[go: up one dir, main page]

WO2006109423A1 - 物品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラム - Google Patents

物品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラム Download PDF

Info

Publication number
WO2006109423A1
WO2006109423A1 PCT/JP2006/305401 JP2006305401W WO2006109423A1 WO 2006109423 A1 WO2006109423 A1 WO 2006109423A1 JP 2006305401 W JP2006305401 W JP 2006305401W WO 2006109423 A1 WO2006109423 A1 WO 2006109423A1
Authority
WO
WIPO (PCT)
Prior art keywords
article
person
information
detection
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2006/305401
Other languages
English (en)
French (fr)
Inventor
Shusaku Okamoto
Osamu Yamada
Tomonobu Naruoka
Toru Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006519678A priority Critical patent/JP4006471B2/ja
Publication of WO2006109423A1 publication Critical patent/WO2006109423A1/ja
Priority to US11/796,047 priority patent/US7545278B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management

Definitions

  • Article position estimation device article position estimation method, article search system, and article position estimation program
  • the present invention relates to an article position estimation device, an article position estimation method, and an article search system for managing articles in a general house or office, and in particular, daily necessities and offices used for life in a general home.
  • an article position estimation device for managing the position of various items such as portable items used in the system using R FID tag technology etc.
  • the position of the item to be searched is appropriately displayed.
  • the present invention relates to an article position estimation device, an article position estimation method, and an article search system.
  • Patent Document 1 Japanese Patent Laid-Open No. 07-146362
  • a tag an RFID tag
  • a reading device for the tag hereinafter referred to as a tag reader
  • a terminal for searching for an article is provided.
  • each tag reader tries to communicate with the tag attached to the article, and the place of the article to be searched is determined by the place of the tag reader that receives the reply from the tag. It is.
  • a tag is set for a book to be managed, and a tag reader is set on each shelf of a library book rack.
  • each tag reader searches for a tag including the ID of the search target book. If there is no response from the tag reader in response to an inquiry from the tag reader, there is no corresponding book in the communicable range of the tag reader, and conversely, if a response from the tag is received in response to an inquiry from the tag reader. Is applicable When a book is found, it can be said that it is the approximate location of the book that the tag reader receiving the response from the tag is searching for. Therefore, the user can get to the target book by going to the location of the reader and searching for only the books around the reader.
  • the conventional system can manage the location of the article while having a very simple configuration, and is therefore starting to be used in various fields mainly for business use.
  • the disadvantage of this example is that to increase the accuracy of the search position, the tag attached to the article can communicate with any tag reader anywhere in the environment where the article is managed. This means that it is necessary to install a tag reader. Therefore, it is a big problem that it cannot be used for home use, where the cost of power is an important issue in business applications where costs are allowed to be somewhat high.
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-357251
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-357251
  • an article management device a plurality of sensor units (tag readers), a tag unit attached to an article, and a reception sensitivity when receiving tag information transmitted from the tag unit through the plurality of sensor units.
  • This technology uses an active tag with a built-in battery because it needs to reach the tag's radio waves to multiple sensor units that are relatively distant from each other.
  • a method is adopted in which transmission is performed at a predetermined timing (once a day to once a month).
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-233715
  • an observation device tag reader
  • Living information such as human behavior history and location information of managed objects is collected and managed.
  • Data tags are attached to objects to be managed, and people carry personal tags on their hands. These data tags and personal tags hold identification information of objects to be managed and persons, and can communicate information with an observation device wirelessly at a plurality of communication distances.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 07-146362
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-357251
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-233715
  • Patent Document 2 since the tag does not transmit force at a predetermined timing, the position of the article is determined based on the last record of the tag attached to the article and the tag reader. Therefore, after communicating with the tag force S tag reader, the component where the article with the tag is carried is lost until the next communication with the tag force S tag reader. Furthermore, it goes without saying that the longer the time has passed since the last communication with the tag reader, the lower the possibility that the tagged article will be in the vicinity of the last tag reader with which communication was made. Therefore, in order for a user to find an article using such a system, it is necessary to remember and remember from the location of the article informed by the search query, such as how the user himself / herself moved and where the article was placed.
  • Patent Document 3 it is necessary to install a plurality of tag readers in the same room as Patent Document 2, which is disadvantageous in terms of cost.
  • data tags and personal tags can be transmitted wirelessly, there is a problem that the size of the tag itself is increased and the cost is increased.
  • an object of the present invention is to provide a simple configuration as in the prior art, that is, a tag on an article.
  • the present inventors first deal with goods in a home or office, mainly those who live in the home or work in the office. Therefore, we noticed that there should be an important correlation between the movement of the person and the location of the goods. Therefore, if human movement information could be obtained by some means, we thought that it would be possible to narrow down the location of goods using that information.
  • the present invention relates to a technique for realizing this idea in order to solve the above-mentioned problems.
  • an article detection device that is arranged at least near the entrance of a room where a person can enter and exit to identify and detect different articles.
  • An article management database for storing article identification information, detection place information, and detection time information detected by the article detection device as article management information
  • a person detecting device for detecting the position of the person in the room by distinguishing each person, a person management database for storing movement history information of the person detected by the person detecting device,
  • an article position estimation device comprising: article presence area estimation means for estimating the subsequent movement area of the detected person as an article presence area of the article.
  • an input device for inputting a target article to be searched
  • the article position estimation device that estimates the article presence area of the article by the article presence area estimation unit, and searches for the search target article input by the input device from the estimated articles.
  • a display device for displaying the article presence area where the search target article exists, using the article presence area estimation means, or the estimation result of the article presence area estimation means and the article position candidate weighting means;
  • An article search system comprising:
  • the article detection device detects an article, and stores the location and time in the article management database.
  • the human detection device detects a person and stores the location information and time information in the human management database.
  • the article presence area estimation means refers to the information stored in the article management database and the information stored in the person management database, and there is a possibility that an article exists in a route traveled by a person as the article existence area. A certain place can be estimated.
  • the article position candidate weighting means uses information such as human movement history data and device operation information, so that there is a possibility of existence for each place where the article may exist. It is also possible to weight the height.
  • the user of the system can prioritize the places to be searched by referring to the location where the weighted articles are present, and search for the search target articles in descending order of strength.
  • the article position estimation apparatus and method, article retrieval system, and article position estimation program according to the present invention enable a user to easily and quickly find an article to be searched.
  • an article can be detected only within the detection range of the article detection device. Therefore, if there is an article at a location other than that, the user can see the detection result of the article detection device. He was forced to perform a task that required thinking, such as searching for places while remembering them.
  • the location where the article is present can be further narrowed down, and if necessary, weighting can be performed to indicate the high possibility of the presence or absence of the article at the narrowed-down location.
  • the user can search for the target article more easily and quickly without the need for the thought work of remembering the user's past behavior.
  • FIG. 1 is a block diagram showing a typical configuration example of an article search system according to first and second embodiments of the present invention.
  • FIG. 2 is a sketch showing an example of an environment in which a tag reader, which is an example of an article detection device of the article search system that works on the first embodiment of the present invention, is installed at the entrance of each room. Yes,
  • FIG. 3 is an explanatory diagram showing an example in which a gate-type tag reader, which is an example of an article detection device, is installed at the entrance of the “living room”.
  • FIG. 4A is a conceptual diagram showing an example in which a tag is attached to a book as an example of an article.
  • FIG. 4B is a conceptual diagram showing an example in which juice is tagged as another example of an article.
  • FIG. 5A is a diagram showing an example of the article management information included in the article management database of the article search system in a tabular form
  • FIG. 5B is a diagram showing an example of the article management information included in the article management database in a table format.
  • FIG. 6 is a conceptual diagram showing a system configuration for detecting the position of a person using a weight sensor as an example of the human detection device of the article search system;
  • FIG. 7 is a conceptual diagram showing a system configuration for detecting the position of a person using a tag as another example of the human detection device of the article search system
  • FIG. 8 is an auxiliary diagram for specifically explaining the background subtraction method as still another example of the human detection device of the article search system.
  • FIG. 9A is a diagram showing an input image taken at a certain point in time using the same camera that took the background image to specifically explain the background subtraction method
  • FIG. 9B is a diagram showing an example of a background image for specifically explaining the background subtraction method.
  • FIG. 9C in order to specifically explain the background difference method, a coordinate system of the environment is added to the background difference image obtained by subtracting the background image of FIG. 9B from the input image of FIG. 9A. It is a figure shown,
  • FIG. 10 is an explanatory diagram for explaining a calculation for converting a position coordinate of a cut-out person in a camera image into a world coordinate system.
  • FIG. 11A is a diagram showing an example of human management information included in a human management database in the article search system in a tabular form.
  • FIG. 11B is a diagram showing an example of human management information included in the human management database in the article search system in a tabular format
  • FIG. 12 is a diagram showing an example of human movement history information in the article search system in a tabular format
  • FIG. 13 (a) and (b) in FIG. 13 refer to the human movement history information in the article search system, respectively, and a draft and a plot in which the movement amount (movement distance) at the time is plotted for each time.
  • FIG. 3 is a diagram in which the person movement history information is plotted on a floor plan in which only “living room” is extracted from the floor plan in FIG. 2;
  • FIG. 14 (a) and (b) of FIG. 14 are cases in which data for two persons are plotted in the article search system, respectively, and the person movement history information is referred to and the data is
  • FIG. 3 is a graph in which the movement history information is plotted on a graph in which only the “living room” is extracted from the graph in which the movement amount (movement distance) at the time is plotted and the sketch in FIG. 2;
  • FIG. 15A is a diagram showing a device having a storage function in the article search system.
  • FIG. 15B is a diagram illustrating a device having a storage function in the article search system.
  • FIG. 16A is a diagram showing an example of device management information included in a device management database in a table format in the article search system
  • FIG. 16B is included in the equipment management database in the article search system. Is a diagram showing an example of device management information in a tabular format
  • FIG. 17 is a flowchart showing a flow of processing in the article presence area estimating means in the article search system
  • FIG. 18 is a diagram showing, in a tabular form, processing results in the article presence area estimation means in the article search system,
  • FIG. 19 is a flowchart showing a process of performing weighting using the moving speed of a person in the article search system
  • FIG. 20 is a diagram showing processing results in the article position candidate weighting means in the article search system in a tabular form
  • FIG. 21 is a conceptual diagram showing an example in which an article search result is displayed in CG (computer graphic) on the display device in the article search system;
  • FIG. 22 is a flowchart showing a process of weighting using device management information in the article search system
  • FIG. 23 is a diagram showing a database for managing device locations in the article search system in a tabular format.
  • Figure 24 is a sketch showing the equipment placed in the environment.
  • FIG. 25 is a diagram for explaining a weighting process according to the distance between a person's staying position and the device in the article search system
  • FIG. 26 is a diagram showing in tabular form the results of weighting processing according to the distance between the person's staying position and the device in the article search system,
  • FIG. 27 is a conceptual diagram showing an example in which an article search result is displayed in CG (computer graphic) on the display device in the article search system that works on the second embodiment of the present invention
  • FIG. 28 is a conceptual diagram showing a state in which the moving images in the article search system that are useful for the second embodiment of the present invention are given a time stamp and accumulated.
  • FIG. 29 is a flowchart showing the flow of processing in image search means in the article search system according to the second embodiment of the present invention.
  • FIG. 30A is a diagram of the article search system according to the second embodiment of the present invention. It is a conceptual diagram showing how the 19:31 image is retrieved and displayed from the image database in FIG.
  • FIG. 30B is a conceptual diagram showing a state in which an image of 19:32 is retrieved from the image database of FIG. 28 and displayed in the article search system that is relevant to the second embodiment of the present invention. Yes,
  • FIG. 31 shows information stored in an article management database in the article search system of the first embodiment, in which an article name and a tag ID assigned thereto are paired. It is an explanatory diagram of the state,
  • FIG. 32 is a conceptual diagram showing a system configuration for detecting the position of a person using a weight sensor as an example of the person detection device of the article search system of the first embodiment.
  • FIG. 33 is an explanatory diagram of article owner information in the article search system of the second embodiment.
  • FIG. 34 is a sketch showing an example of an office environment in which the article detection device in the article search system is installed
  • FIG. 35 is a flowchart of an article position estimation program capable of realizing a part of the article search system
  • FIG. 36A is a graph showing the relationship between the time and the actual position of the person at that time.
  • FIG. 36B is a graph showing the position P of the person recorded at the time interval At.
  • FIG. 37 if the average moving speed in the predetermined time zone after staying is higher than the average moving speed in the predetermined time zone before staying, it is determined that the possibility of releasing the carried item is high.
  • FIG. 38 is a graph showing the processing result in step 3705 of FIG. 37.
  • FIG. 39A is a graph showing the time change of the moving speed of two persons H1 and H2.
  • FIG. 39B shows the moving path of two persons HI and H2 on the floor plan of the room. It is a figure displayed on top of
  • Fig. 40 explains the processing by the article presence area estimation means considering the possibility of delivery. Is a flowchart to explain,
  • FIG. 41 is a diagram showing data used when processing by the article presence area estimation means considering the possibility of delivery,
  • FIG. 42A is a diagram showing data representing changes in the moving speeds of two persons HI and H2, which are used in the article presence area estimation process in the article existence area estimation means when delivery of articles is considered.
  • FIG. 42B shows the movement trajectory data of the two persons HI and H2 superimposed on the floor plan in the article existence area estimation process by the article existence area estimation means when the delivery of the article is considered. It is a figure that
  • FIG. 42C is a diagram showing a movement trajectory presented on the display device in the article presence area estimation process by the article presence area estimation means when taking the article into consideration. Is a flowchart showing the processing in the article position candidate weighting means considering the possibility of delivery,
  • FIG. 44A shows the movement speed of the two persons HI and H2 used for the article presence area estimation process in the article existence area estimation means when taking the article into consideration, as in FIG. 42A. It is a figure which shows the data showing a change,
  • FIG. 44B shows the movement trajectory data of the two persons HI and H2 in the article presence area estimation process in the article presence area estimation means when the delivery of the article is considered. It is a figure expressed overlaid on the floor plan of the room,
  • Figure 44C shows the article presence area estimation process performed by the article position candidate weighting means when the delivery of the article is taken into consideration, and the obtained article presence area is mapped onto the environment sketch by the article presence area estimation means. It is a figure which shows a result,
  • FIG. 45A is a graph showing the time change of the moving speed of two persons HI and H2.
  • FIG. 45B is based on the graph of FIG. 45A in time zones S1 to S5. It is a figure which shows the table
  • FIG. 45C is a diagram in which the movement trajectories of two persons HI and H2 are superimposed on the floor plan of the room and displayed.
  • FIG. 46 is a flowchart showing a process of reflecting the change in the moving speed before and after the staying state in the weighting. It is a chart. BEST MODE FOR CARRYING OUT THE INVENTION
  • the first aspect of the present invention at least near the entrance of a room where people can go in and out, different articles (for example, different types of articles) are identified and detected so as to be distinguished.
  • An article detection device At least near the entrance of a room where people can go in and out, different articles (for example, different types of articles) are identified and detected so as to be distinguished.
  • An article management database for storing article identification information, detection place information, and detection time information detected by the article detection device as article management information
  • a person detecting device for detecting the position of the person in the room by distinguishing each person, a person management database for storing movement history information of the person detected by the person detecting device,
  • a predetermined time including the detection time of the article (this predetermined time) ) Means a predetermined time for estimating the presence area of the article.)
  • the person detected in is specified, and the person and the person are identified based on the movement history information of the person management database.
  • an article existence area for estimating a subsequent movement area of the detected person as an article existence area of the article
  • An article position estimation device comprising: an estimation unit;
  • the article presence area estimating means is configured to change the movement speed of the person obtained by referring to the movement history information stored in the person management database.
  • the article position estimation device according to the first aspect for estimating the article existence area of the article is provided.
  • the estimated plurality of article existence areas with reference to information stored in the article management database or the person management database, the estimated plurality of article existence areas
  • the first or second aspect further comprising article position candidate weighting means for performing weighting so that the weight of the article existence area is high based on the possibility that the article exists and the weight of the article existence region is high.
  • the article position estimation apparatus described in 1. is provided.
  • the article position candidate weighting means includes
  • a predetermined value for determining the staying state.
  • the region where the average value of the person's moving speed is lower is extracted using the average value of the person's moving speed obtained by extracting the time information as the staying state and referring to each information constituting the staying state.
  • An article position estimation apparatus according to a third aspect is provided that performs weighting so that the weight of an article existence area where the article is likely to exist is increased.
  • the article position candidate weighting means includes
  • the detection location information and detection in the movement history information having a movement speed equal to or lower than a predetermined value (a predetermined value for determining the staying state). Extracting the time information as a staying state, and using the change in the moving speed of the person obtained by referring to the information on the detection location and the detection time information before and after the staying state, the possibility that the article exists.
  • the article position estimation apparatus which performs weighting so that the weight of a high article existence area is increased.
  • the article position candidate weighting means includes
  • An article position estimating apparatus When weighting the possibility that the article exists, weighting is performed so that the weight of the article existing area where the article is likely to exist is increased by using the time during which the staying state is continued.
  • the article presence area estimation means includes
  • the article position estimation device Provide a position.
  • a device operation detection device that detects device operation of a device that stores and manages the article
  • a device management database for storing operation information of each device detected by the device operation detection device; information stored in the device management database is information on presence / absence of operation of the device in the operation information
  • the article position estimation apparatus which weights the article position candidate equipment so that the weight of the equipment used is increased.
  • the article presence region estimation means includes the person and the article after the case where the person detection device and the article detection device are detected simultaneously.
  • the detected movement area of the person is estimated as the article existence area of the article, and the estimation of the article existence area of the article is stopped after the detected person leaves the room.
  • An article position estimation apparatus according to the second aspect is provided.
  • the input device for inputting the target article to be searched for, and the article presenting area estimated by the article existing area estimating means while estimating the article existing area of the article is provided.
  • the article position estimation device according to any one of the first to ninth aspects, which searches for an article to be searched input by the input device,
  • a display device for displaying an article presence area in which the search target article exists, using the article presence area estimation unit, or estimation results in the article presence area estimation unit and the article position candidate weighting unit;
  • An article search system comprising:
  • an imaging device that captures an environment in which the article search is performed, an image database that stores image information captured by the imaging device, the article presence area estimation unit, The article existence region estimation means and the article position candidate weighting means estimate the place and time where the article requested to be searched is estimated to be placed, and photograph the place using the estimation result.
  • image search means for extracting image information including the time, the image database.
  • the display device provides the article search system according to the tenth aspect, characterized in that the image information searched by the image search means is displayed.
  • the step of identifying and detecting with the article detection device so that different articles (for example, different types of articles) are distinguished at least in the vicinity of the entrance / exit of the room where people can go in and out.
  • a predetermined time including the detection time of the article Means a predetermined time for estimating the presence area of the article.
  • the person detected in is specified, and the person and the person are identified based on the movement history information of the person management database. Estimating the subsequent movement area of the detected person as the article presence area of the article when the article is detected simultaneously by the person detection device and the article detection device;
  • An article position estimation method is provided.
  • the article position estimating method according to the twelfth aspect is further provided.
  • a computer includes:
  • a predetermined time including the detection time of the article (this predetermined time)
  • article detection is performed by identifying and detecting different articles (for example, different types of articles) that are arranged at least in the vicinity of a doorway where a person can enter and exit.
  • articles for example, different types of articles
  • a person detecting device for distinguishing and detecting the position of the person in the room for each individual; information on the detection time of the article stored in the article management database; and the person stored in the person management database Using human movement history information, a person detected within a predetermined time including the detection time of the article (this predetermined time means a predetermined time for estimating the article presence area). And when the person and the article are detected simultaneously by the person detection device and the article detection device based on the movement history information of the person in the person management database, the detected Article presence area estimation means for estimating a subsequent movement area of a person as an article existence area of the article;
  • An article position estimation device is provided.
  • FIG. 1 shows a typical configuration example of the article search system according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram, and FIG. 1 includes all the means or devices described in the various aspects of the present invention.
  • the article retrieval system according to the first embodiment of the present invention basically has three parts as a whole, that is,
  • An article position estimation device 140 that performs a process of estimating the position of the article, and searches for an article to be searched input by the input device 109 from the estimated articles;
  • a display device 110 for displaying the location of the search target article input by the input device 109 using the estimation processing result by the article position estimation device 140;
  • the article position estimation apparatus 140 can also search for time information in addition to the information on the article to be searched input from the input device. Is possible. That is, specifically, the force described later as the second embodiment of the present invention.
  • An imaging device 111 that captures the environment in which the time information output from the timer means 120 is input and the article search is performed;
  • An image database 112 for storing image information taken by the imaging device 111 together with time information
  • Image search means 113 for estimating and extracting the image information including the above-mentioned time from the image information stored in the image database 112,
  • a portion 140 surrounded by a solid line in FIG. 1 is a block diagram corresponding to the article position estimating apparatus 140 according to the first embodiment of the present invention. All means or apparatus and various databases described in the 1st to 15th aspects Shows the configuration including
  • 'Timer means 120 to output current time information
  • An article detection device 101 for identifying and detecting so that the time output from the timer means 120 is input and different articles are distinguished;
  • the identification information (ID) of the article detected by the article detection device 101, the information on the detection location of the article, and the time information (detection time information) output from the timer means 120 at the time of detection are detected for each article detection.
  • a person detection device 103 that receives the time information output from the timer means 120 and detects the position of the person for each person;
  • the identification information (ID) of the person detected by the human detection device 103, the information on the detection location of the person, and the time information (detection time information) output from the timer means 120 at the time of detection are And a human management database 104 stored as human management information (human movement history information),
  • ID Identification information of each device detected by the device operation detection device 105
  • operation information information on the operation status of the device
  • time information output from the timer means 120 when the device is operated operation time Information
  • the article presence area estimation means 107 for searching for the search target article input by the input device 109 from the articles whose article existence area is estimated
  • the article detection apparatus 101 receives the time information (detection time information) output from the timer means 120 and identifies and detects the different articles so that the identification information (ID) of the detected articles is detected. And the information on the detection location of the article and the time information (detection time information) output from the timer means 120 at the time of detection are output to the article management database 102 for each article detection.
  • the article management database 102 for each article detection.
  • FIG. 2 is a sketch showing an example of an environment in which the article detection apparatus 101 is installed (an example of a room in a general household).
  • the XY coordinate system is set with the vertical direction in Fig. 2 as the Y-axis and the horizontal direction as the X-axis.
  • a portion indicated as TGR is a tag reader as an example of the article detection apparatus 101, and includes “entrance”, “living room”, “study”, “bathroom”, “toilet”, and “bedroom”. It is installed near the doorway.
  • FIG. 3 shows an example in which it is installed in the vicinity of an entrance where a person of “gate type tag reader TGR force ⁇ living room” can enter and exit.
  • the gate type tag reader TGR can function alone, but for reasons such as to prevent mistakes in reading the tag TG, here the gate type tag reader TGR is installed in a pair as opposed to each other.
  • Figure 3 shows an example.
  • a tag TG for example, a passive tag with a relatively short distance (eg, near an entrance / exit) that does not detect force). It needs to be attached.
  • Fig. 4A and Fig. 4B are conceptual diagrams showing an example in which a tag TG is attached to an article.
  • Fig. 4A shows a tag for "book”
  • Fig. 4B shows a tag for "juice”.
  • An example in which TG is given is shown.
  • the information of the tag TG read and read is stored in the article management database 102 together with the time of reading.
  • the “living room” in FIG. 3 includes a bookshelf (BS), refrigerator (RF), kitchen system (KS), dining table (DT), sofa 1 (SF1) as shown in FIG. Sofa 2 (SF2) and Rotable (LT) are installed!
  • the articles tagged in this way are stored in the article management database 102 as a pair of the article name and the tag ID assigned thereto.
  • the tag reader TGR reads the ID of the tag TG, it is possible to determine what the article corresponds to the ID.
  • other information may be added and stored in the article management database 102.
  • the other information is information such as the category, weight, shape, and color of the article.
  • the article management database 102 includes the article identification information (ID) detected by the article detection device 101, information on the detection location (detection position in the room) of the article, and the time output from the timer means 120 at the time of detection. This information (detection time information) is stored as article management information for each article detection.
  • 5A and 5B are diagrams showing examples of the article management information included in the article management database 102 according to the first embodiment of the present invention in a tabular form.
  • the article management database 102 is the article management information. Is a collection of “Goods” here refers to portable items that users use in daily life (or portable items that are normally used in offices, etc.), such as furniture and home appliances in homes (or offices). Desks and bookcases etc.) are distinguished from “articles” by the name of “equipment” or “equipment”.
  • FIGS. 5A and 5B show article management information corresponding to “book” in FIG. 4A and “juice” in FIG. 4B, respectively.
  • the article management information related to “book” in FIG. 4B shows article management information corresponding to “book” in FIG. 4A and “juice” in FIG. 4B, respectively.
  • Each tag reader TGR detects the tag TG of each item, and each time the tag reader TGR obtains the ID of each item, the tag TG ID is paired with the tag TG ID. And the correspondence information in the correspondence database (see FIG. 31) of the article, the article corresponding to the ID of the tag TG is examined, and the result is written in the article management database 102 over time.
  • the correspondence database between the tag TG ID and the article may be arranged separately from the article management database 102 as long as the tag reader TGR can be referred to, or the article management information is stored in the article management database 102. You may make it arrange
  • the article management database 102 may be deleted from the article management database 102.
  • the article management information may be deleted manually using the input device 109. If the tag reader TGR is installed in the trash box and the tag reader TGR detects the tag TG, the tag reader TGR The article management information corresponding to the tag TG may be deleted from the article management database 102.
  • the human detection device 103 receives the time information output from the timer means 120 and detects the person's position by distinguishing each person. As a result, the human identification information (ID) and the detected person identification information (ID) are detected. Information on the detection location of the person and information on the time (detection time information) output from the timer means 120 at the time of detection are output to the human management database 103 for each unit time.
  • human detection is a force that can be perceived in various ways, for example, when a person included in an image is cut out from the image, or where a person in a certain environment finds a place in the environment. Used to mean the position coordinates of a person at Various detection methods have been proposed for this purpose. In the first embodiment, three types of methods, a method using a weight sensor, a method using a tag TG, and a method using an image will be described below.
  • FIG. 6 and 32 are conceptual diagrams showing a system configuration for detecting the position of a person using the weight sensor WSEN.
  • the human detection device 103 includes a weight sensor WSEN and a sensor processing device 141 to which output information from the weight sensor WSEN is input and can be connected to the article management database 102.
  • the weight sensor WSEN When detecting the position of a person using the weight sensor WSEN, as shown in FIGS. 6 and 32, the weight sensor WSEN is laid on the floor in the environment, for example, in a lattice pattern.
  • Each of these weight sensors WSEN is configured to output a value when the weight is applied by a human foot or the like, and all of them are connected to the sensor processing device 141.
  • the sensor processing device 141 registers the coordinates of each weight sensor WSEN in advance and always senses the data of the weight sensor WSEN. If a weight sensor WSEN is loaded, a load is applied. If this is detected, the sensor processing device 141 immediately obtains the coordinates where the weight sensor WSEN is placed.
  • the sensor processing device 141 may add processing such as grouping sensing data having substantially equal weights of the weight sensor WSEN and arranging them in time order. Thereby, the accuracy of human detection can be improved.
  • FIG. 7 is a conceptual diagram showing a system configuration for detecting the position of a person using a tag TG.
  • the human detection device 103 includes a tag TG and a tag reader TGR that can detect the tag TG and can be connected to the article management database 102 by radio or the like.
  • the tags TG are spread on the floor in the environment, for example, in a lattice pattern.
  • the footwear 142 is provided with a tag reader TGR for reading the HD information of the tag TG laid on the floor, and the tag reader TGR includes the tag TG having the ID information and the tag TG having the ID information.
  • Correspondence information (not shown) corresponding to the position information (for example, position coordinate information) of the place where the object is placed is stored.
  • the footwear 14 2 and the tag reader TGR force at the moment the foot is stepped on the floor communicates with the tag TG below the tag TG, and the tag TG
  • the person's position can be specified by reading the ID information and comparing the value of the information with the association information.
  • this is only an example, and a configuration in which a tag reader TGR is attached to a place other than footwear 142 and a tag TG is attached to a place other than a person's foot may be used.
  • a tag TG with an individual ID is embedded in a wrist watch attached to a wrist, it is possible to detect a person with the tag reader TGR for the article detection apparatus 101 described above.
  • Step 1 Extracting a person from the image
  • Step 2 Converting the position coordinates of the extracted person in the camera image to the world coordinate system.
  • step 1 the force that is the clipping of a person with a medium image power, various methods have been developed. Here, the simplest background difference method will be described.
  • the background subtraction method prepares a model image as a background in advance, This is a method of obtaining an object to be processed from an image by taking a difference from the model image.
  • a background image is created. For example, when there is no environmental change, a single image in which no humans exist in the environment may be used. It is also possible to use images obtained by averaging images taken continuously.
  • 8 and 9A to 9C are auxiliary diagrams for specifically explaining the background subtraction method.
  • Fig. 8 is a conceptual diagram showing that the camera 143 is installed in the environment and the world coordinate system is set in the environment.
  • Fig. 9B is a diagram showing an example of the background image.
  • Fig. 9A is a diagram showing Fig. 9B.
  • Figure 9C shows an input image (captured image) taken at a certain point in time using the same camera 143 that was taken.
  • Figure 9C shows the background obtained by subtracting the background image of Figure 9B from the input image of Figure 9A.
  • FIG. 6 is a diagram showing a difference image with a coordinate system of the environment added.
  • the input image in Fig. 9A includes person 14 4 and the background image in Fig. 9B does not include person 144, which is the difference between these two images. Person 144 also appears in the background differential image power of Fig. 9C.
  • the coordinates of the foot of the person 144 in the image can be obtained by image processing.
  • the human detection device 103 since what is ultimately desired by the human detection device 103 is the coordinates of the person 144 in the world coordinate system, the method will be described with reference to FIG.
  • FIG. 10 is a diagram for explaining calculation for converting the position coordinates of the clipped person 144 in the camera image into the world coordinate system.
  • O O
  • the coordinate system composed of the X axis, Y axis, and Z axis with w as the origin is the world coordinate system.
  • O is the camera coordinate system whose origin is the lens center of the camera 143.
  • the position coordinate of the person 144 is represented by (x, y, z).
  • (U, V) is the camera e e e
  • the rotation matrix around one axis, and (t, t, t), is the origin of the camera coordinate system and the origin of the world coordinate system
  • the above is the outline of the method for detecting the person 144 using the camera image. If a plurality of people are detected in the camera 143, the above process may be performed individually.
  • the human detection device 103 when using a camera image for the human detection device 103, it does not matter if the image captured by the imaging device 111, which is another component of the first embodiment of the present invention, is shared.
  • the human detection device 103 is connected to the camera 143, the image information from the camera 143, and the arithmetic processing such as the background difference processing and the coordinate conversion processing, and is connected to the article management database 102. It comprises possible computing means 145.
  • any of these methods can detect a person completely. It is not guaranteed. Therefore, in order to perform human detection with higher accuracy, it is possible to use these methods in combination, use other methods, or combine these methods with other methods. Absent.
  • the method used in the article detection apparatus 101 and the method used in the person detection apparatus 103 may be shared with each other.
  • only an example of a method suitable for each means has been introduced, and the methods may be used in combination according to the environment and cost to which the present invention is actually applied.
  • the human management database 104 stores the identification information (ID) of the person detected by the human detection device 103, information on the detection location of the person, and the time output from the timer means 120 at the time of detection.
  • Information is stored as person movement history information (person management information) every unit time.
  • FIG. 11A and FIG. 11B are diagrams of person management information (for example, person movement history information including information such as person identification information, position coordinates and time) included in the person management database 104 according to the first embodiment of the present invention.
  • the figure shows an example in the form of a table.
  • the human management database 104 is a collection of such human management information.
  • person management information (person movement history information) corresponding to the father in FIG. 11A and the mother in FIG. 11B is shown.
  • the human management information (person movement history information) related to Dad in Figure 11A is
  • the difference between the human management information (human movement history information) and the article management information is that the human management information detects the person detection location and the detection time for each unit time. Is included as human movement history information.
  • This human movement history information is a detailed detection of how a person is actually moving, and the detected information (information such as the person's identification information and location (location coordinates) and its time) is stored. Next, the details of the human movement history information will be described with reference to FIG.
  • FIG. 12 shows an example of human movement history information in a table format.
  • the example of FIG. 12 shows the history data MF — Data02 in “living room” included in the father's person movement history information (FIG. 11A).
  • This history data MF—Data02 is the history of human movement until the father passes the tag reader TGR of “living room” at 22:29 the next time after his father passed the “living room” tag reader TGR at 19:30. Is described.
  • Each person's movement history information in the table consists of three elements: time, X-coordinate value, and Y-coordinate value. Time is the elapsed time since recording started, and X and Y coordinate values are shown in Fig. 2.
  • the coordinate values in the coordinate system of the sketch shown in Fig. 1 are shown in mm.
  • this table shows that the father was at the coordinates (5766, 23 04) at time 1 after passing the tag reader TGR of "living room" at 19:30. .
  • the power of omitting the time unit This is because the interval of information recording differs depending on the system capability, and it should be decided appropriately according to the system capability (eg 1 second interval).
  • the upper graph (a) in FIG. 13 refers to the human movement history information, calculates the movement distance between two consecutive times (hereinafter referred to as unit time), and the movement. It is a graph plotting distance on the vertical axis and time on the horizontal axis. Therefore, in the upper graph (a) of FIG. 13, the larger value on the vertical axis represents the larger moving amount per unit time and the smaller value represents the unit. It represents that the amount of movement in time is small. In other words, if the place where the value is not small continues, the time is moving.If the place where the value is small continues, the time stays! /, Ru ((in the house! , Te) stays locally (for a short time).
  • a dotted line A is drawn in parallel with the horizontal axis slightly above the horizontal axis, but if the movement amount per unit time is less than this dotted line A, If the definition is defined as “Staying” with the dotted line A and subsequent parts as a lump, the three “Stalling” as shown in the upper graph (a) in FIG. It can be seen that there are parts (ie “bookcase”, “refrigerator and kitchen system”, “sofa 1”).
  • the criteria for judging whether it is “staying” or moving will change, but the simplest method is to change the value on the vertical axis of dotted line A.
  • a method of fixing to a fixed value is conceivable.
  • the value may be changed depending on the person, or may be changed depending on what kind of goods the person is handling. For example, if the person to be detected is an elderly person, or if the article to be detected is a heavy article or a fragile article, it means that it is not “staying” but moving, even if the moving distance is continuous.
  • the value on the vertical axis of dotted line A is It is desirable to make it smaller than the case of goods.
  • Information on the articles handled can be obtained from the article detection device and the article management database.
  • changing the standard for each detection target means determining the standard according to the normal movement speed of the detection target. In other words, this is equivalent to focusing on the difference between the normal moving speed and the moving speed at a certain point in time.
  • the reference value may be changed according to the position where a person exists (for example, room unit). For example, considering the entire house shown in Fig. 2, the corridor usually has no obstacles so that it is easy to move. Easy to grow.
  • FIG. 36A shows a graph PH showing the relationship between time and the actual position of the person at that time.
  • Fig. 36B shows the position coordinates P of the person accumulated at time interval At.
  • the movement speed of the person is represented by the slopes of the lines in FIGS. 36A and 36B, respectively, but the line segment (P ⁇ P) in FIG. 36B is smaller than the actual movement speed. Therefore, accumulation k k + 1
  • the interval may be determined according to the movement speed of a person who has been measured in advance. In addition, if you want to include the case where a person repeatedly moves in a local area in the “Stay” intentionally, the storage interval may be increased.
  • the accumulation interval may be reduced.
  • two people, a mother and a daughter take food from a bag or shopping cart that has been purchased and packed near the kitchen system.
  • the product is placed in a refrigerator or food storage, or miscellaneous goods are placed on a table.
  • the mother and daughter repeatedly move between the position of the nog or shopping cart and the position of the refrigerator or food storage table.
  • the accumulation time interval may be made sufficiently small.
  • the lower plan view (b) of FIG. 13 is a plan view in which only “living room” is extracted from the sketch diagram of FIG. 2, and the human movement history information in the upper graph (a) of FIG. FIG. Since the person movement history information originally includes time information, it can be associated with the upper graph (a) in FIG. In this example, if the “dwell” part of the upper graph (a) in FIG. 13 is mapped to the floor plan in the lower plan view (b) of FIG. 13 (see dotted line with arrows), the earliest time In order, it can be determined that the object is staying in the vicinity of “Bookcase”, “Refrigerator and Kitchen System”, and “Sofa 1”.
  • FIG. 13 shows only an example relating to one person's movement history information.
  • the same processing may be performed for two or more persons.
  • the upper graph (a) in Figure 14 shows two people
  • one person is indicated by the same solid line B as the data in FIG. 13 and the other data is indicated by the dashed-dotted line C.
  • This dash-dotted line C data shows that there is only movement at the beginning and no movement after that, but the corresponding movement in real space is the same in the bottom plan view (b) of Fig. 14.
  • This is indicated by the alternate long and short dash line C.
  • the other person indicated by the alternate long and short dash line C is sitting on "Couch 2" immediately after entering the room. From the above, it can be said that the results correspond to the results in the upper graph (a) in Fig. 14!
  • the feature of the first embodiment of the present invention is that the position of the article is narrowed down by using the result of analyzing the person movement history information that the person has moved in this way, and the specific processing thereof is as follows. This is performed by the article presence area estimation means 107 and the article position candidate weighting means 108 which are components of the first embodiment of the present invention. Details will be described later.
  • the device operation detection device 105 receives the time information (operation time information) output from the timer means 120 and detects the device operation, and as a result, the identification information (ID) of each device detected and the device Information on operation status (operation information) and time information (operation time information) output from the timer means 120 at the time of operation are output to the device management database 106 every time device operation is detected.
  • Equipment as used herein is defined as having a function of storing articles in a confined manner, and other items that are not articles are called “facility”.
  • “Bookshelf” and “Refrigerator” are “Equipment”
  • “Kitchen System” “Dining Table”, “Sofa 1”, “Sofa 2”, and “Low Table” are “Equipment”. It is.
  • “kitchen system” can be further subdivided into “kitchen system” storage shelves and storages as “equipment”, and the cooking table as “equipment”.
  • FIG. 15A and FIG. 15B are conceptual diagrams showing examples of devices in which the device operation detection device 105 is installed for devices having a storage function.
  • a portion indicated as TSEN is a sensor as an example of the device operation detection device 105, and here, an example using the contact sensor TSEN is shown.
  • FIG. 15A there are two Type of open / close type door 150, 151 force, contact force sensor TSEN installed on each of the door 150 and fixed support frame 153 force
  • the sliding door type door 152 There is a force
  • the contact force TS EN is installed on each of the door 152 side and the fixed frame 154 side.
  • the force shown as an example of the contact sensor TSEN may be used, or a method other than the sensor may be used.
  • the device management database 106 includes the identification information (ID) of each device detected by the device operation detection device 105, the operation status information (operation information) of the device, and the time output from the timer unit 120 during operation.
  • Information (operation time information) is stored as device management information for each device operation detection.
  • 16A and 16B are diagrams showing examples of device management information included in the device management database 106 of the article search system according to the first embodiment of the present invention.
  • FIG. 16A and FIG. 16B give examples of “book shelf” and “refrigerator” as devices, each of which is independent device management information.
  • As the contents of the device management information information on the time when the device was operated and information on opening / closing as operation status information (operation information) are described. This example is the simplest example.
  • device management information should be prepared independently for each device. ! ⁇ .
  • the article presence area estimation means 107 receives the article management information stored in the article management database 102 and the person management information stored in the person management database 104 (if necessary, the equipment management database 106 further stores the equipment management information stored in the equipment management database 106. (Also management information)
  • the movement area is estimated to be the article existence area of the article to be searched. As described in the section “Means for Solving Problems”, the existence area of an article should be estimated with a focus on the fact that there should be an important correlation between the movement of a person and the place where the article exists. More concretely, it can be said that the position of an article can be estimated based on the following two principles.
  • FIG. 17 is a flowchart showing the flow of processing in the article presence area estimation means 107. In the following, the flow of processing for estimating the presence area of an article will be described according to this flowchart.
  • step S1701 the user designates a detection target article whose position is to be detected by the input device 109, and the detection target article designated by the input device 109 is input to the article presence region estimation means 107.
  • the article presence area estimation means 107 refers to the article management information in the article management database 102 based on the designated detection target article, and the designated article is finally detected. Get time and location. Specifically, the article presence area estimation means 107 may refer to the last line of the article management information of the article (the line in which the latest information is described in the tabular article management information). This is a process performed in accordance with the above (Principle 2).
  • the article existence area estimation means 107 refers to the person management information in the person management database 104, and a predetermined time including the time (the same time as the time and the time before and after the time). Among them, the article presence area estimating means 107 acquires all persons detected at the place as candidates for handling the designated article. The reason for searching not only for the person detected at the same time as the above time but also for the person detected before and after that time is the reason for the detection process itself by the article detection apparatus 101 and the person detection apparatus 103.
  • the predetermined time may be made variable according to the identification information (ID) of the article or the identification information (ID) of the person. For example, if the person is an elderly person, or if the article is a heavy article or a large article, there is a possibility that the moving speed may be reduced. Therefore, the time width may be increased.
  • the person and the article are a predetermined time including the time when the article was last detected by the person detection device and the article detection device, that is, the article was last.
  • the person and the article are detected simultaneously by the person detection apparatus and the article detection apparatus, the case where the person and the article are detected at the same time as the time detected at Paraphrased as necessary.
  • the article existence area estimation means 107 refers to the person management information in the person management database 104, and determines the time and the movement of the person.
  • the person movement history information associated with is acquired.
  • the movement path (in other words, the movement area of the person) is the estimation result of the article existence area.
  • the result is in accordance with the above (Principle 1).
  • the input device 109 is used to specify an article whose position is to be detected.
  • the input apparatus 109 whether the article name is input by voice or a keyboard using a portable terminal or a personal computer.
  • a conventional input method in the article search such as displaying the previous article list and selecting from the list may be used.
  • the user is a father and a user is designated as a detection target article to be searched.
  • a state in which the processing in the article presence area estimation unit 107 is performed will be specifically described.
  • step S1701 the father detected the position using the input device 109.
  • the product is input to the article presence area estimation means 107 so that juice is designated as the detection target article.
  • step S1702 with reference to the last line of FIG. 5B which is the article management information on the juice in the article management database 102, the time “19:30” when the designated juice was last detected. And the location “living room” information are obtained by the article existence area estimation means 107.
  • step S1703 the person management information in FIG. 11A and FIG. 11B of the person management database 103 is referred to by the article existence area estimation means 107, and within a predetermined time centering on the time “19:30”, All persons detected in the “living room” are acquired by the article presence area estimation means 107 as candidates for handling the designated article.
  • the predetermined time is 3 minutes
  • persons detected in the “living room” between 19:27 and 19:33 are identified from the person management information in FIGS. 11A and 11B of the person management database 104.
  • the article existence area estimation means 107 only the “dad” detected in the place “living room” at time “19:30” is acquired by the article existence area estimation means 107.
  • step S 1704 the history data “MF-Data02j” of FIG. 12 corresponding to the detected person management information is acquired by the article presence region estimation means 107.
  • FIG. 18 shows the result of the article presence area estimation by the article existence area estimation means 107 obtained in this way in a tabular form. Although there is only one history data acquired in this example, if there are multiple people who may have moved with the article, all the history data corresponding to those people should be acquired.
  • the article existence area estimation processing in the article existence area estimation means 107 is the article existence area estimation processing in the article existence area estimation means 107, and the history data obtained thereby is mapped onto the environment sketch by the article existence area estimation means 107 (for example, as shown in FIG. 13).
  • Just displaying the lower plan view (b) image) on the display device 110 is useful enough.
  • the user can look for his / her past movement path shown on the screen and search for an article while looking at the power to trace the path in order or the equipment or facilities in the vicinity of the path. That is why. Since the place where the target article is searched is narrowed down to the vicinity of the past movement route that is not in the whole room, it can be expected that the time and effort for searching will be greatly improved.
  • the article position candidate weighting means 108 refers to the article management information stored in the article management database 102 or the person management information stored in the person management database 104 or the equipment management information stored in the equipment management database 106.
  • the plurality of article existence areas estimated by the article existence area estimation means 107 are weighted so that the possibility that the article exists is high and the weight of the article existence area is high. In other words, it can be said that the article existence area having a higher possibility of existence is narrowed down from the article existence area estimation means 107 described immediately before, narrowing down the position of the article to some extent. In the first embodiment of the present invention, this low possibility of article existence is referred to as “weighting of article position candidates”.
  • the first method is that the more slowly a person moves (if it stops in extreme cases)
  • FIG. 19 shows the movement speed of the person by the article position candidate weighting means 108. It is the figure which showed the process which weights using a degree in the format of the flowchart.
  • step S1901 since the history data of the person who handled the search target article can be obtained by the article presence area estimation means 107, the movement speed of the person is obtained by the article position candidate weighting means 108 using the history data. calculate. For example, in the history data in the example of FIG. 12, the moving speed can be calculated by calculating the distance moved by the position coordinate value force at each time in the unit time. By dividing this distance by the article position candidate weighting means 108 in the unit time, It can be easily obtained.
  • step S1902 a group of places where the moving speed obtained by the article position candidate weighting means 108 is equal to or less than a predetermined value (threshold value) is extracted by the article position candidate weighting means 108 as a person's staying state. Then, the article position candidate weighting means 108 registers, for example, as a weighting list in the temporary storage unit in the article position candidate weighting means 108 or the article management database 102.
  • a predetermined value threshold value
  • step S1903 the article position candidate weighting means 108 first selects one place from the weighting list.
  • step S1904 the article position candidate weighting means 108 at the place selected in step S1903,
  • the article position candidate weighting means 108 may obtain, for example, an average of the position coordinates in the staying state below the threshold value.
  • the first average moving speed is used as a weighting index
  • the other center position coordinate is used when presenting the location of the article to the user.
  • the calculation result is registered by the article position candidate weighting unit 108, for example, in the temporary storage unit in the article position candidate weighting unit 108 or the weighting list in the article management database 102.
  • step S1905 for each location extracted in step S1902, if there is a location where step S1904 has not been performed yet, proceed to step S1906, and still perform step S1904! / If there is no place, go to step S1907. [0107] In step S1906, for each location extracted in step S1902, step S1904 is still performed! /, Na! /, One location is selected from the list, and step S1904 is repeated. Proceed to step S1905.
  • step S1907 for all the locations extracted in step S1902, the article position candidate weighting means 108 increases the priority from the one with the lower average moving speed calculated in step S1904. , Weight. This is based on the idea that the more people are moving slowly, the more likely they are to stop!
  • the weighting result is registered by the article position candidate weighting means 108, for example, in the temporary storage unit in the article position candidate weighting means 108 or the weighting list in the article management database 102.
  • the process will be described using a specific example.
  • the history data MF-Data02 of FIG. 12 is obtained by the article existence area estimation process in the article existence area estimation means 107, and the article position candidate weighting means 108 Let's take a look at the process of weighting the article position candidates.
  • step S1901 the movement speed of the person is calculated by the article position candidate weighting means 108 from the person history data MF-Data02.
  • the calculation result is shown in the above graph (upper graph (a) in FIG. 13).
  • step S1902 a group of places whose moving speed obtained by the article position candidate weighting means 108 is equal to or less than a predetermined value (threshold value) is extracted by the article position candidate weighting means 108 as a person's staying state.
  • the article position candidate weighting means 108 registers, for example, as a weighting list in the temporary storage unit in the article position candidate weighting means 108 or the article management database 102. In this example, it can be determined from the upper graph (a) in FIG. When these are related to the bottom plan view (b) plotted in the floor plan in Fig.
  • the calculation result is registered by the article position candidate weighting unit 108, for example, in the temporary storage unit in the article position candidate weighting unit 108 or the weighting list in the article management database 102.
  • step S 1907 the article position candidate weighting unit 108 weights “bookcase”, “refrigerator and kitchen system”, and “sofa 1” based on the calculation result.
  • FIG. 20 shows the result of the weighting of the article position candidates thus obtained in a tabular form.
  • the table shows the three stays extracted in order from the left
  • the center position coordinates of the location (in this example, the location name indicating where the coordinates are in the room)
  • steps S 1904 and S 1907 in FIG. 19 are respectively obtained by the article position candidate weighting means 108, for example, in the temporary storage unit in the article position candidate weighting means 108 or the weighting list in the article management database 102. Stored.
  • the residence time of a person may be used together as information for weighting. This is based on the knowledge that when a person puts or picks up an article, the speed of movement of the person decreases or becomes zero, as well as the knowledge that it takes some time to handle the article. is there. For example, even when the average moving speed is minimum, if the staying state lasts for a short time, the candidate ranking force may be removed because it is highly likely that the article has not been handled.
  • the threshold for this dwell time can be determined according to the ID and location of the article handler (detection target), the handling article (detection target article).
  • the threshold value is increased.
  • the staying time is long V (if the staying time on the sofa is long), there is a possibility that the operator may rest, so there is no need to use it as information.
  • Weighting can also be performed according to the difference in average moving speed before and after the handler stays.
  • the movement speed of the operator often decreases. Therefore, if the average moving speed in the predetermined time zone after staying is higher than the average moving speed in the predetermined time zone before staying, it is likely that the operator has released the carried item. be able to.
  • An algorithm performed by the article position candidate weighting means 108 using this idea will be described with reference to the flowchart of FIG.
  • steps S3701 to S3704 are the same as the processing of steps S1901 to S1904 in FIG.
  • step S3705 the article position candidate weighting means 108 calculates average moving speeds V 1 and V 2 in a predetermined time zone immediately before and after the location.
  • step 3705 the article position candidate weighting means 108 calculates average moving speeds V 1 and V 2 in a predetermined time zone immediately before and after the location.
  • FIG. 38 shows a graph VH of a change in moving speed with respect to time for a person as an example of a handler.
  • the article history candidate weighting means 108 determines that the movement history data corresponding to the time below the threshold TH of the movement speed is “staying”.
  • the length of the staying time is used as the time width for determining the predetermined time zone immediately before and immediately after the staying by the product position candidate weighting means 108.
  • it may be a predetermined value.
  • step S3706 for each location extracted in step S3702, if there is a location where steps S3704 and S3705 by the article position candidate weighting means 108 have not yet been executed, the procedure proceeds to step S3707, where it has not been executed. If not, go to Step S370 8. [0120] In step S3707, the article position candidate weighting means 108 selects one of the above-described squirrel repulsive forces for each location extracted in step S3702 and has not performed steps S3704 and S3705, and performs steps S3704 and S3705. After repeating, go to step S3706.
  • step S3708 for each location extracted in step S3702, (V — V
  • the weights are weighted by the article position candidate weighting means 108 which increases the priority from the one with the larger value of).
  • the absolute value of aft bef may be calculated by the article position candidate weighting means 108.
  • the residence time is the residence time! If it is less than the value TH, it can be used by removing it from the candidate ranking.
  • the evaluation S is large by using, for example, the following equation (Equation 1). This can be realized by setting the candidate rank in order by the article position candidate weighting means 108 in order.
  • V average moving speed
  • V average moving speed after residence time
  • V average before residence time
  • the uniform moving speed ⁇ , j8 is a weighting factor. Note that j8 is determined in advance by experiments.
  • the graph of Fig. 39A shows the time change of the moving speed of two persons Hl and H2 as an example of the handler.
  • Person HI is selected as a candidate for handling the search target article in step S1703.
  • the selected person, person H2 is assumed to be a powerful person who has not been selected as a candidate for handling the search target article in step S1703.
  • TH is a threshold for the moving speed for determining whether or not the force is staying by the article position candidate weighting means 108. Both the persons HI and H2 are staying at a certain time at a moving speed below the threshold TH.
  • the article position candidate weighting means 108 can determine this.
  • Figure 39B shows the movement path of two persons HI and H2 superimposed on the floor plan of the room.
  • both persons HI and H2 are near sofa 1 in Figure 39B. Is determined by the article position candidate weighting means 108. That is, the person position HI and H2 are staying at the same time and in the same place, and at this time, the article position candidate weighting means 108 determines that the delivery of the article may have occurred. Since the person HI is a candidate for handling the article to be detected, the article position candidate weighting means 108 determines that the person HI may have passed to H2. If person H2 is not a candidate for handling, it will be necessary to newly handle the candidate as a handling candidate, and there is a possibility that the search target article exists even in the movement route after the delivery of person H2. This is determined by the article position candidate weighting means 108.
  • step S4001 The processing from step S4001 to step S4003 is the same as the processing from step S1701 to step S1703.
  • step S4001 the user designates a detection target article whose position is to be detected by the input device 109, and the search target article designated by the input device 109 is input to the article presence region estimation means 107.
  • step S4002 the article presence region estimation means 107 refers to the article management information in the article management database 102 based on the designated search target article, and the designated article is finally detected. Get the time and location (position in the room).
  • FIG. 41 shows the detection results at the place where the designated article was last detected in time series, and the time when the designated article was last detected is Tx. Is shown.
  • the article presence area estimation unit 107 refers to the person management information in the person management database 104 and is detected at the place within the predetermined time zone TZ1 including the time Tx. All persons are acquired as candidates for handling the designated article (hereinafter referred to as handling candidates).
  • handling candidates are acquired as candidates for handling the designated article.
  • person ⁇ 3 enterers the room to be detected at time T1
  • person ⁇ 4 enters the room at time ⁇ 2 are acquired as goods handling candidates.
  • step S4004 the article presence region estimation means 107 refers to the human management information in the human management database 104, and the candidate (person ⁇ 3, human ⁇ 4) force acquired in step S4003. Detected at the location acquired in step S4002 between the time detected at the first time (ie, when entering the room) (in the time zone TZ1) and the time detected at the second time (ie when exiting) All persons are acquired as candidates who have received delivery of goods (hereinafter referred to as delivery candidates), and a delivery candidate list is created.
  • delivery candidates who have received delivery of goods
  • the article presence area estimation means 107 is the candidate (person ⁇ 3, person ⁇ 4) detected during the time zone TZ1, and the time when the person ⁇ 3 last exited during the time zone ⁇ 2 until the time ⁇ 5.
  • the detected person ⁇ 5 (regardless of entering or leaving the room) is acquired as a delivery candidate of the article and put in the delivery candidate list.
  • step S4005 the article presence region estimation means 107 stores all of the handling candidates acquired in step S4003 and all the delivery candidates acquired in step S4004 in the human management database 104.
  • the person management information person movement history information
  • the person movement history information history data in which the time and the person movement are associated with each other is acquired.
  • step S4006 the moving speed of the person (handling candidate) is calculated by the article presence area estimating means 107 from the history data of the handling candidate acquired in step S4005.
  • the calculation of the moving speed is the same as the processing in step S1901, and thus the description is omitted.
  • step S4007 the article presence area estimation means 107 registers the combination data in which the moving speed of the handling candidate is equal to or lower than (predetermined time, place) as a staying point in the staying point list.
  • the element in other words, the movement history information element
  • 3D data time, X coordinate value, Y coordinate value
  • step S4008 the article presence area estimation means 107 selects one candidate from the delivery candidate list created in step S4004.
  • step S4009 the article presence region estimation means 107 refers to the history data acquired in step S4005 for the candidate selected in step S4008, and the previous reporter (selected candidate) Calculate the moving speed.
  • the calculation of the moving speed is the same as the process in step S1901, and thus the description thereof is omitted.
  • step S4010 the article presence region estimation means 107 extracts all the combination data (time, place) where the moving speed of the candidate is equal to or less than a predetermined value as a stay point, and Each is compared with each of the residence points registered in the residence point list. In this comparison, the article existence region estimation means 107 determines whether or not the locations at the same time are within a predetermined distance. If there are locations where the locations at the same time are within the predetermined distance, Proceed to S4011. If there are no locations within the predetermined distance at the same time, the process proceeds to step S4012.
  • the predetermined distance can be determined based on a criterion for determining whether or not the distance between the persons is that the article can be delivered.
  • the length of a person's arm can be used as a reference because the arm is extended when the person delivers the article.
  • the average length of a person's arm can be used, and if a person ID is acquired by the person detection device 103, it is stored in the person management database 104 based on the acquired ID. It can be determined based on the length of the person's arm.
  • an error may be superimposed on the sensing result of the person's position, and therefore the threshold value may be determined in consideration of the error.
  • the time when recording the movement history is synchronized between a plurality of persons has been described. If the time is not synchronized, the time difference is a predetermined threshold value (the time is It is only necessary to compare data within a range that can be regarded as.
  • step S4011 the article presence area estimation means 107 compares the history data of the selected candidate with the stay points registered in the stay point list, and the location person at the same time has a predetermined location. If there are multiple dwell points within the distance, the dwell point with the earliest time A non-use flag is assigned to all previous history data. This is a result of reflecting the knowledge that the search target article does not exist in the place before the time when the delivery may have occurred in the delivery candidate history data, in the article presence area estimation process. It is. Thereafter, the process proceeds to step S4013.
  • step S4012 the article presence area estimation means 107 deletes the currently selected candidate from the delivery candidate list. This is because the history data of the currently selected candidate does not have the same location and time as the history data of the handling candidate, so that the knowledge that the delivery of the article does not occur is reflected in the article existing area estimation process. It is a thing. Thereafter, the process proceeds to step S4013.
  • step S4013 the article presence area estimation unit 107 checks whether or not the processing of S4010 has been completed for all the persons registered in the candidate list. If Yes (when the process of S4010 is completed), the present article presence area estimation process is terminated. If No (the process of S4010 is not completed), the process proceeds to step S4014.
  • step S4014 the article presence area estimation means 107 selects one person who has not yet been processed in step S4010 from the delivery candidate list for each person registered in the delivery candidate list, and step S4009. Return to.
  • the above is the article existence area estimation processing in the article existence area estimation means 107 when the delivery of the article is taken into account, and the history data of the handling candidates and the delivery candidates obtained thereby is the environment.
  • the display device 110 presents the result of mapping by the article presence area estimation means 107 on the floor plan, and the user searches for the detection target article in the vicinity of the movement route (in other words, the movement area of the person). Can do.
  • FIG. 42A, FIG. 42B, and FIG. 42C show examples of data and display results used in the article presence area estimation process.
  • FIG. 42A shows data representing changes in the moving speed of two persons HI and H2 (the solid line in FIG. 42A is data for person HI and the dotted line is data for person H2).
  • Person HI is a person who is selected as a candidate for handling goods in step S4003
  • person H2 is a power who is not selected as a candidate for handling articles in step S4003.
  • Step S 4004 Selected as a delivery candidate.
  • TH is a threshold relating to the moving speed for determining whether or not the staying force is detected by the article position candidate weighting means 108.
  • the data contained in the time zones T, T, and T are the residence points,
  • FIG. 42B is a diagram in which the movement trajectory data of the two persons HI and H2 are also superimposed on the floor plan of the room.
  • step S4010 if the article existence region estimation means 107 determines that the stay points of the persons HI and H2 included in the place group P corresponding to the same time are within a predetermined distance from each other, The movement history data is also finally selected by the article presence area estimation means 107 as there is a possibility that the article exists.
  • the movement trajectory presented on the display device 110 is as shown in FIG. 42C.
  • the display device 110 can hide the data so that there is no possibility of the presence of the article! You can avoid presenting it to the user.
  • the movement path of a person who may have received the delivery of goods (in other words, the person's movement area) is also displayed at the same time. It is also possible to search for a movement route (in other words, another person's movement area).
  • weighting of article position candidates in consideration of the possibility of delivery can be performed.
  • the weighting process in the article position candidate weighting means 108 considering the possibility of delivery will be described using the flowchart of FIG. Note that, unless otherwise specified, the operation subject of each step is the article position candidate weighting means 108.
  • step S4301 the article position candidate weighting means 108 Prepared by the area estimation means 107 (flow chart in Fig. 40) and the staying point data of the handling candidate and the staying point data of the delivery candidate (excluding those with a non-use flag) Data sets that are human data and are close in location and time are registered in the weighted list as stagnant status.
  • the weighting list is provided, for example, in the temporary storage unit in the article position candidate weighting means 108 or the article management database 102. To determine whether the place and time are close to each other, for example, whether the distance between the places is within a predetermined threshold, and whether the time difference between the times is within a predetermined threshold. Please use it.
  • step S4302 the article position candidate weighting means 108 first selects one staying state from the weighting list.
  • step S4303 the article position candidate weighting means 108 enters the staying state selected in step S4302, and
  • an average of the position coordinates in the staying state below the threshold value may be obtained by the article position candidate weighting means 108.
  • the first average moving speed is used as a weighting index, and the other center position coordinate is used when presenting the location of the article to the user.
  • the calculation result is registered in, for example, the temporary storage unit in the article position candidate weighting unit 108 or the weighting list in the article management database 102.
  • step S4304 the article position candidate weighting means 108 proceeds to step S4305 if there is a staying state that has not yet been performed in step S4303 for each staying state registered in the weighting list. If step S4303 has not been performed yet and there is no staying state, the process proceeds to step S4306.
  • step S4305 the article position candidate weighting means 108 selects one staying state that has not yet been subjected to step S4303 for each staying state registered in the weighting list from the weighting list, and Return to S4303.
  • step S4306 the article position candidate weighting means 108 For all the staying states registered in the weighting list, weighting is performed so that the priority is higher from the lowest average moving speed calculated in step S4303. This is based on the idea that the more slowly a person is moving (in the extreme case, when the person is stopped), the more likely that the person is handling the goods there.
  • the weighting result is registered in, for example, the temporary storage unit in the article position candidate weighting unit 108 or the weighting list in the article management database 102.
  • FIG. 44A, FIG. 44B, and FIG. 44C show examples of data and display results used for weighting processing by the article position candidate weighting means 108 in consideration of the possibility of delivery.
  • 44A and 44B are the same as FIGS. 42A and 42B, respectively.
  • FIG. 44C shows the priority order obtained by executing the processing in step S4306 at the corresponding location.
  • ⁇ average movement speed in place group P ⁇ average movement speed in place group R ⁇ average movement speed in place group Q ''.
  • Place group P has the highest ranking, followed by place group R and place group Q.
  • place group R is If the item HI is not included in the movement history of the person HI, but the delivery of the article is considered, the vicinity of the place group R on the movement history of the person H2 who is the candidate for delivery of the article is also selected (the place group R Is selected because the person HI is moving in the vicinity of the place group R, though it is not in the movement history of the person HI).
  • the above is the article presence area estimation process in the article position candidate weighting means 108 when taking the article into consideration.
  • the result of mapping the article existence area obtained by the article existence area estimation means 107 on the sketch of the environment (for example, FIG. 44C) is displayed on the display device 110, so that the route the user has moved is displayed.
  • the goods can be searched not only for the above candidate locations but also for candidate locations on the route of the person who may have been delivered.
  • FIG. 45A shows data representing the time change of the moving speed of two persons HI and H2 (the solid line in FIG. 45A is the data of person HI and the dotted line is the data of person H2).
  • TH is a threshold value regarding the moving speed for determination by the staying and article position candidate weighting means 108.
  • the article position candidate weighting means 108 determines that the time zones S2, S4, and S5 are in a staying state. Time zones Sl and S3 will be described later.
  • FIG. 45B shows the average moving speeds V and V of the persons HI and H2 in the time zones S1 to S5 based on the graph of FIG. 45A.
  • Fig. 45C shows the movement trajectories of the two persons HI and H2 superimposed on the floor plan of the room.
  • the article position candidate weighting means 108 can determine that the locations of the humans HI and H2 in the time zone S2 correspond to the location group P in common. Since there is a time zone S2 between the two people that is in the staying state that overlaps at the time and place, there is a possibility that the person HI was transferred to the person H2 in the time zone S2 in the staying state. It can be determined by the article position candidate weighting means 108.
  • step S4601 the article position candidate weighting means 108 acquires the handling candidate's stay point data and the delivery candidate's stay obtained by the article presence area estimation means 107 (flowchart in FIG. 40). Prepare point data (excluding items with a non-use flag) and use the same person's data and the location and time close to each other as a staying state. By 108, it is registered in the weighting list. Since this processing is the same as the processing in step S4301 in the flowchart of FIG. 43, description thereof is omitted.
  • step S4602 the history data of all handling candidates and delivery candidates corresponding to the stay point data acquired in S4601 is acquired by the article position candidate weighting means 108. Since the history data acquisition is the same as step S4005 in the flowchart of FIG. 40, the description thereof is omitted.
  • step S4603 the article position candidate weighting means 108 selects one staying state from the weighting list created in step 4601. This process is the same as step S4302 in the flowchart of FIG.
  • step S4604 the staying state selected in step S4603 by the article position candidate weighting means 108 is as follows.
  • step S4605 the article position candidate weighting means 108 determines whether or not the selected staying state is common to the handling candidate and the delivery candidate. In this determination, it is possible to use whether or not the stay point included in both stay states satisfies the determination criterion used in step S4010 in the flow chart of FIG. If it is determined by the article position candidate weighting means 108 that the handling candidate and the delivery candidate are common, the process proceeds to step S4606, and if it is determined that they are not common, the process proceeds to step S4607.
  • step S4606 the article position candidate weighting means 108 calculates the average moving speed before and after the time period of the staying state in the handling candidate and delivery candidate history data.
  • the history data in Fig. 45 change in movement speed over time
  • the history data of person HI and person ⁇ 2 is the same as the length of time zone S2, which is a common staying state.
  • the time zone S1 is set by the article position candidate weighting means 108 before and after the time zone S2, and the time zone S3 is set after the time zone S2.
  • the length of these time zones may be a predetermined value that is not the same as the length of the common residence time zone S2.
  • the article position candidate weighting means 108 calculates the average moving speed of the handling candidates and all the delivery candidates (persons HI and H2 in FIG. 45A) in the set time zones S1 and S3. The calculated results are shown in Figure 45B as V, V,
  • V is calculated by the article position candidate weighting means 108, and similarly to the person H2
  • the average moving speeds in the predetermined time zones S1 and S3 immediately before and immediately after the time zone S2 in the staying state are the article position candidate weighting means 108 as V and V, respectively.
  • step S4607 the article position candidate weighting means 108 determines whether or not the processing of S4604 has been completed for each staying state registered in the weighting list. When the processing power of S4604 is finished! / When the process is completed, go to step S4609. If the processing of S4604 is finished, go to step S4608. [0168] In step S4608, the article position candidate weighting means 108 selects one staying state that has not yet been processed in S4604 for each staying state registered in the weighting list from the weighting list. Return to S4604.
  • step S4609 the article position candidate weighting means 108 weights each staying state registered in the weighting list using the average moving speed and the average moving speed before and after the common staying state. I do.
  • step S4306 in Fig. 43 described earlier the ranking is based on the one with the smallest average moving speed that does not distinguish between handling candidates and delivery candidates. Here, in addition to the average moving speed, ranking is performed in consideration of the possibility of delivery.
  • the average moving speeds in the time zones S2 and S4 in the staying state for the person HI are V and V, respectively, and in the time zones S2 and S5 in the staying state for the person H2.
  • the evaluation value Z (V -V) is the possibility that the goods were delivered from person H 1 who is a candidate for handling goods to person H 2 who is a candidate for delivery of goods in band S 2 + (V
  • the article position candidate weighting means 108 determines that there is a high possibility that the article has been delivered from the person HI to the person H2.
  • Time zone in which people HI and H2 are in a common staying state Each person's staying state after S2 (in the case of Figure 45A, time zone S4 in which the person HI stays and time zone S5 in which the person H2 is staying.
  • the evaluation value Z is reflected by the article position candidate weighting means 108.
  • the person HI who is a candidate for handling may have delivered the article to the person H2 with respect to the average moving speed V in a certain staying state after the time zone S2 which is a common staying state.
  • the V force is also reduced by the article position candidate weighting means 108 by a constant a times the evaluation value Z. Delivery candidate Because the person H2 who is a person may have received the goods from the person HI,
  • the article position candidate weighting means 108 adds a constant y times the evaluation value Z. Therefore, the scores for the three states of the time zones S2, S4, and S5, which are staying states that are the existence region candidates of the article,
  • the score is calculated using the average moving speed V of the article handler HI as the article position candidate weight.
  • the article position candidate weighting means 108 can perform ranking in consideration of the delivery possibility of articles as well as the average moving speed in the staying state.
  • FIG. 21 is a conceptual diagram showing an example in which the article search result is displayed on the display device 110 by CG (computer graphic).
  • Figure 21 shows the entire location of the goods. In the bird's-eye view, the place where the article may actually exist is overwritten with the numerical value indicating the possibility (rank obtained as a result of the article position candidate weighting). .
  • the user looks at the result on the display device 110 and first searches for the vicinity including the “bookcase”. If the user does not find it, the user next searches for the “refrigerator and kitchen system”. As in the vicinity of “1”, it is possible to narrow down the search place in advance and efficiently search for articles.
  • FIG. 22 is a flowchart showing the process of weighting using the operation information of the device.
  • device management information for managing the location of the device is prepared in advance in order to search for the location of the device that is sufficiently close to the position of the person.
  • Fig. 23 is a table showing the database that manages the location of equipment (including facilities) in tabular form. The table shows how the positions of the devices in the environment are simply managed in a rectangular shape, and the upper left and lower right position coordinates of the rectangle are given.
  • the occupied area of the device may be determined by a polygon, and the vertex may be represented by vector data. Oh ,.
  • Step S2201 to Step S2203 are the same as Step S1901 to Step S1903 in the flowchart of FIG. .
  • step S2201 the movement speed of the person is calculated by the article position candidate weighting means 108 from the history data of the person who handled the search target article.
  • step S2202 the article position candidate weighting means 108 is used.
  • a group of places whose moving speed is equal to or less than a predetermined value (threshold value) is extracted by the article position candidate weighting means 108 as a person's staying state, and the article position candidate weighting means 108, for example, in the article position candidate weighting means 108 Is registered as a weighted list in the temporary storage unit or the article management database 102.
  • step S2203 the article position candidate weighting means 108 first selects one place from the weighting list.
  • step S2204 the article position candidate weighting means 108 uses the article position candidate weighting means 108 to determine the time at the location and the center position coordinate of the place at the location selected in step S1903. calculate.
  • the article position candidate weighting means 108 searches for a device group within a predetermined range with respect to the center position.
  • a device group within a predetermined range with respect to the center position.
  • FIG. Fig. 24 is a sketch showing the equipment placed in the environment, and the X in Fig. 24 is the center position.
  • the device area is included in the circle.
  • the device may be extracted by the article position candidate weighting means 108 as a search result.
  • the only device that has been sought by the article position candidate weighting means 108 is the “book shelf”. Of course, if a plurality of devices are found by the article position candidate weighting means 108, all of them are extracted.
  • step S2206 if at least one device is found, the process proceeds to step S2207, and if not found, the process proceeds to step S2208.
  • step S2207 the device management information is referred to by the article position candidate weighting means 108 for each device that has looked at, and there is an overlap between the time calculated in step S2204 and the time until the device is opened and the force is also closed.
  • the equipment that does not exist is deleted by the article position candidate weighting means 108 from, for example, the temporary storage unit in the article position candidate weighting means 108 or the weight list in the article management database 102 in which the weighting result is stored. This is a process that reflects the fact that even if a person stays in a certain location, if there is a powerful device that does not store the item, that device is not likely to be present. Yes, it is possible to narrow down the devices where people actually stay and store articles.
  • step S2208 if all the place groups extracted in step 2202 have been completed, the process proceeds to step S2210, and if not, the process proceeds to step S2209.
  • step S2209 for each location extracted in step S2202, the location not yet stored in step S2204 is processed by the article position candidate weighting means 108, for example, the temporary storage unit or the article in the article position candidate weighting means 108.
  • the article position candidate weighting means 108 for example, the temporary storage unit or the article in the article position candidate weighting means 108.
  • One is selected from the weighting list in the management database 102, and Step S2204 is repeated.
  • step S2210 for all devices extracted in step S2207, according to the distance between the person's staying position and the device, the priority is set higher as the distance force S is smaller by the product position candidate weighting means 108. Weight as follows.
  • step S2201 the movement speed of the person is calculated by the article position candidate weighting means 108 from the person history data MF-Data02. The calculation result is shown in the above graph (upper graph (a) in FIG. 13).
  • step S2202 a group of places whose moving speed obtained by the article position candidate weighting means 108 is equal to or less than a predetermined value (threshold value) is extracted by the article position candidate weighting means 108 as a person's staying state.
  • the article position candidate weighting means 108 registers, for example, as a weighting list in the temporary storage unit in the article position candidate weighting means 108 or the article management database 102. In this example, it can be determined that there are three staying parts. When these are related to the floor plan on the lower side of Figure 13 plotted in the floor plan, they stay in the vicinity of “Bookcase”, “Refrigerator and Kitchen System”, and “Sofa 1” in order from the earliest time.
  • each staying state is called “book shelf”, “refrigerator and kitchen system”, and “sofa 1”.
  • the time of each staying state is as follows.
  • step S2203 by performing the processing from step S2203 to step S2209, two devices, "bookshelf” and “refrigerator”, which have the possibility of the presence of an article, are obtained.
  • the specific processing process is shown below.
  • step S2204 the article position candidate weighting means 108 calculates the staying time and center position coordinates in the "book shelf”, "refrigerator and kitchen system", and "soft 1".
  • step S2205 a device group within a predetermined range is searched for the center position by the article position candidate weighting means 108, and "book shelf” and “refrigerator” are searched by the article position candidate weighting means 108. Extract.
  • step S2206 since at least one device has been found, the process proceeds to step S2207, and the device management information is referred to by the article position candidate weighting means 108 for each device that has been found. Open / close operation with the time calculated in step S2204 If there is no pair, the device is deleted by the article position candidate weighting means 108 (steps S2208 to S2204 to S2208).
  • step S2210 as a result of the above processing, two devices of "book shelf” and “refrigerator” were obtained as juice storage locations, so depending on the distance from the position where the device stayed near the device. These two devices are weighted by the article position candidate weighting means 108.
  • FIG. 27 is a conceptual diagram showing an example in which the article search result is displayed in CG (computer graphic) on the display device 110.
  • CG computer graphic
  • the bird's-eye view showing the entire location of the article is displayed by color-coding the equipment as the place where the article may actually exist, and the numerical value indicating the high ranking is overwritten. It shows how it is.
  • the difference from Fig. 21 is that the location of goods is narrowed down to the equipment level. If there is a plurality of storage parts in one device, and device management information can be stored for each storage part, it is possible to further narrow down this process.
  • “Refrigerator” shown as the second candidate in the example of FIG. 27 distinguishes and displays any storage partial force of “Refrigerator” that is not a single device (in FIG. 27).
  • the top storage part of the refrigerator is displayed. This allows the user to narrow down the search place and search for articles more efficiently.
  • the article presence area estimation means 107 and the article position candidate weighting means 108 are the major features of the first embodiment of the present invention.
  • the position of the article can be narrowed down using the result of analyzing the operation information.
  • the first other useful method is that when an area where an article exists is estimated by the article existence area estimation means 107, the article can be placed in the area. This is a method of weighting the places with the characteristics in descending order (not shown).
  • normal location information that stores one or more places where each item is normally placed is also stored in advance in the item management database 102 as item management information. In some cases, a person handles the item. Update the normal location information according to the situation, and use the updated normal location information.
  • the second other useful method is a method of using the article owner information on the owner of an article by the article existence area estimation means 107, and the history acquired by the article existence area estimation means 107. This is particularly effective when the data is for multiple people.
  • the fact that historical data for multiple people has been acquired means that a certain article has been brought to a location and at the same time multiple people have entered the location. In this case, it is impossible to distinguish which person has the goods, so it is possible to obtain historical data of all people. If any of the multiple people is likely to have the goods If the product owner information is obtained in advance, the acquired history data itself can be weighted with certainty.
  • the article owner information is, for example, as shown in FIG.
  • the narrowing-down method may be as follows.
  • the historical data for two people shown in Fig. 14 is obtained, and these are the historical data for ⁇ Dad '' and ⁇ Mom ''.
  • this is a “technical book”.
  • the location of the “technical book” is not 100% of the “dad” who has a “technical book” that does not examine all the historical data for two people. It is only necessary to take out history data and weight it. More specifically, in step S1907 in the flow of FIG. 19, the possibility of who owns the value obtained by simply weighting the priority higher from the lower average moving speed. Just add a value and weight it!
  • the weight value obtained for the historical data of “dad” is multiplied by 100%.
  • the weighted value obtained from the historical data is multiplied by 0% (ie, no weighting), which is the same as being excluded from the candidates.
  • the following effects can be obtained.
  • the article detection apparatus 101 detects an article, and stores the detected article location information and time information in the article management database 102.
  • the person detection device 103 detects a person and stores the detected person location information and time information in the person management database 104. Further, the device operation detecting device 105 detects the device operation of the device that stores and manages the articles, and stores the detected operation information of each device in the device management database 106.
  • the article presence area estimation means 107 refers to the information stored in the article management database 102 and the information stored in the person management database 104 (also refer to the information stored in the equipment management database 106 as necessary). As the article presence area, a place where an article may exist is estimated on a route traveled by a person.
  • the article position candidate weighting means 108 can use information such as the movement of a person and knowledge of the place where the article is normally placed, so that it can exist among places where the article may exist. It is possible to display the information on the display device 110 by weighting the high and low characteristics.
  • the present invention is not limited to the first embodiment, and can be implemented in various other modes.
  • a simple example of a display where a user searches for an article is shown with a location on a bird's-eye view of the entire environment.
  • it is also effective to be able to search for articles by looking at these display screens.
  • an article search system according to the second embodiment of the present invention an example using images as other screen display method examples. Indicates.
  • the display method in the article search system shown below is an example of the display method based on such an idea, and relates to the article search system according to the eleventh aspect of the present invention. More specifically, if the time and place where the article was handled in the past can be detected, the video of the place at that time can be shown to remind you how the article was handled at that place at that time. Let t be realized.
  • an imaging apparatus 111 that captures an environment in which the article search is performed; Using the image database 112 that stores the photographed image information and the processing result of the article existence area estimation means 107 or the article position candidate weighting means 108, it is estimated that the article requested to be searched is placed.
  • the image search means 113 for capturing the estimated place and time, photographing the estimated place, and extracting image information including the estimated time from the image database 112, and the image search means 113
  • a configuration is shown that includes a display device 110 that displays image information together with information from the article presence region estimation means 107 or the article position candidate weighting means 108 as necessary.
  • the imaging device 111 captures an environment in which the article search is performed.
  • a camera using an imaging device such as a CMOS or a CCD is generally used in practice, but a special camera such as near infrared may be used depending on the location.
  • a plurality of imaging devices may be prepared, and the camera used for the human detection device 103 may be used in combination. I do not care.
  • information is added to indicate which position in the real world the image captured by each image corresponds to! /. As the simplest description mode of this information, the coordinates of each pixel of each imaging device and the real world are
  • each imaging device 110 is associated with vector data of the range of the floor surface being copied,
  • Corresponding Method 2 if one vector data represents one floor surface area, a force that requires at least one vector data for one image pickup device, for example, two or more in one image of one image pickup device 111 If there is a floor area, a plurality of areas may be prepared as necessary. Also, if the real-world model is known, and the position and orientation of the camera in the real world are known, the information power is also calculated to obtain the real-world coordinates of each location in the real world reflected in the camera. It is also possible. Note that information about which position in the real world the image captured by the imaging device corresponds to should be changed once it is first created unless the imaging device is powered! /.
  • an image information power time stamp taken by each imaging device is added (according to time information output from the timer means 120) and stored.
  • Picture The image may be a moving image or a still image, and may be used depending on the performance of the system.
  • FIG. 28 is a conceptual diagram showing how a moving image is accumulated with a time stamp. Fig. 28 shows an example in which time stamps are given every minute. Of course, it can be determined according to the required system specifications.
  • the image search means 113 obtains the place and time when it is estimated that there is an article requested to be searched, estimated by the article presence area estimation means 107 or the article position candidate weighting means 108, and then the place is photographed.
  • the image information including the time is extracted from the image database 112 and displayed on the display device 110.
  • FIG. 29 is a flowchart showing the flow of the image search process in the image search means 113. The flow of the process will be described below with reference to this figure.
  • step S2901 the location and time estimated that there is an article requested to be searched, which is estimated using the processing result in the article position candidate weighting means 108, is obtained.
  • step S2902 image information including the location and time included in the information or data is searched and downloaded for all information or data acquired.
  • the method of selecting the imaging device including the place differs depending on the description mode of the information about the imaging device and which position in the real world the image captured by the imaging device corresponds to.
  • image information including the time is retrieved from the image database 112 that stores image information captured by the image capturing devices. ,to download.
  • image information to be downloaded include For example, moving image information including 2 minutes before and after the time or one still image information per second should be determined according to the required specifications of the system.
  • Fig. 3 OA and Fig. 30B are conceptual diagrams showing how to retrieve and display the image information from the image database 112 of Fig. 28 at 19:31 and 19:32 respectively.
  • the image information may be displayed suddenly or in stages.
  • To display in stages first, only the processing result of the position candidate weighting means is displayed. Specifically, for example, the screen as shown in Fig. 21 or Fig. 27 is displayed. Then, the position candidate where the article shown there is specified is designated, and related image information is displayed.
  • the flow of the article position estimation process in the article position estimation apparatus in the first and second embodiments of the present invention exemplified in the first and second embodiments is merely an example. It is not limited to. In other words, if the process includes the concept of using historical data including human movement speed and equipment operation information for the estimation of the article position, the flow of the process may be different or the required data description mode may be different. It doesn't matter if they are different.
  • the article position estimation device includes an input device 109, an article detection device 101, a human detection device 103, among the devices constituting the article position estimation device,
  • the device operation detection device 105 and the display device 110 may be installed in an optimum place according to the system requirements.
  • the article management database 102, the person management database 104, and the equipment management database 106 may be arranged near the article detection device 101, the person detection device 103, and the device operation detection device 105 that acquire information stored therein.
  • the article detection device 101, the human detection device 103, and the equipment operation detection device 105 are arranged in the vicinity of the article presence region estimation means 107 and the article position candidate weighting means 108, which are the remaining means of the apparatus. Send the information to each database via the network. Even if V is different, there is no particular restriction on the installation location of each means or device as long as it is installed in the optimal location according to the system requirements.
  • the article search system of the second embodiment of the present invention is an image search means 113, an image database 112, and an imaging device, which are other components other than the device or means described above as the components of the system. There is no particular restriction on the installation location, etc., as long as 111 is installed in an optimal location according to the system requirements.
  • the article search system of the first and second embodiments of the present invention has been described mainly for home use, but of course, it is not limited to home use, for example, used in offices, etc. You can do it.
  • FIG. 34 is a sketch showing a state in which a tag reader TGR as an example of the article detection apparatus 101 is installed in an office.
  • a gate-type tag reader TGR is installed at the entrance 200 of the room 205 where the office is located, and the room 205 has a work space 202 separated by a party 201 for eight persons.
  • a tag reader TGR is installed in the open / close section of each bookcase 203 installed in the work space 202 (similar to FIG. 15B). The user can detect that the article is in the room 205 by bringing the article into the room 205.
  • a human detection device such as a camera 204 or a floor sensor capable of distinguishing and detecting human movements
  • historical data of the human 206 can be obtained thereby (for example, FIG.
  • the solid line with an arrow shown in 34 is an example of the detection result of the person 206)
  • a room 205 is obtained. This makes it possible to estimate the location of the article where the article brought in is likely to be in the room 205 with a weight.
  • the force at which an article is placed can be specified to some extent by combining the detection result of the article with human history data.
  • an article has an owner, and the article is considered to be the place where the owner carries it or the force in the owner's work space 202 is correct. Therefore, conversely, the entrance to room 205 indicates that such an item was taken out by another person.
  • tag readers TGR detect it, it is possible to prevent goods from being stolen by determining that this is an illegal take-off and taking security measures such as sounding a buzzer.
  • a part of the article search system including the article existence area estimation means 107 excluding the various detection devices may be configured such that different articles are distinguished by a computer as shown in the flowchart of FIG.
  • Step S3001 for storing the article detection location information and time information detected in the article detection apparatus in the article management database, and a person detected by the person detection apparatus by distinguishing a person's position for each individual.
  • Step S3002 for storing the movement history information of the person management database, the information stored in the article management database and the person management database, the movement history information of the person management database, and the detection location of the article management database
  • Step S 3003 is performed for associating the person with the article based on the time and estimating an article existence area of the article.
  • CD- ROM keep recording medium serial is recorded, such as, if desired, can also be used in reading also CD- ROM force.
  • a display that is an example of a display device, a keyboard that is an example of an input device, a hard disk and a memory that can store the various databases and the various means, for example, a CD-ROM drive Is connected to a hard disk via a CD-ROM drive, the system for estimating the article position is recorded on a hard disk via a CD-ROM drive.
  • the article search system may be executable.
  • the date and time may be used instead of the power time using the time information.
  • the article position estimating operation according to the present invention can be performed across different days.
  • the article presence area estimation means may determine the movement area of the detected person after the case where the person and the article are simultaneously detected by the person detection device and the article detection device. This is estimated as the article presence area of the article, but after the detected person has exhausted the room force, the estimation of the article existence area of the article is stopped. Please do it.
  • An article position estimation apparatus, article position estimation method, article search system, and article position estimation program according to the present invention include an article position estimation apparatus and article position estimation for managing articles in a general house or office.
  • the present invention relates to a method, an article search system, and an article position estimation program, in particular, positions of various articles such as daily goods used in daily life in general households and portable articles used in offices, RFID tag technology, etc.
  • the user can appropriately present the location of the search object when inquiring about the search object, making it easier to search for articles than in the past and greatly reducing the effort.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 物品検出装置(101)で検出し物品管理データベース(102)に格納した物品の場所と時間の情報と人検出装置(103)で検出し人管理データベース(104)に格納した人の場所と時間の情報を物品存在領域推定手段(107)が参照し、物品の存在する可能性がある場所を推定する。物品位置候補重み付け手段(108)で人の動き、物品が通常置かれる場所などの情報を基に重み付けを行うこともできる。

Description

明 細 書
物品位置推定装置、物品位置推定方法、物品検索システム、及び物品 位置推定用プログラム
技術分野
[0001] 本発明は、一般家屋やオフィス内などにある物品を管理する物品位置推定装置、 物品位置推定方法及び物品検索システムに係り、特に一般家庭内にある生活に使 用する日用品やオフィスなどで使用する可搬性の物品などの各種物品の位置を、 R FIDタグ技術などを用いて管理する場合にぉ 、てユーザが探し物を問 、合わせた時 に前記探し物の位置を適切に提示する物品位置推定装置、物品位置推定方法及び 物品検索システムに関する。
背景技術
[0002] 近年、ネットワーク技術や情報処理技術、また、物品を自動で管理するための RFI Dタグ技術開発により、物流などの業務分野を中心に在庫管理をはじめとする物品 管理の自動化の技術開発が進んで 、る。
[0003] このような物品検索システムの一般的な構成例を示した従来技術としては、例えば 特許文献 1 (特開平 07— 146362号公報)がある。本例では、まず構成として、物品 には RFIDタグ (以下、タグ)を付け、また、環境には前記タグの読み取り装置(以下、 タグリーダ)を散在させておき、物品検索を行う端末を備える。そして、前記端末から 探したい物品を指定すると、前記各タグリーダが、物品に付与されたタグと交信を試 み、タグからの返事をうけたタグリーダの場所でもって探している物品の場所とするも のである。
[0004] この構成を例えば図書館での本の管理に応用すると次のようになる。すなわち、管 理する書籍にはタグを、また、図書館の書籍ラックの各棚にタグリーダを設置しておく 。利用者が検索したい本を端末など力 入力すると、それぞれのタグリーダは、前記 検索対象本の IDを含むタグを探す。そして、タグリーダからの問いかけに対してタグ 力 の返事が無い場合には、当該タグリーダの通信可能範囲には該当する本は無く 、逆にタグリーダからの問いかけに対してタグからの返事を受けた場合には、該当す る本が見つかったということで、前記タグからの返事を受けたタグリーダの場所力 探 している本のおおよその場所というふうにすることができる。したがって、ユーザはそ のリーダの場所まで行き、そのリーダの周囲にある本のみを探すことで目的の本を手 に人れることができる。
[0005] このように従来のシステムでは非常に簡単な構成でありながら物品の場所を管理す ることができるため、主に業務用において様々な分野で使われ始めている。しかしな がら、本例の欠点は、検索位置の精度を高めるには、物品に付けられたタグは、前記 物品を管理する環境内のどこにおいても、いずれかのタグリーダと通信できる程度に まで、タグリーダを細力べ設置する必要があることである。従って、コストがある程度高 くつくことを許される業務用途では使える力 コストが重要な問題となる家庭用には使 えな 、ことが大きな問題である。
[0006] これに対して、家庭内での物品管理を目的とした従来技術である特許文献 2 (特開 2000— 357251号公報)では、前記問題を回避するための一つの方策が開示され ている。特許文献 2では、物品管理装置と、複数のセンサユニット(タグリーダ)と、物 品に付与したタグユニットを持ち、複数のセンサユニットを通してタグユニットから発信 されるタグ情報を受信する際の、受信感度を物品管理装置で管理することで物品位 置の指定又は推測を可能とし、複数の物品の現在位置を把握可能としたものである 。この技術では、比較的距離が離れた複数のセンサユニットまでタグの電波を到達さ せる必要があるため、電池を内蔵したアクティブタグを使用するものである。電池の消 耗を抑えるため、予め定めたタイミング(1日 1回〜月 1回)にて発信させるという方法 を採っている。
[0007] 同じぐ家庭内での物品管理を目的とした従来技術である特許文献 3 (特開 2003 — 233715号公報)では、天井の 4隅などに観察機 (タグリーダ)を設置し、部屋の中 での人の行動履歴や管理対象物の位置情報などの生活情報を収集して管理してい る。管理対象物にはデータタグを取り付け、人は手先などにパーソナルタグを携帯す る。これらのデータタグやパーソナルタグは、管理対象物や人の識別情報を保持し、 複数の通信距離で観察機と無線による情報通信が可能なようになって 、る。
[0008] 特許文献 1 :特開平 07— 146362号公報 特許文献 2 :特開 2000— 357251号公報
特許文献 3:特開 2003— 233715号公報
発明の開示
発明が解決しょうとする課題
[0009] ところで、前記特許文献 2では、タグは予め定めたタイミングでし力発信しないため 、物品の位置は、物品に付与したタグとタグリーダとが最後に交信した記録に基づい て決定される。従って、タグ力 Sタグリーダと交信したのち、前記タグが付いた物品がど こに運ばれたかは次に当該タグ力 Sタグリーダと交信するまで分力もなくなる。さらには 、最後にタグリーダと交信してから時間が経てば経つほど、当該タグ付き物品が前記 最後に交信したタグリーダの近辺に存在する可能性が低くなることは言うまでもない。 従って、このようなシステムでユーザが物品を見つけるには、検索の問い合わせによ つて知らされた物品の場所から、ユーザ自身がどう動いてどこに当該物品を置いたか 等を記憶をたどって思い出す必要があり、必ずしも物品が簡単に見つけられるとは言 い難ぐこの点が従来技術の大きな問題である。力!]えて、物品位置の測定には部屋 に複数のタグリーダを設置する必要があるため、コスト面で不利になる。また、電池内 蔵のアクティブタグを用いているため、タグ自体の大きさが大きくなり小型物品には装 着しづらいという問題、タグ自身のコストが高くなるという問題も存在する。さらに部屋 の中にタグが付与された物品数が多い場合、全てをセンシングするためには、各タグ の発信タイミングの制御が大変になる。
[0010] 前記特許文献 3では、特許文献 2と同じぐ部屋に複数のタグリーダを設置する必 要があるため、コスト面で不利になる。また、データタグやパーソナルタグもそれ自身 が無線発信できるため、タグ自体の大きさが大きくなり、コストも高くなるという問題が ある。
[0011] 従って、本発明の目的は、前記従来技術のような簡易な構成、すなわち物品にタグ
、物品を管理する環境に最小限のタグリーダを設置し、タグは前記タグリーダの交信 範囲を通過した場合にのみ、その情報が記録されるという構成を基に、一方でユー ザが物品を探す場合に過去の記憶をたどるという思考を必要としない、物品位置推 定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラムを 提供することにある。
課題を解決するための手段
[0012] この課題解決に向けて、まず、本発明者らは、家庭やオフィスなど内においては物 品を扱うのは、主にその家庭で暮らす人やオフィスなどで働いてする人であることか ら、その人の動きと物品の存在場所には重要な相関関係があるはずであることに着 目した。従って、人の動き情報を何らかの手段によって入手することができれば、そ の情報を用いて物品の存在場所を絞り込むことができるはずであると考えた。
[0013] 本発明は、前記課題を解決するために、この考えを具現化する技術に関するもの である。
[0014] 前記課題を解決するために、本発明によれば、少なくとも人が出入り可能な部屋の 出入り口付近に配置されて、異なる物品が区別されるように識別し検出する物品検 出装置と、
前記物品検出装置にて検出された物品の識別情報と検出場所の情報と検出時刻 の情報とを物品管理情報として格納する物品管理データベースと、
前記部屋内での前記人の位置を個人毎に区別して検出する人検出装置と、 前記人検出装置にて検出された人の移動履歴情報を格納する人管理データべ一 スと、
前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間内に検出された人を特定し、前記人管理データベース の前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物 品検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動 領域を、前記物品の物品存在領域として推定する物品存在領域推定手段と、 を備えたことを特徴とする、物品位置推定装置を提供する。
[0015] また、本発明によれば、検索する対象物品の入力が行われる入力装置と、
前記物品存在領域推定手段で前記物品の物品存在領域を推定するとともに、推 定処理された物品の中から、前記入力装置で入力された検索対象物品を検索する 前記物品位置推定装置と、 前記物品存在領域推定手段、又は、前記物品存在領域推定手段及び物品位置候 補重み付け手段での推定結果を用いて、前記検索対象物品の存在する物品存在領 域を表示する表示装置と、
を備える物品検索システムを提供する。
[0016] 本発明の物品検索システムによれば、物品検出装置が物品を検出し、その場所と 時間とを物品管理データベースに格納する。人検出装置が人を検出し、その場所の 情報と時刻の情報とを人管理データベースに格納する。物品存在領域推定手段は、 これら物品管理データベースに格納された情報及び人管理データベースに格納さ れた情報を参照し、前記物品存在領域として、人が移動した経路のうち物品の存在 する可能性がある場所を推定することができる。そして、必要ならば、物品位置候補 重み付け手段が、人の動きの履歴データや機器の操作情報などの情報を利用する ことで、前記物品の存在する可能性があるそれぞれの場所について、存在可能性の 高さの重み付けを行うこともできる。当該システムのユーザは、前記重み付けされた 物品の存在場所を参照することで、探すべき場所の優先順位をつけ、その高いとこ ろ力 順に検索対象物品を探すことができる。
発明の効果
[0017] 本発明の物品位置推定装置及び方法並びに物品検索システム並びに物品位置 推定用プログラムにより、ユーザは探そうとしている物品を簡単に早く探し出すことが できるようになる。すなわち、従来の物品検索システムでは、物品検出装置の検出範 囲でのみしか物品が検出できないため、それ以外の場所に物品がある場合は、前記 物品検出装置の検出結果を見ながらユーザが物品の場所を思い出しつつ探すとい う、思考力を要する作業を強要された。しかしながら、本発明では、物品の存在場所 をさらに絞り込むことができるうえ、さらに必要に応じて、絞り込んだ場所に物品有無 の可能性の高さを示す重み付けも行うこともできる。従って、ユーザは、従来のように ユーザの過去の行動を思い出すという思考作業を必要とせず、より簡単で早く目的 の物品を探すことが可能となる。また、前記物品を検出する物品検出を少なくとも人 が出入り可能な部屋の出入り口付近で行えばよぐ例えば 1つの部屋に複数の物品 検出装置を設置する必要が無いため、物品検出装置の個数を最小限にすることが できて、全体的なコストを安価なものとすることができ、かつ、物品検出装置同士の干 渉ち防止することができる。
図面の簡単な説明
本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形 態に関連した次の記述から明らかになる。この図面においては、
[図 1]図 1は、本発明の第 1及び第 2実施形態による物品検索システムの代表的な構 成例を示したブロック図であり、
[図 2]図 2は、本発明の第 1実施形態に力かる前記物品検索システムの物品検出装 置の一例であるタグリーダがそれぞれの部屋の出入口に設置された環境の例を示し た見取り図であり、
[図 3]図 3は、物品検出装置の一例であるゲート型のタグリーダが「居間」の入り口に 設置されている例を示した説明図であり、
[図 4A]図 4Aは、物品の一例としての書籍にタグが付いている例を示した概念図であ り、
[図 4B]図 4Bは、物品の別の例としてのジュースにタグが付いている例を示した概念 図であり、
[図 5A]図 5Aは、前記物品検索システムの物品管理データベースに含まれる物品管 理情報の例を表形式で示した図であり、
[図 5B]図 5Bは、物品管理データベースに含まれる物品管理情報の例を表形式で示 した図であり、
[図 6]図 6は、前記物品検索システムの人検出装置の一例として重さセンサを使って 人の位置を検出するためのシステム構成を示した概念図であり、
[図 7]図 7は、前記物品検索システムの人検出装置の別の例としてタグを使って人の 位置を検出するためのシステム構成を示した概念図であり、
[図 8]図 8は、前記物品検索システムの人検出装置のさらに別の例として背景差分法 を具体的に説明するための補助図であり、
[図 9A]図 9Aは、前記背景差分法を具体的に説明するため、背景画像を撮影したの と同じカメラを用いて撮影されたある時点における入力画像を示した図であり、 圆 9B]図 9Bは、前記背景差分法を具体的に説明するため、背景画像の例を示した 図であり、
圆 9C]図 9Cは、前記背景差分法を具体的に説明するため、図 9Aの入力画像から 図 9Bの背景画像を差し引いて得られた背景差分画像に、当該環境の座標系を付加 して示した図であり、
[図 10]図 10は、カメラ画像における切り出した人の位置座標を世界座標系に変換す る計算を説明するための説明図であり、
[図 11A]図 11Aは、前記物品検索システムでの人管理データベースに含まれる人管 理情報の例を表形式で示した図であり、
[図 11B]図 11Bは、前記物品検索システムでの人管理データベースに含まれる人管 理情報の例を表形式で示した図であり、
[図 12]図 12は、前記物品検索システムでの人移動履歴情報の例を表形式で示した 図であり、
[図 13]図 13の(a) , (b)は、それぞれ、前記物品検索システムにおいて人移動履歴 情報を参照し、各時刻毎に当該時刻における移動量 (移動距離)をプロットしたダラ フ及び図 2の見取り図から「居間」だけを取り出した見取り図に前記人移動履歴情報 をプロットした図であり、
[図 14]図 14の(a) , (b)は、それぞれ、前記物品検索システムにおいて 2人分のデー タをプロットした場合であって、人移動履歴情報を参照し、各時刻毎に当該時刻にお ける移動量 (移動距離)をプロットしたグラフ及び図 2の見取り図から「居間」だけを取 り出した見取り図に前記人移動履歴情報をプロットした図であり、
[図 15A]図 15Aは、前記物品検索システムにおいて、収納機能を持つ機器に対して
、機器操作検出装置が設置された機器の例を示した概念図であり、
[図 15B]図 15Bは、前記物品検索システムにおいて、収納機能を持つ機器に対して
、機器操作検出装置が設置された機器の例を示した概念図であり、
[図 16A]図 16Aは、前記物品検索システムにおいて、機器管理データベースに含ま れる機器管理情報の例を表形式で示した図であり、
[図 16B]図 16Bは、前記物品検索システムにおいて、機器管理データベースに含ま れる機器管理情報の例を表形式で示した図であり、
[図 17]図 17は、前記物品検索システムにおける物品存在領域推定手段での処理の 流れを示すフローチャート図であり、
[図 18]図 18は、前記物品検索システムにおける物品存在領域推定手段での処理結 果を表形式で示した図であり、
[図 19]図 19は、前記物品検索システムにおける人の移動速度を用 、て重み付けを 行う処理を示すフローチャート図であり、
[図 20]図 20は、前記物品検索システムにおける物品位置候補重み付け手段での処 理結果を表形式で示した図であり、
[図 21]図 21は、前記物品検索システムにおける表示装置にて物品検索結果を CG ( コンピュータグラフィック)表示した例を示す概念図であり、
[図 22]図 22は、前記物品検索システムにおける機器管理情報を用いて重み付けを 行う処理を示すフローチャート図であり、
[図 23]図 23は、前記物品検索システムにおける機器の場所を管理するデータベース を表形式で示した図であり、
[図 24]図 24は、環境内に置かれた機器を示した見取り図であり、
[図 25]図 25は、前記物品検索システムにおける人の滞留位置と機器との距離に応じ た重み付け処理を説明する図であり、
[図 26]図 26は、前記物品検索システムにおける人の滞留位置と機器との距離に応じ た重み付け処理の結果を表形式で示した図であり、
[図 27]図 27は、本発明の第 2実施形態に力かる前記物品検索システムにおける表示 装置にて物品検索結果を CG (コンピュータグラフィック)で表示した例で示す概念図 であり、
[図 28]図 28は、本発明の第 2実施形態に力かる前記物品検索システムにおける動画 をタイムスタンプを付与して蓄積している様子を示した概念図であり、
[図 29]図 29は、本発明の第 2実施形態にカゝかる前記物品検索システムにおける画像 検索手段における処理の流れを示したフローチャート図であり、
[図 30A]図 30Aは、本発明の第 2実施形態に力かる前記物品検索システムにおける 図 28の画像データベースから 19時 31分の画像を検索して表示している様子を示し た概念図であり、
[図 30B]図 30Bは、本発明の第 2実施形態に力かる前記物品検索システムにおける 図 28の画像データベースから 19時 32分の画像を検索して表示している様子を示し た概念図であり、
[図 31]図 31は、前記第 1実施形態の前記物品検索システムにおいて、物品管理デ ータベースに蓄積される情報であってかつ物品名とそれに付与されたタグの IDがぺ ァになっている状態の説明図であり、
[図 32]図 32は、前記第 1実施形態の前記物品検索システムの人検出装置の一例と して重さセンサを使って人の位置を検出するためのシステム構成を示した概念図で あり、
[図 33]図 33は、前記第 2実施形態の前記物品検索システムでの物品所有者情報の 説明図であり、
[図 34]図 34は、前記物品検索システムにおける物品検出装置が設置されたオフィス 環境の例を示した見取り図であり、
[図 35]図 35は、前記物品検索システムの一部を実現することが可能な物品位置推定 用プログラムのフローチャートであり、
[図 36A]図 36Aは、時刻とその時刻における人の実際の位置との関係を示すグラフ であり、
[図 36B]図 36Bは、時刻間隔 Atで記録した人の位置 Pを示すグラフであり、
k
[図 37]図 37は、滞留前の所定の時間帯における平均移動速度よりも滞留後の所定 の時間帯における平均移動速度が大きければ、持ち運んでいた物品を手放した可 能性が大きいと判定することができるアルゴリズムを示すフローチャートであり、 [図 38]図 38は、図 37のステップ 3705での処理結果を示すグラフであり、
[図 39A]図 39Aは、 2人の人物 Hl、 H2の移動速度の時間変化を示すグラフであり、 [図 39B]図 39Bは、 2人の人物 HI, H2の移動経路を部屋の見取り図上に重ねて表 示した図であり、
圆 40]図 40は、受け渡しの可能性を考慮した物品存在領域推定手段での処理を説 明するフローチャートであり、
圆 41]図 41は、受け渡しの可能性を考慮した物品存在領域推定手段での処理を行 うときに利用するデータを示す図であり、
[図 42A]図 42Aは、物品の受け渡しを考慮した場合の、物品存在領域推定手段での 物品存在領域推定処理に用いる、 2名の人物 HI, H2の移動速度の変化を表わす データを示す図であり、
[図 42B]図 42Bは、物品の受け渡しを考慮した場合の、物品存在領域推定手段での 物品存在領域推定処理において、 2名の人物 HI, H2の移動軌跡データを部屋の 見取り図に重ねて表現した図であり、
[図 42C]図 42Cは、物品の受け渡しを考慮した場合の、物品存在領域推定手段での 物品存在領域推定処理において、表示装置に提示される移動軌跡を示す図であり、 圆 43]図 43は、受け渡しの可能性を考慮した物品位置候補重み付け手段での処理 を示すフローチャートであり、
[図 44A]図 44Aは、図 42Aと同様に、物品の受け渡しを考慮した場合の、物品存在 領域推定手段での物品存在領域推定処理に用いる、 2名の人物 HI, H2の移動速 度の変化を表わすデータを示す図であり、
[図 44B]図 44Bは、図 42Bと同様に、物品の受け渡しを考慮した場合の、物品存在領 域推定手段での物品存在領域推定処理において、 2名の人物 HI, H2の移動軌跡 データを部屋の見取り図に重ねて表現した図であり、
圆 44C]図 44Cは、物品の受け渡しを考慮した場合の、物品位置候補重み付け手段 での物品存在領域推定処理において、得られた物品存在領域を環境の見取り図上 に物品存在領域推定手段によりマッピングした結果を示す図であり、
[図 45A]図 45Aは、 2人の人物 HI, H2の移動速度の時間変化を示すグラフであり、 [図 45B]図 45Bは、図 45Aのグラフを基にして、時間帯 S1〜S5における平均移動速 度を求めた表を示す図であり、
[図 45C]図 45Cは、 2人の人物 HI, H2の移動軌跡を部屋の見取り図上に重ねて表 示する図であり、
[図 46]図 46は、滞留状態前後の移動速度変化を重み付けに反映する処理を示すフ ローチャートである。 発明を実施するための最良の形態
[0019] 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号 を付している。
[0020] 以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する前に、本発 明の種々の態様について、まず、説明する。
[0021] 本発明の第 1態様によれば、少なくとも人が出入り可能な部屋の出入り口付近に配 置されて、異なる物品(例えば、異なる種類の物品)が区別されるように識別し検出す る物品検出装置と、
前記物品検出装置にて検出された物品の識別情報と検出場所の情報と検出時刻 の情報とを物品管理情報として格納する物品管理データベースと、
前記部屋内での前記人の位置を個人毎に区別して検出する人検出装置と、 前記人検出装置にて検出された人の移動履歴情報を格納する人管理データべ一 スと、
前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間(この所定の時間とは、物品存在領域推定用に予め決 められた時間を意味する。 )内に検出された人を特定し、前記人管理データベースの 前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物品 検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動領 域を、前記物品の物品存在領域として推定する物品存在領域推定手段と、 を備えたことを特徴とする、物品位置推定装置を提供する。
[0022] 本発明の第 2態様によれば、前記物品存在領域推定手段は、前記人管理データ ベースに格納された前記移動履歴情報を参照して得られる前記人の移動速度の変 化によって、前記物品の前記物品存在領域を推定する、第 1の態様に記載の物品位 置推定装置を提供する。
[0023] 本発明の第 3態様によれば、前記物品管理データベース又は前記人管理データ ベースに格納された情報を参照して、前記推定された複数の物品存在領域に対して 前記物品の存在する可能性に基づき、前記物品の存在する可能性の高 、物品存在 領域の重みが高くなるように重み付けを行う、物品位置候補重み付け手段をさらに備 える、第 1又は 2の態様に記載の物品位置推定装置を提供する。
[0024] 本発明の第 4態様によれば、前記物品位置候補重み付け手段は、
前記人の移動履歴情報にお!、て、予め定めた所定値 (滞留状態を判定するために 予め決められた値)以下の移動速度である前記移動履歴情報のうちの検出場所の 情報と検出時刻の情報を滞留状態としてそれぞれ抽出し、前記滞留状態を構成する 各情報を参照して得られる前記人の移動速度の平均値を用いて、前記人の移動速 度の平均値が低い領域ほど前記物品の存在する可能性の高い物品存在領域の重 みが高くなるように重み付けを行う、第 3の態様に記載の物品位置推定装置を提供 する。
[0025] 本発明の第 5態様によれば、前記物品位置候補重み付け手段は、
前記人の移動履歴情報にお!、て、予め定めた所定値 (滞留状態を判定するために 予め決められた値)以下の移動速度である前記移動履歴情報のうちの検出場所の 情報と検出時刻の情報を滞留状態として抽出し、前記滞留状態の前後における検出 場所の情報と検出時刻の情報を参照して得られる前記人の移動速度の変化を用い て、前記物品の存在する可能性の高い物品存在領域の重みが高くなるように重み付 けを行う、第 3の態様に記載の物品位置推定装置を提供する。
[0026] 本発明の第 6態様によれば、前記物品位置候補重み付け手段は、
前記物品の存在する可能性の重み付けを行う際に前記滞留状態が持続する時間 を併せて用いて、前記物品の存在する可能性の高い物品存在領域の重みが高くな るように重み付けを行う、第 4又は 5の態様に記載の物品位置推定装置を提供する。
[0027] 本発明の第 7態様によれば、前記物品存在領域推定手段は、
前記人の移動履歴情報にお!、て、予め定めた所定値 (滞留状態を判定するために 予め決められた値)以下の移動速度である前記移動履歴情報のうちの検出場所の 情報と検出時刻の情報を滞留状態として抽出し、複数の前記人に対する前記滞留 状態間の関係により、複数の前記人の間の前記物品の受け渡しを考慮して、前記物 品の存在領域を推定する、第 2〜6のいずれか 1つの態様に記載の物品位置推定装 置を提供する。
[0028] 本発明の第 8態様によれば、前記物品を収納管理する機器の機器操作を検出する 機器操作検出装置と、
前記機器操作検出装置にて検出された各々の機器の操作情報を格納する機器管 理データベースを備え、 前記機器管理データベースに格納された情報を前記操作情報中の前記機器の操 作の有無の情報に基づき、前記使用していた機器の重みが高くなるように前記物品 位置候補の機器に対して重み付けを行う、第 3の態様に記載の物品位置推定装置を 提供する。
[0029] 本発明の第 9態様によれば、前記物品存在領域推定手段は、前記人と前記物品と が前記人検出装置と前記物品検出装置とで同時的に検出された場合以降において 、前記検出された人の移動領域を、前記物品の物品存在領域として推定するととも に、前記検出された人が前記部屋から出た後は、前記物品の物品存在領域の推定 を停止する、第 1又は 2の態様に記載の物品位置推定装置を提供する。
[0030] 本発明の第 10態様によれば、検索する対象物品の入力が行われる入力装置と、 前記物品存在領域推定手段で前記物品の物品存在領域を推定するとともに、推 定処理された物品の中から、前記入力装置で入力された検索対象物品を検索する 第 1〜9のいずれか 1つの態様に記載の前記物品位置推定装置と、
前記物品存在領域推定手段、又は、前記物品存在領域推定手段及び前記物品位 置候補重み付け手段での推定結果を用いて、前記検索対象物品の存在する物品存 在領域を表示する表示装置と、
を備える物品検索システムを提供する。
[0031] 本発明の第 11態様によれば、当該物品検索を行う環境を撮影する撮像装置と、 前記撮像装置で撮影された画像情報を蓄積する画像データベースと、 前記物品存在領域推定手段、又は、前記物品存在領域推定手段及び前記物品位 置候補重み付け手段が検索要求のあった前記物品が置かれたと推定される場所と 時刻とを推定し、前記推定結果を用いて、前記場所を撮影しかつ前記時刻を含む画 像情報を前記画像データベース力 抽出する画像検索手段とを備え、 前記表示装置は、前記画像検索手段にて検索された画像情報を表示することを特 徴とする、第 10の態様に記載の物品検索システムを提供する。
[0032] 本発明の第 12態様によれば、少なくとも人が出入り可能な部屋の出入り口付近で、 異なる物品(例えば、異なる種類の物品)が区別されるように識別し物品検出装置で 検出するステップと、
前記物品検出装置にて検出された前記物品の検出場所の情報と時刻の情報とを 物品管理データベースに格納するステップと、
前記部屋内での前記人の位置を個人毎に区別して人検出装置にて検出するステ ップと、
前記人検出装置にて検出された人の移動履歴情報を人管理データベースに格納 するステップと、
前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間(この所定の時間とは、物品存在領域推定用に予め決 められた時間を意味する。 )内に検出された人を特定し、前記人管理データベースの 前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物品 検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動領 域を、前記物品の物品存在領域として推定するステップと、
を備えたことを特徴とする、物品位置推定方法を提供する。
[0033] 本発明の第 13態様によれば、前記物品管理データベース又は前記人管理データ ベースに格納された情報を参照して、前記物品存在領域を推定するステップによつ て推定された複数の前記物品存在領域に対して、前記物品の存在する可能性に基 づき、前記物品の存在する可能性の高い物品存在領域の重みが高くなるように重み 付けを行うステップ、
をさらに備えたことを特徴とする、第 12の態様に記載の物品位置推定方法を提供 する。
[0034] 本発明の第 14態様によれば、コンピュータに、
少なくとも人が出入り可能な部屋の出入り口付近で、異なる物品(例えば、異なる種 類の物品)が区別されるように識別し物品検出装置で検出された前記物品の検出場 所の情報と時刻の情報とを物品管理データベースに格納するステップと、
前記部屋内での前記人の位置を個人毎に区別して人検出装置で検出された人の 移動履歴情報を人管理データベースに格納するステップと、
前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間(この所定の時間とは、物品存在領域推定用に予め決 められた時間を意味する。 )内に検出された人を特定し、前記人管理データベースの 前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物品 検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動領 域を、前記物品の物品存在領域として推定するステップとを実行させるための物品位 置推定用プログラムを提供する。
[0035] 本発明の第 15態様によれば、少なくとも人が出入り可能な部屋の出入り口付近に 配置されて、異なる物品(例えば、異なる種類の物品)が区別されるように識別し検出 する物品検出装置と、
前記部屋内での前記人の位置を個人毎に区別して検出する人検出装置と、 前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間(この所定の時間とは、物品存在領域推定用に予め決 められた時間を意味する。 )内に検出された人を特定し、前記人管理データベースの 前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物品 検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動領 域を、前記物品の物品存在領域として推定する物品存在領域推定手段と、
を備える、物品位置推定装置を提供する。
[0036] 次に、本発明の実施形態を図面に基づいて詳細に説明する。
[0037] まず最初に本発明による物品検索システムの全体構成及び各構成要素について 説明する。
[0038] 図 1は、本発明の第 1実施形態による物品検索システムの代表的な構成例を示した ブロック図で、図 1では本発明の前記種々の態様に記載の全ての手段又は装置を含 む構成となっている。本発明の第 1実施形態による物品検索システムは、全体として は基本的に 3つの部分、すなわち、
•検索する物品の入力が行われる入力装置 109と、
•物品の位置を推定する処理を行うとともに、推定処理された物品の中から、前記 入力装置 109で入力された検索対象物品を検索する物品位置推定装置 140と、
•前記物品位置推定装置 140による推定処理結果を用いて、前記入力装置 109 で入力された検索対象物品の存在する場所を表示する表示装置 110と、
より構成されている。
[0039] なお、図 1では、ユーザが物品を検索する時、入力装置から入力された検索対象の 物品の情報に加えて時刻の情報を物品位置推定装置 140で検索できるようにするこ とも実現可能である。すなわち、具体的には、本発明の第 2実施形態として後述する 力 本発明の前記第 11態様を特徴付ける 3つの構成要素、すなわち、
•タイマー手段 120から出力された時刻の情報が入力されかつ当該物品検索を 行う環境を撮影する撮像装置 111と、
•前記撮像装置 111により撮影された画像情報を時刻の情報と共に蓄積する画像 データベース 112と、
•前記画像データベース 112に蓄積された画像情報に基づく物品存在領域推定 手段又は後述する物品位置候補重み付け手段での処理結果を用いて、検索要求の あった物品が置かれたと推定される場所と時刻を推定し、前記場所を撮影しかつ前 記時刻を含む画像情報を前記画像データベース 112の蓄積された画像情報から検 索して抽出する画像検索手段 113と、
を含む構成を図 1に示して ヽる。
[0040] 次に、本発明の前記第 1実施形態による物品位置推定装置の各構成要素並びに 当該装置を用いた物品位置推定の処理について説明する。
[0041] 図 1の実線で囲まれた部分 140内が本発明の前記第 1実施形態による物品位置推 定装置 140に相当するブロック図であり、この物品位置推定装置 140は、本発明の 第 1〜第 15の態様に記載されている各手段又は装置及び各種データベースを全て 含んだ構成を示しており、
'現在の時刻の情報を出力するタイマー手段 120と、
•タイマー手段 120から出力された時刻が入力されかつ異なる物品が区別される ように識別し検出する物品検出装置 101と、
•前記物品検出装置 101にて検出された物品の識別情報 (ID)とその物品の検出 場所の情報と検出時にタイマー手段 120から出力された時刻の情報 (検出時刻情報 )とを物品検出毎に物品管理情報として格納する物品管理データベース 102と、
•タイマー手段 120から出力された時刻の情報が入力されかつ人の位置を個人毎 に区別して検出する人検出装置 103と、
•前記人検出装置 103にて検出された人の識別情報 (ID)とその人の検出場所の 情報と検出時にタイマー手段 120から出力された時刻の情報 (検出時刻情報)とを、 単位時間毎に、人管理情報 (人移動履歴情報)として格納する人管理データベース 104と、
'タイマー手段 120から出力された時刻の情報が入力されかつ機器操作を検出 する機器操作検出装置 105と、
'前記機器操作検出装置 105にて検出された各々の機器の識別情報 (ID)とその 機器の操作状態の情報 (操作情報)と機器操作時にタイマー手段 120から出力され た時刻の情報 (操作時刻情報)とを機器操作検出毎に機器管理情報として格納する 機器管理データベース 106と、
•前記物品管理データベース 102及び人管理データベース 104に格納された情 報を (必要に応じて、さらに機器管理データベース 106に格納された機器管理情報 をも)参照し、物品の物品存在領域を推定するとともに、物品存在領域が推定された 物品の中から、前記入力装置 109で入力された検索対象物品を検索する物品存在 領域推定手段 107と、
'前記物品管理データベース 102又は人管理データベース 104又は機器管理デ ータベース 106に格納された情報を参照して、前記物品存在領域推定手段 107によ つて推定された複数の前記物品存在領域のうち、前記物品の存在する可能性の高 い領域に重み付けを行う、物品位置候補重み付け手段 108と、 を有する。
[0042] 以下、前記各構成要素の詳細を説明する。
[0043] 《物品検出装置 101》
物品検出装置 101は、タイマー手段 120から出力された時刻の情報 (検出時刻情 報)が入力されかつ異なる物品が区別されるように識別し検出する結果、検出された 物品の識別情報 (ID)とその物品の検出場所の情報と検出時にタイマー手段 120か ら出力された時刻の情報 (検出時刻情報)とを物品検出毎に物品管理データベース 102に出力する。物品が区別できるように識別検出するためには様々な方法が考え られる力 本第 1実施形態では、物品の識別能力やコストの面で優位性を有し、物流 業界などで最近注目されて 、るタグシステムを用いた方法を説明する。
[0044] 図 2は、物品検出装置 101が設置された環境の例(一般家庭の家屋の部屋の例) を示した見取り図である。後の説明の都合上、本見取り図では図に示してあるように、 図 2の縦方向を Y軸とし横方向を X軸とする X—Y座標系を設定している。図 2におい て、 TGRと記載されている部分が物品検出装置 101の一例としてのタグリーダであり 、「玄関」、「居間」、「書斎」、「浴室」、「トイレ」、「寝室」の各出入り口付近にそれぞれ 設置されている。このように、少なくとも人が出入り可能な部屋の出入り口付近に物品 検出装置 101の一例としてのタグリーダを配置すれば、物品検出装置 101の個数を 最小限にすることができて、全体的なコストを安価なものとすることができるとともに、 物品検出装置 101同士の干渉も防止することができる。なお、より詳細なタグリーダ T GRの設置態様例として、図 3では、ゲート型のタグリーダ TGR力 ^居間」の人が出入 り可能な出入り口付近に設置されている例を示している。また、ゲート型のタグリーダ TGRは、単独でも機能するが、タグ TGの読み取りミスをなるベく防ぐなどの理由のた め、ここでは、一対のペアでゲート型のタグリーダ TGRが対向して設置される例を図 3に示している。
[0045] このようなタグシステムを使って物品を検出するためには、環境内で扱う物品にはタ グ TG (例えば、比較的近距離 (例えば、出入り口付近)でし力検知されないパッシブ タグ)が付いている必要がある。図 4A,図 4Bは、いずれも物品にタグ TGが付いてい る例を示した概念図で、それぞれ図 4Aは「書籍」に、また、図 4Bは「ジュース」にタグ TGが付与されている例を示している。ユーザは、このようなタグ TG付きの物品を持 つて環境内を移動しながら、ゲート型のタグリーダ TGRのゲートを通過したら、タグ、 J ーダ TGRが前記物品に付けられたタグ TGを自動的に読み込み、読み込まれたタグ TGの情報が、読み込まれた時刻とともに物品管理データベース 102に蓄積される。 なお、後の説明の便宜上、図 3の「居間」には、図 3に示すように、本棚 (BS)、冷蔵庫 (RF)、キッチンシステム(KS)、食卓(DT)、ソファ 1 (SF1)、ソファ 2 (SF2)、ローテ 一ブル (LT)が設置されて!ヽるものとする。
[0046] このようにして、タグ付けされた物品は、図 31に示すように、物品名とそれに付与さ れたタグの IDがペアになって物品管理データベース 102に蓄積される。この物品管 理データベース 102を参照することによって、タグリーダ TGRでタグ TGの IDを読み 取ったときに、その IDに相当する物品が何であるかが判定できることになる。もちろん 、この物品管理データベース 102には他の情報を追加して蓄積するようにしてもよい 。他の情報とは、当該物品のカテゴリ、重さ、形状、色、などの情報である。
[0047] 《物品管理データベース 102》
物品管理データベース 102は、前記物品検出装置 101にて検出された物品の識 別情報 (ID)とその物品の検出場所 (部屋内の検出位置)の情報と検出時にタイマー 手段 120から出力された時刻の情報 (検出時刻情報)とを、物品検出毎に、物品管 理情報として格納する。図 5A,図 5Bは、本発明の前記第 1実施形態による物品管 理データベース 102に含まれる物品管理情報の例を表形式で示した図で、物品管 理データベース 102とは、これら物品管理情報を集めたものである。ここでいう「物品 」とは、ユーザが日常生活で使う持ち運び可能な物品(又はオフィスなどにおいて通 常使用する持ち運び可能な物品)のことを言い、宅内にある家具や家電機器など (又 はオフィスなどにおける机や書棚など)は物品ではなぐ「機器」又は「設備」という呼 び名で「物品」とは区別する。
[0048] さて、図 5A,図 5Bでは、それぞれ図 4Aの「書籍」、図 4Bの「ジュース」に対応した 物品管理情報が示されている。例えば図 4Aの「書籍」に関する物品管理情報として は、
•時刻 19: 29に「玄関」のタグリーダ TGRで、 •時刻 19: 30に「居間」のタグリーダ TGRで、
•時刻 23: 01に「居間」のタグリーダ TGRで、
•時刻 23: 02に「書斎」のタグリーダ TGRで、
それぞれ「書籍」が検出されたことが蓄積されている。また、図 5Bの「ジュース」に関 する物品管理情報としては、
•時刻 19: 29に「玄関」のタグリーダ TGRで、
•時刻 19: 30に「居間」のタグリーダ TGRで、
それぞれ「ジュース」が検出されたことが蓄積されている。これらは、それぞれのタグ リーダ TGRがそれぞれの物品のタグ TGを検出し、タグリーダ TGRが、それぞれの物 品の IDを取得した都度、タグ TGの IDと物品とをペアにした、タグ TGの IDと物品の 対応関係データベース(図 31参照)の対応情報を参照して、前記タグ TGの IDに相 当する物品が何かを調べ、その結果を時間とともに物品管理データベース 102に書 き込む。タグ TGの IDと物品の対応関係データベースは、タグリーダ TGRが参照可 能に配置されておればよぐ物品管理データベース 102とは別に配置してもよいし、 物品管理データベース 102内に物品管理情報を蓄積する領域又は部分とは別の領 域又は部分に配置するようにしてもよい。もし新たな物品が外部力 前記環境内に持 ち込まれた際には、その新たな物品に相当する対応情報を物品管理データベース 1 02内に新規作成する。この新規作成はユーザが入力装置 109を使用して手作業で 行ってもよい。また、詳細な説明は省くが、近年のタグシステムの技術の進歩により、 このような新規作成操作は自動化も可能である。一方、既存の物品が廃棄されたこと が認識できれば、当該物品に対応する物品管理情報は物品管理データベース 102 力も削除すればよい。物品管理情報の削除は入力装置 109を使用して手作業で行 つてもいいし、また、ゴミ箱にタグリーダ TGRを設置し、前記タグリーダ TGRがタグ T Gを検出した場合には、タグリーダ TGRにより、前記タグ TGに対応する物品管理情 報を物品管理データベース 102から削除するようにしてもよい。
《人検出装置 103》
人検出装置 103は、タイマー手段 120から出力された時刻の情報が入力されかつ 人の位置を個人毎に区別して検出する結果、検出された人の識別情報 (ID)とその 人の検出場所の情報と検出時にタイマー手段 120から出力された時刻の情報 (検出 時刻情報)とを、単位時間毎に、人管理データベース 103に出力する。一般に人の 検出というと、例えば画像中に含まれる人を画像から切り出す場合や、ある環境にい る人の環境内での場所を求めるなど、いろいろな捉えられ方がある力 ここでは、環 境内での人の位置座標を求めるという意味で用いる。そのための検出方法は各種提 案されているが、本第 1実施形態ではそのうち、重さセンサを使う方法、タグ TGを使う 方法、及び、画像を使う方法の 3種類を以下に説明する。
[0050] <重さセンサを使う方法 >
重さセンサを使って人の位置を検出する方法の一例を図 6を用いて説明する。図 6 及び図 32は、重さセンサ WSENを使って人の位置を検出するためのシステム構成を 示した概念図である。このシステムでは、人検出装置 103は、重さセンサ WSENと、 重さセンサ WSENからの出力情報が入力されかつ物品管理データベース 102と接 続可能なセンサ処理装置 141とより構成される。
[0051] 重さセンサ WSENを使って人の位置を検出する場合、図 6及び図 32に示したよう に、重さセンサ WSENを環境内の床に例えば格子状に敷き詰める。これら各重さセ ンサ WSENは、人の足等によって加重が力かるとその値が出力されるようになってお り、全てがセンサ処理装置 141につながっている。センサ処理装置 141は、予め各重 さセンサ WSENの座標を登録しておき、重さセンサ WSENのデータを常にセンシン グするようになされており、もし、ある重さセンサ WSENに加重が力かっていることが 検出された場合には、当該重さセンサ WSENの置かれている座標をセンサ処理装 置 141により直ちに求める。
[0052] このようなシステムを用いて最も簡単に人の位置を知るには、加重が力かった重さ センサ WSENの座標値をそのまま人の位置とすればよい。しかしながら、これでは複 数人の人が環境内に居る場合にそれらが区別できな 、と 、う問題もでてくる。このよう な問題に対応するためには、例えば重さセンサ WSENの加重がほぼ等しいセンシン グデータをグルーピングし、時間順に並べるなどの処理をセンサ処理装置 141で追 加すればよい。これにより、人検出の精度を高めることができる。
[0053] <タグ TGを使う方法 > タグ TGを使って人の位置を検出する方法の一例を、図 7を用いて説明する。図 7は 、タグ TGを使って人の位置を検出するためのシステム構成を示した概念図である。タ グ TGを使って人の位置を検出する場合は、人は環境内をタグリーダ TGR付きの履 き物(例えばスリッパ) 142を履いて移動するという前提が許される場合に有効である 。このシステムでは、人検出装置 103は、タグ TGと、タグ TGを検出可能でかつ無線 などにより物品管理データベース 102と接続可能なタグリーダ TGRとより構成される。
[0054] 本方法では、まず、図 7に示すように、タグ TGを環境内の床に例えば格子状に敷き 詰める。一方、履き物 142には、床に敷き詰められたタグ TGの HD情報を読み取るた めのタグリーダ TGRが設置され、このタグリーダ TGRには、前記 Iひ f青報と、前記 ID 情報を持つタグ TGの置かれて ヽる場所の位置情報 (例えば位置座標情報)とを対 応づけた対応付け情報(図示しな 、)が格納されて 、る。
[0055] このような構成の基で、人が環境内を歩くと、足を床に踏みつけた瞬間に履き物 14 2につ 、たタグリーダ TGR力 その下にあるタグ TGと通信して前記タグ TGの ID情報 を読み取り、前記 情報の値を前記対応付け情報に照らし合わせることで、人の位 置を特定することができる。もちろん、これはあくまで一例であり、履き物 142以外の 他の場所にタグリーダ TGRを付け、人の足以外の他の場所にタグ TGをつけるという 構成でもよ 、。例えば手首につけた腕時計に個人の IDが付与されたタグ TGを埋め 込めば、先ほど説明した物品検出装置 101用タグリーダ TGRで、人も検出することも 可能となる。もし複数人の検出に対応させるためには、それぞれの人が所有する ID を区別してやればよい。なお、本例とは逆に、床にタグリーダ TGRを敷き詰め、スリツ ノ 142にタグ TGを貼り付けるという構成でも人の検出は可能である。
[0056] <カメラ画像を使う方法 >
カメラ画像を用いても、人の位置を検出することが可能である。その大まかな手順は 、(ステップ 1)画像中から人の切り出し、(ステップ 2)カメラ画像における切り出した人 の位置座標を世界座標系に変換する、 t 、うステップで行われる。
[0057] まず、ステップ 1において、画像中力もの人の切り出しである力 これも様々な方法 が開発されているが、ここではそのうち最も単純な背景差分という方法を説明する。
[0058] 背景差分法とは、予め背景としてのモデル画像を用意しておき、現在の入力画像と 前記モデル画像との差分を取ることで、処理する対象物を画像から得る方法である。
[0059] まず、背景画像の作成だが、例えば環境変動が無い場合は、環境内に人の全く存 在しない一枚の画像を使ってもよいし、また、環境変動が激しい場合は、ある時間に 連続して撮影された画像を平均して得られた画像を使っても良 ヽ。図 8及び図 9A〜 図 9Cは背景差分法を具体的に説明するための補助図である。図 8はカメラ 143を環 境内に設置し、また、環境に世界座標系を設定したことを表した概念図、図 9Bは前 記背景画像の例を示した図、図 9Aは、図 9Bを撮影したのと同じカメラ 143を用いて 撮影されたある時点における入力画像 (撮影画像)を示した図、図 9Cは、図 9Aの入 力画像から図 9Bの背景画像を差し引いて得られた背景差分画像に、当該環境の座 標系を付カ卩して示した図である。図 9C力も分力るように、図 9Aの入力画像には人 14 4が含まれており、図 9Bの背景画像には人 144が含まれていないので、これら 2枚の 画像の差である図 9Cの背景差分画像力も人 144が浮き出てくる。この浮き出た部分 のみを取り出すことで、環境内の人 144が検出できるという仕組みである。
[0060] こうして検出された人 144については、画像処理によって画像中での人 144の足元 の座標を求めることが可能である。し力しながら、人検出装置 103によって最終的に 求めたいのは、人 144の世界座標系における座標であるので、その方法を図 10を用 いて説明する。
[0061] 図 10は、カメラ画像における切り出した人 144の位置座標を世界座標系に変換す る計算を説明するための図である。図 10において、 O
wを原点とし X軸、 Y軸、 Z軸で 構成された座標系は世界座標系で、この座標系において、人 144の位置座標を (X w
, y , z )で表す。また、 Oはカメラ 143のレンズ中心を原点とするカメラ座標系で、こ w w e
の座標系において人 144の位置座標を (x , y , z )で表す。また、(u, V)は、カメラ e e e
画像における人 144の足元位置を検出した座標であるとする。以上の定義のもとで、 (X , y , z )、(X , y , z )、(u, v)には、式(1) ,式(2) ,式(3)の関係が成り立つこ w w w e e e
とが知られている。ここで、式(1)における (r ,〜, r )は、カメラ座標系を構成する 3
1 9
つの軸周りの回転行列、また、(t , t , t )は、カメラ座標系の原点を世界座標系の原
X y z
点に合わせるための平行移動ベクトルであり、カメラ 143の外部パラメータと呼ばれる ものの一部である。一方、式(2) ,式(3)における fはカメラ 143の焦点距離を示すも ので、カメラ 143の内部パラメータと呼ばれるものの一部である。そして、これら外部 及び内部パラメータは、カメラキャリブレーションという技術を用いて事前に求めること が可能である。
[0062] さて、カメラ画像における人 144の足元位置を検出した座標(u, V)をこれらの式(1 )〜式(3)に入力してできる連立方程式は、実世界での人 144の足元位置を求める には不十分である。なぜなら、前記連立方程式では (X , y , z )と Oとを結ぶ直線上 e e e e
のどこかにある、という不定解し力得られないからである。従って、さらに実世界座標 系において z =0という拘束条件を付カ卩してやることで、人 144の位置座標(X , y , z )を求めることができる。この拘束条件は、人 144の足元位置が床面(つまり z =0) になるように実世界座標系を決めて 、ることに他ならな 、。
[0063] 以上が、カメラ画像を使って人 144を検出する方法の概要である。もしカメラ 143内 に複数人が検出されたならば、前記処理を個別に行えばよい。また、人検出装置 10 3にカメラ画像を使う場合は、本発明の前記第 1実施形態の他の構成要素である撮 像装置 111で撮影された画像を共用しても力まわない。このシステムでは、人検出装 置 103は、カメラ 143と、カメラ 143からの画像情報が入力されかつ前記背景差分処 理並びに座標変換処理などの演算処理を行うことができかつ物品管理データベース 102と接続可能な演算手段 145とより構成される。
[0064] 以上、人の検出方法の例として、重さセンサを使う方法、タグ TGを使う方法、画像 を使う方法の 3種類を説明したが、いずれの方法も人を完全に検出することが保証さ れたものではない。従って、より高い精度の人検出を行うために、これらの方法を組 み合わせて使用したり、また、これ以外の方法を用いたり、これらの方法とこれ以外の 方法とを組み合わせても力まわない。例えば、物品検出装置 101で使われる手法と 人検出装置 103で使われる方法を互いに共用しても構わない。ここでは、それぞれ の手段に適した方法の一例を紹介したまでであり、実際に本発明が適用される環境 やコストに応じて組み合わせて使えばよい。
[0065] 《人管理データベース 104》
人管理データベース 104は、前記人検出装置 103にて検出された人の識別情報 (I D)とその人の検出場所の情報と検出時にタイマー手段 120から出力された時刻の 情報 (検出時刻情報)とを、単位時間毎に、人移動履歴情報 (人管理情報)として格 納する。図 11A,図 11Bは本発明の前記第 1実施形態による人管理データベース 1 04に含まれる人管理情報 (例えば、人の識別情報、位置座標とその時刻などの情報 を含む人移動履歴情報)の例を表形式で示した図で、人管理データベース 104とは 、これら人管理情報を集めたものである。本例ではそれぞれ図 11 Aのお父さん、図 1 1Bのお母さんに対応した人管理情報 (人移動履歴情報)が示されている。例えば図 11 Aのお父さんに関する人管理情報 (人移動履歴情報)は、
•時刻 19 : 29に「玄関」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— DataOlに格納されて 、ること、
•時刻 19 : 30に「居間」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data02に格納されていること、
•時刻 22 : 29に「居間」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data03に格納されて 、ること、
•時刻 22 : 30に「浴室」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data04に格納されていること、
•時刻 22 : 59に「浴室」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data05に格納されて 、ること、
•時刻 23 : 00に「居間」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data06に格納されて!、ること、
•時刻 23 : 01に「居間」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data07に格納されていること、
'時刻 23 : 02に「書斎」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data08に格納されて!、ること、
'時刻 23 : 29に「書斎」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data09に格納されて 、ること、
•時刻 23 : 30に「居間」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— DatalOに格納されていること、
•時刻 23 : 50に「居間」のタグリーダ TGRを通過し、その後、次に検出されるまで の人移動履歴情報が履歴データ MF— Data 11に格納されて 、ること、 がそれぞれ記載されている。図 11Bのお母さんの例も同様であるので、説明は省略 する。人移動履歴情報は、後の処理のために、人がタグリーダ TGRを通過する毎に 新たに人移動履歴情報が人管理データベース 104に追加されるようにしておく。
[0066] なお、人管理情報 (人移動履歴情報)と前記の物品管理情報との違いは、人管理 情報には、単位時間毎に人の検出場所と検出時刻とが検出されてそれらの情報が 人移動履歴情報として含まれている点である。この人移動履歴情報とは、実際に人 が移動している様子を細力べ検出し、その検出された情報 (人の識別情報と場所 (位 置座標)とその時刻などの情報)が蓄積されたものであり、次に、図 12を用いて人移 動履歴情報の詳細を説明する。
[0067] 図 12は人移動履歴情報の例を表形式で示したものである。説明の都合上、図 12 の例はお父さんの人移動履歴情報(図 11A)に含まれる「居間」での履歴データ MF — Data02を示しているものとする。この履歴データ MF— Data02は、お父さんが時 刻 19: 30に「居間」のタグリーダ TGRを通過した後、次の時刻 22: 29に「居間」のタ グリーダ TGRを通過するまでの人移動履歴情報が記載されて 、る。表の各人移動履 歴情報は、時刻、 X座標値、 Y座標値の 3つの要素より構成されており、時刻は記録 を開始してからの経過時間、 X, Yの座標値は図 2に示した見取り図の座標系におけ る座標値を mm単位で示したものである。例えば、この図 12の例では、お父さんが時 刻 19 : 30に「居間」のタグリーダ TGRを通過した後、時刻 1において座標(5766, 23 04)に居たことがこの表に記載されている。時刻の単位は省略している力 これは情 報記録の間隔はシステムの能力によって異なるためであり、システムの能力などに応 じて適当に(例えば 1秒間隔などと)決めればょ 、。
[0068] この人移動履歴情報に、様々な処理を施すことにより、いろいろな情報を得ることが できる。その例を図 13を用いて説明する。
[0069] 図 13の上側のグラフ(a)は、人移動履歴情報を参照し、連続する 2つの時刻の間( 以下、これを単位時間と呼ぶ。)での移動距離を計算し、その移動距離を縦軸に、横 軸に時間をとつてプロットしたグラフである。従って、この図 13の上側のグラフ(a)で は、縦軸の値が大きいものは単位時間での移動量が大きぐ値が小さいものは単位 時間での移動量が小さいことを表している。言い換えると、値の小さくないところが続 いていると、その時間は移動していること力 また、値の小さいところが続いていると、 その時間は滞留して!/、る ( (家屋内にお!、て)局所に (短時間)留まる) t 、うことがわ 力るわけである。例えば、図 13の上側のグラフ(a)の例では、横軸の少し上に横軸に 並行して点線 Aが描かれて 、るが、単位時間の移動量がこの点線 A以下の場合は、 点線 A以下が続 、て 、る部分をひと固まりとして「滞留」と!、う定義をすると、図 13の 上側のグラフ(a)の例では図示して 、るように 3つの「滞留」部分 (すなわち、「本棚」、 「冷蔵庫及びキッチンシステム」、「ソファ 1」)があることが分かる。
この点線 Aの縦軸での値をいくらにするかによって、「滞留」か移動かを判定する基 準が変わってくるが、一番単純な方法としては、点線 Aの縦軸での値を一定の値に 固定するという方法が考えられる。しかし、人に応じて値を変更したり、また、当該人 力 Sどんな物品を扱っているかに応じて変更しても構わない。例えば、検出対象者が 老人の場合や、検出対象物品が重い物品や壊れやすい物品を扱っている場合には 、移動距離が小さい部分が連続していても、「滞留」ではなく移動中を意味することが 多ぐ誤って「滞留」と判定しないためにも、そのような人の場合やそのような物品を扱 つている場合には、点線 Aの縦軸での値を、他の人又は物品の場合よりももっと小さ くすることが望ましい。扱っている物品の情報は、物品検出装置及び物品管理データ ベースから得ることができる。また、検出対象者別に基準を変更するということは、検 出対象者の通常の移動速度に応じて基準を決定するということである。即ち、通常の 移動速度とある時点での移動速度との差異に着目していることにも相当する。また、 人が存在する位置 (例えば部屋単位)に応じて基準の値を変更しても構わない。例え ば、図 2で表されるような家全体を考えた場合、通常、廊下は移動し易いように障害 物などが置かれていない場合が多いため、同じ人であっても、移動速度が大きくなり 易い。居間の場合は、ソファ、テーブル、 日常的に使う物品 ·小型家具などが置かれ ている場合が多いため、移動速度は小さくなり易い。浴室の場合は狭く滑りやすいた め、さらに移動速度が小さくなる傾向がある。蓄積された人の移動履歴力 部屋ごと の平均移動速度を計算し、その平均移動速度を基にして基準の値を決定することが できる。なお、以上述べた、検出対象者別、検出対象物品別、部屋別の決定方法を 自由に組み合わせて基準の値を決定してもよ 、。
[0071] 前記人の移動履歴情報を検出して蓄積するとき、蓄積時刻間隔に比較して大きい 移動速度で移動する人が局所領域にて繰り返し移動(回転、往復など)する場合、計 測値における移動速度 (蓄積時刻間の移動距離)が小さくなり、誤って「滞留」と判定 されることがある。図 36Aに、時刻とその時刻における人の実際の位置との関係を示 すグラフ PHを示す。また、図 36Bに、時刻間隔 Atで蓄積した人の位置座標 Pを示 k す。人の移動速度は、図 36A,図 36Bにおいて、それぞれ、線の傾きで表されるが、 図 36Bの線分 (P— P )は、実際の移動速度よりも小さくなつている。よって、蓄積 k k+ 1
の間隔を、予め計測しておいた人の移動速度によって決定してもよい。なお、人が局 所領域にて繰り返し移動をする場合を意図的に「滞留」に含めたい場合は、蓄積間 隔を大きめにすればよい。
[0072] 逆に、人が局所領域にて繰り返し移動をする場合を意図的に「滞留」に含めない場 合には、蓄積間隔を小さくすればよい。例えば、 日常の生活において、局所領域に て繰り返し移動をする具体的な例として、キッチンシステムの近くで、買い物してきて 食品が入ったバッグ又はショッピングカートから、母と娘の二人が、食品を冷蔵庫や 食品収納庫に入れたり、雑貨をテーブルなどに置いたりする場合を想定する。このよ うな場合には、ノッグ又はショッピングカートの位置と、冷蔵庫や食品収納庫ゃテー ブルとの位置の間を母と娘が繰り返し移動することになるが、このような場合を意図的 に「滞留」に含めないときには、蓄積時刻間隔を十分に小さくすればよい。
[0073] また、図 13の下側の平面図(b)は、図 2の見取り図から「居間」だけを取り出した見 取り図に、図 13の上側のグラフ(a)での人移動履歴情報をプロットした図である。もと もと人移動履歴情報には時刻の情報が含まれているため、図 13の上側のグラフ(a) と対応付けることが可能である。本例では、図 13の上側のグラフ(a)の「滞留」部分を 図 13の下側の平面図 (b)である見取り図に対応付けると (矢印付き点線を参照)、時 刻の早いほうから順に、「本棚」の近辺、「冷蔵庫及びキッチンシステム」の近辺、「ソ ファ 1」の近辺で滞留していることが判定できる。
[0074] なお、本図 13では、一人の移動履歴情報に関する例のみを示した力 もちろん 2人 以上の場合でも同様に処理すればよい。例えば図 14の上側のグラフ(a)は、 2人分 のデータをプロットした図で、一人は図 13のデータと同じ実線 Bで示されており、もう 一人のデータが一点鎖線 Cで示されている。この一点鎖線 Cのデータでは、最初だ け動きがあり、その後の動きが全くないことが示されてるが、それに対応した実空間で の動きが図 14の下側の平面図(b)で同じく一点鎖線 Cで示されている。すなわち、こ の図 14の下側の平面図(b)を見てみると、一点鎖線 Cで示されるもう一人の人は、部 屋に入った直後に「ソファ 2」に座って 、ることから、図 14の上側のグラフ(a)の結果と 対応がとれて!/ヽることが分力ゝる。
[0075] このように人が移動した人移動履歴情報を分析した結果を用いて物品の位置を絞 り込む点が本発明の前記第 1実施形態の大きな特徴であり、その具体的な処理が、 本発明の前記第 1実施形態の構成要素である物品存在領域推定手段 107及び物 品位置候補重み付け手段 108で行われる。その詳細は後ほど説明する。
[0076] 《機器操作検出装置 105》
機器操作検出装置 105は、タイマー手段 120から出力された時刻の情報 (操作時 刻情報)が入力されかつ機器操作を検出する結果、検出された各々の機器の識別 情報 (ID)とその機器の操作状態の情報 (操作情報)と操作時にタイマー手段 120か ら出力された時刻の情報 (操作時刻情報)とを機器操作検出毎に機器管理データべ ース 106に出力する。ここでいう「機器」とは、物品を閉じこめる態様で収納する機能 を持つものと定義し、それ以外でかつ物品ではないものを「設備」と呼ぶことにする。 例えば、図 3の例では「本棚」、「冷蔵庫」が「機器」であり、また、「キッチンシステム」、 「食卓」、「ソファ 1」、「ソファ 2」、「ローテーブル」が「設備」である。なお、「キッチンシ ステム」をさらに細力べ区分して、「キッチンシステム」の収納棚や収納庫を「機器」とし 、調理台を「設備」と捉えることも可能である。
[0077] 機器操作を検出するためには様々な方法が考えられるが、本例では、簡単な接触 センサ TSENを用いた方法を説明する。
[0078] 図 15A,図 15Bは、いずれも収納機能を持つ機器に対して、機器操作検出装置 1 05が設置された機器の例を示した概念図である。図 15A,図 15Bにおいて、 TSEN と示されている部分が機器操作検出装置 105の一例としてのセンサで、ここでは、接 触センサ TSENを使った例を示している。具体的には、図 15Aでは、収納部に 2つ のタイプの開閉式のドア 150, 151力あり、それらのドア 150と固定支持枠 153のそ れぞれに接触センサ TSENが設置された様子力 また、図 15Bでは収納部に引き戸 式のドア 152力あり、それのドア 152側と固定枠 154側のそれぞれに接触センサ TS ENが設置された様子力 それぞれ示されている。図 15A,図 15Bいずれの場合も、 ドア 150, 151, 152側の接触センサ TSENと固定枠 153, 154側の接触センサ TS ENとが互いに接触する接触状態になると、収納部のドア 150, 151, 152が閉まって ヽる一方、ドア 150, 151, 152佃 Jの接虫センサ TSENと固定枠 153, 154佃 Jの接虫 センサ TSENが互いに離れた非接触状態になると、収納部のドア 150, 151, 152が 開いている、という具合に機器の状態を知ることができ、この状態が変化したときに機 器の操作が行われたとみなし、その旨が機器管理データベース 106に蓄積される。
[0079] ここでは、接触センサ TSENの例を示した力 もちろんそれ以外のセンサ、例えば 光学式の非接触センサを用いても良 、し、センサ以外の手法を用いても構わな 、。
[0080] 《機器管理データベース 106》
機器管理データベース 106は、前記機器操作検出装置 105にて検出された各々 の機器の識別情報 (ID)とその機器の操作状態の情報 (操作情報)と操作時にタイマ 一手段 120から出力された時刻の情報 (操作時刻情報)とを、機器操作検出毎に、 機器管理情報として格納する。図 16A,図 16Bは、本発明の前記第 1実施形態にか 力る前記物品検索システムの機器管理データベース 106に含まれる機器管理情報 の例を表形式で示した図である。図 16A,図 16Bは機器として、「本棚」、「冷蔵庫」 の例を挙げており、それぞれが独立した機器管理情報である。機器管理情報の内容 としては、機器が操作された時刻の情報と、操作状態の情報 (操作情報)として開閉 のいずれかの情報が記載されている。本例は最も単純な例である力 図 15Aのよう に一つの機器に 2つ以上の機器操作検出装置 105が設置されている場合は、それ ぞれ独立して機器管理情報を用意すればよ!ヽ。
[0081] 《物品存在領域推定手段 107》
物品存在領域推定手段 107は、前記物品管理データベース 102に格納された物 品管理情報及び人管理データベース 104に格納された人管理情報を (必要に応じ て、さらに機器管理データベース 106に格納された機器管理情報をも)参照し、人の 移動領域を、検索対象の物品の物品存在領域であると、推定する。物品の存在領域 の推定は、「課題を解決するための手段」の欄でも述べたように、人の動きと物品の 存在場所には重要な相関関係があるはずという点に着眼して行う。これを、もう少し 具体化すると、次に示す 2つの原則に基づいて物品の位置が推定可能であるといえ る。
[0082] (原則 1)物品は、人の移動した経路上もしくはその周辺に存在する可能性が最も 高く、人の移動経路から外れれば外れるほど存在する可能性は低くなる。
[0083] (原則 2)物品を検出したい環境において、物品を検出する装置力 Sいくつか配置さ れている前提のもとでは、それらの装置で検出された複数の物品検出情報のうちは 新 、物品管理情報ほど信頼性は高 、 (その物品がある可能性が高 、)。
[0084] これらの原則に基づいて物品存在領域を推定する場合の処理を次に説明する。図 17は、物品存在領域推定手段 107での処理の流れを示すフローチャートである。以 下、本フローチャートに従い、物品の存在領域を推定する処理の流れを説明する。
[0085] ステップ S1701において、ユーザが、位置を検出したい検出対象物品を入力装置 109で指定し、入力装置 109で指定された検出対象物品が物品存在領域推定手段 107に入力される。
[0086] 次いで、ステップ S1702において、指定された検出対象物品に基づき物品管理デ ータベース 102の物品管理情報を物品存在領域推定手段 107が参照して、前記指 定された物品が最後に検出された時刻と場所を取得する。具体的には、前記物品の 物品管理情報の最後の行 (表形式の物品管理情報では最新の情報が記載されて 、 る行)を物品存在領域推定手段 107が参照すればよい。これは前記 (原則 2)に従つ て行われる処理である。
[0087] 次いで、ステップ S1703において、物品存在領域推定手段 107により人管理デー タベース 104の人管理情報を参照して、前記時刻を含む所定の時間(前記時刻と同 じ時間及びその前後の時間)内に、前記場所で検出されたすベての人を、前記指定 された物品の取り扱いの候補者として物品存在領域推定手段 107が取得する。前記 時刻と同じ時間に検出された人のみならず、その前後の時間に検出された人も含め て検索する理由は、物品検出装置 101と人検出装置 103とで検出の処理自体に時 間差が出る場合や、物品と人の間に距離があることにより物品検出装置 101と人検 出装置 103とでの検出処理に時間差が出る場合にも対応できるようにするためであ る。物品と人の間に距離が生じる例として、物品が大きいなどの理由により、手を伸ば して物品を持っていたりする例や、カートなどの運搬器具に物品を載せて運んでいた りする例が考えられる。なお、前記、所定の時間(前後の時間幅)は、物品の識別情 報 (ID)や人の識別情報 (ID)により可変にしてもよい。例えば、人が老人の場合や、 物品が重量が重い物品、大きさが大きい物品の場合などは、移動速度が小さくなる 可能性が考えられるため、前記時間幅を大きめにするとよい。よって、本明細書及び 請求の範囲では、前記人と前記物品とが前記人検出装置と前記物品検出装置とで 前記物品が最後に検出された時刻を含む所定の時間、すなわち、前記物品が最後 に検出された時刻と同じ時間及びその前後の時間に検出される場合のことを、前記 人と前記物品とが前記人検出装置と前記物品検出装置とで同時的に検出される場 合と、必要に応じて言い換えることにする。
[0088] 次いで、ステップ S1704において、前記検出されたすベての候補者について、物 品存在領域推定手段 107が人管理データベース 104の人管理情報を参照して、前 記時刻と人の移動とが関連付けられた人移動履歴情報を取得する。
[0089] ステップ S 1703によって得られた人移動履歴情報が示す時刻順に人の位置座標 をつな 、だ移動経路 (言 、換えれば、人の移動領域)が物品存在領域の推定結果で あり、前記 (原則 1)に従った結果となっている。なお、ステップ S1701において、位置 を検出したい物品を指定するのが入力装置 109である力 この入力装置 109として は、携帯端末やパーソナルコンピュータなどを使い、前記物品名を音声やキーボー ドによって入力するか、又は前物品リストを表示してその中から選択するなどの、従来 の物品検索における入力方法を用いればよい。
[0090] 次に、図 5A,図 5Bの物品管理データベース 102及び図 11A,図 11Bの人管理デ ータベース 104を用い、ユーザがお父さんで、検索したい検出対象物品としてジユー スが指定された場合を例として、具体的に物品存在領域推定手段 107での処理が 行われる様子を説明する。
[0091] ステップ S1701において、お父さんが、入力装置 109を使用して、位置を検出した い検出対象物品としてジュースを指定するように、物品存在領域推定手段 107に入 力する。
[0092] 次いで、ステップ S1702において、物品管理データベース 102のジュースについ ての物品管理情報である図 5Bの最後の行を参照し、前記指定されたジュースが最 後に検出された時刻「19: 30」と場所「居間」の情報をそれぞれ物品存在領域推定手 段 107により取得する。
[0093] 次いで、ステップ S1703において、人管理データベース 103の図 11A,図 11Bの 人管理情報を物品存在領域推定手段 107により参照し、前記時刻「19 : 30」を中心 に所定の時間内に、「居間」で検出されたすベての人を、前記指定された物品の取り 扱いの候補者として物品存在領域推定手段 107により取得する。ここでは、前記所 定の時間を 3分とすると、 19 : 27から 19 : 33までの間に「居間」で検出された人を人 管理データベース 104の図 11A,図 11Bの人管理情報から物品存在領域推定手段 107により検索することになり、結果として時刻「19 : 30」に場所「居間」で検出された 「お父さん」だけが物品存在領域推定手段 107により取得される。
[0094] 次いで、ステップ S1704において、物品存在領域推定手段 107により、前記検出さ れた人管理情報に対応した図 12の履歴データ「MF— Data02jを取得する。
[0095] 図 18は、このようにして得られた物品存在領域推定手段 107による物品存在領域 推定の結果を表形式で示したものである。本例で取得された履歴データは一つだけ であるが、当該物品を持って移動した可能性のある人が複数人居れば、それら複数 人に対応する履歴データを全て取得すればょ ヽ。
[0096] 以上が物品存在領域推定手段 107での物品存在領域推定処理であり、これにより 得た履歴データを前記環境の見取り図上に物品存在領域推定手段 107によりマツピ ングした結果 (例えば図 13の下側の平面図(b)の画像)などを表示装置 110にて提 示するだけでも十分に役に立つ。すなわち、ユーザは画面に示された自身の過去の 移動経路を見て、その経路を順にトレースする力、もしくはその経路上の近辺にある 機器又は設備を見ながら、物品を探していくことができるわけである。目的の物品を 探す場所が部屋全体ではなぐ自身の過去の移動経路近辺に絞り込まれるので、探 す手間が非常に効率化されることが期待できる。 [0097] 一方で、本発明の前記第 1実施形態による履歴データのさらなる詳細分析結果や 、機器操作などの情報を用いることで、探している物品が、自身が過去に移動した経 路上のどこにある可能性が高いか、までも絞り込むこと、言い換えれば、物品位置候 補の重み付け処理が可能である。以下では、その処理を行う物品位置候補重み付け 手段 108について詳細に説明する。
[0098] 《物品位置候補重み付け手段 108》
物品位置候補重み付け手段 108は、前記物品管理データベース 102に格納され た物品管理情報又は人管理データベース 104に格納された人管理情報又は機器管 理データベース 106に格納された機器管理情報を参照して、前記物品存在領域推 定手段 107によって推定された複数の前記物品存在領域に対して、前記物品の存 在する可能性の高 、物品存在領域の重みが高くなるように重み付けを行う。言 、換 えると、直前で説明した物品存在領域推定手段 107によって物品の位置をある程度 絞り込んだ中から、さらに存在の可能性が高い物品存在領域を絞り込むこととも言え る。本発明の前記第 1実施形態では、この物品存在可能性の高い低いを行うことを「 物品位置候補の重み付け」と呼ぶことにする。この重み付けにあたっては色々な方法 が考えられるが、前記 (原則 1)、すなわち、人の動きと物品の位置とに関連性がある という考え方をさらに踏み込んで考えると、 2つの適当な絞り込みの方法が考えられる 。一つ目の絞り込みの方法は、物品を人が置いたり取ったりするときには、人の移動 速度は低下もしくはゼロになるという一般的な観察結果から、この結果を活用する方 法である。もう一つの絞り込みの方法は、同じく物品を人が置いたり取ったりするとき には、前記物品を格納する(又はしていた)機器の操作を行うことが多いため、この機 器の操作情報 (例えば、操作の有無の情報)を活用する方法である。これら 2つの方 法と本発明の前記第 1実施形態との関連付けは、前者は本発明の第 3態様に、後者 は本発明の第 8態様にそれぞれ対応している。
[0099] 以下で、これら各方法の処理例を順に説明する。
[0100] 一つ目の方法は、人がゆっくり動いていればいるほど (極端な場合止まっていれば
)、そこで物品を扱って 、る可能性が高 、とする考えに基づ 、て 、る。
[0101] この考えに基づき、図 19は、物品位置候補重み付け手段 108による、人の移動速 度を用いて重み付けを行う処理をフローチャートの形式で示した図である。
[0102] ステップ S1901において、検索対象物品を取り扱った人の履歴データは物品存在 領域推定手段 107で得ることができるので、前記履歴データを使って前記人の移動 速度を物品位置候補重み付け手段 108により計算する。移動速度の計算は、例えば 図 12の例の履歴データでは各時刻の位置座標値力も単位時間に移動した距離が 計算できるため、この距離を単位時間で物品位置候補重み付け手段 108により割る ことにより、簡単に求めることができる。
[0103] 次いで、ステップ S1902において、物品位置候補重み付け手段 108により求めら れた移動速度が、所定値 (しき 、値)以下の場所群を人の滞留状態として物品位置 候補重み付け手段 108により抽出し、物品位置候補重み付け手段 108により、例え ば、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データベース 1 02内に重み付けリストとして登録する。
[0104] 次いで、ステップ S1903において、物品位置候補重み付け手段 108により、前記 重み付けリストから場所を、まず、一つ選ぶ。
[0105] 次いで、ステップ S1904において、物品位置候補重み付け手段 108により、ステツ プ S 1903で選んだ場所において、
•当該場所での平均移動速度と、
•当該場所の中心位置座標と、
の 2項目を物品位置候補重み付け手段 108により計算する。中心位置座標の計算 としては、物品位置候補重み付け手段 108により、前記しきい値以下の滞留状態中 の位置座標の例えば平均を求めるなどすればよい。一つ目の平均移動速度は重み 付けの指標に、また、もう一つの中心位置座標は、ユーザに物品の場所を提示する 時に、それぞれ用いる。前記計算結果は、物品位置候補重み付け手段 108により、 例えば、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データべ ース 102内の前記重み付けリストに登録する。
[0106] 次いで、ステップ S1905において、ステップ S1902で抽出した各々の場所につい て、ステップ S 1904をまだ行っていない場所があれば、ステップ S 1906に進み、ステ ップ S 1904をまだ行って!/、な!/、場所が無ければステップ S 1907に進む。 [0107] ステップ S1906においては、ステップ S1902で抽出した各々の場所について、ス テツプ S 1904をまだ行って!/、な!/、場所を前記リストから一つ選び、ステップ S 1904を 繰り返したのち、ステップ S1905に進む。
[0108] 一方、ステップ S1907においては、ステップ S1902で抽出された全ての場所につ いて、ステップ S 1904で計算された平均移動速度の低い方から、優先順位を高ぐ 物品位置候補重み付け手段 108により、重み付けをする。これは、人がゆっくり動い て ヽれば 、るほど (極端な場合止まって!/、れば)、そこで物品を扱って 、る可能性が 高いとする考えに基づいている。前記重み付け結果は、物品位置候補重み付け手 段 108により、例えば、物品位置候補重み付け手段 108内の一時記憶部又は物品 管理データベース 102内の前記重み付けリストに登録する。
[0109] 次に、具体例によって処理を説明する。例としてここでは物品「ジュース」を検索す るという前提で、物品存在領域推定手段 107での物品存在領域推定処理にて図 12 の履歴データ MF— Data02を得て、物品位置候補重み付け手段 108での物品位 置候補重み付け処理を行う様子を取り上げる。
[0110] ステップ S1901において、人の履歴データ MF— Data02から、前記人の移動速 度を物品位置候補重み付け手段 108により計算する。その計算結果が示されたのが 前述のグラフ(図 13の上側のグラフ(a) )である。
[0111] 次いで、ステップ S1902において、物品位置候補重み付け手段 108により求めら れた移動速度が所定値 (しき 、値)以下の場所群を人の滞留状態として物品位置候 補重み付け手段 108により抽出し、物品位置候補重み付け手段 108により、例えば 、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データベース 102 内に重み付けリストとして登録する。本例では、図 13の上側のグラフ(a)から 3つの滞 留部分があることが判定できる。これらは見取り図にプロットした図 13の下側の平面 図 (b)と関連付けると、それぞれ時刻の早いほうから順に、「本棚」の近辺、「冷蔵庫 及びキッチンシステム」の近辺、「ソファ 1」の近辺で滞留していることが判定できるの で、便宜的にここでは、各滞留状態を、「本棚」、「冷蔵庫及びキッチンシステム」、「ソ ファ 1」と呼ぶ。
[0112] 次いで、ステップ S1903〜ステップ S1906の処理によって、「本棚」、「冷蔵庫及び キッチンシステム」、 「ソファ 1」の滞留状態での、
,平均移動速度と、
'中心位置座標と、
の 2項目をそれぞれ物品位置候補重み付け手段 108により計算する。前記計算結 果は、物品位置候補重み付け手段 108により、例えば、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データベース 102内の前記重み付けリストに登 録する。
[0113] 次いで、ステップ S1907において、前記計算結果により、「本棚」、「冷蔵庫及びキ ッチンシステム」、 「ソファ 1」の重み付けが物品位置候補重み付け手段 108により行 われる。
[0114] 図 20は、このようにして得られた物品位置候補重み付けの結果を表形式で示した ものである。表は、抽出された 3つの滞留状態に対して、左から順に、
•当該場所での平均移動速度と、
•当該場所の中心位置座標 (本例では、その座標が部屋のどの場所かを示す場 所名を付記)と、
•重み付け結果 (順位を表して 、る)と、
からなつており、それぞれ図 19のステップ S 1904、ステップ S1907の結果力 物品 位置候補重み付け手段 108により、例えば、物品位置候補重み付け手段 108内の 一時記憶部又は物品管理データベース 102内の前記重み付けリストに格納されてい る。
[0115] なお、重み付けを行うための情報として、併せて人の滞留時間を利用してもよい。こ れは、人が物品を置いたり取ったりするときには、人の移動速度が低下もしくはゼロに なるという知見の他に、物品の取扱にはある程度の時間が力かるという知見も利用す るものである。例えば、平均移動速度が最小の場合でも、その滞留状態が持続する 時間がわずかである場合は、物品の取扱が行われな力つた可能性が高いとして、候 補順位力も外してもよい。この滞留時間に対するしきい値は、物品の取扱者 (検出対 象者)や取り扱う物品 (検出対象物品)の ID、場所に応じて決定することができる。例 えば取扱者が老人の場合や、取り扱う物品が重い物又は壊れ易い物の場合は、物 品の取扱時間が長くなることが予想されるので、しきい値を大きめにする。また、扉付 きの収納機器がある場所では、扉の開閉にも時間を要するため、滞留の時間が長く なることが予想される。その場合もしきい値を大きめにする。一方、滞留の時間が長 V、場合は (ソファなどでの滞留の時間が長 、場合)、取扱者が休息して 、る可能性が 考えられるため、特に情報として利用しなくてもよい。
[0116] また、取扱者の滞留の前後での平均移動速度の差に応じても重み付けを行うこと ができる。重量が重い物品、壊れ易い物品、又は、液体の入った容器などを取扱者 が持っている場合、取扱者の移動速度が低下する場合が多い。よって、滞留前の所 定の時間帯における平均移動速度よりも、滞留後の所定の時間帯における平均移 動速度が大きければ、持ち運んでいた物品を取扱者が手放した可能性が大きいと考 えることができる。この考えを利用して物品位置候補重み付け手段 108により行うァ ルゴリズムを、図 37のフローチャートを用いて説明する。
[0117] ステップ S3701〜S3704の処理は、物品位置候補重み付け手段 108による、図 1 9におけるステップ S 1901〜S 1904の処理とそれぞれ同様であるため、説明を省略 する。
[0118] ステップ S3705では、物品位置候補重み付け手段 108により、当該場所の直前及 び直後の所定時間帯における平均移動速度 V , V を計算する。ステップ 3705で
bef aft
の処理結果を、横軸:時刻,縦軸:移動速度のグラフ上で見ると、図 38のようになる。 図 38は、取扱者の一例として、ある人物における、時刻に対する移動速度の変化の グラフ VHを表している。移動速度のしきい値 TH以下の時刻に対応する移動履歴デ ータが「滞留」と、物品位置候補重み付け手段 108により判定されている。ここで、物 品位置候補重み付け手段 108により、滞留の直前及び直後における所定時間帯を 決定する時間幅として滞留時間の長さを用いている。もちろん、予め定めた所定の値 でもよい。
[0119] ステップ S3706では、ステップ S3702で抽出した各々の場所について、物品位置 候補重み付け手段 108によるステップ S3704及び S3705をまだ実行していない場 所があれば、ステップ S3707に進み、実行していない場所が無ければステップ S370 8に進む。 [0120] ステップ S3707では、物品位置候補重み付け手段 108が、ステップ S3702で抽出 した各々の場所について、ステップ S3704及び S3705をまだ行っていない場所を前 記リス卜力も一つ選び、ステップ S3704及び S3705を繰り返した後、ステップ S3706 に進む。
[0121] ステップ S3708では、ステップ S3702で抽出した各々の場所について、(V — V
aft bef
)の値が大きいほうから優先順位を高ぐ物品位置候補重み付け手段 108により、重 み付けをする。
[0122] なお、業務用などで物品を急いで運ぶ必要がある場合は、物品を置いた後の方が 移動速度が小さくなることもある。このような場合にも対応しょうとすれば、(V — V )
aft bef の絶対値を物品位置候補重み付け手段 108により計算すればよい。
[0123] なお、これまで説明した、平均移動速度、滞留時間、滞留時間前後での平均移動 速度の差、の 2つ以上を組み合わせて用いることも可能である。滞留時間は、先に述 ベたように滞留時間がしき!、値 TH未満であれば、候補順位から外すことにより用い ることができる。また、平均移動速度と、滞留時間前後での平均移動速度の差とを組 み合わせて用いる場合は、例えば、次の(数 1)のような評価式を用いることにより、評 価値 Sが大きい順に候補順位を物品位置候補重み付け手段 108により設定すること で実現できる。
[0124] [数 1] 丄 + ^— /
[0125] ここで、 V:平均移動速度、 V :滞留時間後の平均移動速度、 V :滞留時間前の平
aft bef
均移動速度 α、 j8は重み係数である。ひ、 j8は事前実験により予め定めておくものと する。
[0126] なお、複数の人物が取扱者として存在する場合、複数の人物間で取扱物品の受け 渡しを行う可能性がある。本発明はこの場合についても対処可能である。図 39A及 び図 39Bを利用して、物品の受け渡しを行う場合について説明する。
[0127] 図 39Aのグラフは、取扱者の例として 2人の人物 Hl、 H2の移動速度の時間変化 を示している。人物 HIはステップ S1703にて検索対象物品の取扱候補者として選 択された人物、人物 H2は前記ステップ S1703にて検索対象物品の取扱候補者とし て選択されな力つた人物であるとする。 THは滞留である力否かを物品位置候補重み 付け手段 108により判定するための移動速度に関するしきい値であり、人物 HI, H2 共に、しきい値 TH以下の移動速度で、ある時刻で滞留していると物品位置候補重 み付け手段 108により判定することができる。図 39Bは、 2人の人物 HI, H2の移動 経路を部屋の見取り図上に重ねて表示したものであり、図 39Aの滞留時刻では、 2 人の人物 HI, H2共に図 39Bのソファ 1の近辺に存在していることが物品位置候補 重み付け手段 108により判定される。即ち、人物 HIと H2は同一時刻及び同一場所 において滞留しており、この時、物品の受け渡しが発生した可能性がある、と物品位 置候補重み付け手段 108により判定する。人物 HIは検出対象物品の取扱候補者で あるので、人物 HIから H2へ受け渡しが発生した可能性がある、と物品位置候補重 み付け手段 108により判定する。人物 H2が取扱候補者でな 、場合は新たに取扱候 補者に準じた扱いをする必要があり、人物 H2の受け渡し発生以降の移動経路にお いても、検索対象物品の存在の可能性がある、と物品位置候補重み付け手段 108に より判定するものである。
[0128] 以下、図 40のフローチャート及び図 41のデータを利用して、受け渡しの可能性を 考慮した物品存在領域推定手段 107での処理について説明する。なお、特に明記 しな 、場合、各ステップの動作主体は物品存在領域推定手段 107である。
[0129] 《物品存在領域推定手段 107》
ステップ S4001からステップ S4003までの処理は、ステップ S1701からステップ S1 703までの処理と同様である。ステップ S4001において、ユーザが、位置を検出した い検出対象物品を入力装置 109で指定し、入力装置 109で指定された検索対象物 品が物品存在領域推定手段 107に入力される。
[0130] 次いで、ステップ S4002において、物品存在領域推定手段 107は、指定された検 索対象物品に基づき物品管理データベース 102の物品管理情報を参照して、前記 指定された物品が最後に検出された時刻と場所 (部屋内の位置)を取得する。図 41 は、前記指定された物品が最後に検出された場所における検出結果を時系列で表 現して 、るものであり、前記指定された物品が最後に検出された時刻が Txであること を示している。
[0131] 次いで、ステップ S4003において、物品存在領域推定手段 107は、人管理データ ベース 104の人管理情報を参照して、前記時刻 Txを含む所定の時間帯 TZ1内に、 前記場所で検出された全ての人を、前記指定された物品の取り扱いの候補者 (以下 、取扱候補者)として取得する。図 41では、人物 Η3 (検出対象の部屋に時刻 T1に 入室。)と人物 Η4 (当該部屋に時刻 Τ2に入室。)が、物品の取扱候補者として取得さ れる。
[0132] 次いで、ステップ S4004では、物品存在領域推定手段 107は、人管理データべ一 ス 104の人管理情報を参照して、ステップ S4003で取得された候補者 (人物 Η3、人 物 Η4)力 ステップ S4002で取得された場所で 1度目(即ち入室時)に検出された時 刻(時間帯 TZ1内)から 2度目(即ち退出時)に検出された時刻までの間に前記場所 で検出された全ての人を、物品の受け渡しを受けた候補者 (以下、受渡候補者)とし て取得し、受渡候補者リストを作成する。図 41では、物品存在領域推定手段 107は 、時間帯 TZ1の間に検出された候補者 (人物 Η3、人物 Η4)のうち人物 Η3が最後に 退出した時刻 Τ5までの時間帯 ΤΖ2の間に、検出された人物 Η5 (入室及び退室は問 わない。)を物品の受渡候補者として取得し、受渡候補者リストに入れることになる。
[0133] 次いで、ステップ S4005では、物品存在領域推定手段 107は、ステップ S4003で 取得された取扱候補者の全て、及び、ステップ S4004で取得された受渡候補者の全 てについて、人管理データベース 104の人管理情報 (人移動履歴情報)を参照して 、前記時刻と人の移動とが関連づけられた人移動履歴情報 (履歴データ)を取得す る。
[0134] 次!、で、ステップ S4006では、ステップ S4005で取得された取扱候補者の履歴デ ータから、前記人 (取扱候補者)の移動速度を物品存在領域推定手段 107により計 算する。移動速度の計算は、ステップ S1901での処理と同様であるため説明を省略 する。
[0135] 次 、で、ステップ S4007では、物品存在領域推定手段 107は、前記取扱候補者の 移動速度が所定以下である(時刻,場所)の組み合わせデータを、滞留点として滞留 点リストに登録する。図 12で表される人移動履歴データの場合、前記滞留点リストの 要素 (言い換えれば、移動履歴情報の要素)は(時刻, X座標値, Y座標値)の 3次元 データとなる。
[0136] 次!、で、ステップ S4008では、物品存在領域推定手段 107は、ステップ S4004で 作成された受渡候補者リストから候補者を 1人選択する。
[0137] 次いで、ステップ S4009では、物品存在領域推定手段 107は、ステップ S4008で 選択された候補者について、ステップ S4005で取得された履歴データを参照し、前 記人 (選択された候補者)の移動速度を計算する。移動速度の計算は、ステップ S19 01での処理と同様であるため説明を省略する。
[0138] 次 、で、ステップ S4010では、物品存在領域推定手段 107は、前記候補者の移動 速度が所定以下である(時刻,場所)の組み合わせデータを滞留点として全て抽出し 、前記滞留点の各々を前記滞留点リストに登録された滞留点の各々と比較する。この 比較においては、同時刻における場所同士が所定の距離以内であるかどうかの判定 を物品存在領域推定手段 107により行い、同時刻における場所同士が所定の距離 以内であるものがある場合は、ステップ S4011に進む。同時刻における場所同士が 所定の距離以内であるものがなければ、ステップ S4012に進む。なお、前記所定の 距離、すなわち、距離のしきい値としては、人物間が物品の受け渡しを行える距離か 否かを判定基準にして決定することができる。例えば、人が物品を受け渡しするとき に腕を伸ばしたりすることから、人の腕の長さを基準にすることができる。人の腕の平 均的な長さを使用することもできるし、人検出装置 103により人の IDが取得されてい る場合には、取得された IDを基に人管理データベース 104に格納されている人の腕 の長さなどを基にして決定することもできる。勿論、人の位置のセンシング結果に誤 差が重畳されている可能性もあるため、誤差を考慮して前記しきい値を決定すれば よい。以上は、移動履歴を記録する際の時刻が、複数の人物間で同期している場合 について説明を行ったが、同期していない場合は、時刻差が所定のしきい値 (時刻 が同時的であるとみなせる範囲)内であるデータ同士を比較すればよい。
[0139] ステップ S4011では、物品存在領域推定手段 107は、選択された候補者の履歴デ ータについて、滞留点リストに登録された滞留点と比較して、同時刻における場所同 士が所定の距離以内である滞留点が複数存在する場合は、最も時刻が早い滞留点 以前の履歴データ全てに不使用フラグを付与する。これは、受渡候補者の履歴デー タについて、受け渡しが発生した可能性のある時刻以前の場所には検索対象物品 は存在し得な 、と 、う知見を物品存在領域推定処理に反映させたものである。その 後、ステップ S4013に進む。
[0140] ステップ S4012では、物品存在領域推定手段 107は、受渡候補者リストから現在 選択されている候補者を削除する。これは、現在選択されている候補者の履歴デー タが取扱候補者の履歴データと場所及び時間の重複を持たな 、ため、物品の受渡 が発生しないという知見を物品存在領域推定処理に反映させたものである。その後、 ステップ S4013に進む。
[0141] 次いで、ステップ S4013では、物品存在領域推定手段 107は、候補者リストに登録 された全員について、 S4010の処理を終了したか否かのチェックを行う。 Yesの場合 (S4010の処理を終了した場合)は、本物品存在領域推定処理を終了し、 Noの場合 (S4010の処理を終了していない場合)は、ステップ S4014に進む。
[0142] ステップ S4014では、物品存在領域推定手段 107は、受渡候補者リストに登録さ れた各々の人について、ステップ S4010の処理が未だの人を受渡候補者リストから 1 人選択し、ステップ S4009に戻る。
[0143] 以上が、物品の受け渡しを考慮した場合の、物品存在領域推定手段 107での物品 存在領域推定処理であり、これにより得た、取扱候補者及び受渡候補者の履歴デー タを前記環境の見取り図上に物品存在領域推定手段 107によりマッピングした結果 などを表示装置 110にて提示することで、ユーザが移動経路 (言い換えれば、人の 移動領域)沿いの近辺について、検出対象物品を探すことができる。
[0144] 図 42A、図 42B、図 42Cに、前記物品存在領域推定処理に用いるデータと表示結 果の例を示す。図 42Aは、 2名の人物 HI, H2の移動速度の変化を表したデータ( 図 42Aの実線は人物 HIのデータ、点線は人物 H2のデータ)である。人物 HIは、ス テツプ S4003にて物品の取扱候補者として選択された人物であり、人物 H2は、ステ ップ S4003にて物品の取扱候補者として選択されな力つた人物である力 ステップ S 4004にて受渡候補者として選択された人物である。 THは滞留力どうかを物品位置 候補重み付け手段 108により判定するための移動速度に関するしきい値であり、図 4 2Aにお 、て、時間帯 T、 T 、 T に含まれるデータがそれぞれ滞留点であると物
j j+ l j+2
品位置候補重み付け手段 108により判定されている。時間帯 Tにおけるデータは、 人物 HI及び人物 H2の両方が滞留点を含んでいる。時間帯 T におけるデータは、
j+ i
人物 HIのみが滞留点を含んでいる。時間帯 T におけるデータは、人物 H2のみが
j + 2
滞留点を含んでいる。また、図 42Bは、同じく 2名の人物 HI, H2の移動軌跡データ を部屋の見取り図に重ねて表現した図である。時間帯 Tに対応する人物 HIの移動 軌跡(図 42Bの実線)、及び、人物 H2の移動軌跡(図 42Bの点線)は共に場所群 P を通過しており、時間帯 T に対応する人物 HIの移動軌跡は場所群 Qを通過して
j + i
おり、時間帯 T に対応する人物 H2の移動軌跡は場所群 Rを通過している。ステツ
j + 2
プ S4010において、場所群 Pに含まれる、同時刻に対応する、人物 HI及び H2の滞 留点が、互いに所定内の距離であると物品存在領域推定手段 107により判定された 場合、人物 H2の移動履歴データに関しても、物品が存在する可能性があるとして最 終的に物品存在領域推定手段 107により選択される。最終的に、表示装置 110に提 示される移動軌跡は、図 42Cのようになる。ここで、人物 H2の移動履歴データにお ける時間帯 T以前のデータに関しては不使用フラグが物品存在領域推定手段 107 により付与されるため、表示装置 110での表示からは除外される。このように、受渡候 補者の履歴データにおいて不使用フラグが付与されているデータに関しては、表示 装置 110にお 、て非表示とすることで、物品の存在の可能性がな!、領域をユーザに 提示するのを避けることができる。
[0145] 以上のように、受け渡しを考慮することで、物品の受け渡しを受けた可能性がある 人物の移動経路 (言い換えれば、人の移動領域)も同時に表示されるので、受け渡し を受けた他人の移動経路 (言い換えれば、他人の移動領域)も探すことができる。
[0146] 同様にして、受け渡しの可能性を考慮した物品位置候補の重み付けも行うことがで きる。以下、図 43のフローチャートを利用して、受け渡しの可能性を考慮した物品位 置候補重み付け手段 108での重み付け処理について説明する。なお、特に明記し な 、場合、各ステップの動作主体は物品位置候補重み付け手段 108である。
[0147] 《物品位置候補重み付け手段 108》
まず、ステップ S4301において、物品位置候補重み付け手段 108は、物品存在領 域推定手段 107 (図 40のフローチャート)で取得した、取扱候補者の滞留点データ、 及び、受渡候補者の滞留点データ (不使用フラグが付与されているものを除外)を用 意し、同一人のデータであり、かつ、場所及び時刻が近接しているデータ集合を、滞 留状態として重み付けリストに登録する。重み付けリストは、例えば、物品位置候補重 み付け手段 108内の一時記憶部又は物品管理データベース 102内に設ける。場所 及び時刻が近接している力否かの判定には、例えば、場所同士の距離が所定のしき い値内であるかどうか、及び、時刻同士の時間差が所定のしきい値内であるかどうか を利用すればよい。
[0148] 次いで、ステップ S4302において、物品位置候補重み付け手段 108は、前記重み 付けリストから滞留状態を、まず、一つ選ぶ。
[0149] 次いで、ステップ S4303において、物品位置候補重み付け手段 108は、ステップ S 4302で選んだ滞留状態にぉ 、て、
•当該滞留状態での平均移動速度と、
•当該滞留状態の中心位置座標と、
の 2項目を計算する。中心位置座標の計算としては、前記しきい値以下の滞留状 態中の位置座標の例えば平均を物品位置候補重み付け手段 108により求めるなど すればよい。一つ目の平均移動速度は重み付けの指標に、また、もう一つの中心位 置座標は、ユーザに物品の場所を提示する時に、それぞれ用いる。前記計算結果は 、例えば、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データべ ース 102内の前記重み付けリストに登録する。
[0150] 次いで、ステップ S4304において、物品位置候補重み付け手段 108は、前記重み 付けリストに登録された各々の滞留状態について、ステップ S4303をまだ行っていな い滞留状態があれば、ステップ S4305に進み、ステップ S4303をまだ行っていない 滞留状態が無ければ、ステップ S4306に進む。
[0151] ステップ S4305においては、物品位置候補重み付け手段 108は、前記重み付けリ ストに登録された各々の滞留状態について、ステップ S4303をまだ行っていない滞 留状態を前記重み付けリストから一つ選び、ステップ S4303に戻る。
[0152] 一方、ステップ S4306においては、物品位置候補重み付け手段 108により、前記 重み付けリストに登録された全ての滞留状態ついて、ステップ S4303で計算された 平均移動速度の低い方から、優先順位が高くなるように重み付けを行う。これは、人 がゆっくり動いていればいるほど (極端な場合、人が止まっていれば)、そこで人が物 品を扱っている可能性が高いとする考えに基づいている。前記重み付け結果は、例 えば、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データベース 102内の前記重み付けリストに登録される。
[0153] 図 44A、図 44B、図 44Cに、前記受け渡しの可能性を考慮した物品位置候補重み 付け手段 108での重み付け処理に用いるデータと表示結果の例を示す。図 44A、図 44Bはそれぞれ図 42A、図 42Bと同一である。図 44Cは、ステップ S4306での処理 を実行したことにより求められた優先順位を、対応する場所に表示したものである。こ の場合、ステップ S4306の優先順位の重み付けの結果として、「場所群 Pでの平均 移動速度 <場所群 Rでの平均移動速度 <場所群 Qでの平均移動速度」であることか ら、優先順位が最も高いのは場所群 Pであり、次いで、場所群 R、場所群 Qの順であ ることがわ力る。物品の受け渡しを考慮しない場合は、物品が存在する可能性がある 場所として、物品の取扱候補者である人物 HIの移動履歴上の場所群 P, Q付近しか 選ばれない(場所群 Rは、人物 HIの移動履歴上に無いため選ばれない)が、物品の 受け渡しを考慮した場合は、物品の受渡候補者である人物 H2の移動履歴上の場所 群 R付近も選択される (場所群 Rは、人物 HIの移動履歴上に無いが、場所群 Rの付 近を人物 HIが移動しているため選ばれる)ことになる。
[0154] 以上が、物品の受け渡しを考慮した場合の、物品位置候補重み付け手段 108での 物品存在領域推定処理である。これにより得た物品存在領域を前記環境の見取り図 上に物品存在領域推定手段 107によりマッピングした結果 (例えば図 44C)などを、 表示装置 110にて提示することで、ユーザが、自分が移動した経路上の候補場所だ けでなく受け渡しが行われた可能性がある人の経路上の候補場所についても物品を 探すことができる。
[0155] 最初に物品を取り扱つていた本人力 途中で他の人物に物品を渡したことを失念し た場合でも、以上の処理を行うことにより、受け渡しを受けた可能性のある人物の移 動軌跡上の場所においても物品の存在場所の候補として提示することが可能である [0156] なお、重量の大きい物品や壊れ易い物品などを持ち運んでいる場合には、何も持 ち運んでいない場合に比べて、人の移動速度が低下することが多い。このことを利用 して、人物間の物品の受け渡しがどれくらいの確力もしさで行われたかどうかの評価 を行い、ステップ S4306での物品位置候補重み付け手段 108による重み付けに反 映させることちでさる。
[0157] 例えば、図 45A、図 45B、図 45Cのような、 2人の人物 Hl、 H2の移動履歴を考慮 する。人物 HIは取扱候補者、人物 H2は受渡候補者である。図 45Aは、 2人の人物 HI, H2の移動速度の時間変化を表したデータ(図 45Aの実線は人物 HIのデータ 、点線は人物 H2のデータ)を示している。ここで、 THは滞留と物品位置候補重み付 け手段 108により判定するための移動速度に関するしきい値である。時間帯 S2, S4 , S5が滞留状態であると物品位置候補重み付け手段 108により判定される。時間帯 Sl、 S3については後述する。図 45Bは、図 45Aのグラフを基にして、時間帯 S1〜S 5における人物 HI, H2の平均移動速度 V , V を物品位置候補重み付け手段 10
HI H2
8によりそれぞれ求め、それを表にしたものである。図 45Cは、 2人の人物 HI, H2の 移動軌跡を部屋の見取り図上に重ねて表示したものである。時間帯 S2における、人 物 HI, H2の場所が、共通に場所群 Pに対応していることが物品位置候補重み付け 手段 108により判定できる。 2人物間で、その時刻及び場所においてそれぞれ重複 のある滞留状態である時間帯 S2が存在するので、滞留状態である時間帯 S2にて人 物 HIから人物 H2へ受け渡しが行われた可能性があることが物品位置候補重み付 け手段 108により判定できる。
[0158] ここで、共通の滞留状態である時間帯 S2の前後における、人物 HI, H2それぞれ の移動速度の変化について注目する。図 45Aから、人物 HIに関しては、滞留状態 である時間帯 S2より前の移動速度と比較して、滞留状態である時間帯 S2より後の移 動速度が増力 tlしており、人物 H2に関しては、滞留状態である時間帯 S2より前の移 動速度と比較して、滞留状態である時間帯 S2より後の移動速度が減少していること が判定できる。本処理はこの事実も利用して、人物 HIから人物 H2への物品の受け 渡しが行われた可能性が大き!/、と 、うことを利用するものである。 [0159] また、重量の大きい物品や壊れ易い物品などを持ち運んでいる場合のみ、このよう な速度変化が生じると考えれば、物品検出装置 101で検出された物品 ID及び物品 管理データベース 102に格納された物品情報 (例えば重量や壊れ易さなどの付帯情 報)を利用してもよい。即ち、重量が大きい物品や壊れ易い物品の場合のみ以下の 処理を実行することも可能である。
[0160] 以下、図 46のフローチャートを利用して、物品位置候補重み付け手段 108による、 滞留状態前後の移動速度変化を重み付けに反映する処理について説明を行う。な お、特に明記しない場合、各ステップの動作主体は物品位置候補重み付け手段 10 8である。
[0161] まず、ステップ S4601にて、物品位置候補重み付け手段 108は、物品存在領域推 定手段 107 (図 40のフローチャート)で取得した、取扱候補者の滞留点データ、及び 、受渡候補者の滞留点データ (不使用フラグが付与されているものを除外)を用意し 、同一人のデータであり、かつ、場所及び時刻が近接しているデータ集合を、滞留状 態として、物品位置候補重み付け手段 108により、重み付けリストに登録する。この処 理は、図 43のフローチャートにおけるステップ S4301における処理と同様であるため 、説明を省略する。
[0162] 次に、ステップ S4602にて、 S4601で取得した滞留点データに対応する取扱候補 者、受渡候補者全員の履歴データを物品位置候補重み付け手段 108により取得す る。履歴データの取得に関しては、図 40のフローチャートにおけるステップ S4005と 同様であるため、説明を省略する。
[0163] 次に、ステップ S4603にて、物品位置候補重み付け手段 108により、ステップ 460 1で作成した重み付けリストから滞留状態を 1つ選ぶ。本処理は、図 43のフローチヤ ートにおけるステップ S4302と同様であるため説明を省略する。
[0164] 次に、ステップ S4604において、物品位置候補重み付け手段 108により、ステップ S4603で選択された滞留状態について、
,当該滞留状態での平均移動速度、及び、
•当該滞留状態の中心位置座標 (人の滞留位置座標)
を計算する。本処理は、図 43のフローチャートにおけるステップ S4303と同様であ るため説明を省略する。
[0165] 次に、ステップ S4605において、選択されている滞留状態が、取扱候補者と受渡 候補者において共通のものであるか否かを、物品位置候補重み付け手段 108により 判定する。この判定に際しては、両滞留状態に含まれる滞留点が、図 40のフローチ ヤートにおけるステップ S4010で用いた判定基準を満たす力どうかを利用することが できる。取扱候補者と受渡候補者にぉ 、て共通であると物品位置候補重み付け手段 108により判定された場合は、ステップ S4606に進み、共通でないと判定された場合 ίま、ステップ S4607に進む。
[0166] ステップ S4606では、物品位置候補重み付け手段 108により、取扱候補者及び受 渡候補者の履歴データにおける、滞留状態である時間帯の時間的前後にお 、て、 平均移動速度を計算する。例えば、図 45Αの履歴データ (移動速度の時間変化)に おいて、人物 HI及び人物 Η2の履歴データに関して、共通の滞留状態である時間 帯 S2の長さと同じ長さの分だけ、時間帯 S2の以前に時間帯 S1を、時間帯 S2の以 後に時間帯 S3を、物品位置候補重み付け手段 108により、それぞれ設定する。これ らの時間帯の長さは、共通である滞留状態の時間帯 S2の長さではなぐ予め定めた 所定の値でもよい。次に、前記設定された時間帯 S1及び S3における、取扱候補者 及び受渡候補者全員(図 45Aでは人物 HI及び H2)の平均移動速度を物品位置候 補重み付け手段 108により計算する。計算された結果は、図 45Bの V 、V 、
HI, SI H2, SI
V 、V になったとする。即ち、人物 HIにおける、滞留状態である時間帯 S2
HI, S3 H2, S3
の直前及び直後の所定時間帯 SI, S3における平均移動速度が、それぞれ V ,
HI, SI
V のように物品位置候補重み付け手段 108により計算され、同様に、人物 H2に
HI, S3
おける、滞留状態である時間帯 S2の直前及び直後の所定時間帯 S1, S3における 平均移動速度が、それぞれ V , V のように物品位置候補重み付け手段 108
H2, SI H2, S3
により、計算されている。その後、ステップ S4607に進む。
[0167] ステップ S4607では、前記重み付けリストに登録された各々の滞留状態について、 S4604の処理を終了したか否かについて判定を物品位置候補重み付け手段 108に より行う。 S4604の処理力終了して!/ヽる場合 ίまステップ S4609に進み、 S4604の処 理が終了して 、な 、場合はステップ S4608に進む。 [0168] ステップ S4608では、物品位置候補重み付け手段 108により、前記重み付けリスト に登録された各々の滞留状態について、 S4604の処理が未だの滞留状態を前記重 み付けリストから 1つ選択して、ステップ S4604に戻る。
[0169] ステップ S4609では、物品位置候補重み付け手段 108により、前記重み付けリスト に登録された各々の滞留状態について、平均移動速度、及び、共通の滞留状態前 後の平均移動速度を利用して、重み付けを行う。先に説明した、図 43におけるステツ プ S4306では、取扱候補者、受渡候補者の区別無ぐ平均移動速度の小さい方か ら順位付けをしている。ここでは、平均移動速度に加えて、受け渡しの可能性を考慮 した順位付けを行うものである。
[0170] 人物 HIについての滞留状態である時間帯 S2, S4における平均移動速度がそれ ぞれ V , V であり、人物 H2についての滞留状態である時間帯 S2, S5にお
HI, S2 HI, S4
ける平均移動速度がそれぞれ V , V である時、共通の滞留状態である時間
H2, S2 H2, S5
帯 S 2にお 、て、物品の取扱候補者である人物 H 1から物品の受渡候補者である人 物 H2へ物品の受け渡しが行われた可能性を、評価値 Z= (V -V ) + (V
HI, S3 HI, SI H2
-V )の式を使用して物品位置候補重み付け手段 108により評価する。即ち
, SI H2, S3
、人物 HIにつ 、ては滞留後の平均移動速度が滞留前の平均移動速度に比べて大 きぐ人物 H2については滞留前の平均移動速度が滞留後の平均移動速度に比べ て大きいならば、人物 HIから人物 H2へ物品の受け渡しが行われた可能性が大きい と、物品位置候補重み付け手段 108により判定するわけである。人物 HIと H2に関し て共通の滞留状態である時間帯 S2以後の各人物の滞留状態(図 45Aの場合、人物 HIの滞留状態である時間帯 S4と、人物 H2の滞留状態である時間帯 S5)について 、この評価値 Zを物品位置候補重み付け手段 108により反映させる。具体的には、共 通の滞留状態である時間帯 S2後の、ある滞留状態における平均移動速度 Vに対し 、取扱候補者である人物 HIは人物 H2に物品を受け渡した可能性があるために、 [数 2] スコア丄
V 力も評価値 Zの定数 a倍を物品位置候補重み付け手段 108により減じる。受渡候補 者である人物 H2は人物 HIから物品を受け取った可能性があるために、
[数 3] スコア丄
V
に評価値 Zの定数 y倍を物品位置候補重み付け手段 108により加算する。よって、 物品の存在領域候補である滞留状態である時間帯 S2、 S4、 S5の 3状態についての スコアはそれぞれ、
― ~_ γ τ ~ _ γ Ζ , —^— + γ Ζ
V V V となり、このスコア順に物品の存在可能性の順位付けを物品位置候補重み付け手段
108により行う。ここで、人物 Hl、 H2に対して共通の滞留状態である S2に関しては 、物品取扱者である HIの平均移動速度 V を用いてスコアを物品位置候補重み
HI, S2
付け手段 108により計算している。もちろん、物品受渡者である H2の平均移動速度 V も併せて用い、例えば、滞留状態である時間帯 S2のスコアとして、
H2, S2
[数 5]
7 "—— ΧΓ~ γ Ζ を用いてもよい。
[0171] 以上の処理を用いることで、単に滞留状態における平均移動速度だけでなぐ物品 の受渡可能性も考慮した順位付けを物品位置候補重み付け手段 108により行うこと ができる。
[0172] ここで、定数 yとして、事前実験などにより適切な値を決定しておくものとする。
[0173] 本発明の前記第 1実施形態の前記物品検索システムの表示装置 110では、この物 品位置候補重み付け手段 108での物品位置候補重み付け処理結果を基に実際の 検索結果を表示する。図 21は、表示装置 110にて物品検索結果を CG (コンピュータ グラフィック)表示した例を示す概念図である。図 21では、物品の存在場所全体を表 す鳥瞰図に、実際に物品が存在する可能性のある場所を、その可能性の高い順位( 物品位置候補重み付け処理結果として求められた順位)を表す数値を重ね書きして いる様子を示している。ユーザはこの結果を表示装置 110にて見ることで、まず、「本 棚」を含むその近辺を探し、そこで見つからなければ、次に「冷蔵庫及びキッチンシス テム」近辺、さらに見つからなければ、「ソファ 1」近辺というふうに、予め探す場所絞り 込んで物品探しを効率良く行うことができる。
[0174] さて、以上説明した人の移動速度に基づく物品位置候補の重み付けでは、もし仮 に滞留した場所の近辺に、物品を置いたり取り出したりする機器や設備が複数ある場 合には、ユーザはそれらすベての機器や設備をくまなく探していく必要があり、場合 によっては手間がかかるという問題がある。この問題に対処する一つの方法として、 機器の操作情報をも用いることで、実際に物品を置いたり取り出したりした場所をさら に絞り込むことが有効と考えられる。
[0175] 以下では、この機器の操作情報を活用して物品位置候補重み付け手段 108により 重み付けを行う方法を説明する。図 22は前記機器の操作情報を用いて重み付けを 行う処理をフローチャートの形式で示した図である。本処理では、人の位置に対して 十分近!、とする機器の位置を検索するために、予め機器の場所を管理する機器管 理情報を用意しておく。図 23は機器 (但し設備も含む)の場所を管理するデータべ 一スを表形式で示した図である。表は、環境内にある機器に対してその位置を長方 形で簡略管理した様子を示しており、前記長方形の左上及び右下の位置座標が与 えられた形式となって 、る。もちろんこのように全ての機器の位置を長方形で簡略ィ匕 することが適当でない場合もあるので、その際には機器の占有領域を多角形で決め 、その頂点をベクトルデータで表すなどしてもょ 、。
[0176] 続いて物品位置候補の重み付け処理を説明する力 このうちステップ S2201〜ス テツプ S2203についてはそれぞれ図 19のフローチャートのステップ S1901〜ステツ プ S 1903と同じであるため、詳細な説明は省略する。
[0177] ステップ S2201において、検索対象物品を取り扱った人の履歴データから、前記 人の移動速度を物品位置候補重み付け手段 108により計算する。
[0178] 次いで、ステップ S2202において、物品位置候補重み付け手段 108により求めら れた移動速度が所定値 (しき 、値)以下の場所群を人の滞留状態として物品位置候 補重み付け手段 108により抽出し、物品位置候補重み付け手段 108により、例えば 、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データベース 102 内に重み付けリストとして登録する。
[0179] 次いで、ステップ S2203において、物品位置候補重み付け手段 108により、前記 重み付けリストから場所を、まず、一つ選ぶ。
[0180] 次いで、ステップ S2204において、物品位置候補重み付け手段 108により、ステツ プ S1903で選んだ場所にぉ 、て、当該場所に居た時刻及び当該場所の中心位置 座標を物品位置候補重み付け手段 108により計算する。
[0181] 次いで、ステップ S2205において、前記中心位置に対して、所定範囲内の機器群 を物品位置候補重み付け手段 108により検索する。機器の検索は様々な方法が考 えられるが、ここでは簡単な例を図 24を用いて説明する。図 24は環境内に置かれた 機器を示した見取り図で、図 24内の X印が前記中心位置であるとする。この中心位 置に対して適当に決められる所定範囲の大きさを半径とした円(図 24内の点線の円) を描いたときに、もし前記円内に機器の領域が一部でも含まれたとき、前記機器を検 索結果として物品位置候補重み付け手段 108により抽出するようにすればよい。図 2 4の例では、物品位置候補重み付け手段 108により見つ力つた機器は「本棚」だけで あるが、もちろん複数の機器が物品位置候補重み付け手段 108により見つかれば、 それらを全て抽出する。
[0182] 次いで、ステップ S2206において、もし少なくとも一つの機器が見つかればステツ プ S2207に進み、見つ力らなければステップ S2208に進む。
[0183] ステップ S2207において、見つ力つた各々の機器について機器管理情報を物品 位置候補重み付け手段 108により参照し、ステップ S2204で計算した時刻と、機器 を開いて力も閉じるまでの時間とに重なりがない機器を物品位置候補重み付け手段 108により、前記重み付け結果が格納された、例えば、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データベース 102内の前記重み付けリストから削 除する。これは、もし人がある場所で滞留したとしても、物品収納を行わな力つた機器 がある場合には、その機器には物品存在の可能性がないということを反映した処理で あり、これにより実際に人が滞留して物品収納を行った機器を絞り込むことができる。
[0184] ステップ S2208において、もし処理 2202で抽出した全ての場所群について、ステ ップ S2204〜ステップ S2207力終了していれば、ステップ S2210に進み、まだであ ればステップ S2209に進む。
[0185] ステップ S2209において、ステップ S2202で抽出した各々の場所について、ステツ プ S2204がまだの場所を、物品位置候補重み付け手段 108により、例えば、物品位 置候補重み付け手段 108内の一時記憶部又は物品管理データベース 102内の前 記重み付けリストから一つ選び、ステップ S2204を繰り返す。
[0186] ステップ S2210において、ステップ S2207で抽出された全ての機器について、物 品位置候補重み付け手段 108により、人の滞留位置と機器との距離に応じて、距離 力 S小さいほど優先順位を高くするように重み付けする。
[0187] この距離に応じた重み付け処理の具体的な説明を図 25を用いて行う。図 25では、 環境内に 3つの機器 (機器 1、機器 2、機器 3)が存在し、ステップ S2202で 2つの滞 留位置 (それぞれ滞留位置 2501,滞留位置 2502)が見つ力 ており、前記「機器 1 」は滞留位置 2501から r (滞留位置 2504)の距離に、前記「機器 2」は滞留位置 250 2から r (滞留位置 2503)の距離に、前記「機器 3」は滞留位置 2501から r (滞留位
2 3 置 2505)の距離に、それぞれあることを表している。なお、 r (滞留位置 2504)〉r (
1 2 滞留位置 2503) >r (滞留位置 2505)である。このとき、人の滞留位置と機器との距
3
離に応じて、距離が小さいほど優先順位を高くなるように重み付けするため、結果と しては、 r (滞留位置 2504)、 r (滞留位置 2503)、 r (滞留位置 2505)の大きさを比
1 2 3
較し、「機器 3」、「機器 2」、「機器 1」の順に 1、 2、 3の順位が付くことになる。この結果 を表したのが図 26の表である。なお、この例では、非常に単純に人の滞留位置と機 器との距離という尺度によって重み付けを行ったが、もちろん人の滞留時間などをさ らにカ卩味して重み付けを行ってもよい。
[0188] 次に、具体例によって処理を説明する。例としてここでは先ほどと同様に、物品「ジ ユース」を検索するという前提で、物品存在領域推定手段 107での物品存在領域推 定処理にて人の履歴データ MF— Data02を得て、物品位置候補重み付け手段 10 8での物品位置候補重み付け処理を行う様子を説明する。 [0189] ステップ S2201において、人の履歴データ MF—Data02から、前記人の移動速 度を物品位置候補重み付け手段 108により計算する。その計算結果が示されたのが 前述のグラフ(図 13の上側のグラフ(a) )である。
[0190] 次いで、ステップ S2202において、物品位置候補重み付け手段 108により求めら れた移動速度が所定値 (しき 、値)以下の場所群を人の滞留状態として物品位置候 補重み付け手段 108により抽出し、物品位置候補重み付け手段 108により、例えば 、物品位置候補重み付け手段 108内の一時記憶部又は物品管理データベース 102 内に重み付けリストとして登録する。本例では、 3つの滞留部分があることが判定でき る。これらは見取り図にプロットした図 13の下側の見取り図と関連づけると、それぞれ 時刻の早いほうから順に、「本棚」の近辺、「冷蔵庫及びキッチンシステム」の近辺、「 ソファ 1」の近辺で滞留していることが判定できるので、ここでは、便宜的に各滞留状 態を、「本棚」、「冷蔵庫及びキッチンシステム」、「ソファ 1」と呼ぶ。なお、ここでは説 明の便宜上、それぞれの滞留状態の時刻を下記の通りとする。
[0191] 「本棚」 :19 : 31〜19 : 32
「冷蔵庫及びキッチンシステム」 :19 : 32〜19 : 33
「ソファ 1」 :19 : 34〜19 : 35
[0192] 次いで、ステップ S2203〜ステップ S2209の処理〖こよって、物品存在の可能性が ある機器として「本棚」、「冷蔵庫」の 2つを得る。具体的な処理プロセスを下記に示す
[0193] 次いで、ステップ S2204において、「本棚」、「冷蔵庫及びキッチンシステム」、「ソフ ァ 1」において、滞留していた時刻及び中心位置座標を物品位置候補重み付け手段 108により計算する。
[0194] 次いで、ステップ S2205において、この中心位置に対して、所定範囲内の機器群 を物品位置候補重み付け手段 108により検索して、「本棚」、「冷蔵庫」を物品位置候 補重み付け手段 108により抽出する。
[0195] 次いで、ステップ S2206〖こおいて、少なくとも一つの機器が見つかつたので、ステツ プ S2207に進み、見つ力つた各々の機器について、機器管理情報を物品位置候補 重み付け手段 108により参照し、ステップ S2204で計算した時刻を挟む開閉操作の ペアが無 、機器を物品位置候補重み付け手段 108により削除する (ステップ S 2208 〜S2204〜S2208)。
[0196] 次いで、ステップ S2210において、以上の処理の結果、ジュースの収納場所として 「本棚」、「冷蔵庫」の 2つの機器が得られたので、前記機器付近に滞留した位置との 距離に応じて、これら 2つの機器の重み付けを物品位置候補重み付け手段 108によ り行う。
[0197] 本発明の前記第 1実施形態の前記物品検索システムの表示装置 110では、この物 品位置候補重み付け手段 108での物品位置候補重み付け処理結果を基に実際の 検索結果を表示する。図 27は、表示装置 110にて物品検索結果を CG (コンピュータ グラフィック)で表示した例を示す概念図ある。この図 27では、物品の存在場所全体 を表す鳥瞰図に、実際に物品が存在する可能性のある場所としての機器を色分けし て表示し、さらにその可能性の高い順位をあらわす数値を重ね書きしている様子を 示している。図 21との違いは、物品の存在場所を機器レベルまで絞り込んでいる点 である。もし仮に一つの機器に複数の収納部分があり、それぞれの収納部分につい て機器管理情報を蓄積することができるならば、本処理によりさらに細力べ絞り込むこ とが可能である。例えば図 27の例で 2番目の候補として示されている「冷蔵庫」は、単 体の機器としてではなぐ「冷蔵庫」のうちのどの収納部分力、までも区別して表示し ており(図 27では、冷蔵庫の最上部の収納部分を表示している。)、これによりユーザ は検索場所を絞り込んで、さらに効率よく物品の検索を行うことが可能である。
[0198] 以上説明したように、物品存在領域推定手段 107及び物品位置候補重み付け手 段 108が本発明の前記第 1実施形態の大きな特徴であり、これにより、人の履歴デー タさらには機器の操作情報を分析した結果を用いて物品の位置を絞り込むことが可 能となる。
[0199] なお、本第 1実施形態では、物品の存在場所の重み付けを、人の履歴データ、機 器の操作情報を用いて行う方法について詳細を説明したが、もちろんこれ以外の方 法を用いて重み付けを行ってもょ 、。そのような例を 2つ示す。
[0200] 一つ目の他の有用な方法は、物品存在領域推定手段 107によってある物品の存 在する領域が推定されたときに、その領域内にあり、かつ当該物品が置かれる可能 性のある場所が高い順に重み付けていくという方法である(図示せず)。この場合は、 それぞれの物品に対して通常置かれる場所を 1つ以上格納した通常位置情報をも物 品管理情報として物品管理データベース 102に予め蓄えておき、また、場合によって は人が物品を扱う状況に応じて前記通常位置情報を更新していき、その更新された 通常位置情報を使うようにすればょ 、。
[0201] 二つ目の他の有用な方法は、物品存在領域推定手段 107によってある物品の所 有者に関する物品所有者情報を利用する方法で、物品存在領域推定手段 107にて 取得された履歴データが複数人分の場合には特に有効である。複数人分の履歴デ ータが取得されたということは、ある物品がある場所に持ち込まれたと同時に複数人 が前記場所に入った場合のことである。この場合、前記物品をどの人が持っているか が区別できないので、全ての人の履歴データを取得するわけだ力 もし仮に当該物 品は前記複数人のどの人が持っている可能性が高いか、という物品所有者情報を事 前に得られれば、前記取得した履歴データ自体にも確力もしさの重み付けができる。 前記物品所有者情報とは、例えば、図 33に示されるように、
•クラシック音楽 CD:お母さんの所有可能性 100%、
•技術関係の本:お父さんの所有可能性 100%、
•ファッション関係の本:娘の所有可能性 60%、お母さんの所有可能性 40%、 などと書いておけばよい。そして、前記履歴データの重み付けの結果と、物品位置 候補重み付け手段 108における重み付けの結果を両方利用することで、物品を扱つ た人が複数人いるといった複雑な場合でも適切な絞り込みをすることが可能となる。
[0202] 具体的には、前記絞り込みの方法は例えば次のようにすればよい。複数人の履歴 データが得られた例として、図 14に示された 2人分の履歴データが得られ、それらが 2人が「お父さん」と「お母さん」の履歴データであり、探して!/、るものが「技術関係の 本」であるとする。この場合、「技術関係の本」の存在場所は 2人分の履歴データ上す ベてについて調べるのではなぐ「技術関係の本」を所有している可能性が 100%で ある「お父さん」の履歴データのみを取りだして重み付けをすればよい。より具体的に は、図 19のフローにおけるステップ S1907において、単に平均移動速度の低い方か ら優先順位を高く重み付けするだけでなぐその値に、誰が所有しているかの可能性 値をかけて重み付けするなどすればよ!、。前記の「技術関係の本」の所有可能性を 適用すると、「お父さん」の履歴データ力も得られた重み付け値には、 100%が乗じら れるのでそのままの値が保持される力 「お母さん」の履歴データから得られた重み 付け値には 0%が乗じられる(つまり重み付けなしとなる)ので、候補から除外された のと同じことになるわけである。
[0203] 前記第 1実施形態によれば、以下のような効果を奏することができる。主に家庭内 での物品検索を目的とした物品位置推定に関し、家庭内という環境を対象とした場 合、物品を検出する装置がコストの面で多数設置できないため、物品の検出結果が 粗いものとなり、従って、前記装置での検出結果を見るだけでは物品検索が簡単に ならないという問題があった。このような問題に対して、人の動きと物品の存在場所に は重要な相関関係があるという点に着眼し、人の移動速度を含めた履歴データ及び 機器の操作情報などを用いて、物品位置の推定を行うことができる。すなわち、前記 物品位置推定装置では、物品検出装置 101が物品を検出し、検出された物品の場 所の情報と時刻の情報とを物品管理データベース 102に格納する。人検出装置 103 が人を検出し、検出された人の場所の情報と時刻の情報とを人管理データベース 10 4に格納する。さらに、物品を収納管理する機器の機器操作を機器操作検出装置 10 5で検出し、検出された各々の機器の操作情報を機器管理データベース 106に格納 する。物品存在領域推定手段 107は、これら物品管理データベース 102に格納され た情報及び人管理データベース 104に格納された情報を参照し (必要に応じて機器 管理データベース 106に格納された情報をも参照し)、前記物品存在領域として、人 が移動した経路のうち物品の存在する可能性がある場所を推定する。そして、必要 に応じて、物品位置候補重み付け手段 108が、人の動き、物品が通常置かれる場所 などの知識といった情報を利用することで、前記物品の存在する可能性がある場所 のうち存在可能性の高 、低 、の重み付けを行って、その情報を表示装置 110にて表 示することができる。
[0204] 前記物品位置推定装置を備える当該物品検索システムをユーザが使用するとき、 前記重み付けされた物品の存在場所を参照することで、探すべき場所の優先順位を 付け、その高いところ力も順に検索対象物品を探すことができる。従って、従来に比 ベて、物品を探す手間が簡単になり、探す効率が良くなり、また、その手間が大幅に 短縮されることが期待できる。
[0205] なお、本発明は前記第 1実施形態に限定されるものではなぐその他種々の態様で 実施できる。例えば、これまでは、ユーザが物品検索を行う表示について、環境全体 の鳥瞰図上に場所を示すという単純な例を併せて示した。もちろん、こういった表示 画面を見て物品検索ができることも有効であるが、以下では、本発明の第 2実施形態 にかかる物品検索システムとして、他の画面表示の方法例として画像を使った例を示 す。
[0206] 人は、外界の情報の多くを視覚によって取得している。従って、過去の忘れた行為 も、その時の状況を画像で提示することにより記憶をより戻すことができる場合も多々 あると思われる。以下に示す物品検索システムでの表示方法は、このような考えの基 になされた表示方法の例であり、本発明の第 11態様に記載の物品検索システムに 係るものである。より具体的には、過去に物品を扱った時間と場所が検出できれば、 その時間でのその場所の映像を見せることで、その時間にその場所でどのように物 品を扱って 、たかを思い出させる、 t 、うことを実現する。
[0207] そのために、本物品検索システムでは、図 1に示すように、すでに説明した物品位 置推定装置の各構成要素に加えて、さらに当該物品検索を行う環境を撮影する撮像 装置 111と、前記撮影された画像情報を蓄積する画像データベース 112と、前記物 品存在領域推定手段 107又は前記物品位置候補重み付け手段 108での処理結果 を用いて、検索要求のあった物品が置かれたと推定される場所と時刻とを推定し、前 記推定した場所を撮影し、かつ前記推定した時刻を含む画像情報を前記画像デー タベース 112から抽出する画像検索手段 113と、画像検索手段 113により抽出され た画像情報を、必要に応じて前記物品存在領域推定手段 107又は前記物品位置候 補重み付け手段 108からの情報と共に、表示する表示装置 110とを含む構成を示し ている。
[0208] 以下、各構成要素について説明し、続いてこれらを用いて、探そうとしている物品を 過去に扱った時間と場所が検出できるという前提のもとに、その時間でのその場所の 映像を見せる処理にっ 、て説明する。 [0209] 《撮像装置 111》
撮像装置 111は、当該物品検索を行う環境を撮影する。撮像装置 111の一例とし ては、実際には CMOSや CCDといった撮像素子を用いたカメラを使うことが一般的 であるが、場所によっては、近赤外などの特殊なカメラを用いてもよい。また、 1台の 撮像装置で前記環境の全てを撮影しきれない場合は、もちろん、複数台の撮像装置 を用意すればよいし、また、前記人検出装置 103に用いたカメラを併用しても構わな い。こうして設置された各撮像装置では、それぞれが写す画像が、実世界のどの位 置に対応して!/、るかの情報を付加しておく。この情報の最も簡単な記述態様としては 、各撮像装置の各画素と実世界の座標を、
、u, v)― (x, y, z)
という風にして対応づけ記述を行えばよい(以下、本記述を対応方式 1と呼ぶ)。ま た、もう少し情報量を減らす方法としては、各撮像装置 110と、それぞれ写している床 面の範囲のベクトルデータとを対応付けて、
camera 1: , y )— (x , y )― (x , y ノ一、 x , y )
11 11 12 12 13 13 14 14
camera 2 : (x , y )― (x , y )― (x , y )― (x , y )
21 21 22 22 23 23 24 24 というふうに記述しても構わない(以下、本記述を対応方式 2と呼ぶ)。対応方式 2で は、一つのベクトルデータは一つの床面領域を表すとすると、一つの撮像装置に最 低 1つのベクトルデータが必要である力 例えば一つの撮像装置 111の画像内に 2 つ以上の床面領域があるなどの場合は、必要に応じて複数個用意してもよい。また、 実世界のモデルが既知で、また、カメラの実世界における位置や向きが既知であれ ば、それらの情報力も計算によって、カメラに写っている実世界の各場所の実世界座 標を求めることも可能である。なお、撮像装置に写る画像が、実世界のどの位置に対 応しているかの情報については、撮像装置が動力されない限り、最初に一度だけ作 つておけば変更する必要はな!/、。
[0210] 《画像データベース 112》
画像データベース 112には、各撮像装置で撮影された画像情報力 タイムスタンプ を付与して (タイマー手段 120から出力された時刻の情報を付与して)蓄積される。画 像は動画でも静止画でもよぐシステムの性能に応じて使い分ければよい。図 28は、 動画をタイムスタンプを付与して蓄積して 、る様子を示した概念図である。図 28では タイムスタンプを 1分おきに付与している例を示している力 もちろんもっと細力くても よぐシステムの要求スペックに合わせて決めればよい。
[0211] 《画像検索手段 113》
画像検索手段 113は、前記物品存在領域推定手段 107又は前記物品位置候補 重み付け手段 108で推定された、検索要求のあった物品があると推定された場所と 時刻を得、続いて前記場所が撮影されかつ前記時刻が含まれた画像情報を、前記 画像データベース 112から抽出し、表示装置 110にて表示する。
[0212] 図 29は、この画像検索手段 113における画像検索処理の流れを示したフローチヤ ートで、以下この図に従って処理の流れを説明する。
[0213] ステップ S2901において、物品位置候補重み付け手段 108での処理結果を用い て推定された、検索要求のあった物品があると推定される場所と時刻を得る。
[0214] 次いで、ステップ S2902において、取得した全ての情報又はデータについて、前 記情報又はデータに含まれる場所と時間を含む画像情報を画像データベース 112 力 検索し、ダウンロードする。
[0215] 前記場所を含む撮像装置を選ぶ方法は、撮像装置とそれが写す画像が実世界の どの位置に対応しているかの情報の記述態様によって異なる。
[0216] 例えば前記対応方式 1であれば、記述された (u, V)—(X, y, z)のペアのうち、前 記場所と一致する (X, y)があるか、又は一致しなくとも前記場所を囲い込むことが可 能な複数の (X, y)の群がある場合に、前記撮像装置を選択する、という風にすれば よい。また、前記対応方式 2であれば、記述されたベクトルデータで形成される領域 に前記場所が含まれる場合は、前記ベクトルデータを含む撮像装置を選択する、と いう風にすればよい。また、前記場所を撮影している撮像装置が複数ある場合には、 それら全てを選択しても構わな 、。
[0217] こうして前記場所を撮影している 1つ以上の撮像装置が選ばれたら、それら撮像装 置で撮影された画像情報を蓄積した画像データベース 112から、前記時刻を含む画 像情報を検索し、ダウンロードする。ダウンロードする画像情報の態様としては、例え ば前記時刻の前後 2分を含む動画像情報又は秒当たり 1枚の静止画像情報というふ うに、システムの要求スペックに応じて決めてやればよ 、。
[0218] 次いで、ステップ S2903において、前記ダウンロードした画像情報を表示する。図 3 OA,図 30Bは図 28の画像データベース 112から 19時 31分と 19時 32分の画像情 報をそれぞれ検索して表示して!/、る様子を示した概念図である。画像情報の表示は いきなり表示してもよいし、また、段階的に表示してもよい。段階的に表示するとは、 まず最初に位置候補重み付け手段での処理結果のみを表示する。具体的には例え ば図 21や図 27に示したような画面を表示する。そして、そこで示された物品の存在 する位置候補を指定させ、関連する画像情報を表示する、というものである。
[0219] 以上、画像検索手段 113における処理の流れを説明した。
[0220] 以上、本発明の前記第 2実施形態の特徴である、人の移動速度を含めた履歴デー タ、機器の操作情報を用いて、物品位置の推定を行う方法を、具体例を用いて説明 した。また、前記検索物品の位置推定ができるという前提で、検索したい物品の場所 を CG (コンピュータグラフィック)又は実画像を使って提示すると!/ヽぅ方法を説明した
[0221] なお、前記第 1及び第 2実施形態にて例示した、本発明の前記第 1及び第 2実施形 態における物品位置推定装置での物品位置推定処理の流れはあくまで一例であり、 これに限るものではない。すなわち、物品位置の推定に人の移動速度を含めた履歴 データ、機器の操作情報を用いるという思想が処理に含まれていれば、処理のフロ 一が異なっていたり、必要なデータの記述態様が異なっていても、当然かまわない。
[0222] また、本発明の前記第 1及び第 2実施形態の物品位置推定装置は、該物品位置推 定装置を構成する装置のうち、入力装置 109、物品検出装置 101、人検出装置 103 、機器操作検出装置 105、表示装置 110についてはシステムの要件に応じて最適な 場所に設置すればよい。物品管理データベース 102、人管理データベース 104、機 器管理データベース 106は、それぞれに格納する情報を取得する物品検出装置 10 1、人検出装置 103、機器操作検出装置 105の近くに配置してもよいし、該装置の残 りの手段である物品存在領域推定手段 107、物品位置候補重み付け手段 108の近 くに配置して、物品検出装置 101、人検出装置 103、機器操作検出装置 105が取得 した情報をネットワークを介してそれぞれのデータベースに送るようにしてもょ 、。 Vヽ ずれにしても各手段又は装置の設置態様はあくまでシステムの要件に応じて最適な 場所に設置すればよぐ設置場所などの拘束は特に無い。
[0223] 本発明の前記第 2実施形態の物品検索システムは、システムの構成要素として直 前に説明した装置又は手段以外の他の構成要素である、画像検索手段 113、画像 データベース 112,撮像装置 111は、システムの要件に応じて最適な場所に設置す ればよぐ設置場所などの拘束は特に無い。
[0224] また、本発明の前記第 1及び第 2実施形態の物品検索システムは、主に家庭用を 目的として説明したが、もちろん家庭用途にとどまるものではなぐ例えばオフィスな どにお 、て利用しても構わな 、。
[0225] 図 34は、オフィスにおいて、物品検出装置 101の一例としてのタグリーダ TGRが設 置された様子を示した見取り図である。本例では、オフィスのある部屋 205の出入り 口 200にゲート型のタグリーダ TGRが設置されており、また、その部屋 205には 8人 分のパーティーシヨン 201で区切られた作業スペース 202があり、その作業スペース 202内に設置された各書棚 203の開閉部にタグリーダ TGRが(図 15Bと同様に)設 置された様子を示している。ユーザは、物品を当該部屋 205に持ち込めば、それで その物品が部屋 205内にあることが検出できる。そして、部屋 205に予め人の動きを 区別して検出できるようなカメラ 204や床センサなどの人検出装置を設置しておけば 、それによつて人 206の履歴データを得ることができるため(例えば図 34内に示した 矢印付きの実線がその人 206の検出結果の例)、これまで説明してきた本発明の前 記第 1及び第 2実施形態による物品位置検索方法を利用することにより、部屋 205に 持ち込まれた物品が部屋 205のどの場所にありそうかという物品の存在場所の重み 付き推定が可能となる。
[0226] また、オフィス利用においては、一般的に物品がどの場所に置かれる力が、物品の 検出結果と人の履歴データとを組み合わせることで、ある程度特定可能である。すな わち、ある物品は所有者が決まっており、その物品は、所有者が持ち歩くか又はその 所有者の作業スペース 202にある力 が正しい物品の有り場所と考えられる。したが つて、逆に、そのような物品が別の人によって持ち出されたことを部屋 205の出入り口 200のタグリーダ TGRが検出すると、これを不当な持ち出しと判定し、ブザーを鳴ら すなどのセキュリティー的な対応を取ることで、物品の盗難を防止することも可能とな る。
[0227] また、前記各種検出装置を除く前記物品存在領域推定手段 107などを含む前記 物品検索システムの一部は、コンピュータに、図 35にフローチャートで示されるように 、異なる物品が区別されるように識別し物品検出装置で検出された前記物品の検出 場所の情報と時刻の情報とを物品管理データベースに格納するステップ S3001と、 人の位置を個人毎に区別して人検出装置で検出された人の移動履歴情報を人管理 データベースに格納するステップ S3002と、前記物品管理データベース及び前記人 管理データベースに格納された情報を、前記人管理データベースの前記移動履歴 情報と前記物品管理データベースの前記検出場所と前記時刻とを基に前記人と前 記物品とを関連付けて、前記物品の物品存在領域を推定するステップ S 3003とを実 行させるための物品位置推定用プログラムとして、 CD— ROMなどの記録媒体に記 録させておき、必要に応じて、 CD— ROM力も読み出して使用することもできる。具 体的には、例えば、表示装置の一例であるディスプレイ、入力装置の一例であるキー ボード、一例として前記種々のデータベースや前記種々の手段などが蓄積可能なハ ードディスク及びメモリ、 CD— ROMドライブなどが接続されて前記物品検索システ ムを実現可能なシステム(図示せず)において、 CD— ROMに記録された物品位置 推定用プログラムが CD— ROMドライブを介してハードディスクにインストールされた のち、前記物品検索システムを実行可能とすることができる。
[0228] 前記実施形態では、説明を簡単にするため、物品や人を検出するとき、時刻の情 報を用いている力 時刻の代わりに日時を用いるようにしてもよい。 日時を用いれば、 異なる日にまたがって、本発明にかかる物品位置推定動作を行うことができる。
[0229] なお、本発明は上記実施形態に限定されるものではなぐその他種々の態様で実 施できる。例えば、前記物品存在領域推定手段は、前記人と前記物品とが前記人検 出装置と前記物品検出装置とで同時的に検出された場合以降において、前記検出 された人の移動領域を、前記物品の物品存在領域として推定するものであるが、前 記検出された人が前記部屋力 出た後は、前記物品の物品存在領域の推定を停止 するようにしてちょい。
[0230] なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより 、それぞれの有する効果を奏するようにすることができる。
産業上の利用可能性
[0231] 本発明にかかる物品位置推定装置、物品位置推定方法、物品検索システム、及び 物品位置推定用プログラムは、一般家屋やオフィス内などにある物品を管理する物 品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プ ログラムに係り、特に一般家庭内にある生活に使用する日用品やオフィスなどで使用 する可搬性の物品などの各種物品の位置を、 RFIDタグ技術などを用いて管理する ときユーザが探し物を問い合わせた時に前記探し物の位置を適切に提示することが できて、従来に比べて物品を探す手間が簡単になり、また、その手間が大幅に短縮 される。
[0232] 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載され ているが、この技術の熟練した人々にとつては種々の変形や修正は明白である。そ のような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限り において、その中に含まれると理解されるべきである。

Claims

請求の範囲
[1] 少なくとも人が出入り可能な部屋の出入り口付近に配置されて、異なる物品が区別 されるように識別し検出する物品検出装置と、
前記物品検出装置にて検出された物品の識別情報と検出場所の情報と検出時刻 の情報とを物品管理情報として格納する物品管理データベースと、
前記部屋内での前記人の位置を個人毎に区別して検出する人検出装置と、 前記人検出装置にて検出された人の移動履歴情報を格納する人管理データべ一 スと、
前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間内に検出された人を特定し、前記人管理データベース の前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物 品検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動 領域を、前記物品の物品存在領域として推定する物品存在領域推定手段と、 を備える、物品位置推定装置。
[2] 前記物品存在領域推定手段は、前記人管理データベースに格納された前記移動 履歴情報を参照して得られる前記人の移動速度の変化によって、前記物品の前記 物品存在領域を推定する、請求項 1に記載の物品位置推定装置。
[3] 前記物品管理データベース又は前記人管理データベースに格納された情報を参 照して、前記推定された複数の物品存在領域に対して前記物品の存在する可能性 に基づき、前記物品の存在する可能性の高い物品存在領域の重みが高くなるように 重み付けを行う、物品位置候補重み付け手段をさらに備える、請求項 1又は 2に記載 の物品位置推定装置。
[4] 前記物品位置候補重み付け手段は、
前記人の移動履歴情報において、予め定めた所定値以下の移動速度である前記 移動履歴情報のうちの検出場所の情報と検出時刻の情報を滞留状態としてそれぞ れ抽出し、前記滞留状態を構成する各情報を参照して得られる前記人の移動速度 の平均値を用いて、前記人の移動速度の平均値が低!、領域ほど前記物品の存在す る可能性の高い物品存在領域の重みが高くなるように重み付けを行う、請求項 3に記 載の物品位置推定装置。
[5] 前記物品位置候補重み付け手段は、
前記人の移動履歴情報において、予め定めた所定値以下の移動速度である前記 移動履歴情報のうちの検出場所の情報と検出時刻の情報を滞留状態として抽出し、 前記滞留状態の前後における検出場所の情報と検出時刻の情報を参照して得られ る前記人の移動速度の変化を用いて、前記物品の存在する可能性の高い物品存在 領域の重みが高くなるように重み付けを行う、請求項 3に記載の物品位置推定装置。
[6] 前記物品位置候補重み付け手段は、
前記物品の存在する可能性の重み付けを行う際に前記滞留状態が持続する時間 を併せて用いて、前記物品の存在する可能性の高い物品存在領域の重みが高くな るように重み付けを行う、請求項 4又は 5に記載の物品位置推定装置。
[7] 前記物品存在領域推定手段は、
前記人の移動履歴情報において、予め定めた所定値以下の移動速度である前記 移動履歴情報のうちの検出場所の情報と検出時刻の情報を滞留状態として抽出し、 複数の前記人に対する前記滞留状態間の関係により、複数の前記人の間の前記物 品の受け渡しを考慮して、前記物品の存在領域を推定する、請求項 2〜6のいずれ 力 1つに記載の物品位置推定装置。
[8] 前記物品を収納管理する機器の機器操作を検出する機器操作検出装置と、
前記機器操作検出装置にて検出された各々の機器の操作情報を格納する機器管 理データベースを備え、 前記機器管理データベースに格納された情報を前記操作情報中の前記機器の操 作の有無の情報に基づき、前記使用していた機器の重みが高くなるように前記物品 位置候補の機器に対して重み付けを行う、請求項 3に記載の物品位置推定装置。
[9] 前記物品存在領域推定手段は、前記人と前記物品とが前記人検出装置と前記物 品検出装置とで同時的に検出された場合以降において、前記検出された人の移動 領域を、前記物品の物品存在領域として推定するとともに、前記検出された人が前 記部屋から出た後は、前記物品の物品存在領域の推定を停止する、請求項 1又は 2 に記載の物品位置推定装置。
[10] 検索する対象物品の入力が行われる入力装置と、
前記物品存在領域推定手段で前記物品の物品存在領域を推定するとともに、推 定処理された物品の中から、前記入力装置で入力された検索対象物品を検索する 請求項 1又は 3に記載の前記物品位置推定装置と、
前記物品存在領域推定手段、又は、前記物品存在領域推定手段及び前記物品位 置候補重み付け手段での推定結果を用いて、前記検索対象物品の存在する物品存 在領域を表示する表示装置と、
を備える物品検索システム。
[11] 当該物品検索を行う環境を撮影する撮像装置と、
前記撮像装置で撮影された画像情報を蓄積する画像データベースと、 前記物品存在領域推定手段、又は、前記物品存在領域推定手段及び前記物品位 置候補重み付け手段が検索要求のあった前記物品が置かれたと推定される場所と 時刻とを推定し、前記推定結果を用いて、前記場所を撮影しかつ前記時刻を含む画 像情報を前記画像データベース力 抽出する画像検索手段とを備え、
前記表示装置は、前記画像検索手段にて検索された画像情報を表示する、請求 項 10に記載の物品検索システム。
[12] 少なくとも人が出入り可能な部屋の出入り口付近で、異なる物品が区別されるように 識別し物品検出装置で検出するステップと、
前記物品検出装置にて検出された前記物品の検出場所の情報と時刻の情報とを 物品管理データベースに格納するステップと、
前記部屋内での前記人の位置を個人毎に区別して人検出装置にて検出するステ ップと、
前記人検出装置にて検出された人の移動履歴情報を人管理データベースに格納 するステップと、
前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間内に検出された人を特定し、前記人管理データベース の前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物 品検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動 領域を、前記物品の物品存在領域として推定するステップと、
を備える、物品位置推定方法。
[13] 前記物品管理データベース又は前記人管理データベースに格納された情報を参 照して、前記物品存在領域を推定するステップによって推定された複数の前記物品 存在領域に対して、前記物品の存在する可能性に基づき、前記物品の存在する可 能性の高 、物品存在領域の重みが高くなるように重み付けを行うステップ、
をさらに備える、請求項 12に記載の物品位置推定方法。
[14] コンピュータに、
少なくとも人が出入り可能な部屋の出入り口付近で、異なる物品が区別されるように 識別し物品検出装置で検出された前記物品の検出場所の情報と時刻の情報とを物 品管理データベースに格納するステップと、
前記部屋内での前記人の位置を個人毎に区別して人検出装置で検出された人の 移動履歴情報を人管理データベースに格納するステップと、
前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間内に検出された人を特定し、前記人管理データベース の前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物 品検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動 領域を、前記物品の物品存在領域として推定するステップとを実行させるための物品 位置推定用プログラム。
[15] 少なくとも人が出入り可能な部屋の出入り口付近に配置されて、異なる物品が区別 されるように識別し検出する物品検出装置と、
前記部屋内での前記人の位置を個人毎に区別して検出する人検出装置と、 前記物品管理データベースに格納された前記物品の検出時刻の情報、及び、前 記人管理データベースに格納された前記人の移動履歴情報を用いて、前記物品の 検出時刻を含む所定の時間内に検出された人を特定し、前記人管理データベース の前記人の移動履歴情報を基に、前記人と前記物品とが前記人検出装置と前記物 品検出装置とで同時的に検出された場合に、前記検出された人のそれ以後の移動 領域を、前記物品の物品存在領域として推定する物品存在領域推定手段と、 を備える、物品位置推定装置。
PCT/JP2006/305401 2005-04-01 2006-03-17 物品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラム Ceased WO2006109423A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006519678A JP4006471B2 (ja) 2005-04-01 2006-03-17 物品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラム
US11/796,047 US7545278B2 (en) 2005-04-01 2007-04-26 Article position estimating apparatus, method of estimating article position, article search system, and article position estimating program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-105923 2005-04-01
JP2005105923 2005-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/796,047 Continuation US7545278B2 (en) 2005-04-01 2007-04-26 Article position estimating apparatus, method of estimating article position, article search system, and article position estimating program

Publications (1)

Publication Number Publication Date
WO2006109423A1 true WO2006109423A1 (ja) 2006-10-19

Family

ID=37086714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305401 Ceased WO2006109423A1 (ja) 2005-04-01 2006-03-17 物品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラム

Country Status (3)

Country Link
US (1) US7545278B2 (ja)
JP (1) JP4006471B2 (ja)
WO (1) WO2006109423A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140754A (ja) * 2008-12-11 2010-06-24 Panasonic Electric Works Co Ltd 照明システム
US7852217B2 (en) 2005-12-28 2010-12-14 Panasonic Corporation Object detecting device, object detecting method and object detecting computer program
WO2011108055A1 (ja) * 2010-03-03 2011-09-09 パナソニック株式会社 物体位置推定装置、物体位置推定方法、及び、物体位置推定プログラム
JP2014108892A (ja) * 2012-12-04 2014-06-12 Fujitsu Ltd 物品の配置位置管理装置、プログラム及び方法
JP2015155345A (ja) * 2014-02-20 2015-08-27 大和ハウス工業株式会社 収納管理システム
JP2018073012A (ja) * 2016-10-26 2018-05-10 株式会社東芝 管理システム
JP2023110357A (ja) * 2022-01-28 2023-08-09 積水ハウス株式会社 情報処理装置
WO2024195059A1 (ja) * 2023-03-22 2024-09-26 日本電気株式会社 移動履歴管理装置、移動履歴管理方法、および記録媒体

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080273754A1 (en) * 2007-05-04 2008-11-06 Leviton Manufacturing Co., Inc. Apparatus and method for defining an area of interest for image sensing
JP4983505B2 (ja) * 2007-09-25 2012-07-25 ブラザー工業株式会社 無線タグ通信装置
JP5088143B2 (ja) * 2008-01-09 2012-12-05 富士通株式会社 位置判定方法
JP4569663B2 (ja) * 2008-04-25 2010-10-27 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
JP5458802B2 (ja) * 2008-10-23 2014-04-02 リコーイメージング株式会社 デジタルカメラ
US8600118B2 (en) * 2009-06-30 2013-12-03 Non Typical, Inc. System for predicting game animal movement and managing game animal images
US9058732B2 (en) * 2010-02-25 2015-06-16 Qualcomm Incorporated Method and apparatus for enhanced indoor position location with assisted user profiles
CA3147683C (en) 2010-11-19 2023-09-05 Isolynx, Llc Associative object tracking systems and methods
US20120320204A1 (en) * 2011-06-20 2012-12-20 3M Innovative Properties Company Asset assessment system
JP5959923B2 (ja) * 2012-04-26 2016-08-02 キヤノン株式会社 検出装置、その制御方法、および制御プログラム、並びに撮像装置および表示装置
JP6065911B2 (ja) * 2012-08-06 2017-01-25 日本電気株式会社 配置情報登録装置、配置情報登録方法および配置情報登録プログラム
JP6021937B2 (ja) * 2012-11-13 2016-11-09 三菱電機株式会社 空気調和システム及び中央管理装置
JP6049448B2 (ja) * 2012-12-27 2016-12-21 キヤノン株式会社 被写体領域追跡装置、その制御方法及びプログラム
US20160088262A1 (en) * 2013-04-10 2016-03-24 Lg Electronics Inc. Method For Managing Storage Product In Refrigerator Using Image Recognition, And Refrigerator For Same
US10929661B1 (en) * 2013-12-19 2021-02-23 Amazon Technologies, Inc. System for user identification
JP5830706B2 (ja) * 2014-01-29 2015-12-09 パナソニックIpマネジメント株式会社 店員作業管理装置、店員作業管理システムおよび店員作業管理方法
WO2017149582A1 (ja) * 2016-02-29 2017-09-08 三井造船株式会社 データ処理方法及び計測装置
WO2018061328A1 (ja) * 2016-09-30 2018-04-05 三菱電機ビルテクノサービス株式会社 所在人数予測装置、設備管理システム及びプログラム
CN114743326A (zh) * 2022-04-07 2022-07-12 武汉东湖学院 一种设置有智能识别的智能制造车间防盗预警系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003233715A (ja) * 2002-02-08 2003-08-22 Sharp Corp 生活情報管理システムおよび方法ならびに生活情報処理装置
JP2004249389A (ja) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd 物品管理システム
JP2005037365A (ja) * 2003-06-23 2005-02-10 National Institute Of Information & Communication Technology 物体配置図作成方法およびそのプログラムと記憶媒体、ならびに物体配置図作成システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146362A (ja) 1993-11-25 1995-06-06 Nippon Dry Chem Co Ltd 物品探索システム
EP1027689A4 (en) * 1997-11-03 2003-04-02 Arial Systems Corp Personnel and asset tracking method and apparatus
US6154139A (en) * 1998-04-21 2000-11-28 Versus Technology Method and system for locating subjects within a tracking environment
US6084517A (en) * 1998-08-12 2000-07-04 Rabanne; Michael C. System for tracking possessions
JP2000357251A (ja) 1999-06-14 2000-12-26 Sharp Corp 物品管理システム
GB2380638B (en) * 2000-05-22 2004-05-12 Avery Dennison Corp Trackable files and systems for using the same
US6300872B1 (en) * 2000-06-20 2001-10-09 Philips Electronics North America Corp. Object proximity/security adaptive event detection
US7248933B2 (en) * 2001-05-08 2007-07-24 Hill-Rom Services, Inc. Article locating and tracking system
US6933849B2 (en) * 2002-07-09 2005-08-23 Fred Sawyer Method and apparatus for tracking objects and people

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003233715A (ja) * 2002-02-08 2003-08-22 Sharp Corp 生活情報管理システムおよび方法ならびに生活情報処理装置
JP2004249389A (ja) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd 物品管理システム
JP2005037365A (ja) * 2003-06-23 2005-02-10 National Institute Of Information & Communication Technology 物体配置図作成方法およびそのプログラムと記憶媒体、ならびに物体配置図作成システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852217B2 (en) 2005-12-28 2010-12-14 Panasonic Corporation Object detecting device, object detecting method and object detecting computer program
JP2010140754A (ja) * 2008-12-11 2010-06-24 Panasonic Electric Works Co Ltd 照明システム
WO2011108055A1 (ja) * 2010-03-03 2011-09-09 パナソニック株式会社 物体位置推定装置、物体位置推定方法、及び、物体位置推定プログラム
JP4880805B2 (ja) * 2010-03-03 2012-02-22 パナソニック株式会社 物体位置推定装置、物体位置推定方法、及び、物体位置推定プログラム
JP2014108892A (ja) * 2012-12-04 2014-06-12 Fujitsu Ltd 物品の配置位置管理装置、プログラム及び方法
JP2015155345A (ja) * 2014-02-20 2015-08-27 大和ハウス工業株式会社 収納管理システム
JP2018073012A (ja) * 2016-10-26 2018-05-10 株式会社東芝 管理システム
JP2023110357A (ja) * 2022-01-28 2023-08-09 積水ハウス株式会社 情報処理装置
WO2024195059A1 (ja) * 2023-03-22 2024-09-26 日本電気株式会社 移動履歴管理装置、移動履歴管理方法、および記録媒体

Also Published As

Publication number Publication date
JPWO2006109423A1 (ja) 2008-10-16
US20070247321A1 (en) 2007-10-25
JP4006471B2 (ja) 2007-11-14
US7545278B2 (en) 2009-06-09

Similar Documents

Publication Publication Date Title
JP4006471B2 (ja) 物品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラム
JP7260022B2 (ja) 店舗装置、店舗システム、店舗管理方法、プログラム
US9443414B2 (en) Object tracking
US7908237B2 (en) Method and apparatus for identifying unexpected behavior of a customer in a retail environment using detected location data, temperature, humidity, lighting conditions, music, and odors
US7908233B2 (en) Method and apparatus for implementing digital video modeling to generate an expected behavior model
US8099427B2 (en) Search article estimation apparatus and method and server for search article estimation apparatus
CN109753865B (zh) 对象历史关联的系统和方法
KR102699484B1 (ko) 냉장고 및 냉장고의 물품 관리 방법
CN112307864B (zh) 用于确定目标对象的方法、装置、人机交互系统
CN103761505A (zh) 对象跟踪
JP2017174272A (ja) 情報処理装置及びプログラム
JP6029622B2 (ja) 情報管理サーバ、情報管理方法、および情報管理プログラム
CN111488831B (zh) 一种食材联想识别方法及冰箱
CN113326816A (zh) 一种线下顾客行为识别方法、系统、存储介质及终端
CN109344680A (zh) 物品登记系统
WO2019051167A1 (en) SYSTEM FOR IDENTIFYING AND ANALYZING CUSTOMER INTERACTION
US11561750B2 (en) Retrieving personalized visual content items in real time for display on digital-content-display devices within a physical space
US20210334758A1 (en) System and Method of Reporting Based on Analysis of Location and Interaction Between Employees and Visitors
Konstantinidis et al. A deep network for automatic video-based food bite detection
Ayub et al. Don’t forget to buy milk: Contextually aware grocery reminder household robot
CN114648385A (zh) 一种智能货架的信息交互方法、设备和介质
US10726378B2 (en) Interaction analysis
Eno et al. Virtual and real-world ontology services
JP7647427B2 (ja) 接客検出プログラム、接客検出方法および情報処理装置
Ling et al. RFID-based user profiling of fashion preferences: blueprint for a smart wardrobe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519678

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11796047

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11796047

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729390

Country of ref document: EP

Kind code of ref document: A1