[go: up one dir, main page]

WO2010113389A1 - ステレオ画像処理装置およびステレオ画像処理方法 - Google Patents

ステレオ画像処理装置およびステレオ画像処理方法 Download PDF

Info

Publication number
WO2010113389A1
WO2010113389A1 PCT/JP2010/001537 JP2010001537W WO2010113389A1 WO 2010113389 A1 WO2010113389 A1 WO 2010113389A1 JP 2010001537 W JP2010001537 W JP 2010001537W WO 2010113389 A1 WO2010113389 A1 WO 2010113389A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
reference image
unit
stereo
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2010/001537
Other languages
English (en)
French (fr)
Inventor
西村洋文
南里卓也
丸谷健介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to CN201080015571.2A priority Critical patent/CN102369550B/zh
Priority to US13/258,987 priority patent/US8922623B2/en
Priority to JP2011506979A priority patent/JP5404773B2/ja
Priority to EP10758175.3A priority patent/EP2416293A4/en
Publication of WO2010113389A1 publication Critical patent/WO2010113389A1/ja
Anticipated expiration legal-status Critical
Priority to US14/541,647 priority patent/US9185382B2/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/285Analysis of motion using a sequence of stereo image pairs
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/32Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20228Disparity calculation for image-based rendering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Definitions

  • the present invention relates to a stereo image processing apparatus that calculates a shift of an image due to parallax from a stereo image (a base image and a reference image) obtained by photographing the same object.
  • Stereo image processing apparatuses are known.
  • This stereo image processing apparatus is, for example, an apparatus that measures the distance from a stereo image of a vehicle in front taken by an in-vehicle camera to the vehicle, or a facial component (eye or eye) from a stereo image of a driver's face taken by an in-vehicle camera.
  • Application to an apparatus that estimates the driver's face orientation by measuring the distance to the nose) is under consideration.
  • the camera interval is also reduced, and as a result, the displacement of the stereo image is also reduced, and the stereo image processing apparatus has a highly accurate parallax calculation function. Is becoming required.
  • stereo matching stereo matching
  • SAD Sub of Absolute Differences
  • POC Phase Only Correlation
  • the sum of absolute values of luminance value differences is calculated as the SAD value for each partial image cut out from the standard image and the reference image using a rectangular window.
  • the characteristic value such as the SAD value indicates the degree of difference in image luminance.
  • Such an SAD method is a method that has been used for a long time, and has a feature that the amount of calculation is small although the analysis resolution is high.
  • the accuracy of the sub-pixel level parallax calculation is low, and for example, the parallax (image shift) can be obtained only with an accuracy of about 1/4 to 1/16 pixel, and high-precision parallax is possible. It is difficult to satisfy the requirements for arithmetic functions.
  • the POC method with high accuracy of parallax calculation has attracted attention.
  • the POC method after performing a two-dimensional Fourier transform on each partial image cut out using a window function for reducing the influence of harmonics generated when cutting out an image such as a Hanning window from a reference image and a reference image
  • the two Fourier image data are synthesized, the amplitude component is normalized, and then a two-dimensional inverse Fourier transform is performed to obtain a phase-only correlation coefficient. Then, an image shift amount is calculated based on the correlation peak of the phase-only correlation coefficient.
  • Such a POC method (referred to as a two-dimensional POC method) has an advantage that the accuracy of parallax calculation is very high.
  • the amount of calculation of parallax calculation is enormous, and it is extremely difficult to perform calculation processing in a short time.
  • the two-dimensional POC method is inferior to the SAD method in terms of analysis resolution (size on a screen that enables distance measurement by distinguishing objects having different distances).
  • the one-dimensional POC method is considerably inferior to the SAD method in terms of analysis resolution (size on a screen capable of distinguishing and measuring objects having different distances).
  • An object of the present invention is to provide a stereo image processing apparatus that can improve the accuracy and analysis resolution of a parallax calculation and can reduce the amount of calculation required for the parallax calculation and increase the processing speed.
  • One aspect of the present invention is a stereo image processing apparatus.
  • This apparatus is a stereo image processing apparatus that calculates a shift of an image caused by parallax from a standard image obtained by photographing the same object and a reference image, and a portion of the same object included in each of the standard image and the reference image
  • An image matching unit that performs image matching processing on an image and detects a pixel unit deviation between the reference image and the reference image based on the result of the image matching processing, and a partial image of the same object that minimizes the pixel unit deviation
  • An anti-phase filter processing unit that applies an anti-phase filter that uses a value obtained by inverting the arrangement of pixel values of the reference image to a filter coefficient, and a filtering process that uses the anti-phase filter
  • the peak position where the output value of the maximum is detected, and the deviation of the standard image and the reference image in sub-pixel units is calculated based on the peak position It includes a peak position detection unit for output, a.
  • This apparatus is a stereo image processing apparatus that calculates a shift of an image caused by parallax from a standard image obtained by photographing the same object and a reference image, and a portion of the same object included in each of the standard image and the reference image
  • An image matching unit that performs image matching processing on an image and detects a pixel unit deviation between the reference image and the reference image based on the result of the image matching processing, and a partial image of the same object that minimizes the pixel unit deviation
  • a cross-correlation calculation unit that calculates a cross-correlation value between the reference image and the reference image, detects a peak position where the cross-correlation value is maximum, and shifts the reference image and the reference image in subpixel units based on the peak position.
  • a peak position detection unit for detecting.
  • This apparatus is a stereo image processing apparatus that calculates a shift of an image caused by parallax from a reference image f (x, y) and a reference image g (x, y) obtained by photographing the same object, and the reference image and Partial images f (x, y) and g (x, y) of the same object included in each reference image (where xa ⁇ wh / 2 ⁇ x ⁇ xa + wh / 2, ya ⁇ wv / 2 ⁇ y ⁇ ya + wv / 2), and an image matching unit that detects a pixel-by-pixel shift n in the x direction, which is the baseline length direction of the base image and the reference image, based on a result of the image matching process;
  • This method is a stereo image processing method for calculating a shift of an image caused by parallax from a reference image and a reference image obtained by photographing the same object, and is a part of the same object included in the reference image and the reference image, respectively.
  • Perform image matching processing on the image detect a pixel-by-pixel shift between the reference image and the reference image based on the result of the image matching processing, and perform a reference for the partial image of the same target object that minimizes the pixel-by-pixel shift.
  • FIG. 1 is a block diagram showing a configuration of a stereo image processing apparatus according to the present embodiment.
  • FIG. 2 is an explanatory diagram of pixel level matching.
  • FIG. 3 is an explanatory diagram of sub-pixel level matching.
  • FIG. 4 is an explanatory diagram of filtering processing using an antiphase filter.
  • FIG. 5 is an explanatory diagram of processing for detecting a peak position using a sinc function.
  • FIG. 6 is an explanatory diagram of processing for detecting a peak position using quadratic curve approximation.
  • FIG. 7 is a flowchart for explaining the operation of the stereo image processing apparatus according to this embodiment.
  • FIG. 8 is a flowchart for explaining the flow of subpixel calculation (peak position detection using an antiphase filter) in the present embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of a stereo image processing apparatus according to another embodiment.
  • FIG. 10 is an explanatory diagram of processing for calculating the value of cross-correlation
  • FIG. 11 is a diagram showing a result of comparison of ranging accuracy.
  • FIG. 12 is a diagram showing a result of comparing calculation times.
  • FIG. 13 is a block diagram showing a configuration of a stereo image processing apparatus according to still another embodiment.
  • the stereo image processing apparatus of the present invention is a stereo image processing apparatus that calculates a shift of an image caused by parallax from a standard image obtained by photographing the same object and a reference image, and is included in each of the standard image and the reference image.
  • An image matching unit that performs image matching processing on a partial image of the target object and detects a pixel unit shift between the reference image and the reference image based on the result of the image matching process, and the same target that minimizes the pixel unit shift
  • An anti-phase filter processing unit that applies, to a pixel value of a reference image, a filtering process using an anti-phase filter that uses a value obtained by inverting the arrangement of pixel values of a reference image as a filter coefficient for a partial image of the object; Is used to detect the peak position where the output value of the filtering process is maximum, and based on the peak position, the reference image and reference image It has a peak position detector detecting a displacement of the pixels, a configuration with a.
  • a pixel unit shift between the standard image and the reference image is detected by the image matching process, and a filtering process using an antiphase filter is performed on the partial image with the smallest pixel unit shift. Then, a peak position is detected from the result of the filtering process, and a deviation in sub-pixel units between the base image and the reference image is calculated.
  • the image matching process for detecting the pixel unit shift has a small amount of calculation, and the filtering process using the antiphase filter process only needs to be performed on the partial image with the smallest pixel unit shift. Less computation is required. Therefore, the speed of parallax calculation can be increased.
  • the present invention improves the accuracy and analysis resolution of parallax calculation by providing an anti-phase filter processing unit that performs a filtering process using an anti-phase filter on a partial image of the same target object in which a deviation in pixel units is minimized.
  • the amount of calculation required for the parallax calculation is small, and the processing speed can be increased.
  • FIG. 1 is a block diagram of a stereo image processing apparatus according to the present embodiment.
  • a stereo image processing apparatus 1 includes a stereo image input unit 3 to which a stereo image (standard image and reference image) captured by a stereo camera 2 is input, and a stereo image (standard image and reference image) as preprocessing.
  • a reference image) lens distortion correction and a parallelization correction unit 4 for making the optical axis parallel are provided.
  • an image in which a straight object in a real space is reflected in a straight line in a camera image, and an object having a constant distance in the camera optical axis direction is captured by a camera image.
  • Coordinate conversion processing to make the camera image the same size no matter where it is picked up, and so that the object at infinity with the camera optical axis in parallel will be in the same position in the two camera images To shift the image.
  • the method of performing the parallelization correction using the image shift after the coordinate conversion processing is exemplified, but the scope of the present invention is not limited to this, and the parallelization of the optical axis is not limited to the lens distortion. Any correction method may be used as long as the correction of the distortion of the lens and the positional relationship between the two cameras can be corrected, such as by using coordinate transformation at the same time as the correction.
  • preprocessing Although an example in which only parallelization correction is performed as preprocessing has been described, the type of preprocessing such as contrast correction performed by normal image processing and edge enhancement using a Laplacian filter is not limited, and the previous processing is not limited. It is not necessary to perform processing.
  • the dynamic range of the luminance change of the standard image and the reference image can be matched, so that more accurate image matching can be performed.
  • edge enhancement using a Laplacian filter it is possible to exclude a direct current component resulting from individual differences between cameras, that is, a difference in brightness between a standard image and a reference image, thereby enabling more accurate image matching.
  • luminance information sampled at an integer value position which is a pixel unit is converted into luminance information at a real value position.
  • an interlinear method using linear interpolation or a bicubic method using luminance information around the conversion target position may be used.
  • the interlinear method and the bicubic method are given as examples of the coordinate conversion method, but the scope of the present invention is not limited to this, and any method can be used as long as it is a process for performing coordinate conversion. May be used to perform the conversion process.
  • the stereo image processing apparatus 1 includes a first image cutout unit 5 and a first matching unit 6 as a configuration for performing pixel level matching.
  • FIG. 2 is a diagram illustrating an example of pixel level matching.
  • the first image cutout unit 5 cuts out data from each of the standard image and the reference image using a rectangular window.
  • FIG. 2 shows a state in which data is cut out from the standard image and the reference image using a rectangular window having a predetermined window size (vertical size: wv pixel, horizontal size: wh pixel). In this case, as shown in FIG. 2, data is cut out from the reference image using a rectangular window centered on a predetermined position (xa, ya).
  • the first matching unit 6 calculates the SAD value of the data cut out from the standard image and the reference image based on the following equation (1), and an image shift n that minimizes the SAD value. Ask for.
  • the first matching unit 6 performs image matching processing on the partial images cut out from the standard image and the reference image (partial images of the same object respectively included in the standard image and the reference image), and the image matching processing is performed. Based on the result, it has a function of detecting a pixel unit shift between the reference image and the reference image. Therefore, the first matching unit 6 corresponds to the image matching means of the present invention.
  • pixel level matching is performed using the SAD method
  • the scope of the present invention is not limited to this, and any other method (as long as the method has a small amount of calculation)
  • pixel level matching may be performed using an SSD (Sum of Squared Differences) method.
  • the stereo image processing apparatus 1 includes a second image cutout unit 7 and a second matching unit 8 as a configuration for performing sub-pixel level matching.
  • FIG. 3 is a diagram illustrating an example of sub-pixel level matching.
  • the second image cutout unit 7 cuts out data using a window function from each of the standard image and the reference image.
  • FIG. 3 shows a state in which data is cut out from the reference image and the reference image using a Hanning window window function w (m) as in the following equation (2).
  • data is extracted from the reference image using a Hanning window centered on a predetermined position (xa, ya), and the above-described pixel level matching is performed from the reference image.
  • window size is “vertical size: 1 pixel, horizontal size: KJ pixel” is illustrated here, the scope of the present invention is not limited to this.
  • window function of the Hanning window has been described here, other window functions may be used.
  • the second matching unit 8 detects the peak position from the anti-phase filter unit 9 that performs a filtering process using an anti-phase filter on the partial image at the position matched by the pixel level matching, and the output value of the anti-phase filter unit 9.
  • a peak detector 10 is provided.
  • FIG. 4 is an explanatory diagram illustrating an example of filtering processing using an antiphase filter.
  • a case where an input signal x (m) “0, 0, 1, 2, 3, 4, 5, 0, 0” is input to the antiphase filter is shown.
  • the tap length of the antiphase filter h (k) (the length of the window function w (m) used to cut out the partial image by the second image cutout unit 7: KJ) is set to “5”.
  • the value “5, 4, 3, 2, 1” obtained by inverting the arrangement of five data (luminance values of the reference image) is used as the filter coefficient.
  • the tap length of the antiphase filter is set in accordance with the magnitude of the deviation n (deviation in pixel units) detected by pixel level matching. For example, when the shift n in pixel units is small, the tap length of the antiphase filter is set to be short accordingly.
  • this antiphase filter corresponds to a kind of so-called FIR filter, and therefore, a linear transition invariant system (if the input signal has a deviation, the output signal will have the same deviation as the input signal. System). In other words, even when the input is shifted at an interval smaller than the sampling interval, the output is shifted by the same amount as the input, and a value at the sampling position of the shifted signal is obtained at the output.
  • the anti-phase filter unit 9 determines the luminance value (pixel value) of the reference image for the partial image (partial image of the same object that minimizes the deviation in pixel units) at the position matched by the pixel level matching. Filtering processing using an anti-phase filter using a value obtained by inverting the arrangement of the filter coefficients as filter coefficients is performed on the luminance value (pixel value) of the reference image. Therefore, this antiphase filter unit 9 corresponds to the antiphase filter means of the present invention.
  • this anti-phase filter Since the output of this anti-phase filter is the output of a linear transition invariant system, it excludes errors in lens distortion correction, errors such as gain noise caused by CCD and other image sensors, and errors in the calculation accuracy of image clipping due to windowing. In theory, this represents a true shift. Therefore, the true peak position at the sub-pixel level can be obtained by interpolating the numerical value between the pixels according to the sampling theorem for the output of the antiphase filter discretized in units of pixels.
  • the peak detection unit 10 detects a peak position where the output value from the antiphase filter unit 9 is maximum at the sub-pixel level using a sinc function.
  • the sinc function is a function defined by sin ( ⁇ x) / ⁇ x, and is a function used when returning the discretized sampling data to the original continuous data. That is, it is proved by the sampling theorem that the original continuous data can be completely restored by performing the convolution operation of the sampled discrete data and the sinc function. Therefore, if the peak position is obtained by interpolating the data between pixels using the sinc function from the output of the discretized antiphase filter, the true peak position can be theoretically derived even at the subpixel level. It is.
  • FIG. 5 is an explanatory diagram showing an example of peak position detection using a sinc function. As shown in FIG. 5, when a peak position is detected using a sinc function, the peak position is detected by a binary search.
  • an intermediate position between position A and position B is set as position C, and the value of position C is calculated from the following equation (4) using a sinc function based on the sampling theorem.
  • the position C is set as a new position B, and the above processing is repeated for the required accuracy, and the position with the largest value is set as the peak position ⁇ .
  • the required subpixel accuracy is 1/2 pixel
  • the above-described process may be performed once. If the accuracy is 1/4 pixel, it is required twice. If it is 1/8 pixel, it is required 3 times. The number of repetitions is determined according to accuracy.
  • the binary search method has been described as an example of the method for deriving the peak position using the sinc function.
  • the peak position can also be searched using a method such as a gradient method.
  • the scope of the invention is not limited to this, and any other method may be used as long as the method obtains the peak position by interpolating values between pixels using a sinc function.
  • the peak detection unit 10 may detect the peak position where the output value from the antiphase filter unit 9 is maximized using quadratic curve approximation, and reduce the arithmetic processing.
  • Peak position extraction using quadratic curve approximation means that the peak position of the discretized one-dimensional data is obtained by fitting a quadratic curve when the peak position is obtained with an accuracy equal to or less than the discretization interval, and its maximum value. This is a method for calculating the peak position from the position with accuracy with an accuracy equal to or less than the discretization interval.
  • FIG. 6 is an explanatory diagram showing an example of peak position detection using quadratic curve approximation.
  • the output value from the antiphase filter unit 9 is passed through three points: the maximum value z (0) and its left and right output values z (+1) and z ( ⁇ 1).
  • the maximum value (local maximum value) of the next curve is defined as the peak position ⁇ .
  • the peak position ⁇ is calculated by the following equation (5).
  • the peak detection unit 10 detects the peak position where the output value of the filtering process using the antiphase filter is maximized, and detects the shift in sub-pixel units between the reference image and the reference image based on the peak position. It has a function. Therefore, this peak detector 10 corresponds to the peak position detecting means of the present invention.
  • the stereo image processing apparatus 1 includes a matching error detection unit 11 that detects a matching error in a pixel level image matching process based on a result of a filtering process using an antiphase filter. For example, when the output from the antiphase filter unit 9 is not symmetric (left-right symmetric), the matching error detection unit 11 determines that the pixel level matching is a false matching. Alternatively, the matching error detection unit 11 has a case where the minimum position of the SAD value and the peak position of the output from the antiphase filter unit 9 are different at the pixel level (such as when no peak appears in the output from the antiphase filter unit 9). It is determined that there is a matching error. Thereby, it is not necessary to perform back matching processing, and the amount of calculation corresponding to that is reduced.
  • FIG. 7 is a flowchart showing a flow when the parallax calculation is performed using the stereo image processing apparatus 1 of the present embodiment.
  • the input stereo image the base image and the reference image
  • S1 parallelization correction
  • S2 An analysis reference position (xa, xy) is determined (S2).
  • S3 the search position (shift amount of the rectangular window) in the reference image is determined (S4), and the reference image is extracted using the rectangular window.
  • S5 the SAD value at the search position is calculated (S6).
  • FIG. 8 is a flowchart showing the flow of subpixel level matching calculation (subpixel calculation).
  • the reference image is cut out using the window function of the Hanning window (S11), and the value f ′ obtained by inverting the arrangement of the luminance values of the reference image
  • ( ⁇ k) be the filter coefficient h (k) of the antiphase filter (S12).
  • the reference image is extracted using the window function of the Hanning window (S13), and the filtering process using the antiphase filter is performed (S14).
  • the peak position is detected from the output value of the filtering process using the anti-phase filter, and the sub-pixel level image shift ⁇ between the reference image and the reference image is obtained (S15).
  • the anti-phase filter unit 9 that performs the filtering process using the anti-phase filter on the partial image of the same object that minimizes the pixel unit deviation is provided.
  • the accuracy and analysis resolution of the parallax calculation can be improved, and the calculation amount required for the parallax calculation is small, and the processing speed can be increased.
  • the stereo image processing apparatus 1 is a stereo image processing apparatus 1 that calculates a shift of an image caused by parallax from a standard image obtained by photographing the same object and a reference image.
  • a first matching unit 6 that performs image matching processing on partial images of the same object included in each image and detects a pixel-by-pixel shift between the reference image and the reference image based on the result of the image matching processing; For the partial image of the same object with the smallest deviation, the anti-phase is applied to the pixel value of the reference image by performing a filtering process using an anti-phase filter with a value obtained by inverting the arrangement of the pixel values of the reference image as a filter coefficient.
  • a peak detector 10 for detecting the displacement of the sub-pixels of the image and the reference image and has a configuration with a.
  • a pixel unit shift between the standard image and the reference image is detected by the image matching process, and a filtering process using an antiphase filter is performed on the partial image with the smallest pixel unit shift. Then, a peak position is detected from the result of the filtering process, and a deviation in sub-pixel units between the base image and the reference image is calculated.
  • the image matching process for detecting the pixel unit shift has a small amount of calculation, and the filtering process using the anti-phase filter process is only the operation of the anti-phase filter for the partial image having the smallest pixel unit shift. Therefore, it is not necessary to perform FFT and inverse FFT operations, so the amount of calculation can be reduced. Therefore, the speed of parallax calculation can be increased.
  • the peak detection unit 10 has a configuration for detecting a peak position using a sinc function.
  • the processing for detecting the peak position using the sinc function may be performed by binary search for the required subpixel accuracy, so that the amount of calculation can be optimized sufficiently and the speed of parallax calculation can be increased.
  • the peak position can be easily obtained with high accuracy by using the sampling theorem.
  • the peak detection unit 10 has a configuration for detecting a peak position using quadratic curve approximation.
  • the stereo image processing apparatus 1 has a configuration including a matching error detection unit 11 that detects a matching error in the image matching process based on the result of the filtering process using the antiphase filter. Yes.
  • the anti-phase filter unit 9 has a configuration that determines the tap length of the anti-phase filter according to the magnitude of the pixel unit deviation detected by image matching. is doing.
  • the tap length of the anti-phase filter (the window function w used to cut out the partial image when performing the filtering process using the anti-phase filter) according to the magnitude of the pixel unit deviation detected by the image matching.
  • the length of (m): KJ) is appropriately set. For example, since a distant object (object) is captured as a small image, the shift in pixel units is also reduced, and the tap length of the antiphase filter (the length of the window function) is set shorter accordingly.
  • FIG. 9 is a block diagram illustrating a configuration of a stereo image processing apparatus 1 according to another embodiment.
  • a cross-correlation unit 12 is provided instead of the antiphase filter unit 9.
  • the cross-correlation unit 12 has a function of calculating a cross-correlation value from a partial image at a position matched by pixel level matching. Therefore, the cross-correlation unit 12 corresponds to the cross-correlation calculating means of the present invention.
  • FIG. 10 is an explanatory diagram of the process of calculating the value of cross-correlation.
  • data centering on a predetermined position (xa, ya) is extracted from the reference image using the window function w (m) of the Hanning window of Expression (2).
  • w (m) of the Hanning window of Expression (2) is extracted from the reference image with the position (xa + n, ya) matched by pixel level matching as the center.
  • the cross-correlation unit 12 calculates the value of the cross-correlation between the extracted reference image and the reference image using the following equation (6).
  • equation (6) if i is replaced with ⁇ k, the equation in ⁇ becomes equivalent to equation (3), and the range of addition of ⁇ is from ⁇ J to ⁇ K.
  • J and K indicate the range of the window function centered on 0. Since J and K have opposite signs, basically, the order of addition is only mathematically different, and expression (3) Can be obtained. That is, it is also possible to replace the calculation by the antiphase filter with the calculation of the cross correlation. Therefore, even when cross-correlation is used, high-precision sub-pixel level matching similar to the method using the anti-phase filter is possible.
  • the extraction position is determined at the pixel level, and the cross-correlation is calculated using only the extracted data. Therefore, it is completely different from the conventional method using cross-correlation.
  • the stereo image processing apparatus 1 of the other embodiment by providing the cross-correlation unit 12 that calculates the value of the cross-correlation for the partial images of the same target object in which the deviation in pixel units is minimized, the accuracy and analysis resolution of the parallax calculation can be improved, and the calculation amount required for the parallax calculation is small, and the processing speed can be increased.
  • the stereo image processing apparatus 1 is a stereo image processing apparatus 1 that calculates a shift of an image due to parallax from a reference image obtained by photographing the same object and a reference image.
  • a first matching unit 6 that performs image matching processing on partial images of the same object included in each image and detects a pixel-by-pixel shift between the reference image and the reference image based on the result of the image matching processing;
  • a cross-correlation unit 12 that calculates a cross-correlation value between the base image and the reference image for a partial image of the same object with the smallest deviation, and a peak position where the cross-correlation value is maximum are detected.
  • a peak detector 10 that detects a sub-pixel shift between the reference image and the reference image.
  • the pixel unit deviation between the standard image and the reference image is detected by the image matching process, and the cross correlation value is calculated for the partial image with the smallest pixel unit deviation. Then, the peak position of the cross-correlation value is detected, and the deviation of the base image and the reference image in sub-pixel units is calculated. Thereby, the precision of parallax calculation and the analysis resolution can be improved.
  • the image matching process for detecting the pixel unit shift requires a small amount of calculation, and the processing for calculating the cross-correlation value needs to be performed only for the partial image having the smallest pixel unit shift. The amount is small. Therefore, the speed of parallax calculation can be increased.
  • FIG. 11 shows a result of comparison of ranging accuracy when using the SAD method, the one-dimensional POC method, and the stereo image processing method according to the present invention (hereinafter, this method).
  • the distance measurement accuracy is indicated by the characteristics of the distance to the distance measurement object and the standard deviation of the distance measurement result.
  • the result shown in FIG. 11 is calculated based on a stereo image that is taken by measuring the distance from the stereo camera at intervals of 10 m when the object to be measured is a vehicle.
  • the standard deviation of the distance measurement result is used in order to eliminate error factors of correction of lens distortion and parallelization correction of the stereo camera.
  • a method with a small standard deviation of the distance measurement result is a method with high accuracy.
  • the standard deviation is a variation in distance measurement results.
  • the standard deviation of the distance measurement result is calculated by using, as sample points, pixels in the vehicle area that are visually extracted from among the pixels included in the captured stereo image. For the subpixel estimation of this method, quadratic curve approximation with the least amount of calculation was used. As shown in FIG. 11, the POC method (indicated by ⁇ ) and the present method (indicated by ⁇ ) show equivalent characteristics, and the standard deviation is smaller than that of the SAD method (indicated by ⁇ ). .
  • FIG. 12 shows the result of comparing the calculation time of the parallax calculation when the SAD method, the one-dimensional POC method, and the present method are used.
  • the result shown in FIG. 12 is the time required to calculate one frame of the half VGA image (640 ⁇ 240) on the personal computer (33.33 GHz). This method requires about 1.25 times the computation time compared to the SAD method, but the one-dimensional POC method requires 30 times more computation time than the present method.
  • the stereo image processing method according to the present invention has a calculation time equivalent to that of the SAD method and can realize ranging accuracy equivalent to that of the one-dimensional POC method. There is an effect.
  • FIG. 13 shows a configuration of stereo image processing apparatus 1300 according to Embodiment 3 of the present invention.
  • the stereo image processing apparatus 1300 includes a stereo image acquisition unit 1301, an image matching unit 1302, a filter unit 1303, and a peak position detection unit 1304.
  • the stereo image acquisition unit 1301 is in the stereo camera 2 and the stereo image input unit 3 in FIG. 1
  • the image matching unit 1302 is in the first image cutout unit 5 and the first matching unit 6 in FIG. 1 corresponds to the second image cutout unit 7 and the antiphase filter unit 9 in FIG. 1
  • the peak detection unit 1304 corresponds to the peak detection unit 10 in FIG.
  • the function of the stereo image processing apparatus 1300 according to the third embodiment will be described with reference to FIG.
  • an image to be described later will be described below assuming that one pixel is one coordinate point with the horizontal direction of the image being the X axis and the vertical direction of the image being the Y axis.
  • the stereo image acquisition unit 1301 includes two or more imaging systems, that is, cameras, and acquires a standard image and a reference image obtained by imaging the same object using the camera.
  • the image matching unit 1302 performs an image matching process of the stereo image based on the standard image and the reference image acquired from the stereo image acquisition unit 1301, and calculates the “deviation amount n” on the coordinate axis between the standard image and the reference image. .
  • the shift amount n is defined as a shift in pixel units.
  • the parallax between the standard image and the reference image which is a derivation purpose of the stereo image processing apparatus according to the present embodiment, is hereinafter defined as a sub-pixel shift.
  • the filter unit 1303 acquires the standard image and the reference image from the stereo image acquisition unit 1301 and acquires the “deviation amount n” from the image matching unit 1302.
  • the filter unit 1303 extracts a partial image from the reference image acquired from the stereo image acquisition unit 1301, and calculates a filter coefficient from the partial image related to the reference image.
  • the filter unit 1303 extracts a partial image from the reference image acquired from the stereo image acquisition unit 1301 and generates an input signal from the partial image related to the reference image.
  • the filter unit 1303 generates an output signal based on the input signal and the filter coefficient.
  • the peak position detection unit 1304 detects a peak value from the output signal acquired from the filter unit 1303.
  • the peak value refers to the maximum value in the output signal.
  • the stereo image acquired by the stereo image input unit 1301 is not subjected to lens distortion correction and optical axis parallelization correction, but may be performed in the same manner as in the first embodiment.
  • the stereo image acquisition unit 1301 has a plurality of imaging systems.
  • the stereo image acquisition unit 1301 captures the target with the first imaging system and the second imaging system, thereby capturing the reference image obtained by capturing the target using the first imaging system and the second target object. And a reference image captured using the imaging system.
  • a reference image captured using the imaging system.
  • the image matching unit 1302 performs a stereo image matching process based on the standard image and the reference image acquired from the stereo image acquisition unit 1301, and calculates the “deviation amount n” between the standard image and the reference image.
  • Specific processing contents are the same as the processing contents of the first image cutout unit 5 and the first matching unit 6 in Embodiment 1, and will be described with reference to FIG.
  • FIG. 2 shows a state in which partial images are cut out from the standard image and the reference image using a rectangular window having a predetermined window size (vertical size: wv pixel, horizontal size: wh pixel).
  • a partial image is cut out from the reference image using a rectangular window window function centered on a predetermined reference point (xa, ya), and is cut out from the reference image by the rectangular window function.
  • a partial image is extracted.
  • predetermined reference point is a reference coordinate.
  • the window function of the rectangular window is centered on a predetermined reference point, it is only necessary to include a predetermined reference point near the center, not the center.
  • reference image data is cut out while shifting the image one pixel at a time in a predetermined search range from a predetermined reference point (xa, ya) in the reference image in the horizontal direction that is the baseline length direction.
  • the partial image cut out from the reference image by the window function of the rectangular window is extracted.
  • the image matching unit 1302 calculates the SAD value (difference in pixel luminance) between the partial image cut out from the base image by the window function of the rectangular window and the partial image cut out from the reference image by the window function.
  • An image shift “n” (unit: pixel) that minimizes the SAD value is calculated based on the same formula (1) as in the first mode.
  • coordinate points (xa + n, ya) are defined as corresponding points in the reference image.
  • the image matching unit 1302 performs stereo image matching processing on the partial image cut out from the base image by the rectangular window function and the partial image cut out from the reference image by the rectangular window function. Based on the result of the image matching process, a “deviation amount n” that is a deviation in pixel units between the base image and the reference image is derived.
  • the scope of the present invention is not limited to this. That is, any other method, for example, an SSD (Sum of Squared Differences) method or the like may be used as long as the method has a small amount of calculation.
  • SSD Standard of Squared Differences
  • the filter unit 1303 acquires a standard image and a reference image from the stereo image acquisition unit 1301, and performs an image matching process of the stereo image based on the “deviation amount n” and a predetermined reference point (xa, ya) from the image matching unit 1302. Acquire information indicating that it has been performed.
  • the filter unit 1303 extracts a partial image from the reference image acquired from the stereo image acquisition unit 1301, and calculates a filter coefficient from the partial image related to the reference image.
  • the filter unit 1303 extracts a partial image from the reference image acquired from the stereo image acquisition unit 1301 and generates an input signal from the partial image related to the reference image.
  • the filter unit 1303 generates an output signal based on the input signal and the filter coefficient.
  • Specific processing contents are the same as the processing contents of the second image cutout unit 7 and the antiphase filter unit 9 in Embodiment 1, and will be described with reference to FIG.
  • FIG. 3 shows a state in which partial images are cut out from the reference image and the reference image using the window function w (m) of the Hanning window expressed by the equation (2) shown in the first embodiment.
  • the window function includes a Hamming window, a Blackman window, and a Kaiser window.
  • the window function will be described as a Hanning window.
  • the window function is, for example, the frequency power characteristic, the phase characteristic, and the cut-out edge continuity among the characteristics of the partial image cut out from the image (the window function in FIG. 3 changes more continuously than the window function in FIG. 2).
  • Etc. the selection differs depending on the parameters that are regarded as important.
  • the Kaiser window is suitable when the phase characteristic is important, but the calculation is considerably complicated.
  • the Hanning window is suitable from the viewpoint of reducing the amount of calculation.
  • the window function (hereinafter referred to as the first window function) used in the image matching unit 1302 is used in search processing with a large number of calculations, it is important that the amount of calculation is small. On the other hand, since the accuracy may be at the pixel level, a rectangular window that simply cuts out data is used.
  • the window function (hereinafter referred to as the second window function) used in the filter unit 1303 may not include noise cut out by the window function in the partial image cut out from the image in order to accurately obtain the subpixel. is important.
  • the window function in which changes at both ends are continuous with respect to the first window function, that is, both ends of one period are substantially the same. It is desirable to use a window function that is zero. Thereby, the continuity of the signal is maintained at the cut-out end portion of the cut signal, and the noise component due to the cut-out can be removed from the characteristics of the antiphase filter.
  • the first window function has a narrower main lobe width than the second window function, and the side lobe ( side-love) is large.
  • the window function w (m) of the Hanning window for cutting out the window function of the Hanning window is 1 pixel (pixel) on the vertical axis, “KJ” pixels on the horizontal axis, and “m” is It is an integer greater than or equal to coordinate point “J” and less than or equal to coordinate point “K”.
  • g ′ (m) (m: an integer from “J” to “K”) indicates the luminance value of the partial image cut out from the reference image by the window function of the Hanning window.
  • a partial image is cut out using a window function of a Hanning window centered on a predetermined reference point (xa, ya). That is, the partial image cut out from the reference image using the window function of the Hanning window has a vertical axis size of 1 pixel and a horizontal axis size of “KJ” pixels centered on the coordinates (xa, ya). .
  • the evaluation value indicating the matching level at the pixel level such as the SAD value in the image matching unit 1302 in the image matching of the stereo image is the most effective position, with (xa + n, ya) as the center.
  • the partial image is cut out using the window function of the Hanning window.
  • the partial image cut out from the reference image using the window function of the Hanning window has a vertical axis size of 1 pixel and a horizontal axis size of “KJ” pixels centered on the coordinates (xa + n, ya). .
  • window size is “vertical size: 1 pixel, horizontal size: KJ pixel” is illustrated here, the scope of the present invention is not limited to this.
  • the above-described processing may be performed for each vertical pixel, and the results for the vertical 3 pixels may be averaged and output.
  • the above-described processing may be performed by shifting the vertical size by one pixel, and the results for each of the plurality of pixels included in the vertical size may be weighted and averaged.
  • the weighting coefficient may be determined by a window function like a two-dimensional POC.
  • the filter unit 1303 derives, as an anti-phase filter, a filter having a filter coefficient that is a value obtained by inverting the permutation of the luminance value of each coordinate in the partial image cut out from the reference image using the window function of the Hanning window. Then, the filter unit 1303 performs a filtering process on the luminance value of each coordinate in the partial image cut out from the reference image using the window function of the Hanning window, using an antiphase filter.
  • FIG. 4 is an explanatory diagram showing an example of filtering processing using an antiphase filter.
  • the filtering process performed in the filter unit 1303 will be described with reference to FIG.
  • FIG. 4 shows how the input signal x (m), which is a permutation of the luminance values of the partial images cut out from the reference image by the window function of the Hanning window, is filtered.
  • the length “KJ” in the base line length direction of the window function w (m) of the Hanning window in FIG. 3 is, for example, “5” pixels
  • the input signal x (m) is, for example, “1, 2, 3, 4 and 5 "will be described below.
  • each number of the input signal x (m) indicates the luminance at each coordinate, and the luminance at coordinate points other than the partial image is “0”. Further, when the permutation of the input signal x (m) is “1, 2, 3, 4, 5”, and there is no deviation at the subpixel level between the partial image cut out from the reference image and the reference image, the image Since image matching is performed in the matching unit 1302, the permutation of the luminance values of the partial images cut out from the reference image using the window function of the Hanning window is also “1, 2, 3, 4, 5”.
  • the tap length of the antiphase filter h (k) is cut out from the reference image by the window function. “5” because it is the same as the number of pixels of the partial image. That is, the tap length of the antiphase filter is the same as the window length of the window function.
  • the number of data in the input signal x (m) and the tap length of the antiphase filter h (k) are equal. .
  • the filter coefficient of the antiphase filter is “5, 4, 3, 4” obtained by inverting the permutation “1, 2, 3, 4, 5” of the luminance value of the partial image cut out from the reference image using the window function of the Hanning window. 2 and 1 ".
  • the filter unit 1303 uses the antiphase filter “5, 4, 3, 2, 1” to perform the filtering process on the input signal “1, 2, 3, 4, 5” related to the reference image.
  • the filtering process will be specifically described.
  • the luminance value before and after the input signal x (m) is “0, 0” in consideration of the luminance of the coordinate point outside the partial region. , 1, 2, 3, 4, 5, 0, 0 ".
  • “t” (t: 0 to 4) in FIG. 4 is a coordinate point in the partial image cut out from the reference image by the Hanning window, the result of the filtering process is as follows.
  • the anti-phase filter corresponds to a kind of so-called FIR filter and has a feature that it is a linear transition invariant system.
  • the linear transition invariant system is a system in which when the input signal is shifted, the output signal is shifted by the same amount as the input signal.
  • the filter unit 1303 uses the value f ′ ( ⁇ k) obtained by inverting the arrangement of the luminance values of the partial images cut out from the base image as the filter coefficient h (k) of the antiphase filter, and cuts out the reference image.
  • the luminance value g ′ (m) of the partial image is the input signal x (m). Therefore, it can be said that the output signal z (m) calculated in the filter unit 1303 is calculated by the same expression (3) as in the first embodiment.
  • the filter unit 1303 sets the tap length of the antiphase filter in accordance with the magnitude of the shift n in units of pixels detected by pixel level matching. For example, when the shift n in pixel units is small, the tap length of the antiphase filter is set to be short accordingly.
  • the tap length of the antiphase filter can be adaptively changed by adaptively changing the size of the partial image with respect to “n”. Accordingly, it is possible to perform a parallax calculation in accordance with the size of the target object, that is, an adaptive process of calculating a parallax using only a partial image where an object at an equal distance is captured.
  • the true peak position at the sub-pixel level can be obtained by interpolating the numerical value between the pixels according to the sampling theorem for the output of the antiphase filter discretized in units of pixels.
  • the peak detection unit 1304 detects the peak value from the output signal acquired from the filter unit 1303.
  • the peak detection unit 1304 detects the peak position where the output value from the filter unit 1303 is maximum at the sub-pixel level using the sinc function.
  • the sinc function is a function defined by sin ( ⁇ x) / ⁇ x, and is a function used when returning the discretized sampling data to the original continuous data. That is, it is proved by the sampling theorem that the original continuous data can be completely restored by performing the convolution operation of the sampled discrete data and the sinc function.
  • the true peak position can be theoretically derived even at the subpixel level.
  • FIG. 5 is an explanatory diagram showing an example of peak position detection using a sinc function. As shown in FIG. 5, when a peak position is detected using a sinc function, the peak position is detected by a binary search.
  • the intermediate position between position A and position B is position C, and based on the sampling theorem, the value of position C is calculated from the same expression (4) as in the first embodiment using the sinc function. Then, the position C is set as a new position B, and the above process is repeated for the required accuracy, and the position with the largest value is set as the peak position ⁇ .
  • the above-described processing may be performed once. If the 1 / 4-pixel accuracy is 2 times, if the sub-pixel accuracy is 1/8 pixel, 3 times. The number of repetitions is determined according to accuracy.
  • the binary search method has been described as an example of the method for deriving the peak position using the sinc function.
  • the peak position can also be searched using a method such as a gradient method.
  • the scope of the invention is not limited to this, and any other method may be used as long as the method obtains the peak position by interpolating values between pixels using a sinc function.
  • the peak detection unit 1304 may detect the peak position where the output value from the filter unit 1303 is maximum using quadratic curve approximation, and reduce the arithmetic processing.
  • Peak position extraction using quadratic curve approximation means that the peak position of the discretized one-dimensional data is obtained by fitting a quadratic curve when the peak position is obtained with an accuracy equal to or less than the discretization interval, and its maximum value. This is a method for calculating the peak position from the position with accuracy with an accuracy equal to or less than the discretization interval.
  • FIG. 6 is an explanatory diagram showing an example of peak position detection using quadratic curve approximation.
  • a quadratic curve passing through the three points of the maximum value z (0) of the output value from the filter unit 1303 and the left and right output values z (+1) and z ( ⁇ 1). Is the peak position ⁇ .
  • the peak position ⁇ is calculated by the same equation (5) as in the first embodiment.
  • the peak detection unit 1304 detects the peak position where the output value of the filtering process using the anti-phase filter is maximized, and detects the shift of the reference image and the reference image in sub-pixel units based on the peak position. It has a function.
  • the parallax calculation is performed by performing the filtering process using the anti-phase filter on the partial images of the same target object in which the shift in pixel units is minimized.
  • Accuracy and analysis resolution can be improved, and the calculation amount required for the parallax calculation is small, and the processing speed can be increased.
  • a pixel unit shift between the standard image and the reference image is detected by the image matching process, and a filtering process using an antiphase filter is performed on the partial image with the smallest pixel unit shift. Then, a peak position is detected from the result of the filtering process, and a deviation in sub-pixel units between the base image and the reference image is calculated.
  • the image matching process for detecting the pixel unit shift has a small amount of calculation, and the filtering process using the anti-phase filter process is only the operation of the anti-phase filter for the partial image having the smallest pixel unit shift. Therefore, it is not necessary to perform FFT and inverse FFT operations, so the amount of calculation can be reduced. Therefore, the speed of parallax calculation can be increased.
  • the stereo image processing apparatus can improve the accuracy and analysis resolution of the parallax calculation, reduce the amount of calculation required for the parallax calculation, and increase the processing speed. It is useful for a device that measures the distance to a vehicle ahead using an in-vehicle camera, a device that estimates the direction of a driver's face using an in-vehicle camera, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Analysis (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

 ステレオ画像処理装置(1)は、基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像について第1マッチング部(6)で画像マッチング処理を施し、その画像マッチング処理の結果に基づいて基準画像と参照画像のピクセル単位のずれを検出する。つぎに、第2マッチング部(8)の逆位相フィルタ部(9)では、ピクセル単位のずれが最小となる同一の対象物の部分画像について、基準画像の画素値の並びを反転させた値をフィルタ係数とする逆位相フィルタを用いたフィルタリング処理が、参照画像の画素値に施される。そして、ピーク検出部(10)で、逆位相フィルタを用いたフィルタリング処理の出力値が最大となるピーク位置が検出され、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれが検出される。これにより、視差演算の精度や分析分解能を向上することができ、かつ、視差演算に要する演算量が少なく処理の高速化が可能なステレオ画像処理装置が提供される。

Description

ステレオ画像処理装置およびステレオ画像処理方法
 本発明は、同一の対象物を撮影したステレオ画像(基準画像と参照画像)から視差に起因する画像のずれを算出するステレオ画像処理装置に関するものである。
 従来から、ステレオカメラを用いて同一の対象物を撮影したときの二つの画像(基準画像と参照画像)から画像のずれを算出し、その画像のずれに基づいて対象物までの距離を測定するステレオ画像処理装置が知られている。このステレオ画像処理装置は、例えば、車載カメラで撮影した前方の車両のステレオ画像からその車両までの距離を測定する装置や、車内カメラで撮影したドライバーの顔のステレオ画像から顔の部品(目や鼻など)までの距離を測定してドライバーの顔の向きを推定する装置などへの適用が検討されている。ところが、近年のカメラ(車載カメラや車内カメラなど)の小型化の影響により、カメラ間隔も小さくなり、その結果、ステレオ画像のずれも小さくなり、ステレオ画像処理装置には、高精度の視差演算機能が要求されるようになってきている。
 従来、このようなステレオ画像処理装置では、ステレオマッチング(ステレオ画像処理の視差演算)の方式として、例えばSAD(Sub of Absolute Differences)方式やPOC(Phase Only Correlation)方式などが用いられている。
 SAD方式では、基準画像と参照画像から矩形窓を用いて切出したそれぞれの部分画像について、輝度値の差の絶対値の総和をSAD値として計算する。ここで、SAD値などの特性値は、画像輝度の相違度を示す。そして、参照画像の矩形窓の位置を1ピクセルずつ基線長方向にずらしていったときに、SAD値が最小となるずれを「ピクセルレベルの視差(ずれ)」として求める。その後、その最小値の近傍にある三つのSAD値(SAD値の最小値と二番目に小さい値と三番目に小さい値)を用いて等角直線フィッティングを行なって、「サブピクセルレベルの視差(ずれ)」を算出する。
 このようなSAD方式は、古くから用いられている方式であり、分析分解能が高いわりには演算量が少ないという特徴がある。しかしながら、このSAD方式では、サブピクセルレベルの視差演算の精度が低く、例えば、1/4~1/16ピクセル程度の精度でしか視差(画像のずれ)を求めることができず、高精度の視差演算機能に対する要求を満足するのは難しい。
 そこで、近年では、視差演算の精度が高いPOC方式が注目されている。POC方式では、基準画像と参照画像からハニング窓等の画像切り出しの際に生じる高調波の影響を低減するための窓関数を用いて切出したそれぞれの部分画像について、2次元フーリエ変換を施した後、その二つのフーリエ画像データを合成し、振幅成分を正規化した後に、2次元逆フーリエ変換を施すことにより、位相限定相関係数を求める。そして、位相限定相関係数の相関ピークに基づいて画像のずれ量が算出される。
 このようなPOC方式(2次元POC方式という)には、視差演算の精度が非常に高いという利点がある。ところが、2次元POC方式は視差演算の演算量が膨大であり、短時間で演算処理を行うことが極めて困難であった。また、2次元POC方式は、分析分解能(距離の異なる物体を区別して測距できる画面上での大きさ)の点で、SAD方式より劣っていた。
 そこで、最近では、2次元POC方式の演算量を軽減した1次元POC方式も提案されている(例えば、特許文献1参照)。この1次元POC方式では、基準画像と参照画像からハニング窓を用いて切出したそれぞれの部分画像について、1次元フーリエ変換を施した後、その二つのフーリエ画像データを合成し、振幅成分を正規化した後に、1次元逆フーリエ変換を施すことにより位相限定相関係数を求めている。つまり、2次元フーリエ変換の代わりに、1次元フーリエ変換を行なうことにより、演算量の削減を図っている。
 しかしながら、従来の1次元POC方式においても、演算量の削減が図られているとはいっても十分ではなく、視差演算に要する演算量は(SAD方式に比べれば)膨大であり、短時間で演算処理を行なうことは容易ではなかった。また、この1次元POC方式は、分析分解能(距離の異なる物体を区別して測距できる画面上での大きさ)の点で、SAD方式よりもかなり劣っていた。
特開2008-123141号公報
 本発明は、上記背景の下でなされたものである。本発明の目的は、視差演算の精度や分析分解能を向上することができ、かつ、視差演算に要する演算量が少なく処理の高速化が可能なステレオ画像処理装置を提供することにある。
 本発明の一の態様は、ステレオ画像処理装置である。この装置は、同一の対象物を撮影した基準画像と参照画像から視差に起因する画像のずれを算出するステレオ画像処理装置であって、基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像について画像マッチング処理を施し、画像マッチング処理の結果に基づいて基準画像と参照画像のピクセル単位のずれを検出する画像マッチング部と、ピクセル単位のずれが最小となる同一の対象物の部分画像について、基準画像の画素値の並びを反転させた値をフィルタ係数とする逆位相フィルタを用いたフィルタリング処理を、参照画像の画素値に施す逆位相フィルタ処理部と、逆位相フィルタを用いたフィルタリング処理の出力値が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれを検出するピーク位置検出部と、を備えている。
 本発明の別の態様は、ステレオ画像処理装置である。この装置は、同一の対象物を撮影した基準画像と参照画像から視差に起因する画像のずれを算出するステレオ画像処理装置であって、基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像について画像マッチング処理を施し、画像マッチング処理の結果に基づいて基準画像と参照画像のピクセル単位のずれを検出する画像マッチング部と、ピクセル単位のずれが最小となる同一の対象物の部分画像について、基準画像と参照画像の相互相関の値を算出する相互相関算出部と、相互相関の値が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれを検出するピーク位置検出部と、を備えている。
 本発明の別の態様は、ステレオ画像処理装置である。この装置は、同一の対象物を撮影した基準画像f(x,y)と参照画像g(x,y)から視差に起因する画像のずれを算出するステレオ画像処理装置であって、基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像f(x,y),g(x,y)(但し、xa-wh/2≦x≦xa+wh/2,ya-wv/2≦y≦ya+wv/2)について画像マッチング処理を施し、画像マッチング処理の結果に基づいて基準画像と参照画像の基線長方向であるx方向のピクセル単位のずれnを検出する画像マッチング部と、ピクセル単位のずれnが最小となる位置において窓関数w(m)を用いて切出した一次元の部分画像f’(m)=f(xa+m,ya)×w(m),g’(m)=g(xa+n+m,ya)(但し、J≦m≦K)について、
Figure JPOXMLDOC01-appb-M000001
の演算を行なう演算部と、演算の出力値z(m)が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれδを検出するピーク位置検出部とを備えている。
 本発明の別の態様は、ステレオ画像処理方法である。この方法は、同一の対象物を撮影した基準画像と参照画像から視差に起因する画像のずれを算出するステレオ画像処理方法であって、基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像について画像マッチング処理を施し、画像マッチング処理の結果に基づいて基準画像と参照画像のピクセル単位のずれを検出することと、ピクセル単位のずれが最小となる同一の対象物の部分画像について、基準画像の画素値の並びを反転させた値をフィルタ係数とする逆位相フィルタを用いたフィルタリング処理を、参照画像の画素値に施すことと、逆位相フィルタを用いたフィルタリング処理の出力値が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれを検出することと、を含んでいる。
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。
図1は、本実施の形態におけるステレオ画像処理装置の構成を示すブロック図 図2は、ピクセルレベルのマッチングの説明図 図3は、サブピクセルレベルのマッチングの説明図 図4は、逆位相フィルタを用いたフィルタリング処理の説明図 図5は、sinc関数を用いてピーク位置を検出する処理の説明図 図6は、二次曲線近似を用いてピーク位置を検出する処理の説明図 図7は、本実施の形態におけるステレオ画像処理装置の動作を説明するためのフロー図 図8は、本実施の形態におけるサブピクセル演算(逆位相フィルタを用いたピーク位置の検出)の流れを説明するためのフロー図 図9は、他の実施の形態におけるステレオ画像処理装置の構成を示すブロック図 図10は、相互相関の値を算出する処理の説明図 図11は、測距精度を比較した結果を示す図 図12は、演算時間を比較した結果を示す図 図13は、更に他の実施の形態におけるステレオ画像処理装置の構成を示すブロック図
 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は発明を限定するものではない。
 本発明のステレオ画像処理装置は、同一の対象物を撮影した基準画像と参照画像から視差に起因する画像のずれを算出するステレオ画像処理装置であって、基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像について画像マッチング処理を施し、画像マッチング処理の結果に基づいて基準画像と参照画像のピクセル単位のずれを検出する画像マッチング部と、ピクセル単位のずれが最小となる同一の対象物の部分画像について、基準画像の画素値の並びを反転させた値をフィルタ係数とする逆位相フィルタを用いたフィルタリング処理を、参照画像の画素値に施す逆位相フィルタ処理部と、逆位相フィルタを用いたフィルタリング処理の出力値が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれを検出するピーク位置検出部と、を備えた構成を有している。
 この構成により、基準画像と参照画像のピクセル単位のずれが画像マッチング処理によって検出され、そのピクセル単位のずれが最も小さい部分画像について逆位相フィルタを用いたフィルタリング処理が行われる。そして、そのフィルタリング処理の結果からピーク位置が検出され、基準画像と参照画像のサブピクセル単位のずれが算出される。これにより、視差演算の精度や分析分解能を向上することができる。しかも、この場合、ピクセル単位のずれを検出する画像マッチング処理は演算量が少なく、また、逆位相フィルタ処理を用いたフィルタリング処理も、ピクセル単位のずれが最も小さい部分画像についてのみ行なえばよいので、演算量が少なくて済む。したがって、視差演算の高速化が可能である。
 本発明は、ピクセル単位のずれが最小となる同一の対象物の部分画像について逆位相フィルタを用いたフィルタリング処理を行なう逆位相フィルタ処理部を設けることにより、視差演算の精度や分析分解能を向上することができ、かつ、視差演算に要する演算量が少なく処理の高速化が可能である。
(実施の形態1)
 以下、本発明の実施の形態のステレオ画像処理装置について、図面を用いて説明する。本実施の形態では、車載カメラを用いて前方の車両までの距離を測定する装置や、車内カメラを用いてドライバーの顔の向きを推定する装置等に用いられるステレオ画像処理装置の場合を例示する。
 まず、本実施の形態のステレオ画像処理装置の構成を、図面を参照して説明する。図1は、本実施の形態のステレオ画像処理装置のブロック図である。図1に示すように、ステレオ画像処理装置1は、ステレオカメラ2で撮影されたステレオ画像(基準画像と参照画像)が入力されるステレオ画像入力部3と、前処理としてステレオ画像(基準画像と参照画像)のレンズの歪補正、及び、光軸を平行にするための平行化補正部4を備えている。具体的には、予め用意しておいたキャリブレーションデータを用いて、実空間で直線の物体がカメラ画像においても直線に映る画像にすると共に、カメラ光軸方向の距離が一定の物体がカメラ画像中のどの位置に撮像されても同じ大きさのカメラ画像にするための座標変換処理と、カメラの光軸を平行にして無限遠点にある物体が二つのカメラ映像中の同じ位置になるように画像のシフトを行う。なお、ここでは座標変換処理後に画像のシフトを用いて平行化補正を行う方法を用いて例示したが、本発明の範囲はこれに限定されるものではなく、光軸の平行化をレンズ歪の補正と同時に座標変換を用いて行うなど、レンズの歪補正と二つのカメラの位置関係を補正することができれば、いかなる手法を用いて補正処理を行ってもよい。
 なお、前処理として平行化補正のみを行う例を説明したが、通常の画像処理で行うコントラストの補正や、ラプラシアンフィルタを用いたエッジ強調などの前処理の種類を限定するものではなく、当該前処理を施さなくてもよい。
 これにより、コントラストの補正を行った場合には基準画像と参照画像の輝度変化のダイナミックレンジを合わせることができるので、より正確な画像マッチングを行うことが可能になる。また、ラプラシアンフィルタを用いたエッジ強調を行えば、カメラの個体差から生じる直流成分、すなわち基準画像と参照画像の明るさの差を除外することができ、より正確な画像マッチングが可能になる。
 また、一般に、画像の座標変換、及び、シフトを行なう際に、ピクセル単位である整数値の位置でサンプリングされた輝度情報を実数値の位置の輝度情報に変換することになるが、この処理を行なうには線形補間を用いたインターリニア法や、変換対象位置の周辺の輝度情報を用いるバイキュービック法などを用いればよい。なお、ここでは座標変換の手法にインターリニア法、および、バイキュービック法を例に挙げたが、本発明の範囲はこれに限定されるものではなく、座標変換を行なう処理であればいかなる手法を用いて変換処理を行ってもよい。
 このステレオ画像処理装置1は、ピクセルレベルのマッチングを行うための構成として、第1画像切出し部5と第1マッチング部6を備えている。図2は、ピクセルレベルのマッチングの一例を示す図である。第1画像切出し部5は、基準画像と参照画像のそれぞれから矩形窓を用いてデータの切出しを行う。図2では、所定の窓サイズ(縦サイズ:wvピクセル、横サイズ:whピクセル)の矩形窓を使って基準画像と参照画像からデータの切出しが行われる様子が示されている。この場合、図2に示すように、基準画像からは、所定の位置(xa,ya)を中心とした矩形窓を使ってデータの切出しが行われる。一方、参照画像からは、矩形窓の位置(xa,ya)を1ピクセルずつ横方向(x方向)にずらしていきながらデータの切出しが行われる。そして、第1マッチング部6は、基準画像と参照画像から切出されたデータのSAD値を、下記の式(1)に基づいて算出し、このSAD値が最小となるような画像のずれnを求める。
Figure JPOXMLDOC01-appb-M000002
 このように、第1マッチング部6は、基準画像と参照画像から切出した部分画像(基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像)について画像マッチング処理を施し、その画像マッチングの結果に基づいて基準画像と参照画像のピクセル単位のずれを検出する機能を備えている。したがって、この第1マッチング部6は、本発明の画像マッチング手段に相当する。
 なお、ここでは、SAD方式を利用してピクセルレベルのマッチングを行う場合を例示したが、本発明の範囲はこれに限定されるものではなく、演算量の少ない方式であれば他のいかなる方式(例えば、SSD(Sum of Squared Differences)方式など)を用いてピクセルレベルのマッチングを行ってもよい。
 また、このステレオ画像処理装置1は、サブピクセルレベルのマッチングを行うための構成として、第2画像切出し部7と第2マッチング部8を備えている。図3は、サブピクセルレベルのマッチングの一例を示す図である。第2画像切出し部7は、基準画像と参照画像のそれぞれから窓関数を用いてデータの切出しを行う。図3では、下記の式(2)のようなハニング窓の窓関数w(m)を使って基準画像と参照画像からデータの切出しが行われる様子が示されている。この場合、図3に示すように、基準画像からは、所定の位置(xa,ya)を中心としたハニング窓を使ってデータの切出しが行われ、参照画像からは、上述のピクセルレベルのマッチングで一致した位置(xa+n,ya)を中心としたハニング窓を使ってデータの切出しが行われる。なお、図1においては省略したが、ピクセルレベルのマッチングで一致した位置(xa+n、ya)に係る情報「n」は、第1マッチング部6から第2画像切出し部7へ伝送される。
Figure JPOXMLDOC01-appb-M000003
 なお、ここでは、窓サイズが「縦サイズ:1ピクセル、横サイズ:K-Jピクセル」である場合を例示したが、本発明の範囲はこれに限定されるものではない。また、ここでは、ハニング窓の窓関数を用いる例を説明したが、これ以外の窓関数を使用してもよい。
 第2マッチング部8は、ピクセルレベルのマッチングで一致した位置の部分画像に逆位相フィルタを用いたフィルタリング処理を施す逆位相フィルタ部9と、逆位相フィルタ部9の出力値からピーク位置を検出するピーク検出部10を備えている。
 ここで、逆位相フィルタ部9で行われる処理の内容について、図面を参照して詳しく説明する。図4は、逆位相フィルタを用いたフィルタリング処理の一例を示す説明図である。図4の例では、逆位相フィルタに「0,0,1,2,3,4,5,0,0」という入力信号x(m)が入力された場合が示されている。この場合、逆位相フィルタh(k)のタップ長(第2画像切出し部7で部分画像を切出すために用いる窓関数w(m)の長さ:K-J)は「5」に設定されており、5つのデータ(基準画像の輝度値)の並びを反転させた値「5,4,3,2,1」がフィルタ係数として用いられる。そして、入力信号の位置kを中心とした前後5つのデータ「k-2,k-1,k,k+1,k+2」がこの逆位相フィルタにかけられ、その総和が出力信号z(m)として算出される。なお、この逆位相フィルタ部9では、ピクセルレベルのマッチングで検出されたずれn(ピクセル単位のずれ)の大きさに応じて、逆位相フィルタのタップ長が設定される。例えば、ピクセル単位のずれnが小さい場合には、それに応じて逆位相フィルタのタップ長も短く設定される。
 図4を参照して具体的に説明すると、例えば、t=0のときには、t=0を中心とする前後5つのデータ「0,0,1,2,3」が、逆位相フィルタ「5,4,3,2,1」によってフィルタリング処理され、出力値「26(=0×1+0×2+1×3+2×4+3×5)」が算出される。ここで、“t”は、図4において参照画像からハニング窓によって切出された部分画像における座標点を示す。また、t=1のときには、t=1を中心とする前後5つのデータ「0,1,2,3,4」が、逆位相フィルタ「5,4,3,2,1」によってフィルタリング処理され、出力値「40(=0×1+1×2+2×3+3×4+4×5)」が算出される。同様にして、t=2のときには出力値「55」が算出され、t=3のときには出力値「40」が算出され、t=4のときには出力値「26」が算出される。このように、逆位相フィルタを用いたフィルタリング処理は、その出力が対称(図4では、t=2を中心として左右対称)で、中心にピークが存在する信号になるという特徴を有している。また、この逆位相フィルタは、いわゆるFIRフィルタの一種に相当するものであり、したがって、線形推移不変システム(入力信号にずれがある場合には、出力信号にも入力信号と同じだけのずれが生じるシステム)であるという特徴を有している。つまり、入力がサンプリング間隔より小さい間隔でずれている場合においても、出力にも入力と同じだけのずれが生じることになり、出力には、ずれた信号のサンプリング位置における値を得ることになる。
 この逆位相フィルタ部9では、基準画像の輝度値の並びを反転させた値f’(-k)が逆位相フィルタのフィルタ係数h(k)として使用され、参照画像の輝度値g’(m)が入力信号x(m)となる。したがって、この逆位相フィルタ部9で行われる出力信号z(m)は、下記の式(3)によって算出されるともいえる。
Figure JPOXMLDOC01-appb-M000004
 このように、逆位相フィルタ部9は、ピクセルレベルのマッチングで一致した位置の部分画像(ピクセル単位のずれが最小となる同一の対象物の部分画像)について、基準画像の輝度値(画素値)の並びを反転させた値をフィルタ係数とする逆位相フィルタを用いたフィルタリング処理を、参照画像の輝度値(画素値)に施すように構成されている。したがって、この逆位相フィルタ部9が、本発明の逆位相フィルタ手段に相当する。
 この逆位相フィルタの出力は線形推移不変システムの出力であるので、レンズの歪補正の誤差、CCDなどのイメージセンサに起因するゲインノイズ等の誤差、窓掛けによる画像切り出しの演算精度の誤差を除けば、理論的には真のずれを表現していることになる。よって、ピクセル単位で離散化されている逆位相フィルタの出力をサンプリング定理に従い、ピクセル間の数値を補間することにより、サブピクセルレベルでの真のピーク位置を求めることが可能になる。
 つぎに、ピーク検出部10で行われる処理の内容について、図面を参照して詳しく説明する。このピーク検出部10は、sinc関数を用いて逆位相フィルタ部9からの出力値がサブピクセルレベルで最大となるピーク位置を検出する。
 sinc関数はsin(πx)/πxで定義され関数であり、離散化されたサンプリングデータを元の連続データに戻す場合に用いられる関数である。つまり、サンプリングされた離散データとsinc関数の畳み込み演算を行うことにより、元の連続データを完全に復元可能であることがサンプリング定理により証明されている。よって、離散化されている逆位相フィルタの出力を、sinc関数を用いてピクセル間のデータを補間してピーク位置を求めれば、サブピクセルレベルでも理論的に真のピーク位置を導出することが可能である。
 図5は、sinc関数を用いたピーク位置の検出の一例を示す説明図である。図5に示すように、sinc関数を用いてピーク位置を検出するときには、2分探索によってピーク位置が検出される。
 例えば、まず、逆位相フィルタ部9からの出力値z(m)が最大となる位置m=0を位置Aとする。つぎに、その最大位置Aから左右に1ピクセルずつずれた位置の出力値z(+1),z(-1)を比較し、大きいほうの位置m=1を位置Bとする。そして、位置Aと位置Bの中間位置を位置Cとし、サンプリング定理に基づいて、sinc関数を用いた下記の式(4)から位置Cの値を算出する。そして、その位置Cを新しい位置Bとして、必要な精度分だけ上記の処理を繰り返し、最も値が大きい位置をピーク位置δとする。つまり、必要なサブピクセル精度が1/2ピクセルであれば、上記処理を1回行えばよく、1/4ピクセル精度であれば2回、1/8ピクセルであれば3回と必要なサブピクセル精度に応じて繰り返し回数を決定する。
Figure JPOXMLDOC01-appb-M000005
 なお、ここではsinc関数を用いてピーク位置を導出する手法の1例として2分探索による手法を説明したが、勾配法等の手法を用いて、ピーク位置を探索することも可能であり、本発明の範囲はこれに限定されるものではなく、sinc関数を用いてピクセル間の値を補間してピーク位置を求める方式であれば他のいかなる方式を用いてもよい。
 また、このピーク検出部10は、二次曲線近似を用いて逆位相フィルタ部9からの出力値が最大となるピーク位置を検出し、演算処理を削減してもよい。二次曲線近似を用いたピーク位置抽出とは、離散化された1次元データのピーク位置を、離散化の間隔以下の精度でピーク位置を求める際に、二次曲線をフィッテングし、その極大値の位置から離散化の間隔以下の精度でピーク位置を算出する方法である。
 図6は、二次曲線近似を用いたピーク位置の検出の一例を示す説明図である。図6に示すように、この場合には、逆位相フィルタ部9からの出力値の最大値z(0)とその左右の出力値z(+1),z(-1)の3点を通る二次曲線の最大値(極大値)をピーク位置δとする。この場合、ピーク位置δは、下記の式(5)によって算出される。
Figure JPOXMLDOC01-appb-M000006
 このように、ピーク検出部10は、逆位相フィルタを用いたフィルタリング処理の出力値が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれを検出する機能を備えている。したがって、このピーク検出部10が、本発明のピーク位置検出手段に相当する。
 また、ステレオ画像処理装置1は、逆位相フィルタを用いたフィルタリング処理の結果に基づいて、ピクセルレベルの画像マッチング処理におけるマッチングエラーを検出するマッチングエラー検出部11を備えている。例えば、このマッチングエラー検出部11は、逆位相フィルタ部9からの出力が対称(左右対称)でない場合に、ピクセルレベルのマッチングが誤マッチングであると判定する。あるいは、このマッチングエラー検出部11は、SAD値の極小位置と逆位相フィルタ部9からの出力のピーク位置がピクセルレベルで異なる場合(逆位相フィルタ部9からの出力にピークが現れない場合など)に、マッチングエラーであると判定する。これにより、バックマッチング処理を行う必要がなくなり、その分の演算量が軽減される。
 以上のように構成されたステレオ画像処理装置1について、図面を用いてその動作を説明する。
 図7は、本実施の形態のステレオ画像処理装置1を用いて視差演算を行うときの流れを示すフロー図である。図7に示すように、ステレオ画像から視差に起因する画像のずれを算出するときには、まず、入力されたステレオ画像(基準画像と参照画像)に平行化補正を施し(S1)、それぞれの画像おける分析基準位置(xa,xy)を決定する(S2)。つぎに、矩形窓を使って基準画像の切出しを行った後(S3)、参照画像におけるサーチ位置(矩形窓のずらし量)を決定し(S4)、矩形窓を使って参照画像の切出しを行って(S5)、そのサーチ位置におけるSAD値を計算する(S6)。参照画像のサーチ位置を1ピクセルずつ横にずらしていって、全サーチ範囲のSAD値の計算が完了すると(S7)、その中でSAD値が最小となる位置(画像のずれn)を求める(S8)。そして、ピクセルレベルのマッチングで一致した位置nでサブピクセルレベルのマッチングの演算が行われる(S9)。このような処理(S2~S9)が、すべての測距領域について視差演算が完了するまで繰り返される(S10)。
 図8は、サブピクセルレベルのマッチングの演算(サブピクセル演算)の流れを示すフロー図である。図8に示すように、サブピクセル演算が開始されると、まず、ハニング窓の窓関数を用いて基準画像の切出しを行い(S11)、基準画像の輝度値の並びを反転させた値f’(-k)を逆位相フィルタのフィルタ係数h(k)とする(S12)。そして、ハニング窓の窓関数を用いて参照画像の切出しを行い(S13)、逆位相フィルタを用いたフィルタリング処理を行う(S14)。その後、逆位相フィルタのを用いたフィルタリング処理の出力値からピーク位置を検出して、基準画像と参照画像のサブピクセルレベルの画像のずれδを求める(S15)。
 このような本実施の形態のステレオ画像処理装置1によれば、ピクセル単位のずれが最小となる同一の対象物の部分画像について逆位相フィルタを用いたフィルタリング処理を行なう逆位相フィルタ部9を設けることにより、視差演算の精度や分析分解能を向上することができ、かつ、視差演算に要する演算量が少なく処理の高速化が可能である。
 すなわち、本実施の形態のステレオ画像処理装置1は、同一の対象物を撮影した基準画像と参照画像から視差に起因する画像のずれを算出するステレオ画像処理装置1であって、基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像について画像マッチング処理を施し、画像マッチング処理の結果に基づいて基準画像と参照画像のピクセル単位のずれを検出する第1マッチング部6と、ピクセル単位のずれが最小となる同一の対象物の部分画像について、基準画像の画素値の並びを反転させた値をフィルタ係数とする逆位相フィルタを用いたフィルタリング処理を、参照画像の画素値に施す逆位相フィルタ部9と、逆位相フィルタを用いたフィルタリング処理の出力値が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれを検出するピーク検出部10と、を備えた構成を有している。
 この構成により、基準画像と参照画像のピクセル単位のずれが画像マッチング処理によって検出され、そのピクセル単位のずれが最も小さい部分画像について逆位相フィルタを用いたフィルタリング処理が行われる。そして、そのフィルタリング処理の結果からピーク位置が検出され、基準画像と参照画像のサブピクセル単位のずれが算出される。これにより、視差演算の精度や分析分解能を向上することができる。しかも、この場合、ピクセル単位のずれを検出する画像マッチング処理は演算量が少なく、また、逆位相フィルタ処理を用いたフィルタリング処理も、ピクセル単位のずれが最も小さい部分画像について逆位相フィルタの演算のみ行なえばよいので、FFT、逆FFTの演算を必要としないため演算量が少なくて済む。したがって、視差演算の高速化が可能である。
 また、本実施の形態のステレオ画像処理装置1では、ピーク検出部10は、sinc関数を用いてピーク位置を検出する構成を有している。
 この構成により、sinc関数を用いてピーク位置を検出し、基準画像と参照画像のサブピクセル単位のずれを算出することができる。sinc関数を用いてピーク位置を検出する処理は必要なサブピクセル精度の分だけ2分探索により演算を行えばよいので演算量を必要十分に最適化でき視差演算の高速化が可能である。この場合、サンプリング定理を利用することにより、ピーク位置を高い精度で簡単に求めることができる。
 また、本実施の形態のステレオ画像処理装置1では、ピーク検出部10は、二次曲線近似を用いてピーク位置を検出する構成を有している。
 この構成により、二次曲線近似を用いてピーク位置を検出し、基準画像と参照画像のサブピクセル単位のずれを算出することができる。二次曲線近似を用いてピーク位置を検出する処理はさらに演算量が少ないので、視差演算のさらなる高速化が可能である。
 また、本実施の形態のステレオ画像処理装置1は、逆位相フィルタを用いたフィルタリング処理の結果に基づいて、画像マッチング処理におけるマッチングエラーを検出するマッチングエラー検出部11を備えた構成を有している。
 この構成により、逆位相フィルタを用いたフィルタリング処理の結果に基づいて、画像マッチング処理におけるマッチングエラーを検出することができる。例えば、逆位相フィルタを用いたフィルタリング処理の出力が左右対称でない場合、ピクセルレベルの画像マッチング処理に誤マッチングがあったと判定される(マッチングエラーとして検出される)。
 また、本実施の形態のステレオ画像処理装置1では、逆位相フィルタ部9は、画像マッチングによって検出されたピクセル単位のずれの大きさに応じて、逆位相フィルタのタップ長を決定する構成を有している。
 この構成により、画像マッチングによって検出されたピクセル単位のずれの大きさに応じて、逆位相フィルタのタップ長(逆位相フィルタを用いたフィルタリング処理を施すときに部分画像を切り出すために用いる窓関数w(m)の長さ:K-J)が適切に設定される。例えば、遠くの物体(対象物)は小さな画像として写るので、ピクセル単位のずれも小さくなり、逆位相フィルタのタップ長(窓関数の長さ)もそれに応じて短く設定される。
 以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。
 例えば、以上の説明では、サブピクセルレベルのマッチングにおいて逆位相フィルタを用いた演算を行う場合について例示したが、本発明の範囲はこれに限定されるものではない。例えば、他の実施の形態として、サブピクセルレベルのマッチングにおいて相互相関を用いた演算を行ってもよい。
(実施の形態2)
 図9は、他の実施の形態のステレオ画像処理装置1の構成を示すブロック図である。図9に示すように、この実施の形態の第2マッチング部8では、逆位相フィルタ部9の代わりに、相互相関部12が設けられている。この相互相関部12は、ピクセルレベルのマッチングで一致した位置の部分画像から相互相関の値を算出する機能を備えている。したがって、この相互相関部12が、本発明の相互相関算出手段に相当する。
 図10相互相関の値を算出する処理の説明図である。図10に示すように、この場合も、式(2)のハニング窓の窓関数w(m)を使って、基準画像から、所定の位置(xa,ya)を中心としたデータの切出しが行われ、参照画像から、ピクセルレベルのマッチングで一致した位置(xa+n,ya)を中心としたデータの切出しが行われる。そして、この相互相関部12では、下記の式(6)を用いて、切出された基準画像と参照画像の相互相関の値が算出される。
Figure JPOXMLDOC01-appb-M000007
 式(6)において、iを-kで置き換えるとΣの中の式が式(3)と等価になり、Σの加算の範囲は-Jから-Kになる。JとKは0を中心とした窓関数の範囲を示すものであり、JとKは符号が逆であるため、基本的には加算の順番が数式上ことなるだけであり、式(3)と同等の出力を得るえることができる。つまり、逆位相フィルタによる計算を相互相関の計算に置き換えて計算することも可能である。よって、相互相関を用いた場合でも、逆位相フィルタを用いた方式と同様の高精度なサブピクセルレベルのマッチングが可能である。
 従来より相互相関を用いて画像のマッチング、および、サブピクセルの推定を行なう手法があるが、本発明では、ピクセルレベルで切出し位置を決定し、この切出したデータのみを用いて相互相関を計算するので、従来からある相互相関を用いた方式とは全く別のものである。
 このような他の実施の形態のステレオ画像処理装置1によれば、ピクセル単位のずれが最小となる同一の対象物の部分画像について相互相関の値を算出する相互相関部12を設けることにより、視差演算の精度や分析分解能を向上することができ、かつ、視差演算に要する演算量が少なく処理の高速化が可能である。
 すなわち、この実施の形態のステレオ画像処理装置1は、同一の対象物を撮影した基準画像と参照画像から視差に起因する画像のずれを算出するステレオ画像処理装置1であって、基準画像と参照画像にそれぞれ含まれる同一の対象物の部分画像について画像マッチング処理を施し、画像マッチング処理の結果に基づいて基準画像と参照画像のピクセル単位のずれを検出する第1マッチング部6と、ピクセル単位のずれが最小となる同一の対象物の部分画像について、基準画像と参照画像の相互相関の値を算出する相互相関部12と、相互相関の値が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれを検出するピーク検出部10と、を備えた構成を有している。
 この構成により、基準画像と参照画像のピクセル単位のずれが画像マッチング処理によって検出され、そのピクセル単位のずれが最も小さい部分画像について相互相関の値が算出される。そして、その相互相関の値のピーク位置が検出され、基準画像と参照画像のサブピクセル単位のずれが算出される。これにより、視差演算の精度や分析分解能を向上することができる。しかも、この場合、ピクセル単位のずれを検出する画像マッチング処理は演算量が少なく、また、相互相関の値を算出する処理も、ピクセル単位のずれが最も小さい部分画像についてのみ行なえばよいので、演算量が少なくて済む。したがって、視差演算の高速化が可能である。
 図11は、SAD方式、一次元POC方式、及び本願発明に係るステレオ画像処理方法(以下、本方式)を用いた場合の測距精度を比較した結果を示す。測距精度は、測距対象までの距離と測距結果の標準偏差との特性で示される。
 図11が示す結果は、測距対象が車両であって、ステレオカメラからの距離を10m間隔で変化させて撮影されたステレオ画像に基づいて算出されている。評価指標は、レンズ歪みの補正やステレオカメラの平行化補正の誤差要因を排除するために、測距結果の標準偏差を用いている。図11において、測距結果の標準偏差が小さい方式が、精度の高い方式である。ここで、標準偏差とは、測距結果のばらつきである。
 測距結果の標準偏差は、撮影されたステレオ画像に含まれる画素のうち、目視により抽出された車両領域内の画素をサンプル点として算出されている。本方式のサブピクセル推定は最も演算量が少なくなる2次曲線近似を用いた。図11が示すように、POC方式(◇印で示した)と本方式(□印で示した)は同等の特性を示し、SAD方式(△印で示した)より標準偏差が小さくなっている。
 図12は、SAD方式、一次元POC方式、及び本方式を用いた場合における視差計算の演算時間を比較した結果を示す。
 図12が示す結果は、ハーフVGA画像(640x240)の1フレームをパソコン(33.33GHz)で演算するのに必要な時間である。本方式はSAD方式に比べて約1.25倍の演算時間が必要だが、一次元POC方式は本方式に比べて30倍以上の演算時間が必要である。
 以上のように、図11および図12の結果から、本願発明に係るステレオ画像処理方法は、SAD方式と同等の演算時間であり、かつ、一次元POC方式と同等の測距精度を実現できるという効果を奏する。
(実施の形態3)
 図13は、本発明の実施の形態3に係るステレオ画像処理装置1300の構成を示す。ステレオ画像処理装置1300は、ステレオ画像取得部1301と、画像マッチング部1302と、フィルタ部1303と、ピーク位置検出部1304と、から構成される。
 ここで、ステレオ画像取得部1301は、図1におけるステレオカメラ2及びステレオ画像入力部3に、画像マッチング部1302は、図1における第1画像切出し部5及び第1マッチング部6に、フィルタ部1303は、図1における第2画像切出し部7及び逆位相フィルタ部9に、ピーク検出部1304は図1におけるピーク検出部10に相当する。
 以下、図13を用いて、本実施の形態3に係るステレオ画像処理装置1300の機能を説明する。なお、後述する画像は、本実施の形態においては画像横方向をX軸、画像縦方向をY軸として、1画素が1座標点であるとして、以下、説明する。
 なお、以下の説明は、ステレオ画像の基準画像における所定の基準点について説明するが、ステレオ画像処理装置1300の処理内容としては、基準画像の画面全体の縦および横の全画素について、以下の処理を行う。
 ステレオ画像取得部1301は、2つ以上の撮像系すなわちカメラを備え、カメラによって同一対象物を撮像した基準画像及び参照画像を取得する。
 画像マッチング部1302は、ステレオ画像取得部1301から取得した基準画像及び参照画像に基づいて、ステレオ画像の画像マッチング処理を行い、基準画像と参照画像との座標軸上における“ずれ量n”を算出する。
 以下、ずれ量nをピクセル単位のずれと定義する。また、本実施の形態におけるステレオ画像処理装置の導出目的である、基準画像と参照画像との視差を、以下、サブピクセル単位のずれと定義する。
 フィルタ部1303は、ステレオ画像取得部1301から基準画像及び参照画像を取得し、画像マッチング部1302から“ずれ量n”を取得する。
 フィルタ部1303は、ステレオ画像取得部1301から取得された基準画像から部分画像を抽出し、基準画像に係る部分画像からフィルタ係数を算出する。また、フィルタ部1303は、ステレオ画像取得部1301から取得された参照画像から部分画像を抽出し、参照画像に係る部分画像から入力信号を生成する。そして、フィルタ部1303は、入力信号及びフィルタ係数に基づいて、出力信号を生成する。
 ピーク位置検出部1304は、フィルタ部1303から取得された出力信号から、ピーク値を検出する。ここで、ピーク値とは、出力信号における最大値をいう。
 なお、本実施の形態においては、ステレオ画像入力部1301によって取得されるステレオ画像を、レンズ歪補正、光軸並行化補正を施していないが、実施の形態1と同様に施してもよい。
 以下、各構成要素の機能について、詳細に説明する。
 ステレオ画像取得部1301は、複数の撮像系を有する。ステレオ画像取得部1301は、対象物を第1の撮像系と第2の撮像系とで撮像することにより、対象物を第1の撮像系を用いて撮像した基準画像と、対象物を第2の撮像系を用いて撮像した参照画像とを取得する。なお、公知技術に基づいて構成されるため、詳細な説明を省略する。
 画像マッチング部1302は、ステレオ画像取得部1301から取得した基準画像及び参照画像に基づいて、ステレオ画像の画像マッチング処理を行い、基準画像と参照画像との“ずれ量n”を算出する。
 具体的な処理内容は、実施の形態1における第1画像切出し部5及び第1マッチング部6の処理内容と同じであるため、図2を用いて説明する。
 図2は、所定の窓サイズ(縦サイズ:wvピクセル、横サイズ:whピクセル)の矩形窓を用いて、基準画像及び参照画像から部分画像の切出しが行われる様子を示す。基準画像において、所定の基準点(xa,ya)を中心とした矩形窓の窓関数を用いて、基準画像から部分画像の切出しが行われ、基準画像から矩形窓の窓関数によって切出された部分画像が抽出される。
 なお、所定の基準点は、基準座標である。また、矩形窓の窓関数は所定の基準点を中心としている旨を説明したが、中心ではなくとも、中心付近に所定の基準点を含んでいればよい。
 一方、参照画像において、参照画像における所定の基準点(xa,ya)から基線長方向である横方向に、予め定められた検索範囲において、1ピクセルずつ画像をずらしていきながらデータの切出しが行われ、参照画像から矩形窓の窓関数によって切出された部分画像が抽出される。
 画像マッチング部1302は、基準画像から矩形窓の窓関数によって切出された部分画像と、参照画像から窓関数によって切出された部分画像とのSAD値(画素輝度の相違度)を、実施の形態1と同様の式(1)に基づいて算出し、SAD値が最小となる画像のずれ“n”(単位:ピクセル)を導出する。
 以下、参照画像において、座標点(xa+n、ya)を対応点と定義する。
 このように、画像マッチング部1302は、基準画像から矩形窓の窓関数によって切出された部分画像と、参照画像から矩形窓の窓関数によって切出された部分画像とについてステレオ画像の画像マッチング処理を施し、画像マッチング処理の結果に基づいて、基準画像と参照画像のピクセル単位のずれである“ずれ量n”を導出する。
 なお、SAD方式によりピクセルレベルのマッチングを行う場合を示したが、本発明の範囲はこれに限定されるものではない。すなわち、演算量の少ない方式であれば他のいかなる方式、例えば、SSD(Sum of Squared Differences)方式等を用いてもよい。
 フィルタ部1303は、ステレオ画像取得部1301から基準画像および参照画像を取得し、画像マッチング部1302から“ずれ量n”および所定の基準点(xa、ya)を基準としてステレオ画像の画像マッチング処理を行った旨を示す情報を取得する。
 フィルタ部1303は、ステレオ画像取得部1301から取得された基準画像から部分画像を抽出し、基準画像に係る部分画像からフィルタ係数を算出する。また、フィルタ部1303は、ステレオ画像取得部1301から取得された参照画像から部分画像を抽出し、参照画像に係る部分画像から入力信号を生成する。そして、フィルタ部1303は、入力信号及びフィルタ係数に基づいて、出力信号を生成する。
 具体的な処理内容は、実施の形態1における第2画像切出し部7及び逆位相フィルタ部9の処理内容と同じであるため、図3を用いて説明する。
 図3は、実施の形態1に示す式(2)によって表現されるハニング窓の窓関数w(m)を用いて、基準画像及び参照画像から部分画像の切出しが行われる様子を示す。
 なお、窓関数はハニング窓以外にも、ハミング窓、ブラックマン窓、カイザー窓などがあるが、本実施の形態においては、ハニング窓として説明する。窓関数は、画像から切出した部分画像の特性のうち、例えば、周波数パワー特性、位相特性、切り出し端連続性(図3における窓関数は、図2における窓関数よりも連続的に変化している)などのうち、重要視するパラメータによって選択が異なる。位相特性を重要視する場合には、カイザー窓が適しているが、演算がかなり複雑である。一方、演算量削減の観点からはハニング窓が適している。
 本実施の形態においては、画像マッチング部1302において用いられる窓関数(以下、第1の窓関数)が、計算回数が多いサーチ処理の中で利用されるために演算量が少ないことが重要である一方で、精度はピクセルレベルでよいので単純にデータを切り出すだけの矩形窓を用いるとして説明している。
 一方、フィルタ部1303において用いられる窓関数(以下、第2の窓関数)は、サブピクセルを正確に求めるために、画像から切り出した部分画像に、窓関数による切り出しのノイズが含まれないことが重要である。
 従って、第2の窓関数は、切り出しのノイズが少ないことが重要視されるために、第1の窓関数に対して、両端における変化が連続的である窓関数、すなわち1周期の両端が略ゼロである窓関数を用いることが望ましい。これにより、切出し後の信号は切出し端の部分において信号の連続性が保たれ、逆位相フィルタの特性から切出しによるノイズ成分を除去することができる。
 第1の窓関数と第2の窓関数とを周波数特性において比較すると、第1の窓関数の方が、第2の窓関数よりもメインローブ(main-lobe)の幅が狭く、サイドローブ(side-lobe)の振幅が大きい。
 図3において、ハニング窓の窓関数を切出すためのハニング窓の窓関数w(m)は、縦軸は1ピクセル(画素)、横軸は“K-J”ピクセルであり、“m”は座標点“J”以上、座標点“K”以下の整数である。
 また、図3において、g’(m)(m:“J”以上“K”以下の整数)は、ハニング窓の窓関数によって参照画像から切出された部分画像の輝度値を示す。
 図3における基準画像において、所定の基準点(xa,ya)を中心としたハニング窓の窓関数を用いて部分画像の切出しが行われる。すなわち、基準画像からハニング窓の窓関数を用いて切出された部分画像は、座標(xa、ya)を中心に、縦軸サイズが1ピクセル、横軸サイズが“K-J”ピクセルである。
 一方、図13における参照画像において、画像マッチング部1302においてステレオ画像の画像マッチングでSAD値等のピクセルレベルにおけるマッチング度合いを示す評価値が最も有効な位置となる、(xa+n、ya)を中心としたハニング窓の窓関数を用いて部分画像の切出しが行われる。
 すなわち、参照画像からハニング窓の窓関数を用いて切出された部分画像は、座標(xa+n、ya)を中心に、縦軸サイズが1ピクセル、横軸サイズが“K-J”ピクセルである。
 なお、ここでは、窓サイズが“縦サイズ:1ピクセル、横サイズ:K-Jピクセル”である場合を例示したが、本発明の範囲はこれに限定されるものではない。
 例えば、縦サイズが3ピクセルである場合には、縦1ピクセルずつに上述した処理を行い、縦3ピクセルについての結果を平均して出力してもよい。
 更に、例えば、縦サイズが複数のピクセルを含む場合、縦1ピクセルずるに上述した処理を行い、縦サイズに含まれる複数のピクセルごとの結果を重み付けして平均化してもよい。なお、重み付け係数は、2次元POCのように、窓関数によって決定されてもよい。
 また、ここでは、ハニング窓の窓関数を用いる例を説明したが、これ以外の窓関数を使用してもよい。
 フィルタ部1303は、基準画像からハニング窓の窓関数を用いて切出された部分画像における各座標の輝度値の順列を反転させた値をフィルタ係数とするフィルタを逆位相フィルタとして導出する。そして、フィルタ部1303は、逆位相フィルタを用いて、参照画像からハニング窓の窓関数を用いて切出された部分画像における各座標の輝度値をフィルタリング処理する。
 図4は、逆位相フィルタを用いたフィルタリング処理の一例を示す説明図である。以下、フィルタ部1303において行われるフィルタリング処理について、図4を参照して説明する。
 図4は、ハニング窓の窓関数によって参照画像から切出された部分画像の輝度値の順列である入力信号x(m)が、フィルタリング処理される様子について示す。ここで、図3におけるハニング窓の窓関数w(m)の基線長方向の長さ“K-J”を例えば“5”画素として、入力信号x(m)を例えば「1、2、3、4、5」として、以下説明する。
 なお、入力信号x(m)の各数字は各座標における輝度を示し、部分画像以外の座標点における輝度は「0」とする。また、入力信号x(m)の順列が「1、2、3、4、5」である場合であって、基準画像と参照画像から切り出した部分画像にサブピクセルレベルにおけるずれがない場合、画像マッチング部1302において画像マッチングがされているため、基準画像からハニング窓の窓関数を用いて切出した部分画像の輝度値の順列も同様に「1、2、3、4、5」である。
 ここで、図3におけるハニング窓の窓関数w(m)の基線長方向の長さが“5”画素である場合、逆位相フィルタh(k)のタップ長は基準画像から窓関数により切り出した部分画像の画素数と同じになるため“5”である。すなわち、逆位相フィルタのタップ長は、窓関数の窓長と同じである。
 なお、基準画像から切出した部分画像のサイズと、参照画像から切出した部分画像のサイズとが等しいため、入力信号x(m)におけるデータ個数と逆位相フィルタh(k)のタップ長とは等しい。
 逆位相フィルタのフィルタ係数は、基準画像からハニング窓の窓関数を用いて切出した部分画像の輝度値の順列「1、2、3、4、5」を反転させた「5、4、3、2、1」なる順列である。
 フィルタ部1303は、逆位相フィルタ「5、4、3、2、1」を用いて、参照画像に係る入力信号「1、2、3、4、5」にフィルタリング処理を施す。フィルタリング処理について、具体的に説明する。
 フィルタリング処理は、入力信号「1、2、3、4、5」の各座標点を“k”とした場合に、座標点“k”を中心とした横軸方向の前後5個のデータ「k-2、k-1、k、k+1、k+2」に対して逆位相フィルタが施され、その総和が出力信号z(m)(m:1~5の数字)として算出される。
 ここで、部分画像外の座標点の輝度が“0”である場合には、部分領域外の座標点の輝度を考慮すると、入力信号x(m)の前後の輝度値は、「0、0、1、2、3、4、5、0、0」となる。図4における“t”(t:0~4)を参照画像からハニング窓によって切出された部分画像における座標点とした場合に、フィルタリング処理の結果は次のようになる。
 t=0の場合は、参照画像において、t=0を中心とする横軸方向の前後5個の輝度値「0、0、1、2、3」が、逆位相フィルタ「5、4、3、2、1」によってフィルタリング処理され、出力値は26(=0×1+0×2+1×3+2×4+3×5)が算出される。
 t=1の場合は、参照画像において、t=1を中心とする横軸方向の前後5個の輝度値「0、1、2、3、4」が、逆位相フィルタ「5、4、3、2、1」によってフィルタリング処理され、出力値は40(=0×1+1×2+2×3+3×4+4×5)が算出される。
 同様にして、t=2の場合には出力値55が算出され、t=3の場合には出力値40が算出され、t=4の場合には出力値26が算出される。
 従って、出力信号z(m)として「26、40、55、40、26」の信号列が出力される。
 このように、逆位相フィルタを用いたフィルタリング処理は、その出力が対称(図4では、t=2を中心として左右対称)になるとともに、中央にピークが存在するという特徴を有する。また、逆位相フィルタは、いわゆるFIRフィルタの一種に相当するものであり、線形推移不変システムであるという特徴を有する。ここで、線形推移不変システムとは、入力信号にずれがある場合には、出力信号にも入力信号と同じだけのずれが生じるシステムである。
 つまり、ここでは、基準画像と参照画像から切り出した部分画像にサブピクセルレベルでのずれがない場合を例に説明したが、入力信号x(m)がサンプリング間隔より小さい間隔でずれている場合においても、出力にも入力と同じだけのずれが生じることになり、出力には、ずれた信号のサンプリング位置における値を得ることになる。
 なお、フィルタ部1303は、基準画像から切出した部分画像の輝度値の並びを反転させた値f’(-k)が逆位相フィルタのフィルタ係数h(k)として用いられ、参照画像から切出した部分画像の輝度値g’(m)が入力信号x(m)である。従って、フィルタ部1303において算出される出力信号z(m)は、実施の形態1と同様の式(3)によって算出されるともいえる。
 なお、フィルタ部1303は、ピクセルレベルのマッチングで検出されたピクセル単位のずれnの大きさに応じて、逆位相フィルタのタップ長が設定される。例えば、ピクセル単位のずれnが小さい場合には、それに応じて逆位相フィルタのタップ長も短く設定される。
 すなわち、実空間において同じサイズの対象物の視差を求める場合、対象物が遠くに存在する場合は近くに存在する場合よりも視差は小さく、ピクセル単位のずれ“n”も小さくなる。それと同時に、画像中に撮影されるサイズも小さくなるため、“n”に対して適応的に部分画像のサイズを変更することにより、逆位相フィルタのタップ長も適応的な変更が可能になる。これにより、対象物のサイズに合わせた視差計算、すなわち、等距離の物体が撮影されている部分画像のみを用いて視差を計算するという適応的な処理を施すことができる。
 フィルタ部1303の出力は、線形推移不変システムの出力であるので、レンズの歪補正の誤差、CCDなどのイメージセンサに起因するゲインノイズ等の誤差、窓掛けによる画像切り出しの演算精度の誤差を除けば、理論的には真のずれを表現していることになる。よって、ピクセル単位で離散化されている逆位相フィルタの出力をサンプリング定理に従い、ピクセル間の数値を補間することにより、サブピクセルレベルでの真のピーク位置を求めることが可能になる。
 以上が、フィルタ部1303に関する説明である。
 ピーク検出部1304は、ピーク位置検出部1304は、フィルタ部1303から取得された出力信号から、ピーク値を検出する。
 具体的な処理内容は、実施の形態1におけるピーク検出部10の処理内容と同じであるため、図5を用いて説明する。
 ピーク検出部1304は、sinc関数を用いてフィルタ部1303からの出力値がサブピクセルレベルで最大となるピーク位置を検出する。
 sinc関数はsin(πx)/πxで定義され関数であり、離散化されたサンプリングデータを元の連続データに戻す場合に用いられる関数である。つまり、サンプリングされた離散データとsinc関数の畳み込み演算を行うことにより、元の連続データを完全に復元可能であることがサンプリング定理により証明されている。
 従って、離散化されている逆位相フィルタの出力を、sinc関数を用いてピクセル間のデータを補間してピーク位置を求めれば、サブピクセルレベルでも理論的に真のピーク位置を導出することができる。
 図5は、sinc関数を用いたピーク位置の検出の一例を示す説明図である。図5に示すように、sinc関数を用いてピーク位置を検出するときには、2分探索によってピーク位置が検出される。
 例えば、フィルタ部1303から出力される出力値z(m)が最大となる位置m=0を位置Aとする。そして、その最大位置Aから左右に1ピクセルずつずれた位置の出力値z(+1),z(-1)を比較し、大きいほうの位置m=1を位置Bとする。
 位置Aと位置Bの中間位置を位置Cとし、サンプリング定理に基づいて、sinc関数を用いた実施の形態1と同様の式(4)から位置Cの値を算出する。そして、その位置Cを新しい位置Bとして、必要な精度分だけ上記の処理を繰り返し、最も値が大きい位置をピーク位置δとする。
 すなわち、必要なサブピクセル精度が1/2ピクセルであれば、上記処理を1回行えばよく、1/4ピクセル精度であれば2回、1/8ピクセルであれば3回と必要なサブピクセル精度に応じて繰り返し回数を決定する。
 なお、ここではsinc関数を用いてピーク位置を導出する手法の1例として2分探索による手法を説明したが、勾配法等の手法を用いて、ピーク位置を探索することも可能であり、本発明の範囲はこれに限定されるものではなく、sinc関数を用いてピクセル間の値を補間してピーク位置を求める方式であれば他のいかなる方式を用いてもよい。
 また、ピーク検出部1304は、二次曲線近似を用いてフィルタ部1303からの出力値が最大となるピーク位置を検出し、演算処理を削減してもよい。二次曲線近似を用いたピーク位置抽出とは、離散化された1次元データのピーク位置を、離散化の間隔以下の精度でピーク位置を求める際に、二次曲線をフィッテングし、その極大値の位置から離散化の間隔以下の精度でピーク位置を算出する方法である。
 図6は、二次曲線近似を用いたピーク位置の検出の一例を示す説明図である。図6に示すように、この場合には、フィルタ部1303からの出力値の最大値z(0)とその左右の出力値z(+1),z(-1)の3点を通る二次曲線の最大値(極大値)をピーク位置δとする。この場合、ピーク位置δは、実施の形態1と同様の式(5)によって算出される。
 このように、ピーク検出部1304は、逆位相フィルタを用いたフィルタリング処理の出力値が最大となるピーク位置を検出し、ピーク位置に基づいて基準画像と参照画像のサブピクセル単位のずれを検出する機能を備えている。
 以上のように、本実施の形態のステレオ画像処理装置1300によれば、ピクセル単位のずれが最小となる同一の対象物の部分画像について逆位相フィルタを用いたフィルタリング処理を行なうことにより、視差演算の精度や分析分解能を向上することができ、かつ、視差演算に要する演算量が少なく処理の高速化が実現できる。
 この構成により、基準画像と参照画像のピクセル単位のずれが画像マッチング処理によって検出され、そのピクセル単位のずれが最も小さい部分画像について逆位相フィルタを用いたフィルタリング処理が行われる。そして、そのフィルタリング処理の結果からピーク位置が検出され、基準画像と参照画像のサブピクセル単位のずれが算出される。これにより、視差演算の精度や分析分解能を向上することができる。しかも、この場合、ピクセル単位のずれを検出する画像マッチング処理は演算量が少なく、また、逆位相フィルタ処理を用いたフィルタリング処理も、ピクセル単位のずれが最も小さい部分画像について逆位相フィルタの演算のみ行なえばよいので、FFT、逆FFTの演算を必要としないため演算量が少なくて済む。したがって、視差演算の高速化が可能である。
 以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。
 以上のように、本発明にかかるステレオ画像処理装置は、視差演算の精度や分析分解能を向上することができ、かつ、視差演算に要する演算量が少なく処理の高速化が可能であるという効果を有し、車載カメラを用いて前方の車両までの距離を測定する装置や、車内カメラを用いてドライバーの顔の向きを推定する装置等に用いられ、有用である。
 1 ステレオ画像処理装置
 2 ステレオカメラ
 3 ステレオ画像入力部
 4 平行化補正部
 5 第1画像切出し部
 6 第1マッチング部
 7 第2画像切出し部
 8 第2マッチング部
 9 逆位相フィルタ部
 10 ピーク検出部
 11 マッチングエラー検出部
 12 相互相関部

Claims (10)

  1.  第1の撮像系および第2の撮像系を有し、対象物を前記第1の撮像系を用いて撮像した基準画像と前記対象物を前記第2の撮像系を用いて撮像した参照画像とを取得するステレオ画像取得部と、
     前記ステレオ画像から前記基準画像及び前記参照画像を取得し、第1の窓関数を用いて、前記基準画像から所定の基準点を中心とする第1の部分画像を抽出し、前記参照画像において予め定められた範囲から前記第1の部分画像に対する画像輝度の相違度が最小となる第2の部分画像の中心点である対応点を導出する画像マッチング部と、
     前記ステレオ画像から前記基準画像及び前記参照画像を取得し、第2の窓関数を用いて、前記基準画像から前記所定の基準点を中心とする第3の部分画像を抽出し、前記参照画像から前記対応点を中心とする第4の部分画像を抽出し、前記第3の部分画像に含まれる各座標点の輝度値の順列を座標に対して反転させた値と、前記第4の部分画像に含まれる各座標点の輝度値とに基づいて出力信号列を生成するフィルタ部と、
     取得された前記出力信号列から出力値が最大となる出力信号を検出し、前記検出された出力信号の前記出力信号列における位置に基づいて、前記基準画像と前記参照画像との視差を決定するピーク位置検出部と、
     を備えるステレオ画像処理装置。
  2.  前記第2の窓関数は、前記第1の窓関数に対して、1周期の両端が連続的に変化する窓関数である請求項1に記載のステレオ画像処理装置。
  3.  前記フィルタ部は、前記第3の部分画像に含まれる各座標点の輝度値の順列を座標に対して反転させた値と、前記第4の部分画像に含まれる各座標点の輝度値とを、前記第3の部分画像および前記第4の部分画像における相対的な座標位置ごとに積算することで出力信号列を生成する請求項1に記載のステレオ画像処理装置。
  4.  前記ピーク位置検出部は、sinc関数を用いて前記ピーク位置を検出する、請求項1に記載のステレオ画像処理装置。
  5.  前記ピーク位置検出部は、二次曲線近似を用いて前記ピーク位置を検出する、請求項1に記載のステレオ画像処理装置。
  6.  前記フィルタ部が生成する出力信号列を取得し、前記出力信号列に含まれる出力信号の値に基づいて、前記画像マッチング部において導出された前記第2の部分画像の中心点を前記対応点として採用しないことを決定するマッチングエラー検出部を、更に備えた請求項1に記載のステレオ画像処理装置。
  7.  前記画像マッチング部において導出された前記対応点と、前記基準点との座標軸上におけるズレ量に基づいて、前記第2の窓関数の窓長が決まる請求項1に記載のステレオ画像処理装置。
  8.  ステレオ画像取得部は、第1の撮像系および第2の撮像系を有し、対象物を前記第1の撮像系を用いて撮像した基準画像と前記対象物を前記第2の撮像系を用いて撮像した参照画像とを取得し、
     画像マッチング部は、前記ステレオ画像から前記基準画像及び前記参照画像を取得し、第1の窓関数を用いて、前記基準画像から所定の基準点を中心とする第1の部分画像を抽出し、前記参照画像において予め定められた範囲から前記第1の部分画像に対する画像輝度の相違度が最小となる第2の部分画像の中心点である対応点を導出し、
     フィルタ部は、前記ステレオ画像から前記基準画像及び前記参照画像を取得し、第2の窓関数を用いて、前記基準画像から前記所定の基準点を中心とする第3の部分画像を抽出し、前記参照画像から前記対応点を中心とする第4の部分画像を抽出し、前記第3の部分画像に含まれる各座標点の輝度値の順列を座標に対して反転させた値と、前記第4の部分画像に含まれる各座標点の輝度値とに基づいて出力信号列を生成し、
     ピーク位置検出部は、取得された前記出力信号列から出力値が最大となる出力信号を検出し、前記検出された出力信号の前記出力信号列における位置に基づいて、前記基準画像と前記参照画像との視差を決定するステレオ画像処理方法。
  9.  同一の対象物を撮影した基準画像と参照画像から視差に起因する画像のずれを算出するステレオ画像処理装置であって、
     前記基準画像と前記参照画像にそれぞれ含まれる前記同一の対象物の部分画像について画像マッチング処理を施し、前記画像マッチング処理の結果に基づいて前記基準画像と前記参照画像のピクセル単位のずれを検出する画像マッチング部と、
     前記ピクセル単位のずれが最小となる前記同一の対象物の部分画像について、前記基準画像と前記参照画像の相互相関の値を算出する相互相関算出部と、
     前記相互相関の値が最大となるピーク位置を検出し、前記ピーク位置に基づいて前記基準画像と前記参照画像のサブピクセル単位のずれを検出するピーク位置検出部と、
    を備えたことを特徴とするステレオ画像処理装置。
  10.  同一の対象物を撮影した基準画像f(x,y)と参照画像g(x,y)から視差に起因する画像のずれを算出するステレオ画像処理装置であって、
     前記基準画像と前記参照画像にそれぞれ含まれる同一の対象物の部分画像f(x,y),g(x,y)(但し、xa-wh/2≦x≦xa+wh/2,ya-wv/2≦y≦ya+wv/2)について画像マッチング処理を施し、前記画像マッチング処理の結果に基づいて前記基準画像と前記参照画像の基線長方向であるx方向のピクセル単位のずれnを検出する画像マッチング部と、
     前記ピクセル単位のずれnが最小となる位置において窓関数w(m)を用いて切出した一次元の部分画像f’(m)=f(xa+m,ya)×w(m),g’(m)=g(xa+n+m,ya)(但し、J≦m≦K)について、
    の演算を行なう演算部と、
     前記演算の出力値z(m)が最大となるピーク位置を検出し、前記ピーク位置に基づいて前記基準画像と前記参照画像のサブピクセル単位のずれδを検出するピーク位置検出部と、
    を備えたことを特徴とするステレオ画像処理装置。
PCT/JP2010/001537 2009-03-31 2010-03-05 ステレオ画像処理装置およびステレオ画像処理方法 Ceased WO2010113389A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080015571.2A CN102369550B (zh) 2009-03-31 2010-03-05 立体图像处理器和立体图像处理方法
US13/258,987 US8922623B2 (en) 2009-03-31 2010-03-05 Stereo image processor and stereo image processing method
JP2011506979A JP5404773B2 (ja) 2009-03-31 2010-03-05 ステレオ画像処理装置およびステレオ画像処理方法
EP10758175.3A EP2416293A4 (en) 2009-03-31 2010-03-05 Stereo image processor and stereo image processing method
US14/541,647 US9185382B2 (en) 2009-03-31 2014-11-14 Stereo image processor and stereo image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-086687 2009-03-31
JP2009086687 2009-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/258,987 A-371-Of-International US8922623B2 (en) 2009-03-31 2010-03-05 Stereo image processor and stereo image processing method
US14/541,647 Division US9185382B2 (en) 2009-03-31 2014-11-14 Stereo image processor and stereo image processing method

Publications (1)

Publication Number Publication Date
WO2010113389A1 true WO2010113389A1 (ja) 2010-10-07

Family

ID=42827708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001537 Ceased WO2010113389A1 (ja) 2009-03-31 2010-03-05 ステレオ画像処理装置およびステレオ画像処理方法

Country Status (5)

Country Link
US (2) US8922623B2 (ja)
EP (1) EP2416293A4 (ja)
JP (2) JP5404773B2 (ja)
CN (2) CN103593851B (ja)
WO (1) WO2010113389A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001982A1 (ja) * 2010-06-30 2012-01-05 パナソニック株式会社 ステレオ画像処理装置およびステレオ画像処理方法
WO2012060093A1 (ja) * 2010-11-05 2012-05-10 パナソニック株式会社 ステレオ画像処理装置及びステレオ画像処理方法
WO2012086173A1 (ja) * 2010-12-20 2012-06-28 パナソニック株式会社 ステレオ画像処理装置及びステレオ画像処理方法
WO2012172761A1 (ja) * 2011-06-17 2012-12-20 パナソニック株式会社 ステレオ画像処理装置およびステレオ画像処理方法
JP2016118830A (ja) * 2014-12-18 2016-06-30 株式会社リコー 視差値導出装置、機器制御システム、移動体、ロボット、視差値導出方法、およびプログラム
US10198830B2 (en) 2013-12-26 2019-02-05 Ricoh Company, Ltd. Parallax operation system, information processing apparatus, information processing method, and recording medium
CN111553850A (zh) * 2020-03-30 2020-08-18 深圳一清创新科技有限公司 基于双目立体视觉的三维信息获取方法和装置
JP2021076495A (ja) * 2019-11-11 2021-05-20 キヤノン株式会社 視差検出装置、撮像装置、視差検出方法、及びプログラム
KR102319237B1 (ko) * 2021-03-02 2021-10-29 인하대학교 산학협력단 핸드크래프트 비용 기반의 다중 뷰 스테레오 정합 방법

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817073B2 (en) * 2011-08-12 2014-08-26 Himax Technologies Limited System and method of processing 3D stereoscopic image
US8989481B2 (en) * 2012-02-13 2015-03-24 Himax Technologies Limited Stereo matching device and method for determining concave block and convex block
EP2677733A3 (en) * 2012-06-18 2015-12-09 Sony Mobile Communications AB Array camera imaging system and method
JP6222898B2 (ja) 2012-07-03 2017-11-01 キヤノン株式会社 3次元計測装置及びロボット装置
KR101907852B1 (ko) * 2012-09-06 2018-10-15 현대모비스 주식회사 스테레오 영상 처리 방법 및 장치
WO2014049919A1 (ja) * 2012-09-27 2014-04-03 パナソニック株式会社 ステレオ画像処理装置およびステレオ画像処理方法
US9292927B2 (en) * 2012-12-27 2016-03-22 Intel Corporation Adaptive support windows for stereoscopic image correlation
US9794543B2 (en) * 2015-03-02 2017-10-17 Ricoh Company, Ltd. Information processing apparatus, image capturing apparatus, control system applicable to moveable apparatus, information processing method, and storage medium of program of method
JP6503221B2 (ja) 2015-05-13 2019-04-17 オリンパス株式会社 3次元情報取得装置、及び、3次元情報取得方法
WO2016208200A1 (ja) * 2015-06-24 2016-12-29 京セラ株式会社 画像処理装置、ステレオカメラ装置、車両、及び画像処理方法
CN105592367A (zh) * 2015-12-23 2016-05-18 青岛海信电器股份有限公司 一种图像显示参数调节方法和系统
CN105704472A (zh) * 2016-01-13 2016-06-22 青岛海信电器股份有限公司 一种识别儿童用户的电视控制方法和系统
AU2016291545B2 (en) * 2016-02-05 2018-12-13 Guang Dong Oppo Mobile Telecommunications Corp., Ltd. Charge method, adapter and mobile terminal
CN105681861A (zh) * 2016-03-04 2016-06-15 青岛海信电器股份有限公司 一种终端显示字幕的调节方法和系统
EP3276784B1 (en) * 2016-07-26 2020-06-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
WO2018073889A1 (ja) * 2016-10-18 2018-04-26 三菱電機株式会社 ピーク位置算出装置及び表示装置
CN107084680B (zh) * 2017-04-14 2019-04-09 浙江工业大学 一种基于机器单目视觉的目标深度测量方法
JP6985872B2 (ja) * 2017-09-22 2021-12-22 株式会社デンソー 車両の周辺監視装置と周辺監視方法
CN110274573B (zh) * 2018-03-16 2021-10-26 赛灵思电子科技(北京)有限公司 双目测距方法、装置、设备、存储介质及计算设备
KR102833795B1 (ko) * 2018-08-23 2025-07-15 삼성전자주식회사 컨볼루션 뉴럴 네트워크를 처리하는 방법 및 장치
US11836971B2 (en) * 2018-08-23 2023-12-05 Samsung Electronics Co., Ltd. Method and device with convolution neural network processing
CN109712063B (zh) * 2018-12-12 2023-03-14 中国航空工业集团公司西安航空计算技术研究所 一种图形处理器平面剪裁电路
US11257375B2 (en) * 2018-12-31 2022-02-22 Ficosa Adas, S.L.U. Method and system for detecting objects in a vehicle blind spot
CN115797439A (zh) * 2022-11-11 2023-03-14 中国消防救援学院 基于双目视觉的火焰空间定位系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089402A (ja) * 2006-10-02 2008-04-17 Konica Minolta Holdings Inc 情報処理システム、プログラムおよび情報処理方法
JP2008123141A (ja) 2006-11-09 2008-05-29 Yamatake Corp 対応点探索方法および3次元位置計測方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952359A (ja) * 1982-09-02 1984-03-26 Hitachi Medical Corp 画像間演算時の画像歪み自動補正装置
US5577181A (en) * 1995-06-07 1996-11-19 E-Systems, Inc. Method for autonomous determination of tie points in imagery
CN1269077C (zh) * 2001-07-24 2006-08-09 精工爱普生株式会社 图象处理器以及图象处理方法
JP4069855B2 (ja) * 2003-11-27 2008-04-02 ソニー株式会社 画像処理装置及び方法
CN100545866C (zh) * 2005-03-11 2009-09-30 索尼株式会社 图象处理方法、图象处理装置、程序和记录介质
JP4177826B2 (ja) * 2005-03-23 2008-11-05 株式会社東芝 画像処理装置および画像処理方法
JP2008099828A (ja) 2006-10-18 2008-05-01 Aruze Corp ゲーム装置及びその制御方法
KR100834637B1 (ko) * 2006-11-27 2008-06-02 삼성전자주식회사 스테레오 카메라 장치에서 이미지들을 정렬하기 위한 장치및 방법
CN101567097B (zh) * 2009-06-05 2011-05-04 上海大学 基于双行视差时空图的公交车客流自动计数方法及其系统
CN101571492B (zh) * 2009-06-11 2012-01-25 长安大学 基于三维重构的炸药流散性测量方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089402A (ja) * 2006-10-02 2008-04-17 Konica Minolta Holdings Inc 情報処理システム、プログラムおよび情報処理方法
JP2008123141A (ja) 2006-11-09 2008-05-29 Yamatake Corp 対応点探索方法および3次元位置計測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416293A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8903135B2 (en) 2010-06-30 2014-12-02 Panasonic Corporation Stereo image processing apparatus and method of processing stereo image
JP5810314B2 (ja) * 2010-06-30 2015-11-11 パナソニックIpマネジメント株式会社 ステレオ画像処理装置およびステレオ画像処理方法
WO2012001982A1 (ja) * 2010-06-30 2012-01-05 パナソニック株式会社 ステレオ画像処理装置およびステレオ画像処理方法
WO2012060093A1 (ja) * 2010-11-05 2012-05-10 パナソニック株式会社 ステレオ画像処理装置及びステレオ画像処理方法
EP2636993A4 (en) * 2010-11-05 2016-01-20 Panasonic Ip Man Co Ltd STEREOSCOPIC IMAGE PROCESSING DEVICE AND STEREOSCOPIC IMAGE PROCESSING METHOD
CN103189715B (zh) * 2010-11-05 2015-12-02 松下知识产权经营株式会社 立体图像处理装置及立体图像处理方法
CN103189715A (zh) * 2010-11-05 2013-07-03 松下电器产业株式会社 立体图像处理装置及立体图像处理方法
US9148653B2 (en) 2010-11-05 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Stereo image processing device and stereo image processing method
EP2657901A4 (en) * 2010-12-20 2014-02-26 Panasonic Corp STEREO IMAGE PROCESSING DEVICE AND STEREO IMAGE PROCESSING METHOD
US9055284B2 (en) 2010-12-20 2015-06-09 Panasonic Intellectual Property Management Co., Ltd. Stereo image processing apparatus and stereo image processing method
CN103080973A (zh) * 2010-12-20 2013-05-01 松下电器产业株式会社 立体图像处理装置及立体图像处理方法
WO2012086173A1 (ja) * 2010-12-20 2012-06-28 パナソニック株式会社 ステレオ画像処理装置及びステレオ画像処理方法
JP5891415B2 (ja) * 2010-12-20 2016-03-23 パナソニックIpマネジメント株式会社 ステレオ画像処理装置
EP2711891A4 (en) * 2011-06-17 2014-11-26 Panasonic Corp STEREO IMAGE PROCESSING DEVICE AND STEREO IMAGE PROCESSING METHOD
WO2012172761A1 (ja) * 2011-06-17 2012-12-20 パナソニック株式会社 ステレオ画像処理装置およびステレオ画像処理方法
US9275463B2 (en) 2011-06-17 2016-03-01 Panasonic Intellectual Property Management Co., Ltd. Stereo image processing device and stereo image processing method
JPWO2012172761A1 (ja) * 2011-06-17 2015-02-23 パナソニック株式会社 ステレオ画像処理装置およびステレオ画像処理方法
US10198830B2 (en) 2013-12-26 2019-02-05 Ricoh Company, Ltd. Parallax operation system, information processing apparatus, information processing method, and recording medium
JP2016118830A (ja) * 2014-12-18 2016-06-30 株式会社リコー 視差値導出装置、機器制御システム、移動体、ロボット、視差値導出方法、およびプログラム
JP2021076495A (ja) * 2019-11-11 2021-05-20 キヤノン株式会社 視差検出装置、撮像装置、視差検出方法、及びプログラム
JP7341033B2 (ja) 2019-11-11 2023-09-08 キヤノン株式会社 視差検出装置、撮像装置、視差検出方法、及びプログラム
US11909942B2 (en) 2019-11-11 2024-02-20 Canon Kabushiki Kaisha Parallax detecting apparatus, image capturing apparatus, parallax detecting method, and storage medium
CN111553850A (zh) * 2020-03-30 2020-08-18 深圳一清创新科技有限公司 基于双目立体视觉的三维信息获取方法和装置
CN111553850B (zh) * 2020-03-30 2023-10-24 深圳一清创新科技有限公司 基于双目立体视觉的三维信息获取方法和装置
KR102319237B1 (ko) * 2021-03-02 2021-10-29 인하대학교 산학협력단 핸드크래프트 비용 기반의 다중 뷰 스테레오 정합 방법

Also Published As

Publication number Publication date
US20150071498A1 (en) 2015-03-12
JP5567179B2 (ja) 2014-08-06
CN103593851A (zh) 2014-02-19
US9185382B2 (en) 2015-11-10
JP5404773B2 (ja) 2014-02-05
JP2013239170A (ja) 2013-11-28
US8922623B2 (en) 2014-12-30
EP2416293A4 (en) 2017-02-01
CN103593851B (zh) 2017-11-28
US20120026295A1 (en) 2012-02-02
CN102369550A (zh) 2012-03-07
EP2416293A1 (en) 2012-02-08
CN102369550B (zh) 2014-01-01
JPWO2010113389A1 (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5567179B2 (ja) ステレオ画像処理装置およびステレオ画像処理方法
US8355564B2 (en) Corresponding point searching method and three-dimensional position measuring method
JP5810314B2 (ja) ステレオ画像処理装置およびステレオ画像処理方法
US10009594B2 (en) Stereo image processing device and stereo image processing method
WO2010079685A1 (ja) 動きベクトル生成装置および動きベクトル生成方法
JP5891415B2 (ja) ステレオ画像処理装置
JP5874039B2 (ja) ステレオ画像処理装置及びステレオ画像処理方法
US7606424B2 (en) Combined forward and reverse correlation
JP4941565B2 (ja) 対応点探索装置および対応点探索方法
JP4862816B2 (ja) 画像対応点探索装置ならびにそれを用いる測距装置および画像動き検出装置
JP5163164B2 (ja) 3次元計測装置
Kumar et al. Dual tree fractional quaternion wavelet transform for disparity estimation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015571.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011506979

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13258987

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010758175

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE