WO2010081973A2 - Novel approach for non-accessible large-span roofing - Google Patents
Novel approach for non-accessible large-span roofing Download PDFInfo
- Publication number
- WO2010081973A2 WO2010081973A2 PCT/FR2010/000042 FR2010000042W WO2010081973A2 WO 2010081973 A2 WO2010081973 A2 WO 2010081973A2 FR 2010000042 W FR2010000042 W FR 2010000042W WO 2010081973 A2 WO2010081973 A2 WO 2010081973A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arc
- case
- structure according
- segments
- arc structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B7/00—Roofs; Roof construction with regard to insulation
- E04B7/08—Vaulted roofs
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/38—Arched girders or portal frames
- E04C3/40—Arched girders or portal frames of metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/32—Arched structures; Vaulted structures; Folded structures
Definitions
- this invention claims to extract from a new static frame (on one side) and adapted manipulation of its constituents (on the other) unexploited potentials so far in terms of economy and reliability
- this invention addresses a new approach to the execution of arc-shaped structures, an approach that fits in the logic modulation and prefabrication, thus breaking with the disadvantage that makes this type of structures - by their geometrical complexities - more difficult in terms of money and time of execution.
- This frame is the union of two segments of arcs, comparable to the bow of the hunter (in the sense that they are exposed before the application of the external charges to the initial tension of their strings), and thus generating a reservoir of compensatory moments, comparable to those counterweights of construction cranes give rise to their vertical elements (towers); but unlike the latter (which are fixed in intensity) these moments are reactive and adapt, positively, in intensity as in sense of application, to the different states of the charges, throughout the life of the structure.
- It's two segments are two joints each; they are united through their common articulation at the top of the structure (the third that we will call it "floating"); the remaining two rely on the foundations (see static aspects, figure 1)
- this state of tension is the indicator that tells us that the arc is still functioning as such, and in our case this has been ensured by two measures: The first is introduced through the initial tension to the strings to create the compensatory moment (mentioned above) but also so that the strings gain in statue of tension whose release (which puts the stability of the structure in question) will be in no case tolerable.
- the second is to play with the interruption of the continuity between the two segments (at their point of meeting) so that the application of external loads pushes the floating joint upwards thus accentuating the initial tension of the strings; by moving them further away from their point of relaxation.
- the segment is the main repetitive module; it is the expression of a continuous function which reflects the state of the external charges (for simplicity our example has adopted a second-degree function); it is of equilateral triangular section variable (maximum in the center and minimum in the level of its articulations); it is in the form of a lattice of which the three supporting components (the longitudinal elements located at each of its three angles) are of closed section (tubular)
- yl which inclines the vertical plane of an angle ⁇ and which defines the two upper load cells.
- y2 which lies in a vertical plane and defines the lower bearing element so as to cover with the other two the requirement of an equilateral section 165 (see geometrical aspects;
- Frames made of pre-enginnered components obviously do not make a novelty, yet one can imagine that those in lattice, and of this type 185 of geometry and variable sections, and surplus made from components rectilinear, can make one; especially when one adds on all this the logic of modulation and prefabrication.
- segment 190 (as one of two identical components of the three-jointed arc) which in turn is divided into three sub-modules of two different types; central, 12 m in length (the industry standard in the manufacture of tubes); and peripheral on each side of a complementary length (according to the recommended production range, which can go up to 12 m each, thus totaling a length 195 maximum of 36 m for each segment, and which can cover (with the conjunction of two) a span of about 65 m.
- ylH The geometric equation of the horizontal projection of yl 225 ylV: The geometric equation of the vertical projection of yl
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Joining Of Building Structures In Genera (AREA)
- Prostheses (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
Description
Approche nouvelle aux toitures non accessibles de grandes travées New approach to non-accessible roofs of large spans
Description Domaine techniqueDescription Technical Area
Appartenant à la technologie de procédé dans les structure en forme d'arc, cette invention prétend extraire d'un nouvel cadre statique (d'un coté) et d'une manipulation adaptée de ses constituants (de l'autre) des potentiels non exploités jusqu'à maintenant sur le plan de l'économie et de la fiabilité Dans son autre volet, cette invention s'adresse à une nouvelle approche à l'exécution des structures en forme d'arc, une approche qui s'inscrit dans la logique de la modulation et la préfabrication, rompant ainsi avec l'inconvénient qui rend ce type de structures - de par leurs complexités géométriques - plus couteaux en terme d'argent et de délais d'exécution.Belonging to the process technology in the arc-shaped structure, this invention claims to extract from a new static frame (on one side) and adapted manipulation of its constituents (on the other) unexploited potentials so far in terms of economy and reliability In its other part, this invention addresses a new approach to the execution of arc-shaped structures, an approach that fits in the logic modulation and prefabrication, thus breaking with the disadvantage that makes this type of structures - by their geometrical complexities - more difficult in terms of money and time of execution.
Technique antérieure Introduction II convient de rappeler que le fonctionnement d'un arc (caractérisé par la transformation des moments en forces axiales) s'appuie sur restreindre le déplacement de chacune de ses deux extrémités, totalement (contre les fondations), ou partiellement (par des câbles) dont l'élongation donne lieu à des moments d'ordre secondaire. Étant d'ordre secondaire, l'intérêt porté à ce type de moments restait, lui aussi et jusqu'à maintenant, de tel ; peu d'études quantitatives ou d'appréciations qualitatives du rôle, que ces moment sont susceptible de jouer a été entrepris (en tout cas pas dans le sens de cette invention)PRIOR ART Introduction It should be remembered that the operation of an arc (characterized by the transformation of moments into axial forces) relies on restricting the displacement of each of its two ends, totally (against the foundations), or partially (by cables) whose elongation gives rise to secondary moments. Being of secondary order, interest in such moments remained, so far, as well; few quantitative studies or qualitative assessments of the role that these moments are likely to play have been undertaken (at least not in the sense of this invention)
Exposé de l'invention A - L'aspect conceptuel (A - 1 Le cadre statique ; A - 2 L'interactivité) A - 1 Le cadre statique (l'arc à trois articulations) :Presentation of the invention A - The conceptual aspect (A - 1 The static frame A - 2 The interactivity) A - 1 The static frame (the three - jointed arc):
Ce terme « trois articulations » nous renvoie automatiquement à sa source « les portiques à trois articulations » où l'acheminement de charges se fait à travers les moments de fléchissement ; pourtant l'exposé va démontrer que dans notre cadre nous restons bien dans la logique d'arc d'acheminer les charges à travers les force axiales.This term "three joints" automatically refers to its source "three-hinged gantries" where the transport of loads is through the moments of sag; yet the presentation will demonstrate that in our we remain well in the logic of arc to convey the charges through the axial forces.
Ce cadre est l'union de deux segments d'arcs, comparable à l'arc du chasseur (dans le sens où ils sont exposés avant l'application des charges extérieures à la tension initiale de leurs cordes), et engendrant ainsi un réservoir dé moments compensatoires, comparables à ceux que les contrepoids des grues de construction font naître dans leurs éléments verticaux (tours) ; mais à la différence de ces derniers (qui sont figés en intensité) ces moments sont réactifs et s'adaptent, positivement, en intensité comme en sens d'application, aux différents états des charges, tout au long de la vie de la structure. C'est deux segments sont à deux articulations chaque ; ils sont unis à travers leur articulation commune au sommet de la structure (la troisième qu'on va l'appeler « flottante ») ; les deux restants s'appuient sur les fondations (voir aspects statiques ; figure 1)This frame is the union of two segments of arcs, comparable to the bow of the hunter (in the sense that they are exposed before the application of the external charges to the initial tension of their strings), and thus generating a reservoir of compensatory moments, comparable to those counterweights of construction cranes give rise to their vertical elements (towers); but unlike the latter (which are fixed in intensity) these moments are reactive and adapt, positively, in intensity as in sense of application, to the different states of the charges, throughout the life of the structure. It's two segments are two joints each; they are united through their common articulation at the top of the structure (the third that we will call it "floating"); the remaining two rely on the foundations (see static aspects, figure 1)
II est à souligner que pour rester dans logique d'arc il va falloir que ses cordes soient en perpétuel état de tension ; peu importe l'intensité néanmoins avec certain marge de sécurité.It must be emphasized that to stay in the logic of the bow you will have to have your strings in perpetual state of tension; no matter how intense, however, with a certain margin of safety.
Il convient de souligner que cet état de tension est l'indicateur qui nous dit que l'arc fonctionne toujours comme tel, et dans notre cas cela a été assuré par deux mesures : La première est introduit à travers la tension initiale aux cordes pour créer le moment compensatoire (évoqué plus haut) mais également pour que les cordes gagnent en statue de tension dont le relâchement (qui met la stabilité de la structure en cause) ne sera en aucun cas tolérable.It should be emphasized that this state of tension is the indicator that tells us that the arc is still functioning as such, and in our case this has been ensured by two measures: The first is introduced through the initial tension to the strings to create the compensatory moment (mentioned above) but also so that the strings gain in statue of tension whose release (which puts the stability of the structure in question) will be in no case tolerable.
La deuxième se résume par jouer avec l'interruption de la continuité entre les deux segments (à leur point de rencontre) de la sorte que l'application des charges extérieures pousse l'articulation flottante vers le haut accentuant ainsi la tension initiale des cordes ; en les éloignant davantage de leur point de relâchement.The second is to play with the interruption of the continuity between the two segments (at their point of meeting) so that the application of external loads pushes the floating joint upwards thus accentuating the initial tension of the strings; by moving them further away from their point of relaxation.
Ces deux mesures conjuguées ensemble, ils jouent sur le coté quantitatif, et cela nous mène à l'interactivité (élaborée ci-après) qui s'adresse au coté comportemental de notre structure A - 2 L'interactivitéThese two measures combined together, they play on the quantitative side, and this leads us to the interactivity (elaborated below) which addresses the behavioral side of our structure A - 2 Interactivity
A - 2 - 1 l'analyse de l'effet ressortA - 2 - 1 the spring effect analysis
II s'agit d'assimiler le corps du segment d'arc d'un côté, et ses cordes de l'autre, à deux ressorts interactifs, qui offrent, à travers une manipulation adaptée au niveau de leur constant, la condition optimale dans le sens de minimiser l'exigence de ces segments en terme de moments compensatoires ; et puisque l'intensité de ceux ci est directement liée au flottement de l'articulation (sous les différents états de charges) cette condition se traduit - comme la prochaine paragraphe l'explique - par l'équidistance du flottement au dessus et au dessous de l'hypothétique position neutre (à définir comme l'endroit où cette articulation occuperait si les cordes n'existaient pas)It is a question of assimilating the body of the arc segment on one side, and its strings on the other, with two interactive springs, which offer, through a manipulation adapted to their level of their constant, the optimal condition in the meaning of minimizing the demand of these segments in terms of compensatory moments; and since the intensity of these is directly related to the floating of the articulation (under different states of charge) this condition is translated - as the next paragraph explains - by the equidistance of the floating above and below the hypothetical neutral position (to be defined as the place where this articulation would occupy if the strings did not exist)
Élaboration théorique (voir schéma du flottement figure 3)Theoretical elaboration (see diagram of the floating figure 3)
Légende Kc Le constant du ressort (cordes).Legend Kc The spring constant (strings).
Ka Le constant du ressort (arc).Ka The constant of the spring (arc).
Pt Les charges Totales = Permanentes PpPt Total Charges = Permanent Pp
+ de service Ps+ Ps service
Nc(T)t La projection, sur l'axe des cordes T, des forces axiales Nc sous les charges totales = Permanentes Nc(OpNc (T) t The projection, on the axis of the strings T, of the axial forces Nc under the total loads = Permanent Nc (Op
+ de service Nc(T)s)+ service Nc (T) s)
TO La tension initiale aux cordes, choisie arbitrairement égale à Nc(T)p.TO The initial tension at the strings, chosen arbitrarily equal to Nc (T) p.
RO réaction de l'arc à la mise sous tension initiale des cordes ; RO=TO Tt Tension dans les cordes sous les charges totales Pt = TO + Tp + Ts.RO reaction of the bow to the initial powering of the ropes; RO = TO Tt Tension in the strings under the total loads Pt = TO + Tp + Ts.
Rp La réaction de l'arc due à l'intervention de PpRp The reaction of the arc due to the intervention of Pp
Rt La réaction de l'arc due à l'intervention de Pt w l'élongation des cordes sous la tension initiale ; (distance non référencée) x L'écart de l'articulation flottante de sa position neutre sous TO y L'écart de l'articulation flottante de sa position neutreRt The reaction of the arc due to the intervention of Pt w the elongation of the ropes under the initial tension; (distance not referenced) x The difference between the floating joint and its neutral position under TO y The difference between the floating joint and its neutral position
95 sous Pp z L'écart de l'articulation flottante de l'autre coté de sa position neutre sous95 under Pp z The gap of the floating joint on the other side of its neutral position under
Pt α Coefficient de répartition des charges α = Ps/Pp = Nc(T)s/Nc(T)pPt α Coefficient of charge distribution α = Ps / Pp = Nc (T) s / Nc (T) p
Les équations d'équilibresEquilibrium equations
100 La phase de la tension initiale (avant l'application des charges extérieures) L'écart de l'articulation flottante de sa position neutre = x ; TO=RO ; il en résulte w = Tp/Kc = Rp/Kc x = Tp/Kα = Rp/Kα (par rapport à la position neutre)100 The phase of the initial tension (before the application of external loads) The distance of the floating joint from its neutral position = x; TO = RO; it results w = Tp / Kc = Rp / Kc x = Tp / Kα = Rp / Kα (relative to the neutral position)
La phase de l'application des charges permanentes PpThe phase of the application of permanent loads Pp
105 L'écart de l'articulation flottante de sa position neutre se réduit et passe de x à y, et les moments au segment se réduisent aussi , mais leur effets reste en alliance avec les charges Pp contre les cordes105 The gap of the floating joint from its neutral position is reduced from x to y, and the moments at the segment are also reduced, but their effects remain in alliance with the charges Pp against the strings.
Tp = Nc(T)p+Rp, il en résulte Kc {w+(x-y)} = Nc(T)p + Ka * y ; et puisque w = Fp/KcTp = Nc (T) p + Rp, Kc {w + (x-y)} = Nc (T) p + Ka * y; and since w = Fp / Kc
110 y = Kc * x / (Kc + Ka) (par rapport à la position neutre)110 y = Kc * x / (Kc + Ka) (relative to the neutral position)
La phase de l'application des charges totales PtThe phase of the application of total charges Pt
L'articulation flottante passe à l'autre coté de sa position neutre, à un écart de celle ci = z , les moments change de signe et d'alliance et s'associe avec les cordes contre les charges totales Pt ; il en résulte 115 Nc(T)t = Rt+ TtThe floating articulation passes on the other side of its neutral position, at a distance from that ci = z, the moments change of sign and alliance and associate with the ropes against the total charges Pt; The result is 115 Nc (T) t = Rt + Tt
Nc(T)p + Nc(T)S = Ka * z + Kc (w+x+z) = (Kα+Kc) z + Kc.w + Kc.x)Nc (T) p + Nc (T) S = Ka * z + Kc (w + x + z) = (Kα + Kc) z + Kc.w + Kc.x)
= (Kα+Kc) z + Nc(t)p + Kc * x 120 Nc(T)S = (Kα+Kc) z + Kc * x z = (Nc(T)S - Kc * x)/(Kα+Kc)= (Kα + Kc) z + Nc (t) p + Kc * x 120 Nc (T) S = (Kα + Kc) z + Kc * xz = (Nc (T) S - Kc * x) / (Kα + kc)
Pour y = z (condition de flottement équidistant autour de la position neutre)For y = z (equidistant floating condition around the neutral position)
Kc * x = (Nc(T)s - Kc * x)Kc * x = (Nc (T) s - Kc * x)
Nc(T)S = 2 Kc*x = 2 Kc * Nc(T)p/Kα ;Nc (T) S = 2 Kc * x = 2 Kc * Nc (T) p / Kα;
125 Nc(T)S / Nc(T)p = Ps/Pp = 2 Kc/Kα125 Nc (T) S / Nc (T) p = Ps / Pp = 2 Kc / Kα
Ps/Pp = α = 2 Kc/KαPs / Pp = α = 2 Kc / Kα
II convient de souligner que dans l'analyse de l'effet ressort seules les forces susceptibles d'engendrer des moments de fléchissement sont entrées en compte, de ce fait la compressibilité de l'arc sous les forces axiales était exclue de notreIt should be emphasized that in the analysis of the spring effect only the forces liable to generate moments of deflection are taken into account, therefore the compressibility of the arc under the axial forces was excluded from our
130 analyse.130 analysis.
Cette compressibilité n'a comme effet que celui d'un glissement général des coordonnées de ces flottements, sans incident sur les valeurs de ceux-ciThis compressibility has only the effect of a general slip of the coordinates of these flutations, without incident on the values of these
A - 2 - 2 L'approche virtuel de calculeA - 2 - 2 The virtual approach to calculates
Dans mes analyses je suis parti d'un cas symétrique de charges ; cela est presque 135 toujours vrai quand aux charges permanentes dans ce type de structure , mais loin d'être le cas quant aux charges de service (une combinaison vent et neige par exemple, ou sous des charges de type dynamique, séisme, etc.) où l'asymétrie des charges, sur chacun de ses deux flans, s'impose, et c'est à cet aspect critique (survenant du non-équilibre des forces horizontales au niveau de l'articulation 140 flottante) qu'il faut faire faceIn my analyzes I started from a symmetrical case of loads; this is almost always true when with permanent loads in this type of structure, but far from being the case as regards the service charges (a combination wind and snow for example, or under loads of dynamic type, earthquake, etc.) where the asymmetry of the charges, on each of its two blanks, is essential, and it is to this critical aspect (arising from the non-equilibrium of the horizontal forces at the level of the floating articulation 140) that it is necessary to face
Cette réponse je la propose sous un cas de symétrie virtuelle qui produit le même élongation des cordes que celui subit au flan le plus chargé des deux, sous le cas d'asymétrie réelle ; avec tout ce que cela entraîne en terme d'autre coefficient de répartition des charges, et d'autres constants des ressorts. (regarder exemple 145 explicatif, plus loin) B - L'aspect d'exécutionThis answer I propose under a case of virtual symmetry which produces the same elongation of the strings as the one subjected to the blankest loaded of the two, under the case of real asymmetry; with all that this entails in terms of other load distribution coefficient, and other constant springs. (see example 145 explanatory, further) B - The execution aspect
Loin de tout aspect théorique et même indépendamment de notre cadre il s'agit ici de rationaliser l'exécution des arcs en général ; dans notre cas le segment est le module répétitif principale ; il est l'expression d'une fonction continue qui reflète 150 l'état des charges extérieures (pour simplifier notre exemple a adopté une fonction de deuxième degré) ; il est de section triangulaire équilatérale variable (maximal au centre et minimal au niveau de ses articulations) ; il est en forme de treillis dont les trois composants porteurs (les éléments longitudinaux situés à chacun de ses trois angles) sont de section fermée (tubulaire)Far from any theoretical aspect and even independently of our framework, it is a question here of rationalizing the execution of the arcs in general; in our case the segment is the main repetitive module; it is the expression of a continuous function which reflects the state of the external charges (for simplicity our example has adopted a second-degree function); it is of equilateral triangular section variable (maximum in the center and minimum in the level of its articulations); it is in the form of a lattice of which the three supporting components (the longitudinal elements located at each of its three angles) are of closed section (tubular)
155 B - 1 La mise en courbe des constituants rectilignes B -1 - 1 La déduction théorique des fonctions155 B - 1 Curvature of linear constituents B -1 - 1 The theoretical deduction of functions
Etant parti des paramètres choisis de notre segment d'arc, et du degré de sa fonction continue (qui est l'expression du lieu géométrique de son axe neutre), et du choix de section (un treillis triangulaire), cela nous donne tout ce qu'il faut pour 160 déduire les équations des deux types de fonctions concernéesStarting from the chosen parameters of our arc segment, and from the degree of its continuous function (which is the expression of the geometric locus of its neutral axis), and from the choice of section (a triangular lattice), this gives us all that it is necessary to deduce 160 the equations of the two types of functions concerned
yl qui s'incline du plan vertical d'un angle μ et qui définit les deux éléments porteurs supérieur. y2 qui se situe dans un plan vertical et définit l'élément porteur inférieur d'une manière à couvrir avec les deux autres l'exigence d'une section 165 équilatérale (voir aspects géométriques ; figure 2)yl which inclines the vertical plane of an angle μ and which defines the two upper load cells. y2 which lies in a vertical plane and defines the lower bearing element so as to cover with the other two the requirement of an equilateral section 165 (see geometrical aspects;
B -1 - 2 La mise en géométrie des trois éléments porteurs rectilignesB -1 - 2 The geometry of the three straight bearing elements
II est connu que le double intégral du diagramme des moments ,qui s'exercent sur un élément, donne l'état de sa déformation sous les charges qui ont occasionné ces moments, donc il suffit dans notre cas d'exposer l'élément rectiligne (le tube) àIt is known that the integral double of the diagram of moments, which are exerted on an element, gives the state of its deformation under the loads which occasioned these moments, so it suffices in our case to expose the rectilinear element ( the tube) to
170 deux moments à chacune de leurs deux extrémités pour produire - de par M = cte - une fonction de déformation de deuxième degré, j Cette mise artificielle en géométrie ne doit pas poser de problème, ni endommager les tubes, puisque les moments concernés sont suffisamment faible, vu le coefficient L/ Φ de chacun d'eux est (dans notre cas égal à 400) et la faible 175 valeur de la flèche concernée (dans notre cas est de 2,5 m). Une fois les tubes sont en place et en géométrie il sera temps pour procéder à la triangulation qui sera de deux types, rigide simple et flexible double (croisée).170 two moments at each of their two ends to produce - by M = cte - a function of deformation of second degree, j This artificial setting in geometry must not pose a problem nor damage the tubes, since the moments concerned are sufficiently low, considering the coefficient L / Φ of each of them is (in our case equal to 400) and the low 175 value of the arrow concerned (in our case is 2.5 m). Once the tubes are in place and in geometry it will be time to proceed to the triangulation which will be of two types, rigid simple and flexible double (crossed).
Cette approche est, d'une certaine manière, comparable au procédé du Lamellé- collé, où il est relativement facile de plier les lames de bois non-solidaires, avant la 180 prise de la colJe (dans notre cas avant la triangulation) pour obtenir une section énormément plus résistante aprèsThis approach is, in a way, comparable to the Lamellecollé process, where it is relatively easy to bend the non-jointed wooden planks, before the grip of the neck (in this case before triangulation) to obtain a much more resistant section after
B - 2 L'aspect « pre-engineered »B - 2 The pre-engineered aspect
Les ossatures en composants pre-enginnered (prêt-à-porter) ne font évidemment pas une nouveauté, pourtant on peut imaginer que celles en treillis, et de ce type 185 de géométrie et de sections variables, et de surplus fabriqués à partir de composants rectilignes, puisse en faire une ; surtout quand on ajoute sur tout cela la logique de la modulation et de la préfabrication.Frames made of pre-enginnered components (ready-to-wear) obviously do not make a novelty, yet one can imagine that those in lattice, and of this type 185 of geometry and variable sections, and surplus made from components rectilinear, can make one; especially when one adds on all this the logic of modulation and prefabrication.
B - 2 - 1 La modulationB - 2 - 1 Modulation
Partant du plus grand au plus petit notre modulation commence par le segment 190 (comme un de deux composants identiques de l'arc à trois articulation) qui-à son tour se divise en trois sous-modules de deux type différents ; centrale, de 12 m de longueur (le standard industriel dans la fabrication des tubes) ; et périphérique de chaque coté d'une longueur complémentaire (selon la gamme de production préconisée ; qui peut aller jusqu'à 12 m chaque, totalisant ainsi une longueur 195 maximum de 36 m pour chaque segment, et qui peut couvrir (avec la conjonction de deux) une travée à l'ordre de 65 m.Starting from the largest to the smallest our modulation begins with segment 190 (as one of two identical components of the three-jointed arc) which in turn is divided into three sub-modules of two different types; central, 12 m in length (the industry standard in the manufacture of tubes); and peripheral on each side of a complementary length (according to the recommended production range, which can go up to 12 m each, thus totaling a length 195 maximum of 36 m for each segment, and which can cover (with the conjunction of two) a span of about 65 m.
Cela étant il n'est pas à exclure bien évidemment de procéder sur mesure dans des cas particuliers de sollicitation, ou quand la travée maximum dépasse la limite évoquée de 65 m.This being so, it is not impossible to exclude, of course, custom-made in particular cases of solicitation, or when the maximum span exceeds the mentioned limit of 65 m.
200 B - 2 - 2 La préfabrication200 B - 2 - 2 Prefabrication
Sous la gamme pre-engineered la préfabrication couvreUnder the pre-engineered range prefabrication covers
• Les tubes porteurs de deux types (centrale et périphérique) sectionnés (quand il sont de moins de 12 m de longueur), perforés, et préparés pour recevoir les nœuds, et pour se joindre entre eux (afin de répondre à l'exigence de la 205 longueur totale du segment. • Les pièces de la triangulation rigide (les tubes qui délimitent les triangles équilatéraux transversaux) et la triangulation flexible (les cordes qui restreignent les nœuds dans le sens longitudinal ; voir détail nœud figure 4)• Support tubes of two types (central and peripheral) severed (when less than 12 m in length), perforated, and prepared to receive the nodes, and to join together (in order to meet the requirement of the total length of the segment. • The parts of the rigid triangulation (the tubes which delimit the transverse equilateral triangles) and the flexible triangulation (the strings which restrict the nodes in the longitudinal direction, see detail node figure 4)
• Les accessoires et ce sont les composants des nœuds (conçus pour recevoir 210 les tubes porteurs et la triangulation rigides et flexibles) ; les composants des éléments périphériques, (conçus pour assurer le comportement structural de ces articulations et pour recevoir les cordes des arcs (voir aspects géométriques figure 2 ; détails nœud figure 4 ; éléments périphériques figure 5)• Accessories and these are the components of the nodes (designed to receive rigid and flexible rigid and rigid support tubes and triangulation); the components of the peripheral elements, (designed to ensure the structural behavior of these articulations and to receive the strings of the arcs (see geometrical aspects figure 2, details node figure 4, peripheral elements figure 5)
215 Exemple chiffré et simplifié215 Encrypted and simplified example
Les déterminants géométriqueGeometric determinants
δ = 2,50 m ; AC - 30,0 m ; S (surbαissement) - δ /AC = 1/12 ; tg φ = 4*S = 1/3 h = 13,33 m ; î = 2 * 26,66 m ; tg θ = 2h/£ = 1/2 d = 80 cm ;δ = 2.50 m; AC - 30.0 m; S (overbasing) - δ / AC = 1/12; tg φ = 4 * S = 1/3 h = 13.33 m; λ = 26.66 m; tg θ = 2h / = = 1/2 d = 80 cm;
220 h = d * sin 60° = 69 cm ; h/3 = 23 cm ; 2h/3 = 46 cm cotg μ = 6,825220 h = d * sin 60 ° = 69 cm; h / 3 = 23 cm; 2h / 3 = 46 cm cotg μ = 6.825
Sin φ = 0,44 ; sin φ = 0,32 ; sin (θ + φ) = 0,71 ; sin (θ - φ) = 0,13 cos θ = 0,89 ; cos φ = 0,95 ; cos (θ + φ) = 0,71 ; cos (θ - φ) = 0,98Sin φ = 0.44; sin φ = 0.32; sin (θ + φ) = 0.71; sin (θ - φ) = 0.13 cos θ = 0.89; cos φ = 0.95; cos (θ + φ) = 0.71; cos (θ - φ) = 0.98
ylH : L'équation géométrique de la projection horizontale de yl 225 ylV : L'équation géométrique de la projection verticale de ylylH: The geometric equation of the horizontal projection of yl 225 ylV: The geometric equation of the vertical projection of yl
ylH = - 0.00195 x 2 + d/2 ylV = - ylH cotg μ y2 = ylV - /3 ylH (La condition du triangle équilatéral) 230 y2 = - 0,0121 X2 + [(2,50 + 0.23) -ylH = - 0.00195 x 2 + d / 2 ylV = - ylH cotg μ y2 = ylV - / 3 ylH (The condition of the equilateral triangle) 230 y2 = - 0.0121 X 2 + [(2.50 + 0.23) -
(/3 d/3 = 69)](/ 3 d / 3 = 69)]
yl = - 0,0123 x2 + 2,76 y 2 = - 0,0090 x2 + 2,04yl = - 0.0123 x 2 + 2.76 y 2 = - 0.0090 x 2 + 2.04
Le calcule statique 235 Les charges extérieuresThe static calculation 235 External loads
Permanentes Pp = 0,4 t/m1 De service Ps = 0,6 t/m' Total Pt = 1,0 t/m1 ; α (réel) = (Pt - Pp)/Pp = Ps/Pp = 1,5Permanent Pp = 0.4 t / m 1 On duty Ps = 0.6 t / m 'Total Pt = 1.0 t / m 1 ; α (real) = (Pt - Pp) / Pp = Ps / Pp = 1.5
Les charges symétriques (le cas général) ; en tonnesSymmetrical charges (the general case); in tons
240 Tableau 1240 Table 1
Les charges asymétriquesAsymmetrical loads
Tableau 2Table 2
L'articulation « C » est exposée à une poussée = Hcl-Hc2 ; en tonnes ; les données critiques sont Na = 45,06 t ; The "C" joint is exposed to a thrust = Hcl-Hc2; in tons; critical data is Na = 45.06 t;
245 Nc(T)I + (HcI - Hc2) / 2 cos θ = 9,55 + 2,19245 Nc (T) I + (HcI - Hc2) / 2 cos θ = 9.55 + 2.19
= 11,74 t (tension)= 11.74 t (voltage)
Nc(T)2 - (HcI - Hc2) / 2 cos θ = 6,37 - 2,19 = 04,18 t (tension) Le calcule critique va se baser sur une répartition de charges symétrique virtuelle qui produit une charge Nc(T)t = 11,47 tNc (T) 2 - (HcI - Hc2) / 2 cos θ = 6.37 - 2.19 = 04.18 t (voltage) The critical calculation will be based on a virtual symmetric load distribution that produces a Nc load ( T) t = 11.47 t
250 donc α (virtuel) = (Pt - Pρ)/Pρ = Ps/Pp = Nc(T)S virtuelle / Nc(T)p α (virtuel) = 11,74 - 3,18 / 3,18 = 2,69Therefore α (virtual) = (Pt - Pρ) / Pρ = Ps / Pp = Nc (T) virtual S / Nc (T) p α (virtual) = 11.74 - 3,18 / 3,18 = 2, 69
Le calcule des sectionsCalculates sections
Dans cet étape de calcule on est conscient que sur la valeur de Na (de 45,06 1) on dois ajouter la charge survenant de la tension des cordes contre les deux 255 extrémités du segment d'arc ; de l'autre coté on est conscient également que de la valeur de Nc(T)t on doit retrancher la contribution du segment d'arc en terme de moments compensatoire, donc notre pré-dimensionnement doit en tenir compte.In this calculating step it is realized that on the value of Na (of 45.06 1) one must add the charge arising from the tension of the cords against both ends of the arc segment; on the other side we are also aware that the value of Nc (T) t we must subtract the contribution of the arc segment in terms of compensatory moments, so our pre-dimensioning must take into account.
A partir de la qualité d'acier, pour les tube σ (tubes) = 1,8 t/cm2 ; et celle des cordes σ (cordes) = 15 t/cm 2 260 et pour les charges critiques listées ci-dessus on arrive àFrom the steel quality, for the tubes σ (tubes) = 1.8 t / cm 2 ; and that of the strings σ (strings) = 15 t / cm 2 260 and for the critical loads listed above we arrive at
Les tubes : 3 Φ 75 mm ; A - 3 X 9,42 cm2 ; t = 4 mm ; A total = 28,26 cm2 Les cordes : 4 Φ 5 mm ; A - 4 X 0,20 cm2 The tubes: 3 Φ 75 mm; A - 3 X 9.42 cm 2 ; t = 4 mm; A total = 28.26 cm 2 The strings: 4 Φ 5 mm; A - 4 X 0.20 cm 2
A total = 0,80 cm2 A total = 0.80 cm 2
Déterminer les constants des ressortsDetermine the constants of the springs
265 Le constant du ressort cordes Kc = 1/d€ ; où d€ sous une charge unitaire = IXt /EA ;265 The constant of the spring strings Kc = 1 / d €; where d € under a unit load = IXt / EA;
Kc = 0,58 De l'équation α (virtuel) = 2Kc/Kα on déduit la valeur de l'autre constantKc = 0.58 From the equation α (virtual) = 2Kc / Kα we deduce the value of the other constant
Ka = 0,43Ka = 0.43
270 La question se réduit maintenant à déterminer l'inertie d'un arc triangulaire équilatérale (dont la section de ses trois éléments tubulaires porteurs est prédéterminée), un calcule classique de déplacement d'une extrémité par rapport à l'autre sous une force unitaire appliquée sur l'axe des cordes et équilibrée par le moment résistante de l'arc (assimilable à un ressort dont le constant Ka = 0,43) 275 1/Ka = (UE) JS M dx /I ; (I étant variable fait partie de l'intégrale) ;The question is now reduced to determining the inertia of an equilateral triangular arc (whose section of its three tubular carrying elements is predetermined), a conventional calculation of displacement of one end relative to the other under a unitary force. applied on the axis of the strings and balanced by the resistant moment of the arc (comparable to a spring whose constant Ka = 0.43) 275 1 / Ka = (UE) JS M dx / I; (I being variable is part of the integral);
I mαx = 28,200 cm4 ; h/3 = 23 cm ; h = 69 cm ; le coté du triangle d = 80 cmI mαx = 28,200 cm4; h / 3 = 23 cm; h = 69 cm; the side of the triangle d = 80 cm
Les charges asymétriques Le flan critique Le cas 0 (les charges extérieures = 0) ; Nc(T)O=O t ; TO = 3,18 tAsymmetric loads Critical blank Case 0 (external loads = 0); Nc (T) O = O t; TO = 3.18 t
280 w = Tp/Kc ; 3,18/0,58 = - 5,48 cm ; x = Tp/Kα ; 3,18/0,43 = - 7,40 cm NaO = TO + 0 = 3,18 t280 w = Tp / Kc; 3.18 / 0.58 = -5.48 cm; x = Tp / Kα; 3.18 / 0.43 = - 7.40 cm NaO = TO + 0 = 3.18 t
MO = (x) Kα * δ = - 7,4 * 0,43 * 2,5 = -MO = (x) Kα * δ = - 7.4 * 0.43 * 2.5 = -
7,95 t.m7.95 t.m
Le cas Pp (les charges extérieures = Pp) ; Nc(T)p= 3.18 t ; Tp = 5,00 t 285 Y = Kc.x/(Kα+Kc) = 0,58(7,40)/l,01 =The case Pp (external loads = Pp); Nc (T) p = 3.18 t; Tp = 5.00 t 285 Y = Kc.x / (Kα + Kc) = 0.58 (7.40) / l, 01 =
- 4,23 cm- 4.23 centimeters
Nα,p = Tp + Nα,p = 5,00 + 15,02Nα, p = Tp + Nα, p = 5.00 + 15.02
20,02 t20.02 t
Mp = (y) Kα * δ = - 4,23 *0,43 * 2,50 =Mp = (y) Kα * δ = - 4.23 * 0.43 * 2.50 =
290 - 4,55 t.m290 - 4.55 t.m
Le cas Pt (les charges extérieures = Pt) ; Nc(T)t= 11,74 t ; Tt = 9.92 t z =[Nc(T)s-Kc.x]/(Kα+Kc) = - y = + 4,23 cm (au-dessus de la position neutre)The case Pt (the external charges = Pt); Nc (T) t = 11.74 t; Tt = 9.92 t z = [Nc (T) s-Kc.x] / (Kα + Kc) = - y = + 4.23 cm (above the neutral position)
Na,t = Tt + Na,t = 9,92 + 45,06 t = 55,0 tNa, t = Tt + Na, t = 9.92 + 45.06 t = 55.0 t
Mt = (z) Ka * δ = 4,23 X 0.43 X 2.5 = + 4,55 t.m (M change de signe) 295 Tableau 3Mt = (z) Ka * δ = 4.23 X 0.43 X 2.5 = + 4.55 tm (M changes sign) 295 Table 3
La position de 11C" Cordes Arc w= 5.48 cm Na MomentsThe position of 11 C "Arc Strings w = 5.48 cm Na Moments
Cas 0 x= - 7,40 cm TO = 3,18 t r NaP= 3,18 t 1 - 7,95 t.mCase 0 x = - 7,40 cm TO = 3,18 t r NaP = 3,18 t 1 - 7,95 tm
Cas Pp y= - 4,23 cm Tp = : 5,00 t Na,p= 2O,O2t i - 4,55 t.mCase Pp y = - 4.23 cm Tp =: 5.00 t Na, p = 20, O2t i - 4.55 t.m
Cas Pt Z = - y = + 4,23 cm Tt = : 9,92 t i Na,t= 55,0 t ! + 4,55 t.mCase Pt Z = - y = + 4.23 cm Tt =: 9.92 t i Na, t = 55.0 t! + 4.55 t.m
Comme le tableau des sollicitation (ci-après) et l'état des moments compensatoire (voir diagramme figure 6) la sollicitation critique en terme de compression σ = (1,95 + l,49)/2 + 0,37 = 2,09 t/cm2 As the table of the solicitation (hereafter) and the state of the compensatory moments (see diagram figure 6) the critical demand in term of compression σ = (1,95 + l, 49) / 2 + 0,37 = 2, 09 t / cm 2
Tableau 4Table 4
300 Le flan non critique300 The non-critical blank
Le cas 0 (les charges extérieures = 0) ; Nc(T)O=O t ; TO = 3,18 t w = Tp/Kc ; 3,18/0,58= - 5,48 cm ; x = Tp/Kα;3,18/0,43 = - 7,40 cm NaO = TO + 0 = 3,18 tCase 0 (external loads = 0); Nc (T) O = O t; TO = 3.18 t w = Tp / Kc; 3.18 / 0.58 = -5.48 cm; x = Tp / Kα; 3.18 / 0.43 = - 7.40 cm NaO = TO + 0 = 3.18 t
MO = (x) Ka * δ 7,4 * = 0,43 * 2,5 = 7,95 t.mMO = (x) Ka * δ 7.4 * = 0.43 * 2.5 = 7.95 t.m
305 Le cas Pp (les charges extérieures = Pp) ; Nc(T)p= 3.18 t ; Tp = 5,00 t Y = Kc * x/(Kα+Kc) = 0,58(7,40)/l,01 = - 4,23 cm Nα,p = Tp + Nα,p = 5,00 + 15,02 = 20,02 t305 The case Pp (external loads = Pp); Nc (T) p = 3.18 t; Tp = 5.00 t Y = Kc * x / (Kα + Kc) = 0.58 (7.40) / 1.01 = - 4.23 cm Nα, p = Tp + Nα, p = 5.00 + 15.02 = 20.02 t
Mp = (y) Ka * δ = 4,23 *0,43 * 2,50 = - 4,55 t.mMp = (y) Ka * δ = 4.23 * 0.43 * 2.50 = - 4.55 t.m
Le cas Pt (les charges extérieures = Pt) ; Nc(T)t = 4.18 t ; Tt = 6,22 t 310 z = Nc(T)S - Kc * x /(Kα+Kc) z= - 2,16 cm Nα,t = Tt + Nα,t = 6,22 + 30,22 = 36,44 t Mt = (z) Kα * δ = 2,16 * 0,43 * 2,50 = - 2,32 t.mThe case Pt (the external charges = Pt); Nc (T) t = 4.18 t; Tt = 6.22 t 310 z = Nc (T) S - Kc * x / (Kα + Kc) z = - 2.16 cm Nα, t = Tt + Nα, t = 6.22 + 30.22 = 36 , 44 t Mt = (z) Kα * δ = 2.16 * 0.43 * 2.50 = - 2.32 tm
Tableau 5Table 5
Le cas symétriquesThe symmetrical case
315 Le cas 0 (les charges extérieures = 0) ; Nc(T)O=O t ; TO = 3,18 t w = Tp/Kc ; 3,18/0,58= - 5,48 cm ; x = Tp/Kα;3,18/0,43 = - 7,40 cm NaO = TO + 0 = 3,18 tCase 0 (external loads = 0); Nc (T) O = O t; TO = 3.18 t w = Tp / Kc; 3.18 / 0.58 = -5.48 cm; x = Tp / Kα; 3.18 / 0.43 = - 7.40 cm NaO = TO + 0 = 3.18 t
MO = (x) Kα X δ = 7,4 * 0,43 * 2,5 = 7,95 t.mMO = (x) Kα X δ = 7.4 * 0.43 * 2.5 = 7.95 t.m
Le cas Pp (les charges extérieures = Pp) ; Nc(T)p= 3.18 t ; Tp = 5,00 t 320 Y = Kc.x/(Kα+Kc) = 0,58(7,40)/l,01 = - 4,23 cmThe case Pp (external loads = Pp); Nc (T) p = 3.18 t; Tp = 5.00 t 320 Y = Kc.x / (Kα + Kc) = 0.58 (7.40) / 1.01 = - 4.23 cm
Nα,p = Tp + Nα,p = 5,00 + 15,02 = 20,02 tNα, p = Tp + Nα, p = 5.00 + 15.02 = 20.02 t
Mp = (y) Kα X δ = - 4,23 *0,43 * 2,50 = - 4,55 t.mMp = (y) Kα X δ = - 4.23 * 0.43 * 2.50 = - 4.55 t.m
Le cas Pt (les charges extérieures = Pt) ; Nc(T)t = 7.96 t ; Tt = 7,75 t z = Nc(T)S - Kc.x /(Kα+Kc) = 0.48 cm 325 Nα,t = Tt + Nα,t = 7,75 + 37,55 = 20,02 tThe case Pt (the external charges = Pt); Nc (T) t = 7.96 t; Tt = 7.75 t z = Nc (T) S-Kc.x / (Kα + Kc) = 0.48 cm 325 Nα, t = Tt + Nα, t = 7.75 + 37.55 = 20.02 t
Mt = (z) Kα X δ = 0,48 * 0,43 * 2,50 = + 0,52 t.mMt = (z) Kα X δ = 0.48 * 0.43 * 2.50 = + 0.52 t.m
Tableau 6Table 6
! La position de "C" Cordes Arc! The position of "C" Arc Strings
, W= 5.48 cm Na Moments, W = 5.48 cm Na Moments
Cas 0 X= - 7,40 cm TO = 3,18 t Na = 03,18 t -~7£5~t7m_jCase 0 X = - 7,40 cm TO = 3,18 t Na = 03,18 t - ~ 7 £ 5 ~ t7m_j
Cas Pp i y= - 4,23 cm Tp = 5,00 t Na = 20,02 t - 4,55 t.mCase Pp i y = - 4.23 cm Tp = 5.00 t Na = 20.02 t - 4.55 t.m
Cas Pt ! z= - * 0.48 cm Tt = 7.75 t Na = 45,30 t + 0,52 t.m Description sommaire des dessinsPt case! z = - * 0.48 cm Tt = 7.75 t Na = 45.30 t + 0.52 tm Brief description of the drawings
II s'agit de trois types de dessins ; des schémas statiques, géométriques et théoriques (figures 1 ; 2 et 3) ; des détails d'exécution (figures 4 et 5)These are three types of drawings; static, geometric and theoretical diagrams (Figures 1, 2 and 3); details of execution (figures 4 and 5)
(Figure 1) Aspects Statiques définissant Le cadre statique de l'articulation flottante et les équations générales de son équilibre(Figure 1) Static aspects defining the static frame of the floating joint and the general equations of its equilibrium
(Figure 2) Aspects géométriques(Figure 2) Geometric aspects
Définissant le cadre géométrique du segment d'arc et les équations de les coordonnées des nœudsDefining the geometrical frame of the arc segment and the equations of the coordinates of the nodes
(Figure 3) Schéma du flottement(Figure 3) Floating diagram
En relation avec l'interactivité entre le corps du segment d'arc et ses cordes (les deux assimilés à deux ressorts), définissant les équations du flottement en général et ainsi la condition du flottement équidistant en dessous et au-dessus la position neutre.In relation to the interactivity between the body of the arc segment and its strings (both assimilated to two springs), defining the floating equations in general and thus the condition of the equidistant floating below and above the neutral position.
(Figure 4) Détail nœud(Figure 4) Node detail
Une manière de l'exécuter.One way to execute it.
(Figure 5) Eléments périphériques(Figure 5) Peripheral elements
Détails 1 (joint gyroscopique). Détail 2 ((joint niveau fondation).Details 1 (gyroscopic seal). Detail 2 ((foundation level joint).
Une manière de les exécuter.One way to execute them.
(Figure 6) Les données de l'exemple(Figure 6) The data of the example
Le diagramme des sollicitations sous le cas asymétrique critique The stress diagram under the critical asymmetric case
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR08/06910 | 2009-01-16 | ||
| FR0806910A FR2941246B1 (en) | 2009-01-16 | 2009-01-16 | THE THIRD THIRD ARTICULATION. |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2010081973A2 true WO2010081973A2 (en) | 2010-07-22 |
| WO2010081973A3 WO2010081973A3 (en) | 2010-09-30 |
Family
ID=41320098
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/FR2010/000042 Ceased WO2010081973A2 (en) | 2009-01-16 | 2010-01-11 | Novel approach for non-accessible large-span roofing |
Country Status (2)
| Country | Link |
|---|---|
| FR (1) | FR2941246B1 (en) |
| WO (1) | WO2010081973A2 (en) |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE233611C (en) * | 1910-03-18 | 1911-04-15 | ||
| US2612854A (en) * | 1948-07-03 | 1952-10-07 | James Mfg Co | Three-hinged arch truss |
| FR1234093A (en) * | 1958-09-03 | 1960-10-14 | Hugill Forge & Engineering Wor | metal frame elements |
| AUPQ817700A0 (en) * | 2000-06-15 | 2000-07-06 | Bigspace Structures Pty Ltd | A truss and a method of fabricating same |
| AU2002340602A1 (en) * | 2002-09-06 | 2004-04-23 | Michael Lahnsteiner | Supporting structure |
| WO2006007660A1 (en) * | 2004-07-21 | 2006-01-26 | Murray Ellen | Building methods |
-
2009
- 2009-01-16 FR FR0806910A patent/FR2941246B1/en not_active Expired - Fee Related
-
2010
- 2010-01-11 WO PCT/FR2010/000042 patent/WO2010081973A2/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| None |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2941246A1 (en) | 2010-07-23 |
| WO2010081973A3 (en) | 2010-09-30 |
| FR2941246B1 (en) | 2016-07-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2010081973A2 (en) | Novel approach for non-accessible large-span roofing | |
| Courbon | Stabilité de l'équilibre élastique | |
| Kulbach | Half-span loading of cable structures | |
| EP3570002A1 (en) | Method for characterising the resistance to cutting force of a beam, and associated system | |
| Schwarz et al. | Trojans in habitable zones | |
| Tisserand | La Statue d'Arago. | |
| Schlaich | The Bridges of Eduardo Torroja | |
| CN116815614B (en) | Restraint system of inclined single-tower cable-stayed bridge and its design and application method | |
| Emerit | Géographie et recasement. | |
| FR3054269A1 (en) | TOWER STRUCTURE FOR SUPPORTING AT LEAST ONE VERTICAL AXIS WIND ROTOR | |
| EP0953684B1 (en) | Lattice girder and bridge having such a lattice girder | |
| Paik et al. | Innovative Technology of Yavuz Sultan Selim Bridge Design and Construction | |
| Henneton | Shinobu Chujo et Takaharu Hasekura. Claudel et le Japon | |
| Marquis | Une analyse linguistique et structurelle de Robert Munsch | |
| Bigourdan | Revue des publications astronomiques. Comptes rendus de l'académie des sciences, t. CXX, nos. 24-25; t. CXXI, nos. 1-17 (suite) | |
| FR3135473A1 (en) | Corner connection device for industrial buildings with movable perimeter cladding equipped with beams equipped with a runway | |
| Radelet-de Grave | Arthur Vierendeel: The Man with Iron Nerves Who Invented the Truss Without Diagonals | |
| Smith | Developing an erection scheme for a large bridge | |
| Bertaud | Les étoiles à enveloppe | |
| Bouvier | Gens de finances au XVIIIe siècle | |
| Zuo | Collapse causes analysis and numerical simulation for a rigid frame multiple arch bridge | |
| Flammarion | La Comete Rordame-Quenisset. | |
| Prinz | Encore les" fleuves" lunaires | |
| Hamon | Societe Astronomique de France. Seance du Mercredi 9 Decembre 1931. | |
| Monod | VICTOR HUGO |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10710371 Country of ref document: EP Kind code of ref document: A2 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 10710371 Country of ref document: EP Kind code of ref document: A2 |