[go: up one dir, main page]

WO2008013050A1 - Image processing method, image processing program, and image processing device - Google Patents

Image processing method, image processing program, and image processing device Download PDF

Info

Publication number
WO2008013050A1
WO2008013050A1 PCT/JP2007/063670 JP2007063670W WO2008013050A1 WO 2008013050 A1 WO2008013050 A1 WO 2008013050A1 JP 2007063670 W JP2007063670 W JP 2007063670W WO 2008013050 A1 WO2008013050 A1 WO 2008013050A1
Authority
WO
WIPO (PCT)
Prior art keywords
color difference
color
image
image processing
determination target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2007/063670
Other languages
English (en)
French (fr)
Inventor
Akihiko Utsugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to US12/309,522 priority Critical patent/US8040389B2/en
Priority to JP2008526722A priority patent/JP4692632B2/ja
Priority to EP07790491.0A priority patent/EP2045775A4/en
Publication of WO2008013050A1 publication Critical patent/WO2008013050A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/446Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering using Haar-like filters, e.g. using integral image techniques
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/768Arrangements for image or video recognition or understanding using pattern recognition or machine learning using context analysis, e.g. recognition aided by known co-occurring patterns
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/162Detection; Localisation; Normalisation using pixel segmentation or colour matching
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Definitions

  • Image processing method image processing program, and image processing apparatus
  • the present invention relates to an image processing method, an image processing program, and an image processing apparatus.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-48184
  • the image processing method generates color difference image information based on input image information, and determines an object in a determination image configured by the color difference image information.
  • a determination target area is set, and based on the color difference image information of each of the determination target area and a plurality of peripheral areas set around the determination target area, a color difference average value of each area is calculated and determined.
  • Evaluate whether the color information indicated by the color difference average value in the target area is information on the characteristic color determined in advance for the target object, and calculate the difference between the color difference average value in the judgment target area and the color difference average value in the surrounding area.
  • Evaluate whether the judgment target area and the surrounding area are separated areas, and evaluate whether or not the power is characteristic color information, and whether or not it is a separated area. Based on the evaluation results! / Turn to determine whether the target area includes the target object.
  • the object is a person. I prefer to be the face of things.
  • the characteristic color information of the object is a skin color of the person's face.
  • the color difference dispersion in the area is evaluated based on the color difference image information in the determination target area. Based on the evaluation result of whether or not it is color information, the evaluation result of whether or not it is a separated area, and the evaluation result of dispersion of color differences, it is determined whether or not the determination target area includes an object I like it! /
  • the color difference image information is integrated to generate integrated image information, and the color difference average is calculated based on the integrated image information. It is preferable to calculate the value.
  • the region having color information corresponding to the characteristic color information of the object in the determination image It is preferable that the ratio is calculated, and the determination is made with an emphasis on the evaluation result as to whether or not the area is a separated area, as the calculated area ratio is larger.
  • the first color that minimizes the variation in the color difference value of the sample of the characteristic color that has been acquired by force.
  • the average color difference value in the judgment target area is projected, and the respective projection values are converted. Based on the obtained evaluation value, it is preferable to evaluate whether the color information indicated by the color difference average value in the determination target region is information on the characteristic color of the target object.
  • the first color-difference pixel value is generated based on the input image, and the characteristic color obtained by bullying The first color difference pixel value for each of the first color space coordinate axis and the second color space coordinate axis orthogonal to the first color space coordinate axis that minimize the variation of the color difference value of the sample of Is calculated as the second color difference pixel value.
  • the image processing program causes a computer to execute processing in the image processing method according to any one of the first to eighth aspects.
  • an image processing apparatus executes an image input unit for inputting an image, and executes an image processing program according to the ninth aspect for an input image input from the image input unit.
  • An execution unit for executing processing.
  • the execution unit includes a color difference image information generation unit that generates color difference image information based on input image information, and a color difference image information.
  • a judgment target area setting unit for setting a judgment target area for judging a target object, and a color difference between each of the judgment target area and a plurality of peripheral areas set around the judgment target area
  • the color difference average value calculation unit for calculating the color difference average value of each area and the color information indicated by the color difference average value in the determination target area are information on characteristic colors predetermined for the object.
  • the determination target region and the peripheral region are separated based on the difference between the color difference average value in the determination target region and the color difference average value in the peripheral region and the color difference average value in the peripheral region. Separation to evaluate if there is Based on the area evaluation unit and the evaluation result of whether or not it is characteristic color information and the evaluation result of whether or not it is a separated area, it is determined whether or not the determination target area includes an object. U, it is preferable to include a determination part.
  • the camera includes an image acquisition unit that captures a subject image and acquires image information
  • the image processing device includes: The image information acquired by the acquisition unit is input.
  • the present invention it is possible to accurately determine the force / force force in which the determination target region is a region including the target object.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of an image processing apparatus.
  • FIG. 2 is a diagram illustrating a flow of processing executed by each unit included in the control device 103.
  • FIG. 3 is a diagram showing a flow of face candidate determination processing in the first embodiment.
  • FIG. 4 is a diagram showing a setting example of a face candidate determination target region and a peripheral region.
  • FIG. 5 is a diagram showing a parameter setting method used when calculating a skin color evaluation value Es.
  • FIG. 6 shows a flow of face candidate determination processing in the second embodiment.
  • FIG. 7 is a diagram showing a flow of face candidate determination processing in the third embodiment.
  • FIG. 8 is a diagram showing a state in which a program is provided to a personal computer.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of an image processing apparatus according to the first embodiment.
  • the image processing apparatus 100 is, for example, a personal computer, and includes an input device 101, an external interface 102, a control device 103, an HDD (node disk drive) 104, and a monitor 105.
  • an HDD node disk drive
  • the input device 101 includes various input members operated by a user, such as a keyboard and a mouse.
  • the external interface 102 is an interface for capturing an image to be processed, which will be described later, from an external device such as a digital camera.
  • an external device such as a digital camera.
  • a USB interface or a wireless LAN interface is used.
  • the control device 103 includes a CPU, a memory, and other peripheral circuits, and includes a color space conversion unit 103a, a color difference image reduction unit 103b, a luminance image reduction unit 103c, and a color difference image face candidate detection unit 103d described later. And a face determination unit 103e.
  • Various data such as image data captured via the external interface 102 and an image processing program executed by the image processing unit 103a are recorded in the HDD 104.
  • the monitor 105 displays an operation screen for operating the image processing apparatus 100 and an image recorded on the HDD 104. Note that recording of data on the HDD 104 and display on the monitor 105 are controlled by the control device 103.
  • an area including a human face in an arbitrary image stored in the HDD 104 or an image captured via the external interface 102 is specified.
  • the background color is similar to the skin color, such as when the background of a person's face is a wooden wall.
  • the person's face and background cannot be accurately separated, and the image It was difficult to accurately detect a face candidate region from within.
  • the white balance at the time of image capture is not appropriate, the face of the person in the image may be different from the skin color. It was difficult.
  • the control device 103 When the control device 103 reads image data to be processed from the HDD 104 or the external interface 102, an image is input to the color space conversion unit 103a.
  • the color space conversion unit 103a performs color conversion on the input image (input image) to generate a color difference image and a luminance image.
  • an example in which the color space conversion unit 103a generates the color difference image and the luminance image by converting the input image into the Lab color system will be described, but the present invention is not limited to this, and other tables such as YCb Cr are also described. You may convert into a color system.
  • the color difference image generated by the color space conversion unit 103a is output to the color difference image reduction unit 103b, and the luminance image is output to the luminance image reduction unit 103c.
  • the luminance image reduction unit 103c generates a plurality of reduced luminance images by changing the input luminance images at different reduction magnifications.
  • a reduction magnification k is given to the integer n from 0 to 31 by the following equation (1), and reduced luminance images reduced at 32 reduction magnifications k reduced at different reduction magnifications are generated.
  • a plurality of reduced luminance images reduced at different reduction ratios in this way are output to the face determination unit 103e.
  • the color difference image reduction unit 103b generates a plurality of reduced color difference images by changing the input color difference images at different reduction magnifications.
  • the reduction magnification k is the same as that in the case of the processing by the luminance image reduction unit 103c, and reduced color difference images reduced at 32 reduction magnifications k are generated by the equation (1).
  • the reduction method may be a simpler method than the processing by the luminance image reduction unit 103c, for example, an -arrest neighbor method.
  • a plurality of reduced color difference images reduced in this way at different reduction magnifications are output to the color difference image face candidate detection unit 103d.
  • the color difference image face candidate detection unit 103d performs a face candidate determination process, which will be described later, on each of the plurality of reduced color difference images input from the color difference image reduction unit 103b. In this case, an area is extracted as a face candidate area.
  • a face candidate area is extracted from at least one reduced color difference image among a plurality of reduced color difference images
  • the coordinate value of the face candidate area (X ⁇ is output to the face determination unit 103e.
  • the size of the extracted face candidate area is assumed to be 19 X 19 pixels as described later.
  • the face determination unit 103e reads the reduced luminance image generated by the luminance image reduction unit 103c at the same reduction magnification k as the reduction magnification k input from the color difference image face candidate detection unit 103b. Then, based on the coordinate values ( ⁇ ⁇ ⁇ ) input from the color difference image face candidate detection unit 103b, it is specified whether or not the face candidate region is finally a face image.
  • the face determination unit 103e is a known face determination. It is determined whether or not a human face is included in the face candidate area by using a known method such as a neural network, SVM, or AdaBoost.
  • the process by the face determination unit 103e is further performed to obtain the color difference image.
  • the face candidate area extracted by the face candidate detection unit 103d can be re-evaluated, and an area including a human face can be identified with high accuracy.
  • the coordinate values (X, Y) of are calculated using the following equations (2) to (4).
  • the color difference image face candidate detection unit 103d divides the process into the processes of the face candidate determination target region setting unit 3a, the color difference average value calculation unit 3b, the skin color evaluation unit 3c, the separation evaluation unit 3d, and the face candidate determination unit 3e.
  • the contents of the processing are explained for each of these parts.
  • the plurality of reduced color difference images output from the color difference image reduction unit 103b are input to the face candidate determination target area setting unit 3a.
  • the face candidate determination target area setting unit 3a sets a face candidate determination target area for each reduced color difference image.
  • the face candidate determination target areas are set at various positions on the reduced color difference image. For example, the face candidate determination target areas are set on grid points so that the interval between adjacent face candidate determination target areas is about two pixels. In addition, the size of each face candidate determination target area is about 19 ⁇ 19 pixels as described above.
  • Face candidate determination target region setting unit 3a further sets peripheral regions on the top, bottom, left, and right of the set face candidate determination target region.
  • Figure 4 shows a specific example when the peripheral area is set.
  • the peripheral region 4b is set on the right side of the face candidate determination target region 4a
  • the peripheral region 4c is set on the lower side
  • the peripheral region 4d is set on the left side
  • the peripheral region 4e is set on the upper side.
  • the size of each peripheral region is 6 pixels wide by 19 pixels high in the peripheral regions 4b and 4d, and 19 pixels wide by 6 pixels high in the peripheral regions 4c and 4e.
  • the color difference average value calculation unit 3b calculates the average value of color differences (a
  • the average value (a *, b *) of the color difference in e is calculated.
  • the average color difference value can be calculated at high speed.
  • the integrated image I (x, y) of the color difference image C (X, y) is defined by the following equation (5).
  • Csum l (x + w, y + h)-l (x- ⁇ , y + h)-l (x + w, y- ⁇ ) + I [x- ⁇ , y- ⁇ )... (6)
  • the integral can be obtained simply by adding and subtracting the four pixel values, enabling high-speed calculations. Then, dividing the integrated value Csum of the rectangular area by the number of pixels in that area gives the average value.
  • the skin color evaluation unit 3c substitutes the average value (a *, b *) of the color difference in the face candidate determination target region 4b into the following expressions (7) and (8), and further uses the following expression (9) to determine the skin color evaluation value Es. Is calculated.
  • This skin color evaluation value Es is an index indicating how close the average color difference (a *, b *) in the face candidate determination target area 4b is to the skin color, and the larger the value, the average color difference (a *, b *) is more similar to skin color.
  • the First a large number of face image samples are collected, and the average value (a n , b) of the color difference of the face area of each image is calculated.
  • the distribution of (a, b) is illustrated as a region 5a indicated by hatching in FIG.
  • the average of (a, b) is calculated as (a, b).
  • the unit vectors of Cx axis direction and Cy axis direction are respectively (e, e), (e, e)
  • the separation evaluation unit 3d includes an average color difference value (a *, b *) of the face candidate determination target region 4a and an average color difference value (a *, b *) of each of the peripheral regions 4b to 4e. Based on (a *, b *)
  • the separation evaluation value Ed is calculated by the following formulas (10) to (14).
  • the separation evaluation value Ed is an index indicating how much the average color difference between the face candidate determination target region 4a and each of the peripheral regions 4b to 4e is. The larger the value, the more the face is evaluated. This indicates that the difference in the average value of the color difference between the candidate determination target area 4a and each of the peripheral areas 4b to 4e is large.
  • may be set to about 5, for example.
  • the face candidate determination unit 3e determines whether the face candidate determination target region 4a is a region including a human face, that is, a face candidate. judge. For example, when the skin color evaluation value Es and the separation evaluation value Ed satisfy the following equation (15), the face candidate determination unit 3e determines that the face candidate determination target region is a face candidate, and uses the face candidate determination target region as the face candidate. Detect as candidate area. In the following equation (15), th is set to about 0.6, for example.
  • both the skin color evaluation value Es and the separation evaluation value Ed are large values, and the face candidate determination target region is determined as a face candidate according to Expression (15).
  • the skin color evaluation value Es is a large value. Even if the background is similar to the skin color, it is not exactly the same color as the face candidate determination target area. For this reason, the separation evaluation value Ed is somewhat large. Therefore, the face candidate determination target region is determined as a face candidate by Expression (15).
  • the skin color evaluation value Es may be a small value.
  • the separation evaluation unit Ed has a large value, and the face candidate determination target region is determined to be a face candidate by Expression (15).
  • the force separation evaluation value Ed which is a large skin color evaluation value Es, is a value close to 0, and therefore, the face candidate determination target region is determined not to be a face candidate by Equation (15).
  • the skin color evaluation value Es is almost a value of 0, and even if the separation evaluation value becomes a large value, the face candidate determination target region is determined not to be a face candidate by Expression (15).
  • the face candidate determination unit 3e detects the face candidate area, as described above, the reduction color k of the reduced color difference image in which the face candidate area is detected and the reduction reduced by the reduction magnification k Coordinate value of face candidate region in color difference image (outputs pair with X ⁇ to face determination unit 103e
  • the skin color evaluation value Es and the separation evaluation value Ed are calculated, and it is determined based on these evaluation values whether or not the face candidate determination target area is a face candidate.
  • the known face detection method detects image power that is difficult to distinguish. be able to.
  • the face candidate region cannot be accurately detected from the image according to the conventional method
  • the face candidate region can be accurately detected.
  • the color difference image face candidate detection unit 103d calculates the skin color evaluation value Es and the separation evaluation value Ed for the face candidate determination target region 4a set on the reduced color difference image, and these The case where the face candidate area is detected based on the evaluation value has been described. In this case, for example, when there are red flowers and green leaves in the face candidate determination target area 4a, the average color difference of the face candidate determination target area 4a is equal to the skin color, and the face candidate determination target area 4a Although the human face is not included, the face candidate determination target area 4a may be erroneously detected as a face candidate area.
  • the color difference image face candidate detection unit 103d takes into account the variance of the color difference of the face candidate determination target region 4a in addition to the skin color evaluation value Es and the separation evaluation value Ed.
  • the face candidate area is detected from the reduced color difference image.
  • the block diagram shown in FIG. 1, the flowchart shown in FIG. 2, the diagram showing the setting example of the face candidate determination target region and the peripheral region shown in FIG. 4, and the skin color evaluation value Es shown in FIG. 5 are calculated. Since the diagram showing the parameter setting method used in this case is the same as in the first embodiment, the description thereof is omitted.
  • FIG. 6 is a diagram illustrating a flow of face candidate determination processing executed by the color difference image face candidate detection unit 103d according to the second embodiment.
  • the color difference image face candidate detection unit 103d includes a face candidate determination target region setting unit 3a, a color difference average value calculation unit 3b, a skin color evaluation unit 3c, a separation evaluation unit 3d, a face candidate determination unit 3e, and a color difference.
  • the process can be divided into steps of the variance value calculation unit 6a and the variance evaluation unit 6b. It should be noted that the processing in each of the face candidate determination target region setting unit 3a, the color difference average value calculation unit 3b, the skin color evaluation unit 3c, and the separation evaluation unit 3d is described. Since this is the same as the first embodiment, description thereof is omitted.
  • the color difference variance calculation unit 6a calculates the color difference variance (color difference variance value) in the face candidate determination target region 4a. Then, the calculated chrominance variance values are respectively set as ⁇ ⁇ 2 and the following equation (16) ab
  • the variance evaluation value Eb is calculated by This variance evaluation value Eb is an index for evaluating the size of the color difference variance value in the face candidate determination target region 4a. The larger the value, the smaller the color difference variance value in the face candidate determination target region 4a. Indicates.
  • D is, for example, 10.
  • the color difference dispersion value can be calculated at high speed.
  • the face candidate determination unit 3e determines whether the face candidate determination target region includes a human face, that is, a face candidate. Determine whether.
  • the face candidate determination unit 3e determines that the face candidate determination target region is a face candidate when, for example, the skin color evaluation value Es, the separation evaluation value Ed, and the variance evaluation value Eb satisfy the following expression (17), and the face The candidate determination target area is detected as a face candidate area.
  • th is about 0.6, for example.
  • the face candidate is determined by considering not only the skin color evaluation value Es and the separation evaluation value Ed but also the variance evaluation value Eb, so that the face candidate determination target region 4a includes a human face. Nevertheless, even if the average color difference of the face candidate determination target area 4a is equal to the skin color, the dispersion evaluation value Eb is a small value. It can be determined that 4a is not a face candidate.
  • the face candidate determination target area 4a does not include a human face. Regardless, if the average color difference of the face candidate determination target area 4a is equal to the skin color, the face candidate determination target area 4a can be determined not to be a face candidate, and the face candidate area can be detected with higher accuracy. it can.
  • the skin color evaluation value Es described above in the first and second embodiments is mostly detected as a skin color area, such as when the color temperature of the light illuminating the subject is low or there is a wooden wall in the background. In such a case, the reliability may be lowered. Therefore, in the third embodiment, the face candidate determination accuracy is improved by placing importance on the separation evaluation value Ed over the skin color evaluation value Es in such a case.
  • FIG. 7 is a diagram illustrating a flow of face candidate determination processing executed by the color difference image face candidate detection unit 103d according to the third embodiment.
  • the color difference image face candidate detection unit 103d includes a coefficient calculation unit 7a, a face candidate determination target region setting unit 3a, a color difference average value calculation unit 3b, a skin color evaluation unit 3c, a separation evaluation unit 3d, and a face Can be divided into processes of each part of the candidate determination unit 3e.
  • the processing in each of the face candidate determination target area setting unit 3a, the color difference average value calculation unit 3b, the skin color evaluation unit 3c, and the separation evaluation unit 3d is the same as in the first and second embodiments, and thus the description thereof is omitted. .
  • the coefficient calculation unit 7a calculates the ratio of colors similar to the skin color in the reduced color difference image, and calculates a coefficient k indicating the importance of the separation evaluation value Ed according to the calculation result.
  • the reduced color difference image is divided into blocks consisting of several hundreds of pixels, and an average value of color differences is obtained for each block. Then, blocks whose average color difference is similar to the flesh color are counted, and a ratio P of blocks similar to the flesh color for all blocks in the reduced color difference image is calculated.
  • each block is similar to the skin color by, for example, substituting the color difference average value of each block into the equations (7) to (9) to calculate the skin color evaluation value Es.
  • a block whose Es is 0.4 or more is judged as a block similar to skin color.
  • the ratio p of the blocks similar to the skin color is calculated for any one sheet, and the same value is applied to the other reduced color difference images. Also good.
  • the coefficient calculation unit 7a calculates a coefficient k indicating the importance level of the separation evaluation value Ed by the following equation (18) using p calculated in this way.
  • the face candidate determination unit 3e determines whether the face candidate determination target region is a face candidate based on the skin color evaluation value Es, the separation evaluation value Ed, and the coefficient k indicating the multiplicity of the separation evaluation value Ed. Determine whether or not.
  • the face candidate determination unit 3e determines that the face candidate determination target region is a face candidate when the skin color evaluation value Es, the separation evaluation value Ed, and the coefficient k indicating the importance of the separation evaluation value Ed satisfy the following equation (19): And the face candidate determination target area is detected as a face candidate area.
  • th is set to about 0.6, for example.
  • the color k of the light that illuminates the subject is determined by weighting the skin color evaluation value Es and the separation evaluation value Ed using the coefficient k indicating the importance of the separation evaluation value Ed, thereby determining the face candidate. Even when the temperature is low or there is a wooden wall or the like in the background, the face candidate determination accuracy can be improved even when the majority of the image is detected as a skin color region.
  • the face candidate determination unit 3e detects a face candidate area, as described above, the reduction color k of the reduced color difference image in which the face candidate area is detected and the reduction reduced by the reduction ratio k Coordinate value of face candidate region in color difference image (outputs pair with X ⁇ to face determination unit 103e
  • the coefficient k indicating the importance level of the separation evaluation value Ed is determined.
  • the skin color evaluation value Es and the separation evaluation value Ed were weighted to determine face candidates.
  • the separation evaluation value Ed is more important than the skin color evaluation value Es when a wide range of the image is similar to the skin color.
  • a face candidate can be determined, and the effect of further improving the accuracy of the face candidate determination process can be obtained.
  • the color space conversion unit 103a performs color conversion on the input image to generate a color difference image and a luminance image, and each image is converted into a color difference image reduction unit 103b and a luminance image reduction unit. An example of outputting to the unit 103c has been described.
  • the color space conversion unit 103a performs color conversion on the input image to generate a color difference image and a luminance image, and further detects the color difference image face candidate for the color difference image.
  • the force is converted to a color space suitable for skin color evaluation by the unit 103d and the force is also output to the color difference image reduction unit 103b will be described.
  • FIG. 1 the block diagram shown in FIG. 1, the flowchart shown in FIG. 2, the flowchart showing the flow of the face candidate determination process shown in FIG. 3, the face candidate determination target region shown in FIG.
  • a diagram illustrating an example of setting a region and a diagram illustrating a parameter setting method used when calculating the skin color evaluation value Es illustrated in FIG. 5 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the processing by each of the units other than the color space conversion unit 103a and the color difference image face candidate detection unit 103d is the same as in the first to third embodiments, so the description thereof will be omitted and the differences will be mainly described. To do.
  • the color space conversion unit 103a After converting the pixel value of the input image into the Lab color system, the color space conversion unit 103a further substitutes the color difference (a, b) for each pixel into the following equations (20) and (21). To generate a second color difference (Cx, Cy).
  • the color space conversion unit 103a outputs a color difference image having the calculated second color difference (Cx, Cy) as a pixel value to the color difference image reduction unit 103b.
  • Face candidate determination processing executed by the color difference image face candidate detection unit 103d will be described with reference to FIG.
  • the processes in the face candidate determination target region setting unit 3a and the face candidate determination unit 3e included in the color difference image face candidate detection unit 103d are the same as those in the first embodiment, and thus the description will be made. Omitted.
  • the color difference average value calculation unit 3b calculates the second color difference average value (Cx *, Cy *) in the face candidate determination target region 4a and the second color difference average value (Cx *, Cv in the peripheral region 4b). *), The average value of the second color difference in the peripheral area 4c (Cx *, Cv *), the average value of the second color difference in the peripheral area 4d (Cx *, Cv *), the average value of the second color difference in the peripheral area 4d (C
  • the skin color evaluation unit 3c calculates the skin color evaluation value Es by substituting the second color difference average value (Cx *, Cy *) of the face candidate determination target region 4a into the following equation (22). Note that the value of each parameter in the following equation (22) may be set in the same manner as in the first embodiment.
  • the separation evaluation unit 3d performs the second color difference average value (Cx *, Cy *) of the face candidate determination target region 4a and the second color difference average values (Cx *) of the peripheral regions 4b to 4e. , Cy *) to (Cx *, Cy *), the separation evaluation value Ed is calculated by the following equations (23) to (27).
  • may be set to about 5, for example.
  • the color space conversion unit 103a converts the color difference image into a color space suitable for skin color evaluation
  • the color difference image face candidate detection unit 1 03d The amount of calculation for calculating the skin color evaluation value Es can be reduced.
  • the image processing apparatus can be modified as follows. (1) The face candidate determination processing in the second, third, and fourth embodiments described above has been described for the case where the first embodiment is modified. However, the face candidate determination process should be performed by combining the second, third, and fourth embodiments.
  • the image processing apparatus 100 includes a color difference image generation process that generates a color difference image based on an input image, an area setting process that sets a determination target area for determining an object for the color difference image, and a determination process.
  • a color difference average value calculating step for calculating a color difference average value of each area, and the color difference average value in the determination target area are related to the object.
  • the judgment target area is an area that contains the target object. Judge whether or not And determining the feature color of the object in the image using an index equivalent to the skin color evaluation value Es to determine the object present in the image. .
  • the above-described control-related program can be provided through a recording medium such as a CD-ROM or a data signal such as the Internet.
  • Figure 8 shows how this is done.
  • the personal computer 400 is provided with a program via a CD-ROM 404.
  • the personal computer 400 has a connection function with the communication line 401.
  • the computer 402 is a server computer that provides the above program, and stores these programs in a recording medium such as the hard disk 403.
  • the communication line 401 is a communication line such as the Internet or personal computer communication, or a dedicated communication line.
  • the computer 402 reads the program using the hard disk 403 and transmits the program to the personal computer 400 via the communication line 401.
  • embody the program as a data signal in a carrier wave, Transmission is performed via the communication line 401.
  • the program can be supplied as a computer-readable computer program product in various forms such as a recording medium and a carrier wave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

画像処理方法、画像処理プログラム、および画像処理装置 技術分野
[0001] 本発明は、画像処理方法、画像処理プログラム、および画像処理装置に関する。
背景技術
[0002] 次のような画像処理方法が知られて!/、る。この画像処理方法では、撮影された画像 の中から人物の顔を検出するために、肌色を有する画像領域を顔候補領域として検 出し、検出された顔候補領域に対して顔判定処理を行う (特許文献 1参照)。
[0003] 特許文献 1 :特開 2000— 48184号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、従来の方法においては、被写体を照明する光の色温度が低い場合 や背景に木製の壁などがある場合には、画像の大半が肌色領域として検出されてし ま ヽ、人物の顔を含まな 、画像領域も顔候補領域として誤検出してしまう可能性があ つた o
課題を解決するための手段
[0005] 本発明の第 1の態様によると、画像処理方法は、入力画像情報に基づいて色差画 像情報を生成し、色差画像情報で構成される被判定画像内において、対象物を判 定するための判定対象領域を設定し、判定対象領域および判定対象領域の周囲に 設定した複数の周辺領域のそれぞれの色差画像情報に基づ 、て、各領域の色差平 均値を算出し、判定対象領域における色差平均値が示す色情報が、対象物に関し てあらかじめ定められた特徴色の情報であるかを評価し、判定対象領域における色 差平均値と周辺領域の色差平均値との差分に基づ!/、て、判定対象領域と周辺領域 とが分離された領域であるかを評価し、特徴色の情報である力否かの評価結果およ び分離された領域であるか否かの評価結果に基づ!/ヽて、判定対象領域が対象物を 含むか否かを判定する。
本発明の第 2の態様によると、第 1の態様の画像処理方法において、対象物は人 物の顔であることが好ま 、。
本発明の第 3の態様によると、第 2の態様の画像処理方法において、対象物の特 徴色の情報は、前記人物の顔の肌色であることが好ま 、。
本発明の第 4の態様によると、第 1〜第 3のいずれかの態様の画像処理方法におい て、判定対象領域における色差画像情報に基づいて、当該領域における色差の分 散を評価し、特徴色の情報であるか否かの評価結果、分離された領域であるか否か の評価結果、および色差の分散の評価結果に基づいて、判定対象領域が対象物を 含か否かを判定することが好まし!/、。
本発明の第 5の態様によると、第 1〜第 4のいずれかの態様の画像処理方法におい て、色差画像情報を積分して積分画像情報を生成し、積分画像情報に基づいて色 差平均値を算出することが好ましい。
本発明の第 6の態様によると、第 1〜第 5のいずれかの態様の画像処理方法におい て、被判定画像内において、対象物の特徴色の情報に対応する色情報を有する領 域の割合を算出し、算出された領域の割合が大きいほど、分離された領域であるか 否かの評価結果を重視して判定を行うことが好ましい。
本発明の第 7の態様によると、第 1〜第 6のいずれかの態様の画像処理方法におい て、あら力じめ取得した特徴色のサンプルの色差値のばらつきを最小にする第 1の色 空間座標軸、および第 1の色空間座標軸に対して直交する第 2の色空間座標軸のそ れぞれに対して、判定対象領域における色差平均値を射影し、それぞれの射影値を 変換して得られた評価値に基づ 、て、判定対象領域における色差平均値が示す色 情報が対象物の特徴色の情報であるかを評価することが好ましい。
本発明の第 8の態様によると、第 1〜第 7のいずれかの態様の画像処理方法におい て、入力画像に基づいて第 1の色差画素値を生成し、あら力じめ取得した特徴色の サンプルの色差値のばらつきを最小にする第 1の色空間座標軸、および第 1の色空 間座標軸に対して直交する第 2の色空間座標軸のそれぞれに対して、第 1の色差画 素値を射影した値を第 2の色差画素値として算出し、
第 2の色差画像値で構成される色差画像情報に対して判定対象領域を設定するこ とが好ましい。 本発明の第 9の態様によると、画像処理プログラムは、第 1〜第 8のいずれかの態 様の画像処理方法における処理をコンピュータに実行させる。
本発明の第 10の態様によると、画像処理装置は、画像を入力する画像入力部と、 第 9の態様の画像処理プログラムを実行して、画像入力部から入力された入力画像 に対して画像処理を実行する実行部とを備える。
本発明の第 11の態様によると、第 10の態様の画像処理装置において、実行部は、 入力画像情報に基づ 、て色差画像情報を生成する色差画像情報生成部と、色差画 像情報で構成される被判定画像内において、対象物を判定するための判定対象領 域を設定する判定対象領域設定部と、判定対象領域および判定対象領域の周囲に 設定した複数の周辺領域のそれぞれの色差画像情報に基づ 、て、各領域の色差平 均値を算出する色差平均値算出部と、判定対象領域における色差平均値が示す色 情報が、対象物に関してあらかじめ定められた特徴色の情報であるかを評価する特 徴色評価部と、判定対象領域における色差平均値と周辺領域の前記色差平均値と の差分に基づ!ヽて、判定対象領域と周辺領域とが分離された領域であるかを評価す る分離領域評価部と、特徴色の情報であるか否かの評価結果および分離された領 域であるか否かの評価結果に基づ 、て、判定対象領域が対象物を含むか否かを判 定する判定部とを含むことが好ま U、。
本発明の第 12の態様によると、カメラは、被写体像を撮像して画像情報を取得する 画像取得部と、第 10または第 11の態様の画像処理装置とを備え、画像入力部は、 画像取得部で取得した画像情報を入力する。
発明の効果
[0006] 本発明によれば、判定対象領域が対象物を含む領域である力否力を精度高く判定 することができる。
図面の簡単な説明
[0007] [図 1]画像処理装置の一実施の形態の構成を示すブロック図。
[図 2]制御装置 103が有する各部によって実行される処理の流れを示す図。
[図 3]第 1の実施の形態における顔候補判定処理の流れを示す図。
[図 4]顔候補判定対象領域および周辺領域の設定例を示す図。 [図 5]肌色評価値 Esを算出する際に用いるパラメータの設定方法を示す図。
[図 6]第 2の実施の形態における顔候補判定処理の流れを示す図。
[図 7]第 3の実施の形態における顔候補判定処理の流れを示す図。
[図 8]プログラムをパーソナルコンピュータに提供する様子を示す図。
発明を実施するための最良の形態
[0008] 一第 1の実施の形態一
図 1は、第 1の実施の形態における画像処理装置の一実施の形態の構成を示すブ ロック図である。画像処理装置 100は、例えばパソコンであり、入力装置 101と、外部 インターフェース 102と、制御装置 103と、 HDD (ノヽードディスクドライブ) 104と、モ ニタ 105とを備えている。
[0009] 入力装置 101は、キーボードやマウスなど、使用者によって操作される種々の入力 部材を含んでいる。外部インターフェース 102は、後述する画像処理対象の画像を デジタルカメラなどの外部機器力 取り込むためのインターフェースであり、例えば U SBインターフェースや無線 LANインターフェースが用いられる。制御装置 103は、 C PU、メモリ、およびその他の周辺回路で構成され、後述する色空間変換部 103aと、 色差画像縮小部 103bと、輝度画像縮小部 103cと、色差画像顔候補検出部 103dと 、顔判定部 103eとを有している。
[0010] HDD104は、外部インターフェース 102を介して取り込んだ画像データや画像処 理部 103aによって実行される画像処理プログラムなど種々のデータが記録される。 モニタ 105は、画像処理装置 100を操作するための操作画面や HDD 104に記録さ れている画像などを表示する。なお、 HDD104へのデータの記録、およびモニタ 10 5への表示は、制御装置 103によって制御される。
[0011] 次に、制御装置 103が有する 103a〜103eの各部による処理について説明する。
これらの各部による処理によって、 HDD104に記憶されている任意の画像や外部ィ ンターフェース 102を介して取り込まれた画像内における人物の顔が含まれる領域を 特定する。このとき、従来行われていたように、画像内から肌色の領域を顔候補領域 として検出する場合には、人物の顔の背景が木製の壁である場合など、背景の色が 肌色に類似する場合には、人物の顔と背景とを正確に分離することができず、画像 内から正確に顔候補領域を検出することが困難であった。また、画像撮影時のホワイ トバランスが適正でな 、場合には、画像内の人物の顔が肌色とは異なる可能性があ り、この場合にも画像内力も正確に顔候補領域を検出することが困難であった。
[0012] そこで本実施の形態では、従来の肌色による顔候補検出方法では検出することが 困難であった顔候補領域を精度高く検出する方法について説明する。以下、図 2を 用いて 103a〜103eの各部による処理について説明する。
[0013] 制御装置 103が HDD104や外部インターフェース 102から処理対象の画像デー タを読み込むことによって、色空間変換部 103aに画像が入力される。色空間変換部 103aは、入力された画像 (入力画像)を色変換して色差画像と輝度画像とを生成す る。なお、ここでは色空間変換部 103aは、入力画像を Lab表色系に変換して色差画 像と輝度画像とを生成する例について説明するが、これに限定されず、その他 YCb Crなどの表色系に変換してもよい。色空間変換部 103aによって生成された色差画 像は色差画像縮小部 103bへ出力され、輝度画像は輝度画像縮小部 103cへ出力さ れる。
[0014] 輝度画像縮小部 103cは、入力された輝度画像をそれぞれ縮小倍率を異にして、 複数の縮小輝度画像を生成する。例えば、 0〜31までの整数 nに対して縮小倍率 k を次式(1)で与え、異なる縮小倍率で縮小した 32通りの縮小倍率 kで縮小された縮 小輝度画像を生成する。
k=0. 9n · · · (1)
なお、縮小方法としては、例えば公知の Cubic変倍や線形変倍を用いればよい。こ のようにして異なる縮小倍率で縮小された複数の縮小輝度画像は、顔判定部 103e へ出力される。
[0015] 色差画像縮小部 103bは、入力された色差画像をそれぞれ縮小倍率を異にして、 複数の縮小色差画像を生成する。縮小倍率 kは、輝度画像縮小部 103cによる処理 の場合と同一とし、式(1)によって 32通りの縮小倍率 kで縮小された縮小色差画像を 生成する。なお、縮小方法は、輝度画像縮小部 103cによる処理よりも簡易な方法で よぐ例えば-アレストネイバ一法を用いればよい。このようにして異なる縮小倍率で 縮小された複数の縮小色差画像は、色差画像顔候補検出部 103dへ出力される。 [0016] 色差画像顔候補検出部 103dは、色差画像縮小部 103bから入力された複数の縮 小色差画像のそれぞれに対して、後述する顔候補判定処理を実行して、各縮小色 差画像内で人物の顔を含んで 、る可能性が高 、領域を顔候補領域として抽出する 。その結果、複数の縮小色差画像のうち、少なくとも 1つの縮小色差画像から顔候補 領域が抽出された場合には、その縮小色差画像の縮小倍率 kと、その縮小倍率 kで 縮小された縮小色差画像内における顔候補領域の座標値 (X Υ との対を顔判定 部 103eへ出力する。なお、抽出される顔候補領域の大きさは、後述するように 19 X 19画素であるものとする。
[0017] 顔判定部 103eは、色差画像顔候補検出部 103bから入力された縮小倍率 kと同じ 縮小倍率 kで輝度画像縮小部 103cによって生成された縮小輝度画像を読み込む。 そして、色差画像顔候補検出部 103bから入力された座標値 (Χ ΥΊに基づいて、 顔候補領域から最終的に顔画像であるか否かを特定する。顔判定部 103eは、公知 の顔判定処理を行って、顔候補領域内に人物の顔が含まれているか否かを判定す る。なお、顔判定処理としては、例えばニューラルネットワーク、 SVM、または AdaBo ostなどの公知の方法を用いればよぐ縮小輝度画像内の 19 X 19画素の大きさの顔 候補領域に対してこれらの方法で顔判定処理を行えばょ 、。この顔判定部 103eに よる処理をさらに行うことで、色差画像顔候補検出部 103dで抽出された顔候補領域 を再評価し、高 、精度で人物の顔が含まれる領域を特定することができる。
[0018] 顔判定部 103eは、縮小輝度画像内の顔候補領域内に人物の顔が含まれると判定 した場合には、縮小画像に対する人物の顔の大きさ、すなわち顔候補領域のサイズ S' = 19,縮小画像内における顔候補領域の座標値 (X ΥΊ、および縮小倍率 kに 基づいて、処理対象の画像 (入力画像)に対する人物の顔の大きさ S、および入力画 像における顔候補領域の座標値 (X, Y)を算出する。具体的には、次式 (2)〜(4)に より算出する。
S = S'/k · · · (2)
X=XVk · · · (3)
Y=YVk · · · (4)
これによつて、入力画像内における人物の顔が含まれる領域を特定することができ る。
[0019] 次に、色差画像顔候補検出部 103dによって実行される顔候補判定処理について 、図 3を用いて説明する。色差画像顔候補検出部 103dは、顔候補判定対象領域設 定部 3a、色差平均値算出部 3b、肌色評価部 3c、分離評価部 3d、および顔候補判 定部 3eの各部の工程に分割することができ、ここでは、これら各部ごとに処理の内容 を説明する。
[0020] 色差画像縮小部 103bから出力された複数の縮小色差画像は、顔候補判定対象 領域設定部 3aへ入力される。顔候補判定対象領域設定部 3aは、各縮小色差画像 のそれぞれに対して顔候補判定対象領域を設定する。顔候補判定対象領域は、縮 小色差画像上の様々な位置に設定され、例えば、隣接する顔候補判定対象領域の 間隔が 2画素程度となるように格子点上に設定される。また、各顔候補判定対象領域 の大きさは、上述したように 19 X 19画素程度とする。
[0021] 顔候補判定対象領域設定部 3aは、さらに、設定した顔候補判定対象領域の上下 左右に周辺領域を設定する。周辺領域を設定した場合の具体例を図 4に示す。この 図 4に示すように、顔候補判定対象領域 4aの右側に周辺領域 4b、下側に周辺領域 4c、左側に周辺領域 4d、上側に周辺領域 4eをそれぞれ設定する。ここで、各周辺 領域の大きさは、周辺領域 4bおよび 4dは横 6画素 X縦 19画素とし、周辺領域 4cお よび 4eは横 19画素 X縦 6画素とする。
[0022] 色差平均値算出部 3bは、設定した各顔候補判定対象領域内の色差の平均値 (a
* , b * )、周辺領域 4b内の色差の平均値(a * , b * )、周辺領域 4c内の色差の平 均値(a * , b * )、周辺領域 4d内の色差の平均値(a * , b * )、および周辺領域 4
2 2 3 3
e内の色差の平均値 (a * , b * )をそれぞれ算出する。なお、顔候補判定処理の前
4 4
処理として、色差画像の積分画像を作成しておくことにより、色差平均値の算出を高 速に行えるようになる。
[0023] すなわち、色差画像 C (X, y)の積分画像 I (x, y)は、次式(5)で定義される。
[数 1] 【数 1】
i(X,y ∑∑c(i ) …
そして、 4点 (x, y)、 (x+w, y)、 (x, y + h)、 (x+w, y + h)を頂点とする長方形領 域内で色差画像 C(x, y)を積分した Csumは、次式 (6)により算出される。
[数 2]
【数 2】
Csum = l(x + w,y + h)- l(x -\,y + h)- l{x + w,y -\)+ I[x-\,y -\) … (6) つまり、 4点の画素値の加減算を行うだけで積分が求まるので、高速な演算が可能 となる。そして、長方形領域の積算値 Csumをその領域の画素数で割ると平均値が 求 3;る。
肌色評価部 3cは、顔候補判定対象領域 4b内の色差の平均値 (a * , b * )を次式( 7)および (8)に代入し、さらに次式 (9)によって肌色評価値 Esを算出する。この肌色 評価値 Esは、顔候補判定対象領域 4b内の色差の平均値 (a*, b*)がどれくらい肌 色に近いかを示す指標であり、その値が大きいほど色差の平均値 (a*, b*)がより 肌色に近いことを示す。
[数 3]
【数 3】
Figure imgf000010_0001
【数 4】
Figure imgf000010_0002
[数 5]
Λ
Figure imgf000010_0003
[0025] ここで、 a 、 a 、a 、b 、e 、e 、e 、e の各パラメータは、次のようにして算出す
X y m m xa xb ya yb
る。まず、顔画像のサンプルをたくさん集め、各画像の顔領域の色差の平均値 (an, b )を算出する。この(a , b )の分布を図示すると、例えば図 5の斜線で示す領域 5aの ようになる。そして、この(a , b )の平均を (a , b )として算出する。また、(a , b )の n n m m n n ばらつきが最小となる方向に Cy軸を設定し、それに直交する方向に Cx軸を設定す る。そして、 Cx軸方向と Cy軸方向の単位ベクトルをそれぞれ、(e , e ) , (e , e )
xa xb ya yb とする。
[0026] さらに、各画像の顔領域の色差平均値 (an, bn)を Cx軸方向と Cy軸方向に射影し た値の標準偏差をそれぞれ求め、その標準偏差を 3割程度増加させた値を σ およ びび として算出する。これによつて、例えば、 σ = 16、 σ = 8、 a = 12、 b = 20、 ( y x y m m e , e ) = (0. 48, 0. 87)、(e , e ) = (— 0. 87, 0. 49)力 S設定される。なお、図 xa xb ya yb
5を用いて各パラメータを算出する代わりに主成分分析などのその他の手法を用いて ちょい。
[0027] 分離評価部 3dは、顔候補判定対象領域 4aの色差の平均値 (a * , b * )、および周 辺領域 4b〜4eのそれぞれの色差の平均値(a * , b * )〜(a * , b * )に基づいて
1 1 4 4
、分離評価値 Edを次式(10)〜(14)により算出する。なお、分離評価値 Edは、顔候 補判定対象領域 4aと周辺領域 4b〜4eのそれぞれとの色差の平均値の差がどの程 度であるかを示す指標であり、その値が大きいほど顔候補判定対象領域 4aと周辺領 域 4b〜4eのそれぞれとの色差の平均値の差が大きいことを示す。
[数 6]
【数 6】
Edl + Ed2 + Ed3 + Ed4
Ed■■ (10)
4
[数 7]
【数 7】
Figure imgf000011_0001
[数 8] 【数 8】
( ία*-α2*)2+(6*-¾*): (12)
Ed2 = 1一 exp
[数 9]
【数 9】 =1- exp| '(13)
σ
[数 10]
【数
Figure imgf000012_0001
ここで、式(11)〜(14)において、 σ は、例えば 5程度に設定すればよい。
d
[0028] 顔候補判定部 3eは、肌色評価値 Esと分離評価値 Edとに基づ ヽて、顔候補判定対 象領域 4aが人物の顔を含む領域、すなわち顔候補であるか否かを判定する。顔候 補判定部 3eは、例えば肌色評価値 Esと分離評価値 Edが次式(15)を満たすときに 顔候補判定対象領域が顔候補であると判定し、その顔候補判定対象領域を顔候補 領域として検出する。なお、次式(15)において、 thは例えば 0.6程度とする。
0.5XEd+0.5XEs>th …(15)
[0029] これにより、画像撮影時のホワイトバランスが適正でない場合や背景が肌色に類似 する色である場合など、従来の手法では画像内から正確に顔候補領域を検出するこ とができなかった場合でも、顔候補領域を正確に検出することができる。式(15)によ る具体的な判定例を以下の (A)〜 (E)に示す。
[0030] (A)顔候補判定対象領域が人物の顔画像上に設定され、ホワイトバランスが適正か つ背景が肌色ではな 、場合
この場合には、肌色評価値 Esも分離評価値 Edも大きな値となり、式(15)によって 当該顔候補判定対象領域は顔候補と判定される。
[0031] (B)顔候補判定対象領域が人物の顔画像上に設定され、ホワイトバランスが適正だ 1S 背景が肌色に類似する場合
この場合には、肌色評価値 Esは大きな値になる。また、背景が肌色に類似していて も顔候補判定対象領域と全く同じ色ではない。このため、分離評価値 Edはある程度 大きな値となる。よって、式(15)によって当該顔候補判定対象領域は顔候補と判定 される。
[0032] (C)顔候補判定対象領域が人物の顔画像上に設定され、背景が肌色ではないが、 ホワイトバランスが不適切である場合
この場合には、肌色評価値 Esが小さい値となる可能性がある。しかし、分離評価部 Edは大きな値となり、式(15)によって当該顔候補判定対象領域は顔候補と判定さ れる。
[0033] (D)顔候補判定対象領域が肌色に類似する壁面上に設定されて!ヽる場合
この場合には、肌色評価値 Esは大きな値となる力 分離評価値 Edはほぼ 0に近い 値になるため、式(15)によって当該顔候補判定対象領域は顔候補ではないと判定 される。
[0034] (E)顔候補判定対象領域が肌色ではな!ヽ物体上に設定されて!ヽる場合
この場合には、肌色評価値 Esはほぼ 0に近い値になり、仮に分離評価値が大きな 値になっても式(15)によって当該顔候補判定対象領域は顔候補ではないと判定さ れる。
[0035] 顔候補判定部 3eは、顔候補領域を検出した場合には、上述したように、顔候補領 域を検出した縮小色差画像の縮小倍率 kと、その縮小倍率 kで縮小された縮小色差 画像内における顔候補領域の座標値 (X Υ との対を顔判定部 103eへ出力する
[0036] 以上説明した第 1の実施の形態によれば、以下のような作用効果を得ることができ る。
(1)肌色評価値 Esと分離評価値 Edを算出し、これらの評価値に基づいて顔候補判 定対象領域が顔候補である力否かを判定するようにした。これによつて、顔候補判定 対象領域内の肌色らしさと周辺領域との色差の差とに基づいて、周知の顔検出方法 では見分け難力つた画像力 人物の顔を含む顔候補領域を検出することができる。 [0037] (2)すなわち、画像撮影時のホワイトバランスが適正でない場合や背景が肌色である 場合など、従来の手法によれば画像内から正確に顔候補領域を検出することができ なかった場合でも、本実施の形態における発明によれば、顔候補領域を正確に検出 することができる。
[0038] (3)肌色評価値 Esと分離評価値 Edとを算出し、これらの評価値が式(15)を満たす か否かによって顔候補判定対象領域が顔候補である力否かを判定するようにしたの で、簡易な構成で顔候補領域を検出することができ、回路規模や処理時間を節約す ることがでさる。
[0039] 一第 2の実施の形態一
上述した第 1の実施の形態では、色差画像顔候補検出部 103dは、縮小色差画像 上に設定した顔候補判定対象領域 4aに対して肌色評価値 Esおよび分離評価値 Ed を算出し、これらの評価値に基づいて顔候補領域を検出する場合について説明した 。この場合、例えば顔候補判定対象領域 4a内に赤い花と緑の葉があるような場合に は、顔候補判定対象領域 4aの色差平均が肌色に等しくなり、顔候補判定対象領域 4 a内に人物の顔が含まれていないにも関わらず、当該顔候補判定対象領域 4aを顔 候補領域として誤検出してしまう可能性がある。
[0040] そこで、第 2の実施の形態では、色差画像顔候補検出部 103dは、肌色評価値 Es と分離評価値 Edとに加えて、さらに顔候補判定対象領域 4aの色差の分散を加味し て縮小色差画像から顔候補領域を検出する。なお、図 1に示したブロック図、図 2に 示したフロー図、図 4に示した顔候補判定対象領域および周辺領域の設定例を示す 図、および図 5に示した肌色評価値 Esを算出する際に用いるパラメータの設定方法 を示す図については、第 1の実施の形態と同様のため説明を省略する。
[0041] 図 6は、第 2の実施の形態における色差画像顔候補検出部 103dによって実行され る顔候補判定処理の流れを示す図である。第 2の実施の形態では、色差画像顔候補 検出部 103dは、顔候補判定対象領域設定部 3a、色差平均値算出部 3b、肌色評価 部 3c、分離評価部 3d、顔候補判定部 3e、色差分散値算出部 6a、および分散評価 部 6bの各部の工程に分割することができる。なお、顔候補判定対象領域設定部 3a、 色差平均値算出部 3b、肌色評価部 3c、分離評価部 3dの各部における処理につい ては、第 1の実施の形態と同じため説明を省略する。
[0042] 色差分散値算出部 6aは、顔候補判定対象領域 4aにおける色差の分散 (色差分散 値)を算出する。そして、算出した色差分散値をそれぞれ σ σ 2として、次式(16) a b
により分散評価値 Ebを算出する。この分散評価値 Ebは、顔候補判定対象領域 4a内 の色差分散値の大きさを評価するための指標であり、その値が大きいほど顔候補判 定対象領域 4a内の色差分散値が小さいことを示す。
[数 11]
【数 1 1】
Figure imgf000015_0001
ここで、 Dの値は例えば 10とする。
[0043] なお、顔候補判定処理の前処理として、色差画像の積分画像と色差画像の画素値 の二乗の積分画像を作成しておくことにより、色差分散値の算出を高速に行うことが できる。
[0044] 顔候補判定部 3eは、肌色評価値 Es、分離評価値 Ed、および分散評価値 Ebに基 づいて、顔候補判定対象領域が人物の顔を含む領域、すなわち顔候補であるか否 かを判定する。顔候補判定部 3eは、例えば肌色評価値 Es、分離評価値 Ed、および 分散評価値 Ebが次式 ( 17)を満たすときに顔候補判定対象領域が顔候補であると判 定し、その顔候補判定対象領域を顔候補領域として検出する。なお、次式(17)にお いて、 thは例えば 0. 6程度とする。
0. 4 X Ed+ 0. 4 X Es + 0. 2 X Eb >th · · · ( 17)
[0045] このように、肌色評価値 Es、分離評価値 Edだけでなく分散評価値 Ebも加味して顔 候補を判定することによって、顔候補判定対象領域 4a内に人物の顔が含まれていな いにも関わらず顔候補判定対象領域 4aの色差平均が肌色に等しくなる場合でも、分 散評価値 Ebは小さな値となることから、式(17)によって、このような顔候補判定対象 領域 4aは顔候補ではないと判定することができる。
[0046] 顔候補判定部 3eは、顔候補領域を検出した場合には、上述したように、顔候補領 域を検出した縮小色差画像の縮小倍率 kと、その縮小倍率 kで縮小された縮小色差 画像内における顔候補領域の座標値 (X Υ との対を顔判定部 103eへ出力する
[0047] 以上説明した第 2の実施の形態によれば、第 1の実施の形態における作用効果に カロえて、以下のような効果を得ることができる。すなわち、肌色評価値 Es、分離評価 値 Edに加えて分散評価値 Ebも加味して顔候補領域を検出するようにしたため、顔 候補判定対象領域 4a内に人物の顔が含まれていないにも関わらず顔候補判定対象 領域 4aの色差平均が肌色に等しくなる場合には、当該顔候補判定対象領域 4aは顔 候補ではないと判定することができ、さらに精度高く顔候補領域を検出することができ る。
[0048] 一第 3の実施の形態一
第 1および第 2の実施の形態で上述した肌色評価値 Esは、被写体を照明する光の 色温度が低 、場合や背景に木製の壁などがある場合など、画像の大半が肌色領域 として検出されるような場合には、その信頼度が低くなる可能性がある。よって、第 3 の実施の形態では、このような場合に分離評価値 Edを肌色評価値 Esよりも重視して 顔候補を判定するようにして、顔候補の判定精度を向上させる。
[0049] なお、図 1に示したブロック図、図 2に示したフロー図、図 4に示した顔候補判定対 象領域および周辺領域の設定例を示す図、および図 5に示した肌色評価値 Esを算 出する際に用いるパラメータの設定方法を示す図については、第 1の実施の形態と 同様のため説明を省略する。
[0050] 図 7は、第 3の実施の形態における色差画像顔候補検出部 103dによって実行され る顔候補判定処理の流れを示す図である。第 2の実施の形態では、色差画像顔候補 検出部 103dは、係数算出部 7a、顔候補判定対象領域設定部 3a、色差平均値算出 部 3b、肌色評価部 3c、分離評価部 3d、および顔候補判定部 3eの各部の工程に分 割することができる。なお、顔候補判定対象領域設定部 3a、色差平均値算出部 3b、 肌色評価部 3c、分離評価部 3dの各部における処理については、第 1および第 2の 実施の形態と同じため説明を省略する。
[0051] 係数算出部 7aは、縮小色差画像内における肌色に類似する色の割合を求め、そ の算出結果に応じて分離評価値 Edの重視度を示す係数 kを算出する。具体的には 、まず、縮小色差画像を数百個程度の複数画素からなるブロックに分割し、それぞれ のブロックで色差の平均値を求める。そして、色差の平均値が肌色に類似するブロッ クをカウントし、縮小色差画像内の全ブロックに対する肌色に類似するブロックの割 合 Pを算出する。
[0052] ここで、各ブロックが肌色に類似するか否かは、例えば、各ブロックの色差平均値を 式(7)〜(9)に代入して肌色評価値 Esを算出し、肌色評価値 Esが 0. 4以上のブロッ クを肌色に類似するブロックと判定する。また、異なる縮小倍率で縮小された縮小色 差画像のうち、いずれか 1枚について肌色に類似するブロックの割合 pを算出し、そ の他の縮小色差画像にも同じ値を適用するようにしてもよい。係数算出部 7aは、この ようにして算出した pを用いて、次式(18)により、分離評価値 Edの重視度を示す係 数 kを算出する。
k=0. 5+p/2 · · · (18)
[0053] 顔候補判定部 3eは、肌色評価値 Es、分離評価値 Ed、および分離評価値 Edの重 視度を示す係数 kに基づ ヽて、顔候補判定対象領域が顔候補であるか否かを判定 する。顔候補判定部 3eは、例えば肌色評価値 Es、分離評価値 Ed、および分離評価 値 Edの重視度を示す係数 kが次式 ( 19)を満たすときに顔候補判定対象領域が顔 候補であると判定し、その顔候補判定対象領域を顔候補領域として検出する。なお、 次式(19)において、 thは例えば 0. 6程度とする。
kX Ed+ (l -k) X Es >th · · · (19)
[0054] このように、分離評価値 Edの重視度を示す係数 kを用いて肌色評価値 Esおよび分 離評価値 Edを重み付けして顔候補を判定することによって、被写体を照明する光の 色温度が低 、場合や背景に木製の壁などがある場合など、画像の大半が肌色領域 として検出されるような場合でも、顔候補の判定精度を向上させることができる。
[0055] 顔候補判定部 3eは、顔候補領域を検出した場合には、上述したように、顔候補領 域を検出した縮小色差画像の縮小倍率 kと、その縮小倍率 kで縮小された縮小色差 画像内における顔候補領域の座標値 (X Υ との対を顔判定部 103eへ出力する
[0056] 以上説明した第 3の実施の形態によれば、分離評価値 Edの重視度を示す係数 kを 用いて肌色評価値 Esおよび分離評価値 Edを重み付けして顔候補を判定するよう〖こ した。これによつて、第 1および第 2の実施の形態の作用効果に加えて、画像の広い 範囲が肌色に類似するような場合には、分離評価値 Edを肌色評価値 Esよりも重視し て顔候補を判定することができ、顔候補判定処理の精度をさらに向上することができ るという効果を得ることができる。
[0057] 一第 4の実施の形態一
第 1〜第 3の実施の形態では、色空間変換部 103aは、入力された画像を色変換し て色差画像と輝度画像とを生成し、それぞれの画像を色差画像縮小部 103bと輝度 画像縮小部 103cへ出力する例について説明した。これに対して第 4の実施の形態 では、色空間変換部 103aは、入力された画像を色変換して色差画像と輝度画像と を生成した後、色差画像については、さらに色差画像顔候補検出部 103dによる肌 色評価に適した色空間に変換して力も色差画像縮小部 103bへ出力する例につい て説明する。
[0058] なお、図 1に示したブロック図、図 2に示したフロー図、図 3に示した顔候補判定処 理の流れを示すフロー図、図 4に示した顔候補判定対象領域および周辺領域の設 定例を示す図、および図 5に示した肌色評価値 Esを算出する際に用いるパラメータ の設定方法を示す図については、第 1の実施の形態と同様のため説明を省略する。 また、図 2において、色空間変換部 103aおよび色差画像顔候補検出部 103d以外 の各部による処理は、第 1〜第 3の実施の形態と同じため説明を省略し、相違点を中 心に説明する。
[0059] 色空間変換部 103aは、入力画像の画素値を Lab表色系に変換した後、画素ごと の色差 (a, b)を次式(20)および(21)に代入してさらに変換し、第二の色差 (Cx, C y)を生成する。
[数 12]
【数 12】
cx = exa (a - am ) + exb {b - bm) - - - (20)
[数 13] 【数 13】
Figure imgf000019_0001
そして、色空間変換部 103aは、算出した第二の色差 (Cx, Cy)を画素値とする色 差画像を色差画像縮小部 103bへ出力する。
[0060] 色差画像顔候補検出部 103dによって実行される顔候補判定処理を図 3を用いて 説明する。なお、第 4の実施の形態では、色差画像顔候補検出部 103dが有する顔 候補判定対象領域設定部 3a、および顔候補判定部 3eにおける処理については、第 1の実施の形態と同じため説明を省略する。
[0061] 色差平均値算出部 3bは、顔候補判定対象領域 4aの第二の色差の平均値 (Cx * , Cy*)、周辺領域 4b内の第二の色差の平均値(Cx *, Cv *)、周辺領域 4c内 の第二の色差の平均値(Cx *, Cv *)、周辺領域 4d内の第二の色差の平均値(C
2 2
X *, Cy *)、および周辺領域 4e内の第二の色差の平均値(Cx *, Cy *)をそ
3 3 4 4 れぞれ算出する。
[0062] 肌色評価部 3cは、顔候補判定対象領域 4aの第二の色差の平均値 (Cx*, Cy*) を次式(22)に代入して、肌色評価値 Esを算出する。なお、次式(22)における各パ ラメータの値は第 1の実施の形態と同様に設定すればよい。
[数 14]
【数 14】
C *2 c *2
£, - exp し y
'(22)
2σ 2σ ノ
[0063] 分離評価部 3dは、顔候補判定対象領域 4aの第二の色差の平均値 (Cx * , Cy * ) 、および周辺領域 4b〜4eのそれぞれの第二の色差の平均値(Cx *, Cy *)〜(C x *, Cy *)に基づいて、分離評価値 Edを次式(23)〜(27)により算出する。
4 4
[数 15]
【数 15】
, Edl + Ed2 + Ed3 + Ed4 、
Ed = -"(23)
4
[数 16] 【数 1
Figure imgf000020_0001
[数 17]
【数 17】
Figure imgf000020_0002
[数 18]
【数 1
Figure imgf000020_0003
[数 19]
【数 1
Figure imgf000020_0004
ここで、式(23)〜(27)において、 σ は、例えば 5程度に設定すればよい。
d
[0064] 以上説明した第 4の実施の形態によれば、色空間変換部 103aにおいて、色差画 像を肌色評価に適した色空間に変換するようにしたので、色差画像顔候補検出部 1 03dにおいて肌色評価値 Esを算出する際の計算量を削減することができる。
[0065] 一変形例一
なお、上述した実施の形態の画像処理装置は、以下のように変形することもできる。 (1)上述した第 2、第 3、および第 4の実施の形態における顔候補判定処理は、それ ぞれ第 1の実施の形態を変形した場合について説明した。し力しながら、第 2、第 3、 および第 4の実施の形態をそれぞれ組み合わせて顔候補判定処理を行うようにして ちょい。
[0066] (2)上述した第 1〜第 4の実施の形態では、画像処理装置 100としてパソコンを用い る例について説明した。しかしこれに限定されず、画像処理装置 100をデジタルカメ ラに搭載し、デジタルカメラで撮影した画像内から人物の顔領域を判定するようにし てもよい。
[0067] (3)上述した第 1〜第 4の実施の形態では、肌色評価値 Esによって肌色らしさを評価 し、画像内に存在する人物の顔を判定する例について説明した。すなわち、判定の 対象物を人物の顔とし、その人物の顔の特徴的な色 (特徴色)である肌色を肌色評 価値 Esによって評価する例について説明した。し力しながら、特徴的な色を有するそ の他の対象物を判定する場合にも本発明は適用可能である。すなわち、画像処理装 置 100は、入力画像に基づいて色差画像を生成する色差画像生成工程と、色差画 像に対して対象物を判定するための判定対象領域を設定する領域設定工程と、判 定対象領域および判定対象領域の周囲に設定した複数の周辺領域のそれぞれに おいて、各領域の色差平均値を算出する色差平均値算出工程と、判定対象領域に おける色差平均値が対象物に関してあら力じめ定められた特徴色であるかを評価す る色評価工程と、判定対象領域における色差平均値と周辺領域の色差平均値との 差分に基づ!ヽて、判定対象領域と周辺領域とが分離された領域であるかを評価する 分離評価工程と、色評価工程による評価結果および分離評価工程による評価結果 に基づ!/ヽて、判定対象領域が対象物を含む領域であるカゝ否かを判定する判定工程 とを備えるようにし、画像内におけるその対象物の特徴色を肌色評価値 Esと等価な 指標を用いて評価して、画像内に存在する対象物を判定するようにしてもょ ヽ。
[0068] (4)また、パーソナルコンピュータなどに適用する場合、上述した制御に関するプログ ラムは、 CD— ROMなどの記録媒体やインターネットなどのデータ信号を通じて提供 することができる。図 8はその様子を示す図である。パーソナルコンピュータ 400は、 CD— ROM404を介してプログラムの提供を受ける。また、パーソナルコンピュータ 4 00は通信回線 401との接続機能を有する。コンピュータ 402は上記プログラムを提 供するサーバーコンピュータであり、ハードディスク 403などの記録媒体にこれらのプ ログラムを格納する。通信回線 401は、インターネット、パソコン通信などの通信回線 、あるいは専用通信回線などである。コンピュータ 402はハードディスク 403を使用し てプログラムを読み出し、通信回線 401を介してプログラムをパーソナルコンピュータ 400に送信する。すなわち、プログラムをデータ信号として搬送波に embodyして、通 信回線 401を介して送信する。このように、プログラムは、記録媒体や搬送波などの 種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給で きる。
[0069] 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容 に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態 様も本発明の範囲内に含まれる。
[0070] 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願 2006年第 202313号(2006年 7月 25日出願)

Claims

請求の範囲
[1] 入力画像情報に基づ 、て色差画像情報を生成し、
前記色差画像情報で構成される被判定画像内にお!ヽて、対象物を判定するため の判定対象領域を設定し、
前記判定対象領域および前記判定対象領域の周囲に設定した複数の周辺領域の それぞれの前記色差画像情報に基づいて、各領域の色差平均値を算出し、 前記判定対象領域における前記色差平均値が示す色情報が、前記対象物に関し てあら力じめ定められた特徴色の情報であるかを評価し、
前記判定対象領域における前記色差平均値と前記周辺領域の前記色差平均値と の差分に基づ!/、て、前記判定対象領域と前記周辺領域とが分離された領域である かを評価し、
前記特徴色の情報である力否かの評価結果および前記分離された領域であるか 否かの評価結果に基づ!/、て、前記判定対象領域が前記対象物を含むか否かを判定 する画像処理方法。
[2] 請求項 1に記載の画像処理方法において、
前記対象物は、人物の顔である画像処理方法。
[3] 請求項 2に記載の画像処理方法において、
前記対象物の特徴色の情報は、前記人物の顔の肌色を表す色情報である画像処 理方法。
[4] 請求項 1〜3のいずれか一項に記載の画像処理方法において、
前記判定対象領域における色差画像情報に基づいて、当該領域における色差の 分散を評価し、
前記特徴色の情報である力否かの評価結果、前記分離された領域であるか否かの 評価結果、および前記色差の分散の評価結果に基づいて、前記判定対象領域が前 記対象物を含むか否かを判定する画像処理方法。
[5] 請求項 1〜4のいずれか一項に記載の画像処理方法において、
前記色差画像情報を積分して積分画像情報を生成し、前記積分画像情報に基づ いて前記色差平均値を算出する画像処理方法。
[6] 請求項 1〜5のいずれか一項に記載の画像処理方法において、
前記被判定画像内において、前記対象物の特徴色の情報に対応する色情報を有 する領域の割合を算出し、
算出された前記領域の割合が大きいほど、前記分離された領域である力否かの評 価結果を重視して判定を行う画像処理方法。
[7] 請求項 1〜6のいずれか一項に記載の画像処理方法において、
あら力じめ取得した前記特徴色のサンプルの色差値のばらつきを最小にする第 1 の色空間座標軸、および前記第 1の色空間座標軸に対して直交する第 2の色空間座 標軸のそれぞれに対して、前記判定対象領域における前記色差平均値を射影し、 それぞれの射影値を変換して得られた評価値に基づ 、て、前記判定対象領域にお ける前記色差平均値が示す色情報が前記対象物の特徴色の情報であるかを評価す る画像処理方法。
[8] 請求項 1〜7のいずれか一項に記載の画像処理方法において、
入力画像に基づいて第 1の色差画素値を生成し、あらかじめ取得した前記特徴色 のサンプルの色差値のばらつきを最小にする第 1の色空間座標軸、および前記第 1 の色空間座標軸に対して直交する第 2の色空間座標軸のそれぞれに対して、前記 第 1の色差画素値を射影した値を第 2の色差画素値として算出し、
前記第 2の色差画像値で構成される色差画像情報に対して前記判定対象領域を 設定する画像処理方法。
[9] 請求項 1〜8のいずれか一項に記載の画像処理方法における処理をコンピュータ に実行させるための画像処理プログラム。
[10] 画像情報を入力する画像入力部と、
請求項 9に記載の画像処理プログラムを実行して、前記画像入力部から入力され た入力画像情報に対して画像処理を実行する実行部とを備える画像処理装置。
[11] 請求項 10に記載の画像処理装置において、
前記実行部は、
前記入力画像情報に基づいて色差画像情報を生成する色差画像情報生成部と、 前記色差画像情報で構成される被判定画像内にお!ヽて、対象物を判定するため の判定対象領域を設定する判定対象領域設定部と、
前記判定対象領域および前記判定対象領域の周囲に設定した複数の周辺領域の それぞれの前記色差画像情報に基づいて、各領域の色差平均値を算出する色差平 均値算出部と、
前記判定対象領域における前記色差平均値が示す色情報が、前記対象物に関し てあらかじめ定められた特徴色の情報であるかを評価する特徴色評価部と、 前記判定対象領域における前記色差平均値と前記周辺領域の前記色差平均値と の差分に基づ!、て、前記判定対象領域と前記周辺領域とが分離された領域である かを評価する分離領域評価部と、
前記特徴色の情報である力否かの評価結果および前記分離された領域であるか 否かの評価結果に基づ!/、て、前記判定対象領域が前記対象物を含むか否かを判定 する判定部とを含むことを特徴とする画像処理装置。
被写体像を撮像して画像情報を取得する画像取得部と、
請求項 10または 11に記載の画像処理装置とを備えたカメラであって、
前記画像入力部は、前記画像取得部で取得した画像情報を入力することを特徴と するカメラ。
PCT/JP2007/063670 2006-07-25 2007-07-09 Image processing method, image processing program, and image processing device Ceased WO2008013050A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/309,522 US8040389B2 (en) 2006-07-25 2007-07-09 Image processing method, image processing program and image processing apparatus for detecting object of an image
JP2008526722A JP4692632B2 (ja) 2006-07-25 2007-07-09 画像処理方法、画像処理プログラム、および画像処理装置
EP07790491.0A EP2045775A4 (en) 2006-07-25 2007-07-09 Image processing method, image processing program, and image processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006202313 2006-07-25
JP2006-202313 2006-07-25

Publications (1)

Publication Number Publication Date
WO2008013050A1 true WO2008013050A1 (en) 2008-01-31

Family

ID=38981364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063670 Ceased WO2008013050A1 (en) 2006-07-25 2007-07-09 Image processing method, image processing program, and image processing device

Country Status (4)

Country Link
US (1) US8040389B2 (ja)
EP (1) EP2045775A4 (ja)
JP (1) JP4692632B2 (ja)
WO (1) WO2008013050A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118880B2 (en) * 2008-09-24 2015-08-25 Nikon Corporation Image apparatus for principal components analysis based illuminant estimation
JP2010177821A (ja) * 2009-01-27 2010-08-12 Sony Corp 撮像装置及び撮像方法
JP4948591B2 (ja) * 2009-12-25 2012-06-06 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
GB2477116B (en) * 2010-01-22 2014-09-17 Frederick Warwick Michael Stentiford A method and apparatus of processing an image
US8315443B2 (en) * 2010-04-22 2012-11-20 Qualcomm Incorporated Viewpoint detector based on skin color area and face area
US9124800B2 (en) * 2012-02-13 2015-09-01 Htc Corporation Auto burst image capture method applied to a mobile device, method for tracking an object applied to a mobile device, and related mobile device
WO2016203930A1 (ja) * 2015-06-18 2016-12-22 Necソリューションイノベータ株式会社 画像処理装置、画像処理方法、及びコンピュータ読み取り可能な記録媒体
CN105046708B (zh) * 2015-07-14 2017-11-17 福州大学 一种与主观感知相一致的颜色校正客观评估方法
WO2018066141A1 (ja) * 2016-10-07 2018-04-12 株式会社ディー・ディー・エス 情報処理プログラム及び情報処理装置
CN107564073B (zh) * 2017-09-14 2021-03-16 广州市百果园信息技术有限公司 肤色识别方法及装置、存储介质
CN107633252B (zh) * 2017-09-19 2020-04-21 广州市百果园信息技术有限公司 肤色检测方法、装置及存储介质
JP7243376B2 (ja) * 2018-04-07 2023-03-22 東洋製罐グループホールディングス株式会社 色味検査装置、及び色味検査プログラム
TWI662940B (zh) * 2018-06-01 2019-06-21 廣達電腦股份有限公司 影像擷取裝置
CN109919030B (zh) * 2019-01-31 2021-07-13 深圳和而泰数据资源与云技术有限公司 黑眼圈类型识别方法、装置、计算机设备和存储介质
CN113537248B (zh) * 2021-08-13 2024-06-07 珠海格力电器股份有限公司 图像识别方法和装置、电子设备和存储介质
CN115880097B (zh) * 2022-11-25 2023-08-22 河南省济源水文水资源勘测局 一种水资源污染的智能治理方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133303A (ja) * 1992-10-21 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> 動画像符号化装置
JPH0863597A (ja) * 1994-08-22 1996-03-08 Konica Corp 顔抽出方法
JP2000048184A (ja) 1998-05-29 2000-02-18 Canon Inc 画像処理方法及び顔領域抽出方法とその装置
JP2002049912A (ja) * 2000-08-04 2002-02-15 Nri & Ncc Co Ltd 人物画像取得システム
JP2006202313A (ja) 1995-06-07 2006-08-03 Samsung Electronics Co Ltd 互いに非同期の2つのバス間でデータ転送を同期する際の累積時間遅延を低減するもの

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP400998A0 (en) * 1998-06-10 1998-07-02 Canon Kabushiki Kaisha Face detection in digital images
US6292575B1 (en) * 1998-07-20 2001-09-18 Lau Technologies Real-time facial recognition and verification system
US6282317B1 (en) * 1998-12-31 2001-08-28 Eastman Kodak Company Method for automatic determination of main subjects in photographic images
US6697502B2 (en) * 2000-12-14 2004-02-24 Eastman Kodak Company Image processing method for detecting human figures in a digital image
AUPR541801A0 (en) * 2001-06-01 2001-06-28 Canon Kabushiki Kaisha Face detection in colour images with complex background
GB2396504B (en) * 2002-12-20 2005-11-23 Canon Kk Image processing
US7190829B2 (en) * 2003-06-30 2007-03-13 Microsoft Corporation Speedup of face detection in digital images
JP4317465B2 (ja) * 2004-02-13 2009-08-19 本田技研工業株式会社 顔識別装置、顔識別方法及び顔識別プログラム
US7426296B2 (en) * 2004-03-18 2008-09-16 Sony Corporation Human skin tone detection in YCbCr space
KR100668303B1 (ko) * 2004-08-04 2007-01-12 삼성전자주식회사 피부색 및 패턴 매칭을 이용한 얼굴 검출 방법
US7796827B2 (en) * 2004-11-30 2010-09-14 Hewlett-Packard Development Company, L.P. Face enhancement in a digital video
US20080019575A1 (en) * 2006-07-20 2008-01-24 Anthony Scalise Digital image cropping using a blended map
US7881505B2 (en) * 2006-09-29 2011-02-01 Pittsburgh Pattern Recognition, Inc. Video retrieval system for human face content
TW200930044A (en) * 2007-12-28 2009-07-01 Altek Corp False color depressing method for digital images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133303A (ja) * 1992-10-21 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> 動画像符号化装置
JPH0863597A (ja) * 1994-08-22 1996-03-08 Konica Corp 顔抽出方法
JP2006202313A (ja) 1995-06-07 2006-08-03 Samsung Electronics Co Ltd 互いに非同期の2つのバス間でデータ転送を同期する際の累積時間遅延を低減するもの
JP2000048184A (ja) 1998-05-29 2000-02-18 Canon Inc 画像処理方法及び顔領域抽出方法とその装置
JP2002049912A (ja) * 2000-08-04 2002-02-15 Nri & Ncc Co Ltd 人物画像取得システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2045775A4

Also Published As

Publication number Publication date
US8040389B2 (en) 2011-10-18
JP4692632B2 (ja) 2011-06-01
JPWO2008013050A1 (ja) 2009-12-17
US20090303336A1 (en) 2009-12-10
EP2045775A4 (en) 2017-01-18
EP2045775A1 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4692632B2 (ja) 画像処理方法、画像処理プログラム、および画像処理装置
JP5432714B2 (ja) 構図解析方法、構図解析機能を備えた画像装置、構図解析プログラム及びコンピュータ読み取り可能な記録媒体
JP4574249B2 (ja) 画像処理装置及びその方法、プログラム、撮像装置
EP2015251B1 (en) Object extracting, object tracking and image synthesizing
JP2011188496A (ja) 逆光検知装置及び逆光検知方法
CN113344836A (zh) 人脸图像处理方法及装置、计算机可读存储介质、终端
CN111627076A (zh) 换脸方法、装置及电子设备
CN106970709A (zh) 一种基于全息成像的3d交互方法和装置
JP2020077165A (ja) 画像処理装置、画像処理方法、及びプログラム
JP5453796B2 (ja) 画像処理装置、電子カメラ及び画像処理プログラム
JP2014087464A (ja) 肌の評価方法および肌の評価装置
JP2007158954A (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2010237976A (ja) 光源情報取得装置、陰影検出装置、陰影除去装置、それらの方法、及びプログラム
JP2023003764A (ja) 画像処理装置、画像処理方法、及びプログラム
JP7511054B1 (ja) 色判定システム、色判定方法及び色判定プログラム
JP2007243987A (ja) 画像処理方法、画像処理システムおよび画像処理プログラム
JP4171354B2 (ja) カラー画像処理装置及び方法
JP6351550B2 (ja) ハリ感評価装置、ハリ感評価方法およびハリ感評価プログラム
JP5178933B1 (ja) 画像処理装置
JP5903315B2 (ja) 画像処理装置および画像処理プログラム
JP2011188237A (ja) 画像処理方法、及び画像処理装置
KR100910754B1 (ko) 인체를 포함하는 실시간 입력 영상에서 격자기반 접근을 통한 피부 영역 검출 방법
JP2004157932A (ja) 物体認識装置および物体認識プログラム
US20230020328A1 (en) Information processing apparatus, imaging apparatus, information processing method, and program
JP5631181B2 (ja) 画像処理装置及びその制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008526722

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12309522

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007790491

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU