquito noise detection unit 20,
(1) When using only T data,
(2) When T data and C data are used, and (3) When T data, C data, and O data are used.

 本実施の形態においては上記3つの方法の中で基本となる、(1)Tデータのみを用いてモスキートノイズ検出を行う場合の説明を行い、それ以外のモスキートノイズ検出の方法については後述する。なお、以下において、
 (1)Tデータのみを用いた検出方法を第1モスキートノイズ検出方法とし、
 (2)Tデータと、Cデータとを用いた検出方法を第2モスキートノイズ検出方法とし、そして、
 (3)Tデータと、Cデータと、Oデータとを用いた検出方法を第3モスキートノイズ検出方法とする。
In the present embodiment, (1) the case where mosquito noise detection is performed using only T data, which is the basic of the above three methods, will be described, and other mosquito noise detection methods will be described later. In the following,
(1) A detection method using only T data is a first mosquito noise detection method,
(2) The detection method using T data and C data is the second mosquito noise detection method, and
(3) A detection method using T data, C data, and O data is defined as a third mosquito noise detection method.

 そして、第1~第3モスキートノイズ検出方法のいずれにおいても、データ分離部10からモスキートノイズ検出部20が備える輝度値算出部21へTデータが入力される。なお、図6のモスキートノイズ検出部20では、実施形態の一例としてTデータ、Cデータ、およびOデータの3つのデータが輝度値算出部21へ入力される場合を図示している。しかしながら、第1モスキートノイズ検出方法ではTデータのみが輝度値算出部21へ入力される。 In any of the first to third mosquito noise detection methods, T data is input from the data separation unit 10 to the luminance value calculation unit 21 included in the mosquito noise detection unit 20. In the mosquito noise detection unit 20 of FIG. 6, as an example of the embodiment, a case where three data of T data, C data, and O data are input to the luminance value calculation unit 21 is illustrated. However, in the first mosquito noise detection method, only T data is input to the luminance value calculation unit 21.

 ここで、輝度値算出部21の詳細を理解するために、表示部112の一例である液晶ディスプレイ113の構成を説明する必要があるので、図7を用いて説明する。図7に示すように、液晶ディスプレイパネル113は、たとえば赤(R)、緑(G)、および青(B)のサブ画素から成る画素を備えている。 Here, in order to understand the details of the luminance value calculation unit 21, it is necessary to describe the configuration of the liquid crystal display 113, which is an example of the display unit 112, and will be described with reference to FIG. As shown in FIG. 7, the liquid crystal display panel 113 includes pixels including, for example, red (R), green (G), and blue (B) sub-pixels.

 そして、輝度値算出部21では、液晶ディスプレイパネル113のフレーム中の各画素について、以下に説明するように、サブ画素のTデータより輝度データを算出する。なお、以下の説明においては、図7に示される座標(i,j)の画素をPi,jとし、Pi,jのTデータより求められる輝度データをT_Yi,jとする。ここで、液晶ディスプレイパネル113のフレームサイズが水平画素数1920画素、および垂直画素数1080画素であれば、1≦i≦1920および、1≦j≦1080となる。 Then, the luminance value calculation unit 21 calculates luminance data for each pixel in the frame of the liquid crystal display panel 113 from the T data of the sub-pixels as described below. In the following description, the pixel at the coordinates (i, j) shown in FIG. 7 is P i, j, and the luminance data obtained from the T data of P i, j is T_Y i, j . Here, if the frame size of the liquid crystal display panel 113 is 1920 horizontal pixels and 1080 vertical pixels, 1 ≦ i ≦ 1920 and 1 ≦ j ≦ 1080.

 また、Pi,jのサブ画素のR、G、およびBのTデータを、それぞれT_Ri,j、T_Gi,j、およびT_Bi,jとする。デジタルテレビ装置100の場合は、T_Yi,jはたとえば以下の式で算出することができる。
T_Yi,j=0.213×T_Ri,j+0.715×T_Gi,j+0.072×T_Bi,j
 そして、輝度値算出部21において、上述のようにフレーム中の全画素についてT_Yi,jが算出されると、そのT_Yi,jは標準偏差値算出手段である標準偏差値算出部22に送られる。
Also, the T data of R, G, and B of the sub-pixels of P i, j are T_R i, j , T_G i, j , and T_B i, j , respectively. In the case of the digital television device 100, T_Y i, j can be calculated by the following equation, for example.
T_Y i, j = 0.213 × T_R i, j + 0.715 × T_G i, j + 0.072 × T_B i, j
When the luminance value calculation unit 21 calculates T_Y i, j for all pixels in the frame as described above, the T_Y i, j is sent to the standard deviation value calculation unit 22 which is a standard deviation value calculation unit. It is done.

 また、図6では、標準偏差値算出部22に入力される輝度データとして、Oデータの輝度データ(O_Yi,j)とCデータの輝度データ(C_Yi,j)とT_Yi,jとが記載されている。この点、第1モスキートノイズ検出方法では、Tデータのみを用いてモスキートノイズ検出を行うので、T_Yi,jのみが標準偏差値算出部22に入力される。 Further, in FIG. 6, as the luminance data that is input to the standard deviation calculation unit 22, the luminance data (O_Y i, j) of O data and luminance data (c_y i, j) of the C data and T_y i, and the j Are listed. In this regard, in the first mosquito noise detection method, since the mosquito noise detected by using only the T data, T_y i, only j are input to the standard deviation calculation unit 22.

 そして、標準偏差値算出部22では、フレーム中の各画素(たとえばPi,j)および、Pi,jの周辺領域における輝度データの標準偏差値を第1標準偏差値として算出する。以下において、第1標準偏差値のことをT_STDi,jとする。 Then, the standard deviation value calculation unit 22 calculates the standard deviation value of the luminance data in each pixel (for example, P i, j ) in the frame and the peripheral region of P i, j as the first standard deviation value. Hereinafter, the first standard deviation value is defined as T_STD i, j .

 また、T_STDi,jを算出する際の上記Pi,jの周辺領域のサイズは、エンコード時の圧縮ブロックサイズ程度が好ましい。具体的には8画素×8画素が適当であるが、3画素×3画素から11画素×11画素程度のサイズであれば問題ない。本実施の形態では、説明の簡単のため、各画素の周辺領域を3画素×3画素として説明する(図7中の拡大図参照)。 In addition, the size of the peripheral area of P i, j when calculating T_STD i, j is preferably about the compressed block size at the time of encoding. Specifically, 8 pixels × 8 pixels is appropriate, but there is no problem if the size is about 3 pixels × 3 pixels to 11 pixels × 11 pixels. In this embodiment, for the sake of simplicity, the peripheral area of each pixel is described as 3 pixels × 3 pixels (see an enlarged view in FIG. 7).

 各画素および各画素の周辺領域における輝度データから、以下に示す式に従ってT_STDi,jを算出する。 T_STD i, j is calculated from the luminance data in each pixel and the surrounding area of each pixel according to the following formula.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

 ここで、T_MEANi,jはPi,j含む周辺領域における輝度データの平均値を表し、T_MEAN2i,jは二乗平均値を表す。また、積算する範囲は周辺領域が3画素×3画素であるので、i-1≦k≦i+1および、j-1≦l≦j+1である。 Here, T_MEAN i, j represents an average value of luminance data in a peripheral region including P i, j , and T_MEAN2 i, j represents a mean square value. In addition, since the surrounding area is 3 pixels × 3 pixels, i−1 ≦ k ≦ i + 1 and j−1 ≦ l ≦ j + 1.

Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004

 ここでT_Vari,jはPi,j含む周辺領域における輝度データの分散値を表す。 Here, T_Vari i, j represents the dispersion value of the luminance data in the peripheral area including P i, j .

 そして、標準偏差値算出部22では、以上のようにフレーム中の全画素のT_STDi,jを算出し、モスキートノイズ算出部23へ出力する。また、T_STDi,jをフレーム毎に集計したヒストグラム(詳細は後述)を保存しておくために、標準偏差値算出部22は、T_STDi,jを記憶部24にも出力する(図6参照)。 Then, the standard deviation value calculation unit 22 calculates T_STD i, j of all pixels in the frame as described above , and outputs it to the mosquito noise calculation unit 23. In addition, in order to save a histogram (details will be described later) obtained by counting T_STD i, j for each frame, the standard deviation value calculation unit 22 also outputs T_STD i, j to the storage unit 24 (see FIG. 6). ).

 モスキートノイズ算出手段であるモスキート算出部23では、T_STDi,jを用いて、フレーム中の画素毎にモスキートノイズ発生度合い(T_Wi,j)を、以下の式より算出し、出力する(図6参照)。
T_Wi,j=F(|T_STDi,j-Pt´|)
 ここで、特許請求の範囲に記載の第1関数に相当する関数F(x)の形を図8の(a)に示す。図8の(a)に示すように、関数F(x)は、入力値xの絶対値が最小の場合に、出力値として極大値を示すとともに、入力値xが大きくなるに伴って出力値が単調減少し、さらに、入力値xが第1所定値の場合に出力値が0となる関数である。ここで、第1所定値は、関数F(x)のx切片と表現することもでき、その値をTmとする。Tmを固定値とする場合は、Tmの値は0.5≦Tm≦2であることが望ましい。
The mosquito calculation unit 23, which is a mosquito noise calculation means, uses T_STD i, j to calculate the mosquito noise occurrence degree (T_W i, j ) for each pixel in the frame from the following equation and outputs it (FIG. 6). reference).
T_W i, j = F (| T_STD i, j -Pt' |)
Here, the form of the function F (x) corresponding to the first function described in the claims is shown in FIG. As shown in FIG. 8A, the function F (x) shows a local maximum value as an output value when the absolute value of the input value x is minimum, and the output value as the input value x increases. Is a function that monotonously decreases and the output value becomes 0 when the input value x is the first predetermined value. Here, the first predetermined value can also be expressed as an x-intercept of the function F (x), and its value is Tm. When Tm is a fixed value, the value of Tm is preferably 0.5 ≦ Tm ≦ 2.

 また、PtおよびPt´は次のように定義される。図6に示すヒストグラムを保存する記憶部24には、モスキートノイズ検出を行っているフレーム(これをnフレームとする)の前フレーム(n-1フレームとする)の第1標準偏差値が集計されヒストグラムとして保存してある。図9の(a)に、ヒストグラムを保存する記憶部24に保存されているn-1フレームのT_STDのヒストグラムを示す。ここでPtは、n-1フレームのT_STDのヒストグラムにおいて、画素数が最大となるT_STDの値であり、Pt´はPtよりδtだけ大きな値として次式のように定義される。
Pt´=Pt+δt
 この場合、δtの値は経験的に0.5≦δt≦1であることが望ましいことがわかっている。
Further, Pt and Pt ′ are defined as follows. The storage unit 24 for storing the histogram shown in FIG. 6 aggregates the first standard deviation values of the previous frame (assumed to be n−1 frames) of the frame in which mosquito noise detection is performed (this is assumed to be n frames). Stored as a histogram. FIG. 9A shows a T_STD histogram of n−1 frames stored in the storage unit 24 that stores the histogram. Here, Pt is the value of T_STD that maximizes the number of pixels in the T_STD histogram of the (n−1) th frame, and Pt ′ is defined as the following equation as a value that is larger than Pt by δt.
Pt ′ = Pt + δt
In this case, it is empirically known that the value of δt is desirably 0.5 ≦ δt ≦ 1.

 なお、関数F(x)の形からわかるように、モスキート算出部23ではT_Wi,jとして0≦T_Wi,j≦1の範囲の値を算出する。そして、T_Wi,jが大きいほど、画素Pi,jはモスキートノイズを多く含んでいると判断できる。 Incidentally, as seen from the form of the function F (x), calculates the mosquito calculator 23 T_W i, 0 ≦ T_W i as j, a value in the range of j ≦ 1. Then, T_W i, as j increases, the pixel P i, j can be determined to contain a lot of mosquito noise.

 また、ここでは本発明の一実施形態における基本的な概念を説明するために、T_Wi,jを算出時のパラメータであるTm、およびδtを固定値としているが、後述のように、Oデータの各画素および各画素の周辺領域における輝度データの標準偏差値(O_STDi,j)を算出することによって、フレーム毎に最適化したTmおよびδtを決定することが可能である。しかし、Tmおよびδtを固定値としてモスキートノイズ発生度合いを簡易に見積もった場合でも、画質を改善する(ディテールは残しつつ、モスキートノイズの低減を図る)ことが可能である。 Here, in order to explain the basic concept in one embodiment of the present invention, T_Wi , j is a parameter at the time of calculation, Tm and δt are fixed values. However, as will be described later, O data By calculating the standard deviation value (O_STD i, j ) of the luminance data in each pixel and the peripheral area of each pixel, it is possible to determine Tm and δt optimized for each frame. However, even when Tm and δt are fixed values and the degree of occurrence of mosquito noise is simply estimated, it is possible to improve the image quality (to reduce mosquito noise while leaving details).

 〔4.モスキートノイズ低減部30〕
 上記のようにモスキートノイズ算出手段23で算出された画素毎のモスキートノイズ発生度合いT_Wi,jはモスキートノイズ低減部30に出力される(図10参照)。モスキートノイズ低減部30は発生度合い合計部32とモスキート機能判定部33とで構成されるモスキートノイズ判定部(モスキートノイズ判定手段)31および出力処理部34から成る。
[4. Mosquito noise reduction unit 30]
Mosquito noise occurrence rate T_W i for each pixel calculated by the mosquito noise calculating means 23 as described above, j is output to the mosquito noise reduction unit 30 (see FIG. 10). The mosquito noise reduction unit 30 includes a mosquito noise determination unit (mosquito noise determination unit) 31 and an output processing unit 34 which are configured by an occurrence degree total unit 32 and a mosquito function determination unit 33.

 本発明の一態様に係るモスキートノイズ判定は、モスキートノイズ算出部23において算出された画素毎のモスキートノイズ発生度合いから、フレーム全体のモスキートノイズ発生度合いの平均値を算出し、そのモスキートノイズ発生度平均値から、当該フレームがモスキートノイズを含む割合の多少を判断するものである。以下に、モスキートノイズ低減部30について説明する。 In the mosquito noise determination according to one aspect of the present invention, the average value of the mosquito noise occurrence degree of the entire frame is calculated from the mosquito noise occurrence degree for each pixel calculated by the mosquito noise calculation unit 23, and the average mosquito noise occurrence degree is calculated. From the value, it is judged how much the frame contains mosquito noise. Below, the mosquito noise reduction part 30 is demonstrated.

 モスキートノイズ低減部30に入力された画素毎のモスキートノイズ発生度合いT_Wi,jは、2つに複製された後、その一方は発生度合い合計部32に入力される。発生度合い合計部32は、次式に従いフレームの全画素に対するT_Wi,jの積算値T_Sumを算出する。 The mosquito noise generation degree T_W i, j for each pixel input to the mosquito noise reduction unit 30 is duplicated into two, and one of them is input to the generation degree totaling unit 32. The generation degree summation unit 32 calculates an integrated value T_Sum of T_Wi , j for all pixels of the frame according to the following equation.

Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005

 ここで、たとえばフレームサイズが水平画素数1920画素、および垂直画素数1080画素であれば、積算範囲は1≦p≦1920および、1≦q≦1080となる。 Here, for example, if the frame size is 1920 horizontal pixels and 1080 vertical pixels, the integration range is 1 ≦ p ≦ 1920 and 1 ≦ q ≦ 1080.

 算出されたT_Sumはモスキート機能判定部33に出力され、フレームの全画素数で割られることによりモスキートノイズ発生度平均値(T_Ave)が算出される。 The calculated T_Sum is output to the mosquito function determination unit 33, and is divided by the total number of pixels of the frame to calculate the mosquito noise occurrence average value (T_Ave).

Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006

 上記T_Aveと、所定の閾値との大小関係を比較し、T_Aveが閾値より大きい場合はフレーム中にモスキートノイズが含まれる割合が高いと判断し、モスキートノイズ判定値(MJ)としてMJ=1を出力処理部34に出力する。一方、T_Aveが閾値より小さい場合はフレーム中にモスキートノイズが含まれる割合が低いと判断し、MJ=0を出力処理部34に出力する。 The magnitude relationship between T_Ave and a predetermined threshold value is compared. If T_Ave is greater than the threshold value, it is determined that the ratio of mosquito noise in the frame is high, and MJ = 1 is output as the mosquito noise determination value (MJ). The data is output to the processing unit 34. On the other hand, if T_Ave is smaller than the threshold value, it is determined that the ratio of mosquito noise in the frame is low, and MJ = 0 is output to the output processing unit 34.

 この際に用いる閾値を変更することによって、モスキートノイズ判定手段の判断基準を任意に変更することが可能となる。これまでの経験では、閾値を0.7程度に設定するのが好ましい、との結果を得ているが、0.7以外の値に設定しても構わない。閾値を大きくするということは、モスキートノイズの判定基準を甘くすることを意味し、逆に閾値を小さくするということは、モスキートノイズの判定基準を厳しくすることを意味する。 判断 By changing the threshold value used at this time, it is possible to arbitrarily change the judgment standard of the mosquito noise judging means. In the experience so far, it has been obtained that the threshold is preferably set to about 0.7, but it may be set to a value other than 0.7. Increasing the threshold means reducing the mosquito noise criterion, and conversely decreasing the threshold means stricter mosquito noise criterion.

 この閾値は、製造者側で最適と考えられる値を予め決定しておいても良いし、ユーザーが好みに応じてある程度の範囲内で変更可能なように設計されていても良い。閾値を変更することにより、モスキートノイズの判定基準を任意に変更することができることによって、画像データ処理装置の処理能力の高低や、エンコード時の圧縮率の高低などに応じて、柔軟な対応が可能となる。 This threshold value may be determined in advance as a value considered optimal by the manufacturer, or may be designed so that the user can change it within a certain range according to his / her preference. By changing the threshold, the mosquito noise criterion can be changed arbitrarily, so that flexible processing is possible depending on the processing capability of the image data processing device and the level of compression during encoding. It becomes.

 出力処理部34には、MJ(=0または、1)と、T_Wi,jと、Cデータと、Oデータとが入力され(図10参照)、MJの値に応じて以下の演算を行う。 MJ (= 0 or 1), T_W i, j , C data, and O data are input to the output processing unit 34 (see FIG. 10), and the following calculation is performed according to the value of MJ. .

 Pouti,j=Oi,j   (MJ=0の場合)
 Pouti,j=(1-T_Wi,j)×Oi,j+T_Wi,j×Ci,j  (MJ=1の場合)
 ここで、Pouti,jはフレーム中の画素毎の出力画像データである。MJ=0の場合、フレーム中にモスキートノイズが含まれる割合は低いので、画素毎の入力画像データをそのまま、画素毎の出力画像データとする。
P outi, j = O i, j (when MJ = 0)
P outi, j = (1−T_W i, j ) × O i, j + T_W i, j × C i, j (when MJ = 1)
Here, P outi, j is output image data for each pixel in the frame. When MJ = 0, since the ratio of mosquito noise included in the frame is low, the input image data for each pixel is used as output image data for each pixel as it is.

 一方、MJ=1の場合は、フレーム中にモスキートノイズが含まれる割合が高いので、上式に従いPouti,jを算出することで、モスキートノイズ低減処理を画素毎に施す。上式によれば、入力画像データであるOデータおよび、エッジ考慮型映像スムージング処理(たとえばLPF処理など)を施されたCデータの画素毎のデータに対して、Tデータより算出したモスキートノイズ発生度合いT_Wi,jを用いて重み付けを行い、OデータとCデータとを合成する。 On the other hand, when MJ = 1, since the ratio of mosquito noise included in the frame is high, the mosquito noise reduction processing is performed for each pixel by calculating P outi, j according to the above equation. According to the above formula, mosquito noise generated from T data is generated for each pixel of O data as input image data and C data subjected to edge-considered video smoothing processing (for example, LPF processing). Weighting is performed using the degree T_Wi , j , and the O data and the C data are combined.

 このことによって、入力画像データに含まれているディテールを出力画像データに維持しておくことと、モスキートノイズの低減効果とのバランスを、モスキートノイズ発生度合いT_Wi,jに基づいて、画素毎に適切に設定することができ、より適切に画質が改善された出力画像データを得ることができる。 As a result, the balance between maintaining the details included in the input image data in the output image data and the effect of reducing the mosquito noise is balanced for each pixel based on the mosquito noise occurrence degree T_Wi , j. It is possible to obtain output image data that can be set appropriately and whose image quality is improved more appropriately.

 本発明の一態様における画像データ処理を施した場合の画質の改善例を図11に示す。図11の(a)は、デコードされた画像の一例を示している。このデコードされた画像は、α部に代表される輝度差の大きな部分と、β部にディテール部分とから成る。図11の(a)のα部を拡大した画像を示した図が図11の(b)であり、β部を拡大した画像を示した図が図11の(e)である。図11の(b)では、アルファベットのa周辺にモスキートノイズが確認できる。 FIG. 11 shows an example of improvement in image quality when image data processing according to one embodiment of the present invention is performed. FIG. 11A shows an example of a decoded image. This decoded image is composed of a portion having a large luminance difference represented by the α portion and a detail portion in the β portion. FIG. 11B shows an image obtained by enlarging the α portion in FIG. 11A, and FIG. 11E shows an image obtained by enlarging the β portion. In FIG. 11B, mosquito noise can be confirmed around the letter a.

 このデコードした画像データに対して、従来から知られているエッジ考慮型映像スムージング処理を施した結果の画像データを、図11の(c)および図11の(f)に示す。アルファベットのa周辺に存在していたモスキートノイズが低減され画質が向上している事が、図11の(c)より確認できる。しかし、モスキートノイズの低減と同時にディテール部分が失われていることが図11の(f)より確認できる。 The image data obtained as a result of performing the edge-considered video smoothing process conventionally known for the decoded image data is shown in FIG. 11 (c) and FIG. 11 (f). It can be confirmed from FIG. 11C that the mosquito noise existing around the alphabet a is reduced and the image quality is improved. However, it can be confirmed from FIG. 11F that the detail portion is lost simultaneously with the reduction of the mosquito noise.

 一方、本発明の一態様に係る画像データ処理を施した結果の画像データを、図11の(d)および図11の(g)に示す。これら2つの図からは、モスキートノイズの低減と、ディテール部分の保持とを同時に実現していることを確認できる。 On the other hand, image data obtained as a result of performing image data processing according to one embodiment of the present invention is shown in FIG. 11 (d) and FIG. 11 (g). From these two figures, it can be confirmed that the reduction of the mosquito noise and the retention of the detail portion are realized at the same time.

 上記のように、本発明の一態様に係る画像データ処理を行うことによって、入力画像データに含まれているディテール部分は保持しつつも、モスキートノイズを効果的に低減することが可能であり、より適切に画質が改善された出力画像データを得ることができる。 As described above, by performing the image data processing according to one aspect of the present invention, it is possible to effectively reduce mosquito noise while retaining the detail portion included in the input image data, Output image data with improved image quality can be obtained more appropriately.

 〔5.TデータとCデータとを用いたモスキートノイズ検出〕
 上記モスキートノイズ検出部20の説明では、本発明のもっとも基本的なモスキートノイズ検出方法としてTデータのみを用いた方法について説明したが、ここでは、TデータとCデータとを用いてモスキートノイズ検出を行う方法、すなわち第2モスキートノイズ検出方法について説明する。この方法は、上記Tデータのみを用いる方法を発展させたもので、より厳密なモスキートノイズ検出を実現するものである。
[5. Mosquito noise detection using T data and C data)
In the description of the mosquito noise detection unit 20, the method using only T data has been described as the most basic mosquito noise detection method of the present invention. Here, however, mosquito noise detection is performed using T data and C data. The method to perform, ie, the 2nd mosquito noise detection method, is demonstrated. This method is an extension of the method using only the T data, and realizes more precise mosquito noise detection.

 画像データ処理装置1が備えるデータ分離部10(データ分離手段)が、デコードされた入力画像データを受け取り、Tデータ、CデータおよびOデータの3つのデータとして出力する点においては、上記第1モスキートノイズ検出方法と同様である。 The first mosquito is that the data separation unit 10 (data separation means) included in the image data processing apparatus 1 receives the decoded input image data and outputs it as three data of T data, C data, and O data. This is the same as the noise detection method.

 そして、第2モスキートノイズ検出方法では、図6に示すように、モスキートノイズ検出部20が備える輝度値算出部21にTデータと、Cデータとが送られる。輝度値算出部21では、Tデータの輝度値(T_Yi,j)と同様に、Cデータの輝度値(C_Yi,j)を算出する。すなわち、Pi,jのサブ画素のR、G、およびBのCデータを、それぞれC_Ri,j、C_Gi,j、およびC_Bi,jとした上で、たとえば次の式を用いてC_Yi,jを算出する。
C_Yi,j=0.213×C_Ri,j+0.715×C_Gi,j+0.072×C_Bi,j
 このように輝度算出部21にて算出されたT_Yi,j、およびC_Yi,jは、標準偏差値算出手段である標準偏差値算出部22に出力される。そして、T_Yi,j、およびC_Yi,jを受け取った標準偏差算出部22では、画素毎の標準偏差値であるT_STDi,j、およびC_STDi,jを算出する。ここで、T_STDi,jの算出方法は、第1モスキートノイズ検出方法におけるT_STDi,jの算出方法と同一である。また、C_STDi,jの算出方法は、C_Yi,jを用いてT_STDi,jと同様に算出すればよい。上記の方法によって得たT_STDi,j、およびC_STDi,jを、それぞれ第1標準偏差値、および第2標準偏差値として、モスキート算出手段であるモスキートノイズ算出部23に出力する。
In the second mosquito noise detection method, as shown in FIG. 6, T data and C data are sent to the luminance value calculation unit 21 included in the mosquito noise detection unit 20. In the brightness value calculation unit 21, the luminance value of T data (T_Y i, j) and likewise, to calculate the luminance value of the C data (C_Y i, j). That is, the C data of R, G, and B of the sub-pixels of P i, j is set to C_R i, j , C_G i, j , and C_B i, j , respectively. i, j are calculated.
C_Y i, j = 0.213 × C_R i, j + 0.715 × C_G i, j + 0.072 × C_B i, j
Thus, T_Y i, j and C_Y i, j calculated by the luminance calculating unit 21 are output to the standard deviation value calculating unit 22 which is a standard deviation value calculating unit. Then, T_y i, calculates j, and c_y i, the standard deviation calculating section 22 receives the j, the standard deviation value for each pixel T_std i, j, and C_STD i, a j. Here, T_std i, the method for calculating the j are, T_std i in the first mosquito noise detection method is the same as the method of calculating the j. Further, C_STD i, the method for calculating the j are, C_Y i, T_STD i, may be calculated as with j with j. T_STD i, j and C_STD i, j obtained by the above method are output to the mosquito noise calculation unit 23, which is a mosquito calculation means, as a first standard deviation value and a second standard deviation value, respectively.

 次に、モスキートノイズ算出部23は、第1モスキートノイズ発生度合いとしてT_Wi,jと、第2モスキート発生度合いとしてC_Wi,jとを以下の式より算出し、それぞれの積をとることによりモスキートノイズ発生度合い(Wi,j)を得る。ここで、T_Wi,jは、第1モスキートノイズ検出方法と同一である。 Next, mosquito noise calculation unit 23 Mosquito by T_W i, and j as the first mosquito noise occurrence rate, C_W i, is calculated from the following equation and j as the second mosquito occurrence rate, taking each product The degree of noise generation (W i, j ) is obtained. Here, T_W i, j is the same as in the first mosquito noise detection method.

 T_Wi,j=F(|T_STDi,j-Pt´|)
 C_Wi,j=G(|C_STDi,j-Pc|)
 Wi,j=T_Wi,j×C_Wi,j
 ここで、特許請求の範囲に記載の第1関数に相当する関数F(x)の形を図8の(a)に、そして、第2関数に相当する関数G(x)の形を図8の(b)に示す。関数F(x)に関しては、第1モスキート検出方法にて用いている関数と同一である。
T_W i, j = F (| T_STD i, j −Pt ′ |)
C_W i, j = G (| C_STD i, j −Pc |)
W i, j = T_W i, j × C_W i, j
Here, the form of the function F (x) corresponding to the first function described in the claims is shown in FIG. 8A, and the form of the function G (x) corresponding to the second function is shown in FIG. As shown in (b) of FIG. The function F (x) is the same as that used in the first mosquito detection method.

 もう一方の第2関数である関数G(x)も、関数F(x)と似た形を備える関数である。つまり、関数G(x)は、入力値xの絶対値が最小の場合に、出力値として極大値を示すとともに、入力値xが大きくなるに伴って出力値が単調減少し、さらに、入力値xが第2所定値の場合に出力値が0となる関数である。第2所定値は言いかえれば、関数G(x)のx切片であり、この値をCmとする。Cmを固定値とする場合、Cmの値は0.5≦Cm≦2であることが望ましい。 The other second function, function G (x), is also a function having a form similar to function F (x). That is, the function G (x) shows a maximum value as an output value when the absolute value of the input value x is minimum, and the output value monotonously decreases as the input value x increases. This is a function whose output value is 0 when x is a second predetermined value. In other words, the second predetermined value is the x intercept of the function G (x), and this value is Cm. When Cm is a fixed value, the value of Cm is preferably 0.5 ≦ Cm ≦ 2.

 また、PcはC_STDのヒストグラム(図9の(b)参照)の画素数が最大となるC_STDの値であり、エッジ領域の画素の標準偏差値と考えられる。また、Pc近傍の第二標準偏差値は、エッジ領域の周辺画素の標準偏差値と考えられる。 Also, Pc is the value of C_STD that maximizes the number of pixels in the C_STD histogram (see FIG. 9B), and is considered to be the standard deviation value of the pixels in the edge region. Further, the second standard deviation value in the vicinity of Pc is considered as the standard deviation value of the peripheral pixels in the edge region.

 なお、ここでは計算量を低減するために、第1関数のTmおよびδtと、第2関数のCmを固定値としている。しかしながら、後述の第3モスキートノイズ検出方法の項にて述べるように、Oデータの各画素および各画素の周辺領域における輝度データの標準偏差値(O_STDi,j)を算出することによって、画素毎に最適化したTm、δt、および、Cmを決定することが可能である。そして、これらの値を固定値としてモスキートノイズ発生度合いを簡易に見積もった場合でも、画質を改善する(ディテール部分は残しつつ、モスキートノイズの低減を図る)ことが可能である。 Here, in order to reduce the amount of calculation, Tm and δt of the first function and Cm of the second function are fixed values. However, as described in the section of the third mosquito noise detection method to be described later, by calculating the standard deviation value (O_STD i, j ) of the luminance data in each pixel of O data and the peripheral region of each pixel, It is possible to determine Tm, δt, and Cm optimized for. Even when these values are fixed values and the degree of occurrence of mosquito noise is simply estimated, the image quality can be improved (the mosquito noise can be reduced while leaving the detail portion).

 上記のように、第2モスキートノイズ検出方法では、第1モスキートノイズ発生度合い(T_Wi,j)と、第2モスキートノイズ発生度合い(C_Wi,j)の積をとることにより、最終的なモスキートノイズ発生度合い(Wi,j)を得ている。このようにする意義は以下のように説明できる。 As described above, in the second mosquito noise detection method, the final mosquito noise is obtained by taking the product of the first mosquito noise occurrence degree (T_W i, j ) and the second mosquito noise occurrence degree (C_W i, j ). The degree of noise generation (W i, j ) is obtained. The significance of this can be explained as follows.

 すなわち、第1画像データであるTデータは、エッジ領域に係わる情報を含んでいない一方で、モスキートノイズや、モスキートノイズ以外のディテールなどの高周波成分を含んでいる可能性のある画像データである。したがって、第1モスキートノイズ検出方法の項にて述べたように、第1画像データの第1標準偏差値のみを用いて第1モスキートノイズの発生度合いを算出することによって、エッジの影響を受けないモスキートノイズの判別をすることが可能である。一方で、Tデータは、上記のようにモスキートノイズ以外にもディテール部分を含み得るデータであるので、上記ディテール部分がモスキートノイズの判別に影響を及ぼす可能性を否定できない。 That is, the T data that is the first image data is image data that does not include information related to the edge region, but may include high-frequency components such as mosquito noise and details other than mosquito noise. Therefore, as described in the section of the first mosquito noise detection method, the occurrence of the first mosquito noise is calculated using only the first standard deviation value of the first image data, so that it is not affected by the edge. It is possible to discriminate mosquito noise. On the other hand, since the T data is data that can include a detail portion in addition to the mosquito noise as described above, the possibility that the detail portion affects the determination of the mosquito noise cannot be denied.

 一方、上記第2画像データであるCデータは、エッジ領域に係わる情報を含んでいる。上記標準偏差算出部22において、当該第2画像データの当該第2標準偏差値を算出することにより、当該画素がエッジ部分から近いのか、または離れているのかを判断することが可能となる。よって、モスキートノイズ算出部23にて、より適切なモスキートノイズ発生度合いを得ることができる。 On the other hand, the C data as the second image data includes information related to the edge region. By calculating the second standard deviation value of the second image data in the standard deviation calculation unit 22, it is possible to determine whether the pixel is near or away from the edge portion. Therefore, the mosquito noise calculation unit 23 can obtain a more appropriate degree of mosquito noise occurrence.

 より具体的に説明すると、ある画素Pi,jの第2標準偏差値であるC_STDi,jがPcと同程度の場合は、Pi,jがエッジ領域近傍の画素であると判断することができる。この場合、第2関数であるG(x)に代入される値|C_STDi,j-Pc|は小さな値となるので、関数G(x)の形状から、ほぼ1に近いC_Wi,j~1の値が得られることがわかる。その結果、モスキートノイズ発生度合いとして、T_Wi,jとC_Wi,jとの積をとっても、T_Wi,jと同程度の値が得られることになる。 More specifically, when C_STD i, j that is the second standard deviation value of a certain pixel P i, j is approximately the same as Pc, it is determined that P i, j is a pixel in the vicinity of the edge region. Can do. In this case, since the value | C_STD i, j −Pc | assigned to the second function G (x) is a small value, from the shape of the function G (x), C_W i, j . It can be seen that a value of 1 is obtained. As a result, as mosquito noise occurrence rate, T_W i, j and C_W i, take the product of j, so that T_W i, the value comparable to the j obtained.

 すなわちC_STDi,jより、Pi,jがエッジ部分から近いと判断した場合は、第1標準偏差値に影響を与えない形でモスキートノイズ算出部23に取り込まれ、エッジ領域を含まないTデータから得られるT_Wi,jのみを用いてモスキートノイズの発生度合いを算出した場合と同様の値になる。 That is, if it is determined from C_STD i, j that P i, j is close to the edge portion, it is taken into the mosquito noise calculation unit 23 without affecting the first standard deviation value, and does not include the edge region. This is the same value as when the degree of occurrence of mosquito noise is calculated using only T_W i, j obtained from

 一方、C_STDi,jがPcと大きく異なる値の場合、Pi,jがエッジ領域から遠い画素と判断することができる。その場合、G(x)に代入される値|C_STDi,j-Pc|は大きな値となるので、G(x)の形状から、C_Wi,jの値は、ほぼ0に近い小さな値になることがわかる。よってC_Wi,jは、エッジの影響を受けないTデータのT_STDi,jから得たT_Wi,jを、さらに小さくする補正項としてモスキートノイズ算出部23において作用する。そして、モスキートノイズはエンコードの特性上、エッジ領域近傍で発生しやすいことが知られている。逆に言えば、エッジ領域から離れた所ではモスキートノイズが発生する可能性は低いと考えられ、C_Wi,jは上記補正項として合理的に機能することがわかる。 On the other hand, when C_STD i, j is a value significantly different from Pc, it can be determined that P i, j is a pixel far from the edge region. In this case, since the value | C_STD i, j −Pc | substituted for G (x) is a large value, from the shape of G (x) , the value of C_W i, j is a small value almost close to 0. I understand that Therefore, C_W i, j acts in the mosquito noise calculation unit 23 as a correction term for further reducing T_W i, j obtained from T_STD i, j of the T data that is not affected by the edge. It is known that mosquito noise is likely to occur in the vicinity of the edge region due to encoding characteristics. In other words, it is considered that mosquito noise is unlikely to occur at a location away from the edge region, and it can be seen that C_W i, j functions reasonably as the correction term.

 上記のように、第2モスキートノイズ検出方法は、T_STDi,jに加えて、C_STDi,jを用いてモスキートノイズの発生度合いを算出することによって、より適切なモスキートノイズの判別を可能とする。 As described above, the second mosquito noise detection method allows more appropriate discrimination of mosquito noise by calculating the degree of occurrence of mosquito noise using C_STD i, j in addition to T_STD i, j. .

 モスキートノイズ算出部23は、算出したモスキート発生度合いをモスキートノイズ低減部30へ出力する。その後のモスキートノイズ低減部30における画像データ処理に関しては、第1モスキートノイズ検出方法と同様に行う。 The mosquito noise calculation unit 23 outputs the calculated degree of mosquito generation to the mosquito noise reduction unit 30. Subsequent image data processing in the mosquito noise reduction unit 30 is performed in the same manner as in the first mosquito noise detection method.

 〔6.Oデータを用いた各種パラメータの設定方法〕
 ここでは、Tデータ、Cデータ、およびOデータを用いてモスキートノイズ検出を行う方法、すなわち第3モスキートノイズ検出方法について説明する。Oデータをモスキートノイズ検出に使用する目的は、Oデータの各画素および各画素の周辺領域における輝度データの標準偏差値(O_STDi,j)を算出することによって、画素毎に最適化した第1関数、および第2関数における各パラメータ(δt、Tm、および、Cm)を決定することである。
[6. How to set various parameters using O data]
Here, a method of performing mosquito noise detection using T data, C data, and O data, that is, a third mosquito noise detection method will be described. The purpose of using the O data for mosquito noise detection is to optimize the first for each pixel by calculating the standard deviation value (O_STD i, j ) of the luminance data in each pixel of the O data and the peripheral area of each pixel. And determining each parameter (δt, Tm, and Cm) in the function and the second function.

 この第3モスキートノイズ検出方法において、データ分離部10、およびモスキートノイズ低減部30は、上記の第1および第2モスキートノイズ検出方法における構成と同一である。よって、ここでは、第3モスキートノイズ検出方法におけるモスキート検出部20の働きについて説明する。 In the third mosquito noise detection method, the data separation unit 10 and the mosquito noise reduction unit 30 have the same configurations as those in the first and second mosquito noise detection methods. Therefore, here, the function of the mosquito detection unit 20 in the third mosquito noise detection method will be described.

 まず、輝度算出部21はデータ分離部10からTデータ、Cデータ、およびOデータの3つのデータを受け取る(図6参照)。輝度値算出部21では、Tデータの輝度値(T_Yi,j)および、Cデータの輝度値(C_Yi,j)と同様に、Oデータの輝度値(O_Yi,j)を算出する。すなわち、Pi,jのサブ画素のR、G、およびBのOデータを、それぞれO_Ri,j、O_Gi,j、およびO_Bi,jとした上で、たとえば次の式を用いてO_Yi,jを算出する。
O_Yi,j=0.213×O_Ri,j+0.715×O_Gi,j+0.072×O_Bi,j
 輝度算出部21は、このように算出した3つの輝度値T_Yi,j、C_Yi,j、およびO_Yi,jを、標準偏差値算出手段である標準偏差値算出部22に出力する。
First, the luminance calculation unit 21 receives three data of T data, C data, and O data from the data separation unit 10 (see FIG. 6). In the brightness value calculation unit 21, the luminance value of T data (T_Y i, j) and, like the luminance value of the C data (C_Y i, j), calculates the luminance value of O data (O_Y i, j). In other words, the O data of R, G, and B of the sub-pixels of P i, j are set to O_R i, j , O_G i, j , and O_B i, j , respectively. i, j are calculated.
O_Y i, j = 0.213 × O_R i, j + 0.715 × O_G i, j + 0.072 × O_B i, j
The luminance calculation unit 21 outputs the three luminance values T_Y i, j , C_Y i, j and O_Y i, j calculated in this way to the standard deviation value calculation unit 22 which is a standard deviation value calculation unit.

 T_Yi,j、C_Yi,j、およびO_Yi,jを受け取った標準偏差値算出部22は、画素毎の標準偏差値であるT_STDi,j、C_STDi,j、およびO_STDi,jを算出する。ここで、T_STDi,jの算出方法は、第1モスキートノイズ検出方法におけるT_STDi,jの算出方法と同一である。また、C_STDi,jおよびO_STDi,jの算出方法は、C_Yi,jおよびO_Yi,jを用いてT_STDi,jと同様に算出すればよい。上記の方法によって得たT_STDi,j、C_STDi,j、およびO_STDi,jを、それぞれ第1標準偏差値、第2標準偏差値、および第3標準偏差値として、モスキート算出手段であるモスキートノイズ算出部23に出力する。 The standard deviation value calculation unit 22 that has received T_Y i, j , C_Y i, j , and O_Y i, j receives T_STD i, j , C_STD i, j , and O_STD i, j that are standard deviation values for each pixel. calculate. Here, T_std i, the method for calculating the j are, T_std i in the first mosquito noise detection method is the same as the method of calculating the j. Further, C_STD i, j and O_STD i, the method for calculating the j are, c_y i, j and O_Y i, T_STD i with j, may be calculated as with j. Mosquito, which is a mosquito calculating means, using T_STD i, j , C_STD i, j and O_STD i, j obtained by the above method as a first standard deviation value, a second standard deviation value, and a third standard deviation value, respectively. Output to the noise calculation unit 23.

 次に、T_STDi,j、C_STDi,j、およびO_STDi,jを受け取ったモスキート算出部23は、T_STDi,j、および、C_STDi,jから、第1モスキートノイズ発生度合い(T_Wi,j)、および、第2モスキートノイズ発生度合い(C_Wi,j)を算出し、それぞれの値の積をとることによってWi,jを算出する。この一連の画像データ処理に関しては、第2モスキートノイズ検出方法と同様である。 Next, T_STD i, j, C_STD i , j, and O_STD i, mosquito calculator 23 having received the j are, T_std i, j, and, C_STD i, from j, the first mosquito noise occurrence rate (T_W i, j ) and the second mosquito noise occurrence degree (C_W i, j ) are calculated, and W i, j is calculated by taking the product of the respective values. This series of image data processing is the same as the second mosquito noise detection method.

 そして、第2モスキートノイズ検出方法と異なる部分は、第1関数としてのF(x)および、第2関数としてのG(x)の形を決定する際に用いられるパラメータであるδt、Tm、およびCmの決定方法である。つまり、第2モスキートノイズ検出方法において、δt、Tm、およびCmを固定値として扱っていた。これは、上記各パラメータを固定値として本発明の画像データ処理を行った場合でも、入力画像データに含まれるディテール部分を保持しつつ、モスキートノイズを効果的に低減し適切に画質を改善した出力画像データを得る、という効果を十分に得ることができるからである。 Then, the difference from the second mosquito noise detection method is that δt, Tm, which are parameters used when determining the shape of F (x) as the first function and G (x) as the second function, and This is a method for determining Cm. That is, in the second mosquito noise detection method, δt, Tm, and Cm are treated as fixed values. This is because even when the image data processing of the present invention is performed with each parameter as a fixed value, the detail portion included in the input image data is retained, mosquito noise is effectively reduced, and the image quality is appropriately improved. This is because the effect of obtaining image data can be sufficiently obtained.

 しかし、モスキート算出手段であるモスキート算出部23において、第3標準偏差値であるO_STDi,jを用いてδt、Tm、およびCmを決定することによって、各パラメータをフレーム毎に最適化することができ、より厳密なモスキート発生度合いを得ることが可能となる。以下に、T_STDi,j、C_STDi,j、およびO_STDi,jを用いて、δt、Tm、およびCmを動的に決定する方法を説明する。 However, each parameter can be optimized for each frame by determining δt, Tm, and Cm using the third standard deviation value O_STD i, j in the mosquito calculating unit 23 that is a mosquito calculating means. This makes it possible to obtain a more precise degree of mosquito generation. Hereinafter, a method of dynamically determining δt, Tm, and Cm using T_STD i, j , C_STD i, j , and O_STD i, j will be described.

 まず、δtは以下の式から算出できる。
δt=|Pt-Pf|×A+B
 ここで、Pfの定義は以下の通りである。図9の(c)に示すO_STDのヒストグラムにおいて、確認できる複数のピークのうち、もっともO_STDの小さいピークをPfとする。
First, δt can be calculated from the following equation.
δt = | Pt−Pf | × A + B
Here, the definition of Pf is as follows. In the O_STD histogram shown in FIG. 9C, the peak having the smallest O_STD among a plurality of peaks that can be confirmed is defined as Pf.

 また、A、およびBは、経験的に得られた定数であり、0.5≦A≦2、および、0≦B≦1の値であることが望ましい。さらには、A~1、および、B~0.5であると望ましい。この値は、過去の実験結果より得られたものであり、対象とする映像によって変化することがあり得る。 A and B are empirically obtained constants, and are preferably 0.5 ≦ A ≦ 2 and 0 ≦ B ≦ 1. Further, A to 1 and B to 0.5 are desirable. This value is obtained from past experimental results and may change depending on the target video.

 また、Tm、およびCmは以下の式から算出することができる。 Also, Tm and Cm can be calculated from the following equations.

 Tm=g(|T_AVE_STD-Pt|)
 g(x)=2x+1.0
 ここで、T_AVE_STDは、T_STDi,jの前フレームでの平均値を示す。
Tm = g (| T_AVE_STD−Pt |)
g (x) = 2x + 1.0
Here, T_AVE_STD indicates an average value of T_STDi, j in the previous frame.

 Cm=f(|Pc-Pn|)
 f(x)= x/γ - 0.016 (x/γ > 0.516の場合)
 f(x)= 0.5 (x/γ ≦ 0.516の場合)
 ここで、O_STDのヒストグラムにおいて確認できる複数のピークのうち、C_STD(図9の(b)参照)のピークであるPcにもっとも近いピークをPnとする。また、γは定数であり、これまでの経験によればγ~0.5が望ましい。
Cm = f (| Pc−Pn |)
f (x) = x / γ−0.016 (when x / γ> 0.516)
f (x) = 0.5 (when x / γ ≦ 0.516)
Here, among the plurality of peaks that can be confirmed in the O_STD histogram, the peak closest to Pc that is the peak of C_STD (see FIG. 9B) is defined as Pn. Further, γ is a constant, and γ˜0.5 is desirable based on experience so far.

 上記のδt、Tm、およびCmの各パラメータは、第1および第2モスキートノイズ発生度合いを決定する、第1関数および第2関数の形を変化させるものである。上記各パラメータをO_STDi,jを結果よりフレーム毎に決定することにより、第2モスキートノイズ検出方法よりもさらに適切なモスキートノイズ発生度合いを算出することが可能となる。 The parameters δt, Tm, and Cm described above change the shapes of the first function and the second function that determine the first and second mosquito noise generation degrees. Each parameter O_STD i, by determining for each frame the results of j, it is possible to calculate more appropriate mosquito noise occurrence rate than the second mosquito noise detection method.

 なお、ここではTデータ、およびCデータを用いる第2モスキートノイズ検出方法を基にして、Oデータによるδt、Tm、およびCmをフレーム毎に決定する方法を説明したが、Tデータのみを用いる第1モスキートノイズ検出方法を基にして、Oデータによるδt、およびTmをフレーム毎に決定する方法も可能である。 Here, the method of determining δt, Tm, and Cm based on O data for each frame based on the second mosquito noise detection method using T data and C data has been described. However, the second method uses only T data. A method of determining δt and Tm based on O data for each frame based on the one mosquito noise detection method is also possible.

 ここで、図12の(a)~図12の(d)を参照しつつ、本発明の一態様におけるモスキートノイズ検出方法の効果を説明する。 Here, the effect of the mosquito noise detection method according to an aspect of the present invention will be described with reference to FIGS. 12 (a) to 12 (d).

 図12の(a)は、デコードされた画像の一例を示す図である。そして、図12の(a)に示す画像が入力画像データ(Oデータ)として画像データ処理装置1(図2等)に出力されるとともに、モスキートノイズ検出部20(図6)において第1モスキートノイズ検出方法が実行された場合を想定する。図12の(b)は、この場合において得られる出力画像データを示している。 (A) of FIG. 12 is a figure which shows an example of the decoded image. Then, the image shown in FIG. 12A is output as input image data (O data) to the image data processing apparatus 1 (FIG. 2, etc.), and the first mosquito noise is detected by the mosquito noise detector 20 (FIG. 6). Assume that the detection method is executed. FIG. 12B shows output image data obtained in this case.

 また、図12の(a)に示す画像が入力画像データ(Oデータ)として画像データ処理装置1(図2等)に出力されるとともに、モスキートノイズ検出部20(図6)において第3モスキートノイズ検出方法が実行された場合を想定する。図12の(c)は、この場合において得られる出力画像データを示している。 In addition, the image shown in FIG. 12A is output as input image data (O data) to the image data processing apparatus 1 (FIG. 2, etc.), and the third mosquito noise is detected by the mosquito noise detector 20 (FIG. 6). Assume that the detection method is executed. FIG. 12C shows output image data obtained in this case.

 さらに、図12の(a)に示す画像に対して、バイラテラルフィルタを用いて従来のモスキートノイズ検出処理を行った場合の出力画像を、図12の(d)に示す。 Furthermore, an output image when the conventional mosquito noise detection process is performed on the image shown in FIG. 12A using a bilateral filter is shown in FIG.

 図12の(b)および図12の(c)と、図12の(d)とを比較すればわかるように、図12の(b)および図12の(c)の画像においては、図12の(a)の画像において破線の楕円で囲んだ草原の画像のディテールが、図12の(d)の画像よりも鮮明に保持されている。さらに、図12の(b)および図12の(c)の画像においては、図12の(a)の画像において実線の楕円で囲んだシマウマの背中付近の画像に係るモスキートノイズが、図12の(d)の画像よりも低減されている。 As can be seen by comparing FIG. 12B and FIG. 12C with FIG. 12D, the images of FIG. 12B and FIG. In the image of (a), the details of the grassland image surrounded by the dashed ellipse are held more clearly than the image of (d) in FIG. Further, in the images of FIG. 12B and FIG. 12C, the mosquito noise related to the image near the back of the zebra surrounded by the solid ellipse in the image of FIG. It is reduced more than the image of (d).

 さらに、図12の(b)の画像と図12の(c)の画像とを比較すればわかるように、図12の(c)の画像の方が図12の(b)の画像よりも、草原の画像に係るディテールが鮮明に保持されているし、シマウマの背中付近の画像に係るモスキートノイズも低減されている。 Further, as can be seen by comparing the image of FIG. 12B and the image of FIG. 12C, the image of FIG. 12C is more than the image of FIG. 12B. The details relating to the grassland image are clearly preserved, and the mosquito noise relating to the image near the back of the zebra is also reduced.

 このように、本発明の一態様においては、モスキートノイズの検出手法として、第1モスキートノイズ検出方法および第3モスキートノイズ検出方法のいずれを用いた場合であっても、従来の手法より、ディテールの保持およびモスキートノイズの低減の双方において良好な結果を得ることができる。さらに、第3モスキートノイズ検出方法を用いた方が、第1モスキートノイズ検出方法を用いるよりも、鮮明なディテールが保持できるし、モスキートノイズを効率的に低減することも可能となる。 As described above, in one aspect of the present invention, the detail of the mosquito noise detection method is higher than that of the conventional method regardless of whether the first mosquito noise detection method or the third mosquito noise detection method is used. Good results can be obtained both in holding and in reducing mosquito noise. Furthermore, the use of the third mosquito noise detection method can maintain clear details and can effectively reduce the mosquito noise, compared to the case of using the first mosquito noise detection method.

 ただし、第3モスキートノイズ検出方法においては、Tデータ、Cデータ、およびOデータをモスキートノイズに検出に用いる一方、第1モスキートノイズ検出方法においては、Tデータのみをモスキートノイズ検出に用いる。すなわち、第1モスキートノイズ検出方法の方が、第3モスキートノイズ検出方法よりも演算量が少なくて済むというメリットはある。この点、本発明の一態様において、モスキートノイズ検出方法として第1~第3モスキートノイズ検出方法のいずれを用いるかについては、許容される演算量や画像精度に応じて、適宜選択すればよい。 However, in the third mosquito noise detection method, T data, C data, and O data are used for mosquito noise detection, while in the first mosquito noise detection method, only T data is used for mosquito noise detection. That is, the first mosquito noise detection method has an advantage that the amount of calculation is smaller than that of the third mosquito noise detection method. In this regard, in one aspect of the present invention, which of the first to third mosquito noise detection methods is used as the mosquito noise detection method may be appropriately selected according to the allowable calculation amount and image accuracy.

 〔7.まとめ〕
 デコードされた入力画像データの、再生時に生じるモスキートノイズを低減するための画像データ処理装置について、デジタルテレビ装置100を例にして説明してきた。本発明の画像データ処理装置は、入力画像データに含まれるディテール部分を保持したまま、モスキートノイズを効果的に低減した出力画像データを実現することを目的としている。
[7. (Summary)
An image data processing apparatus for reducing mosquito noise generated during reproduction of decoded input image data has been described using the digital television apparatus 100 as an example. An object of the image data processing apparatus of the present invention is to realize output image data in which mosquito noise is effectively reduced while retaining detail portions included in input image data.

 そのために本発明の一態様では、まず、データ分離手段により入力画像データを第1画像データと、第2画像データと、第3画像データとに分離した。ここで、第1画像データはエッジ領域を含まない画像データであり、第2画像データはエッジ領域を含む画像データであり、第3画像データは入力画像データと同一の画像データである。 Therefore, in one aspect of the present invention, first, the input image data is separated into the first image data, the second image data, and the third image data by the data separation means. Here, the first image data is image data not including an edge region, the second image data is image data including an edge region, and the third image data is the same image data as the input image data.

 次に、標準偏差値算出手段によって画素毎の標準偏差値を算出するが、本発明の重要なアプローチは、エッジ領域を含まない第1画像データを基礎となるデータとして画像データ処理を行うことである。第1画像データを用いて画像データ処理を行うことによって、輝度差の大きなエッジ領域の影響を受けずに、モスキートノイズ算出手段にて画素毎のモスキートノイズ発生度合いを算出することを実現している。 Next, the standard deviation value for each pixel is calculated by the standard deviation value calculating means. An important approach of the present invention is to perform image data processing based on the first image data that does not include the edge region. is there. By performing image data processing using the first image data, it is possible to calculate the degree of occurrence of mosquito noise for each pixel by the mosquito noise calculation means without being affected by the edge region having a large luminance difference. .

 このようにして得られたモスキートノイズ発生度合いを用いて、画素毎に適切な重み付けをした第2画像データと、第3画像データとを合成して出力画像データとしている。このことにより、入力画像データに含まれるディテール部分を保持しておくことと、モスキートノイズの低減効果とのバランスを、モスキートノイズ発生度合いに基づいて画素毎に適切に設定することができ、画質が改善された出力画像データを得ることができる。 Using the degree of occurrence of mosquito noise obtained in this way, the second image data appropriately weighted for each pixel and the third image data are synthesized to obtain output image data. As a result, it is possible to appropriately set the balance between maintaining the detail portion included in the input image data and the effect of reducing the mosquito noise for each pixel based on the degree of occurrence of the mosquito noise. Improved output image data can be obtained.

 また、上記モスキートノイズ算出手段において、第1画像データから得られる第1標準偏差値に加えて、第2画像データから得られる第2標準偏差値を考慮してモスキートノイズ発生度合いを算出することにより、さらに適切な画質の改善を行うことが可能である。 The mosquito noise calculation means calculates the degree of mosquito noise occurrence in consideration of the second standard deviation value obtained from the second image data in addition to the first standard deviation value obtained from the first image data. It is possible to further improve the image quality.

 さらに、上記モスキート算出手段において、第3画像データから得られる第3標準偏差値を用いて、第1関数、および第2関数の各パラメータをフレーム毎に決定することができる。このことにより、フレーム毎に最適化した第1関数、および第2関数を用いてモスキートノイズ発生度合いを算出することができ、より一層適切な画質の改善を行うことが可能である。 Furthermore, in the mosquito calculating means, each parameter of the first function and the second function can be determined for each frame using the third standard deviation value obtained from the third image data. Thus, the degree of mosquito noise occurrence can be calculated using the first function and the second function optimized for each frame, and it is possible to further improve the image quality.

 さらに、上述の説明においては、本発明の一実施形態に係る画像データ処理装置を中心に記載した。しかしながら、本発明は、画像データ処理装置における各ブロックと同様の処理を実行するステップからなる画像データ処理方法としても表現できる。 Furthermore, in the above description, the image data processing apparatus according to one embodiment of the present invention has been mainly described. However, the present invention can also be expressed as an image data processing method including steps for executing the same processing as each block in the image data processing apparatus.

 なお、本発明の一実施形態はデジタルテレビ装置100を例にして説明をしてきたが、ケーブルテレビなどにおけるセットトップボックス(STB)においても利用することができる。STB内のデコーダの後ろに本発明の画像データ処理装置1を備えることによって、適切に画質の改善を行った出力画像データを得ることが可能となる。 In addition, although one Embodiment of this invention has demonstrated taking the digital television apparatus 100 as an example, it can utilize also in the set top box (STB) in a cable television etc. By providing the image data processing apparatus 1 of the present invention behind the decoder in the STB, it is possible to obtain output image data in which the image quality is appropriately improved.

 また、図13に示すパーソナルコンピュータ(PC)においても利用することができる。インターネットを介してストリーミングされてくる画像データや、インターネットからダウンロードしてPCのメモリまたはHDDなどの記録媒体121に保存されている画像データなどは一般的にエンコードされており、再生時にはデコードする必要がある。よって、モスキートノイズが出力画像データに含まれている可能性が高い。そこで、デコーダ122と、表示アプリケーション123との間に、本発明の画像データ処理装置1を備えることにより、適切に画質の改善を行った出力画像データを得ることが可能となる。 It can also be used in a personal computer (PC) shown in FIG. Image data streamed over the Internet, image data downloaded from the Internet and stored in a recording medium 121 such as a PC memory or HDD, etc. are generally encoded and need to be decoded during playback. is there. Therefore, there is a high possibility that mosquito noise is included in the output image data. Therefore, by providing the image data processing device 1 of the present invention between the decoder 122 and the display application 123, it is possible to obtain output image data in which image quality has been improved appropriately.

 また、近年ではPCやスマートフォンを用いてのテレビ電話装置も一般的になってきた。これらのテレビ電話装置においても、データ容量を低減するためにエンコードした画像データの送受信を行い、それぞれの端末でデコードした画像データを表示している。よって、テレビ電話装置においてもデコーダと表示装置の間に、本発明の画像データ処理装置1を備えることによって、適切に画質の改善を行った出力画像データを得ることが可能となる。 In recent years, videophone devices using PCs and smartphones have become common. These videophone devices also transmit and receive encoded image data to reduce the data capacity, and display the decoded image data at each terminal. Therefore, also in the videophone device, by providing the image data processing device 1 of the present invention between the decoder and the display device, it is possible to obtain output image data in which the image quality is appropriately improved.

 〔8.補足〕
 最後に、画像データ処理装置1の各ブロック(データ分離部10、モスキートノイズ検出部20、モスキートノイズ低減部30)は、ハードウェアロジックによって構成してもよいし、次のようにCPU(central processing unit)を用いてソフトウェアによって実現してもよい。
[8. Supplement)
Finally, each block (data separation unit 10, mosquito noise detection unit 20, mosquito noise reduction unit 30) of the image data processing apparatus 1 may be configured by hardware logic, or a CPU (central processing) as follows. unit), and may be realized by software.

 すなわち、画像データ処理装置1は、各機能を実現する制御プログラムの命令を実行するCPU、前記プログラムを格納したROM(read only memory)、前記プログラムを展開するRAM(random access memory)、前記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである画像データ処理プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体をコンピュータに供給し、そのコンピュータ(又はCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。 That is, the image data processing apparatus 1 includes a CPU that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, a RAM (random access memory) that develops the program, the program, A storage device (recording medium) such as a memory for storing various data is provided. An object of the present invention is to supply a computer with a recording medium in which a program code (execution format program, intermediate code program, source program) of an image data processing program, which is software for realizing the functions described above, is recorded so as to be readable by the computer. However, this can also be achieved by reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).

 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやコンパクトディスク-ROM/MO/MD/デジタルビデオデイスク/コンパクトディスク-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。 Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, and a compact disk-ROM / MO / MD / digital video disk / compact disk-R. A disk system including an optical disk, a card system such as an IC card (including a memory card) / optical card, or a semiconductor memory system such as a mask ROM / EPROM / EEPROM / flash ROM can be used.

 また、画像データ処理装置1を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明の一態様は、前記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。 Further, the image data processing apparatus 1 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available. Also, the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used. Note that one aspect of the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.

 つまり、本実施形態の画像データ処理装置1の各ブロックとしてコンピュータを動作させる画像データ処理プログラム、及び、当該画像データ処理プログラムを記録したコンピュータ読み取り可能な記録媒体も本発明の技術的範囲に含まれる。 That is, the technical scope of the present invention includes an image data processing program that causes a computer to operate as each block of the image data processing apparatus 1 of the present embodiment, and a computer-readable recording medium that records the image data processing program. .

 上記制御プログラムによれば、コンピュータで上記の各部を実現することにより、コンピュータ上で画像データ処理装置1を実現することができる。また、上記記録媒体によれば、記録媒体から読み出される画像データ処理プログラムを、汎用のコンピュータ上で実現することができる。 According to the above control program, the image data processing device 1 can be realized on a computer by realizing the above-described units with a computer. Further, according to the recording medium, the image data processing program read from the recording medium can be realized on a general-purpose computer.

 さらに、本発明の一実施形態に係る画像データ処理装置は、上記標準偏差値算出手段が、上記第2画像データに含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値を第2標準偏差値として算出するものであり、上記モスキートノイズ算出手段が、上記第1標準偏差値および上記第2標準偏差値を少なくとも用いて、モスキートノイズ発生度合いを算出するものであることが好ましい。 Furthermore, in the image data processing apparatus according to an embodiment of the present invention, the standard deviation value calculating unit calculates the second standard deviation value of the luminance data in each pixel included in the second image data and the peripheral area of the pixel. It is calculated as a standard deviation value, and it is preferable that the mosquito noise calculating means calculates the degree of occurrence of mosquito noise using at least the first standard deviation value and the second standard deviation value.

 すなわち、第1画像データは、入力画像データのエッジ領域を含んでおらず、モスキートノイズや、モスキートノイズ以外のディテールを含んでいる。上記のように、第1画像データの第1標準偏差値のみを用いてモスキートノイズの発生度合いを算出することによって、エッジの影響を受けないモスキートノイズの判別をすることが可能である。しかし、第1画像データはモスキートノイズ以外にもディテールを含んでおり、上記ディテールがモスキートノイズの判別に影響を及ぼす可能性を否定できない。 That is, the first image data does not include the edge region of the input image data, but includes mosquito noise and details other than mosquito noise. As described above, it is possible to determine mosquito noise that is not affected by an edge by calculating the degree of occurrence of mosquito noise using only the first standard deviation value of the first image data. However, the first image data includes details in addition to mosquito noise, and it cannot be denied that the details may affect the determination of mosquito noise.

 一方、上記第2画像データはエッジ領域を含んでいる。上記標準偏差算出手段において、当該第2画像データの当該第2標準偏差値を算出することにより、当該画素がエッジ部分から近いのか、または離れているのかを判断することが可能となる。 On the other hand, the second image data includes an edge region. In the standard deviation calculation means, by calculating the second standard deviation value of the second image data, it is possible to determine whether the pixel is close to or away from the edge portion.

 当該第2標準偏差値より、当該画素がエッジ部分から近いと判断した場合は、第1標準偏差値に影響を与えない形でモスキートノイズ算出手段に取り込まれる。すなわち、エッジ領域を含まない第1画像データの第1標準偏差値のみを用いてモスキートノイズの発生度合いを算出した場合と同様の値になる。 When it is determined from the second standard deviation value that the pixel is close to the edge portion, the pixel is taken into the mosquito noise calculation means without affecting the first standard deviation value. That is, the value is the same as when the degree of occurrence of mosquito noise is calculated using only the first standard deviation value of the first image data not including the edge region.

 一方、当該第2標準偏差値より、当該画素がエッジ部分から遠いと判断した場合は、モスキートノイズを含む可能性が低いと判断する。よって、エッジの影響を受けない第1標準偏差値のみを用いてモスキートノイズの発生度合いを算出した値を、さらに小さくする補正項として、第2標準偏差値はモスキートノイズ算出手段において作用する。 On the other hand, if it is determined from the second standard deviation value that the pixel is far from the edge portion, it is determined that the possibility of including mosquito noise is low. Therefore, the second standard deviation value acts in the mosquito noise calculation means as a correction term for further reducing the value obtained by calculating the degree of occurrence of mosquito noise using only the first standard deviation value not affected by the edge.

 上記のように、上記第1標準偏差値に加えて、第2標準偏差値を用いてモスキートノイズの発生度合いを算出することによって、厳密なモスキートノイズの判別を可能とする。 As described above, by calculating the degree of occurrence of mosquito noise using the second standard deviation value in addition to the first standard deviation value, it is possible to determine mosquito noise strictly.

 さらに、本発明の一実施形態に係る画像データ処理装置は、上記標準偏差値算出手段が、上記入力画像データに含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値を第3標準偏差値として算出するものであり、上記モスキートノイズ算出手段が、上記第1標準偏差値および上記第3標準偏差値を少なくとも用いて、モスキートノイズ発生度合いを算出するものであることが好ましい。 Further, in the image data processing device according to one embodiment of the present invention, the standard deviation value calculating means calculates the third standard value of the luminance data in each pixel included in the input image data and the peripheral area of the pixel. It is preferably calculated as a deviation value, and the mosquito noise calculation means preferably calculates the degree of occurrence of mosquito noise using at least the first standard deviation value and the third standard deviation value.

 上記構成によれば、上記標準偏差値算出手段において、上記第1標準偏差値と上記第2標準偏差値に加えて、上記入力画像データの各画素および当該画素周辺領域における輝度データの標準偏差値を第3標準偏差値として算出する。上記モスキートノイズ算出手段において、上記第1標準偏差値を用いる場合と、上記第1標準偏差値および上記第2標準偏差値を用いる場合とのいずれの場合においても、上記第3標準偏差値を加味してモスキートノイズ発生度合いを算出することで、さらに厳密なモスキートノイズの判別が可能となる。 According to the above configuration, in the standard deviation value calculation means, in addition to the first standard deviation value and the second standard deviation value, the standard deviation value of the luminance data in each pixel of the input image data and the peripheral area of the pixel is added. Is calculated as the third standard deviation value. In the mosquito noise calculating means, the third standard deviation value is taken into account in both cases of using the first standard deviation value and using the first standard deviation value and the second standard deviation value. By calculating the degree of occurrence of mosquito noise, it becomes possible to determine the mosquito noise more strictly.

 さらに、本発明の一実施形態に係る画像データ処理装置は、モスキートノイズ算出手段が、上記第1標準偏差値を所定の第1関数に代入することによって第1モスキートノイズ発生度合いを算出する一方、上記第2標準偏差値を所定の第2関数に代入することによって第2モスキートノイズ発生度合いを算出するものであって、上記第1関数が、入力値としての第1標準偏差値の絶対値が最小の場合に、出力値として極大値を示すとともに、入力値が大きくなるに伴って出力値が単調減少し、さらに、入力値が第1所定値の場合に出力値が0となる関数であり、上記第2関数が、入力値としての第2標準偏差値の絶対値が最小の場合に、出力値として極大値を示すとともに、入力値が大きくなるに伴って算出値が単調減少し、さらに、入力値が第2所定値の場合に出力値が0となる関数であり、上記第1所定値が、上記第1標準偏差値と上記第3標準偏差値とを用いて決定されたものであり、上記第2所定値が、上記第2標準偏差値と上記第3標準偏差値とを用いて決定されたものであることが好ましい。 Furthermore, in the image data processing apparatus according to an embodiment of the present invention, the mosquito noise calculating means calculates the first mosquito noise occurrence degree by substituting the first standard deviation value into a predetermined first function, A second mosquito noise occurrence degree is calculated by substituting the second standard deviation value into a predetermined second function, wherein the first function is an absolute value of the first standard deviation value as an input value. This is a function that shows a maximum value as an output value in the case of the minimum, the output value monotonously decreases as the input value increases, and further the output value becomes 0 when the input value is the first predetermined value. When the absolute value of the second standard deviation value as the input value is minimum, the second function shows a maximum value as the output value, and the calculated value decreases monotonously as the input value increases. ,input Is a function whose output value is 0 when the second predetermined value is, the first predetermined value is determined using the first standard deviation value and the third standard deviation value, It is preferable that the second predetermined value is determined using the second standard deviation value and the third standard deviation value.

 上記構成によれば、モスキートノイズ算出手段において、モスキートノイズ発生度合いの算出を行う際に、上記第1関数のみ、または上記第1関数と上記第2関数とを用いている。上記第1関数および第2関数には、上記第1所定値および上記第2所定値がパラメータとして含まれている。第1所定値を決定するために、第1標準偏差値と第3標準偏差値とを用い、また、第2所定値を決定するために、第2標準偏差値と第3標準偏差値とを用いることによって、より厳密なモスキートノイズ発生度合いを決定することが可能となる。 According to the above configuration, when calculating the degree of occurrence of mosquito noise in the mosquito noise calculation means, only the first function, or the first function and the second function are used. The first function and the second function include the first predetermined value and the second predetermined value as parameters. The first standard deviation value and the third standard deviation value are used to determine the first predetermined value, and the second standard deviation value and the third standard deviation value are used to determine the second predetermined value. By using this, it is possible to determine a more exacting degree of mosquito noise.

 さらに、本発明の一実施形態に係る画像データ処理装置は、上記入力画像データにおいて、上記モスキートノイズ算出手段により算出されるモスキートノイズの発生度合いの平均値をモスキートノイズ発生度平均値としてフレーム毎に算出するとともに、上記モスキートノイズ発生度平均値と、所定の閾値との大小関係を比較し、当該モスキートノイズ発生度平均値が上記閾値以上と判断したフレームは、当該フレーム中にモスキートノイズが含まれる割合が高いと判断する一方、当該モスキートノイズ発生度平均値が上記閾値未満と判断したフレームは、当該フレーム中にモスキートノイズが含まれる割合が少ないと判断するモスキートノイズ判定手段を備えていることが好ましい。 Furthermore, the image data processing apparatus according to an embodiment of the present invention provides, for each frame, the average value of the degree of occurrence of mosquito noise calculated by the mosquito noise calculation unit in the input image data as the average value of mosquito noise occurrence degree. In addition to the calculation, the magnitude relation between the mosquito noise occurrence average value and a predetermined threshold value is compared, and the frame in which the mosquito noise occurrence degree average value is determined to be equal to or greater than the threshold value includes mosquito noise in the frame. While determining that the ratio is high, the frame for which the average mosquito noise occurrence degree is determined to be less than the threshold value includes mosquito noise determination means for determining that the ratio of mosquito noise to the frame is small. preferable.

 上記構成によれば、上記モスキートノイズ算出手段において、画素毎に算出される上記モスキートノイズの発生度合いを、入力画像データの1フレーム全画素を対象として平均値を求める。モスキートノイズ判定手段では、当該平均値が所定の閾値以上の場合は、当該フレームにはモスキートノイズが含まれる割合が多いと判断し、入力画像データに対して後述するモスキートノイズ低減処理を行う必要があると判断する。 According to the above configuration, the mosquito noise calculation means calculates an average value of the degree of occurrence of the mosquito noise calculated for each pixel for all pixels of one frame of the input image data. If the average value is equal to or greater than a predetermined threshold, the mosquito noise determination means determines that the frame contains a high proportion of mosquito noise, and needs to perform mosquito noise reduction processing described later on the input image data. Judge that there is.

 一方、当該平均値が所定の閾値未満の場合は、当該フレームにはモスキートノイズが含まれる割合が少ないと判断し、入力画像データに対してモスキートノイズ低減処理を行う必要がないと判断する。 On the other hand, when the average value is less than the predetermined threshold, it is determined that the ratio of the mosquito noise is small in the frame, and it is determined that it is not necessary to perform the mosquito noise reduction process on the input image data.

 上記所定の閾値を変更することによって、モスキートノイズ判定手段の判断基準を任意に変更することが可能となる。このことにより、画像データ処理装置の処理能力の高低や、エンコード時の圧縮率の高低などに応じて、柔軟な対応が可能となる。 It is possible to arbitrarily change the judgment standard of the mosquito noise judging means by changing the predetermined threshold value. This makes it possible to flexibly cope with the level of processing capability of the image data processing apparatus and the level of compression rate during encoding.

 さらに、本発明の一実施形態に係る画像データ処理装置は、上記モスキートノイズ判定手段により、モスキートノイズが含まれる割合が高いと判断されたフレームについては、上記モスキートノイズ発生度合いを用いて、上記入力画像データおよび上記第2画像データに重み付けを行ったうえで、当該入力画像データと当該第2画像データとを合成することにより、出力画像データを出力するモスキートノイズ低減手段を備えていることが好ましい。 Furthermore, the image data processing apparatus according to an embodiment of the present invention uses the degree of mosquito noise generation for the frame that is determined by the mosquito noise determination means to have a high ratio of mosquito noise. It is preferable to provide a mosquito noise reduction unit that outputs the output image data by combining the input image data and the second image data after weighting the image data and the second image data. .

 上記構成によれば、上記モスキートノイズ判定手段において、モスキートノイズ低減処理を行う必要が有りと判断された場合、モスキートノイズ低減手段では、上記入力画像データの画素毎に、当該入力画像データおよび上記第2画像データを用いてモスキートノイズ低減処理を行い、出力画像データとして出力する。 According to the above configuration, when the mosquito noise determination unit determines that the mosquito noise reduction process needs to be performed, the mosquito noise reduction unit determines that the input image data and the first image for each pixel of the input image data. Mosquito noise reduction processing is performed using the two image data and output as output image data.

 当該第2画像データは、入力画像データをローパスフィルタ(LPF)などで処理をして得られる画像データで、モスキートノイズが低減されていると同時に、モスキートノイズ以外の微細な画像データ(ディテール部分)も失われている画像データである。 The second image data is image data obtained by processing input image data with a low-pass filter (LPF) or the like. The mosquito noise is reduced, and at the same time, fine image data other than mosquito noise (detail portion). Is also lost image data.

 上記モスキート算出手段で算出されたモスキートノイズ発生度合いに基づいて、当該入力画像データと当該第2画像データに重み付けを行い、当該入力画像データと当該第2画像データとを合成することによって、出力画像データを出力する。 Based on the degree of mosquito noise occurrence calculated by the mosquito calculating means, the input image data and the second image data are weighted, and the input image data and the second image data are combined to produce an output image. Output data.

 また、上記モスキートノイズ判定手段において、モスキートノイズ低減処理を行う必要が無しと判断された場合は、上記入力画像データを出力画像データとする。 If the mosquito noise determination means determines that there is no need to perform mosquito noise reduction processing, the input image data is set as output image data.

 その結果、画像データに含まれるディテール部分は保持しつつ、効果的にモスキートノイズを除去し、適切に画質を改善した出力画像データを得ることが可能となる。 As a result, it is possible to effectively remove mosquito noise while retaining the detail portion included in the image data, and to obtain output image data with improved image quality appropriately.

 本発明によれば、エッジの影響を受けないモスキートノイズ除去処理が可能となる。よって、例えば地上デジタル放送、ケーブルテレビ、ネットワークを介して配信される動画、およびパソコンまたはスマートフォンを端末としたテレビ電話など、エンコードされたデジタル映像データをデコードして再生する際に適用することができる。 According to the present invention, it is possible to perform mosquito noise removal processing that is not affected by edges. Therefore, for example, it can be applied when decoding and playing back encoded digital video data such as terrestrial digital broadcasting, cable TV, video distributed over a network, and videophones using a personal computer or smartphone as a terminal. .

1 画像データ処理装置
10 データ分離部(データ分離手段)
22 標準偏差値算出部(標準偏差値算出手段)
23 モスキートノイズ算出部(モスキートノイズ算出手段)
30 モスキートノイズ低減部(モスキートノイズ低減手段)
31 モスキートノイズ判定部(モスキートノイズ判定手段)
1 Image Data Processing Device 10 Data Separation Unit (Data Separation Unit)
22 Standard deviation value calculation unit (standard deviation value calculation means)
23 Mosquito noise calculation unit (mosquito noise calculation means)
30 Mosquito noise reduction unit (Mosquito noise reduction means)
31 Mosquito noise judging section (mosquito noise judging means)

Claims (9)

 入力画像データを、エッジ領域を含まない第1画像データと、当該第1画像データ以外の第2画像データとに分離するデータ分離手段と、
 上記第1画像データ内に含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値を第1標準偏差値として算出する標準偏差値算出手段と、
 上記第1標準偏差値を用いて、上記入力画像データの画素毎のモスキートノイズ発生度合いを算出するモスキートノイズ算出手段と、
 を備えていることを特徴とする画像データ処理装置。
Data separation means for separating the input image data into first image data not including an edge region and second image data other than the first image data;
A standard deviation value calculating means for calculating a standard deviation value of luminance data in each pixel included in the first image data and a peripheral area of the pixel as a first standard deviation value;
Mosquito noise calculating means for calculating the degree of occurrence of mosquito noise for each pixel of the input image data using the first standard deviation value;
An image data processing apparatus comprising:
 上記標準偏差値算出手段は、さらに、上記第2画像データに含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値を第2標準偏差値として算出するものであり、
 上記モスキートノイズ算出手段は、上記第1標準偏差値および上記第2標準偏差値を少なくとも用いて、モスキートノイズ発生度合いを算出するものであることを特徴とする請求項1に記載の画像データ処理装置。
The standard deviation value calculating means further calculates a standard deviation value of luminance data in each pixel included in the second image data and a peripheral area of the pixel as a second standard deviation value.
2. The image data processing apparatus according to claim 1, wherein the mosquito noise calculation means calculates a degree of occurrence of mosquito noise using at least the first standard deviation value and the second standard deviation value. .
 上記標準偏差値算出手段は、さらに、上記入力画像データに含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値を第3標準偏差値として算出するものであり、
 上記モスキートノイズ算出手段は、上記第1標準偏差値および上記第3標準偏差値を少なくとも用いて、モスキートノイズ発生度合いを算出するものであることを特徴とする請求項1に記載の画像データ処理装置。
The standard deviation value calculating means further calculates a standard deviation value of luminance data in each pixel included in the input image data and a peripheral area of the pixel as a third standard deviation value,
2. The image data processing apparatus according to claim 1, wherein the mosquito noise calculating means calculates a degree of occurrence of mosquito noise using at least the first standard deviation value and the third standard deviation value. .
 上記モスキートノイズ算出手段は、さらに、上記第1標準偏差値を所定の第1関数に代入することによって、第1モスキートノイズ発生度合いを算出する一方、上記第2画像データに含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値である第2標準偏差値を所定の第2関数に代入することによって、第2モスキートノイズ発生度合いを算出するものであって、
 上記第1関数は、入力値としての第1標準偏差値の絶対値が最小の場合に、出力値として極大値を示すとともに、入力値が大きくなるに伴って出力値が単調減少し、さらに、入力値が第1所定値の場合に出力値が0となる関数であり、
 上記第2関数は、入力値としての第2標準偏差値の絶対値が最小の場合に、出力値として極大値を示すとともに、入力値が大きくなるに伴って算出値が単調減少し、さらに、入力値が第2所定値の場合に出力値が0となる関数であり、
 上記第1所定値は、上記第1標準偏差値と上記第3標準偏差値とを用いて決定されたものであり、
 上記第2所定値は、上記第2標準偏差値と上記第3標準偏差値とを用いて決定されたものであることを特徴とする請求項3に記載の画像データ処理装置。
The mosquito noise calculation means further calculates the first mosquito noise occurrence degree by substituting the first standard deviation value into a predetermined first function, while each pixel included in the second image data and the Substituting a second standard deviation value, which is a standard deviation value of luminance data in the peripheral area of the pixel, into a predetermined second function, to calculate the second mosquito noise occurrence degree,
The first function shows a maximum value as the output value when the absolute value of the first standard deviation value as the input value is minimum, and the output value monotonously decreases as the input value increases. When the input value is the first predetermined value, the output value is 0.
The second function shows a maximum value as an output value when the absolute value of the second standard deviation value as an input value is minimum, and the calculated value monotonously decreases as the input value increases. When the input value is the second predetermined value, the output value is 0.
The first predetermined value is determined using the first standard deviation value and the third standard deviation value,
4. The image data processing apparatus according to claim 3, wherein the second predetermined value is determined by using the second standard deviation value and the third standard deviation value.
 上記入力画像データにおいて、上記モスキートノイズ算出手段により算出されるモスキートノイズの発生度合いの平均値をモスキートノイズ発生度平均値としてフレーム毎に算出するとともに、上記モスキートノイズ発生度平均値と、所定の閾値との大小関係を比較し、
 当該モスキートノイズ発生度平均値が上記閾値以上と判断したフレームは、当該フレーム中にモスキートノイズが含まれる割合が高いと判断する一方、
 当該モスキートノイズ発生度平均値が上記閾値未満と判断したフレームは、当該フレーム中にモスキートノイズが含まれる割合が少ないと判断するモスキートノイズ判定手段を備えていることを特徴とする請求項1~4のうちいずれか1項に記載の画像データ処理装置。
In the input image data, an average value of the mosquito noise occurrence degree calculated by the mosquito noise calculation means is calculated for each frame as a mosquito noise occurrence degree average value, and the mosquito noise occurrence degree average value and a predetermined threshold value are calculated. Compare the magnitude relationship with
While determining that the mosquito noise occurrence average value is equal to or higher than the threshold value, the frame is determined that the ratio of mosquito noise included in the frame is high.
5. The mosquito noise determining means for determining that a frame in which the average mosquito noise occurrence value is determined to be less than the threshold includes a low ratio of mosquito noise in the frame. The image data processing device according to any one of the above.
 上記モスキートノイズ判定手段により、モスキートノイズが含まれる割合が高いと判断されたフレームについては、上記モスキートノイズ発生度合いを用いて、上記入力画像データおよび上記第2画像データに重み付けを行ったうえで、当該入力画像データと当該第2画像データとを合成することにより、出力画像データを出力するモスキートノイズ低減手段を備えていることを特徴とする請求項5に記載の画像データ処理装置。 For frames determined to have a high ratio of mosquito noise by the mosquito noise determination means, the input image data and the second image data are weighted using the degree of mosquito noise occurrence. 6. The image data processing apparatus according to claim 5, further comprising mosquito noise reduction means for outputting output image data by combining the input image data and the second image data.  入力画像データを、エッジ領域を含まない第1画像データと、当該第1画像データ以外の第2画像データとに分離するデータ分離ステップと、
 上記第1画像データ内に含まれる各画素および当該画素の周辺領域における輝度データの標準偏差値を第1標準偏差値として算出する標準偏差値算出ステップと、
 上記第1標準偏差値を用いて、上記入力画像データの画素毎のモスキートノイズ発生度合いを算出するモスキートノイズ算出ステップと、
 を備えていることを特徴とする画像データ処理方法。
A data separation step of separating the input image data into first image data not including an edge region and second image data other than the first image data;
A standard deviation value calculating step of calculating, as a first standard deviation value, a standard deviation value of luminance data in each pixel included in the first image data and a peripheral region of the pixel;
A mosquito noise calculating step for calculating a degree of occurrence of mosquito noise for each pixel of the input image data using the first standard deviation value;
An image data processing method comprising:
 請求項1に記載の画像データ処理装置における各手段としてコンピュータを動作させる画像データ処理プログラム。 An image data processing program for operating a computer as each means in the image data processing apparatus according to claim 1.  請求項8に記載の画像データ処理プログラムを記録したコンピュータ読取可能な記録媒体。 A computer-readable recording medium on which the image data processing program according to claim 8 is recorded.
PCT/JP2012/051168 2011-01-27 2012-01-20 Image data processing apparatus, image data processing method, image data processing program, and computer-readable recording medium Ceased WO2012102191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011015339 2011-01-27
JP2011-015339 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102191A1 true WO2012102191A1 (en) 2012-08-02

Family

ID=46580760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051168 Ceased WO2012102191A1 (en) 2011-01-27 2012-01-20 Image data processing apparatus, image data processing method, image data processing program, and computer-readable recording medium

Country Status (1)

Country Link
WO (1) WO2012102191A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07203444A (en) * 1993-12-29 1995-08-04 Matsushita Electric Ind Co Ltd Image distortion area extraction method
US20060245506A1 (en) * 2005-05-02 2006-11-02 Samsung Electronics Co., Ltd. Method and apparatus for reducing mosquito noise in decoded video sequence
JP2009118080A (en) * 2007-11-05 2009-05-28 Iix Inc Image signal processing apparatus, and image signal processing method
JP2010211552A (en) * 2009-03-11 2010-09-24 Rohm Co Ltd Image processing method and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07203444A (en) * 1993-12-29 1995-08-04 Matsushita Electric Ind Co Ltd Image distortion area extraction method
US20060245506A1 (en) * 2005-05-02 2006-11-02 Samsung Electronics Co., Ltd. Method and apparatus for reducing mosquito noise in decoded video sequence
JP2009118080A (en) * 2007-11-05 2009-05-28 Iix Inc Image signal processing apparatus, and image signal processing method
JP2010211552A (en) * 2009-03-11 2010-09-24 Rohm Co Ltd Image processing method and computer program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUSUKE MONOBE ET AL.: "Enhancement of JPEG Coded Images Using a Region-based Algorithm", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 56, no. 8, August 2002 (2002-08-01), pages 1291 - 1298 *

Similar Documents

Publication Publication Date Title
US7302104B2 (en) Smoothing tile boundaries of images encoded and decoded by JPEG 2000
US8948253B2 (en) Networked image/video processing system
JP5399578B2 (en) Image processing apparatus, moving image processing apparatus, video processing apparatus, image processing method, video processing method, television receiver, program, and recording medium
US10841620B1 (en) Noisy media content encoding
EP3069513B1 (en) Pre-dithering in high dynamic range video coding
US9137548B2 (en) Networked image/video processing system and network site therefor
CN110463206B (en) Image filtering method, apparatus and computer readable medium
US20080152017A1 (en) Mpeg noise reduction
WO2013085538A9 (en) Control of video processing algorithms based on measured perceptual quality characteristics
US20250209570A1 (en) Video optimization processing system and method related applications
JP2013041565A (en) Image processor, image display device, image processing method, computer program, and recording medium
JP2006129105A (en) Visual processing device, visual processing method, visual processing program, and semiconductor device
CN114584831B (en) Video optimization processing method, device, equipment and storage medium for improving video definition
JP2013235517A (en) Image processing device, image display device, computer program and recording medium
KR20060021665A (en) Apparatus and method for adjusting screen sharpness in mobile terminal
CN105894456B (en) A kind of high dynamic range images contrast mapping method based on normalization layering
US8811766B2 (en) Perceptual block masking estimation system
WO2012102191A1 (en) Image data processing apparatus, image data processing method, image data processing program, and computer-readable recording medium
CN106664387B (en) Computer device and method for post-processing video image frame and computer readable medium
US9414072B1 (en) Performance of the JPEG estimated spectrum adaptive postfilter (JPEG-ESAP) for low bit rates
WO2006131866A2 (en) Method and system for image processing
US20240054607A1 (en) Reducing the complexity of video quality metric calculations
JP4145086B2 (en) Image decoding apparatus, image processing apparatus, moving image display system, program, storage medium, and image decoding method
JP7627389B2 (en) Noise removal for SDR-HDR local reconstruction
CN106488079A (en) A kind of method and device of video denoising

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP