[go: up one dir, main page]

WO2007074687A1 - 画像処理装置 - Google Patents

画像処理装置 Download PDF

Info

Publication number
WO2007074687A1
WO2007074687A1 PCT/JP2006/325329 JP2006325329W WO2007074687A1 WO 2007074687 A1 WO2007074687 A1 WO 2007074687A1 JP 2006325329 W JP2006325329 W JP 2006325329W WO 2007074687 A1 WO2007074687 A1 WO 2007074687A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
image data
original image
processing
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2006/325329
Other languages
English (en)
French (fr)
Inventor
Fuminori Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Optical Co Ltd
Original Assignee
Nitto Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Optical Co Ltd filed Critical Nitto Optical Co Ltd
Priority to US12/159,160 priority Critical patent/US8073278B2/en
Priority to JP2007551914A priority patent/JP5007241B2/ja
Publication of WO2007074687A1 publication Critical patent/WO2007074687A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20201Motion blur correction

Definitions

  • the present invention relates to an image processing apparatus.
  • Gamma correction is a correction to obtain a more natural display by adjusting the relative relationship between the color data of the image and the signal when it is actually output. This is a change in voltage conversion value with respect to a change in brightness. This gamma value is usually non-linear.
  • the captured image sometimes deteriorates such as blurring. Therefore, in order to obtain a restored image having a high quality image with degraded image quality, first, inverse gamma correction is performed, then a degradation function is generated based on the characteristics information of the imaging device, and the restored image is converted based on this degradation function.
  • An image processing apparatus has been proposed (see the abstract of Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-20691
  • a method of estimating the solution by singular value decomposition etc. of the solution of simultaneous equations can be adopted, but the calculated value for the estimation becomes astronomical size and actually The risk that it cannot be solved is high.
  • the problem to be solved by the present invention is to provide an image processing apparatus that can reliably perform restoration of an image subjected to nonlinear correction.
  • the image processing apparatus of the present invention provides an image that has undergone changes such as deterioration. From the non-linearly corrected original image data that has been subjected to the predetermined non-linear correction, the non-linear correction is applied to the image before the change, the image that should have been originally taken, or an approximate image thereof.
  • the present invention from the non-linearly corrected original image data, using the change factor information data and the non-linearly corrected original image data or the non-linearly corrected original image data, the original image data or non-linearly corrected Since the process of gradually generating the data of the original image is repeated, it is possible to reliably restore the image with nonlinear correction.
  • an image processing apparatus performs post-processing that performs new nonlinear correction on the original image data generated by the basic processing. By adopting this configuration, it is possible to apply the same or different nonlinear correction to the generated original image data as applied to the nonlinear corrected original image data.
  • the image processing apparatus has a processing unit that performs non-linear correction on the non-linear corrected original image data prior to the basic processing to perform non-linear correction-free original image. Pre-processing to get data. By adopting this configuration, it is possible to perform basic processing after reliably obtaining original image data without non-linear correction, so that it is not necessary to consider the influence of nonlinear correction during basic processing.
  • the image processing apparatus generates arbitrary image data force comparison data using the data of the change factor information in the basic processing. Comparing the original image data without nonlinear correction obtained by the pre-processing and the comparison data, the restoration data is generated using the obtained difference data, and this restoration data is used for any image. It is used instead of data, and the same process is repeated repeatedly.
  • the processing unit in addition to the above-described invention, the processing unit generates arbitrary image data force comparison data by using the data of the change factor information, and the comparison data has a predetermined value.
  • Non-linear correction is performed to generate non-linear corrected comparison data, the non-linear corrected original image data is compared with the non-linear corrected comparison data, and the restored data is obtained using the obtained difference data.
  • This restoration data is used instead of arbitrary image data, and the basic process is repeated.
  • the basic processing is performed only by generating predetermined data using the data of the change factor information, so that the apparatus with little increase in hardware is large. Do not turn.
  • non-linearly corrected comparison data is created from arbitrary image data, and the process of comparing the non-linearly corrected original image data with the non-linearly corrected comparison data is repeated, and gradually the non-linearly corrected original image data Therefore, it will be a realistic restoration work. For this reason, when restoring an image, an image processing apparatus having a realistic circuit processing method can be obtained.
  • the processing unit may perform a basic process when the energy value of the nonlinear corrected original image data is equal to or less than a predetermined value or smaller than a predetermined value.
  • the value of the difference data between the comparison data and the image data to be compared with the comparison data is processed to stop the basic processing if it is less than or equal to the specified value. .
  • the processing is stopped even if these values do not become “0”, so that it is possible to prevent a long processing time.
  • the restored data to be approximated is closer to the original image or the nonlinear corrected original image.
  • the process is repeated indefinitely. It will not be.
  • the image processing apparatus performs a process of stopping when the number of repetitions reaches a predetermined number during the basic process. By adopting this configuration, the process is not repeated indefinitely.
  • the processing unit is configured to reduce the energy of the non-linearly corrected original image data when the number of repetitions reaches a predetermined number during the basic processing. If the value is less than or equal to the specified value or less than the specified value, or if the difference data value between the comparison data and the comparison target image data is less than or less than the specified value The basic process is stopped, and if it exceeds the predetermined value or exceeds the predetermined value, the process is further repeated a predetermined number of times.
  • the number of repetitions of the basic process and these values are combined, so simply limiting the number of repetitions of the basic process or limiting these values. Compared to the case, it is possible to achieve processing that balances the goodness of the image and the short processing time.
  • the processing unit generates data for comparison with a predetermined image data force using the data of the change factor information in the basic processing. Compare the non-linearly corrected original image data or non-linearly corrected original image data with the comparison data.If the obtained difference data is less than or equal to the specified value, the process is stopped and the comparison data If the difference is greater than the predetermined value or greater than or equal to the predetermined value, the difference data is converted into the predetermined image data using the data of the change factor information. By allocating, restored data is generated, and the original image data is generated by repeating the same process by replacing the restored data with predetermined image data.
  • the comparison factor data is generated using the change factor information data, and the non-linearly corrected original image data or the non-linearly corrected original image data is generated. Since the original image data is generated only when the comparison is large and the difference is large, there is almost no increase in hardware, and the device does not increase in size. Also, comparison data is created from the restored data and the process of comparing the comparison data with the original image data to be processed is repeated, and the original image is gradually obtained. This is a realistic restoration work. For this reason, an image processing apparatus having a realistic circuit processing method can be provided for image restoration.
  • An image processing apparatus is based on the above-described invention, and the processing unit performs a process of stopping when the number of repetitions reaches a predetermined number during the repetition process.
  • the processing is stopped regardless of whether the difference becomes “0”, so that it is possible to prevent the processing from taking a long time. Further, since the processing is continued up to a predetermined number of times, the restored data becomes closer to the original image data. Furthermore, if there is noise, etc., there is a tendency that the situation in which the difference does not become “0” tends to occur in reality. In such a case, the process is repeated indefinitely, but this configuration is adopted. Then, such a problem does not occur.
  • FIG. 1 is a block diagram showing a main configuration of an image processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an external perspective view showing an outline of the image processing apparatus shown in FIG. 1, and is a view for explaining an arrangement position of angular velocity sensors.
  • FIG. 3 is a process flow diagram for explaining a processing routine relating to an image restoration processing method (repetitive processing) performed by a processing unit of the image processing apparatus shown in FIG. 1.
  • FIG. 4 is a diagram for explaining the concept of the processing method shown in FIG.
  • FIG. 5 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a table showing energy concentration when there is no camera shake.
  • FIG. 6 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a diagram showing image data when there is no camera shake.
  • FIG. 7 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a diagram showing dispersion of energy when camera shake occurs.
  • FIG. 8 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a diagram for explaining a situation in which comparative image data is generated for any image force.
  • FIG. 9 A diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example. Comparison data is compared with the blurred original image to be processed, and the difference data It is a figure for demonstrating the condition which produces
  • FIG. 10 A diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and explaining the situation in which restored data is generated by distributing the difference data and adding it to an arbitrary image.
  • FIG. 10 A diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and explaining the situation in which restored data is generated by distributing the difference data and adding it to an arbitrary image.
  • FIG. 11 A diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example. New comparison data is generated from the generated restored data, and the data and processing target are generated.
  • FIG. 6 is a diagram for explaining a situation in which difference data is generated by comparing with a blurred original image
  • FIG. 12 This is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example.
  • the newly generated difference data is allocated and new restoration data is generated. It is a figure for demonstrating.
  • FIG. 13 is a processing flowchart for explaining a processing routine relating to an image restoration processing method (iterative processing) performed by a processing unit of an image processing apparatus according to a second embodiment of the present invention.
  • FIG. 14 is a diagram for explaining the concept of a processing method performed by a processing unit according to a third embodiment of the present invention.
  • FIG. 15 is a processing flowchart for explaining a processing routine according to an image restoration processing method performed by a processing unit of an image processing apparatus according to a third embodiment of the present invention.
  • this image processing apparatus 1 is a consumer camera, the camera for other uses such as a surveillance camera, a TV camera, a handy type video camera, an endoscope camera, etc. It can also be applied to devices other than cameras, such as microscopes, binoculars, and diagnostic imaging devices such as NMR imaging.
  • FIG. 1 shows an outline of the configuration of the image processing apparatus 1.
  • the image processing apparatus 1 includes an imaging unit 2 that captures an image of a person or the like, a control system unit 3 that drives the imaging unit 2, and a processing unit 4 that processes an image captured by the imaging unit 2. ing.
  • the image processing apparatus 1 according to this embodiment further includes a recording unit 5 that records an image processed by the processing unit 4, and change factor information that becomes a factor of change such as image degradation due to an angular velocity sensor or the like. It has a detection unit 6 for detecting, and a factor information storage unit 7 for storing known change factor information that causes image degradation and the like.
  • the imaging unit 2 is a part that includes a photographing optical system having a lens and a photographing element such as a CCD or C-MOS that converts light that has passed through the lens into an electrical signal.
  • the control system unit 3 controls each unit in the image processing apparatus, such as the imaging unit 2, the processing unit 4, the recording unit 5, the detection unit 6, and the factor information storage unit 7.
  • the processing unit 4 is configured by an image processing processor, and is configured by hardware such as an ASIC (Application Specific Integrated Circuit).
  • the processing unit 4 generates a sampling frequency for detecting vibrations such as camera shake to be detected and supplies the sampling frequency to the detection unit 6.
  • the processing unit 4 controls the start and end of vibration detection. Further, the processing unit 4 may perform a process of performing a non-linear correction to remove a known non-linear correction from the image data, and a process of performing a new non-linear correction to the image data.
  • non-linear correction includes JPEG (Joint Photographic Experts Group) compression processing, image contrast adjustment processing, etc., in addition to so-called gamma correction such as brightness and color adjustment.
  • the processing unit 4 includes a correction function used when performing processing for performing image data, inverse nonlinear correction, and new nonlinear correction, which are the basis for generating comparison data, which will be described later. May be stored. Furthermore, the processing unit 4 may be configured to process with software rather than being configured as hardware such as an ASIC.
  • the recording unit 5 is composed of a semiconductor memory, but magnetic recording means such as a hard disk drive or optical recording means using a DVD or the like may be employed.
  • the detection unit 6 includes two angular velocity sensors that detect the speeds around the X and Y axes that are perpendicular to the Z axis that is the optical axis of the image processing apparatus 1. Is provided.
  • camera shake when shooting with the camera is the movement that moves in the X, Y, and Z directions, and the force that also rotates around the Z axis.
  • Rotation around the X axis are only a slight variation, and the captured image is greatly blurred. Therefore, in this embodiment, only two angular velocity sensors around the X axis and the Y axis in FIG. 2 are arranged. For the sake of completeness, an additional angular velocity sensor around the Z axis may be added, or a sensor that detects movement in the X and Y directions may be added.
  • the sensor used may be an angular acceleration sensor that is not an angular velocity sensor.
  • the factor information storage unit 7 stores a change factor information such as known deterioration factor information, for example, a point spread function calculated based on the aberration of the optical system and Z or the detected vibration. It is.
  • the point spread function recorded by the factor information storage unit 7 is used by the processing unit 4 when, for example, the original image taken immediately after the calculation is restored.
  • the original image restoration process is executed, the original image is taken when the imaging power is turned off, when the processing unit 4 is not operating, or when the operating rate of the processing unit 4 is low. It can be a period delayed from the time of departure.
  • the original image data stored in the recording unit 5 and the change factor information such as the point spread function for the original image stored in the factor information storage unit 7 are associated with each other for a long time. Stored for a period of time. In this way, the advantage of delaying the timing of executing the original image restoration processing from the timing of capturing the original image is that the burden on the processing unit 4 at the time of shooting involving various processes can be reduced.
  • I is an arbitrary initial image that is stored in advance in the recording unit of the processing unit 4.
  • Image data. “I,” indicates the degraded image data of I of the initial image data.
  • Img ' is taken image, that is, degraded image data (original image data) It is.
  • Clmg ′ is the original image data that has been nonlinearly corrected by applying nonlinear correction to the original image data Img ′.
  • is a known nonlinear correction function applied to the nonlinear corrected original image data clmg ′.
  • difference data ⁇ may be a simple difference between corresponding pixels, but in general, it differs depending on the data G of the change factor information and is expressed by the following equation (4).
  • the processing routine of the processing unit 4 first performs inverse non-linear correction on data to be processed such as photographic data (step S100). This is because the captured data and the like are nonlinearly corrected to improve the image quality. That is, in step S100, the original image data Img is obtained by inverse nonlinear correction from the nonlinear corrected original image data clmg ′ that has been subjected to nonlinear correction and deteriorated due to camera shake. On the other hand, arbitrary image data I is prepared before, simultaneously with, or after step S100 (step S101). This early
  • the degraded original image data Img can be used as the image data I.
  • step S102 instead of Img in equation (1), input data I for an arbitrary image to be the initial image.
  • the comparison data I ′ which is a deteriorated image, is obtained and stored in a predetermined data area of the processing unit 4.
  • step S104 if the difference data ⁇ is smaller than the predetermined value, the iterative process is terminated. Then, the restoration data I at the time when the repetitive processing is completed is used as the original image.
  • Data Img is estimated (step S106). That is, when the difference data ⁇ becomes smaller than a predetermined value, the restored data I ⁇ that is the basis of the comparison data I ⁇ ′ is the original image data Im
  • the estimated original image data I n is estimated as the original image data Img.
  • the estimated original image data I n is estimated as the original image data Img.
  • step S107 is multiplied by a new nonlinear correction function ⁇ ⁇ (step S107), and the obtained image data is defined as nonlinear corrected original image data clmg.
  • step S108 completes the image restoration process in the processing unit 4 (step S108).
  • the recording unit 5 records the obtained non-linearly corrected original image data clmg as well as the initial image data I
  • step S107 change factor information data G, non-linear correction function ⁇ , and new non-linear correction function ⁇ ⁇ may be recorded and passed to the processing unit 4 if necessary.
  • step S107 the process of performing non-linear correction on the original image data Img (step S107) can be omitted as necessary. For example, if what is finally obtained is original image data Img that has not been subjected to nonlinear correction, this step S107 is not necessary. In addition, whether or not the power to omit this process can be selected by a person who operates the image processing apparatus 1.
  • the data I or the restored data I ⁇ is approximate to the original image data Img.
  • the angular velocity may be detected every 5 seconds so that the high frequency where the sampling frequency of the angular velocity detection sensor is within the range of 60Hz to 240Hz can be detected.
  • the value serving as a criterion for determining the difference data ⁇ is “6” when each data is represented by 8 bits (0 to 255). That is, when it is less than 6, that is, 5 or less, the processing is finished.
  • FIG. 3 details of the camera shake restoration processing method shown in FIG. 3 (iterative processing of steps S102, S103, S104, and S105) will be described in detail with reference to FIGS. This will be described with reference to FIG. 11 and FIG.
  • Blur is uniform in all pixels, and is grasped as a linear problem. If there is no upward blur (vertical blur), the blur situation is as shown in the table in Figure 8.
  • the data shown as “shooting result” in FIG. 8 is the original image data Img
  • the data shown as “blurred image” is the degraded original image data Img ′.
  • “120” in the “n-3” pixel is in accordance with the distribution ratio of “0.5”, “0.3” and “0.2” in the data G of the change factor information which is the blur information.
  • “60” is distributed to “n ⁇ 3” pixels
  • “36” is distributed to “n ⁇ 2” pixels
  • “2 4” is distributed to “n ⁇ 1” pixels.
  • step S101 Any image data I shown in step S101 can be used.
  • Comparison data I shown as 0, is generated. Therefore, the difference data in step S103
  • the data ⁇ is as shown in the bottom column of FIG.
  • step S104 the size of the difference data ⁇ is determined in step S104. Specifically, the power to end the processing when all the difference data ⁇ becomes 5 or less in absolute value. Since the difference data ⁇ shown in FIG. 9 does not meet this condition, the process proceeds to step S105. That is, the difference Data ⁇ is allocated to data I of an arbitrary image using data G of change factor information
  • the restoration data In shown as “next input” in FIG. 10 is generated. In this case, the first
  • restore data I is generated.
  • the restored data I is the input image data (step S102)
  • step S102 is executed, and the process proceeds to step S103.
  • Get new difference data ⁇ The size of the new difference data ⁇ is determined in step S104, and if it is larger than the predetermined value, the new difference data ⁇ is distributed to the previous restored data I in step S105 to generate new restored data I (Fig. 12). After that,
  • step S102 new data for comparison I 'is also generated.
  • step S104 the process goes to step S105, and the process proceeds to step S105 or shifts to step S106 depending on the determination. Repeat this process.
  • step S102 to step S105 are repeated to obtain difference data.
  • An image processing apparatus according to the second embodiment of the present invention will be described below with reference to FIG.
  • the configuration of the image processing apparatus according to the second embodiment is the same as that of the image processing apparatus 1 according to the first embodiment of the present invention. Therefore, the same reference numerals are given to the same devices as the image processing device 1 according to the first embodiment, and the description thereof is omitted or simplified. We will make it.
  • “1 A” is used as a symbol, but the symbol “1 A” does not appear in the figure.
  • the non-linearly corrected comparison data obtained by multiplying the original image data Img 'by a known nonlinear correction function ⁇ .
  • ⁇ ′ is difference data between the nonlinear corrected original image data clmg ′ and the nonlinear corrected comparative data cl ′.
  • I is the initial image
  • the processing routine of the processing unit 4 starts by preparing arbitrary image data I (
  • Step S201 This initial image data I is the description of step S101 in FIG.
  • step S202 instead of Img in equation (1), the data for any image that will be the initial image I
  • steps S202, S203, S204, S205 and S206 are repeated.
  • step S205 when the difference data ⁇ is smaller than the predetermined value, the iterative process is terminated. Then, the restored data I at the time when the iterative process is completed
  • n data Img is estimated (step S207). Then, the estimated original image data Img is subjected to a new nonlinear correction process (step S208) to obtain nonlinear corrected original image data clmg.
  • this non-linear correction process it is preferable to use the non-linear correction function ⁇ described above. However, an optimal correction process suitable for the restored data I is performed.
  • the recording unit 5 records the obtained non-linearly corrected original image data clmg, as well as the initial image data I
  • the number of processes and the difference data ⁇ ( ⁇ ') Either one or both of the criterion values can be set.
  • the number of processing can be set to any number such as 20 or 50 times.
  • set the difference data ⁇ or ⁇ , which stops the processing to “5” in 8 bits (0 to 255).
  • the processing is terminated, or “0.5”
  • the process can be terminated when it is set to 0.5 or less.
  • This set value can be set arbitrarily.
  • the configuration is such that both the number of times of processing and the criterion value are input, it is preferable to stop the processing when either one is satisfied.
  • the determination reference value may be prioritized, and if the predetermined number of processes does not fall within the determination reference value, the predetermined number of processes may be repeated. Further, in each of the above-described embodiments, when all of the difference data ⁇ ( ⁇ ′) is less than the predetermined value or less than the predetermined value as the determination criteria for the difference data ⁇ or ⁇ ′, the repetition is repeated.
  • the sum of absolute values of force difference data ⁇ ( ⁇ ') or the sum of squares may be used as the judgment criterion.
  • the information stored in the factor information storage unit 7 is not used but is stored in the recording unit of the processing unit 4. 1S can be used. Data on known degradation factors stored here, such as optical aberrations and lens distortions, may be used.
  • the blur information and the optical convergence information are combined and regarded as one deterioration factor.
  • the processing unit 4 determines the size of the difference data ⁇ ( ⁇ ′) and continues the iterative processing shown in FIGS. 3 and 13.
  • the method of deciding whether to stop is adopted, methods other than these methods can be adopted.
  • the processing unit converts the light energy of the pixels of the original image Img into the change factor information G. According to the distribution ratio k based on this, it is distributed to the restored data area where the restored image is recorded, and then the remaining pixel data of the original image Img 'is replaced with the processing target and the movement is repeated in the same way.
  • This iterative process is repeated until the original image data Img ′, which is the source data, disappears, that is, until it becomes “0”.
  • the restoration process can be performed by such a process.
  • An image processing apparatus according to the third embodiment that employs this restoration process will be described below.
  • FIG. 14 shows a diagram corresponding to FIG. 4 (A). Based on FIG. 14, the concept of the camera shake restoration process according to the third embodiment will be described below.
  • Original image data Img force If the change factor information data G changes to the original image data Img, the original image is transmitted through the center of gravity value Ga of the point spread function of the change factor information data G that is the same filter. If all of the data Img 'is reallocated to the restored data area, the restored data existing in the restored data area R n should approximate the original image data Img.
  • FIG. 3 An image processing apparatus according to the third embodiment of the present invention based on the above concept will be described with reference to FIG.
  • the configuration of the image processing apparatus according to the third embodiment is the same as that of the image processing apparatuses 1 and 1A according to the first and second embodiments of the present invention. Therefore, the same reference numerals are given to the devices that are the same as the image processing devices 1 and 1A according to each embodiment, and the description thereof will be omitted or simplified.
  • “1B” is used as a symbol, but the symbol “1B” does not appear in the figure.
  • G is the barycentric value of the point spread function included in the data G of the change factor information.
  • R is the restoration data described above.
  • E is the sum of the light energies of each pixel of the original image data Img ′ (hereinafter referred to as “total original energy”).
  • total original energy is data (hereinafter referred to as “distributed pixel energy”) that is allocated to the restored data area for the nth time out of the pixel energy.
  • “Sum (e;)” is the sum of the allocated pixel energy e.
  • the above-described equation (1) representing the relationship between Img and Img ′ and the above-described equation (3) representing the relationship between Img and clmg are also applied to the third embodiment.
  • the processing routine for restoration of the processing unit 4 of the image processing apparatus 1B according to the third embodiment shown in FIG. 15 first reverses the nonlinear corrected original image data clmg ′ with the correction function ⁇ . It starts by obtaining the original image data Img by nonlinear correction (step S301). This step S301 corresponds to step S100. Then, the light energy of each pixel of the original image data Img is extracted as the original image pixel energy E (step S302).
  • the total sum sum (e) of the allocated pixel energy e is zero, so the original image total energy E is inversely transformed based on the centroid value Ga of the point spread function, and n
  • the allocated pixel energy e is allocated to the restored data R (step S304).
  • n l step Since the restored data in S304 is zero, the restored data is “e.
  • Step S305 is a step for determining whether or not the residual energy of the original image data Img ′ in which energy is gradually drawn is close to zero, or the total energy amount of the restored data R is first determined. It is also a good step to determine whether or not the power of the original image data I mg is similar to the energy.
  • the allocated pixel energy e is added to the previous restored data R (step S304).
  • the sum of the distribution pixel energy e sum (e) ⁇ s
  • step S 2 n n um (e) ⁇ and the total energy E of the original image are judged to be approximate (step S).
  • step S306 it can be estimated that the restored data R approximates the original image data Img (step S306). Then, by applying a new nonlinear correction function ⁇ to the original image data Img, the nonlinear corrected original image data clmg is obtained (step S307), and the restoration process ends (step S308).
  • the non-linear correction processing in step S307 preferably uses the non-linear correction function ⁇ applied to the processing target data such as the photographic data, but it is the optimal correction for the newly obtained restored data R. You can use other functions.
  • the processing performed by the processing unit 4 may be configured by hardware composed of parts in which a part of the processing is shared by each force configured by software.
  • the change factor information data G includes not only deterioration factor information data but also information that simply changes the image, and information that improves the image as opposed to deterioration.
  • the set number of times is changed by the data G of the change factor information. May be. For example, when the data of a certain pixel is distributed over many pixels due to blurring, the number of iterations may be increased, and when the variance is small, the number of iterations may be decreased.
  • the process may be stopped. good. For example, a method of determining whether or not the light is diverging can be determined by looking at the average value of the difference data ⁇ or ⁇ ′ and if the average value becomes larger than the previous value.
  • the process may be stopped. For example, in the case of 8 bits, if the value to be changed exceeds 255, processing is stopped.
  • the value may not be used and may be set to a normal value. For example, when trying to input more than 255 of 8 bits from 0 to 255, it is processed as 255, which is the maximum value.
  • the restoration data to be the output image depending on the data G of the change factor information, there may occur data that goes out of the region of the image to be restored. In such a case, data that protrudes outside the area is input to the opposite side. Also, if there is data that should come from outside the area, it is preferable to bring that data from the opposite side. For example, if the data assigned to the lower pixel is generated from the data of the pixel XN1 located at the bottom of the area, the position is outside the area. Therefore, the data is assigned to pixel XI1, which is positioned directly above pixel XN1.
  • the restoration target is recorded as image data.
  • these restoration processing concepts and techniques can be applied to any digital data restoration process. For example, it can be applied to restoration of digital audio data. In the case of audio data, echo may be applied as non-linear correction. In this case as well, processing such as removal of non-linear correction can be performed together as in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

 非線形補正が施された画像の復元を確実に実行可能にした画像処理装置を提供する。  劣化等の変化が生じた画像であって所定の非線形補正が施された非線形補正済み原画像データから、非線形補正が施されない元画像または非線形補正済み元画像の復元をする処理部4を有し、この処理部4が、画像変化の要因となる変化要因情報のデータ、および非線形補正済み原画像データもしくは非線形補正済み原画像データに対し逆非線形補正を行って得られた非線形補正が施されていない非線形補正無し原画像データ、を利用しての繰り返し処理により、非線形補正済み原画像データまたは非線形補正無し原画像データに近似する比較用データを徐々に生成し、または非線形補正済み原画像データのエネルギーを徐々に零に近似させることで、元画像のデータまたは非線形補正済み元画像のデータを生成する基本処理を行う。

Description

明 細 書
画像処理装置
技術分野
[0001] 本発明は、画像処理装置に関する。
背景技術
[0002] デジタルカメラ等の画像処理装置で被写体を撮影すると、通常撮影される画像に はガンマ補正がなされ、出力される。ガンマ補正とは、画像がどの色のデータと、それ が実際に出力される際の信号の相対関係を調節して、より自然に近い表示を得るた めの補正で、ガンマ値とは画像の明るさの変化に対する電圧換算値の変化である。 このガンマ値は、通常非線形となる。また、その撮影される画像には時々ぶれ等の劣 化が生ずる。そこで、劣化画像力も高品位の復元画像を得るため、まず、逆ガンマ補 正を行い、次いで、撮像装置の特性情報等に基づいて劣化関数を生成し、この劣化 関数に基づいて、復元画像を生成する画像処理装置が提案されている (特許文献 1 要約書参照)。
[0003] 特許文献 1 :特開 2000— 20691号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら伝達関数等の劣化関数は、通常ノイズ等に弱ぐその値が大きく変動 する。このため、得られる復元画像は、ぶれ等がない状態で撮影した画像とはほど遠 いものとなり、実際上は利用できない場合がある。また、ノイズ等を考慮した復元を行 う場合、連立方程式の解の特異値分解等で解を推定する方法も採用できるが、その 推定のための計算値が天文学的な大きさになり、実際的には解くことができなくなるリ スクが高い。
[0005] そこで本発明が解決しょうとする課題は、非線形補正が施された画像の復元を確実 に実行可能にした画像処理装置を提供することである。
課題を解決するための手段
[0006] 上記課題を解決するため、本発明の画像処理装置は、劣化等の変化が生じた画 像であって所定の非線形補正が施された非線形補正済み原画像データから、変化 する前の画像もしくは本来撮影されるべきであった画像またはそれらの近似画像であ つて非線形補正が施されて 、な 、画像 (以下、元画像と 、う)またはその元画像に非 線形補正が施されて!/、る画像 (以下、非線形補正済み元画像と!、う)の復元をする処 理部を有し、処理部が、画像変化の要因となる変化要因情報のデータ、および非線 形補正済み原画像データもしくは非線形補正済み原画像データに対し逆非線形補 正を行って得られた非線形補正が施されて 、な 、非線形補正無し原画像データ、を 利用しての繰り返し処理により、非線形補正済み原画像データまたは非線形補正無 し原画像データに近似する比較用データを徐々に生成し、または非線形補正済み 原画像データのエネルギーを徐々に零に近似させることで、元画像のデータまたは 非線形補正済み元画像のデータを生成する基本処理を行っている。
[0007] この発明によれば、非線形補正済み原画像データから、変化要因情報のデータ、 および非線形補正済み原画像データもしくは非線形補正無し原画像データを利用し て、元画像のデータまたは非線形補正済み元画像のデータを徐々に生成していく処 理を繰り返すため、非線形補正が施された画像の復元を確実に実行可能にして ヽる
[0008] 他の発明に係る画像処理装置は、上述した発明に加え、基本処理で生成された元 画像のデータに新たな非線形補正を施す事後処理を行って 、る。この構成を採用す ることにより、非線形補正済み原画像データに施されて 、た非線形補正の内容と同 一の非線形補正や異なる非線形補正を、生成した元画像のデータに施すことができ る。
[0009] 他の発明に係る画像処理装置は、上述した発明に加え、処理部が、基本処理に先 立って、非線形補正済み原画像データに対し、逆非線形補正を行って非線形補正 無し原画像データを得る事前処理を行っている。この構成を採用することにより、非 線形補正無し原画像データを確実に得た上で、基本処理を行うことができるため、基 本処理の際に非線形補正の影響を考慮する必要がなくなる。
[0010] 他の発明に係る画像処理装置は、上述した発明に加え、処理部は、基本処理に当 たって、変化要因情報のデータを利用して任意の画像データ力 比較用データを生 成し、事前処理で得られた非線形補正無し原画像データと、比較用のデータとを比 較し、得られた差分のデータを利用して復元データを生成し、この復元データを任意 の画像データの代わりに使用し、同様の処理を繰り返す繰り返し処理を行っている。
[0011] この構成を採用することにより、変化要因情報のデータを利用して、所定のデータ を生成することだけで基本処理を行っているので、ハードウェア的な増加はほとんど 無ぐ装置が大型化しない。また、任意の画像データ力も比較用データを作り、非線 形補正無し原画像データと、比較用のデータとを比較するという処理を繰り返し、徐 々に元画像データを得るので、現実的な復元作業となる。このため、画像の復元に 当たって、現実性のある回路処理方式を有する画像処理装置とすることができる。
[0012] 他の発明に係る画像処理装置は、上述した発明に加え、処理部は、変化要因情報 のデータを利用して任意の画像データ力 比較用データを生成し、比較用データに 所定の非線形補正を施して非線形補正済み比較用データを生成し、非線形補正済 み原画像データと、非線形補正済み比較用のデータとを比較し、得られた差分のデ ータを利用して復元データを生成し、この復元データを任意の画像データの代わり に使用し、同様の処理を繰り返す基本処理を行っている。
[0013] この構成を採用することにより、変化要因情報のデータを利用して、所定のデータ を生成することだけで基本処理を行っているので、ハードウェア的な増加はほとんど 無ぐ装置が大型化しない。また、任意の画像データから非線形補正済み比較用デ ータを作り、非線形補正済み原画像データと、非線形補正済み比較用データとを比 較するという処理を繰り返し、徐々に非線形補正済み元画像データを得るので、現実 的な復元作業となる。このため、画像の復元に当たって、現実性のある回路処理方 式を有する画像処理装置とすることができる。
[0014] 他の発明に係る画像処理装置は、上述した発明に加え、処理部は、基本処理の際 、非線形補正済み原画像データのエネルギーの値が、所定値以下または所定値より 小さくなつたら、もしくは比較用データと、その比較用データの比較対象となる画像デ ータとの差分のデータの値力 所定値以下または所定値より小さくなつたら、基本処 理を停止させる処理を行っている。この構成を採用することにより、これらの値が「0」 にならなくても処理を停止させるので、処理の長時間化を防止することができる。また 、所定値以下としているので、近似する復元データは元画像または非線形補正済み 元画像により近いものとなる。さらに、ノイズなどがあった場合、これらの値が「0」にな ることが現実的にはあり得ない状況が生じがちである力 そのような場合であっても無 限に処理を繰り返すことにはならない。
[0015] 他の発明に係る画像処理装置は、上述した発明に加え、処理部は、基本処理の際 、繰り返しの回数が所定回数となったら停止させる処理を行っている。この構成を採 用することにより、無限に処理を繰り返すことにはならない。
[0016] 他の発明に係る画像処理装置は、上述した発明に加え、処理部は、基本処理の際 、繰り返しの回数が所定回数に到達したときにおける、非線形補正済み原画像デー タのエネルギーの値が、所定値以下または所定値より小さくなつたら、もしくは比較用 データと、その比較用データの比較対象となる画像データとの差分のデータの値が、 所定値以下または所定値より小さい場合は基本処理を停止し、所定値より超えるまた は所定値以上の場合は、さらに所定回数繰り返す処理を行っている。この構成を採 用することにより、基本処理の繰り返し回数と、これらの値とを組み合わせて行うように しているので、単に基本処理の繰り返し回数に制限を加えたり、これらの値に制限を 行う場合に比較して、画像の良さと処理時間の短さのバランスが取れた処理とするこ とがでさる。
[0017] 他の発明に係る画像処理装置は、上述した発明に加え、処理部は、基本処理に当 たって、変化要因情報のデータを利用して、所定の画像データ力も比較用データを 生成し、非線形補正済み原画像データもしくは非線形補正無し原画像データと比較 用データを比較し、得られた差分のデータが所定値以下または所定値より小さい場 合は処理を停止し、比較用データの元となった所定の画像データを、元画像のデー タとして扱い、差分が所定値より大きいまたは所定値以上の場合は、差分のデータを 、変化要因情報のデータを利用して所定の画像データに配分することで、復元デー タを生成し、この復元データを所定の画像データに置き換えて同様の処理を繰り返 す繰返し処理を行うことで元画像のデータを生成している。
[0018] この構成を採用することにより、変化要因情報のデータを利用して、比較用データ を生成し、非線形補正済み原画像データもしくは非線形補正無し原画像データとの 比較をし、差分が大きいときのみ元画像のデータを生成しているので、ハードウェア 的な増加はほとんど無ぐ装置が大型化しない。また、復元データから比較用データ を作り、その比較用データと処理対象の原画像のデータを比較するという処理を繰り 返し、徐々に元画像を得るので、現実的な復元作業となる。このため、画像の復元に 当たって、現実性のある回路処理方式を有する画像処理装置とすることができる。
[0019] 他の発明に係る画像処理装置は、上述した発明にカ卩え、処理部は、繰返し処理の 際、繰り返しの回数が所定回数となったら停止させる処理を行っている。この構成を 採用することにより、差分が「0」になってもならなくても処理を停止させるので、処理 の長時間化を防止することができる。また、所定回数まで処理を継続させているので 、復元データは元画像データにより近いものとなる。さら〖こ、ノイズなどがあった場合、 差分が「0」にならない状況が現実的には生じがちである力 そのような場合、無限に 処理を繰り返すことになつてしまうが、この構成を採用すると、そのような問題が生じな い。
発明の効果
[0020] 本発明では、非線形補正が施された画像の復元を確実に実行可能にした画像処 理装置を提供することができる。
図面の簡単な説明
[0021] [図 1]本発明の第 1の実施の形態に係る画像処理装置の主要構成を示すブロック図 である。
[図 2]図 1に示す画像処理装置の概要を示す外観斜視図で、角速度センサの配置位 置を説明するための図である。
[図 3]図 1に示す画像処理装置の処理部で行う画像復元処理方法 (反復処理)に係 る処理ルーチンを説明するための処理フロー図である。
[図 4]図 3に示す処理方法の概念を説明するための図である。
[図 5]図 3に示す処理方法を、手ブレを例にして具体的に説明するための図で、手ブ レのないときのエネルギーの集中を示す表である。
[図 6]図 3に示す処理方法を、手ブレを例にして具体的に説明するための図で、手ブ レのな 、ときの画像データを示す図である。 [図 7]図 3に示す処理方法を、手ブレを例にして具体的に説明するための図で、手ブ レが生じたときのエネルギーの分散を示す図である。
[図 8]図 3に示す処理方法を、手ブレを例にして具体的に説明するための図で、任意 の画像力も比較用データを生成する状況を説明するための図である。
[図 9]図 3に示す処理方法を、手ブレを例にして具体的に説明するための図で、比較 用データと、処理対象となるぶれた原画像とを比較して、差分のデータを生成する状 況を説明するための図である。
[図 10]図 3に示す処理方法を、手ブレを例にして具体的に説明するための図で、差 分のデータを配分し任意の画像に加えることで復元データを生成する状況を説明す るための図である。
[図 11]図 3に示す処理方法を、手ブレを例にして具体的に説明するための図で、生 成された復元データから新たな比較用データを生成し、そのデータと処理対象となる ぶれた原画像とを比較して差分のデータを生成する状況を説明するための図である
[図 12]図 3に示す処理方法を、手ブレを例にして具体的に説明するための図で、新 たに生成された差分のデータを配分し、新たな復元データを生成する状況を説明す るための図である。
[図 13]本発明の第 2の実施の形態に係る画像処理装置の処理部で行う画像復元処 理方法 (反復処理)に係る処理ルーチンを説明するための処理フロー図である。
[図 14]本発明の第 3の実施の形態に係る処理部で行う処理方法の概念を説明するた めの図である。
[図 15]本発明の第 3の実施の形態に係る画像処理装置の処理部で行う画像復元処 理方法に係る処理ルーチンを説明するための処理フロー図である。
符号の説明
1, 1A, 1B 画像処理装置
2 撮像部
3 制御系部
4 処理部 5 記録部
6 検出部
7 要因情報保存部
Io 初期画像のデータ (任意の画像のデータ)
Io' 比較用データ
do ' 補正済み比較用データ
G 変化要因情報のデータ (劣化要因情報のデータ)
Ga 点像関数の重心値
Img ' 原画像のデータ (撮影された画像)
clmg' 補正済み原画像データ
k 配分比
Io+n 復元データ(復元画像のデータ)
Io+m 復元データ(復元画像のデータ)
Img 劣化のな!/、本来の正し 、画像のデータ(元画像)
clmg 非線形補正済み元画像データ
e 原画像画素エネルギー
e 配分画素エネルギー
sum (e ) 配分画素エネノレギ一の総和
Ύ 非線形補正関数
η γ 新たな非線形補正関数
δ 差分のデータ(Img,と Io,との差分のデータ)
δ ' 差分のデータ(clmg'と clo,との差分のデータ)
R 復元領域データ
発明を実施するための最良の形態
(第 1の実施の形態)
以下、本発明の第 1の実施の形態に係る画像処理装置 1について図を参照しなが ら説明する。なお、この画像処理装置 1は、民生用のカメラとしているが、監視用カメ ラ、テレビ用カメラ、ハンディタイプのビデオカメラ、内視鏡カメラ、等他の用途のカメラ としたり、顕微鏡、双眼鏡、さらには NMR撮影等の画像診断装置等、カメラ以外の機 器にも適用できる。
[0024] 図 1には画像処理装置 1の構成の概要を示している。画像処理装置 1は、人物等の 画像を撮影する撮像部 2と、その撮像部 2を駆動する制御系部 3と、撮像部 2で撮影 された画像を処理する処理部 4と、を有している。また、この実施の形態に係る画像 処理装置 1は、さらに処理部 4で処理された画像を記録する記録部 5と、角速度セン サ等力 なり、画像劣化など変化の要因となる変化要因情報を検知する検出部 6と、 画像劣化等を生じさせる既知の変化要因情報を保存する要因情報保存部 7を有す る。
[0025] 撮像部 2は、レンズを有する撮影光学系やレンズを通過した光を電気信号に変換 する CCDや C— MOS等の撮影素子を備える部分である。制御系部 3は、撮像部 2, 処理部 4,記録部 5,検出部 6,及び要因情報保存部 7等、画像処理装置内の各部を 制御するものである。
[0026] 処理部 4は、画像処理プロセサで構成されており、 ASIC(Application Specific Integ rated Circuit)のようなハードウェアで構成されている。処理部 4は、検出する手ブレ等 の振動検出のためのサンプリング周波数を発生させていると共にそのサンプリング周 波数を検出部 6に供給している。また処理部 4は、振動検出の開始と終了を制御して いる。さらに処理部 4は、画像データから既知の非線形補正を除去する逆非線形補 正を施す処理を行 ヽ、画像データに対して新たな非線形補正を施す処理を行うこと がある。ここで、非線形補正は、明るさおよび色の調整等のいわゆるガンマ補正等の 他に、 JPEG (Joint Photographic Experts Group)圧縮処理、画像のコントラスト調整 処理等である。
[0027] また、この処理部 4には、後述する比較用データを生成する際の元となる画像のデ ータ、逆非線形補正および新たな非線形補正を施す処理を行う際に用いる補正関 数が保管されることもある。さらに処理部 4は、 ASICのようなハードウェアとして構成さ れるのではなぐソフトウェアで処理する構成としても良い。記録部 5は、半導体メモリ で構成されているが、ハードディスクドライブ等の磁気記録手段、または DVD等を使 用する光記録手段等を採用しても良 ヽ。 [0028] 検出部 6は、図 2に示すように、画像処理装置 1の光軸である Z軸に対して垂直方 向となる X軸、 Y軸の回りの速度を検出する 2つの角速度センサを備えるものである。 ところで、カメラで撮影する際の手ブレは、 X方向、 Y方向、 Z方向の各方向への移動 、 Z軸回りの回動も生ずる力 各変動により最も大きな影響を受けるのは、 Y軸回りの 回転と X軸回りの回転である。これら 2つの変動は、ほんのわずかに変動しただけで、 その撮影された画像は大きくぼける。このため、この実施の形態では、図 2の X軸回り と Y軸回りの 2つの角速度センサのみを配置している。し力し、より完全を期すため Z 軸回りの角速度センサをさらに付加したり、 X方向や Y方向への移動を検出するセン サを付加しても良い。また、使用するセンサとしては、角速度センサではなぐ角加速 度センサとしても良い。
[0029] 要因情報保存部 7は、既知の劣化要因情報などの変化要因情報、たとえば光学系 の収差および Zまたは検出された振動に基づいて算出された点像関数等を保存し ておく記録部である。要因情報保存部 7で記録された点像関数は、たとえばその算 出後の直近に撮影された原画像の復元処理の際に、処理部 4で用いられる。ここで、 原画像の復元処理を実行する時期は、撮影用の電源がオフされている時、処理部 4 が稼働していない時、処理部 4の稼働率が低い時等、原画像を撮影した時期から遅 らせた時期とすることができる。その場合には、記録部 5に保存された原画像データ および、要因情報保存部 7に保存された、その原画像についての点像関数等の変化 要因情報が、それぞれが関連づけられた状態で長期間に渡り保存される。このよう〖こ 、原画像の復元処理を実行する時期を、原画像を撮影した時期から遅らせる利点は 、種々の処理を伴う撮影時の処理部 4の負担を軽減できることである。
[0030] 次に、以上のように構成された第 1の実施の形態に係る画像処理装置 1の処理部 4 の画像復元処理方法の概要を、図 3に基づいて説明する。
[0031] 図 3中、「I」は、任意の初期画像であって、処理部 4の記録部に予め保存されてい
0
る画像のデータである。「I,」は、その初期画像のデータの Iの劣化画像のデータを
0 0
示し、比較のための比較用データである。「G」は、検出部 6で検出された変化要因情 報(=劣化要因情報 (点像関数) )のデータで、処理部 4の記録部に保存されるもの である。「Img'」は、撮影された画像、すなわち劣化画像のデータ (原画像のデータ) である。「clmg '」は、原画像データ Img 'に非線形補正が施された非線形補正済み 原画像データである。「 γ」は、非線形補正済み原画像データ clmg 'に施されている 、既知の非線形補正関数である。
[0032] 「 δ」は、原画像データ Img 'と、比較用データ I,との差分のデータである。「k」は、
0
変化要因情報のデータに基づく配分比である。「I n」は、初期画像のデータ Iに、
0+ 0 差分のデータ δを変化要因情報のデータ Gに基づいて配分して新たに生成した復 元画像のデータ (復元データ)である。「Img」は、元画像のデータで、非線形補正が されていないデータである。「η γ」は、元画像のデータ Imgに施す、新たな非線形補 正関数である。「clmg」は、元画像データ Imgに新たな非線形補正関数 η γを施した 、非線形補正済み元画像データである。ここで、 Imgと Img 'の関係は、次の(1)式で 、 Img 'と clmg 'との関係は、次の(2)式で、 Imgと clmgとの関係は、次の(3)式で、 それぞれ現されるとする。
Img,=Img水 G ( 1)
clmg =Img X γ · · · (2)
clmg = Img X n γ (a)
ここで、「*」は、重畳積分を表す演算子である。
[0033] なお、差分のデータ δは、対応する画素の単純な差分でも良い場合もあるが、一般 的には、変化要因情報のデータ Gにより異なり、次の(4)式で現される。
δ =f (lmg ' , Img, G) · ' · (4)
[0034] 処理部 4の処理ルーチンは、まず、撮影データ等の処理対象となるデータに逆非 線形補正を施す (ステップ S 100)。これは、撮影データ等は画像の質を上げるべく非 線形補正が施されているためである。すなわち、ステップ S 100では、非線形補正が 施され、且つ、手ブレにより劣化している非線形補正済み原画像データ clmg 'から、 逆非線形補正により原画像データ Img,を得る。一方、このステップ S 100より前、同 時またはそれより後に、任意の画像データ Iを用意する (ステップ S 101)。この初期
0
画像のデータ Iとしては、劣化している原画像のデータ Img,を用いても良ぐまた、
0
黒ベタ、白ベタ、灰色ベタ、巿松模様等どのような画像のデータを用いても良い。ス テツプ S 102で、(1)式の Imgの代わりに初期画像となる任意の画像のデータ Iを入 れ、劣化画像である比較用データ I 'を求め、処理部 4の所定のデータ領域に格納
0
する。次に、原画像データ Img'と比較用データ I 'とを比較し、差分のデータ δを算
0
出する (ステップ S 103)。
[0035] 次に、ステップ S 104で、この差分のデータ δが所定値以上であるか否かを判断し 、所定値以上であれば、ステップ S 105で新たな復元画像のデータ(=復元データ) を生成する処理を行う。すなわち、差分のデータ δを変化要因情報のデータ Gに基 づ 、て、任意の画像データ I
0に配分し、新たな復元データ I
Ο+ηを生成する。その後、 ステップ S 102, S103, S 104を繰り返す。
[0036] ステップ S104において、差分のデータ δが所定値より小さい場合、繰り返しの処理 を終了する。そして、繰り返しの処理を終了した時点での復元データ I を元画像の
Ο+η
データ Imgと推定する (ステップ S 106)。すなわち、差分データ δが所定値より小さく なった場合、比較用データ I η'の元となった復元データ I ηは元画像のデータ Im
0+ 0 +
gと非常に近似したものとなることから、その復元データ I n
0 + を元画像のデータ Imgと 推定するのである。そしてその推定された元画像データ I n
0 + に新たな非線形補正関 数 η γを乗じ (ステップ S107)、得られた画像データを非線形補正済み元画像データ clmgとする。以上で処理部 4における画像復元処理が終了する (ステップ S108)。な お、記録部 5には、得られた非線形補正済み元画像データ clmgを記録する他、初期 画像のデータ I
0、変化要因情報のデータ G、非線形補正関数 γおよび新たな非線形 補正関数 η γを記録しておき、必要により処理部 4に渡すようにしても良い。また、ス テツプ S107では、処理対象データに施された非線形補正関数 γと異なる非線形補 正関数 η γを使用したが、非線形補正関数 γを採用しても良い。
[0037] ここで、元画像データ Imgにまた非線形補正を施す過程 (ステップ S 107)は、必要 に応じて省略することができる。たとえば、最終的に求めるものが非線形補正がされ ていない元画像データ Imgであれば、このステップ S107は不要となる。また、この過 程を省略する力否かは、画像処理装置 1を操作する者が選択できるようにすることが できる。
[0038] 上述した繰り返しの処理方法の考え方をまとめると以下のようになる。すなわち、こ の処理方法においては、処理の解を逆問題としては解かず、合理的な解を求める最 適化問題として解くのである。逆問題として解く場合、理論上は可能であるが、現実 問題としては困難である。
[0039] 最適化問題として解くということは、次の条件を前提としている。
すなわち、
(1)入力に対する出力は、一意に決まる。
(2)出力が同じであれば、入力は同じである。
(3)出力が同じになるように、入力を更新しながら反復処理することにより、解を収束 させていく。
[0040] このことを換言すれば、図 4 (A) (B)に示すように、原画像のデータ Img'と近似で ある比較用データ I ' (I η' )を生成できれば、その生成の元データとなる初期画像
0 0 +
のデータ Iまたは復元データ I ηは、元画像のデータ Imgに近似したものとなる。
0 0 +
[0041] なお、この実施の形態では、角速度検出センサのサンプリング周波数を 60Hzから 240Hz内としている力 高周波数を検出できるように 5 sec毎に角速度を検出して もよい。また、差分のデータ δの判定基準となる値は、各データを 8ビット(0〜255) で現した場合に、この実施の形態では「6」としている。すなわち、 6より小さい、つまり 5以下の時は、処理を終了している。
[0042] 次に、図 3に示す手ブレの復元処理方法 (ステップ S102, S103, S104, S105の 反復処理)の詳細を、図 5,図 6,図 7,図 8,図 9,図 10,図 11および図 12に基づい て説明する。
[0043] (手ブレの復元アルゴリズム 1)
手ブレが無いとき、所定の画素に対応する光エネルギーは、露光時間中、その画 素に集中する。また、手ブレがある場合、光エネルギーは、露光時間中にぶれた画 素に分散する。さらに、露光時間中のブレがわかれば、露光時間中のエネルギーの 分散の仕方がわ力るため、ぶれた画像力 ブレの無い画像を作ることが可能となる。
[0044] 以下、簡単のため、横一次元で説明する。画素を左から順に η-1, η, η+1, η+2, η+3 , ···,とし、ある画素 ηに注目する。ブレが無いとき、露光時間中のエネルギーは、そ の画素に集中するため、エネルギーの集中度は「1. 0」である。この状態を図 7に示 す。このときの撮影結果を、図 6の表に示す。図 6に示すもの力 劣化しなカゝつた場合 の正しい画像データ Imgとなる。なお、各データは、 8ビット(0〜255)のデータで現 している。
[0045] 露光時間中にブレがあり、露光時間中の 50%の時間は n番目の画素に、 30%の時 間は n+1番目の画素に、 20%の時間は n+2番目の画素にそれぞれぶれていたとする 。エネルギーの分散の仕方は、図 7に示す表のとおりとなる。これが変化要因情報の データ Gとなる。
[0046] ブレは、全ての画素で一様であり、線形問題として把握される。そして、上ブレ (縦 ぶれ)が無いとすると、ブレの状況は、図 8に示す表のとおりとなる。図 8中の「撮影結 果」として示されるデータが、元画像のデータ Imgで、「ブレ画像」として示されるデー タカ 劣化している原画像のデータ Img'となる。具体的には、たとえば「n— 3」の画 素の「120」は、ぶれ情報である変化要因情報のデータ Gの「0. 5」「0. 3」「0. 2」の 配分比に従い、「n— 3」の画素に「60」、「n— 2]の画素に「36」、「n— 1」の画素に「2 4」というように分散する。同様に、「n— 2」の画素データである「60」は、「n—2」に「3 0」、「n— 1」に「18」、「n」に「12」として分散する。この劣化している原画像データ Im g'と、図 7に示す変化要因情報のデータ G力も元画像データ Imgを算出することとな る。
[0047] ステップ S101に示す任意の画像データ Iとしては、どのようなものでも採用できる
0
1S この説明に当たっては、ステップ S 100で得た原画像データ Img,を用いる。すな わち、 I = Img'として処理を開始する。図 9の表中に「入力」とされたものが初期画像
0
のデータ Iに相当する。このデータ Iすなわち Img'と、ステップ S102で変化要因情
0 0
報のデータ Gとを重畳積分する。すなわち、たとえば、初期画像のデータ Iの「n—3」
0
の画素の「60」は、 n— 3の画素に「30」が、「n— 2」の画素に「18」が、「n— 1」の画素 に「12」がそれぞれ割り振られる。他の画素についても同様に配分され、「出力 I '」と
0 して示される比較用データ I,が生成される。このため、ステップ S103の差分のデー
0
タ δは、図 9の最下欄に示すようになる。
[0048] この後、ステップ S104にて差分のデータ δの大きさを判断する。具体的には、差分 のデータ δが全て絶対値で 5以下となった場合に処理を終了する力 図 9に示す差 分のデータ δは、この条件に合わないため、ステップ S105に進む。すなわち、差分 のデータ δを変化要因情報のデータ Gを使用して、任意の画像のデータ Iに配分し
0 て、図 10中の「次回入力」として示される復元データ I nを生成する。この場合、第 1
0 +
回目であるため、図 10では、 I 1と現している。
0 +
[0049] 差分のデータ δの配分は、たとえば「η— 3」の画素データ「30」に自分の所( =「η
3」の画素)の配分比である 0. 5をかけた「15」を「η— 3」の画素に配分し、また「η 2」の画素のデータ「15」にその「η— 2」の画素にきているはずの配分比である 0. 3 を力けた「4. 5」を配分し、さらに、「η—1」の画素のデータ「9. 2」に、その「η—1」の 画素にきているはずの配分比である 0. 2をかけた「1. 84」を配分する。「η— 3」の画 素に配分された総量は、「21. 34」となり、この値を初期画像のデータ I (ここでは原
0
画像データ Img'を使用)にプラスして、復元データ I を生成して 、る。
0+ 1
[0050] 図 11に示すように、この復元データ I がステップ S 102の入力画像のデータ(
0+ 1
初期画像のデータ I )になり、ステップ S 102が実行され、ステップ S 103へと移行し、
0
新しい差分のデータ δを得る。その新しい差分のデータ δの大きさをステップ S104 で判断し、所定値より大きい場合、ステップ S 105で新しい差分のデータ δを前回の 復元データ I に配分し、新しい復元データ I を生成する(図 12参照)。その後、ス
0+1 0+2
テツプ S102の遂行により、復元データ I 力も新しい比較用データ I 'が生成され
0+2 0+2
る。このように、ステップ S102, S103が実行された後、ステップ S104へ行き、そこで の判断によりステップ S105へ行ったり、ステップ S 106へ移行する。このような処理を 繰り返す。
[0051] 以上のように、ステップ S102〜ステップ S105が繰り返されることで、差分のデータ
δが徐々に小さくなつていき、所定値より小さくなると、ステップ S106, S107へ移行 し、ブレていなくて、かつ γ補正等の非線形補正が施された非線形補正済み元画像 データ clmgが得られる。
[0052] (第 2の実施の形態)
以下、本発明の第 2の実施の形態に係る画像処理装置について図 13を参照しな 力 Sら説明する。第 2の実施の形態に係る画像処理装置の構成は、本発明の第 1の実 施の形態に係る画像処理装置 1と同様である。よって、第 1の実施の形態に係る画像 処理装置 1と同一となる装置等には、同一符号を付し、その説明を省略または簡略 化することとする。また、第 2の実施の形態に係る画像処理装置を示すときは符号とし て「 1 A」を使用するが、図中にはその符号「 1 A」は現れな 、。
[0053] 次に、この第 2の実施の形態に係る画像処理装置 1 Aの処理部 4で実行される画像 復元処理方法の概要を、図 13に基づいて説明する。
[0054] 図 13中、「I」、「I,」、「G」、「clmg,」、「γ」、「k」、「η γ」および「Img」の意義は、
0 0
第 1の実施の形態と同一であり、説明を省略する。「cl '」は、比較用データ I 'に対し
0 0
、原画像データ Img'に施されている既知の非線形補正関数 γを乗じて得られる、非 線形補正済み比較用データである。「 δ '」は、非線形補正済み原画像データ clmg' と、非線形補正済み比較用データ cl 'との差分のデータである。「I 」は、初期画像
0 O+n
のデータ Iに、差分のデータ δ,を変化要因情報のデータ Gに基づいて配分して新
0
たに生成した復元画像のデータ (復元データ)である。ここで、 Imgと Img'の関係を 表す上述した(1)式および、 Imgと clmgとの関係を表す、上述した(3)式は、第 2の 実施の形態についても適用される。また、差分のデータ δ 'は、上述した (4)式同様、 次の(5)式で現される。また、 cl 'と I 'との関係は、次の(6)式で現される。
0 0
δ,=f (clmg,, Img, G) · '· (5)
cl - -- (6)
ο,=I
ο, X γ
[0055] 処理部 4の処理ルーチンは、まず、任意の画像データ Iを用意することから始まる(
0
ステップ S201)。この初期画像のデータ Iは、上述した図 3のステップ S101の説明
0
同様、どのような画像のデータを用いても良い。ステップ S202で、(1)式の Imgの代 わりに初期画像となる任意の画像のデータ I
0を入れ、劣化画像である比較用データ I
0 'を求める。次に、求められた比較用データ I
0 'に対し、非線形補正関数 γを乗じて、 補正済み比較用データ cl 'を得る (ステップ S203)。この非線形補正関数 γは、処
0
理対象データに施されている非線形補正関数と同一のものである。そして処理対象 となる非線形補正済み原画像データ clmg'と非線形補正済み比較用データ cl 'とを
0 比較し、差分のデータ δ 'を算出する (ステップ S204)。
[0056] 次に、ステップ S205で、この差分のデータ δ,が所定値以上であるか否かを判断し 、所定値以上であれば、ステップ S 206で新たな復元画像のデータ(=復元データ) を生成する処理を行う。すなわち、差分のデータ δ 'を変化要因情報のデータ Gに基 づ 、て、任意の画像データ I
0に配分し、新たな復元データ I
O+nを生成する。その後、 ステップ S202, S203, S204, S205および S206を繰り返す。
[0057] ステップ S205において、差分のデータ δ,が所定値より小さい場合、繰り返しの処 理を終了する。そして、繰り返しの処理を終了した時点での復元データ I を元画像
O+n のデータ Imgと推定する(ステップ S207)。そしてその推定された元画像データ Img に新たな非線形補正処理をして (ステップ S 208)、非線形補正済み元画像データ cl mgを得る。なお、この非線形補正処理においては、先程の非線形補正関数 γを使 用するのが好ましいが、復元した復元データ I に合った最適な補正処理をするよう
O+n
にしても良い。すなわち、処理対象データに施された非線形補正関数 γとは異なる 関数を使用しても良い。以上で処理部 4における画像復元処理が終了する (ステップ S209)。なお、記録部 5には、得られた非線形補正済み元画像データ clmgを記録 する他、初期画像のデータ I
0や変化要因情報のデータ G、非線形補正関数 γおよび 新たな非線形補正関数 η γを記録しておき、必要により処理部 4に渡すようにしても 良い。
[0058] 上述した繰り返しの処理方法の考え方、および手ブレの復元アルゴリズムについては 、第 1の実施の形態と同様なので、説明を省略する。
[0059] 上述した第 1および第 2の実施の形態に係る画像処理装置 1, 1Aでは、処理する に当たり、ステップ S104およびステップ S205〖こおいて、事前に処理回数と、差分の データ δ ( δ ' )の判断基準値のいずれか一方または両者を設定できる。たとえば処 理回数として 20回、 50回等任意の回数を設定できる。また、処理を停止させる差分 のデータ δまたは δ,の値を 8ビット(0〜255)中の「5」と設定し、 5以下になったら処 理を終了させたり、「0. 5」と設定し「0. 5」以下になったら処理を終了させることがで きる。この設定値を任意に設定できる。処理回数と判断基準値の両者を入力する構 成とした場合、いずれか一方が満足されたときに処理は停止されるようにするのが好 ましい。なお、両者の設定を可能としたとき、判断基準値を優先し、所定の回数の処 理では判断基準値内に入らな力つた場合、更に所定回数の処理を繰り返すようにし ても良い。また、上述の各実施の形態では、差分のデータ δまたは δ 'の判断基準と して、全ての差分のデータ δ ( δ ')が所定値未満または所定値以下のとき、繰り返し 処理を中止した力 差分のデータ δ ( δ ')の絶対値の総和や、 2乗の総和を判断基 準としても良い。
[0060] 上述した第 1および第 2の実施の形態の説明の中では、要因情報保存部 7に保存 されて!/ヽる情報を利用せず、処理部 4の記録部に保存されて ヽるデータを使用した 1S ここに保存されている既知の劣化要因、たとえば光学収差やレンズのひずみなど のデータを使用するようにしても良い。その場合、たとえば、先の例(図 3および図 13 )の処理方法における繰り返しの処理の部分 (反復処理)では、ブレの情報と光学収 差の情報を合わせて 1つの劣化要因として捉えて処理を行うのが好ましいが、ブレの 情報での処理を終了した後に光学収差の情報での復元処理を行うようにしても良い
。また、この要因情報保存部 7を設置しないようにして、処理部 4に記録されている撮 影時の動的要因、たとえばブレのみで画像を修正したり復元したりしても良 、。
[0061] また、第 1および第 2の実施の形態では、処理部 4が、差分のデータ δ ( δ ' )の大き さを判断して、図 3および図 13に示す反復処理を継続するか中止するかを決める方 法を採用したが、これらの方法以外の方法も採用され得る。たとえば、劣化等の変化 が生じた撮影された原画像から元画像の復元をする処理部を有する画像処理装置 において、処理部が、原画像 Img,の画素の光エネルギーを、変化要因情報 Gに基 づく配分比 kに従い、復元画像が記録される復元データ領域に配分し、その後残つ た原画像 Img'の画素データを処理対象に置き換えて同様の考えで移動を繰り返す 。この繰り返し処理は、移動元のデータである原画像データ Img'が無くなるまで、す なわち「0」となるまで行う。このような処理によって復元処理を行うことができる。以下 、この復元処理を採用する、第 3の実施の形態に係る画像処理装置について説明す る。
[0062] (第 3の実施の形態)
図 14に図 4 (A)に対応する図を示し、図 14に基づき、この第 3の実施の形態に係る 手ブレの復元処理の考え方を以下述べる。元画像のデータ Img力 変化要因情報 のデータ Gにより原画像のデータ Img,へと変化したのなら、同一のフィルタとなる変 化要因情報のデータ Gが有する点像関数の重心値 Gaを通して原画像データ Img' の全てを復元データ領域に再配分すれば、復元データ領域に存在する復元データ Rnは、元画像のデータ Imgに近似するはずである。
[0063] 以上の考え方に基づいた本発明の第 3の実施の形態に係る画像処理装置につい て図 15を参照しながら説明する。第 3の実施の形態に係る画像処理装置の構成は、 本発明の第 1および第 2の実施の形態に係る画像処理装置 1, 1Aと同様である。よつ て、各実施の形態に係る画像処理装置 1, 1Aと同一となる装置等には、同一符号を 付し、その説明を省略または簡略ィ匕することとする。また、第 3の実施の形態に係る画 像処理装置を示すときは、符号として「1B」を使用するが、図中には、その符号「1B」 は現れない。
[0064] 以下、第 3の実施の形態に係る画像処理装置 1Bの処理部 4で実行される画像復 元処理方法の概要を、図 15に基づいて説明する。
[0065] 図 15中、「G」、「k」、「clmg,」、「γ」、「η γ」、「Img」および「clmg」の意義は、第 1 または第 2の実施の形態と同一であり、説明を省略する。「Ga」は、変化要因情報の データ Gが有する点像関数の重心値である。「R」は、上述の復元データである。「E 」は、原画像データ Img'の各画素が有する光エネルギーを合計したもの(以下、原 画像全エネノレギ一という)である。「e」は、画素エネノレギ一のうち、 n回目に復元デー タ領域に配分されるデータ(以下、配分画素エネルギーという)である。「sum (e;)」は 、配分画素エネルギー eの総和である。ここで、 Imgと Img'の関係を表す上述した( 1)式、 Imgと clmgとの関係を表す上述した(3)式は、第 3の実施の形態についても 適用される。
[0066] 図 15に示す、第 3の実施の形態に係る画像処理装置 1Bの処理部 4の復元のため の処理ルーチンは、まず、非線形補正済み原画像データ clmg'を補正関数 γにて 逆非線形補正して、原画像データ Img,を得ることから始まる (ステップ S301)。この ステップ S301は、ステップ S100〖こ相当する。そして原画像データ Img,の各画素の 光エネルギーを原画像画素エネルギー Eとして抽出する(ステップ S302)。ここで、 現段階 (n= l)では、配分画素エネルギー eの総和 sum(e )は零であるため、原 画像全エネルギー Eに、点像関数の重心値 Gaに基づく逆変換を行い、 n= lの段階 の配分画素エネルギー e ( = e )を得る(ステップ S303)。次いで、配分画素エネル ギー eを復元データ Rに配分する(ステップ S304)。ここで、 n= lの段階のステップ S304における復元データ は零であるので、復元データ は「e となる。この配 分の結果、配分画素エネルギー eの総和 sum (e ) { = sum(e ) }と原画像全エネル ギー Eとが近似してきたかどうかの判断を行う(ステップ S305)。すなわち、両者の差 力 S「0」以外の「0」に近い値を所定値として決めておき、その値以下になるかどうかを 判断し、所定値以上または超えるときは、「11 = 11+ 1」= 2として、ステップ3303, S3 04, S305の処理を再度以下のように行う。なお、ステップ S305は、エネルギーが徐 々に引かれていく原画像のデータ Img'の残エネルギーが零に近似したか否かの判 断を行うステップとしたり、復元データ Rの総エネルギー量が最初の原画像データ I mg,のエネルギーと近似してきた力否かの判断を行うステップとしても良 、。
[0067] 今度は、 n= 2であり、配分画素エネルギー eの総和 sum (e )が零でなく sum (e ) (
=e )である。よって、原画像全エネルギー Eから、配分画素エネルギー eの総和 su m (e )である eを差し引 、た値 (残存した画素エネルギー値)に点像関数の重心値 G aに基づく逆変換を行い、配分画素エネルギー e = (e )を得る (ステップ S 303)。そ n 2
の配分画素エネルギー eを先の復元データ Rに加算配分する(ステップ S 304)。す なわち、既にある復元データ R (=R )に今回の配分画素エネルギー e =eをカロ 算配分して Rとする。この配分の結果、配分画素エネルギー eの総和 sum (e ) { = s
2 n n um (e ) }と原画像全エネルギー Eとが近似してきたカゝどうかの判断を行う(ステップ S
2
305)。近似していなければ、「11 = 11+ 1」= 3として、ステップ3303, S304, S305 の処理を再度行う。そして必要により順次 nの値を増やしてステップ S303, S304, S 305の処理を繰り返す。近似してきたら(sum (e ) E)復元データ Rは、元画像デ ータ Imgと近似していると推定できる (ステップ S 306)。そして、元画像データ Imgに 新たな非線形補正関数 γをかけることで非線形補正済み元画像データ clmgが得ら れ (ステップ S307)、復元処理は終了する(ステップ S308)。ここでステップ S307で の非線形補正処理は、撮影データ等処理対象データに施された非線形補正関数 γ を用いるのが好ましいが、新たに得られた復元データ Rに対しての最適な補正となる よう他の関数を使用しても良 、。
[0068] 以上、第 1、第 2および第 3の実施の形態における画像処理装置 1, 1A, 1Bについ て説明したが、本発明の要旨を逸脱しない限り種々変更実施可能である。たとえば、 処理部 4で行った処理は、ソフトウェアで構成している力 それぞれ、一部の処理を分 担して行うようにした部品からなるハードウェアで構成しても良い。また、変化要因情 報のデータ Gとしては、劣化要因情報のデータのみではなぐ単に画像を変化させる 情報や、劣化とは逆に、画像を良くする情報を含むものとする。
[0069] また、処理の反復回数が画像処理装置 1, 1A, 1B側で自動的にまたは固定的に 設定されている場合、その設定された回数を変化要因情報のデータ Gによって変更 するようにしても良い。たとえば、ある画素のデータがブレにより多数の画素に分散し ている場合は、反復回数を多くし、分散が少ない場合は反復回数を少なくするように しても良い。
[0070] さらに、反復処理中に、差分のデータ δまたは δ 'が発散してきたり、エネルギーが 移動した後の画像データのエネルギーが小さくならず大きくなつてきたら、処理を中 止させるようにしても良い。発散しているか否かは、たとえば差分のデータ δまたは δ 'の平均値を見てその平均値が前回より大きくなつたら発散していると判断する方法 を採用できる。また、反復処理中に、入力を異常な値に変更しょうとしたときには、処 理を中止させるようにしても良い。たとえば 8ビットの場合、変更されようとする値が 25 5を超える値であるときには、処理を中止させる。また、反復処理中、新たなデータで ある入力を異常な値に変更しょうとしたとき、その値を使用せず、正常な値とするよう にしても良い。たとえば、 8ビットの 0〜255の中で、 255を超える値を入力データとし ようとした際は、マックスの値である 255として処理するようにする。
[0071] また、出力画像となる復元データを生成する際、変化要因情報のデータ Gによって は、復元させようとする画像の領域外へ出てしまうようなデータが発生する場合がある 。このような場合、領域外へはみ出るデータは反対側へ入れる。また、領域外から入 つてくるべきデータがある場合は、そのデータは反対側から持ってくるようにするのが 好ましい。たとえば、領域内の最も下に位置する画素 XN1のデータから、さらに下の 画素に割り振られるデータが発生した場合、その位置は領域外になる。そこで、その データは画素 XN1の真上で最も上に位置する画素 XI 1に割り振られる処理をする。 画素 XN1の隣の画素 Ν2についても同様に真上で最上覧の画素 Χ12 ( =画素 XI I の隣り)に割り振ることとなる。 上述の各実施の形態では、復元対象を画像データとしてレ、る。しかし、これらの復 元処理の考え方および手法は、あらゆるデジタルデータの復元処理に適用できる。 たとえば、デジタルの音声データの復元等への適用が可能である。音声データの場 合、非線形補正としてエコーをかけることがあるが、その場合も上述の各実施の形態 のように非線形補正を除去する等の処理を併せて行うことができる。

Claims

請求の範囲
[1] 劣化等の変化が生じた画像であって所定の非線形補正が施された非線形補正済 み原画像データから、変化する前の画像もしくは本来撮影されるべきであった画像ま たはそれらの近似画像であって非線形補正が施されて 、な 、画像 (以下、元画像と
V、う)またはその元画像に非線形補正が施されて 、る画像 (以下、非線形補正済み 元画像と ヽぅ)の復元をする処理部を有する画像処理装置にお ヽて、
上記処理部が、画像変化の要因となる変化要因情報のデータ、および上記非線形 補正済み原画像データもしくは上記非線形補正済み原画像データに対し逆非線形 補正を行って得られた非線形補正が施されて!/、な!、非線形補正無し原画像データ、 を利用しての繰り返し処理により、上記非線形補正済み原画像データまたは上記非 線形補正無し原画像データに近似する比較用データを徐々に生成し、または上記 非線形補正済み原画像データのエネルギーを徐々に零に近似させることで、上記元 画像のデータまたは上記非線形補正済み元画像のデータを生成する基本処理を行 うことを特徴とする画像処理装置。
[2] 前記基本処理で生成された上記元画像のデータに新たな非線形補正を施す事後 処理を行うことを特徴とする請求項 1記載の画像処理装置。
[3] 前記処理部が、前記基本処理に先立って、前記非線形補正済み原画像データに 対し、逆非線形補正を行って前記非線形補正無し原画像データを得る事前処理を 行うことを特徴とする請求項 1または 2記載の画像処理装置。
[4] 前記処理部は、前記基本処理に当たって、前記変化要因情報のデータを利用して 任意の画像データ力 比較用データを生成し、前記事前処理で得られた前記非線 形補正無し原画像データと、上記比較用のデータとを比較し、得られた差分のデー タを利用して復元データを生成し、この復元データを上記任意の画像データの代わ りに使用し、同様の処理を繰り返す繰り返し処理を行うことを特徴とする請求項 1、 2ま たは 3記載の画像処理装置。
[5] 前記処理部は、前記変化要因情報のデータを利用して任意の画像データ力 比 較用データを生成し、上記比較用データに所定の非線形補正を施して非線形補正 済み比較用データを生成し、前記非線形補正済み原画像データと、上記非線形補 正済み比較用のデータとを比較し、得られた差分のデータを利用して復元データを 生成し、この復元データを上記任意の画像データの代わりに使用し、同様の処理を 繰り返す前記基本処理を行うことを特徴とする請求項 1記載の画像処理装置。
[6] 前記処理部は、前記基本処理の際、前記非線形補正済み原画像データのェネル ギ一の値が、所定値以下または所定値より小さくなつたら、もしくは前記比較用デー タと、その比較用データの比較対象となる画像データとの差分のデータの値力 所定 値以下または所定値より小さくなつたら、前記基本処理を停止させる処理を行うことを 特徴とする請求項 1から 5のいずれか 1項に記載の画像処理装置。
[7] 前記処理部は、前記基本処理の際、繰り返しの回数が所定回数となったら停止さ せる処理を行うことを特徴とする請求項 1から 5のいずれか 1項に記載の画像処理装 置。
[8] 前記処理部は、前記基本処理の際、繰り返しの回数が所定回数に到達したときに おける、前記非線形補正済み原画像データのエネルギーの値が、所定値以下また は所定値より小さくなつたら、もしくは前記比較用データと、その比較用データの比較 対象となる画像データとの差分のデータの値が、所定値以下または所定値より小さい 場合は前記基本処理を停止し、所定値より超えるまたは所定値以上の場合は、さら に所定回数繰り返す処理を行うことを特徴とする請求項 1から 5のいずれか 1項に記 載の画像処理装置。
[9] 前記処理部は、前記基本処理に当たって、前記変化要因情報のデータを利用して 、所定の画像データ力 比較用データを生成し、前記非線形補正済み原画像デー タもしくは前記非線形補正無し原画像データと上記比較用データを比較し、得られた 差分のデータが所定値以下または所定値より小さ 、場合は処理を停止し、上記比較 用データの元となった所定の画像データを、前記元画像のデータとして扱い、上記 差分が所定値より大きいまたは所定値以上の場合は、上記差分のデータを、前記変 化要因情報のデータを利用して上記所定の画像データに配分することで、復元デー タを生成し、この復元データを上記所定の画像データに置き換えて同様の処理を繰 り返す繰返し処理を行うことで前記元画像のデータを生成することを特徴とする請求 項 1記載の画像処理装置。 前記処理部は、前記繰返し処理の際、繰り返しの回数が所定回数となったら停止さ せる処理を行うことを特徴とする請求項 9記載の画像処理装置。
PCT/JP2006/325329 2005-12-27 2006-12-20 画像処理装置 Ceased WO2007074687A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/159,160 US8073278B2 (en) 2005-12-27 2006-12-20 Image processing device
JP2007551914A JP5007241B2 (ja) 2005-12-27 2006-12-20 画像処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-374345 2005-12-27
JP2005374345 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007074687A1 true WO2007074687A1 (ja) 2007-07-05

Family

ID=38217907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325329 Ceased WO2007074687A1 (ja) 2005-12-27 2006-12-20 画像処理装置

Country Status (3)

Country Link
US (1) US8073278B2 (ja)
JP (1) JP5007241B2 (ja)
WO (1) WO2007074687A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117085A1 (de) 2010-03-23 2011-09-29 Basf Se Polyarylenether mit verbesserter fliessfähigkeit
WO2011117153A1 (de) 2010-03-23 2011-09-29 Basf Se Verbesserte blends aus polyarylenethern und polyarylensulfiden

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8824825B2 (en) 2009-11-17 2014-09-02 Sharp Kabushiki Kaisha Decoding device with nonlinear process section, control method for the decoding device, transmission system, and computer-readable recording medium having a control program recorded thereon
CN102598668B (zh) 2009-11-17 2014-11-12 夏普株式会社 编码装置、解码装置、编码装置的控制方法、解码装置的控制方法、传送系统
JP5656579B2 (ja) * 2009-11-30 2015-01-21 キヤノン株式会社 光学部材に起因する画質の低下を補正可能な撮像装置、撮像装置の制御方法およびプログラム
WO2011099202A1 (ja) * 2010-02-15 2011-08-18 シャープ株式会社 信号処理装置、制御プログラム、および集積回路
US20110237693A1 (en) * 2010-03-23 2011-09-29 Basf Se Blends made of polyarylene ethers and of polyarylene sulfides
US20110237694A1 (en) * 2010-03-23 2011-09-29 Basf Se Polyarylene ethers with improved flowability
US9093048B2 (en) 2012-04-15 2015-07-28 Trimble Navigation Limited Identifying pixels of image data
US10880365B2 (en) * 2018-03-08 2020-12-29 Ricoh Company, Ltd. Information processing apparatus, terminal apparatus, and method of processing information
CN109541590B (zh) * 2018-12-19 2020-07-10 北京科技大学 一种高炉料面点云成像的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300459A (ja) * 2001-03-30 2002-10-11 Minolta Co Ltd 反復法による画像復元装置、画像復元方法、プログラム及び記録媒体
JP2003060916A (ja) * 2001-08-16 2003-02-28 Minolta Co Ltd 画像処理装置、画像処理方法、プログラム及び記録媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348461B2 (ja) 1993-05-06 2002-11-20 株式会社ニコン 手ぶれ補正カメラ
JPH1124122A (ja) 1997-07-03 1999-01-29 Ricoh Co Ltd 手ぶれ画像補正方法および手ぶれ画像補正装置並びにその方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
US6470097B1 (en) * 1999-01-22 2002-10-22 Siemens Corporation Research, Inc. Total variational blind image restoration from image sequences
US20010008418A1 (en) * 2000-01-13 2001-07-19 Minolta Co., Ltd. Image processing apparatus and method
JP3428589B2 (ja) * 2001-03-30 2003-07-22 ミノルタ株式会社 画像処理プログラムが格納された記録媒体、画像処理プログラム、画像処理装置
JP4438363B2 (ja) * 2002-12-27 2010-03-24 株式会社ニコン 画像処理装置および画像処理プログラム
JP4455897B2 (ja) * 2004-02-10 2010-04-21 富士フイルム株式会社 画像処理方法および装置並びにプログラム
US8331723B2 (en) * 2004-03-25 2012-12-11 Ozluturk Fatih M Method and apparatus to correct digital image blur due to motion of subject or imaging device
US7561186B2 (en) * 2004-04-19 2009-07-14 Seiko Epson Corporation Motion blur correction
US7760805B2 (en) * 2005-05-31 2010-07-20 Hewlett-Packard Development Company, L.P. Method of enhancing images extracted from video
US20070009169A1 (en) * 2005-07-08 2007-01-11 Bhattacharjya Anoop K Constrained image deblurring for imaging devices with motion sensing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300459A (ja) * 2001-03-30 2002-10-11 Minolta Co Ltd 反復法による画像復元装置、画像復元方法、プログラム及び記録媒体
JP2003060916A (ja) * 2001-08-16 2003-02-28 Minolta Co Ltd 画像処理装置、画像処理方法、プログラム及び記録媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117085A1 (de) 2010-03-23 2011-09-29 Basf Se Polyarylenether mit verbesserter fliessfähigkeit
WO2011117153A1 (de) 2010-03-23 2011-09-29 Basf Se Verbesserte blends aus polyarylenethern und polyarylensulfiden

Also Published As

Publication number Publication date
JPWO2007074687A1 (ja) 2009-06-04
US20100214433A1 (en) 2010-08-26
JP5007241B2 (ja) 2012-08-22
US8073278B2 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
WO2007074687A1 (ja) 画像処理装置
JP5765893B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
WO2007083621A1 (ja) 画像処理装置
JP2004186901A (ja) 撮像装置及び方法、プログラム及び記録媒体
JP5133070B2 (ja) 信号処理装置
JP4965179B2 (ja) 画像処理装置
US20080012964A1 (en) Image processing apparatus, image restoration method and program
WO2009110183A1 (ja) 変化要因情報のデータの生成法および信号処理装置
JP4975644B2 (ja) 画像処理装置
JP4598623B2 (ja) 画像処理装置
JP4606976B2 (ja) 画像処理装置
JP4763419B2 (ja) 画像処理装置
JP5005553B2 (ja) 信号処理装置
JP5005319B2 (ja) 信号処理装置および信号処理方法
JP5495500B2 (ja) 変化要因情報のデータの生成法および信号処理装置
JP4629537B2 (ja) 画像処理装置
JP5057665B2 (ja) 画像処理装置
JP5007245B2 (ja) 信号処理装置
JP4869971B2 (ja) 画像処理装置および画像処理方法
WO2007032148A1 (ja) 画像処理装置
JP4982484B2 (ja) 信号処理装置
JP5065099B2 (ja) 変化要因情報のデータの生成法および信号処理装置
JPWO2008090858A1 (ja) 画像処理装置および画像処理方法
WO2007063630A1 (ja) 画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551914

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12159160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834999

Country of ref document: EP

Kind code of ref document: A1