WO2010131641A1 - Method for determination of condition of cell - Google Patents
Method for determination of condition of cell Download PDFInfo
- Publication number
- WO2010131641A1 WO2010131641A1 PCT/JP2010/057938 JP2010057938W WO2010131641A1 WO 2010131641 A1 WO2010131641 A1 WO 2010131641A1 JP 2010057938 W JP2010057938 W JP 2010057938W WO 2010131641 A1 WO2010131641 A1 WO 2010131641A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- state
- cells
- lectin
- lectins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G01N33/575—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5073—Stem cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5091—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4724—Lectins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2400/00—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
Definitions
- the present invention relates to the determination of the state of cells.
- Regenerative medicine refers to medical treatment that recovers and treats defects and insufficiency of organs and tissues due to diseases and disorders by transplanting cultured cells and tissues obtained from them, and is actually skin, bone / cartilage, blood vessels, cornea In such fields, clinical applications are being carried out.
- Stem cell research is deeply involved in understanding the life of individual development and differentiation, and at the same time leads to application to regenerative medicine using cells differentiated from stem cells. As a result, it is expected that regenerative medicine can be performed even in fields that were not possible in the past.
- Stem cell evaluation methods include cell morphology, gene expression analysis, and surface antigen evaluation.
- Patent Document 1 describes a method of diagnosing cell differentiation by observing stem cell morphology.
- Patent Document 2 describes a method for monitoring cell differentiation from the methylation pattern of cytosine in DNA collected from cells.
- Undifferentiated human embryonic stem (hES) cells are (1) in addition to the observation of morphological characteristics, (2) positive alkaline phosphatase activity, (3) stage-specific emblemonic antigen (SSEA)- 3 and SSEA-4 and TRA-1-60 recognizing keratan sulfate proteoglycan, TRA-1-81 positive cell surface marker, (4) expression detection of undifferentiated marker genes OCT3 / 4, SOX2, NANOG, and (5) Evaluation is performed by confirming the formation of teratomas (teratomas) by transplantation into immunodeficient mice.
- SSEA stage-specific emblemonic antigen
- Non-patent Document 1 K. A. Wearne et al. Have shown that various changes in sugar chain structure occur before and after differentiation of human ES cells using fluorescently labeled lectins (Non-patent Document 1).
- Patent Document 3 it is constituted by a lectin group including at least one lectin whose sugar binding site is modified at least, or selected by panning a cell or a pseudo-cell body having a predetermined sugar chain.
- a sugar chain analysis method using a lectin library composed of a lectin group including at least one lectin has been proposed.
- Patent Document 4 proposes a method of selecting a lectin having a predetermined analysis ability from a plurality of types of lectins and a lectin selected by the method.
- Patent Document 5 proposes a method of analyzing an interaction between a protein and a sugar chain that interacts with a sugar chain by applying excitation light without washing the substrate.
- Patent Document 6 a substrate made of a light-guiding material in which a plurality of types of sugar chain-binding proteins are arranged and fixed, and light is introduced into the side end face of the substrate to generate an evanescent wave on the surface of the substrate, thereby fluorescent labeling is performed.
- a sugar chain or complex carbohydrate analyzing device having means for exciting and fluorescence intensity measuring means for measuring the intensity of fluorescence generated by the means for each arrangement position of the sugar chain binding protein.
- Patent Document 7 an array substrate for observing structural information of molecules such as proteins, sugar chains, and lipids existing on the cell surface without destroying the cells, and a method for achieving a cell surface profile using the array substrate Has been proposed.
- Non-patent Document 2 it has been reported that in human ES cells, there is a difference in differentiation tendency depending on established cell lines.
- ES-like cells such as iPS cells
- the evaluation criteria are not based on ES cells at the present time, and there are similar problems.
- the inventors of the present application have repeatedly studied about a method for discriminating cells with lectins. As a result, the state of cells is discriminated by using binding measurement data of sugar chains of cells to a plurality of lectins. Invented a method to do this.
- the invention described in claim 1 Obtained by measuring a sugar chain of a cell to be discriminated or a sugar chain-containing sample containing the sugar chain while bound to a plurality of types of lectins in a liquid phase, the plurality of types In this method, the state of a cell is discriminated using the amount of the cell to be discriminated or the amount of a sugar chain-containing sample each bound to lectin.
- the invention according to claim 2 The method according to claim 1, wherein the cell is a stem cell or a progenitor cell.
- stem cells are somatic stem cells, embryonic stem cells, nuclear transfer stem cells, or induced pluripotent stem cells.
- somatic stem cell is a hematopoietic stem cell or a mesenchymal stem cell.
- the invention according to claim 5 The method for determining a state of a cell according to any one of claims 2 to 4, wherein the cell is derived from a mammal or a human.
- the invention described in claim 6 6.
- the invention according to claim 9 The method for discriminating the state of a cell according to any one of claims 1 to 8, wherein the sugar-containing molecule is any one or a plurality of glycoproteins, glycopeptides, glycolipids, and proteoglycans. It is.
- the invention according to claim 10 is: 10.
- the invention according to claim 11 The method for determining a state of a cell according to any one of claims 1 to 10, wherein the amount of the cell or sugar chain-containing sample is measured by fluorescence measurement or luminescence measurement.
- the invention according to claim 12 12.
- the invention according to claim 13 12.
- the invention according to claim 14 The cell state discrimination method is performed in combination with one or both of gene expression analysis and binding measurement with a specific marker antibody of a cell in a target state. This is a method for determining the state of cells.
- the invention according to claim 15 is: The method for discriminating a cell state according to any one of claims 1 to 13, wherein the cell state discrimination method is performed by linear discriminant analysis or nonlinear discriminant analysis.
- the invention according to claim 16 The method according to claim 15, wherein the nonlinear discriminant analysis is discriminant analysis based on Mahalanobis distance.
- the invention described in claim 17 14. The method for determining a cell state according to any one of claims 1 to 13, wherein the cell state determination method is a supervised machine learning method or a semi-supervised machine learning method.
- the invention according to claim 18 The machine learning method is performed by any method selected from a k-nearest neighbor method, a naive Bayes classifier, a decision tree, a neural network, a support vector machine, a bagging method, a boosting method, and a random forest method.
- Item 18. A method for determining the state of a cell according to Item 17.
- the invention according to claim 19 The cell state determination method according to any one of claims 1 to 13, wherein the cell state determination method is performed by any one method selected from principal component analysis, cluster analysis, and self-organizing map. It is a method to do.
- the invention according to claim 20 provides The state of the cells to be identified is undifferentiated and differentiated human embryonic stem cells or human induced pluripotent stem cells, and the lectins used for the identification are canine endlectin I, kidney bean lectin (L), kidney bean lectin (E), spindle tree
- the lectin is one or more selected from the group consisting of molecules each having a sugar-binding specificity similar to any one of these lectins or any of these lectins. 20.
- the invention according to claim 21 The state of the cells to be distinguished is undifferentiation and bone differentiation of human mesenchymal stem cells. 20. One or a plurality of molecules selected from the group consisting of molecules each having a sugar-binding specificity similar to any one or any of these lectins. This is a method for discriminating the state of a cell.
- the state of a cell can be determined quickly, simply and accurately.
- determination result of the undifferentiated cell group and the differentiated cell group was represented by the method of this invention.
- determination result of the undifferentiated mesenchymal stem cell group and the bone differentiated cell group was represented by the other method of this invention.
- determination result of the undifferentiated cell group and the differentiated cell group was represented by the method of this invention.
- the figure of the example by which the discrimination result of the cell group from which a differentiation tendency differs by the method of this invention was represented.
- the figure of the other example by which the discrimination result of the cell group from which a differentiation tendency differs by the method of this invention was represented.
- determination result (signal obtained from the antibody microarray) by the method of this invention in case a sample is a cell extract.
- the figure showing an example of the cluster analysis result by the method of this invention in case a sample is the state after the undifferentiation of a human ES cell, and differentiation.
- the figure showing an example of the cluster analysis result by the method of this invention in case a sample is a human mesenchymal stem cell and a fetal cancer cell.
- the figure showing an example of a cluster analysis result when a sample is a human mesenchymal stem cell and a fetal cancer cell, and the purpose is specified and discriminated by the method of the present invention.
- the figure showing another example of the cluster analysis result when a sample is a human mesenchymal stem cell and a fetal cancer cell, and the purpose is specified and discriminated by the method of the present invention.
- the method for discriminating the state of a cell comprises a sugar chain possessed by a cell to be discriminated or a sugar chain-containing sample containing the sugar chain (for example, a sugar chain possessed by a cell to be discriminated)
- Cell extract which is a sugar chain-containing sample containing glycine, and obtained by measuring in a liquid phase while being bound to a plurality of types of lectins.
- the state of the cells is discriminated using the amount of the formed cells or the amount of the sugar chain-containing sample.
- the cell state is discriminated using the amount of the cell extract).
- the binding between sugar chains and sugar chain-containing molecules and lectins is weak compared to biomolecular interactions such as antigen-antibody reactions, and as a result, it is measured by techniques such as fluorescence measurement using conventional ELISA plates.
- the binding between the sugar chain or the sugar chain-containing molecule and the lectin is dissociated, so that the detection sensitivity is lowered and the reproducibility is lowered, and the measurement accuracy is lowered.
- the measurement accuracy decreases due to the generation of a noise signal due to non-specific adsorption or the like in the drying process.
- the sugar chain or the sugar chain-containing sample containing the sugar chain reacts with the lectin and the measurement can be performed in the liquid phase without washing as much as possible.
- Examples of methods that can be measured in the liquid phase without washing include confocal fluorescence measurement and fluorescence measurement by evanescent excitation.
- the lectin used to detect sugar chains is not very different in the target cells or does not need a lectin that recognizes sugar chains that are not present in the target cells. Since it may cause noise, lectins used for measurement or discrimination are desirably selected as necessary.
- the measurement method preferably uses a lectin array loaded with various types of lectins, and the glycine contained in the cells to be identified or the sugar chain-containing sample containing the sugar chain and the lectin Since it is a binding measurement, it is desirable to use a measurement method that allows measurement in a liquid phase. For example, a confocal fluorescence measurement method or a fluorescence measurement method using an evanescent excitation method can be used.
- Lectins are defined as sugar-binding proteins, but anti-glycan antibodies that are products of immune reactions are not included in lectins.
- Lectins can be obtained from various organisms such as plants, fungi, animals and microorganisms. Each lectin has specificity for sugars and sugar chains. There are lectins having affinity for monosaccharides such as mannose, galactose, N-acetylgalactosamine, fucose and sialic acid, and lectins having affinity for oligosaccharides containing the above monosaccharides. Any lectin can be used in the present invention.
- a sugar chain-containing sample for example, cell extract
- a sugar chain-containing sample that is a sugar chain-containing molecule extracted from the cell and a plurality of lectins
- lectin binding assay using ELISA plate, magnetic beads, latex beads, surface plasmon resonance method, lectin array, etc. can be used, and lectin array is preferable.
- the lectin array is based on a measurement method that allows measurement in a liquid phase state. For example, measurement can be performed using a confocal fluorescence measurement method or an evanescent field excitation method.
- a lectin array is to measure the binding of a plurality of lectins to a carrier and react with sugar chains to be reacted or a sugar chain-containing sample.
- the carrier glass, plastic, metal or the like is used.
- a cell to be discriminated or a sugar chain-containing sample containing a sugar chain possessed by the cell can be fluorescently labeled and reacted with a lectin immobilized on a carrier.
- the fluorescence intensity of the fluorescently labeled cells bound to the lectin and the fluorescence intensity of the fluorescently labeled sugar chain-containing sample can be measured.
- the fluorescence intensity depends on the amount of fluorescently labeled cells and the fluorescently labeled sugar chain. Increase or decrease in accordance with the amount of sample contained.
- Measured fluorescence intensity can be digitized and handled.
- This numerical value is desirably processed according to the purpose. For example, in order to determine the state of a cell, it is desirable to normalize the value obtained from a sugar chain-containing sample (for example, a cell extract) or a binding measurement between a cell and a lectin. Further, it is desirable that a cutoff is performed on the value. Furthermore, it also includes deleting a lectin having no signal or very small signal that may become noise during statistical analysis processing before analysis. Furthermore, it is desirable that the value is corrected by a value measured with a standard substance such as a glycoprotein having a sugar chain corresponding to the specificity of each lectin.
- a standard substance such as a glycoprotein having a sugar chain corresponding to the specificity of each lectin.
- a lectin necessary for discrimination can also be extracted using the result of measuring the binding between the sugar chain of the cell and a plurality of lectins. For example, using cells in multiple states to be distinguished as a sample, the cell extract or the results of binding measurements between cells and multiple types of lectins can be used to extract lectins that exhibit characteristic differences in cells in those states. can do.
- a method for extracting lectins a statistical method such as a significant difference test such as t-test or a principal component analysis can be used.
- the cell state discriminated by the above-described method of the present invention includes an undifferentiated state of the cell and a state after differentiation of the cell.
- the undifferentiated state of the cells includes stem cells and progenitor cells.
- Stem cells refer to cells that are undifferentiated and have self-renewal and multipotency, somatic stem cells such as hematopoietic stem cells and mesenchymal stem cells, embryonic stem cells (ES cells), nuclear transplanted ES cells (ntES cells), Includes induced pluripotent stem cells (iPS cells).
- differentiation means that undifferentiated cells such as stem cells and progenitor cells lose differentiation ability or pluripotency and acquire characteristics specific to the cell type. During differentiation, the state of the cells changes.
- the cell state means that the cell is undifferentiated, has pluripotency, has differentiated, the tendency of undifferentiated cells to have differentiation, resistance to differentiation, and that the cells have become cancerous. , Including the tendency of canceration of cells, cell origin, cell tissue, viral infection of cells, and changes in cells due to genetic manipulation.
- the method includes a step of extracting a sugar chain-containing molecule from the cell, and the sugar chain-containing molecule includes glycoprotein, glycopeptide, glycolipid, and proteoglycan.
- the cell itself can be measured.
- the sugar chain-containing molecule extracted from the cell is preferably a sugar chain-containing molecule present on the cell surface, that is, a sugar chain-containing molecule extracted from the cell membrane, and particularly preferably a glycoprotein extracted from the cell membrane.
- the means for obtaining the discrimination method in the present invention is preferably based on a statistical analysis method or machine learning.
- linear discriminant analysis is often sufficient.
- linear discriminant analysis is based on the assumption that the population variance of each group is equal, its application is limited, so when discriminating using more complicated data or classifying multiple groups with high accuracy If necessary, a method suitable for the data to be used is required.
- nonlinear discriminant analysis or discriminant analysis by machine learning can be used.
- Nonlinear discriminant analysis includes discriminant analysis based on Mahalanobis distance.
- Discriminant analysis by machine learning includes k-nearest neighbor method, naive Bayes classifier, decision tree, neural network, support vector machine, and group learning such as bagging method, boosting method, and random forest method.
- k-nearest neighbor method naive Bayes classifier
- decision tree naive Bayes classifier
- neural network e.g., neural network
- support vector machine e.g., neural network
- group learning e.g., neural network learner neural network
- group learning such as bagging method, boosting method, and random forest method.
- analysis methods that do not use teacher data, such as principal component analysis, hierarchical clustering, non-hierarchical clustering, and self-organizing maps, should be used as a discrimination method by performing analysis with cell data in a known state. You can also.
- Lectins required for cell discrimination differ depending on the state of each cell. Therefore, it is possible to provide a lectin set and a discrimination method for discriminating whether or not the state is a specific cell. Furthermore, a discrimination kit can be provided.
- a lectin set containing lectins necessary for determining the state of a plurality of cells.
- a lectin set and a discrimination method for discriminating a state of a plurality of cells or a change in the state can be provided.
- a discrimination kit can be provided.
- lectins that show a difference between their states by statistical methods such as significant difference test, principal component analysis, etc. based on the results of measuring cells or cell extracts in a state to be distinguished with a plurality of lectins. According to the present invention, cells discriminated by the above discriminating method can be provided.
- the lectin microarray used (LecChip, manufactured by Sakai GP Bioscience) has 45 different lectins immobilized on each of three spots. The 45 types of lectins used are shown in FIG.
- the fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin.
- the fluorescence intensity was corrected by the following method, and the corrected data was used. That is, according to the method of Kuno, Itakura et al. (J. Proteomics Bioinform. Vol.1 68-72 (2008)), the fluorescence intensity was measured by combining the data measured with two appropriate gains and measured with the higher gain. The data corrected for the signal saturated with was used.
- the score is positive, it is determined as a differentiated cell, and when it is negative, it is determined as an undifferentiated cell.
- reaction fluorescently labeled proteins with fluorescently labeled protein and lectin microarray final concentration 0.25 [mu] g / ml was prepared in 1% Triton X-100, 0.5M Glycine, TBS containing 1mM CaCl 2, 1mM MnCl 2, It was mounted on the same lectin microarray (LecChip) used in Example 1 and allowed to react overnight at 4 ° C. As a result, the fluorescently labeled glycoprotein in the sample binds depending on the specificity of each sugar and lectin.
- the fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin.
- the score is positive, it is determined as a differentiated cell, and when it is negative, it is determined as an undifferentiated cell.
- the signal value of each lectin for each sample is calculated by subtracting the background value and then calculating the relative value with the lectin signal showing the maximum signal intensity as the reference value (100) among all lectins. Used for processing. Lectins showing the above relative value of less than 5 in all samples were not used for the following analysis.
- lectins used for discrimination from the above data 5 lectins of UEA-I, MAL, PHA (E), BPL, WFA are extracted, and the hES cell and EB data are used as learning data separately from the above. Discrimination analysis of undifferentiated cells by Mahalanobis distance method was performed using lectin array data of hES cells and EBs obtained by measurement by the method (FIG. 11).
- D1 represents the distance between the sample cell and the center of the hES cell group
- D2 represents the distance between the sample cell and the center of the EB group, and each cell is identified as a cell having a smaller distance.
- HUES 3 Has a tendency to differentiate into ectoderm and heart.
- HUES 8 Has a tendency to differentiate into mesoderm, endoderm, skin, fat, blood, endothelium, pancreas, liver and intestine.
- HUES 9 Has tendency to differentiate into ectoderm and nerve.
- Flow cytometry measurement was performed with a Beckman FC500 flow cytometer. The value obtained by subtracting the signal detected in the unstained cells from the average value of the fluorescence signal detected in the cells subjected to lectin staining was used as the measurement value. Of the 21 lectin signals, the highest lectin signal was normalized to 1.0, and the other lectin signals were normalized to relative values.
- reaction fluorescently labeled proteins with fluorescently labeled protein and lectin microarray final concentration 0.25 [mu] g / ml was prepared in 1% Triton X-100, 0.5M Glycine, TBS containing 1mM CaCl 2, 1mM MnCl 2, It was mounted on the same lectin microarray (LecChip) used in Example 1 and allowed to react overnight at 4 ° C. As a result, the fluorescently labeled glycoprotein in the sample binds depending on the specificity of each sugar and lectin.
- the fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin.
- the signal value of each lectin for each sample was obtained by subtracting the background value and then determining the relative value with the UDA signal showing the maximum signal intensity as the reference value (100) among all the lectins.
- the lectin / antibody microarray used here is TRA-1-60, TRA-1-81, SSEA-3, which is an undifferentiated marker of 45 lectins and human ES cells and human iPS cells shown in FIG. SSEA-4, Sox2 Oct3 / 4, and Nanog antibodies each immobilized on two spots were used.
- Measurement of lectin microarray / antibody microarray After removing the reaction solution and washing with TBS containing 1% Triton X-100, perform fluorescence measurement of the lectin microarray using an evanescent field excitation scanner (GlycoStation Reader, GP Biosciences) It was. The exposure time at the time of measurement was set to 199 msec, and the camera gain was measured at each stage of 70, 80, 90, 100, and 110.
- Pretreatment of signal obtained from lectin microarray The signal value of each lectin for each sample was subtracted from the background value, and then the lectin signal showing the maximum signal intensity among all lectins was defined as the reference value (100). The defined relative values were used for the following statistical treatments. In all samples, lectin signals showing the above relative values of less than 1 were all set to 1.
- FIG. 19 shows that EB 4 days after differentiation induction and EB 16 days after differentiation induction can also be discriminated by the main component 1 (PC1) capable of discriminating iPS cells and EBs. That is, it was confirmed by lectin microarray analysis that the state after differentiation induction can also be discriminated.
- PC1 main component 1
- the data obtained by the lectin / antibody microarray is effective for discrimination of the state of cells, and the discrimination of undifferentiation can be clearly discriminated by combining the results of the lectin microarray and the antibody microarray. It was confirmed that the analysis by the lectin microarray is effective for discriminating the state in more detail.
- Example 2 In the same manner as in Example 1, protein extraction, membrane protein labeling, reaction of fluorescently labeled protein with lectin microarray, and measurement of lectin microarray were performed. In addition, data preprocessing was performed in the same manner as in Example 1, and a relative value was determined for the signal value of each lectin for each sample.
- the lectin signal pattern was analyzed by the cluster analysis method and the principal component analysis method, and differentiated from the undifferentiated cell group (hES). After confirming that the cells were divided into cell groups (EB), we extracted the lectins that had a significant difference in signal (p ⁇ 0.01) between the two groups using t-test, and as a result, four lectins MAL, PHA (L), EEL , PHA (E) was extracted.
- Protein extraction 1x10 6 to 5x10 6 human mesenchymal stem cells Excess finger-derived cells (Yub), surplus finger bone marrow-derived cells (Yub_BMC), cord blood-derived cells (UCB), placenta-derived cells (PL), amnion-derived Cells (AM), bone marrow-derived cells (2F, 3F, UET, UEET, UBET), endometrial-derived cells (UtE, EPC), menstrual blood-derived cells (Edom)), and human fetal cancer cells (NCRG3)
- Yub human mesenchymal stem cells
- Yub_BMC surplus finger bone marrow-derived cells
- UB cord blood-derived cells
- AM placenta-derived cells
- AM amnion-derived Cells
- bone marrow-derived cells (2F, 3F, UET, UEET, UBET), endometrial-derived cells (UtE, EPC), menstrual blood-derived cells (Edom)
- reaction fluorescently labeled proteins with fluorescently labeled protein and lectin microarray final concentration 0.25 [mu] g / ml was prepared in 1% Triton X-100, 0.5M Glycine, TBS containing 1mM CaCl 2, 1mM MnCl 2, It was mounted on the same lectin microarray (LecChip) used in Example 1 and allowed to react overnight at 4 ° C. As a result, the fluorescently labeled glycoprotein in the sample binds depending on the specificity of each sugar and lectin.
- the fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin.
- the lectin signal pattern was analyzed by the cluster analysis method. As shown in FIG. 21, the mesenchymal stem cells and fetal cancer cells were discriminated and the origin of the cells was determined. I was able to determine. That is, when the signal patterns of 45 types of lectins shown in FIG. 1 were analyzed by cluster analysis, mesenchymal stem cells and fetal cancer cells could be discriminated as shown in FIG.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biotechnology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Physiology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
本発明は細胞の状態の判別に関する。 The present invention relates to the determination of the state of cells.
病気や障害による臓器や組織の欠損や不全を、培養した細胞やそれにより得られた組織を移植することによって回復・治療する医療を再生医療と呼び、実際に皮膚、骨・軟骨、血管、角膜等の分野では臨床応用が行われている。 Regenerative medicine refers to medical treatment that recovers and treats defects and insufficiency of organs and tissues due to diseases and disorders by transplanting cultured cells and tissues obtained from them, and is actually skin, bone / cartilage, blood vessels, cornea In such fields, clinical applications are being carried out.
幹細胞研究は、個体の発生と分化という生命の理解に深く関わっていると同時に、幹細胞から分化した細胞を用いた再生医療への応用につながる。このことにより従来は不可能だった分野においても再生医療を行えるようになることが期待されている。 Stem cell research is deeply involved in understanding the life of individual development and differentiation, and at the same time leads to application to regenerative medicine using cells differentiated from stem cells. As a result, it is expected that regenerative medicine can be performed even in fields that were not possible in the past.
幹細胞の評価方法としては細胞形態による評価、遺伝子発現解析による評価、表面抗原を用いた評価などが行われている。 Stem cell evaluation methods include cell morphology, gene expression analysis, and surface antigen evaluation.
特許文献1には幹細胞の形態観察により細胞分化を診断する方法が述べられている。
特許文献2には細胞から採取したDNA中のシトシンのメチル化パターンから細胞の分化をモニターする方法が述べられている。
未分化なヒト胚性幹(hES)細胞は、(1)形態的特徴の観察に加えて、(2)アルカリフォスターゼ活性陽性、(3)糖脂質であるstage-specific embryonic antigen(SSEA)-3及びSSEA-4並びにケラタン硫酸プロテオグリカンを認識するTRA-1-60、TRA-1-81の細胞表面マーカー陽性、(4)未分化マーカーの遺伝子OCT3/4, SOX2, NANOGの発現検出、さらには(5)免疫不全マウスへの移植によるテラトーマ(奇形腫)の形成確認、を行うことによって評価が行われている。 Undifferentiated human embryonic stem (hES) cells are (1) in addition to the observation of morphological characteristics, (2) positive alkaline phosphatase activity, (3) stage-specific emblemonic antigen (SSEA)- 3 and SSEA-4 and TRA-1-60 recognizing keratan sulfate proteoglycan, TRA-1-81 positive cell surface marker, (4) expression detection of undifferentiated marker genes OCT3 / 4, SOX2, NANOG, and (5) Evaluation is performed by confirming the formation of teratomas (teratomas) by transplantation into immunodeficient mice.
細胞の表面には様々なタンパク質、脂質が存在し、様々な抗原が発現していることが知られている。さらにそれらは糖鎖修飾されているものも多く、細胞の表面は多種多様な糖鎖に覆われていることが知られている。細胞の種類によってその表面の糖鎖も異なることから、糖鎖は細胞の顔とも言われている。例えばK. A. Wearneらは蛍光標識レクチンを用いて、ヒトES細胞の分化前後で様々な糖鎖構造の変化が起っていることを示している(非特許文献1)。 It is known that various proteins and lipids exist on the cell surface and various antigens are expressed. Furthermore, many of them are sugar chain-modified, and it is known that the cell surface is covered with various sugar chains. Since the sugar chain on the surface varies depending on the type of cell, the sugar chain is also called the face of a cell. For example, K. A. Wearne et al. Have shown that various changes in sugar chain structure occur before and after differentiation of human ES cells using fluorescently labeled lectins (Non-patent Document 1).
特許文献3では、少なくともその糖結合部位が改変されたレクチンを少なくとも1つ以上含むレクチン群により構成されているか、或いは所定の糖鎖を有する細胞若しくは擬細胞体に対してパニングすることにより選別したレクチンを少なくとも1つ以上含むレクチン群により構成されるレクチンライブラリを使用した糖鎖解析方法が提案されている。
In
特許文献4では、複数の種類のレクチンから所定の解析能を有するレクチンを選別する方法及びその方法で選別されたレクチンが提案されている。
特許文献5では、基板を洗浄せずに励起光を作用させて糖鎖に相互作用を示すタンパク質と糖鎖との相互作用を分析する方法が提案されている。
特許文献6では、糖鎖結合性タンパク質を複数種配置固定した導光性材料からなる基板と、該基板の側部端面に光を導入し、該基板表面にエバネッセント波を発生させて蛍光標識を励起する手段と、該手段により生じた蛍光の強度を上記糖鎖結合性タンパク質の配置位置毎に測定する蛍光強度測定手段とを有する、糖鎖あるいは複合糖質の解析装置が提案されている。
In
特許文献7では、細胞表層に存在するタンパク質、糖鎖、脂質などの分子の構造情報を、細胞を破壊せずに観察するためのアレイ基板と、これを用いて細胞表層のプロファイルを達成する手法が提案されている。
In
幹細胞を再生医療へ応用するにあたっては、その品質管理技術は非常に重要である。品質管理を行うには、未分化及び分化、分化の方向を含めた、幹細胞の状態を判別する技術が必要となるため、細胞の評価技術、細胞の標準化方法の確立が待たれている。 In applying stem cells to regenerative medicine, quality control technology is very important. In order to perform quality control, a technique for discriminating the state of stem cells including undifferentiation, differentiation, and the direction of differentiation is required. Therefore, establishment of a cell evaluation technique and a cell standardization method is awaited.
例えば、ヒトES細胞においては樹立された細胞株によってその分化傾向に違いがあることが報告されている(非特許文献2)。 For example, it has been reported that in human ES cells, there is a difference in differentiation tendency depending on established cell lines (Non-patent Document 2).
iPS細胞等のES様細胞においても現時点ではその評価基準はES細胞に拠る他はなく、同様の課題がある。 In ES-like cells such as iPS cells, the evaluation criteria are not based on ES cells at the present time, and there are similar problems.
細胞の状態を維持しつつ増殖させることや、細胞を適切に分化させるためには、細胞の状態及び変化に関する情報を迅速、簡便かつ正確に評価できることが必要である。 In order to proliferate while maintaining the state of the cell and to properly differentiate the cell, it is necessary to be able to evaluate information on the state and change of the cell quickly, simply and accurately.
そこで、本発明が解決しようとするのは、細胞の状態を迅速、簡便かつ正確に判別する技術の提供である。 Therefore, what the present invention intends to solve is to provide a technique for quickly, simply and accurately discriminating the state of cells.
本願の発明者は上記の課題を解決する手段として、レクチンによる細胞の判別方法についての検討を重ねた結果、細胞の持つ糖鎖の、複数のレクチンに対する結合測定データを用いて細胞の状態を判別する方法を発明するに至った。 As a means to solve the above-mentioned problems, the inventors of the present application have repeatedly studied about a method for discriminating cells with lectins. As a result, the state of cells is discriminated by using binding measurement data of sugar chains of cells to a plurality of lectins. Invented a method to do this.
請求項1記載の発明は、
判別対象になっている細胞の持つ糖鎖又は当該糖鎖を含有している糖鎖含有サンプルを、液相中で複数種類のレクチンに結合させたまま測定することによって得た、前記複数種類のレクチンにそれぞれ結合した前記判別対象になっている細胞の量又は糖鎖含有サンプルの量を用いて細胞の状態を判別する方法
である。
The invention described in
Obtained by measuring a sugar chain of a cell to be discriminated or a sugar chain-containing sample containing the sugar chain while bound to a plurality of types of lectins in a liquid phase, the plurality of types In this method, the state of a cell is discriminated using the amount of the cell to be discriminated or the amount of a sugar chain-containing sample each bound to lectin.
請求項2記載の発明は、
前記細胞が幹細胞または前駆細胞であることを特徴とする請求項1記載の細胞の状態を判別する方法
である。
The invention according to
The method according to
請求項3記載の発明は、
前記幹細胞が体性幹細胞、胚性幹細胞、核移植幹細胞、または、人工多能性幹細胞のいずれかであることを特徴とする請求項2記載の細胞の状態を判別する方法
である。
The invention described in
The method according to
請求項4記載の発明は、
前記体性幹細胞が造血幹細胞、又は、間葉系幹細胞であることを特徴とする請求項3記載の細胞の状態を判別する方法
である。
The invention according to
The method according to
請求項5記載の発明は、
前記細胞が哺乳動物由来、又は、ヒト由来であることを特徴とする請求項2乃至4いずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
The method for determining a state of a cell according to any one of
請求項6記載の発明は、
判別する細胞の状態が、細胞の未分化の状態及び、細胞の分化の状態を含むことを特徴とする請求項1乃至5のいずれか一項記載の細胞の状態を判別する方法
である。
The invention described in
6. The method for discriminating a cell state according to any one of
請求項7記載の発明は、
判別する細胞の状態が、細胞の分化傾向、又は、細胞の分化に対する抵抗性であることを特徴とする請求項1乃至5のいずれか一項記載の細胞の状態を判別する方法
である。
The invention described in
The method for discriminating a cell state according to any one of
請求項8記載の発明は、
判別する細胞の状態が、細胞のがん化、又は細胞のがん化の傾向であることを特徴とする請求項1乃至5のいずれか一項記載の細胞の状態を判別する方法
である。
The invention described in
6. The method for discriminating a cell state according to any one of
請求項9記載の発明は、
前記糖含有分子が糖タンパク質、糖ペプチド、糖脂質、プロテオグリカンの中のいずれか一種又は複数種であることを特徴とする請求項1乃至8のいずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
The method for discriminating the state of a cell according to any one of
請求項10記載の発明は、
前記複数種類のレクチンがレクチンアレイ、ELISAプレート、磁気ビーズ、ラテックスビーズの中のいずれか一種に固定されていることを特徴とする請求項1乃至9のいずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
10. The state of a cell according to any one of
請求項11記載の発明は、
前記細胞または糖鎖含有サンプルの量が蛍光測定または発光測定によって測定されることを特徴とする請求項1乃至10のいずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
The method for determining a state of a cell according to any one of
請求項12記載の発明は、
前記蛍光測定がエバネッセント励起法または共焦点蛍光測定法であることを特徴とする請求項11記載の細胞の状態を判別する方法
である。
The invention according to
12. The method according to
請求項13記載の発明は、
前記蛍光測定がフローサイトメトリーであることを特徴とする請求項11記載の細胞の状態を判別する方法
である。
The invention according to
12. The method for determining a state of a cell according to
請求項14記載の発明は、
細胞状態の判別方法が遺伝子発現解析、または対象となる状態の細胞の特異的マーカー抗体との結合測定の片方又は両方と組み合わせて行われることを特徴とする請求項1乃至13いずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
The cell state discrimination method is performed in combination with one or both of gene expression analysis and binding measurement with a specific marker antibody of a cell in a target state. This is a method for determining the state of cells.
請求項15記載の発明は、
細胞状態の判別方法が線形判別分析又は、非線形判別分析によって行われることを特徴とする請求項1乃至13のいずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
The method for discriminating a cell state according to any one of
請求項16記載の発明は、
前記非線形判別分析が、マハラノビス距離による判別分析であることを特徴とする請求項15記載の細胞の状態を判別する方法
である。
The invention according to
The method according to
請求項17記載の発明は、
細胞状態の判別方法が教師あり機械学習手法または半教師あり機械学習手法によるものであることを特徴とする請求項1乃至13のいずれか一項記載の細胞の状態を判別する方法
である。
The invention described in
14. The method for determining a cell state according to any one of
請求項18記載の発明は、
前記機械学習手法がk近傍法、ナイーブベイズ分類器、決定木、ニューラルネットワーク、サポートベクターマシン、バギング法、ブースティング法、ランダムフォレスト法から選ばれるいずれかの手法によって行われることを特徴とする請求項17記載の細胞の状態を判別する方法
である。
The invention according to
The machine learning method is performed by any method selected from a k-nearest neighbor method, a naive Bayes classifier, a decision tree, a neural network, a support vector machine, a bagging method, a boosting method, and a random forest method.
請求項19記載の発明は、
細胞状態の判別方法が、主成分分析、クラスター分析、自己組織化マップから選ばれるいずれかの手法によって行われることを特徴とする請求項1乃至13のいずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
The cell state determination method according to any one of
請求項20記載の発明は、
判別する細胞の状態がヒト胚性幹細胞またはヒト人工多能性幹細胞の未分化および分化であり、その判別に使用するレクチンがイヌエンジュレクチンI、インゲンマメレクチン(L)、インゲンマメレクチン(E)、スピンドルツリーレクチンの中のいずれか一種、またはこれらの中のいずれかのレクチンにそれぞれ類似の糖結合特異性を持つ分子からなる群から1つまたは複数選択されたものであることを特徴とする請求項1乃至19のいずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
The state of the cells to be identified is undifferentiated and differentiated human embryonic stem cells or human induced pluripotent stem cells, and the lectins used for the identification are canine endlectin I, kidney bean lectin (L), kidney bean lectin (E), spindle tree The lectin is one or more selected from the group consisting of molecules each having a sugar-binding specificity similar to any one of these lectins or any of these lectins. 20. A method for discriminating the state of a cell according to any one of
請求項21記載の発明は、
判別する細胞の状態がヒト間葉系幹細胞の未分化および骨分化であり、その判別に使用するレクチンがイヌエンジュレクチンI、ニワトコレクチン、ニホンニワトコレクチン、キカラスウリレクチン-I、デイゴマメレクチンの中のいずれか一種、またはこれらの中のいずれかのレクチンにそれぞれ類似の糖結合特異性を持つ分子からなる群から1つまたは複数選択されたものであることを特徴とする請求項1乃至19のいずれか一項記載の細胞の状態を判別する方法
である。
The invention according to
The state of the cells to be distinguished is undifferentiation and bone differentiation of human mesenchymal stem cells. 20. One or a plurality of molecules selected from the group consisting of molecules each having a sugar-binding specificity similar to any one or any of these lectins. This is a method for discriminating the state of a cell.
本発明を用いることによって、細胞の状態を迅速、簡便かつ正確に判別することができる。 By using the present invention, the state of a cell can be determined quickly, simply and accurately.
本発明による細胞の状態を判別する方法は、判別対象になっている細胞の持つ糖鎖又は当該糖鎖を含有している糖鎖含有サンプル(例えば、判別対象になっている細胞の持つ糖鎖を含有している糖鎖含有サンプルである細胞抽出物)を、液相中で複数種類のレクチンに結合させたまま測定することによって得た、前記複数種類のレクチンにそれぞれ結合した前記判別対象になっている細胞の量又は糖鎖含有サンプルの量を用いて細胞の状態を判別するものである。 The method for discriminating the state of a cell according to the present invention comprises a sugar chain possessed by a cell to be discriminated or a sugar chain-containing sample containing the sugar chain (for example, a sugar chain possessed by a cell to be discriminated) Cell extract, which is a sugar chain-containing sample containing glycine, and obtained by measuring in a liquid phase while being bound to a plurality of types of lectins. The state of the cells is discriminated using the amount of the formed cells or the amount of the sugar chain-containing sample.
細胞は多種多様な糖鎖を持っていることから、糖鎖結合分子であるレクチンを一種類ではなく複数種類、同時に用いることにより、当該複数種類のレクチンのそれぞれに結合した判別対象になっている細胞の量を用いて、あるいは、当該複数種類のレクチンのそれぞれに結合した判別対象になっている細胞の持つ糖鎖を含有している糖鎖含有サンプル(例えば、判別対象になっている細胞からの細胞抽出物)の量を用いて細胞の状態を判別するものである。 Since cells have a wide variety of sugar chains, multiple types of lectins, which are sugar chain binding molecules, are used at the same time, so that they can be identified by binding to each of the multiple types of lectins. A glycan-containing sample containing the glycan of the cell to be discriminated using the amount of cells or bound to each of the plurality of types of lectins (for example, from the cell to be discriminated) The cell state is discriminated using the amount of the cell extract).
糖鎖や、糖鎖含有分子とレクチンの結合は抗原抗体反応等の生体分子間相互作用と比較して弱いことが知られており、そのため従来のELISAプレートを用いた蛍光測定などの手法では測定時に行われる洗浄工程及び/又は乾燥工程において糖鎖あるいは糖鎖含有分子とレクチンとの結合が解離してしまい、検出感度が低下すると共に再現性が低下し、測定精度が低下する。また、乾燥工程における非特異吸着等によるノイズシグナルの発生によっても測定精度は低下する。 It is known that the binding between sugar chains and sugar chain-containing molecules and lectins is weak compared to biomolecular interactions such as antigen-antibody reactions, and as a result, it is measured by techniques such as fluorescence measurement using conventional ELISA plates. In the washing step and / or drying step that is sometimes performed, the binding between the sugar chain or the sugar chain-containing molecule and the lectin is dissociated, so that the detection sensitivity is lowered and the reproducibility is lowered, and the measurement accuracy is lowered. In addition, the measurement accuracy decreases due to the generation of a noise signal due to non-specific adsorption or the like in the drying process.
そこで、判別対象になっている細胞の持つ糖鎖又は当該糖鎖を含有している糖鎖含有サンプル(例えば、判別対象になっている細胞からの細胞抽出物)とレクチンとの結合測定には、糖鎖又は糖鎖含有サンプルとレクチンが反応した後、なるべく洗浄を行わず液相のまま測定を行うことが可能な手法が望ましい。 Therefore, for the measurement of the binding between the sugar chain of the cell to be discriminated or the sugar chain-containing sample containing the sugar chain (for example, a cell extract from the cell to be discriminated) and the lectin. It is desirable that the sugar chain or the sugar chain-containing sample reacts with the lectin and the measurement can be performed in the liquid phase without washing as much as possible.
洗浄を行わずに液相で測定可能な手法としては、例えば、共焦点蛍光測定法またはエバネッセント励起による蛍光測定法が挙げられる。 Examples of methods that can be measured in the liquid phase without washing include confocal fluorescence measurement and fluorescence measurement by evanescent excitation.
従来の手法では結合した/しないといった定性的な情報しか得られなかったが、上記のような液相で測定可能な手法を用いることによって、統計解析に耐えうる定量的なデータを再現性よく得ることができるようになる。 Conventional methods could only obtain qualitative information such as whether or not they were combined, but by using a method that can be measured in the liquid phase as described above, quantitative data that can withstand statistical analysis can be obtained with good reproducibility. Will be able to.
異なる状態の細胞が持つ糖鎖構造の違いは1種類であることは殆どなく複数であると考えることが妥当である。そのため、細胞の状態を判別するレクチンは1種類ではなく複数種類を同時に使用することによってその判別の精度が上がると考えられる。 It is reasonable to consider that there are almost no differences in the sugar chain structure of cells in different states and that there are multiple. Therefore, it is considered that the accuracy of the discrimination is improved by using a plurality of types of lectins for discriminating the state of the cells at the same time instead of one type.
糖鎖の検出に用いるレクチンは、対象の細胞において違いの小さい、または対象の細胞に存在しない糖鎖を認識するレクチンは必要がないどころか、そのレクチンから得られるシグナルが細胞の判別を行う際にノイズとなることもあるため、測定または判別に用いるレクチンは必要に応じて選別されることが望ましい。 The lectin used to detect sugar chains is not very different in the target cells or does not need a lectin that recognizes sugar chains that are not present in the target cells. Since it may cause noise, lectins used for measurement or discrimination are desirably selected as necessary.
細胞の判別に使用するレクチンの選別は、判別を行いたい細胞の持つ糖鎖と複数種類のレクチンとの結合測定を行い、その結果から違いの見られたレクチンを抽出するスクリーニングを行うことが望ましい。その測定方法は多種類のレクチンを搭載したレクチンアレイを使用することが望ましく、それが判別対象になっている細胞の持つ糖鎖又は当該糖鎖を含有している糖鎖含有サンプルとレクチンとの結合測定であることから、液相のまま測定が可能な測定方法によることが望ましい。例えば、共焦点蛍光測定法や、エバネッセント励起法を用いた蛍光測定法を用いることができる。 For selection of lectins used for cell discrimination, it is desirable to measure the binding between the sugar chain of the cell to be discriminated and multiple types of lectins, and to perform screening to extract the lectins in which differences are found from the results. . The measurement method preferably uses a lectin array loaded with various types of lectins, and the glycine contained in the cells to be identified or the sugar chain-containing sample containing the sugar chain and the lectin Since it is a binding measurement, it is desirable to use a measurement method that allows measurement in a liquid phase. For example, a confocal fluorescence measurement method or a fluorescence measurement method using an evanescent excitation method can be used.
レクチンとは糖結合タンパク質として定義されるが、免疫反応の産物である抗糖鎖抗体はレクチンには含まれない。 Lectins are defined as sugar-binding proteins, but anti-glycan antibodies that are products of immune reactions are not included in lectins.
レクチンは植物、真菌類、動物、微生物など様々な生体から得られる。それぞれのレクチンは糖及び糖鎖に対する特異性を持っている。マンノース、ガラクトース、N-アセチルガラクトサミン、フコース、シアル酸などの単糖に対する親和性を持つレクチン、上記の単糖を含むオリゴ糖に対して親和性を持つレクチンなどがある。いずれのレクチンも本発明において使用可能である。 Lectins can be obtained from various organisms such as plants, fungi, animals and microorganisms. Each lectin has specificity for sugars and sugar chains. There are lectins having affinity for monosaccharides such as mannose, galactose, N-acetylgalactosamine, fucose and sialic acid, and lectins having affinity for oligosaccharides containing the above monosaccharides. Any lectin can be used in the present invention.
判別対象になっている細胞の持つ糖鎖を含有している糖鎖含有サンプル(例えば、細胞抽出物)をサンプルとする場合、細胞から抽出した糖鎖含有分子である糖鎖含有サンプルと複数レクチンとの結合測定には、ELISAプレート、磁気ビーズ、ラテックスビーズ等を用いたレクチンバインディングアッセイ、表面プラズモン共鳴法、レクチンアレイなどを使用できるが、好ましくは、レクチンアレイである。さらには、レクチンアレイは液相状態で測定が可能な測定方法によることが望ましい。例えば、共焦点蛍光測定法や、エバネッセント場励起法を用いて測定することができる。 When using a sugar chain-containing sample (for example, cell extract) containing the sugar chain of the cell to be discriminated, a sugar chain-containing sample that is a sugar chain-containing molecule extracted from the cell and a plurality of lectins For the binding measurement, lectin binding assay using ELISA plate, magnetic beads, latex beads, surface plasmon resonance method, lectin array, etc. can be used, and lectin array is preferable. Furthermore, it is desirable that the lectin array is based on a measurement method that allows measurement in a liquid phase state. For example, measurement can be performed using a confocal fluorescence measurement method or an evanescent field excitation method.
細胞をサンプルとする場合、細胞表面の糖鎖とレクチンとの結合測定にはフローサイトメトリー、液相状態で測定が可能なELISAプレート、磁気ビーズ、ラテックスビーズ等を用いたレクチンバインディングアッセイ、表面プラズモン共鳴法、液相状態で測定が可能なレクチンアレイを用いることができる。 When using cells as samples, flow cytometry, ELISA plates that can be measured in liquid phase, lectin binding assays using magnetic beads, latex beads, surface plasmons, etc. A lectin array that can be measured by a resonance method or a liquid phase state can be used.
レクチンアレイとは、担体上に複数のレクチンを固定化し、反応させる糖鎖や、糖鎖含有サンプルとの結合測定を行うものである。担体はガラス、プラスチック、金属等が用いられる。例えば、判別対象になっている細胞や、細胞の持つ糖鎖を含む糖鎖含有サンプルは蛍光標識され、担体に固定されたレクチンと反応させることができる。このときレクチンに結合した蛍光標識された細胞の蛍光強度や、蛍光標識された糖鎖含有サンプルの蛍光強度が測定でき、その蛍光強度は蛍光標識された細胞の量や、蛍光標識された糖鎖含有サンプルの量に対応して増減する。 A lectin array is to measure the binding of a plurality of lectins to a carrier and react with sugar chains to be reacted or a sugar chain-containing sample. As the carrier, glass, plastic, metal or the like is used. For example, a cell to be discriminated or a sugar chain-containing sample containing a sugar chain possessed by the cell can be fluorescently labeled and reacted with a lectin immobilized on a carrier. At this time, the fluorescence intensity of the fluorescently labeled cells bound to the lectin and the fluorescence intensity of the fluorescently labeled sugar chain-containing sample can be measured. The fluorescence intensity depends on the amount of fluorescently labeled cells and the fluorescently labeled sugar chain. Increase or decrease in accordance with the amount of sample contained.
測定された蛍光強度は数値化して扱うことができる。この数値は目的に応じて処理されることが望ましい。例えば、細胞の状態の判別を行うには、糖鎖含有サンプル(例えば、細胞抽出物)又は細胞とレクチンとの結合測定から得られた値は正規化されることが望ましい。さらにはその値に対してカットオフが行われることが望ましい。さらには統計解析処理時にノイズとなりうるシグナルの無いまたは非常に小さいレクチンを解析前に削除することも含まれる。さらにはその値はそれぞれのレクチンの特異性に対応した糖鎖を持つ糖タンパク質などの標準物質により測定された値により補正されることが望ましい。 Measured fluorescence intensity can be digitized and handled. This numerical value is desirably processed according to the purpose. For example, in order to determine the state of a cell, it is desirable to normalize the value obtained from a sugar chain-containing sample (for example, a cell extract) or a binding measurement between a cell and a lectin. Further, it is desirable that a cutoff is performed on the value. Furthermore, it also includes deleting a lectin having no signal or very small signal that may become noise during statistical analysis processing before analysis. Furthermore, it is desirable that the value is corrected by a value measured with a standard substance such as a glycoprotein having a sugar chain corresponding to the specificity of each lectin.
細胞の状態を判別する際に用いるレクチンは、その細胞の持つ糖鎖と複数のレクチンとの結合測定を行った結果を用いて、判別に必要なレクチンを抽出することもできる。例えば、判別を行いたい複数の状態の細胞をサンプルとして、細胞抽出物または細胞と複数種類のレクチンとの結合測定を行った結果から、それらの状態の細胞において特徴的な違いを示すレクチンを抽出することができる。レクチンを抽出する手法はt検定などの有意差検定、主成分分析などの統計的手法を用いることができる。 As the lectin used for discriminating the state of a cell, a lectin necessary for discrimination can also be extracted using the result of measuring the binding between the sugar chain of the cell and a plurality of lectins. For example, using cells in multiple states to be distinguished as a sample, the cell extract or the results of binding measurements between cells and multiple types of lectins can be used to extract lectins that exhibit characteristic differences in cells in those states. can do. As a method for extracting lectins, a statistical method such as a significant difference test such as t-test or a principal component analysis can be used.
細胞の状態の判別においては、レクチンとの結合測定だけでなく他の手法を組み合わせることも可能である。例えば、遺伝子発現解析(DNAアレイまたはPCR)、エピジェネティクス解析(DNAメチル化解析、ヒストン化学修飾解析)、判別対象となる状態の細胞の特異的マーカー抗体との結合測定(免疫染色、フローサイトメトリー、ELISA、抗体アレイ)の結果と組み合わせて、細胞の状態を判別することが可能である。 In the determination of the state of cells, not only the measurement of binding to lectins but also other methods can be combined. For example, gene expression analysis (DNA array or PCR), epigenetics analysis (DNA methylation analysis, histone chemical modification analysis), measurement of binding to specific marker antibodies in cells to be discriminated (immunostaining, flow site) Measurement, ELISA, antibody array) in combination with cell results.
前述した本発明の方法によって判別される細胞の状態は、細胞の未分化の状態及び、細胞の分化後の状態を含むものである。ここで、細胞の未分化の状態には幹細胞及び前駆細胞を含む。幹細胞は未分化で自己複製能及び多分化能を持つ細胞のことを指し、造血幹細胞・間葉系幹細胞といった体性幹細胞や、胚性幹細胞(ES細胞)、核移植ES細胞(ntES細胞)、人工多能性幹細胞(iPS細胞)などを含む。 The cell state discriminated by the above-described method of the present invention includes an undifferentiated state of the cell and a state after differentiation of the cell. Here, the undifferentiated state of the cells includes stem cells and progenitor cells. Stem cells refer to cells that are undifferentiated and have self-renewal and multipotency, somatic stem cells such as hematopoietic stem cells and mesenchymal stem cells, embryonic stem cells (ES cells), nuclear transplanted ES cells (ntES cells), Includes induced pluripotent stem cells (iPS cells).
前記において、分化とは幹細胞及び前駆細胞等の未分化の細胞が分化能または多分化能を喪失し、細胞型に特異的な特性を獲得することである。分化においては細胞の状態が変化している。 In the above, differentiation means that undifferentiated cells such as stem cells and progenitor cells lose differentiation ability or pluripotency and acquire characteristics specific to the cell type. During differentiation, the state of the cells changes.
さらに細胞の状態とは、細胞が未分化であること、多能性を持っていること、分化したこと、未分化の細胞が持つ分化の傾向、分化に対する抵抗性、細胞ががん化したこと、細胞のがん化の傾向、細胞の由来種、細胞の由来組織、細胞のウィルス感染、遺伝子操作による細胞の変化を含む。 Furthermore, the cell state means that the cell is undifferentiated, has pluripotency, has differentiated, the tendency of undifferentiated cells to have differentiation, resistance to differentiation, and that the cells have become cancerous. , Including the tendency of canceration of cells, cell origin, cell tissue, viral infection of cells, and changes in cells due to genetic manipulation.
細胞の持つ糖鎖を測定するには、細胞から糖鎖含有分子を抽出することも可能である。その場合、細胞から糖鎖含有分子を抽出する工程を含み、その糖鎖含有分子には糖タンパク質、糖ペプチド、糖脂質、プロテオグリカンが含まれる。または細胞そのものを測定することも可能である。細胞から抽出される糖鎖含有分子は細胞表面に存在する糖鎖含有分子、すなわち細胞膜から抽出される糖鎖含有分子であることが好ましく、特に細胞膜から抽出される糖タンパク質であることが好ましい。 To measure the sugar chain of a cell, it is possible to extract sugar chain-containing molecules from the cell. In that case, the method includes a step of extracting a sugar chain-containing molecule from the cell, and the sugar chain-containing molecule includes glycoprotein, glycopeptide, glycolipid, and proteoglycan. Alternatively, the cell itself can be measured. The sugar chain-containing molecule extracted from the cell is preferably a sugar chain-containing molecule present on the cell surface, that is, a sugar chain-containing molecule extracted from the cell membrane, and particularly preferably a glycoprotein extracted from the cell membrane.
本発明における判別方法を得る手段は統計解析手法または機械学習によるものが好ましい。特に教師データを用いた判別分析によるものが好ましい。例えば2群の細胞の状態の判別を行う場合、線形判別分析で十分である場合も多い。しかし線形判別分析は各グループの母分散が等しいとの仮定に基づくことからその適用に制約があることなどから、より複雑なデータを用いて判別を行う場合または多群のクラス分類を精度良く行う必要がある場合は、用いるデータに適した手法が必要になる。その手法として、非線形判別分析や機械学習による判別分析を用いることができる。非線形判別分析としてはマハラノビス距離による判別分析が挙げられる。機械学習による判別分析としてはk近傍法、ナイーブベイズ分類器、決定木、ニューラルネットワーク、サポートベクターマシン、さらにバギング法、ブースティング法、ランダムフォレスト法といった集団学習が挙げられる。このような手法はパターン認識の分野において発展しており、その知見を本発明においても応用することができる。 The means for obtaining the discrimination method in the present invention is preferably based on a statistical analysis method or machine learning. In particular, it is preferable to use discriminant analysis using teacher data. For example, when discriminating the state of two groups of cells, linear discriminant analysis is often sufficient. However, since linear discriminant analysis is based on the assumption that the population variance of each group is equal, its application is limited, so when discriminating using more complicated data or classifying multiple groups with high accuracy If necessary, a method suitable for the data to be used is required. As the method, nonlinear discriminant analysis or discriminant analysis by machine learning can be used. Nonlinear discriminant analysis includes discriminant analysis based on Mahalanobis distance. Discriminant analysis by machine learning includes k-nearest neighbor method, naive Bayes classifier, decision tree, neural network, support vector machine, and group learning such as bagging method, boosting method, and random forest method. Such a technique has been developed in the field of pattern recognition, and the knowledge can be applied to the present invention.
また教師データを用いない解析手法である、主成分分析、階層クラスタリング、非階層クラスタリング、自己組織化マップといった手法を用いても、既知の状態の細胞データと共に解析を行うことによって判別方法とすることもできる。 In addition, analysis methods that do not use teacher data, such as principal component analysis, hierarchical clustering, non-hierarchical clustering, and self-organizing maps, should be used as a discrimination method by performing analysis with cell data in a known state. You can also.
細胞の判別を行うにあたって必要なレクチンはそれぞれの細胞の状態によって異なる。それゆえある特定の細胞の状態であるか否かを判別するためのレクチンセット及び判別方法を提供することができる。さらには判別キットを提供することができる。 Lectins required for cell discrimination differ depending on the state of each cell. Therefore, it is possible to provide a lectin set and a discrimination method for discriminating whether or not the state is a specific cell. Furthermore, a discrimination kit can be provided.
複数の細胞の状態を判別するのに必要なレクチンを含むレクチンセットを作成することもできる。これにより複数の細胞の状態または状態の変化を判別するためのレクチンセット及び判別方法を提供することができる。さらには判別キットを提供することができる。 It is also possible to create a lectin set containing lectins necessary for determining the state of a plurality of cells. Thereby, a lectin set and a discrimination method for discriminating a state of a plurality of cells or a change in the state can be provided. Furthermore, a discrimination kit can be provided.
上記レクチンセットの抽出には、判別したい状態の細胞または細胞抽出物を複数のレクチンにより測定した結果から、有意差検定、主成分分析、等の統計的手法によりその状態間で差の見られるレクチンを抽出する手段を用いることができる
本発明によれば上記の判別方法により判別された細胞を提供することができる。
For the extraction of the lectin set, lectins that show a difference between their states by statistical methods such as significant difference test, principal component analysis, etc. based on the results of measuring cells or cell extracts in a state to be distinguished with a plurality of lectins. According to the present invention, cells discriminated by the above discriminating method can be provided.
また、その判別された細胞を用いることによって未分化性を維持する方法及びそれに使用する化合物、分化誘導を行う方法およびそれに使用する化合物のスクリーニング法を提供することができる。 Further, it is possible to provide a method for maintaining undifferentiation by using the discriminated cell, a compound used for the method, a method for inducing differentiation and a screening method for the compound used for the method.
(サンプルがヒトES細胞の未分化及び分化後の状態である場合の判別方法)
サンプルが細胞抽出物である場合の本発明のヒト未分化細胞判別方法の一例を説明する。
(Determination method when the sample is undifferentiated and after differentiation of human ES cells)
An example of the human undifferentiated cell discrimination method of the present invention when the sample is a cell extract will be described.
タンパク質の抽出
1x106~5x106個のヒト胚性幹(hES)細胞およびhES細胞から分化させた胚葉体(EB)を凍結保存した細胞ペレットから、CelLytic MEM protein extraction kit(Sigma社製)を用いて、膜タンパク質を含む疎水性画分を分離抽出した。抽出液を20-60倍希釈してMicro BCA protein assay kit (PIERCE社製)を用いてタンパク質濃度を測定した。
Extraction of proteins 1x10 6 to 5x10 6 human embryonic stem (hES) cells and embryoid bodies (EB) differentiated from hES cells were cryopreserved using CelLytic MEM protein extraction kit (manufactured by Sigma) Then, the hydrophobic fraction containing the membrane protein was separated and extracted. The extract was diluted 20-60 times, and the protein concentration was measured using Micro BCA protein assay kit (PIERCE).
膜タンパク質のラベル化
疎水性画分に含まれるタンパク質0.2μgについて、Cy3-NHS(GEヘルスケア社製)を反応させ、蛍光標識を行った。反応後、Sephadex G-25カラムを用いて反応液から未反応の蛍光標識試薬を除いた。
Labeling of membrane protein About 0.2 μg of protein contained in the hydrophobic fraction, Cy3-NHS (manufactured by GE Healthcare) was reacted and fluorescently labeled. After the reaction, unreacted fluorescent labeling reagent was removed from the reaction solution using Sephadex G-25 column.
蛍光ラベル化タンパク質とレクチンマイクロアレイとの反応
蛍光ラベル化タンパク質を最終濃度0.5μg/mlまたは0.25μg/mlになるよう、1%Triton X-100, 0.5M Glycine, 1mM CaCl2, 1mM MnCl2 を含む TBS で調製し、レクチンマイクロアレイ上に載せ、4℃で一晩反応させた。これによりサンプル中の蛍光標識糖タンパク質は、それぞれの持つ糖とレクチンの特異性に応じて結合する。
Reaction of Fluorescent Labeled Protein with Lectin Microarray Containing 1% Triton X-100, 0.5M Glycine, 1 mM CaCl 2 , 1 mM MnCl 2 to a final concentration of 0.5 μg / ml or 0.25 μg / ml Prepared with TBS, mounted on a lectin microarray and allowed to react overnight at 4 ° C. As a result, the fluorescently labeled glycoprotein in the sample binds depending on the specificity of each sugar and lectin.
用いたレクチンマイクロアレイ(LecChip, GPバイオサイエンス社製)には45種類のレクチンがそれぞれ3スポットずつ固定化されている。使用した45種類のレクチンは図1に示されている。 The lectin microarray used (LecChip, manufactured by Sakai GP Bioscience) has 45 different lectins immobilized on each of three spots. The 45 types of lectins used are shown in FIG.
レクチンマイクロアレイの測定
反応液を取り除き、1%Triton X-100 含有TBSによる洗浄を行った後、エバネッセント場励起型スキャナー(GlycoStation Reader, GPバイオサイエンス社製)でレクチンマイクロアレイの蛍光測定を行った。測定時の露光時間を199msecとして、カメラゲインは70, 80, 90 ,100, 110の各段階で測定した。
Measurement of lectin microarray After removing the reaction solution and washing with 1% Triton X-100-containing TBS, fluorescence measurement of the lectin microarray was performed with an evanescent field excitation scanner (GlycoStation Reader, GP Bioscience). The exposure time at the time of measurement was set to 199 msec, and the camera gain was measured at each stage of 70, 80, 90, 100, and 110.
データ前処理
各レクチンに対する蛍光強度を数値化し、得られた各レクチンの3スポットの数値データを平均したものをレクチンの示した蛍光強度とした。
Data Pretreatment The fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin.
タンパク質が多く結合しているレクチンは蛍光強度が強くなることからこれを利用して糖含有分子と、複数種類のレクチンとの結合を測定し、それぞれのレクチンに結合した糖含有分子の量を把握するようにしたものである。 Since lectins with many proteins bound to them have a strong fluorescence intensity, this is used to measure the binding of sugar-containing molecules to multiple types of lectins, and to determine the amount of sugar-containing molecules bound to each lectin. It is what you do.
この実施例では、蛍光強度を次の手法で補正し、補正したデータを用いた。すなわち、久野、板倉ら(J. Proteomics Bioinform. Vol.1 68-72 (2008))の手法に従い、蛍光強度は適切な2つのゲインで測定したデータを統合し、高い方のゲインで測定したときに飽和しているシグナルを補正したデータを用いた。 In this example, the fluorescence intensity was corrected by the following method, and the corrected data was used. That is, according to the method of Kuno, Itakura et al. (J. Proteomics Bioinform. Vol.1 68-72 (2008)), the fluorescence intensity was measured by combining the data measured with two appropriate gains and measured with the higher gain. The data corrected for the signal saturated with was used.
サンプル毎の各レクチンのシグナル値は、バックグラウンドの値を引いた後、全レクチンのうちで最大シグナル強度を示したUDAのシグナルを基準値(100)と定めた相対値を求め、以下の統計処理を行った。 For each lectin signal value for each sample, after subtracting the background value, the relative value was determined with the UDA signal showing the maximum signal intensity among all lectins as the reference value (100). Processed.
細胞の未分化性を判別する判別式の作成
1)説明変数の抽出
上記相対値を常用対数に変換した値を用いて、クラスター分析法及び主成分分析法によりレクチンのシグナルパターンを解析し、未分化細胞群(hES)と分化細胞群(EB)に分かれることを確認した(図2、 図3)。
Creation of discriminants for discriminating cell undifferentiation 1) Extraction of explanatory variables Using the values obtained by converting the above relative values into common logarithms, the lectin signal pattern is analyzed by cluster analysis and principal component analysis. It was confirmed that the cells were divided into differentiated cell groups (hES) and differentiated cell groups (EB) (FIGS. 2 and 3).
次に、t検定を用いて2群間でシグナルに有意差(p<0.01)のみられるレクチンを抽出した結果、MAL, PHA(E),EELの3レクチンを得た。 Next, as a result of extracting a lectin having a significant difference (p <0.01) in signal between the two groups using a t-test, three lectins of MAL, PHA (E), and EEL were obtained.
2)判別式の作成
線形判別分析法を用いて、1)で抽出したレクチンを説明変数とする以下の判別式(1)を求めた。MAL, PHA(E), EELはそれぞれのレクチンの上記相対値を示す。
2) Creation of discriminant The following discriminant (1) using the lectin extracted in 1) as an explanatory variable was determined using a linear discriminant analysis method. MAL, PHA (E), and EEL indicate the relative values of each lectin.
スコアが正の場合は分化細胞、負の場合は未分化細胞と判定される。 When the score is positive, it is determined as a differentiated cell, and when it is negative, it is determined as an undifferentiated cell.
F = 2.64 × MAL - 0.018 × PHA(E) -1.26 × EEL -1.17 ………… (1) F = 2.64 × MAL-0.018 × PHA (E) -1.26 × EEL -1.17 …… (1)
3)判別式の検証1
上記2)で作成した判別式を、hES細胞、EB、ヒト肺組織由来線維芽細胞(MRC5)及びMRC5由来のiPS細胞をサンプルとして上記と同様に得たレクチンマイクロアレイデータに適用し、細胞の未分化及び分化の判別を行った(図4)。
3)
The discriminant created in 2) above was applied to lectin microarray data obtained in the same manner as above using hES cells, EBs, human lung tissue-derived fibroblasts (MRC5) and MRC5-derived iPS cells as samples. Differentiation and differentiation discrimination were performed (FIG. 4).
この結果より、hES細胞及びiPS細胞のスコアはマイナスの値を示し、EB及びMRC5のスコアはプラスの値を示したことから、この式が未分化の多能性幹細胞の判別に有効であることが確認された。 From this result, hES cells and iPS cells scored negative, and EB and MRC5 scores showed positive values. Therefore, this expression is effective in distinguishing undifferentiated pluripotent stem cells. Was confirmed.
4)判別式の検証2
上記2)で作成した判別式を、3)とは別に測定したヒト羊膜由来間葉系細胞、及び羊膜由来間葉系細胞由来のiPS細胞をサンプルとして上記と同様に得たレクチンマイクロアレイデータに適用し、未分化及び分化の判別を行った(図5)。
4) Verification of
The discriminant created in 2) above is applied to lectin microarray data obtained in the same manner as described above using human amnion-derived mesenchymal cells measured separately from 3) and iPS cells derived from amnion-derived mesenchymal cells as samples. Then, undifferentiation and differentiation were discriminated (FIG. 5).
この結果より、iPS細胞のスコアはマイナスの値を示し、羊膜由来間葉系細胞のスコアはプラスの値を示したことから、この式が未分化の多能性幹細胞の判別に有効であることが確認された。 From this result, the score of iPS cells showed a negative value, and the score of amnion-derived mesenchymal cells showed a positive value. Therefore, this formula is effective in distinguishing undifferentiated pluripotent stem cells. Was confirmed.
k近傍法による判別
上記で抽出した3レクチンのデータを用いて、上記hES細胞及びEBを学習データ、上記MRC5及びMRC5由来iPS細胞をテストデータとして、k近傍法(k=3)により判別を行った。その結果、iPS細胞の21データは全てhES細胞のクラスに、MRC5の3データは全てEBのクラスに分類された。以上より、この手法が未分化の多能性幹細胞の判別に有効であることが確認された。
Discrimination by the k-nearest neighbor method Using the 3 lectin data extracted above, the hES cells and EB are used as learning data, the MRC5 and MRC5-derived iPS cells are used as test data, and discrimination is performed by the k-nearest neighbor method (k = 3). It was. As a result, all 21 data of iPS cells were classified into hES cell class, and all 3 data of MRC5 were classified into EB class. From the above, it was confirmed that this method is effective for discrimination of undifferentiated pluripotent stem cells.
細胞の遺伝子発現解析
上記ES細胞及び EB(各3株)から抽出したRNAよりcDNAを合成し、hES細胞の未分化マーカー遺伝子の発現を定量real-time PCR (qRT-PCR)にて測定した。得られた結果についてhES細胞の発現量を1とした相対量として示した(図6)。この結果により、本実施例に用いたEBにおいてはhES細胞が示した未分化性マーカーが大幅に低下していることが確認された。
Gene expression analysis of cells cDNA was synthesized from RNA extracted from the above ES cells and EB (each 3 strains), and the expression of undifferentiated marker genes in hES cells was measured by quantitative real-time PCR (qRT-PCR). The obtained results are shown as relative amounts with the expression level of hES cells being 1 (FIG. 6). From this result, it was confirmed that the undifferentiated markers exhibited by hES cells were significantly reduced in the EB used in this example.
(サンプルがヒト間葉系幹細胞の骨芽細胞分化である場合の判別方法)
サンプルが細胞抽出物である場合の本発明のヒト未分化細胞判別方法の一例を説明する。
(Determination method when the sample is osteoblast differentiation of human mesenchymal stem cells)
An example of the human undifferentiated cell discrimination method of the present invention when the sample is a cell extract will be described.
タンパク質の抽出
1x106~5x106個のヒト間葉系幹細胞と、同細胞を2週間骨芽細胞分化誘導(LONZA,骨芽細胞分化培地で3日ごと培地交換)した細胞の細胞ペレットから、CelLytic MEM protein extraction kitを用いて、膜タンパク質を含む疎水性画分を分離抽出した。抽出液を20-60倍希釈してMicro BCA protein assay kitを用いてタンパク質濃度を測定した。
Extraction of protein From cell pellets of 1x10 6 to 5x10 6 human mesenchymal stem cells and cells induced to induce osteoblast differentiation (LONZA, medium exchange every 3 days with osteoblast differentiation medium) for 2 weeks, CelLytic Using the MEM protein extraction kit, the hydrophobic fraction containing the membrane protein was separated and extracted. The extract was diluted 20-60 times, and the protein concentration was measured using Micro BCA protein assay kit.
膜タンパク質のラベル化
疎水性画分に含まれるタンパク質0.2μgについて、Cy3-NHSを反応させ、蛍光標識を行った。反応後、Sephadex G-25カラムを用いて反応液から未反応の蛍光標識試薬を除いた。
Labeling of membrane protein About 0.2 μg of protein contained in the hydrophobic fraction, Cy3-NHS was reacted to perform fluorescence labeling. After the reaction, unreacted fluorescent labeling reagent was removed from the reaction solution using Sephadex G-25 column.
蛍光ラベル化タンパク質とレクチンマイクロアレイとの反応
蛍光ラベル化タンパク質を最終濃度0.25μg/mlになるよう、1%Triton X-100, 0.5M Glycine, 1mM CaCl2, 1mM MnCl2 を含む TBS で調製し、実施例1で使用したものと同じレクチンマイクロアレイ(LecChip)上に載せ、4℃で一晩反応させた。これによりサンプル中の蛍光標識糖タンパク質は、それぞれの持つ糖とレクチンの特異性に応じて結合する。
So that the reaction fluorescently labeled proteins with fluorescently labeled protein and lectin microarray final concentration 0.25 [mu] g / ml, was prepared in 1% Triton X-100, 0.5M Glycine, TBS containing 1mM CaCl 2, 1mM MnCl 2, It was mounted on the same lectin microarray (LecChip) used in Example 1 and allowed to react overnight at 4 ° C. As a result, the fluorescently labeled glycoprotein in the sample binds depending on the specificity of each sugar and lectin.
レクチンマイクロアレイの測定
反応液を取り除き、1%Triton X-100 含有TBSによる洗浄を行った後、エバネッセント場励起型スキャナー(GlycoStation Reader)でレクチンマイクロアレイの蛍光測定を行った。測定時の露光時間を199msecとして、カメラゲインは70, 80, 90 ,100, 110の各段階で測定した。
Measurement of Lectin Microarray After removing the reaction solution and washing with TBS containing 1% Triton X-100, fluorescence measurement of the lectin microarray was performed with an evanescent field excitation scanner (GlycoStation Reader). The exposure time at the time of measurement was set to 199 msec, and the camera gain was measured at each stage of 70, 80, 90, 100, and 110.
データ前処理
各レクチンに対する蛍光強度を数値化し、得られた各レクチンの3スポットの数値データを平均したものをレクチンの示した蛍光強度とした。
Data Pretreatment The fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin.
蛍光強度は実施例1と同様の手法により補正したデータを用いた。 Fluorescence intensity used data corrected by the same method as in Example 1.
サンプル毎の各レクチンのシグナル値は、バックグラウンドの値を引いた後、全レクチンのうちで最大シグナル強度を示したUDAのシグナルを基準値(100)と定めた相対値を求め、以下の統計処理を行った。 For each lectin signal value for each sample, after subtracting the background value, the relative value was determined with the UDA signal showing the maximum signal intensity among all lectins as the reference value (100). Processed.
細胞の未分化性を判別する判別式の作成
1)説明変数の抽出
上記相対値を常用対数に変換した値を用いて、主成分分析法によりレクチンのシグナルパターンを解析し、未分化間葉系幹細胞群と骨分化細胞群に分かれることを確認した(図7)。
Creation of discriminant to discriminate cell undifferentiation 1) Extraction of explanatory variables Using the value obtained by converting the above relative value to the common logarithm, the signal pattern of lectin is analyzed by principal component analysis, and undifferentiated mesenchymal system It was confirmed that it was divided into a stem cell group and a bone differentiated cell group (FIG. 7).
次に、t検定を用いて2群間でシグナルに有意差(p<0.01)のみられるレクチンを抽出した結果、MAL, SNA, SSA, TJA-I, ECAの5レクチンを得た。 Next, as a result of extracting lectins having a significant difference (p <0.01) in signal between the two groups using t-test, 5 lectins of MAL, SNA, SSA, TJA-I, and ECA were obtained.
2)判別式の作成
線形判別分析法を用いて、1)で抽出したレクチンを説明変数とする以下の判別式(2)を求めた。MAL, SNA, SSA, TJA-I, ECAはそれぞれのレクチンの上記相対値を示す。
2) Creation of discriminant The following discriminant (2) using the lectin extracted in 1) as an explanatory variable was determined using a linear discriminant analysis method. MAL, SNA, SSA, TJA-I and ECA show the relative values of the respective lectins.
スコアが正の場合は分化細胞、負の場合は未分化細胞と判定される。 When the score is positive, it is determined as a differentiated cell, and when it is negative, it is determined as an undifferentiated cell.
F = -10.81×MAL + 5.87×SNA - 3.19×SSA - 1.49×TJA-I + 16.20×ECA + 5.97 ………… (2) F = -10.81 × MAL + 5.87 × SNA-3.19 × SSA-1.49 × TJA-I + 16.20 × ECA + 5.97 (2)
3)判別式の検証
上記2)で作成した判別式を、上記測定方法と同様に得た間葉系幹細胞及び骨分化細胞のレクチンマイクロアレイデータに適用し、細胞の未分化性及び分化性の判別を行った(図8)。
3) Verification of discriminant formula The discriminant formula created in 2) above is applied to the lectin microarray data of mesenchymal stem cells and bone differentiated cells obtained in the same manner as in the above measurement method to discriminate cell undifferentiation and differentiation. (FIG. 8).
この結果より、間葉系幹細胞群はプラスの値を示したことから、この判別式が未分化細胞と分化細胞の判別に有効であることが確認された。 From this result, since the mesenchymal stem cell group showed a positive value, it was confirmed that this discriminant was effective in discriminating undifferentiated cells from differentiated cells.
(サンプルがヒトES細胞である場合の未分化性判別方法)
サンプルが細胞抽出物である場合の本発明のヒト未分化細胞判別方法の一例を説明する。
(Method for distinguishing undifferentiation when the sample is a human ES cell)
An example of the human undifferentiated cell discrimination method of the present invention when the sample is a cell extract will be described.
タンパク質の抽出
hES細胞及びEBを凍結保存した細胞ペレット(1x106~5x106個)から、CelLytic MEM protein extraction kitを用いて、膜タンパク質を含む疎水性画分を分離抽出した。抽出液を20-60倍希釈してMicro BCA protein assay kitを用いてタンパク質濃度を測定した。
From the extraction hES cells and EB proteins were stored frozen cell pellets (1x10 6 ~ 5x10 6 cells), using CelLytic MEM protein extraction kit, separated and extracted the hydrophobic fraction containing the membrane protein. The extract was diluted 20-60 times, and the protein concentration was measured using Micro BCA protein assay kit.
膜タンパク質のラベル化
疎水性画分に含まれるタンパク質0.2μgに対してCy3-NHSを反応させ、蛍光標識を行った。反応後、Sephadex G-25カラムを用いて反応液から未反応の蛍光標識試薬を除いた。
Labeling of membrane protein Cy3-NHS was reacted with 0.2 μg of protein contained in the hydrophobic fraction to carry out fluorescent labeling. After the reaction, unreacted fluorescent labeling reagent was removed from the reaction solution using Sephadex G-25 column.
蛍光ラベル化タンパク質とレクチンマイクロアレイとの反応
蛍光ラベル化タンパク質を最終濃度0.5μg/mlになるよう、1%Triton X-100, 0.5M Glycine, 1mM CaCl2, 1mM MnCl2 を含む TBS で調製し、実施例1で使用したものと同じレクチンマイクロアレイ(LecChip)上に載せ、20℃で一晩反応させた。これによりサンプル中の蛍光標識糖タンパク質は、それぞれの持つ糖とレクチンの特異性に応じて結合する。
Reaction of fluorescently labeled protein with lectin microarray Prepare fluorescently labeled protein with TBS containing 1% Triton X-100, 0.5M Glycine, 1 mM CaCl 2 , 1 mM MnCl 2 to a final concentration of 0.5 μg / ml. It was mounted on the same lectin microarray (LecChip) used in Example 1 and allowed to react overnight at 20 ° C. As a result, the fluorescently labeled glycoprotein in the sample binds depending on the specificity of each sugar and lectin.
レクチンマイクロアレイの測定
反応液を取り除き、1%Triton X-100 含有TBSによる洗浄を行った後、エバネッセント場励起型スキャナー(GlycoStation Reader)でレクチンマイクロアレイの蛍光測定を行った。測定時の露光時間を199msecとして、カメラゲインは80, 90 ,100, 110の各段階で測定した。
Measurement of Lectin Microarray After removing the reaction solution and washing with TBS containing 1% Triton X-100, fluorescence measurement of the lectin microarray was performed with an evanescent field excitation scanner (GlycoStation Reader). The exposure time at the time of measurement was set to 199 msec, and the camera gain was measured at each stage of 80, 90, 100, and 110.
データ前処理
各レクチンに対する蛍光強度を数値化し、得られた各レクチンの3スポットの数値データを平均したものをレクチンの示した蛍光強度とした。蛍光強度は実施例1と同様の手法により補正したデータを用いた。
Data Pretreatment The fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin. As the fluorescence intensity, data corrected by the same method as in Example 1 was used.
サンプル毎の各レクチンのシグナル値は、バックグラウンドの値を引いた後、全レクチンのうちで最大シグナル強度を示したレクチンのシグナルを基準値(100)と定めた相対値を以下の統計学的処理のために用いた。全てのサンプルにおいて5未満の上記相対値を示したレクチンは以下の解析には使用しないこととした。 The signal value of each lectin for each sample is calculated by subtracting the background value and then calculating the relative value with the lectin signal showing the maximum signal intensity as the reference value (100) among all lectins. Used for processing. Lectins showing the above relative value of less than 5 in all samples were not used for the following analysis.
非線形判別分析による細胞の判別
上記相対値を常用対数に変換した値を用いて、クラスター分析法及び主成分分析法によりレクチンのシグナルパターンを解析し、それぞれの細胞群に分かれることを確認した(図9、 図10)。
Discrimination of cells by nonlinear discriminant analysis Using the value obtained by converting the above relative value to the common logarithm, the lectin signal pattern was analyzed by the cluster analysis method and the principal component analysis method, and it was confirmed that each cell group was divided (Fig. 9, FIG. 10).
上記データから判別に用いるレクチンの例としてUEA-I, MAL, PHA(E), BPL, WFAの5レクチンを抽出し、上記hES細胞とEBのデータを学習データとして、上記とは別途、同様の方法による測定を行い得られたhES細胞とEBのレクチンアレイデータを用い、マハラノビス距離法による未分化細胞の判別分析を行った(図11)。ここでD1はサンプル細胞とhES細胞群の中心との距離、D2はサンプル細胞とEB群の中心との距離を表わし、それぞれの細胞はこの距離が小さい方の細胞として判別される。 As examples of lectins used for discrimination from the above data, 5 lectins of UEA-I, MAL, PHA (E), BPL, WFA are extracted, and the hES cell and EB data are used as learning data separately from the above. Discrimination analysis of undifferentiated cells by Mahalanobis distance method was performed using lectin array data of hES cells and EBs obtained by measurement by the method (FIG. 11). Here, D1 represents the distance between the sample cell and the center of the hES cell group, and D2 represents the distance between the sample cell and the center of the EB group, and each cell is identified as a cell having a smaller distance.
この結果、hES細胞5データは全てhES細胞として、EBは全てEBとして判別され、この手法が未分化細胞の判別に有効であることが示された。
As a result, all the
(サンプルがヒトES細胞である場合の分化傾向判別方法)
サンプルが細胞抽出物である場合の本発明のヒトES細胞分化傾向の判別方法の一例を説明する。
(Differentiation tendency discrimination method when the sample is human ES cells)
An example of the human ES cell differentiation tendency discrimination method of the present invention when the sample is a cell extract will be described.
タンパク質の抽出
分化傾向が調べられたヒトES細胞株3株(HUES 3, HUES 8, HUES 9)を凍結保存した細胞ペレット(1x106~5x106個)から、CelLytic MEM protein extraction kitを用いて、膜タンパク質を含む疎水性画分を分離抽出した。抽出液を20-60倍希釈してMicro BCA protein assay kitを用いてタンパク質濃度を測定した。
Human ES cell lines three strains extraction differentiation trend was investigated proteins from (
細胞株の分化傾向
それぞれの細胞株の分化傾向は以下の通りである(K. Osafune et al., Nature Biotechnology 2008, 26, 313-315)。HUES 3: 外胚葉、心臓への分化傾向を持つ。HUES 8: 中胚葉、内胚葉、皮膚、脂肪、血液、内皮、膵臓、肝臓、腸への分化傾向を持つ。HUES 9: 外胚葉、神経への分化傾向を持つ。
Differentiation tendency of cell lines The differentiation tendency of each cell line is as follows (K. Osafune et al.,
膜タンパク質のラベル化、蛍光ラベル化タンパク質とレクチンマイクロアレイとの反応、レクチンマイクロアレイの測定、データ前処理については実施例3と同様の操作により行った。 The labeling of the membrane protein, the reaction between the fluorescently labeled protein and the lectin microarray, the measurement of the lectin microarray, and the data pretreatment were performed in the same manner as in Example 3.
細胞の判別
上記により得られた相対値を常用対数に変換した値を用いて、クラスター分析及び主成分分析法によりレクチンのシグナルパターンを解析したところ、それぞれの細胞株に分かれることが確認された(図12、図13)。
Discrimination of cells Using the value obtained by converting the relative value obtained above to the common logarithm, the lectin signal pattern was analyzed by cluster analysis and principal component analysis. As a result, it was confirmed that each cell line was separated ( 12 and 13).
(サンプルがヒト間葉系幹細胞およびヒト胎児性癌細胞である場合の判別方法)
サンプルが細胞である場合の本発明のヒト間葉系幹細胞およびヒト胎児性癌細胞の判別方法の一例を説明する。
(Determination method when the sample is human mesenchymal stem cells and human fetal cancer cells)
An example of the method for discriminating human mesenchymal stem cells and human fetal cancer cells of the present invention when the sample is a cell will be described.
細胞の回収
ヒト骨髄由来間葉系幹細胞2株(UEET12、UET13)およびヒト胎児性癌細胞1株(NCR G3)の培養細胞を5mM EDTA/ 2mM EGTAを含むPBSにより剥離させ回収した。細胞を4%ホルムアルデヒドを含むPBSを用いて30分間室温で固定化し、PBSにより2回洗浄を行った。
Collection of cells Cultured cells of two human bone marrow-derived mesenchymal stem cells (UEET12, UET13) and one human embryonal cancer cell line (NCR G3) were detached and collected with PBS containing 5 mM EDTA / 2 mM EGTA. The cells were fixed with PBS containing 4% formaldehyde for 30 minutes at room temperature, and washed twice with PBS.
レクチンによる細胞染色
固定化した細胞を1μg/mLのビオチン化レクチンと60分間反応させた。細胞はPBSにより2回洗浄し、Alexa488標識ストレプトアビジンと60分間反応させた。さらに細胞をPBSにより2回洗浄し、セルストレーナーにより凝集した細胞を除いた。レクチンはWGA、SSA、SNA、MAH、PNA、BPL、ABA、ACA、PWM、MAL、AAL、LEL、DSA、ConA、PHA(E)、Jacalin、HPA、DBA、SBA、PHA(L)、PSAの21種類を使用した。
Cell staining with lectin The immobilized cells were reacted with 1 μg / mL biotinylated lectin for 60 minutes. The cells were washed twice with PBS and reacted with Alexa488-labeled streptavidin for 60 minutes. Further, the cells were washed twice with PBS, and the aggregated cells were removed with a cell strainer. Lectins are WGA, SSA, SNA, MAH, PNA, BPL, ABA, ACA, PWM, MAL, AAL, LEL, DSA, ConA, PHA (E), Jacalin, HPA, DBA, SBA, PHA (L),
フローサイトメトリー測定
Beckman FC500フローサイトメーターによりフローサイトメトリー測定を行った。レクチン染色を行った細胞で検出された蛍光シグナルの平均値から、染色していない細胞で検出されたシグナルを引いた値を測定値とした。21種類のレクチンのシグナルのうち、最も高い値を示したレクチンのシグナルを1.0として、そのほかのレクチンのシグナルをそれに対する相対値として規格化を行った。
Flow cytometry measurement Flow cytometry measurement was performed with a Beckman FC500 flow cytometer. The value obtained by subtracting the signal detected in the unstained cells from the average value of the fluorescence signal detected in the cells subjected to lectin staining was used as the measurement value. Of the 21 lectin signals, the highest lectin signal was normalized to 1.0, and the other lectin signals were normalized to relative values.
細胞の判別
上記により得られた測定値を常用対数に変換した値を用いて、21種類のレクチンのうち、MAL、PHA(L)の2種類の値を用いてクラスター分析により解析したところ、胎児性癌細胞株と間葉系幹細胞株2種が分かれるという結果が得られた(図14)。
Discrimination of cells Using the value obtained by converting the measured value obtained above to the common logarithm, out of 21 lectins, MAL and PHA (L) were analyzed by cluster analysis using two types of values. The result was that the sex cancer cell line and the two mesenchymal stem cell lines were separated (FIG. 14).
以上より、この手法が細胞の種類の判別に有効であることが確認された。 From the above, it was confirmed that this method is effective in distinguishing cell types.
(サンプルが由来組織の異なるヒト間葉系細胞である場合の判別方法)
サンプルが細胞抽出物である場合の本発明の由来組織の異なるヒト間葉系幹細胞の判別方法の一例を示す。
(Determination method when the sample is a human mesenchymal cell of different origin)
An example of a method for discriminating human mesenchymal stem cells from different origin tissues of the present invention when the sample is a cell extract is shown.
細胞の種類
それぞれ由来組織が臍帯血由来(UCB302)、骨髄由来(UET13、UBET7、3F0664)および子宮内膜由来(EPC100)であるヒト間葉系幹細胞株5株をサンプルとした。
Cell types Five human mesenchymal stem cell lines derived from umbilical cord blood (UCB302), bone marrow (UET13, UBET7, 3F0664) and endometrium (EPC100) were used as samples.
遺伝子発現解析による細胞の判別
各細胞株の遺伝子発現解析データは、NCBIのGEOデータベース(http://www.ncbi.nlm.nih.gov/geo/)に登録されているデータを使用した。各細胞株のIDは3F0664:GSM201145、UET13:GSM210397、UBET7:GSM210386、UCB302:GSM210404、EPC100:GSM210413である。
Discrimination of cells by gene expression analysis The data registered in NCBI's GEO database (http://www.ncbi.nlm.nih.gov/geo/) was used for gene expression analysis data of each cell line. The ID of each cell line is 3F0664: GSM201145, UET13: GSM210397, UBET7: GSM210386, UCB302: GSM210404, EPC100: GSM210413.
上記遺伝子発現データを用いてクラスター分析により解析したところ、細胞の由来組織とは異なるグループ分けがなされるという結果となった(図15)。 Analysis by cluster analysis using the above gene expression data resulted in a grouping different from the cell-derived tissue (FIG. 15).
タンパク質の抽出
上記各細胞を凍結保存した細胞ペレットから、CelLytic MEM protein extraction kitを用いて、膜タンパク質を含む疎水性画分を分離抽出した。抽出液を20-60倍希釈してMicro BCA protein assay kitを用いてタンパク質濃度を測定した。
Extraction of Protein A hydrophobic fraction containing a membrane protein was separated and extracted from a cell pellet obtained by cryopreserving each cell using a CelLytic MEM protein extraction kit. The extract was diluted 20-60 times, and the protein concentration was measured using Micro BCA protein assay kit.
膜タンパク質のラベル化
疎水性画分に含まれるタンパク質0.2μgについて、Cy3-NHSを反応させ、蛍光標識を行った。反応後、Sephadex G-25カラムを用いて反応液から未反応の蛍光標識試薬を除いた。
Labeling of membrane protein About 0.2 μg of protein contained in the hydrophobic fraction, Cy3-NHS was reacted to perform fluorescence labeling. After the reaction, unreacted fluorescent labeling reagent was removed from the reaction solution using Sephadex G-25 column.
蛍光ラベル化タンパク質とレクチンマイクロアレイとの反応
蛍光ラベル化タンパク質を最終濃度0.25μg/mlになるよう、1%Triton X-100, 0.5M Glycine, 1mM CaCl2, 1mM MnCl2 を含む TBS で調製し、実施例1で使用したものと同じレクチンマイクロアレイ(LecChip)上に載せ、4℃で一晩反応させた。これによりサンプル中の蛍光標識糖タンパク質は、それぞれの持つ糖とレクチンの特異性に応じて結合する。
So that the reaction fluorescently labeled proteins with fluorescently labeled protein and lectin microarray final concentration 0.25 [mu] g / ml, was prepared in 1% Triton X-100, 0.5M Glycine, TBS containing 1mM CaCl 2, 1mM MnCl 2, It was mounted on the same lectin microarray (LecChip) used in Example 1 and allowed to react overnight at 4 ° C. As a result, the fluorescently labeled glycoprotein in the sample binds depending on the specificity of each sugar and lectin.
レクチンマイクロアレイの測定
反応液を取り除き、1%Triton X-100 含有TBSによる洗浄を行った後、エバネッセント場励起型スキャナー(GlycoStation Reader)でレクチンマイクロアレイの蛍光測定を行った。測定時の露光時間を199msecとして、カメラゲインは70, 80, 90 ,100, 110の各段階で測定した。
Measurement of Lectin Microarray After removing the reaction solution and washing with TBS containing 1% Triton X-100, fluorescence measurement of the lectin microarray was performed with an evanescent field excitation scanner (GlycoStation Reader). The exposure time at the time of measurement was set to 199 msec, and the camera gain was measured at each stage of 70, 80, 90, 100, and 110.
データ前処理
各レクチンに対する蛍光強度を数値化し、得られた各レクチンの3スポットの数値データを平均したものをレクチンの示した蛍光強度とした。
Data Pretreatment The fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin.
蛍光強度は実施例1と同様の手法により補正したデータを用いた。 Fluorescence intensity used data corrected by the same method as in Example 1.
サンプル毎の各レクチンのシグナル値は、バックグラウンドの値を引いた後、全レクチンのうちで最大シグナル強度を示したUDAのシグナルを基準値(100)と定めた相対値を求めた。 The signal value of each lectin for each sample was obtained by subtracting the background value and then determining the relative value with the UDA signal showing the maximum signal intensity as the reference value (100) among all the lectins.
細胞の判別
上記により得られた相対値を常用対数に変換した値を用いて、クラスター分析によりシグナルを解析したところ、細胞の由来組織を反映したグループ分けがなされることが確認された(図16)。
Discrimination of cells When the signal was analyzed by cluster analysis using the value obtained by converting the relative value obtained above into the common logarithm, it was confirmed that grouping reflecting the cell-derived tissue was performed (FIG. 16). ).
遺伝子解析結果によるクラスター解析では必ずしも同一組織由来の細胞株が同じグループに判別されなかったが、レクチンマイクロアレイによるクラスター解析では同一組織由来の細胞株が1つのグループに判別された。以上より、レクチンマイクロアレイが細胞の状態の判別に有効であることが確認された。ただしこれは対象となる細胞によって異なるであろうから、2つの手法を同時に実施することがより望ましい。 In the cluster analysis based on the gene analysis results, cell lines derived from the same tissue were not necessarily discriminated into the same group, but in the cluster analysis using the lectin microarray, cell lines derived from the same tissue were discriminated into one group. From the above, it was confirmed that the lectin microarray is effective for discrimination of the cell state. However, since this will vary depending on the target cell, it is more desirable to perform the two approaches simultaneously.
(サンプルがヒトiPS細胞の未分化および分化後の状態である場合の判別方法)
サンプルが細胞抽出物であり、判別する状態がヒト未分化細胞の未分化性及び細胞の分化度である場合の本発明の判別方法の一例を説明する。
(Determination method when sample is undifferentiated and post-differentiation state of human iPS cells)
An example of the discriminating method of the present invention when the sample is a cell extract and the discriminating state is the undifferentiation of human undifferentiated cells and the degree of cell differentiation will be described.
タンパク質の抽出
ヒトiPS細胞およびiPS細胞から分化させた胚様体(EB)2種(分化誘導後4日後および16日後)を凍結保存した細胞ペレットから、CelLytic MEM protein extraction kit を用いて、親水性画分を分離抽出した。抽出液を20-60倍希釈してMicro BCA protein assay kitを用いてタンパク質濃度を測定した。
Protein extraction Human iPS cells and two embryoid bodies (EBs) differentiated from iPS cells (4 and 16 days after induction of differentiation) were cryopreserved using the CelLytic MEM protein extraction kit and hydrophilic. Fractions were separated and extracted. The extract was diluted 20-60 times, and the protein concentration was measured using Micro BCA protein assay kit.
タンパク質のラベル化
親水性画分に含まれるタンパク質1μgに対して、Cy3-NHS(GEヘルスケア社製)を反応させ、蛍光標識を行った。反応後、Sephadex G-25カラムを用いて反応液から未反応の蛍光標識試薬を除いた。
Labeling of protein Cy3-NHS (manufactured by GE Healthcare) was reacted with 1 μg of protein contained in the hydrophilic fraction to perform fluorescence labeling. After the reaction, unreacted fluorescent labeling reagent was removed from the reaction solution using Sephadex G-25 column.
蛍光ラベル化タンパク質とレクチン・抗体マイクロアレイとの反応
蛍光ラベル化タンパク質を最終濃度0.5μg/mlまたは0.25μg/mlになるよう、1%Triton X-100, 0.5M Glycine, 1mM CaCl2, 1mM MnCl2 を含む TBS で調製し、レクチン・抗体マイクロアレイ上に載せ、4℃で一晩反応させた。これによりサンプル中の蛍光標識糖タンパク質は、それぞれの持つ糖とレクチンの特異性に応じて結合し、サンプル中のマーカー物質はそれぞれの抗体の特異性に応じて結合する。
Reaction of fluorescently labeled protein with lectin /
ここで用いたレクチン・抗体マイクロアレイは、図1に示された45種類のレクチンおよびヒトES細胞およびヒトiPS細胞の未分化マーカーであるTRA-1-60, TRA-1-81, SSEA-3, SSEA-4, Sox2 Oct3/4, Nanogの抗体がそれぞれ2スポットずつ固定化されたものを使用した。 The lectin / antibody microarray used here is TRA-1-60, TRA-1-81, SSEA-3, which is an undifferentiated marker of 45 lectins and human ES cells and human iPS cells shown in FIG. SSEA-4, Sox2 Oct3 / 4, and Nanog antibodies each immobilized on two spots were used.
レクチンマイクロアレイ・抗体マイクロアレイの測定
反応液を取り除き、1%Triton X-100 含有TBSによる洗浄を行った後、エバネッセント場励起型スキャナー(GlycoStation Reader, GPバイオサイエンス社製)でレクチンマイクロアレイの蛍光測定を行った。測定時の露光時間を199msecとして、カメラゲインは70, 80, 90 ,100, 110の各段階で測定した。
Measurement of lectin microarray / antibody microarray After removing the reaction solution and washing with TBS containing 1% Triton X-100, perform fluorescence measurement of the lectin microarray using an evanescent field excitation scanner (GlycoStation Reader, GP Biosciences) It was. The exposure time at the time of measurement was set to 199 msec, and the camera gain was measured at each stage of 70, 80, 90, 100, and 110.
レクチン・抗体マイクロアレイのデータ前処理
各レクチン及び抗体に対する蛍光強度を数値化し、得られた各レクチンの2スポットの数値データを平均したものをレクチン及び抗体の示した蛍光強度とした。蛍光強度は実施例1と同様の手法により補正したデータを用いた。
Pretreatment of lectin / antibody microarray data The fluorescence intensity for each lectin and antibody was digitized, and the average of the obtained numerical data of the two spots of each lectin was used as the fluorescence intensity indicated by the lectin and antibody. As the fluorescence intensity, data corrected by the same method as in Example 1 was used.
レクチンマイクロアレイから得られたシグナルの前処理
サンプルごとの各レクチンのシグナル値は、バックグラウンドの値を引いた後、全レクチンのうちで最大シグナル強度を示したレクチンのシグナルを基準値(100)と定めた相対値を以下の統計学的処理のために用いた。すべてのサンプルにおいて、1未満の上記相対値を示したレクチンのシグナルを全て1とした。
Pretreatment of signal obtained from lectin microarray The signal value of each lectin for each sample was subtracted from the background value, and then the lectin signal showing the maximum signal intensity among all lectins was defined as the reference value (100). The defined relative values were used for the following statistical treatments. In all samples, lectin signals showing the above relative values of less than 1 were all set to 1.
抗体マイクロアレイから得られたシグナル
各サンプルに対して得られたシグナルは、iPS細胞のシグナルを1とした相対値として示した(図17)。この結果、本実施例に用いたEBにおいて、未分化マーカーが低下していることが確認され、細胞が未分化性を失っていることが確認できた。また分化誘導後4日後の細胞と16日後の細胞とではほとんど違いは見られなかった。
Signal obtained from antibody microarray The signal obtained for each sample was shown as a relative value with the iPS cell signal as 1 (FIG. 17). As a result, in the EB used in this example, it was confirmed that the undifferentiated marker was lowered, and it was confirmed that the cells had lost undifferentiated properties. Moreover, there was almost no difference between the
レクチンによる細胞の判別
上記により得られた相対値を常用対数に変換した値を用いて、クラスター分析及び主成分分析法によりレクチンのシグナルパターンを解析したところ、iPS細胞とEBに判別されることが確認された(図18、図19)。また図19において、iPS細胞とEBの判別を行うことができる主成分1(PC1)によって、分化誘導後4日後のEBと16日後のEBも判別できることが示された。すなわちレクチンマイクロアレイ解析では、分化誘導後の状態をも判別できることが確認された。
Discrimination of cells by lectin Using the value obtained by converting the relative value obtained above to the common logarithm, the lectin signal pattern was analyzed by cluster analysis and principal component analysis. This was confirmed (FIGS. 18 and 19). Further, FIG. 19 shows that
以上より、レクチン・抗体マイクロアレイにより得られるデータが細胞の状態の判別に有効であり、未分化性の判別についてはレクチンマイクロアレイと抗体マイクロアレイの結果を組み合わせることにより明確に判別が可能であること、さらにはレクチンマイクロアレイによる解析がより詳細な状態の判別に有効であることが確認された。 Based on the above, the data obtained by the lectin / antibody microarray is effective for discrimination of the state of cells, and the discrimination of undifferentiation can be clearly discriminated by combining the results of the lectin microarray and the antibody microarray. It was confirmed that the analysis by the lectin microarray is effective for discriminating the state in more detail.
(サンプルがヒトES細胞の未分化および分化後の状態である場合の判別方法)
サンプルが細胞抽出物である場合の本発明のヒト未分化細胞判別方法の他の一例を説明する。
(Determination method when the sample is undifferentiated and after differentiation of human ES cells)
Another example of the human undifferentiated cell discrimination method of the present invention when the sample is a cell extract will be described.
実施例1で行ったものと同様にしてタンパク質の抽出、膜タンパク質のラベル化、蛍光ラベル化タンパク質とレクチンマイクロアレイとの反応、レクチンマイクロアレイの測定を行った。また、実施例1と同様にしてデータ前処理を行い、サンプル毎の各レクチンのシグナル値について相対値を求めた。 In the same manner as in Example 1, protein extraction, membrane protein labeling, reaction of fluorescently labeled protein with lectin microarray, and measurement of lectin microarray were performed. In addition, data preprocessing was performed in the same manner as in Example 1, and a relative value was determined for the signal value of each lectin for each sample.
そして、実施例1と同様にして、前記相対値を常用対数に変換した値を用いて、クラスター分析法及び主成分分析法によりレクチンのシグナルパターンを解析し、未分化細胞群(hES)と分化細胞群(EB)に分かれることを確認した後、t検定を用いて2群間でシグナルに有意差(p<0.01)のみられるレクチンを抽出した結果、4つのレクチンMAL、 PHA(L)、 EEL、PHA(E)を抽出した。 Then, in the same manner as in Example 1, using the value obtained by converting the relative value to the common logarithm, the lectin signal pattern was analyzed by the cluster analysis method and the principal component analysis method, and differentiated from the undifferentiated cell group (hES). After confirming that the cells were divided into cell groups (EB), we extracted the lectins that had a significant difference in signal (p <0.01) between the two groups using t-test, and as a result, four lectins MAL, PHA (L), EEL , PHA (E) was extracted.
次いで、この抽出したレクチンの組み合わせと判別精度を検討した。前記に記載した判別式を用いて、別途にヒト肺組織由来線維芽細胞(MRC5)由来のiPS細胞をレクチンマイクロアレイにより測定したデータの、判別式による判別の正否を数値化した。その結果は図20の通りであった。 Next, the combination of the extracted lectins and the discrimination accuracy were examined. Using the discriminant described above, the correctness of discrimination based on the discriminant of data obtained by separately measuring iPS cells derived from human lung tissue-derived fibroblasts (MRC5) using a lectin microarray was quantified. The result was as shown in FIG.
このようにして最適な組み合わせとして、PHA(L)、 EELを選択した。 選択したPHA(L)、 EELでのクラスタリング結果は図21の通りであった。 In this way, PHA (L) and EEL were selected as the optimal combination. The clustering result with the selected PHA (L) and EEL is as shown in FIG.
以上より、判別対象となる状態を特定してレクチンを選別することにより、判別精度が向上することが確認された。 From the above, it was confirmed that the discrimination accuracy was improved by identifying the state to be discriminated and selecting the lectins.
(サンプルがヒト間葉系幹細胞およびヒト胎児性癌細胞である場合の判別方法)
サンプルが細胞抽出物であり、判別する状態が細胞の種類および細胞の由来組織である判別方法の一例を説明する。
(Determination method when the sample is human mesenchymal stem cells and human fetal cancer cells)
An example of a discrimination method in which the sample is a cell extract and the discrimination state is the cell type and the cell-derived tissue will be described.
タンパク質の抽出
1x106~5x106個のヒト間葉系幹細胞(余剰指由来細胞(Yub)、余剰指骨髄由来細胞(Yub_BMC)、臍帯血由来細胞(UCB)、胎盤由来細胞(PL)、羊膜由来細胞(AM)、骨髄由来細胞(2F、3F、UET、UEET、UBET)、子宮内膜由来細胞(UtE、EPC)、月経血由来細胞(Edom))と、ヒト胎児性癌細胞(NCRG3)の細胞ペレットから、CelLytic MEM protein extraction kitを用いて、膜タンパク質を含む疎水性画分を分離抽出した。抽出液を20-60倍希釈してMicro BCA protein assay kitを用いてタンパク質濃度を測定した。
Protein extraction 1x10 6 to 5x10 6 human mesenchymal stem cells (excess finger-derived cells (Yub), surplus finger bone marrow-derived cells (Yub_BMC), cord blood-derived cells (UCB), placenta-derived cells (PL), amnion-derived Cells (AM), bone marrow-derived cells (2F, 3F, UET, UEET, UBET), endometrial-derived cells (UtE, EPC), menstrual blood-derived cells (Edom)), and human fetal cancer cells (NCRG3) From the cell pellet, a hydrophobic fraction containing membrane protein was separated and extracted using CelLytic MEM protein extraction kit. The extract was diluted 20-60 times, and the protein concentration was measured using Micro BCA protein assay kit.
膜タンパク質のラベル化
疎水性画分に含まれるタンパク質0.2μgについて、Cy3-NHSを反応させ、蛍光標識を行った。反応後、Sephadex G-25カラムを用いて反応液から未反応の蛍光標識試薬を除いた。
Labeling of membrane protein About 0.2 μg of protein contained in the hydrophobic fraction, Cy3-NHS was reacted to perform fluorescence labeling. After the reaction, unreacted fluorescent labeling reagent was removed from the reaction solution using Sephadex G-25 column.
蛍光ラベル化タンパク質とレクチンマイクロアレイとの反応
蛍光ラベル化タンパク質を最終濃度0.25μg/mlになるよう、1%Triton X-100, 0.5M Glycine, 1mM CaCl2, 1mM MnCl2 を含む TBS で調製し、実施例1で使用したものと同じレクチンマイクロアレイ(LecChip)上に載せ、4℃で一晩反応させた。これによりサンプル中の蛍光標識糖タンパク質は、それぞれの持つ糖とレクチンの特異性に応じて結合する。
So that the reaction fluorescently labeled proteins with fluorescently labeled protein and lectin microarray final concentration 0.25 [mu] g / ml, was prepared in 1% Triton X-100, 0.5M Glycine, TBS containing 1mM CaCl 2, 1mM MnCl 2, It was mounted on the same lectin microarray (LecChip) used in Example 1 and allowed to react overnight at 4 ° C. As a result, the fluorescently labeled glycoprotein in the sample binds depending on the specificity of each sugar and lectin.
レクチンマイクロアレイの測定
反応液を取り除き、1%Triton X-100 含有TBSによる洗浄を行った後、エバネッセント場励起型スキャナー(GlycoStation Reader)でレクチンマイクロアレイの蛍光測定を行った。測定時の露光時間を199msecとして、カメラゲインは70, 80, 90 ,100, 110の各段階で測定した。
Measurement of Lectin Microarray After removing the reaction solution and washing with TBS containing 1% Triton X-100, fluorescence measurement of the lectin microarray was performed with an evanescent field excitation scanner (GlycoStation Reader). The exposure time at the time of measurement was set to 199 msec, and the camera gain was measured at each stage of 70, 80, 90, 100, and 110.
データ前処理
各レクチンに対する蛍光強度を数値化し、得られた各レクチンの3スポットの数値データを平均したものをレクチンの示した蛍光強度とした。
Data Pretreatment The fluorescence intensity for each lectin was digitized, and the average of the obtained numerical data of the three spots of each lectin was used as the fluorescence intensity indicated by the lectin.
蛍光強度は実施例1と同様の手法により補正したデータを用いた。 Fluorescence intensity used data corrected by the same method as in Example 1.
サンプル毎の各レクチンのシグナル値は、バックグラウンドの値を引いた後、全レクチンのうちで最大シグナル強度を示したUDAのシグナルを基準値(100)と定めた相対値を求め、以下の統計処理を行った。 For each lectin signal value for each sample, after subtracting the background value, the relative value was determined with the UDA signal showing the maximum signal intensity among all lectins as the reference value (100). Processed.
前記相対値を常用対数に変換した値を用いて、クラスター分析法によりレクチンのシグナルパターンを解析したところ、図21のように、間葉系幹細胞と胎児性癌細胞の判別、および細胞の由来を判別することができた。すなわち、クラスター分析法により図1に示されている45種類のレクチンのシグナルパターンを解析したところ、図22のように、間葉系幹細胞と胎児性癌細胞を判別することができた。 Using the value obtained by converting the relative value to the common logarithm, the lectin signal pattern was analyzed by the cluster analysis method. As shown in FIG. 21, the mesenchymal stem cells and fetal cancer cells were discriminated and the origin of the cells was determined. I was able to determine. That is, when the signal patterns of 45 types of lectins shown in FIG. 1 were analyzed by cluster analysis, mesenchymal stem cells and fetal cancer cells could be discriminated as shown in FIG.
目的に応じたレクチンの選別
Yub判別用に4レクチン(GSL I B4, PTL-I, GSL I A4, PNA)を選別した。
Selection of lectins according to purpose Four lectins (GSL I B4, PTL-I, GSL I A4, PNA) were selected for Yub discrimination.
階層クラスタリング分析により判別を行った結果、Yub由来間葉系幹細胞とその他の細胞が明確に判別されることが確認された(図23)。 As a result of discrimination by hierarchical clustering analysis, it was confirmed that Yub-derived mesenchymal stem cells and other cells were clearly discriminated (FIG. 23).
次に、胎児性癌細胞の判別用に2レクチン(MAL, PHA(L))を選別した。 Next, 2 lectins (MAL, PHA (L)) were selected for discrimination of fetal cancer cells.
階層クラスタリング分析により判別を行った結果、胎児性癌細胞と間葉系幹細胞が明確に判別されることが確認された(図24)。 As a result of discrimination by hierarchical clustering analysis, it was confirmed that fetal cancer cells and mesenchymal stem cells were clearly discriminated (FIG. 24).
以上、本発明の実施形態、好ましい実施例を説明したが、本発明はこれらに限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々の形態に変更可能である。 As mentioned above, although embodiment of this invention and the preferable example were described, this invention is not limited to these, It can change into various forms in the technical range grasped | ascertained from description of a claim. .
Claims (21)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011513340A JPWO2010131641A1 (en) | 2009-05-11 | 2010-05-11 | How to determine cell status |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009-114877 | 2009-05-11 | ||
| JP2009114877 | 2009-05-11 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2010131641A1 true WO2010131641A1 (en) | 2010-11-18 |
Family
ID=43085013
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2010/057938 Ceased WO2010131641A1 (en) | 2009-05-11 | 2010-05-11 | Method for determination of condition of cell |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JPWO2010131641A1 (en) |
| WO (1) | WO2010131641A1 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013007742A (en) * | 2011-05-20 | 2013-01-10 | Oita Univ | Diagnostic method for blood tumor by sugar profiling |
| WO2013128914A1 (en) * | 2012-02-28 | 2013-09-06 | 独立行政法人産業技術総合研究所 | Cell differentiation assay method, cell isolation method, method for producing induced pluripotent stem cells, and method for producing differentiated cells |
| JPWO2012133127A1 (en) * | 2011-03-31 | 2014-07-28 | 株式会社グライエンス | Method for discriminating bacterial species within the genus Staphylococcus |
| WO2016006712A1 (en) * | 2014-07-11 | 2016-01-14 | 国立研究開発法人産業技術総合研究所 | Method for determining cell differentiation potential |
| JP2019154283A (en) * | 2018-03-09 | 2019-09-19 | 国立大学法人京都大学 | Methods for detecting osteoblasts in a cell population obtainable by inducing differentiation of pluripotent stem cells to osteoblasts |
| WO2019240008A1 (en) | 2018-06-13 | 2019-12-19 | 富士フイルム株式会社 | Information processing device, derivation method, and derivation program |
| CN111929270A (en) * | 2020-07-07 | 2020-11-13 | 长江大学 | Wheat mutant identification method |
| CN114577972A (en) * | 2020-11-30 | 2022-06-03 | 中国科学院大连化学物理研究所 | Protein marker screening method for body fluid identification |
| WO2025187668A1 (en) * | 2024-03-06 | 2025-09-12 | 国立研究開発法人産業技術総合研究所 | Osteogenic differentiation ability determination method |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008093828A1 (en) * | 2007-02-02 | 2008-08-07 | National Institute Of Advanced Industrial Science And Technology | Method and member for analysis of molecule on the surface of living cell |
-
2010
- 2010-05-11 WO PCT/JP2010/057938 patent/WO2010131641A1/en not_active Ceased
- 2010-05-11 JP JP2011513340A patent/JPWO2010131641A1/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008093828A1 (en) * | 2007-02-02 | 2008-08-07 | National Institute Of Advanced Industrial Science And Technology | Method and member for analysis of molecule on the surface of living cell |
Non-Patent Citations (11)
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2012133127A1 (en) * | 2011-03-31 | 2014-07-28 | 株式会社グライエンス | Method for discriminating bacterial species within the genus Staphylococcus |
| JP2013007742A (en) * | 2011-05-20 | 2013-01-10 | Oita Univ | Diagnostic method for blood tumor by sugar profiling |
| US9279809B2 (en) | 2012-02-28 | 2016-03-08 | National Institute Of Advanced Industrial Science And Technology | Cell differentiation assay method, cell isolation method, method for producing induced pluripotent stem cells, and method for producing differentiated cells |
| WO2013128914A1 (en) * | 2012-02-28 | 2013-09-06 | 独立行政法人産業技術総合研究所 | Cell differentiation assay method, cell isolation method, method for producing induced pluripotent stem cells, and method for producing differentiated cells |
| JPWO2013128914A1 (en) * | 2012-02-28 | 2015-07-30 | 国立研究開発法人産業技術総合研究所 | Method for cell differentiation determination, cell separation, and production of inducible pluripotent stem cells and differentiated cells |
| JPWO2016006712A1 (en) * | 2014-07-11 | 2017-06-01 | 国立研究開発法人産業技術総合研究所 | Cell differentiation potential discrimination method |
| WO2016006712A1 (en) * | 2014-07-11 | 2016-01-14 | 国立研究開発法人産業技術総合研究所 | Method for determining cell differentiation potential |
| JP2019154283A (en) * | 2018-03-09 | 2019-09-19 | 国立大学法人京都大学 | Methods for detecting osteoblasts in a cell population obtainable by inducing differentiation of pluripotent stem cells to osteoblasts |
| WO2019240008A1 (en) | 2018-06-13 | 2019-12-19 | 富士フイルム株式会社 | Information processing device, derivation method, and derivation program |
| CN111929270A (en) * | 2020-07-07 | 2020-11-13 | 长江大学 | Wheat mutant identification method |
| CN114577972A (en) * | 2020-11-30 | 2022-06-03 | 中国科学院大连化学物理研究所 | Protein marker screening method for body fluid identification |
| CN114577972B (en) * | 2020-11-30 | 2023-05-12 | 中国科学院大连化学物理研究所 | Protein marker screening method for body fluid identification |
| WO2025187668A1 (en) * | 2024-03-06 | 2025-09-12 | 国立研究開発法人産業技術総合研究所 | Osteogenic differentiation ability determination method |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2010131641A1 (en) | 2012-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2010131641A1 (en) | Method for determination of condition of cell | |
| JP6176738B2 (en) | Method for cell differentiation determination, cell separation, and production of inducible pluripotent stem cells and differentiated cells | |
| Toyoda et al. | Lectin microarray analysis of pluripotent and multipotent stem cells | |
| US20100291575A1 (en) | Detection of Changes in Cell Populations and Mixed Cell Populations | |
| Fathi et al. | Label-free biosensors in the field of stem cell biology | |
| JP6733889B2 (en) | Cell differentiation potential determination method | |
| JP6478418B2 (en) | Cell differentiation potential discrimination method | |
| Wilson et al. | Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array | |
| US10983123B2 (en) | Markers capable of distinguishing cell pluripotency and uses thereof | |
| JP7228163B2 (en) | Lectin immobilization method | |
| JP2004271337A (en) | Multi-specimen simultaneous analysis system for cell using surface plasmon resonance phenomenon | |
| Ahn et al. | Stem cell markers: insights from membrane proteomics? | |
| JP2009148236A (en) | Fibroblast cell identification method | |
| US20120058507A1 (en) | Clonal Derivation and Cell Culture quality Control Screening Methods | |
| US20220155308A1 (en) | Lyophilized antibody panel | |
| WO2011101550A1 (en) | Method of detecting the differentiation status of a stem cell population | |
| CN111257565A (en) | A detection kit for senescent cells and detection method thereof | |
| JP7061342B2 (en) | Detection and preparation of effector regulatory T cells | |
| RU2627455C1 (en) | Method for manufacturing of biomechanical sensor for adhesion force measurement in "cell-cell" system | |
| CA2413835A1 (en) | Isolation and culturing of fetal cells | |
| Bansal et al. | Stem Cell and Microvesicles Analysis | |
| WO2025169902A1 (en) | Method for detecting or removing undifferentiated cells remaining in neural cell population | |
| HK40066816A (en) | Lyophilized antibody panel | |
| JP2010104350A (en) | Method for selecting undifferentiated cell | |
| RU2430163C1 (en) | Method of combined immunologic and genetic cell investigation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10774898 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2011513340 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 10774898 Country of ref document: EP Kind code of ref document: A1 |