WO2002003077A1 - Clinical examination system - Google Patents
Clinical examination system Download PDFInfo
- Publication number
- WO2002003077A1 WO2002003077A1 PCT/JP2001/005716 JP0105716W WO0203077A1 WO 2002003077 A1 WO2002003077 A1 WO 2002003077A1 JP 0105716 W JP0105716 W JP 0105716W WO 0203077 A1 WO0203077 A1 WO 0203077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- retest
- inspection
- test
- necessity
- result
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00603—Reinspection of samples
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/40—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/046—General conveyor features
- G01N2035/0467—Switching points ("aiguillages")
- G01N2035/0472—Switching points ("aiguillages") for selective recirculation of carriers
Definitions
- the present invention relates to a clinical test system, and more particularly to a retest necessity determination method for determining whether a retest is necessary based on test results.
- an abnormal value is measured as a result of a test, it is determined whether the test value of the subject is really abnormal or an abnormal value due to a measurement defect (e.g., a device error or human error). If the possibility of measurement failure is low, the test result is reported to the clinic as correct, and if the possibility of measurement failure is high, a retest is performed. The need for retesting was determined by the laboratory technician based on past experience, referring to the combination of test values and the results of the previous test for the patient (recipient).
- a measurement defect e.g., a device error or human error
- re-examination necessity means a single item check, a previous value check, and an inter-item check are known as typical methods.
- a single item check for example, a technique disclosed in Japanese Patent Application Laid-Open No. HEI 5-151282 is known. This technology sets a reference range for each test item according to gender, age, and pregnant woman, and if the test value exceeds this reference range, Report as a result.
- Japanese Patent Application Laid-Open No. 7-271873 describes a method of providing two types of reference ranges for each inspection item, an abnormal value range and a panic value range.
- a delta check described in Japanese Patent Application Laid-Open No. 5-151282 and a cumulative delta check described in Japanese Patent Application Laid-Open No. 11-92665 are known. Have been.
- a reference value is set for the difference between the previous value and the current value for each inspection item, and an error is reported for ⁇ where the difference between the previous value and the current value exceeds the reference value.
- the standard deviation within an individual (the standard deviation of the test value for each test item for the same patient and examinee) is determined for each test item, and the difference between the previous value and the current value is calculated. Calculate the ratio to the standard deviation.
- An abnormality is detected by providing a reference value to the value obtained by adding the above ratio obtained for each inspection item.
- a reference value is set for a ratio between items, and a method of judging abnormality or a plurality of inspection items are used.
- a method is known in which a logical operation expression is defined and an abnormality is determined based on the truth of the logical operation expression. Disclosure of the invention
- the determination of the necessity of automatic re-inspection is generally carried out by using a reference value or a judgment logic so that there is no oversight of the inspection result to be re-inspected (missing detection). In many cases, a detection result that does not actually need to be re-examined is used as a criterion for judging the necessity of re-examination.
- a laboratory technician checks again the test results determined to be necessary by the automatic retest necessity judgment, and extracts the test results that really need to be retested. Work is required. In order to save labor for inspection technicians, a more accurate method for determining whether reexamination is necessary is needed.
- the present invention has been made in view of the above circumstances, and realizes a more accurate automatic retest necessity determination, and can easily optimize a reference value and a logic used in the retest necessity determination. It aims to provide a system.
- FIG. 1 is a diagram showing one configuration example of a clinical test system to which the present invention can be applied.
- FIG. 2 is a diagram showing another example of the configuration of the clinical test system to which the present invention can be applied.
- FIG. 3 is a diagram showing still another example of the configuration of the clinical test system to which the present invention can be applied.
- FIG. 4 is a diagram showing a basic block configuration of the inspection server according to the present invention.
- FIG. 5 is a diagram for explaining one embodiment of the principle of optimization of the retest necessity determination logic according to the present invention.
- FIG. 6 is a diagram for explaining another embodiment of the principle of optimality of the retest necessity determination logic according to the present invention.
- FIG. 7 is a diagram showing a flowchart of a process of optimizing the retest necessity determination logic according to FIG.
- FIG. 8 is a diagram showing a flowchart of the process of optimizing the retest necessity determination logic according to FIG.
- FIG. 9 is a diagram illustrating an example of a parameter such as a reference value used in the retest necessity determination logic according to the present invention and a logical expression describing the determination logic.
- FIG. 10 is a diagram showing one example of a screen configuration for displaying the inspection result and the result of the necessity of re-inspection on the display of the inspection client according to the present invention.
- FIG. 11 is a diagram showing another example of the screen configuration for displaying the inspection result and the re-examination necessity determination result on the display of the inspection client according to the present invention.
- FIG. 1 to 3 are diagrams showing a configuration example of a clinical test system to which the present invention can be applied.
- an analyzer server 20, an inspection server 30, and an inspection client 40 are connected to a LAN 50 installed in a hospital or an inspection room.
- a personal computer or the like can be used as each of the servers 20 and 30 and the inspection client 40.
- the first inspection device 11, the second inspection device 12, and the third inspection device 13 are further connected to the LAN 50.
- the analysis device server 20 controls each inspection device, performs necessary processing such as analysis on the inspection result output from each inspection device, and transmits information to the inspection server 30 via the LAN 50. send.
- the inspection server 30 accumulates information such as the obtained inspection result, and determines whether or not the inspection result requires re-examination.
- the inspection client 40 receives the inspection results accumulated in the inspection server 30 and the inspection server 30. It is possible to refer to information such as the necessity of the determined retest.
- the inspection result for the inspection that is not automated can be input using the inspection client 40. In this case, the input data such as inspection results
- Figure 2 shows the hospital 500 and the decision logic learning facility where the system described in Figure 1 was built.
- a learning server 60 is installed in the court learning facility 550, and the learning server 60 is connected to a communication line 540 via a first communication means 610.
- the inspection server 30 is connected to the communication line 540 via the second communication means 620.
- the inspection server 30 and the learning server 60 can transmit and receive data via the communication line 540.
- the communication line 540 various lines capable of data communication can be used, and for example, a telephone line can be used.
- the first communication means 6 10 and the second communication means 6 20 appropriate communication means according to the type of line is used.
- a modem can be used as the first communication means 610 and the second communication means 6200.
- the learning server 60 it is possible to leave to the learning server 60 the optimization of the criterion for judging the necessity of the retest for the test result performed by the test server 30. Therefore, since the learning server 60 can perform the optimization using the data of other hospitals connected to the communication line 540, a more complete optimization can be expected than the system of FIG.
- FIG. 3 is an example of a form in which each of the hospitals 5200 and 5300 connected via a communication line 5400 uses the inspection center 5100 in which the system described in FIG.
- Each hospital is provided with a test result reference terminal 70, which allows the user to know the test results for the requested test object. According to this example, each hospital can perform a test including a more sophisticated retest while reducing capital investment.
- the present invention can be applied to any of the embodiments, The retest necessity determination by the test server 30 can be further improved.
- FIG. 4 shows a basic block diagram of the configuration of the inspection server 30 according to the present invention.
- 100 is a system path.
- 101 is CPU.
- Numeral 102 is a database, which is data such as initial test results 1 1 1, re-test necessity judgment results 1 1 4 or re-test results 1 1 5, re-test execution information 1 1 2, diagnostic information 1 2 1, Various information such as contract information 1 2 2, request information 1 2 3 or re-examination necessity determination logic 1 16, re-examination necessity judgment reference value 1 18, and re-examination necessity judgment processing 1 1 3
- Execution programs for re-test necessity determination logic optimization processing 117, disease candidate estimation processing 124, and the like are stored.
- Reference numeral 103 denotes a RAM, which is a memory area used as a work area for executing various processes.
- Reference numeral 104 denotes an input / output interface for inputting various information such as test result input, diagnostic information input, retest execution information input, contract information input, and various information such as test result output and retest results. Is output.
- This embodiment enumerates data and processing programs as functions that the inspection server 30 should have, and does not cover all of them.
- the re-examination necessity determination logic optimization processing and the like are executed by the decision logic learning facility 550, and the inspection server 30 cooperates with the re-examination logic. Will be promoted.
- a, b, and c are constants, which are recorded together with the expression (1) in the database re-examination necessity determination logic 116 of FIG.
- the initial value of this value uses data collected in advance. Use the power to set the optimal value, or set the value based on the engineer's past experience. In this case, since the optimal value differs depending on the characteristics of the patient at each hospital (what kind of disease is most common) and the conditions of the test method, test equipment, reagents, etc., it is not possible to optimize for each hospital. Of course.
- test value x and the test value y are set on the horizontal axis and the vertical axis, respectively, and the distribution of the test values is indicated by a data group 920 indicated by X and a data group 940 indicated by ⁇ .
- the retest necessity judgment result 1 14 is recorded as “retest required”, and for the data group 940 indicated by 4, the retest necessity judgment result 1 1 4 records "No need to retest".
- a retest is performed on each sample of the data group 920.
- the specimen will be unsuitable as a specimen after a long period of time, so this retest should be performed as soon as the first test result is obtained.
- the technician may review whether or not reexamination is actually necessary, and omit those that are judged to be unnecessary.
- the results of the retest are shown in Fig. 5 (b).
- the data group indicated by a thick X in FIG. 5 (b) indicates a data group in which the results of the retest did not differ significantly from the results of the initial test. In other words, the same result is obtained even if the retest is performed, that is, the retest is useless. These data will be recorded again in the Judgment of Necessity of Re-examination.
- the specimens in the data group indicated by X surrounded by a broken line with the original thickness indicate that the test value changed to the position of ⁇ indicating the corresponding relationship by the broken line with an arrow as a result of the retest. In other words, the initial inspection of these specimens was unreliable due to some abnormalities and was confirmed by re-inspection, resulting in data within the range of the inspection value, and it can be evaluated that the determination that re-inspection was necessary was appropriate.
- the re-test necessity determination logic optimization process 1 17 includes the re-test necessity judgment result 1 1 4 From the distribution, it is possible to change the straight line 950, which is the threshold of the necessity of retest, to the straight line 960 shown by the equation (2). The content of the expression (2) is adopted as a correction of the judgment recorded in the judgment 1 16 of the necessity of reexamination.
- the retest according to the present invention and the evaluation of the results may not exactly correspond to the results obtained by the technician reviewing whether or not the retest is actually necessary, but the present invention
- the burden on the operator and the burden on the technician can be reduced, and more reasonable reexamination necessity determination logic can be obtained.
- FIG. 6 (a) is data showing the same initial inspection results as FIG. 5 (a).
- the specimens in the data group indicated by X are retested because they are judged to be necessary for retesting. In this case, too, the specimen will be unsuitable as a specimen after a long period of time, so this retest should be performed as soon as the first result is obtained.
- the re-test necessity judgment result 1 14 is re-examined from the change in the value obtained by comparing the re-test result with the first result among the data of the re-test necessity judgment result 1 14 Was evaluated to be appropriate, and the straight line 950 that was judged to be necessary for retesting from the distribution of the original test values that were evaluated to be appropriate for retesting was corrected to the straight line 970 shown in equation (3), It is determined again whether or not it is necessary to re-examine the past data with a straight line that has been corrected to a predetermined range.
- the content of the expression (3) is adopted as a modification of the judgment necessity logic recorded in the retest necessity judgment logic 116.
- the retest according to the present invention and the evaluation of the results may not exactly match the results obtained by the technician reviewing whether or not the original test results actually require a retest.
- the burden on the subject and the burden on the technician can be reduced, and a more reasonable retest necessity determination logic can be obtained.
- this example is not advantageous in terms of reducing the cost of re-examination, it can be said that it is possible to realize re-examination evaluation without oversight.
- FIG. 7 is a flowchart showing the above-described processing and the optimization processing of FIG. 5 in an organized manner.
- a test is performed on all specimens for predetermined items (step 201).
- This inspection result is input via the input / output interface 104 and stored in the initial inspection result 111 of the database 102 (step 202). Mochi Of course, some of these data are automatically input from the analyzer 20 and some are input manually by a laboratory technician.
- the necessity judgment reference value 118 and the retest necessity judgment logic 116 are read into the RAMI 03 (steps 203 and 204), and the retest necessity judgment is executed for each sample according to the retest necessity judgment logic (step 205).
- retest required is recorded in the retest necessity judgment result 114 (step 206).
- retest not performed is recorded in the retest execution information 112 (step 207).
- a retest is performed (step 208), and “retest execution” is recorded in the retest information 112 (step 209).
- a retest result is input (step 210). Based on the magnitude of the difference between the input retest result and the initial test result, it is determined whether or not the sample really needs to be retested (step 211).
- retest unnecessary is recorded in the retest necessity determination result 114 (step 213).
- the reexamination necessity determination logic optimization processing 117 is executed with reference to the record of the reexamination necessity determination result 114 and the reexamination execution information 112 (step 214).
- the retest necessity logic is modified according to the result (step 215).
- FIG. 8 is a flowchart showing the above-described processing and the optimization processing of FIG. 6 in an organized manner.
- the processing up to step 205 for executing the determination of the necessity of retest for each sample according to the retest necessity determination logic is the same.
- “retest required” is recorded in the retest necessity result 114 (step 206), and the retest is performed (step 208).
- the data that has been judged to be unnecessary for retesting is evaluated for how far away from the identification boundary that separates the samples that need to be retested from those that do not. (Step 220).
- retest required is recorded in the retest necessity judgment result 114 (step 206).
- “retest not performed” is recorded in the retest execution information 112 (step 207).
- retest is performed (step 208), and “retest performed” is recorded in the retest information 112 (step 209).
- the retest result is input (Step 210). Based on the magnitude of the difference between the input retest result and the initial test result, it is determined whether a retest is necessary (step 211).
- Step 211 For the sample determined not to require retest, “retest unnecessary” is recorded in the retest necessity judgment result 114 (step 211).
- the reexamination necessity determination logic optimization processing 117 is executed with reference to the record of the reexamination necessity determination result 114 and the reexamination execution information 112 (step 214).
- the reexamination necessity determination logic is modified according to the result. (Steps 2 15).
- the embodiment described in FIG. 6 and FIG. 8 increases the number of retesting targets compared with the embodiment described in FIG. 5 and FIG. 7, and thus is disadvantageous in terms of simply narrowing down to those requiring retesting. However, it is advantageous from the viewpoint of preventing accidental overlooking of the retest target.
- V is the darkness value of the judgment, and 0.5 is set as the initial value.
- ⁇ 8 which is equivalent to Fig. 5 and Fig. 7, is optimized by learning the neural network using the data of re-requiring and re-requiring recorded in step 2 Can be
- step 220 instead of the condition of t ⁇ —0.1, for example, s ⁇ 0.4.
- the detection near the discrimination boundary can be performed by detecting the inspection value when the neuura network outputs a value slightly lower than the initial value of V (0.5 in this case) (here, 0.4). The value can be determined to be a retest.
- the boundary for determining whether or not reexamination is necessary on a plane with X and y as axes is a straight line.
- the discrimination boundary is a curve, more accurate retest determination can be performed.
- the diagnostic information 122 records the results of a doctor's diagnosis, information on medication, and the like, and can be used to determine whether a retest is necessary. For example, even if a patient's blood glucose level is higher than normal, if the patient has already been diagnosed with diabetes, it is judged that the possibility of a measurement error is low. be able to. In addition, when the diagnosis of hyperlipidemia is made, the tendency of the test value peculiar to the type of the disease is shown, such as a high value of cholesterol and triglyceride. Therefore, by using the information on the diagnosis, it is possible to appropriately judge the possibility of measurement error.
- the disease is exemplified as the information regarding the diagnosis
- information other than the disease name may be used. For example, taking certain medications may result in high test values, Alternatively, for ⁇ which is known to show a low value, the accuracy of the re-test necessity determination can be increased by using the medication information as the information regarding the diagnosis.
- Information about the stage of medical treatment such as whether the disease name has not yet been determined, whether the disease name has been determined and the patient is undergoing treatment, and how much power has passed since the operation, may be used.
- Laboratory values may fluctuate significantly before the disease name is determined or immediately after surgery, etc., but after the disease name is determined and treatment is started, or after a long time has passed since surgery, After the condition is stabilized, the fluctuation of the inspection value becomes small. By using such information, it is possible to increase the accuracy of the retest necessity determination using the change from the previous value.
- Fig. 5 and Fig. 6 for the sake of simplicity, the determination of the necessity of retesting was described as an example of a linear evaluation between two items.However, various items such as single item check, previous value check, item check, etc. Method can be extended and used. Furthermore, reference values or logical formulas for judgment were set for each gender and age, but as in the above example, when using disease names as information on diagnosis, In addition, reference values and logical expressions may be set for each disease name. The age, gender, and disease name of the examinee are read from the diagnosis information 121 as the information related to the diagnosis, and the corresponding reference values and logical formulas are used to determine whether reexamination is necessary. It can be read from the value 1 18 to determine whether a retest is necessary.
- the re-examination necessity logic 1 16 or the re-examination necessity reference value 1 18 is, for example, a standard value and a logical expression for each gender, age, and disease name in the format shown in Fig. 9. Record it.
- the re-examination necessity determination logic 1 16 and the re-examination necessity determination reference value 1 18 are represented by parameters such as reference values used for re-examination necessity determination and logical expressions describing the determination logic. Recording each time can improve the accuracy of the retest necessity determination.
- the retest reference value and the retest logic for ⁇ diagnostic name undetermined '' in advance may be performed using the retest reference value and the retest logic.
- the retest reference values for all A determination using retest logic may be performed, and a retest reference value for at least one type of disease may be determined. If retest is not required in the determination using retest logic, retest may be determined to be unnecessary.
- the patient is likely to be a disease corresponding to the retest reference value and retest logic when it is determined that retest is unnecessary, and as a result, the retest grave value for this disease and retest logic are judged to be unnecessary. It can be considered that it was done.
- the disease candidate estimating process 124 shown in FIG. 4 is used to estimate the patient's disease name from the input test results and the like, and then correspond to the estimated disease name.
- the retest necessity judgment processing may be performed using the retest reference value and the retest judgment logic. In this case, if no disease candidate is output, the input test value is considered to be incorrect, and it can be determined that the sample requires retesting.
- a re-test necessity judgment As a process, a neural network that inputs the current test values, past test values, diagnostic information, etc., and outputs whether re-test is necessary or not may be used.
- the reexamination necessity determination logic 1 16 records parameters describing the network structure such as the number of layers of the neural network, the number of elements in each layer, etc., the connection weight value between the elements, and the like. The network is configured based on the recorded information when the necessity of reexamination is determined.
- fuzzy inference is used as the reexamination necessity determination logic, the membership function used for fuzzy inference is recorded in the reexamination necessity determination logic 1 16.
- Judgment of reexamination necessity ⁇ The result of the judgment (step 2 05) is recorded in the reexamination necessity result 1 14, but information that is the basis of the reexamination necessity result is also recorded here. Good to keep.
- the reason for the retest necessity judgment result is as follows: if it is determined that retest is necessary, why it was determined to be necessary, and if it was determined that retest was unnecessary, why it was determined to be unnecessary Is the information that is the basis for explaining.
- Reasons for determining that retesting is necessary include, for example, inspection items and values that exceeded the reference value in the single item check, inspection items and values that exceeded the reference value in the previous value check, and inter-item check.
- the basis for determining that retesting is unnecessary is based on the information that there is no abnormal value if there is no abnormal value (test value exceeding the reference value) in a single item check, for example.
- the previous value for the test item indicating the abnormal value, or information on diagnosis such as a disease name can be used as a basis for the determination.
- FIGS. 10 and 11 show screen configuration examples of displaying the inspection result and the re-examination necessity determination result on the display of the inspection client 40.
- An example is shown in which the patient's consultation department 835, examination status 840, presence / absence of abnormal values 845, necessity of reexamination 850, etc. is displayed in a list format.
- the test status 840 shows the progress of the tests by type of test: biochemical immunoassay (described as “bioimmune” in the figure) and general test (described as “general” in the figure). Is shown.
- the above information is displayed as a list in order of the order number, but it is also possible to extract the information according to conditions. For example, by setting conditions for specific medical departments, patient names, presence / absence of abnormal values, necessity of re-examination, and extracting only rows that satisfy the conditions, it is possible to refer to the target information efficiently. .
- FIG. 10 In the example of the screen configuration shown in FIG. 10, by operating a mouse or a keyboard attached to the inspection client 40 and selecting one of the lines, more detailed information on the line is displayed.
- Fig. 11 shows a configuration example of the screen displayed at this time.
- FIG. 11 shows an example of a screen configuration on the display 800 of the inspection client 40.
- the screen consists of a basic patient information display area 860, an examination result display area 865, a re-examination necessity result display area 870, and a re-examination information input area 875.
- the basic patient information display area 860 information about the patient, such as the patient ID, name, age, and gender, is displayed.
- the inspection result display area 865 the current value, previous value, and previous values for each inspection item such as TP and Alb are displayed in a table format along with the inspection date.
- the re-examination necessity judgment result display area 870 the judgment result on the necessity of the re-examination by the re-examination necessity judgment processing 113 is displayed, and the information as the basis for the judgment is displayed.
- the reinspection execution information input area 8 7 5 the operator of the system uses the mouse, keyboard, etc. attached to the inspection client 40 to perform the reinspection (whether it was done or not). ) Can be selected and input.
- the laboratory technician may refer to the test results for the sample that the system determines to need to be retested, and make a final decision as to whether the test is really necessary. If the necessary reexamination is automatically performed according to the necessity judgment result, the judgment made by the inspection technician can be omitted in many cases.
- a re-examination necessity record that records the basis of the re-examination necessity is set. Result table By displaying the retest necessity judgment result and the basis of the retest necessity judgment in the display area 870, the technician determines which test value to focus on when making the final judgment. This allows the technician to make quick decisions.
- the re-examination information entered in the re-examination information input area 875 is recorded in the re-examination information 112.
- the re-test necessity determination logic optimization processing 1 1 7 is the test result recorded in the initial test result 1 1 1, the re-test execution information and the re-test result 1 1 5 recorded in the re-test execution information 1 1 2
- rejection determination result 1 14 and the re-examination necessity determination logic 1 16 used in the re-examination necessity determination process 1 13 information is output to optimize the re-examination necessity determination logic 1 16.
- optimize the reference values used in the conventional single-item check, previous value check, item-to-item check, etc .: ⁇ create a histogram of the inspection value distribution using the past inspection results recorded in the inspection result recording means.
- a well-known optimization method is to use a range that includes 95% of the total value around the average value as a reference range.
- the average value ⁇ and the standard deviation ⁇ of the inspection values are obtained, and the range ( ⁇ -1 ⁇ , + k ⁇ ) is used as a reference range. Where k is an appropriate constant.
- such a method of setting a reference range does not use information as to what kind of test value the specimen that needs to be retested is.
- the re-examination necessity determination process 113 when using a method other than the above, various optimal riding methods and learning methods corresponding to the respective methods may be used. For example, using the neural network as the re-test necessity judgment processing 1 1 3 ⁇ This is the test result 1 1 1 output The past test value to be read is used as learning data, and the re-test read from the re-test necessity judgment result 1 1 4 The information on whether or not the specimen is to be subjected to power is used as teacher data, and neural network learning can be performed. For example, when a feed-forward type network is used as a neural network, a pack propagation method can be used as a learning method.
- the retest necessity determination can be considered as a pattern recognition problem in which a pattern using a test value as a feature quantity is classified into two types, a pattern that requires retest and a pattern that does not require retest.
- various known pattern recognition methods can be used as the re-examination necessity determination method.
- a variety of pattern recognition logic construction methods can be used. Therefore, for example, even when using fuzzy inference in the retest necessity decision 1 16, it is possible to optimize the inference method by using the test result and the corresponding retest necessity result. it can.
- a known pattern recognition logic construction method it is possible to obtain an optimal logical expression by learning. In this way, by providing the initial inspection result 11 1 and the re-inspection result 1 15 and the re-inspection execution information 1 12, it is possible to optimize the re-inspection necessity determination logic as described above, The necessity determination accuracy can be improved.
- the optimal logic of the reexamination logic is always executed in the flow of the reexamination
- the user of the present system inputs the reexamination necessity determination logic change. It may be executed.
- the system operator can change the retest necessity determination logic regardless of the retest result.
- the retest reference value or the retest logic in Fig. 9 is updated using an input device. Optimizing the retest necessity determination logic using accumulated retest execution information and test results such as retest results for samples judged to be retested or retest results for some of the samples judged not to be retested As a result, the accuracy of the retest can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Quality & Reliability (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Entrepreneurship & Innovation (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Medical Informatics (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- Analytical Chemistry (AREA)
- Epidemiology (AREA)
- Economics (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
明細書 臨床検査システム 技術分野 Description Clinical test system Technical field
本発明は臨床検査システムに関し、特に検査結果から再検査の必要の有無を判 断する再検要否判定方法に関する。 背景技術 The present invention relates to a clinical test system, and more particularly to a retest necessity determination method for determining whether a retest is necessary based on test results. Background art
病院の検査室、 あるいは検査センター等の検查施設において、 被験者の各種の 項目について検査が行われ、 検查結果が出た際には、 その値の妥当性の検証が行 われている。 例えば検査の結果、 異常値が測定された には、 被験者の検査値 が本当に異常であるのか、 測定上の不具合 (装置の異常、 人為的ミスなど) によ る異常値なのかを判断し、測定上の不具合による可能性が低い場合にはその検查 結果を正しいとして臨床へ報告し、測定上の不具合による可能性が高い場合には、 再検査を実施する。 再検査の必要性は、 検査値の組み合わせや、 その患者 (受診 者) についての前回の検査結果を参照し、 臨床検査技師が過去の経験に基づき判 断していた。 In the examination room of a hospital or an examination center such as an examination center, examinations are performed on various items of the subject, and when the examination results are obtained, the validity of the values is verified. For example, when an abnormal value is measured as a result of a test, it is determined whether the test value of the subject is really abnormal or an abnormal value due to a measurement defect (e.g., a device error or human error). If the possibility of measurement failure is low, the test result is reported to the clinic as correct, and if the possibility of measurement failure is high, a retest is performed. The need for retesting was determined by the laboratory technician based on past experience, referring to the combination of test values and the results of the previous test for the patient (recipient).
近年、 臨床検査の自動化が進み、 検査結果を電子データとして蓄積し、 管理す る臨床検査システムが普及してきている。 臨床検查システムの普及に伴い、 臨床 検査システムに再検査の必要性の有無を判定する論理 (再検要否判定手段) が組 み込まれるようになってきた。 このような再検要否判定手段としては単項目チェ ック、 前回値チヱック、 項目間チェックが代表的な方式として知られている。 単項目チヱックとしては例えば特開平 5—1 5 1 2 8 2号公報に開示されて いる技術が知られている。 この技術は、 検查項目ごとに、 男女別、 年齢別、 妊婦 の区分に従った基準範囲を設定し、 検査値がこの基準範囲を超えた場合に、 異常 結果として報告する。 また、 特開平 7— 2 7 1 8 7 3号公報には、 各検査項目に ついて異常値範囲、 パニック値範囲という 2種類の基準範囲を設ける方法が記載 されて ヽる。 In recent years, clinical tests have been automated, and clinical test systems that accumulate and manage test results as electronic data have become widespread. With the spread of clinical inspection systems, the logic for determining whether re-examination is necessary (re-examination necessity means) has been incorporated into clinical examination systems. As such re-examination necessity determination means, a single item check, a previous value check, and an inter-item check are known as typical methods. As a single item check, for example, a technique disclosed in Japanese Patent Application Laid-Open No. HEI 5-151282 is known. This technology sets a reference range for each test item according to gender, age, and pregnant woman, and if the test value exceeds this reference range, Report as a result. Further, Japanese Patent Application Laid-Open No. 7-271873 describes a method of providing two types of reference ranges for each inspection item, an abnormal value range and a panic value range.
前回値チェックとしては例えば特開平 5— 1 5 1 2 8 2号公報に記載されて いるデルタチェック、特開平 1 1一 2 9 6 6 0 5号公報に記載されている累積デ ルタチェックが知られている。 デルタチエックでは検査項目毎に前回値と今回値 の差に基準値を設け、 前回値と今回値の差が基準値を超えた^^にはエラーとし て報告する。また、累積デルタチェックでは、各検査項目毎に個体内標準偏差(同 一の患者、 受診者についての検査項目毎の検査値の標準偏差) を求め、 前回値と 今回値の差と、 固体内標準偏差との比を計算する。 各検査項目毎に得られた前述 の比を加算した値に基準値を設けることにより、 異常を検出する。 As the previous value check, for example, a delta check described in Japanese Patent Application Laid-Open No. 5-151282 and a cumulative delta check described in Japanese Patent Application Laid-Open No. 11-92665 are known. Have been. In the delta check, a reference value is set for the difference between the previous value and the current value for each inspection item, and an error is reported for ^^ where the difference between the previous value and the current value exceeds the reference value. In addition, in the cumulative delta check, the standard deviation within an individual (the standard deviation of the test value for each test item for the same patient and examinee) is determined for each test item, and the difference between the previous value and the current value is calculated. Calculate the ratio to the standard deviation. An abnormality is detected by providing a reference value to the value obtained by adding the above ratio obtained for each inspection item.
項目間チェックとしては例えば特開平 1 1一 2 9 6 6 0 5号公報に記載され ているように項目間の比に基準値を設け、 異常を判定する方法、 あるいは複数の 検査項目を用いた論理演算式を定義し、論理演算式の真偽に基き異常を判定する 方法が知られている。 発明の開示 As an inter-item check, for example, as described in Japanese Patent Application Laid-Open No. 11-92665, a reference value is set for a ratio between items, and a method of judging abnormality or a plurality of inspection items are used. A method is known in which a logical operation expression is defined and an abnormality is determined based on the truth of the logical operation expression. Disclosure of the invention
上述のような技術を適用することにより、再検要否判定の省力化および効率ィ匕 が実現されつつある。 しかしながら、 技師が再検の必要性があると判断する検査 結果と、 自動再検要否判定による結果とが完全に一致するわけではなく、 より一 層の高精度化が望まれている。検査を行う側としては検查結果に誤りがあるのは 困るので、自動再検要否判定では、一般には、再検すべき検査結果の見落とし(検 出もれ) が無くなるように基準値や判定論理を設定する傾向にあり、 実際には再 検の必要が無い検查結果も、再検の必要性ありと判定する傾向の判定基準とする 場合が多い。 そのため、 自動再検要否判定により再検の必要性ありと判定された 検査結果を、再度検査技師が確認し、 本当に再検が必要な検査結果を抽出する作 業が必要となる。 検査技師の業務の省力化のためにも、 より精度の高い再検要否 判定方法が必要とされている。 By applying the technology as described above, labor saving and efficiency of retest necessity determination are being realized. However, the results of the test that the technician determines that a retest is necessary do not completely match the results of the automatic retest necessity determination, and further improvement in accuracy is desired. Since it is difficult for the inspection side to have an error in the inspection result, the determination of the necessity of automatic re-inspection is generally carried out by using a reference value or a judgment logic so that there is no oversight of the inspection result to be re-inspected (missing detection). In many cases, a detection result that does not actually need to be re-examined is used as a criterion for judging the necessity of re-examination. Therefore, a laboratory technician checks again the test results determined to be necessary by the automatic retest necessity judgment, and extracts the test results that really need to be retested. Work is required. In order to save labor for inspection technicians, a more accurate method for determining whether reexamination is necessary is needed.
また、 自動再検要否判定を適用する場合、 予め数多くの基準値、 あるいは論理 式を設定する必要があるばかりでなく、 各施設 (病院) 毎に受診に訪れる患者の 構成 (疾患、 年齢等の構成割合) が異なるとともに、 技師が再検を実施する基準 も異なるため、 最適な基準値、 論理式の設定が困難である。 そのため、 基準値、 論理式が容易に最適化できず、 自動再検要否判定を有効に適用することはできな い。 In addition, when applying the automatic reexamination necessity judgment, it is not only necessary to set a large number of reference values or logical expressions in advance, but also the composition of patients (disease, age, etc.) who visit each facility (hospital) for consultation. And the criteria for technicians to conduct retests are also different, making it difficult to set optimal reference values and logical formulas. As a result, the standard values and logical expressions cannot be easily optimized, and the automatic retest necessity judgment cannot be applied effectively.
本発明は上記事情に鑑みてなされたものであり、 より高精度な自動再検要否判 定を実現するとともに、再検要否判定で用いる基準値や論理を容易に最適ィヒ可能 な臨床検查システムを提供することを目的としている。 The present invention has been made in view of the above circumstances, and realizes a more accurate automatic retest necessity determination, and can easily optimize a reference value and a logic used in the retest necessity determination. It aims to provide a system.
検査結果に対し再検査の必要性の有無を判定する再検要否判定手段を有する 臨床検査システムにおいて、 再検査要と判定された検体に対しては、 すでに被験 者から得ている検体を使用してすベての再検査を行う。 この再検査の結果と先の 検查結果結果との比較を行い、 これを利用して再検要否判定論理の修正を行う。 図面の簡単な説明 In a clinical test system that has a retest necessity determination unit that determines whether a retest is necessary for a test result, a sample that has already been obtained from a Perform all re-examinations. The result of this re-examination is compared with the result of the previous inspection, and the re-examination necessity determination logic is corrected using this result. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明を適用することができる臨床検査システムの構成例の一つを示 す図である。 FIG. 1 is a diagram showing one configuration example of a clinical test system to which the present invention can be applied.
図 2は本発明を適用することができる臨床検査システムの構成例の他の一つ を示す図である。 FIG. 2 is a diagram showing another example of the configuration of the clinical test system to which the present invention can be applied.
図 3は本発明を適用することができる臨床検査システムの構成例のさらに他 の一つを示す図である。 FIG. 3 is a diagram showing still another example of the configuration of the clinical test system to which the present invention can be applied.
図 4は本発明に係る検查サーバの基本的なブロック構成を示す図である。 図 5は本発明に係る再検要否判定論理の最適化の原理の一つの実施例を説明 する図である。 図 6は本発明に係る再検要否判定論理の最適ィヒの原理の他の実施例を説明す る図である。 FIG. 4 is a diagram showing a basic block configuration of the inspection server according to the present invention. FIG. 5 is a diagram for explaining one embodiment of the principle of optimization of the retest necessity determination logic according to the present invention. FIG. 6 is a diagram for explaining another embodiment of the principle of optimality of the retest necessity determination logic according to the present invention.
図 7は、 図 5に係る再検要否判定論理の最適化の処理のフ口一チヤ一トを示す 図である。 FIG. 7 is a diagram showing a flowchart of a process of optimizing the retest necessity determination logic according to FIG.
図 8は、 図 6に係る再検要否判定論理の最適化の処理のフ口一チヤ一トを示す 図である。 FIG. 8 is a diagram showing a flowchart of the process of optimizing the retest necessity determination logic according to FIG.
図 9は本発明に係る再検要否判定論理で再検要否判定に使用する基準値等の パラメータや、 判定論理を記述した論理式の例を示す図である。 FIG. 9 is a diagram illustrating an example of a parameter such as a reference value used in the retest necessity determination logic according to the present invention and a logical expression describing the determination logic.
図 1 0は本発明に係る検査クライアントのディスプレイ上に検査結果、及ぴ再 検要否判定結果を表示する画面構成例の一つを示す図である。 FIG. 10 is a diagram showing one example of a screen configuration for displaying the inspection result and the result of the necessity of re-inspection on the display of the inspection client according to the present invention.
図 1 1は本発明に係る検査クライアントのディスプレイ上に検査結果、 及び再 検要否判定結果を表示する画面構成例の他の一つを示す図である。 発明を実施するための最良の形態 FIG. 11 is a diagram showing another example of the screen configuration for displaying the inspection result and the re-examination necessity determination result on the display of the inspection client according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1—図 3は本発明を適用することができる臨床検査システムの構成例を示 す図である。 図 1において、 分析装置サーバ 2 0、 検査サーバ 3 0および検査ク ライアント 4 0は病院内、 あるいは検査室内等に敷設された L AN 5 0に接続さ れる。 それぞれのサーバ 2 0, 3 0、 検査クライアント 4 0としては、 例えばパ 一ソナルコンピュータ等を使用することができる。 L AN 5 0には、 さらに、 第 1の検査装置 1 1、第 2の検査装置 1 2および第 3の検査装置 1 3が接続される。 分析装置サーバ 2 0は各検査装置をコントロールするとともに、各検査装置から 出力される検査結果等に分析等の必要な処理を施こして、 LAN 5 0を経由して 検査サーバ 3 0へ情報を送る。検査サーバ 3 0は得られた検查結果等の情報を蓄 積するとともに、 検査結果に対する再検の必要性の有無を判定する。 検査クライ アント 4 0は検査サーバ 3 0に蓄積された検査結果や、検査サーバ 3 0によって 判定された再検の必要性の有無、 等の情報を参照することができる。 また、 自動 化されていない検査に対する検查結果は、検查クライアント 4 0を用いて入力す ることができる。 この場合、入力された検査結果等のデータは検査クライアント1 to 3 are diagrams showing a configuration example of a clinical test system to which the present invention can be applied. In FIG. 1, an analyzer server 20, an inspection server 30, and an inspection client 40 are connected to a LAN 50 installed in a hospital or an inspection room. As each of the servers 20 and 30 and the inspection client 40, for example, a personal computer or the like can be used. The first inspection device 11, the second inspection device 12, and the third inspection device 13 are further connected to the LAN 50. The analysis device server 20 controls each inspection device, performs necessary processing such as analysis on the inspection result output from each inspection device, and transmits information to the inspection server 30 via the LAN 50. send. The inspection server 30 accumulates information such as the obtained inspection result, and determines whether or not the inspection result requires re-examination. The inspection client 40 receives the inspection results accumulated in the inspection server 30 and the inspection server 30. It is possible to refer to information such as the necessity of the determined retest. In addition, the inspection result for the inspection that is not automated can be input using the inspection client 40. In this case, the input data such as inspection results
4 0から検查サ一パ 3 0へ送られ、 検査サーバ 3 0内に蓄えられる。 It is sent from 40 to the inspection server 30 and stored in the inspection server 30.
図 2は、 図 1で説明したシステムが構築された病院 5 0 0と判定論理学習施設 Figure 2 shows the hospital 500 and the decision logic learning facility where the system described in Figure 1 was built.
5 5 0とが通信回線 5 4 0を介し、データの送受信を行うことを可能にしたシス テム構成の例である。 判 理学習施設 5 5 0には、 学習サーバ 6 0が設置され ており、学習サーバ 6 0は第 1の通信手段 6 1 0を介して通信回線 5 4 0と接続 されている。検査サーバ 3 0は第 2の通信手段 6 2 0を介しを介して通信回線 5 4 0と接続されている。検査サーバ 3 0と学習サーバ 6 0は通信回線 5 4 0を介 し、データの送受信を行うことが可能である。 通信回線 5 4 0としてはデータ通 信が可能な様々な回線を使用することができ、例えば電話回線を使用することが できる。 また、 第 1の通信手段 6 1 0および第 2の通信手段 6 2 0は回線の種類 に応じた適当な通信手段を用いる。例えば通信回線 5 4 0として電話回線を使用 する場合には、第 1の通信手段 6 1 0およぴ第 2の通信手段 6 2 0としてはモデ ムを使用することができる。 この例によれば、 図 1の例では検查サーバ 3 0で行 われている検査結果に対する再検の必要性の有無の判定基準の最適化等を学習 サーバ 6 0に委ねることができる。 したがって、 学習サーバ 6 0は通信回線 5 4 0に接続された他の病院のデータをも利用した最適化を行うことができるから、 図 1のシステムよりは、 より充実した最適化が期待できる。 550 is an example of a system configuration that enables data transmission / reception via a communication line 540. A learning server 60 is installed in the court learning facility 550, and the learning server 60 is connected to a communication line 540 via a first communication means 610. The inspection server 30 is connected to the communication line 540 via the second communication means 620. The inspection server 30 and the learning server 60 can transmit and receive data via the communication line 540. As the communication line 540, various lines capable of data communication can be used, and for example, a telephone line can be used. Further, as the first communication means 6 10 and the second communication means 6 20, appropriate communication means according to the type of line is used. For example, when a telephone line is used as the communication line 540, a modem can be used as the first communication means 610 and the second communication means 6200. According to this example, in the example of FIG. 1, it is possible to leave to the learning server 60 the optimization of the criterion for judging the necessity of the retest for the test result performed by the test server 30. Therefore, since the learning server 60 can perform the optimization using the data of other hospitals connected to the communication line 540, a more complete optimization can be expected than the system of FIG.
図 3は、 図 1で説明したシステムが構築された検査センター 5 1 0を通信回線 5 4 0を介して接続された各病院 5 2 0 , 5 3 0が利用する形の例である。 各病 院には検査結果参照端末 7 0が設置されていて、依頼した検査対象についての検 查結果を知ることができる。この例によれば、各病院は設備投資を低減しながら、 より高度の 化のなされた再検査を含む検査を実施することができる。 FIG. 3 is an example of a form in which each of the hospitals 5200 and 5300 connected via a communication line 5400 uses the inspection center 5100 in which the system described in FIG. Each hospital is provided with a test result reference terminal 70, which allows the user to know the test results for the requested test object. According to this example, each hospital can perform a test including a more sophisticated retest while reducing capital investment.
本発明は、いずれの実施形態を取る場合にも適用することができるものであり、 検査サーバー 3 0による再検要否判定をより改善することができる。 The present invention can be applied to any of the embodiments, The retest necessity determination by the test server 30 can be further improved.
図 4は、 本発明に係る検査サーバ 3 0の構成の基本的なプロック図を示す。 1 0 0はシステムパスである。 1 0 1は C P Uである。 1 0 2はデータベースであ り、 初期検査結果 1 1 1、 再検要否判定結果 1 1 4あるいは再検結果 1 1 5のよ うな結果のデータ、 再検実施情報 1 1 2、 診断情報 1 2 1、 契約情報 1 2 2、 依 頼情報 1 2 3あるいは再検要否判定論理 1 1 6、再検要否判定基準値 1 1 8のよ うな各種の情報、 さらには、 再検要否判定処理 1 1 3、 再検要否判定論理最適化 処理 1 1 7、疾患候補推定処理 1 2 4等の実行プログラムなどが格納されている。 1 0 3は RAMであり各種の処理を実行するためのワークエリアとして使用さ れるメモリ領域である。 1 0 4は入出力インタフェイスであり、 検査結果入力、 診断情報入力、 再検実施情報入力、 契約情報入力等の各種の情報の入力をすると ともに、検査結果出力、 再検結果のような各種の情報を出力する。 FIG. 4 shows a basic block diagram of the configuration of the inspection server 30 according to the present invention. 100 is a system path. 101 is CPU. Numeral 102 is a database, which is data such as initial test results 1 1 1, re-test necessity judgment results 1 1 4 or re-test results 1 1 5, re-test execution information 1 1 2, diagnostic information 1 2 1, Various information such as contract information 1 2 2, request information 1 2 3 or re-examination necessity determination logic 1 16, re-examination necessity judgment reference value 1 18, and re-examination necessity judgment processing 1 1 3 Execution programs for re-test necessity determination logic optimization processing 117, disease candidate estimation processing 124, and the like are stored. Reference numeral 103 denotes a RAM, which is a memory area used as a work area for executing various processes. Reference numeral 104 denotes an input / output interface for inputting various information such as test result input, diagnostic information input, retest execution information input, contract information input, and various information such as test result output and retest results. Is output.
この実施例は検査サーバ 3 0の持つべき機能としてのデータ、 処理プログ ラム等を挙げたものであり、 すべてを網羅しているわけではない。 また、 図 2に 示すようなシステム構成では、再検要否判定論理最適化処理等は判定論理学習施 設 5 5 0で実行されるものであり、 検查サーバ 3 0はこれと連携して処理を進め ることになる。 This embodiment enumerates data and processing programs as functions that the inspection server 30 should have, and does not cover all of them. In the system configuration shown in FIG. 2, the re-examination necessity determination logic optimization processing and the like are executed by the decision logic learning facility 550, and the inspection server 30 cooperates with the re-examination logic. Will be promoted.
このような構成を持つシステムの下で、本発明に係る再検要否判定論理の最適 化を実現する具体的な処理について説明する。 Specific processing for optimizing the retest necessity determination logic according to the present invention in a system having such a configuration will be described.
ここでは一例として線形判別式による 2項目間チェックの最適化について説 明する。具体的には、再検要否判定処理 1 1 3で 2項目の検査値 x、 yを使用し、 Here, as an example, optimization of a check between two items using a linear discriminant will be described. Specifically, in the re-examination necessity determination process 1 1 3 using two test values x, y,
( 1 ) 式に従い tの値を計算する。 t≥0の場合は再検要と判定され、 t < 0の 場合は再検不要と判定される。 Calculate the value of t according to equation (1). If t≥0, it is determined that reinspection is necessary, and if t <0, it is determined that reinspection is unnecessary.
t = a x + b y + c ( 1 ) t = a x + b y + c (1)
ここで a、 b、 cは定数であり、 (1 ) 式とともに図 4のデータベースの再検要否 判定論理 1 1 6に記録されている。 この値の初期値は、 予め収集したデータを使 用し、 最適ィ匕した値を設定しておく力、、 あるいは技師の過去の経験に基く値を設 定しておく。 この場合、 病院毎の患者の特性 (どのような疾患の患者が多いか) や、 検査の手法、 検査装置、 試薬等の条件により最適な値は異なるため、 病院毎 に最適化を行うことは当然である。 Here, a, b, and c are constants, which are recorded together with the expression (1) in the database re-examination necessity determination logic 116 of FIG. The initial value of this value uses data collected in advance. Use the power to set the optimal value, or set the value based on the engineer's past experience. In this case, since the optimal value differs depending on the characteristics of the patient at each hospital (what kind of disease is most common) and the conditions of the test method, test equipment, reagents, etc., it is not possible to optimize for each hospital. Of course.
このときの再検要否判定論理の最適ィ匕の原理を図 5を参照して説明する。 図 5 ( a ) は検査値 x、 検査値 yをそれぞれ横軸、 縦軸とし、 検査値の分布を Xで示すデータ群 9 2 0、 〇で示すデータ群 9 4 0により示している。 直線 9 5 0は直線 a x + b y + c = 0を示し、 この直線の上側のデータが再検要と判定さ れ、 下側のデータが再検不要と判定される。 したがって、 Xで示すデータ群 9 2 0に対しては再検要否判定結果 1 1 4に 「再検要」 と記録され、 〇で示すデータ 群 9 4 0に対しては再検要否判定結果 1 1 4に 「再検不要」 と記録されている。 本発明では、 Xで示すデータ群 9 2 0に対しては、 データ群 9 2 0の各検体に ついて再検査を施す。 一般には、 検体は長時間経過すると、 検体としては不適切 なものとなるので、 この再検査は最初の検査結果 1 1 1が出ると、 すぐに実施さ れるものとする。 もちろん、 技師が実際に再検が必要かどうかを見直して不要と 判定したものは省略するものとしても良い。 The principle of the optimality of the retest necessity determination logic at this time will be described with reference to FIG. In FIG. 5 (a), the test value x and the test value y are set on the horizontal axis and the vertical axis, respectively, and the distribution of the test values is indicated by a data group 920 indicated by X and a data group 940 indicated by 〇. A straight line 950 indicates a straight line ax + by + c = 0, and the data on the upper side of this straight line is determined to require retesting, and the data on the lower side is determined to be unnecessary. Therefore, for the data group 920 indicated by X, the retest necessity judgment result 1 14 is recorded as “retest required”, and for the data group 940 indicated by 4, the retest necessity judgment result 1 1 4 records "No need to retest". In the present invention, for the data group 920 indicated by X, a retest is performed on each sample of the data group 920. In general, the specimen will be unsuitable as a specimen after a long period of time, so this retest should be performed as soon as the first test result is obtained. Of course, the technician may review whether or not reexamination is actually necessary, and omit those that are judged to be unnecessary.
再検査の結果を図 5 ( b ) に示す。 図 5 ( b ) で太線の Xで示すデータ群は、 再検査の結果が初期検査結果と大きく異ならなかったデータ群を示す。 つまり, 再検しても同結果, すなわち再検が無駄だったことになる。 これらのデータは、 改めて、 再検要否判 ¾^果 1 1 4に再検不要と記録される。 一方、 元の太さで破 線で囲って示す Xで示すデータ群の検体は、 再検査の結果、矢印のついた破線で 対応関係を示す△の位置に検査値が変化したことを示す。 すなわち、 これらの検 体の初回の検査は何らかの異常で信頼性が無く、再検査で確からしレヽ検查値の範 囲のデータとなったため, 再検査要との判定が適切だったと評価できる。 The results of the retest are shown in Fig. 5 (b). The data group indicated by a thick X in FIG. 5 (b) indicates a data group in which the results of the retest did not differ significantly from the results of the initial test. In other words, the same result is obtained even if the retest is performed, that is, the retest is useless. These data will be recorded again in the Judgment of Necessity of Re-examination. On the other hand, the specimens in the data group indicated by X surrounded by a broken line with the original thickness indicate that the test value changed to the position of △ indicating the corresponding relationship by the broken line with an arrow as a result of the retest. In other words, the initial inspection of these specimens was unreliable due to some abnormalities and was confirmed by re-inspection, resulting in data within the range of the inspection value, and it can be evaluated that the determination that re-inspection was necessary was appropriate.
したがつて、再検要否判定論理最適化処理 1 1 7では再検要否判定結果 1 1 4 のデータの内、再検要との判定が不適切だつた検査結果と適切だった検査結果の 分布から再検要否の閾値となる直線 9 5 0を、 (2 ) 式で示す直線 9 6 0に変更 することができる。 この (2 ) 式の内容は再検要否判^ ¾理 1 1 6に記録されて いる判 ^理を修正するものとして採用される。 Therefore, the re-test necessity determination logic optimization process 1 17 includes the re-test necessity judgment result 1 1 4 From the distribution, it is possible to change the straight line 950, which is the threshold of the necessity of retest, to the straight line 960 shown by the equation (2). The content of the expression (2) is adopted as a correction of the judgment recorded in the judgment 1 16 of the necessity of reexamination.
a ' x + b ' y + c ' = 0 ( 2 ) a 'x + b' y + c '= 0 (2)
本発明による再検とその結果の評価は、 当初の検査結果を技師が実際に再検が 必要かどうかを見直すことによって得られる結果とは厳密には一致しないかも しれないが、 本発明では、被検者の負担、 技師の負担を軽減して、 より合理的な 再検要否判定論理を得ることができる。 The retest according to the present invention and the evaluation of the results may not exactly correspond to the results obtained by the technician reviewing whether or not the retest is actually necessary, but the present invention The burden on the operator and the burden on the technician can be reduced, and more reasonable reexamination necessity determination logic can be obtained.
このような検体の検査結果についての評価が変わる大きな原因は計測機器あ るいは試薬によるものが大部分である。もちろん、この種の検査を行う施設では、 毎日、 一定の予備的な作業により、 計測 «あるいは試薬についてのチェックが なされているが、現実にこの種の無用な再検査の評価がなされているのは事実で ある。 したがって、 図 5 ( a )、 ( b ) では、 再検要と判定されたものについて の再検査によって、 より合理的な再検要否判定論理の最適化を探求する例を説明 したが、 逆に、 再検不要とされた〇で示すデータ群 9 4 0についても、 再検要と 判断すぺきものがある可能性があるわけである。 The major reasons for the change in the evaluation of test results for such specimens are mostly due to measuring instruments or reagents. Of course, facilities that perform this type of testing routinely perform certain preliminary tasks to check for measurements or reagents, but in practice this type of useless retesting is being evaluated. Is a fact. Therefore, in Fig. 5 (a) and (b), an example was described in which a more reasonable optimization of the re-test necessity determination logic was pursued by re-examination of those determined to be re-requested. Even for the data group 940 indicated by ①, for which reexamination is not necessary, there is a possibility that there is something that needs to be judged as reexamination.
図 6 ( a )、 ( b ) を参照して再検不要とされたデータ群から再検要と判断が変 更される例について説明する。 図 6 ( a ) は、 図 5 ( a ) と同じ初期の検査結果 を示すデータである。 この例では、 〇で示す、 一旦、 再検不要と判定されたデー タ群 9 4 0の内、 直線 a x + b y + c = 0の近傍に存在するデータに対しては、 再検査を施す。 まず、 Xで示すデータ群の検体については、 再検要と判定される のですベて再検査する。 この場合も、 検体は長時間経過すると、 検体としては不 適切なものとなるので、 この再検査は最初の結果が出ると、すぐに実施されるも のとする。再検査の結果と先の初回の検查結果との比較で X印の大半が検査値が 変化し閾値 9 5 0の下側に変わったとする。 つまり、再検査要との判定が正しか つたと評価される。 すると、 この分布から先の判定で〇で示す再検査不要と一旦 判定されたデータも検査値が正しいかどう力、疑わしいといえる。 そこで、 本発明 では、 図 6 ( b ) で太線の〇で示すデータ群の內、破線で囲って示す〇で示す閾 値に近レ、データ群の検体については、先の再検不要との判定を修正し再検要と判 定する。 つまり、 改めて、 再検要否判定結果 1 1 4に再検要と記録される。 With reference to FIGS. 6 (a) and 6 (b), an example will be described in which the retest is determined to be necessary from the data group for which retest is unnecessary. FIG. 6 (a) is data showing the same initial inspection results as FIG. 5 (a). In this example, reexamination is performed on data existing near the straight line ax + by + c = 0 in the data group 940 once determined to be unnecessary for reexamination as indicated by 〇. First, the specimens in the data group indicated by X are retested because they are judged to be necessary for retesting. In this case, too, the specimen will be unsuitable as a specimen after a long period of time, so this retest should be performed as soon as the first result is obtained. In the comparison between the result of the reexamination and the result of the first initial inspection, it is assumed that most of the X-marks have changed the inspection values and have changed to below the threshold value of 950. In other words, it is evaluated that the reinspection is necessary. Then, from this distribution, it was once judged that re-examination indicated by 〇 in It can be said that the determined data is also suspicious whether the test value is correct. Therefore, in the present invention, in the data group indicated by the thick line 群 in FIG. 6 (b), the threshold value indicated by the triangle 內 surrounded by the broken line is close to the threshold value. Is corrected and judged to be a re-examination. In other words, it is recorded again as the necessity of reinspection in the reinspection necessity determination result 114.
具体的には、 再検要否判定論理最適化処理 1 1 7では、 再検要否判定結果 1 1 4のデータの内、 再検された結果と初回の結果との比較をした値の変化から再検 することが適切だったとの評価を行い、 再検が適切だったと評価された元の検査 値の分布から再検要と判定する直線 9 5 0を、 (3 ) 式で示す直線 9 7 0に修正 し、過去のデータのうち所定の範囲までさかのぼって修正された直線であらため て再検要否の判定を行う。 この (3 ) 式の内容は再検要否判定論理 1 1 6に記録 されている判定要否論理を修正するものとして採用される。 Specifically, in the re-test necessity determination logic optimization process 1 17, the re-test necessity judgment result 1 14 is re-examined from the change in the value obtained by comparing the re-test result with the first result among the data of the re-test necessity judgment result 1 14 Was evaluated to be appropriate, and the straight line 950 that was judged to be necessary for retesting from the distribution of the original test values that were evaluated to be appropriate for retesting was corrected to the straight line 970 shown in equation (3), It is determined again whether or not it is necessary to re-examine the past data with a straight line that has been corrected to a predetermined range. The content of the expression (3) is adopted as a modification of the judgment necessity logic recorded in the retest necessity judgment logic 116.
a " x + b " y + c " = 0 ( 3 ) a "x + b" y + c "= 0 (3)
この^も、 本発明による再検とその結果の評価は、 当初の検査結果を技師が 実際に再検が必要かどうかを見直すことによって得られる結果とは厳密には一 致しないかもしれないが、 本発明では、 被検者の負担、 技師の負担を軽減して、 より合理的な再検要否判定論理を得ることができる。 この例は、 再検の費用の低 減の面ではメリットがあるとは言えないが、 より見落としの無い再検評価を実現 できるものといえる。 Again, the retest according to the present invention and the evaluation of the results may not exactly match the results obtained by the technician reviewing whether or not the original test results actually require a retest. According to the present invention, the burden on the subject and the burden on the technician can be reduced, and a more reasonable retest necessity determination logic can be obtained. Although this example is not advantageous in terms of reducing the cost of re-examination, it can be said that it is possible to realize re-examination evaluation without oversight.
なお、 再検が適切だったとの評価結果が大半をしめた場合に、 上記のように、 再検要否判定論理を修正して過去のデータの判定をあらためて行う代わりに、単 に、 「過去に再検査不要と判定した結果は疑わしい」 との警告を発する構成とし ても同様な効果が得られる。 If most of the evaluation results indicate that retesting was appropriate, instead of modifying the retesting necessity determination logic and re-determining past data as described above, simply The same effect can be obtained by issuing a warning that the result of the determination that the inspection is unnecessary is suspicious.
図 7は、 上述した処理の內、 図 5の最適化の処理を整理して示すフローチヤ一 トである。 まず、 すべての検体についての検査を所定の項目について行う (ステ ップ 2 0 1 )。 この検査結果は入出力インタフェイス 1 0 4を介して入力されデ ータベース 1 0 2の初期検査結果 1 1 1に保存される (ステップ 2 0 2 )。 もち ろんこれらのデータには分析装置サ^"パ 20から自動的に入力されるものがあ るとともに、 検査技師により手作業で入力されるものもある。 次いで再検要否判 定の為の再検要否判定基準値 118、 再検要否判定論理 116を RAMI 03に 読み込む (ステップ 203、 204)。 再検要否判定論理にしたがって各検体に ついての再検要否の判定を実行する (ステップ 205)。 ここで再検要と判定さ れた検体に対しては、 再検要否判定結果 114に 「再検要」 と記録する (ステツ プ 206)。 一方、 ここで再検不要と判定された検体に対しては、 再検実施情報 112に 「再検不実施」 と記録する (ステップ 207)。 ステップ 205で再検 要と判定された検体については、再検査を実施する(ステップ 208)とともに、 再検実施情報 112に 「再検実施」 と記録する (ステップ 209)。 さらに、 再 検結果を入力する (ステップ 210)。 入力された再検結果と初期検査結果との 差異の大きさに基づき、 本当に再検が必要な検体であったかどうかを判定する (ステップ 211)。 ここで再検不要と判定された検体に対しては、 再検要否判 定結果 114に 「再検不要」 と記録する (ステップ 213)。 次いで、 再検要否 判定結果 114およぴ再検実施情報 112の記録を参照して再検要否判定論理 最適化処理 117を実行する (ステップ 214)。 この結果に応じて再検要否判 定論理を修正する (ステップ 215)。 FIG. 7 is a flowchart showing the above-described processing and the optimization processing of FIG. 5 in an organized manner. First, a test is performed on all specimens for predetermined items (step 201). This inspection result is input via the input / output interface 104 and stored in the initial inspection result 111 of the database 102 (step 202). Mochi Of course, some of these data are automatically input from the analyzer 20 and some are input manually by a laboratory technician. The necessity judgment reference value 118 and the retest necessity judgment logic 116 are read into the RAMI 03 (steps 203 and 204), and the retest necessity judgment is executed for each sample according to the retest necessity judgment logic (step 205). For the sample judged to be retested here, “retest required” is recorded in the retest necessity judgment result 114 (step 206). On the other hand, with respect to the sample determined to be unnecessary for retest, "retest not performed" is recorded in the retest execution information 112 (step 207). For the sample determined to require retesting in step 205, a retest is performed (step 208), and “retest execution” is recorded in the retest information 112 (step 209). Further, a retest result is input (step 210). Based on the magnitude of the difference between the input retest result and the initial test result, it is determined whether or not the sample really needs to be retested (step 211). Here, for the sample determined not to require retest, “retest unnecessary” is recorded in the retest necessity determination result 114 (step 213). Next, the reexamination necessity determination logic optimization processing 117 is executed with reference to the record of the reexamination necessity determination result 114 and the reexamination execution information 112 (step 214). The retest necessity logic is modified according to the result (step 215).
図 8は、 上述した処理の內、 図 6の最適化の処理を整理して示すフローチヤ一 トである。 この場合も再検要否判定論理にしたがって各検体についての再検要否 の判定を実行するステップ 205までの処理は同一である。 ここでは再検要と判 定された検体に対しては、 再検要否判定結果 114に 「再検要」 と記録し (ステ ップ 206)、 再検査を実施する (ステップ 208)。 一方、 ここで再検不要と判 定された検体に対しては、 再検不要と判定される結果となったデータ力 再検が 必要な検体と不要な検体を分ける識別境界からどの程度離れているかを評価す る (ステップ 220)。 例えば (1) 式による tを利用し t≥一 0. 1であるか 否かを評価し、 t≥—0. 1であれば、 図 7で説明した再検要否の判定を実行す るステップ 2 0 5の処理で 「再検要」 と判定されたのと同様に扱う。 識別境界か ら十分、 例えば tが _ 0 . 1より小さい程度に離れていれば、 図 7で説明したス テツプ 2 0 5の処理で 「再検不要」 と判定されたときの処理を行う。 FIG. 8 is a flowchart showing the above-described processing and the optimization processing of FIG. 6 in an organized manner. In this case as well, the processing up to step 205 for executing the determination of the necessity of retest for each sample according to the retest necessity determination logic is the same. Here, for the sample judged to be retested, “retest required” is recorded in the retest necessity result 114 (step 206), and the retest is performed (step 208). On the other hand, for specimens that are determined to be unnecessary for retesting, the data that has been judged to be unnecessary for retesting is evaluated for how far away from the identification boundary that separates the samples that need to be retested from those that do not. (Step 220). For example, using t in Eq. (1), it is evaluated whether t ≥ 1 0.1, and if t ≥ --0.1, the determination of the necessity of retest described in Fig. 7 is executed. It is handled in the same way as the determination of "retest required" in step 205. If it is sufficiently away from the discrimination boundary, for example, t is smaller than _0.1, the processing when it is determined that "retest is unnecessary" in the processing of step 205 described in FIG. 7 is performed.
ステップ 2 2 0で t≥一 0 . 1と判定された検体に対しては、 再検要否判定結 果 1 1 4に 「再検要」 と記録する (ステップ 2 0 6 )。 一方、 ここで tく一 0 . 1と判定された検体に対しては、 再検実施情報 1 1 2に 「再検不実施」 と記録す る (ステップ 2 0 7 )。 ステップ 2 2 0で t≥— 0 . 1と判定された検体につい ては、再検査を実施する(ステップ 2 0 8 ) とともに、再検実施情報 1 1 2に「再 検実施」 と記録する (ステップ 2 0 9 )。 さらに、 再検結果を入力する (ステツ プ 2 1 0 )。 入力された再検結果と初期検査結果との差異の大きさに基づき、 本 当に再検が必要であつたかどうかを判定する (ステップ 2 1 1 )。 ここで再検不 要と判定された検体に対しては、 再検要否判定結果 1 1 4に 「再検不要」 と記録 する (ステップ 2 1 3 )。 次いで、 再検要否判定結果 1 1 4および再検実施情報 1 1 2の記録を参照して再検要否判定論理最適化処理 1 1 7を実行する (ステツ プ 2 1 4 )。この結果に応じて再検要否判定論理を修正する。(ステップ 2 1 5 )。 図 6、 図 8で説明した実施形態は図 5、 図 7で説明した実施形態と比較すると 再検の実施対象が増加することになるから、単純に再検の必要なものに絞るとい う観点では不利であるが、誤って再検対象を見落とすことを防止するという観点 では有利である。 For the sample judged as t≥10.1 in step 220, “retest required” is recorded in the retest necessity judgment result 114 (step 206). On the other hand, for the sample determined to be 0.1 times 0.1, “retest not performed” is recorded in the retest execution information 112 (step 207). For the sample determined as t≥—0.1 in step 220, retest is performed (step 208), and “retest performed” is recorded in the retest information 112 (step 209). In addition, the retest result is input (Step 210). Based on the magnitude of the difference between the input retest result and the initial test result, it is determined whether a retest is necessary (step 211). Here, for the sample determined not to require retest, “retest unnecessary” is recorded in the retest necessity judgment result 114 (step 211). Next, the reexamination necessity determination logic optimization processing 117 is executed with reference to the record of the reexamination necessity determination result 114 and the reexamination execution information 112 (step 214). The reexamination necessity determination logic is modified according to the result. (Steps 2 15). The embodiment described in FIG. 6 and FIG. 8 increases the number of retesting targets compared with the embodiment described in FIG. 5 and FIG. 7, and thus is disadvantageous in terms of simply narrowing down to those requiring retesting. However, it is advantageous from the viewpoint of preventing accidental overlooking of the retest target.
なお、 ここでは線形判別式を用いた例について説明したが、他の再検判定方法 も適用可能である。 例えばニューラルネットワークを用いた再検判定にも、 同様 の最適化を行うことができる。 Although an example using a linear discriminant has been described here, other retest determination methods are also applicable. For example, the same optimization can be performed for retest determination using a neural network.
検査結果、 診断情報等を入力する複数の入力素子と、 再検の要否を判定する 1 つの出力素子を有するネットワークを使用し、 再検の必要がある検査結果、診断 情報を入力した場合には出力 sが 1、必要が無いデータの検査結果等を入力した 場合には出力 sが 0になるよう、 予め学習しておく。 そして、 未知のデータが入 力された場合出力 S ≥ Vの^は再検要、 S < Vの場合は再検不要、と判定する。 Uses a network with multiple input elements for inputting test results, diagnostic information, etc., and one output element for determining the necessity of retesting. Outputs when test results and diagnostic information that require retesting are input. It is learned in advance that s is 1 and the output s is 0 when the inspection result of unnecessary data is input. And the unknown data It is determined that ^ for output S ≥ V requires retesting when input, and retesting is unnecessary when S < V .
Vは判定の闇値であり、 初期値としては 0 . 5を設定する。 V is the darkness value of the judgment, and 0.5 is set as the initial value.
図 5、 図 7に相当する^ 8こは、 ステップ 2 1 4において再検要否判定結果 1 1 4に記録された再検要、再検不要というデータを教師データとしてニューラル ネットワークを学習することにより、 最適化することができる。 また、 図 6、 図 8に相当する場合には、 ステップ 2 2 0において、 t≥— 0. 1という条件の代 わりに、 例えば s≥0 . 4とする。 このように、 二ユーラ/レネットワークが Vの 初期値 0 . 5よりわずかに低い値 (ここでは 0 . 4 ) より大きな値を出力する際 の検査値を検出することにより、識別境界近傍の検査値を再検要と判定すること ができる。 ^ 8, which is equivalent to Fig. 5 and Fig. 7, is optimized by learning the neural network using the data of re-requiring and re-requiring recorded in step 2 Can be In addition, in the case corresponding to FIG. 6 and FIG. 8, in step 220, instead of the condition of t≥—0.1, for example, s≥0.4. In this way, the detection near the discrimination boundary can be performed by detecting the inspection value when the neuura network outputs a value slightly lower than the initial value of V (0.5 in this case) (here, 0.4). The value can be determined to be a retest.
線形判別式を用いた場合には、 図 5、 図 6に示すように、 X、 yを軸とする平 面上での再検要否の識別境界は直線となる。 ニューラルネットワークでは識別境 界が曲線となるため、 より精度の高い再検判定を行うことができる。 When a linear discriminant is used, as shown in Figs. 5 and 6, the boundary for determining whether or not reexamination is necessary on a plane with X and y as axes is a straight line. In the neural network, since the discrimination boundary is a curve, more accurate retest determination can be performed.
現在、 病院内で扱われる診断に関する情報の電子化が進みつつあり、 様々な病 院情報システム内にこれらの電子化された情報が蓄積されるようになつてきて おり、 上述の実施例では説明しなかったが、 再検要否判定論理の最適化には種々 の情報が参照できる。例えば、 診断情報 1 2 1には医師による診断結果、 投薬に 関する情報等が記録されており、 これらを参照した再検の必要性の有無の判断も できる。 例えばある受診者の血糖値が通常より高い値を示した場合でも、 その受 診者に対して既に糖尿病である、 という診断が下されていれば、 測定ミスである 可能性は低いと判断することができる。 この他、 高脂血症という診断がついてい る場合にはコレステロールや中性脂肪が高値を示す等、疾患の種類に応じ特有の 検査値の傾向を示す。 そのため、 診断に関する情報を使用することにより、 測定 ミスの可能性の有無を適切に判断することができる。 At present, computerization of information related to diagnosis handled in hospitals is progressing, and such computerized information is being accumulated in various hospital information systems. However, various information can be referred to in optimizing the re-test necessity logic. For example, the diagnostic information 122 records the results of a doctor's diagnosis, information on medication, and the like, and can be used to determine whether a retest is necessary. For example, even if a patient's blood glucose level is higher than normal, if the patient has already been diagnosed with diabetes, it is judged that the possibility of a measurement error is low. be able to. In addition, when the diagnosis of hyperlipidemia is made, the tendency of the test value peculiar to the type of the disease is shown, such as a high value of cholesterol and triglyceride. Therefore, by using the information on the diagnosis, it is possible to appropriately judge the possibility of measurement error.
. さらに、 診断に関する情報として、 疾患 を例に挙げたが、 疾患名以外の情報 を使用しても良い。例えば、特定の薬を服用している にはある検査値が高値、 あるいは低値を示すこと力知られている^^には、診断に関する情報として投薬 情報を用いることにより、 再検要否判定の精度を高くすることができる。 また、 疾患名が決定する前なのか、 疾患名が確定し、 治療を行っている状態なのか、 手 術からどのくらい経過している力 >、 等、 診療の段階に関する情報でも良い。 疾患 名が確定する前や、 手術が行われた直後、 等は検査値が大きく変動する可能性が あるが、病名が確定し治療が開始された後、 あるいは手術後長時間が経過し、 容 態が安定した後では検査値の変動は小さくなる。 このような情報を使用すると、 前回値からの変動を用いた再検要否判定の精度を高めることが可能となる。 Further, although the disease is exemplified as the information regarding the diagnosis, information other than the disease name may be used. For example, taking certain medications may result in high test values, Alternatively, for ^^ which is known to show a low value, the accuracy of the re-test necessity determination can be increased by using the medication information as the information regarding the diagnosis. Information about the stage of medical treatment, such as whether the disease name has not yet been determined, whether the disease name has been determined and the patient is undergoing treatment, and how much power has passed since the operation, may be used. Laboratory values may fluctuate significantly before the disease name is determined or immediately after surgery, etc., but after the disease name is determined and treatment is started, or after a long time has passed since surgery, After the condition is stabilized, the fluctuation of the inspection value becomes small. By using such information, it is possible to increase the accuracy of the retest necessity determination using the change from the previous value.
図 5、 図 6では再検要否の判定を、 簡単化のため、 2項目間の線形評価とする 例で説明したが、 単項目チェック、 前回値チェック、 項目間チェック等、 従来の 技術による様々な方法を拡張して用いることができる。 さらに、 判定のための基 準値、 あるいは論理式を男女別、 年齢別に設定していたが、 上記の例のように、 診断に関する情報として疾患名を利用する場合には、 男女別、 年齢別に加え、 更 に疾患名毎に基準値、論理式を設定すれば良い。 この 、 診断に関する情報と して受診者の年齢、 性別、 疾患名を診断情報 1 2 1より読み取り、 該当する基準 値、論理式を再検要否判定論理 1 1 6およぴ再検要否判定基準値 1 1 8より読み 込み、 再検の必要性の有無を判定することができる。 この場合、 再検要否判定論 理 1 1 6または再検要否判定基準値 1 1 8には、例えば図 9に示すような形式で、 男女別、 年齢別、 疾患名別に基準値、 論理式を記録しておく。 このように、 再検 要否判定論理 1 1 6およぴ再検要否判定基準値 1 1 8に、再検要否判定に使用す る基準値等のパラメータや、判定論理を記述した論理式を疾患毎に記録しておく ことは、 再検要否判定を高精度化できる。 In Fig. 5 and Fig. 6, for the sake of simplicity, the determination of the necessity of retesting was described as an example of a linear evaluation between two items.However, various items such as single item check, previous value check, item check, etc. Method can be extended and used. Furthermore, reference values or logical formulas for judgment were set for each gender and age, but as in the above example, when using disease names as information on diagnosis, In addition, reference values and logical expressions may be set for each disease name. The age, gender, and disease name of the examinee are read from the diagnosis information 121 as the information related to the diagnosis, and the corresponding reference values and logical formulas are used to determine whether reexamination is necessary. It can be read from the value 1 18 to determine whether a retest is necessary. In this case, the re-examination necessity logic 1 16 or the re-examination necessity reference value 1 18 is, for example, a standard value and a logical expression for each gender, age, and disease name in the format shown in Fig. 9. Record it. As described above, the re-examination necessity determination logic 1 16 and the re-examination necessity determination reference value 1 18 are represented by parameters such as reference values used for re-examination necessity determination and logical expressions describing the determination logic. Recording each time can improve the accuracy of the retest necessity determination.
医師の診断が確定していない診療の初期の段階等において、 患者の疾患名が利 用できない場合には、 図 9に示すように予め 「診断名未確定」 の場合の再検基準 値、 再検論理を記述しておき、 この再検基準値、 再検論理利用して再検要否判定 処理を行えば良い。 また、 上記の方法の他、 全ての疾患に対する再検基準値、 再 検論理を用いた判定を行い、 少なくとも 1種類の疾患に対する再検基準値、 再検 論理を用いた判定で再検不要、 と判定された場合には再検不要と決定しても良い。 この場合、 患者は再検不要と判定された際の再検基準値、 再検論理に対応する疾 患である可能性が高く、 その結果、 この疾患の再検墓準値、 再検論理においては 再検不要と判定されたと考えることができる。 If the patient's disease name is not available at the initial stage of medical treatment, for example, when the doctor's diagnosis has not been determined, as shown in Fig. 9, the retest reference value and the retest logic for `` diagnostic name undetermined '' in advance The retest necessity determination process may be performed using the retest reference value and the retest logic. In addition to the above methods, the retest reference values for all A determination using retest logic may be performed, and a retest reference value for at least one type of disease may be determined. If retest is not required in the determination using retest logic, retest may be determined to be unnecessary. In this case, the patient is likely to be a disease corresponding to the retest reference value and retest logic when it is determined that retest is unnecessary, and as a result, the retest grave value for this disease and retest logic are judged to be unnecessary. It can be considered that it was done.
また、疾患名が利用できない場合に、 図 4に示す疾患候補推定処理 1 2 4を利 用し、 入力された検査結果等から患者の疾患名を推定した後、 推定された疾患名 に対応する再検基準値、再検判定論理を使用して再検要否判定処理を行っても良 い。 この場合、 疾患候補が出力されなかった場合には、 入力された検査値がおか しいと考えられ、 再検を要する検体であると判定することができる。 Also, when the disease name is not available, the disease candidate estimating process 124 shown in FIG. 4 is used to estimate the patient's disease name from the input test results and the like, and then correspond to the estimated disease name. The retest necessity judgment processing may be performed using the retest reference value and the retest judgment logic. In this case, if no disease candidate is output, the input test value is considered to be incorrect, and it can be determined that the sample requires retesting.
また、投薬情報を利用する場合には、 薬の種類別に基準値、 論理式を記録して おき、 患者に投与されている薬の種類に応じて異なる基準値、論理式を選択して 利用することにより、 再検要否判定を高精度ィ匕することができる。 さらに、 手術 力、らの経過日数により、 異なる基準値、論理式を記録しておき、 患者の手術から の経過日数に応じて異なる基準値、論理式を選択して利用することによつても再 検要否判定を高精度化することができる。 When using medication information, record reference values and logical expressions for each type of drug, and select and use different reference values and logical expressions according to the type of drug administered to the patient. This makes it possible to judge the necessity of reexamination with high accuracy. Furthermore, it is also possible to record different reference values and logical expressions according to the operating power and the number of days elapsed, and select and use different reference values and logical expressions according to the number of days elapsed since the patient's operation. The accuracy of the retest necessity determination can be improved.
また、 再検要否判: ¾理としては今回の検査値、 過去の検査値、 診断情報等を 入力とし、再検の必要性の有無を出力とするュユーラルネットワークを使用して も良い。 この場合には再検要否判定論理 1 1 6には、 ニューラルネットワークの 層数、 各層の素子数、 等のネットワーク構造を記述するパラメータや、 各素子間 の結合重み値等を記録しておき、再検要否判定を行う際には記録された情報に基 き、 ネットワークを構成する。 また、 再検要否判定論理としてフアジィ推論を用 いる場合には、 再検要否判定論理 1 1 6には、 フアジィ推論に使用するメンバー シップ関数等を記録しておく。 Also, a re-test necessity judgment: As a process, a neural network that inputs the current test values, past test values, diagnostic information, etc., and outputs whether re-test is necessary or not may be used. In this case, the reexamination necessity determination logic 1 16 records parameters describing the network structure such as the number of layers of the neural network, the number of elements in each layer, etc., the connection weight value between the elements, and the like. The network is configured based on the recorded information when the necessity of reexamination is determined. When fuzzy inference is used as the reexamination necessity determination logic, the membership function used for fuzzy inference is recorded in the reexamination necessity determination logic 1 16.
再検要否判^ ¾理による判定 (ステップ 2 0 5 ) の結果は、 再検要否判 果 1 1 4に記録されるが、 ここには、 再検要否判 果の根拠となる情報も記録し ておくのが良い。 再検要否判定結果の根拠とは、 再検が必要であると判定した場 合には、 何故必要と判定したか、 再検が不要であると判定した場合には、 何故不 用と判定したか、 を説明する根拠となる情報である。 再検が必要であると判定し た場合の根拠とは、 例えば単項目チェックで基準値を超えた検査項目とその値、 前回値チェックで基準値を超えた検査項目とその値、項目間チェックで異常と判 断された論理式と、 その論理演算に使用した検査値、 疾患名等の診断に関する情 報、 などである。 また、 再検が不要であると判定した場合の根拠とは、 例えば単 項目チェックで異常値 (基準値を超えた検查値) が無い場合は異常値無し、 とい う情報が根拠となる。 また、 異常値があっても再検不要の場合は、 異常値を示す 検査項目に対する前回値、 あるいは疾患名等の診断に関する情報、 などを判定の 根拠とすることができる。 Judgment of reexamination necessity ^ The result of the judgment (step 2 05) is recorded in the reexamination necessity result 1 14, but information that is the basis of the reexamination necessity result is also recorded here. Good to keep. The reason for the retest necessity judgment result is as follows: if it is determined that retest is necessary, why it was determined to be necessary, and if it was determined that retest was unnecessary, why it was determined to be unnecessary Is the information that is the basis for explaining. Reasons for determining that retesting is necessary include, for example, inspection items and values that exceeded the reference value in the single item check, inspection items and values that exceeded the reference value in the previous value check, and inter-item check. These include the logical expression that was determined to be abnormal, the test values used for the logical operation, and information on diagnosis such as the name of the disease. The basis for determining that retesting is unnecessary is based on the information that there is no abnormal value if there is no abnormal value (test value exceeding the reference value) in a single item check, for example. In addition, in the case where there is an abnormal value and a retest is unnecessary, the previous value for the test item indicating the abnormal value, or information on diagnosis such as a disease name can be used as a basis for the determination.
検查クライアント 4 0のディスプレイ上に検査結果、及ぴ再検要否判定結果を 表示する画面構成例を図 1 0、 図 1 1に示す。 図 1 0では検查クライアント 4 0 の画面 8 0 0上に、 受付日時 8 1 0、 検査オーダ番号 8 1 5、 患者氏名 8 2 0、 患者の年齢 8 2 5、 患者の性別 8 3 0、 患者の受診診療科 8 3 5、検査状況 8 4 0、 異常値の有無 8 4 5、 再検の要否 8 5 0等、 を一覧表形式で表示する例を示 している。 このうち、 検査状況 8 4 0では、 生化学免疫検査 (図中では 「生化免 疫」 と記述) や、 一般検査 (図中では 「一般」 と記述) という検査の種類別に、 検査の進行状況を示している。 図中 「完」 とは検査が終了して、 検査結果が報告 されていることを示し、 「未」 はまだ検査が終了していないことを示している。 また、 「一」 は、 その種類の検査についてはオーダが出されていないことを示 している。 異常値の有無 8 4 5は 「無 J の場合、 異常値が無かったことを示し、 「有」 の場合は異常値があったことを示している。 まだ検査結果が出ていない場 合には 「一」 が表示されている。 再検の要否 8 5 0には、 再検要否判定処理 1 1 3により判定された再検の必要性の有無が表示されており、 「否」 の場合は再検 の必要性が無いことを示し、 「要」 の場合は再検の必要性が有ることを示してい る。 また、 検査結果が出ていない場合には 「一」 が表示されている。 FIGS. 10 and 11 show screen configuration examples of displaying the inspection result and the re-examination necessity determination result on the display of the inspection client 40. In Fig. 10, on the screen 800 of the inspection client 40, the reception date and time 810, inspection order number 815, patient name 820, patient age 825, patient gender 830, An example is shown in which the patient's consultation department 835, examination status 840, presence / absence of abnormal values 845, necessity of reexamination 850, etc. is displayed in a list format. Of these, the test status 840 shows the progress of the tests by type of test: biochemical immunoassay (described as “bioimmune” in the figure) and general test (described as “general” in the figure). Is shown. In the figure, “complete” indicates that the inspection has been completed and the inspection result has been reported, and “not yet” indicates that the inspection has not been completed. A “one” indicates that no order has been placed for that type of inspection. The presence / absence of an abnormal value 8 4 5 indicates that “no J” indicates that there was no abnormal value, and “present” indicates that there was an abnormal value. If no test result has been issued yet, “one” is displayed. The necessity of reexamination 850 indicates the necessity of reexamination determined by the reexamination necessity determination processing 1 13 .If “no” indicates that there is no necessity of reexamination, "Necessary" indicates that a retest is necessary. You. If no test result is given, “one” is displayed.
ここでは、 上記の情報がオーダ番号順〖こ一覧表示されているが、条件による抽 出も可能である。例えば特定の診療科や、患者氏名、異常値の有無、再検の要否、 といった項目に条件を設定し、 条件を満たす行のみを抽出することにより、 目的 とする情報を効率良く参照ことができる。 Here, the above information is displayed as a list in order of the order number, but it is also possible to extract the information according to conditions. For example, by setting conditions for specific medical departments, patient names, presence / absence of abnormal values, necessity of re-examination, and extracting only rows that satisfy the conditions, it is possible to refer to the target information efficiently. .
図 1 0に示す画面構成例において、検查クライアント 4 0に付属するマウスや キーボード等を操作し、 いずれか一行を選択すると、 その行に関するさらに詳細 な情報が表示される。 このときに表示される画面の構成例を図 1 1に示す。 In the example of the screen configuration shown in FIG. 10, by operating a mouse or a keyboard attached to the inspection client 40 and selecting one of the lines, more detailed information on the line is displayed. Fig. 11 shows a configuration example of the screen displayed at this time.
図 1 1は検査クライアント 4 0のディスプレイ 8 0 0上における画面の構成 例である。 画面は患者基本情報表示ェリア 8 6 0、 検査結果表示ェリア 8 6 5、 再検要否判定結果表示ェリア 8 7 0、 再検実施情報入力ェリア 8 7 5、 から構成 される。 FIG. 11 shows an example of a screen configuration on the display 800 of the inspection client 40. The screen consists of a basic patient information display area 860, an examination result display area 865, a re-examination necessity result display area 870, and a re-examination information input area 875.
患者基本情報表示エリア 8 6 0には、 患者 I D、 氏名、年齢、 性別等、 患者に 関する情報が表示される。検査結果表示エリア 8 6 5には T P、 A l b等の各検 査項目ごとの今回値、前回値、 それ以前の値、 が検查日とともに表形式で表示さ れる。 再検要否判定結果表示エリア 8 7 0には、 再検要否判定処理 1 1 3による 再検の必要性の有無に関する判定結果、 及び、 その判定の根拠となる情報が表示 される。 再検実施情報入力エリア 8 7 5では、 本システムの操作者が、 検査クラ イアント 4 0に付属のマウス、 キーボード等を利用し、 再検を実施するか (した 力 、 あるいは実施しないか (しなかったか) を選択入力することができる。 In the basic patient information display area 860, information about the patient, such as the patient ID, name, age, and gender, is displayed. In the inspection result display area 865, the current value, previous value, and previous values for each inspection item such as TP and Alb are displayed in a table format along with the inspection date. In the re-examination necessity judgment result display area 870, the judgment result on the necessity of the re-examination by the re-examination necessity judgment processing 113 is displayed, and the information as the basis for the judgment is displayed. In the reinspection execution information input area 8 7 5, the operator of the system uses the mouse, keyboard, etc. attached to the inspection client 40 to perform the reinspection (whether it was done or not). ) Can be selected and input.
システムが再検の必要あり、 と判断した検体について、 その検査結果を検査技 師が参照し、 本当に再検が必要かどう力、最終的な判断を行う場合があるが、 本発 明のように再検要否判定結果に応じて必要な再検が自動的に行われるものとす れば、 検查技師による判断は省略できるケースが多くなる。 検查技師による判断 をする にも、 再検要否判定の根拠を記録する再検要否判 ^^果 1 1 4を設け、 検査結果表示ェリア 8 6 5に検査結果を表示するとともに再検要否判定結果表 示エリア 8 7 0に再検要否判定結果と再検要否判定の根拠を表示することによ り、 技師が最終的な判断を行う時に、 どの検査値に着目すれば良いかを再検要否 判定の根拠として示すことが可能となり、技師は迅速に判断を行うことが可能に なる。 The laboratory technician may refer to the test results for the sample that the system determines to need to be retested, and make a final decision as to whether the test is really necessary. If the necessary reexamination is automatically performed according to the necessity judgment result, the judgment made by the inspection technician can be omitted in many cases. In order for the inspection technician to make a decision, a re-examination necessity record that records the basis of the re-examination necessity is set. Result table By displaying the retest necessity judgment result and the basis of the retest necessity judgment in the display area 870, the technician determines which test value to focus on when making the final judgment. This allows the technician to make quick decisions.
再検実施情報入力ェリア 8 7 5により入力された再検実施情報は、再検実施情 報 1 1 2に記録される。 再検要否判定論理最適化処理 1 1 7は初期検査結果 1 1 1に記録された検査結果と、再検実施情報 1 1 2に記録された再検実施情報およ び再検結果 1 1 5と再検要否判定結果 1 1 4とを用い、再検要否判定処理 1 1 3 で用いられる再検要否判定論理 1 1 6を ¾®化するための情報を出力する。 例えば従来技術による単項目チェック、 前回値チェック、項目間チェック等で 用いる基準値を最適化する:^、検査結果記録手段に記録された過去の検査結果 を用いて検査値分布のヒストグラムを作成し、 平均値を中心に、 全体の 9 5 %の 値が含まれる範囲を基準範囲とする最適化方法がよく知られている。 また、 別の 方法としては検査値の平均値 μと標準偏差 σを求め、範囲( α— 1ι σ、 + k σ ) を基準範囲とする方法がある。 但し kは適当な定数である。 しかしながら、 この ような基準範囲の設定方法は、再検の必要な検体がどのような検査値であつたか という情報は用いていない。 そのため、 実際にこの方法で設定した基準範囲を用 いて再検要否判定を行った場合、過去に再検を実施した検体が、 再検不要と判定 されたり、 また再検が不要な検体を再検の必要ありと判定してしまうケースが多 くなつてしまう場合がある。 そのため、 基準範囲の設定の時に、 過去の検查結果 に加え、その検査結果が再検を行うべき結果である力否かを示す再検要否判定結 果を用いることにより、 過去の検查結果の內、本当に再検が必要であった検査結 果が全て再検必要、 と判断されるような最大限の基準範囲を設定することが可能 となる。 このように基準範囲を設定することにより、 再検すべき検査結果の見落 としを少なくするとともに、実際には再検が不要である検査結果を再検要と判断 してしまうケースを少なくし、 再検要否判定の精度を高めることが可能になる。 再検要否判定処理 1 1 3で、 上記以外の手法を用いる場合には、 それぞれの手 法に対応した様々な最適ィ匕方法、 学習方法を用いれば良い。 例えば再検要否判定 処理 1 1 3として-ユーラルネットワークを使用する^ こは、検査結果 1 1 1 力 読み込む過去の検査値を学習データとし、再検要否判定結果 1 1 4から読み 込まれる再検を行うべき検体である力否かという情報を教師データとし、 ニュー ラルネットワークの学習を行うことができる。 ニューラルネットワークとして例 えばフィードフォワード型のネットワークを用いる場合には、 学習方法としてパ ックプロパゲーション法を用いることができる。 The re-examination information entered in the re-examination information input area 875 is recorded in the re-examination information 112. The re-test necessity determination logic optimization processing 1 1 7 is the test result recorded in the initial test result 1 1 1, the re-test execution information and the re-test result 1 1 5 recorded in the re-test execution information 1 1 2 By using the rejection determination result 1 14 and the re-examination necessity determination logic 1 16 used in the re-examination necessity determination process 1 13, information is output to optimize the re-examination necessity determination logic 1 16. For example, optimize the reference values used in the conventional single-item check, previous value check, item-to-item check, etc .: ^, create a histogram of the inspection value distribution using the past inspection results recorded in the inspection result recording means. A well-known optimization method is to use a range that includes 95% of the total value around the average value as a reference range. As another method, there is a method in which the average value μ and the standard deviation σ of the inspection values are obtained, and the range (α-1ισ, + kσ) is used as a reference range. Where k is an appropriate constant. However, such a method of setting a reference range does not use information as to what kind of test value the specimen that needs to be retested is. Therefore, when re-testing is required using the reference range set by this method, samples that have been re-tested in the past are determined to be unnecessary, or samples that do not need to be re-tested need to be re-tested. In many cases. Therefore, when setting the reference range, in addition to the past inspection results, the re-test necessity judgment result indicating whether the inspection result is a force that should be re-inspected is used, and the內 It is possible to set the maximum reference range where all the test results that really needed to be retested are judged to need to be retested. By setting the reference range in this way, oversight of the test results to be re-tested is reduced, and cases where test results that do not actually need to be re-tested are judged to be re-tested are reduced. It is possible to increase the accuracy of the rejection determination. In the re-examination necessity determination process 113, when using a method other than the above, various optimal riding methods and learning methods corresponding to the respective methods may be used. For example, using the neural network as the re-test necessity judgment processing 1 1 3 ^ This is the test result 1 1 1 output The past test value to be read is used as learning data, and the re-test read from the re-test necessity judgment result 1 1 4 The information on whether or not the specimen is to be subjected to power is used as teacher data, and neural network learning can be performed. For example, when a feed-forward type network is used as a neural network, a pack propagation method can be used as a learning method.
再検要否判定は検査値を特徴量とするパターンを、再検の必要があるパターン と、 再検の必要が無いパターンの 2種類に分類するパターン認識問題と考えるこ とができる。 そのため、 再検要否判定論理 1 1 6の再検要否判定方法としては、 公知の様々なパターン認識方法を用いることができ、 また、 再検要否判定論理最 適化処理 1 1 7としては公知の様々なパターン認識論理構築方法を用いること ができる。 そのため、例えば再検要否判 理 1 1 6においてフアジィ推論を用 いる場合にも、検査結果とそれに対応する再検要否判 果とを使用することに より、 推!^方法を最適化することができる。 また、 公知のパターン認識論理構築 方法を用いることにより、 最適な論理式を学習により得ることも可能である。 このように、初期検査結果 1 1 1およぴ再検結果 1 1 5と再検実施情報 1 1 2 を設けることにより、 上述のような再検要否判定論理の最適ィ匕が可能になり、 再 検要否判定精度を向上することができる。 The retest necessity determination can be considered as a pattern recognition problem in which a pattern using a test value as a feature quantity is classified into two types, a pattern that requires retest and a pattern that does not require retest. For this reason, as the re-examination necessity determination logic 1 16, various known pattern recognition methods can be used as the re-examination necessity determination method. A variety of pattern recognition logic construction methods can be used. Therefore, for example, even when using fuzzy inference in the retest necessity decision 1 16, it is possible to optimize the inference method by using the test result and the corresponding retest necessity result. it can. In addition, by using a known pattern recognition logic construction method, it is possible to obtain an optimal logical expression by learning. In this way, by providing the initial inspection result 11 1 and the re-inspection result 1 15 and the re-inspection execution information 1 12, it is possible to optimize the re-inspection necessity determination logic as described above, The necessity determination accuracy can be improved.
再検論理の最適ィ匕は、 図 7、 図 8では再検の流れの中で必ず実行されるものと して説明したが、本システムの使用者が再検要否判定論理変更を入力することに よって実行するものとしても良い。 Although it has been described in FIGS. 7 and 8 that the optimal logic of the reexamination logic is always executed in the flow of the reexamination, the user of the present system inputs the reexamination necessity determination logic change. It may be executed.
また、 当然のことながら、 システムの運用者は再検結果とは無関係に再検要否 判定論理を変更しうる。 例えば、 図 9の再検基準値あるいは再検論理を入力装置 を使用して更新するのである。 再検要と判定された検体に対する再検結果あるいは再検不要と判定された検 体の一部に対する再検結果等の蓄積された再検実施情報と検査結果を用いて再 検要否判定論理を最適化することにより、 再検の精度を高めることができる。 Also, of course, the system operator can change the retest necessity determination logic regardless of the retest result. For example, the retest reference value or the retest logic in Fig. 9 is updated using an input device. Optimizing the retest necessity determination logic using accumulated retest execution information and test results such as retest results for samples judged to be retested or retest results for some of the samples judged not to be retested As a result, the accuracy of the retest can be improved.
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000208225A JP3987675B2 (en) | 2000-07-05 | 2000-07-05 | Clinical laboratory system |
| JP2000-208225 | 2000-07-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002003077A1 true WO2002003077A1 (en) | 2002-01-10 |
Family
ID=18704847
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2001/005716 Ceased WO2002003077A1 (en) | 2000-07-05 | 2001-07-02 | Clinical examination system |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP3987675B2 (en) |
| WO (1) | WO2002003077A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103460055A (en) * | 2011-03-30 | 2013-12-18 | 希森美康株式会社 | Sample analysis system and sample analysis device |
| CN111816285A (en) * | 2019-04-10 | 2020-10-23 | 佳能医疗系统株式会社 | Medical information processing device and medical information processing method |
| CN112858702A (en) * | 2019-11-28 | 2021-05-28 | 深圳迈瑞生物医疗电子股份有限公司 | Sample detection-based information processing method, sample detection system and storage medium |
| WO2023172935A3 (en) * | 2022-03-09 | 2023-11-09 | Bio-Rad Laboratories, Inc. | System and method for dynamically adjusting analytical precision in clinical diagnostic processes |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3760806B2 (en) * | 2001-06-25 | 2006-03-29 | 株式会社日立製作所 | Analysis result management method and apparatus |
| JP4951216B2 (en) * | 2005-07-05 | 2012-06-13 | シスメックス株式会社 | Clinical examination information processing apparatus and system, analyzer, and clinical examination information processing program |
| JP4805709B2 (en) * | 2006-03-30 | 2011-11-02 | シスメックス株式会社 | Urine analyzer |
| JP4906431B2 (en) | 2006-08-04 | 2012-03-28 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
| JP5108366B2 (en) * | 2007-03-29 | 2012-12-26 | シスメックス株式会社 | Sample analyzer |
| JP5106906B2 (en) * | 2007-04-05 | 2012-12-26 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
| US9297820B2 (en) * | 2008-02-13 | 2016-03-29 | Hitachi High-Technologies Corporation | Automatic analyzer |
| JP5171368B2 (en) * | 2008-04-17 | 2013-03-27 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
| JP4951594B2 (en) * | 2008-07-31 | 2012-06-13 | シスメックス株式会社 | Clinical examination information processing apparatus, system, analysis apparatus, and program thereof |
| JP4951595B2 (en) * | 2008-07-31 | 2012-06-13 | シスメックス株式会社 | Clinical examination information processing apparatus, system, analysis apparatus, and program thereof |
| JP5452070B2 (en) * | 2009-04-28 | 2014-03-26 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
| EP2485054B1 (en) * | 2009-09-28 | 2019-08-21 | Hitachi High-Technologies Corporation | Automatic analyzing device, information display method thereof, and information display system |
| JP5570240B2 (en) | 2010-02-22 | 2014-08-13 | アークレイ株式会社 | DATA OUTPUT METHOD, ANALYSIS DEVICE, ANALYSIS SYSTEM, PROGRAM FOR IMPLEMENTING THE METHOD, AND STORAGE MEDIUM FOR THE PROGRAM |
| US10845266B2 (en) | 2011-11-16 | 2020-11-24 | Inficon Gmbh | Quick leak detection on dimensionally stable/slack packaging without the addition of test gas |
| JP5961424B2 (en) * | 2012-03-30 | 2016-08-02 | シスメックス株式会社 | Sample analyzer, sample analysis method, and sample analysis system |
| JP6169337B2 (en) | 2012-09-03 | 2017-07-26 | 株式会社日立ハイテクノロジーズ | Sample test automation system and sample transport method |
| US12531154B2 (en) * | 2014-07-10 | 2026-01-20 | Bio-Rad Laboratories, Inc. | System and method for spot checking small out-of-control conditions in a clinical diagnostic process |
| JP6667991B2 (en) * | 2015-01-23 | 2020-03-18 | キヤノンメディカルシステムズ株式会社 | Ultrasound diagnostic equipment and hospital information system |
| WO2020162310A1 (en) * | 2019-02-05 | 2020-08-13 | 富士フイルム株式会社 | Management system |
| JP2021034056A (en) * | 2019-08-26 | 2021-03-01 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Automated validation of medical data |
| JP7431709B2 (en) * | 2020-09-28 | 2024-02-15 | 株式会社日立ハイテク | automatic analyzer |
| JP7534184B2 (en) | 2020-10-20 | 2024-08-14 | 合同会社H.U.グループ中央研究所 | Information processing method, information processing system, and program |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6298262A (en) * | 1985-10-25 | 1987-05-07 | Hitachi Ltd | Retest processing method in clinical testing system |
| JPH0310161A (en) * | 1989-06-08 | 1991-01-17 | Hitachi Ltd | System for instructing recheck |
| US5100622A (en) * | 1989-03-14 | 1992-03-31 | Hitachi, Ltd. | Automatic analyzing apparatus and method for clinical examination |
| JPH04290963A (en) * | 1991-03-19 | 1992-10-15 | Hitachi Ltd | Data check device for automatic analyzer |
| JPH05119042A (en) * | 1991-10-24 | 1993-05-14 | Analytical Instr:Kk | Automatic analysis system |
| JPH07120471A (en) * | 1993-10-25 | 1995-05-12 | Hitachi Ltd | Automatic analyzer |
| JPH11296605A (en) * | 1998-04-13 | 1999-10-29 | Hitachi Ltd | Clinical test system |
| JP2000074924A (en) * | 1998-08-27 | 2000-03-14 | Hitachi Ltd | Test data management device for clinical test systems |
| JP3036667B2 (en) * | 1994-03-28 | 2000-04-24 | 株式会社日立情報システムズ | Data cleaning system for medical examination room |
-
2000
- 2000-07-05 JP JP2000208225A patent/JP3987675B2/en not_active Expired - Lifetime
-
2001
- 2001-07-02 WO PCT/JP2001/005716 patent/WO2002003077A1/en not_active Ceased
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6298262A (en) * | 1985-10-25 | 1987-05-07 | Hitachi Ltd | Retest processing method in clinical testing system |
| US5100622A (en) * | 1989-03-14 | 1992-03-31 | Hitachi, Ltd. | Automatic analyzing apparatus and method for clinical examination |
| JPH0310161A (en) * | 1989-06-08 | 1991-01-17 | Hitachi Ltd | System for instructing recheck |
| JPH04290963A (en) * | 1991-03-19 | 1992-10-15 | Hitachi Ltd | Data check device for automatic analyzer |
| JPH05119042A (en) * | 1991-10-24 | 1993-05-14 | Analytical Instr:Kk | Automatic analysis system |
| JPH07120471A (en) * | 1993-10-25 | 1995-05-12 | Hitachi Ltd | Automatic analyzer |
| JP3036667B2 (en) * | 1994-03-28 | 2000-04-24 | 株式会社日立情報システムズ | Data cleaning system for medical examination room |
| JPH11296605A (en) * | 1998-04-13 | 1999-10-29 | Hitachi Ltd | Clinical test system |
| JP2000074924A (en) * | 1998-08-27 | 2000-03-14 | Hitachi Ltd | Test data management device for clinical test systems |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103460055A (en) * | 2011-03-30 | 2013-12-18 | 希森美康株式会社 | Sample analysis system and sample analysis device |
| CN103460055B (en) * | 2011-03-30 | 2016-01-13 | 希森美康株式会社 | Sample analysis system and device for analyzing samples |
| CN111816285A (en) * | 2019-04-10 | 2020-10-23 | 佳能医疗系统株式会社 | Medical information processing device and medical information processing method |
| CN112858702A (en) * | 2019-11-28 | 2021-05-28 | 深圳迈瑞生物医疗电子股份有限公司 | Sample detection-based information processing method, sample detection system and storage medium |
| WO2023172935A3 (en) * | 2022-03-09 | 2023-11-09 | Bio-Rad Laboratories, Inc. | System and method for dynamically adjusting analytical precision in clinical diagnostic processes |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002022748A (en) | 2002-01-23 |
| JP3987675B2 (en) | 2007-10-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2002003077A1 (en) | Clinical examination system | |
| Junker et al. | Point-of-care testing in hospitals and primary care | |
| Randell et al. | Delta checks in the clinical laboratory | |
| Pham et al. | Recognizing misclassification bias in research and medical practice | |
| CN102749466B (en) | System and method for autoverifying laboratory test results | |
| CN106339569B (en) | Method and device for judging sample test result abnormity | |
| CN108538350A (en) | The Auditing System and method of clinical examination report | |
| CN111833009A (en) | The whole laboratory intelligent audit software system | |
| US8812249B2 (en) | Analyzer apparatus and methods for lung disease | |
| CN106250672A (en) | Patient risk is used in the analysis of the Quality Control Strategy of laboratory result | |
| US20070027648A1 (en) | Clinical testing information processing apparatus, clinical testing information processing method, and analyzing system | |
| RU106013U1 (en) | Staging system DIFFERENTIAL DIAGNOSIS ACCORDING TO DIAGNOSIS, REFERENCE SYSTEM results of clinical studies for integration into automated medical information systems, Differentiation recording the results of clinical studies to integration into automated health information system and differential diagnostic matrix for integration into automated medical information systems | |
| Crane et al. | Diabetes case identification methods applied to electronic medical record systems: their use in HIV-infected patients | |
| Junger et al. | Automatic calculation of a modified APACHE II score using a patient data management system (PDMS) | |
| JP2006031264A (en) | Clinical inspection information control device, clinical inspection information control method, and clinical inspection information control program | |
| JP3982192B2 (en) | Clinical laboratory system | |
| US20240321439A1 (en) | Methods and apparatuses for facilitating maintenance of a medical analyzer device | |
| JP3036667B2 (en) | Data cleaning system for medical examination room | |
| JPH07103972A (en) | Biochemical automatic analyzer | |
| JP2007322243A (en) | Autoanalyzer | |
| CN110246552B (en) | Specimen management method and system based on failure evaluation | |
| CN109446192B (en) | Data testing method and device | |
| Ponampalam et al. | Comparison of full blood count parameters using capillary and venous samples in patients presenting to the emergency department | |
| JP3053902B2 (en) | Abnormal cause diagnosis method | |
| Rimac et al. | National recommendations of the Working Group for Post-analytics of the Croatian Society of Medical Biochemistry and Laboratory Medicine: implementation of autovalidation procedures |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase |